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ABSTRACT

This dissertation investigates several important issues related to filtering, estima-

tion, and inference in time series econometrics. The applied focus is on financial and

macroeconomic models that include predictive regressions and dynamic stochastic

general equilibrium models as prominent examples.

Chapter 1 studies inference in predictive regression with a nearly integrated pre-

dictor. Conventional tests for predictive regressions exhibit substantial size distor-

tions while existing valid inference procedures usually require multiple steps for their

implementation. I propose a simple procedure using an augmented regression that

requires only one step to test the coefficients in a predictive regression with a nearly

integrated predictor. I prove that the usual t-test using conventional standard normal

critical values is conservative. Furthermore, to address the situation where the pre-

dictive test is uninformative because of possible outlying events or regime changes, I

propose a class of robust tests and study their asymptotic properties. In the empir-

ical application, I find considerable evidence of the predictability of NYSE/AMEX

returns using nearly integrated predictors, such as the log dividend-price ratio or the

vii



log earning-price ratio.

Chapter 2 (joint with Alessandro Casini and Pierre Perron) establishes theoretical

results about the low frequency contamination induced by general nonstationarity for

estimates such as the sample autocovariance and the periodogram, and hence deduces

consequences for heteroskedasticity and autocorrelation robust (HAR) inference. We

show that for short memory nonstationarity data these estimates exhibit features akin

to long memory due to low frequency contamination, to which, however, estimates

based on nonparametric smoothing over time are robust. The theoretical findings

are further confirmed by simulations. Since inconsistent long-run variance (LRV)

estimation tends to be inflated when the data are nonstationary, HAR tests based on

LRV can suffer from low frequency contamination, being more undersized with lower

power than those based on HAC, whereas tests based on the recently introduced

double kernel HAC estimator do not.

The last chapter (joint with Zhongjun Qu) develops a new particle filter for dy-

namic stochastic general equilibrium (DSGE) models by mapping the state vector

into two subvectors: a subvector whose components are observed and a subvector

whose components are latent. By only sampling and propagating particles of the

latent variables, we avoid the need to introduce measurement errors, a convenient

but questionable practice. For implementation, we propose to approximate the ob-

servables’ density conditional on the latent variables using series expansions. As an

important feature, the new filter also allows us to study singular DSGE models using

the composite likelihood, therefore providing a unified treatment of both singular and

nonlinear DSGE models.

viii



Contents

1 Inference in Predictive Regression
with a Nearly Integrated Predictor 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Inference with a Nearly Integrated Predictor . . . . . . . . . . . . . . 5

1.3 Local-to-Unity Asymptotics . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Testing Predictability using an Augmented Regression . . . . . . . . 14

1.5 A Family of Robust Tests under Model Instability . . . . . . . . . . . 19

1.6 Finite Sample Properties of the Proposed Tests . . . . . . . . . . . . 27

1.7 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.9 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.10 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Theory of Low Frequency Contamination from Nonstationarity and
Misspecification: Consequences for HAR Inference 51

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Statistical Framework for Nonstationarity . . . . . . . . . . . . . . . 56

2.2.1 Short Memory Segmented Locally Stationary Processes . . . . 57

2.2.2 Long Memory Segmented Locally Stationary Processes . . . . 59

2.3 Theoretical Results on Low Frequency Contamination . . . . . . . . . 62

2.3.1 The Sample Autocovariance under Nonstationarity . . . . . . 63

2.3.2 The Periodogram under Nonstationarity . . . . . . . . . . . . 66

2.3.3 The Sample Local Autocovariance under Nonstationarity . . 68

ix



2.3.4 The Local Periodogram under Nonstationarity . . . . . . . . 69

2.4 Consequences for HAR Inference . . . . . . . . . . . . . . . . . . . . 71

2.4.1 HAR Inference Methods . . . . . . . . . . . . . . . . . . . . . 71

2.4.2 Small-Sample Low Frequency Contamination . . . . . . . . . . 74

2.4.3 General Low Frequency Contamination . . . . . . . . . . . . . 79

2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.6 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.7 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3 A New Particle Filter for Nonlinear Dynamic Stochastic General
Equilibrium Models 101

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 Traditional Particle Filter and

the No-measurement-error Problem . . . . . . . . . . . . . . . . . . . 104

3.4 The New Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4.1 Gram-Charlier Unconditional Density Approximation . . . . . 110

3.4.2 Gram-Charlier Conditional Density Approximation . . . . . . 116

3.4.3 Redundant State Elimination . . . . . . . . . . . . . . . . . . 119

3.5 Particle MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.6 Nonlinear Composite Likelihood Method . . . . . . . . . . . . . . . . 122

3.7 A Stochastic Volatility Model . . . . . . . . . . . . . . . . . . . . . . 123

3.7.1 New Particle Filter for a Stochastic Volatility Model . . . . . 124

3.7.2 A Comparison with the Traditional Particle Filter . . . . . . . 128

3.8 A New Keysesian Monetary DSGE Model . . . . . . . . . . . . . . . 129

3.8.1 Kalman Particle Filter . . . . . . . . . . . . . . . . . . . . . . 132

x



3.8.2 A New Particle Filter for the New Keysesian Monetary Model 135

3.8.3 Evaluating the New Particle Filter’s Performance . . . . . . . 136

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

3.10 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A Proof of Chapter 1 145

A.1 Proof of Theorem 1.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 Proof of Theorem 1.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.3 Proof of Lemma 1.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.4 Proof of Lemma 1.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.5 Proof of Corollary 1.4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.6 Proof of Theorem 1.4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.7 Proof of Theorem 1.4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.8 Proof of Lemma 1.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.9 Proof of Theorem 1.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B Proof of Chapter 2 154

B.1 Proof of Theorem 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.2 Proof of Theorem 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B.3 Proof of Theorem 2.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B.4 Proof of Theorem 2.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 163

References 167

Curriculum Vitae 177

xi



List of Tables

1.1 Large Sample (T = 500) Critical Values for the Proposed Statistics . 47

1.2 Small Sample (T = 50, 100, 200) Rejection Rates for the Proposed

Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.3 Estimates of the Model Parameters ignoring Non-standard Features . 49

1.4 Tests of Predictability using Proposed Methods and Campbell-Yogo

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1 Comparison between the theoretical autocovariance and the sample

estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.2 Empirical small-sample size and power of t-test for model M1 . . . . 98

2.3 Empirical small-sample size and power of the of t-test for model M2 . 98

2.4 Empirical small-sample size and power of the of t-test for model M3 . 99

2.5 Empirical small-sample size and power of the of t-test for model M4 . 99

2.6 Empirical small-sample size and power of the DM (1995) test . . . . . 100

3.1 Calibration for Lubik and Schorfheide (2004) Model . . . . . . . . . . 136

xii



List of Figures

1·1 Time Series Plot of the Financial Ratios . . . . . . . . . . . . . . . . 37

1·2 Time Series Plot of the Excess Stock Return . . . . . . . . . . . . . . 38

1·3 Time Series Plot of the First Differences of Financial Ratios . . . . . 39

1·4 t-statistic vs standard normal; T = 500, N = 10, 000 . . . . . . . . . . 40

1·5 t-statistic vs Q-statistic local power; T = 500, N = 10, 000 . . . . . . 41

1·6 Feasible Distribution Bounds for typical cases; c = [−50, 0]; T =

500, N = 10, 000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1·7 SupT F vs SupQF vs SupRF ; T = 500, N = 10, 000 . . . . . . . . . . 43

1·8 SupTR vs SupQR vs SupRR; T = 500, N = 10, 000 . . . . . . . . . . 44

1·9 SupTW vs SupQW vs SupRW ; T = 500, N = 10, 000 . . . . . . . . . 45

1·10 SupT F vs t-statistic local power; T = 500, N = 10, 000, c = −2,

θ = −0.75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2·1 Plot of Vt for model M1. The sample size is T = 200. T 0
1 = 20. Also

reported in red dashed lines are the sample averages in the two regimes

with V 1 = 1.27 and V 2 = −0.03. . . . . . . . . . . . . . . . . . . . . 87

2·2 ACF of V1,t (top panel), ACF of V2,t (mid panel) and ACF of Vt (bottom

panel) for model M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2·3 a) top panel: plot of {dt}; b) mid-panel: plot of the sample autoco-

variances Γ̂ (k) of {dt}; c) bottom panel: plot the periodogram I (ω)

of {dt}. In all panels δ = 1. . . . . . . . . . . . . . . . . . . . . . . . 89

xiii



2·4 a) top panel: plot of {dt}; b) mid-panel: plot of the sample autoco-

variances Γ̂ (k) of {dt}; c) bottom panel: plot the periodogram I (ω)

of {dt}. In all panels δ = 2. . . . . . . . . . . . . . . . . . . . . . . . 90

2·5 a) top panel: plot of {dt}; b) mid-panel: plot of the sample autoco-

variances Γ̂ (k) of {dt}; c) bottom panel: plot the periodogram I (ω)

of {dt}. In all panels δ = 5. . . . . . . . . . . . . . . . . . . . . . . . 91
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1

Chapter 1

Inference in Predictive Regression
with a Nearly Integrated Predictor

1.1 Introduction

It is well known that traditional predictive regression tests often produce spurious

predictability because their empirical sizes far exceed their nominal sizes: the resulting

t-statistic values are often significant, typically greater than two or even three. This

might lead researchers to mistakenly conclude that an outcome variable in the next

period could be forecasted by a predictor in the current period. Mankiw and Shapiro

(1986) and Stambaugh (1986) are the first to indicate that the usual t-value produced

by such regressions would reject the null hypothesis too often. The inference error

is mainly caused by two reasons: first, when a predictor is highly persistent, the

first-order approximation can fail. Second, when the innovations of a predictor and

outcome variables are highly correlated, the endogeneity problem is severe. See Elliott

and Stock (1994) and Cavanagh et al. (1995) for theoretical results and Campbell and

Yogo (2006) for simulation results.

A common approach to deal with the endogeneity problem is by projecting the

disturbance term in the outcome variable onto the innovation in the predictor vari-

able. Using this approach, Stambaugh (1986) observes that there exists a close re-

lationship between the downward bias in the ordinary least squares (OLS) estimator

for the autoregressive coefficient of a predictor and the upward bias in the OLS es-
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timator for the predictive coefficient of a predictive regression. Relying upon this

relationship, Stambaugh (1999) achieves first-order bias-correction by drawing on

previous work on bias-corrected estimators for autoregressive regressions. Still em-

ploying the connection between the two OLS estimators, Lewellen (2004) suggests

a conservative second-order bias-corrected estimator by restricting the degree of the

predictor’s persistence to be less than unity. Thereafter, he verifies the validity of the

corresponding t-test procedure using conventional asymptotics. Rather than exploit-

ing the relationship between the two OLS estimators, Amihud and Hurvich (2004)

achieves second-order bias-correction for the estimator of the predictive coefficient by

augmenting the original equation with the innovations in the predictor. They derive

the asymptotic distribution of their test using the conventional approach. Later, Cai

and Wang (2014) provided the asymptotic distribution for their method using the

local-to-unity approximation. Finally, Campbell and Yogo (2006) propose a robust

inference procedure based on the Bonferroni correction, and it has become popular

among financial practitioners.

Motivated by these methods, I propose a simple procedure by directly estimating

an augmented regression. Different from the existing methods that involve estimation

and inference in multiple steps, my method only requires a single step to conserva-

tively estimate the predictive parameter, probably representing the easiest way to

produce valid inferences. Nevertheless, my method has good power in practice when

a nearly integrated predictor is used. In my application, the inference results are

generally similar to, if not stronger than, those yielded by the efficient but more

complicated Q-test provided by Campbell and Yogo (2006). To address the situation

whereby the predictive test becomes uninformative due to possible outlying events or

regime changes, I propose a class of robust tests by splitting the full sample into ad-

missible subsamples over which the original procedure are applied. Their asymptotic
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and finite sample properties are studied.

Employing a common setting in the previous literature, I assume that the standard

predictive regression has the following linear structural form:

yt = α + βxt−1 + ut, (1.1)

xt = γ + ρxt−1 + vt, (1.2)

for t = 1, 2, . . . , T . It has the usual state space form, where the first and second

equations describe the forecast and transition equations, respectively. For the forecast

equation (1.1), let yt be the outcome variable in period t, xt−1 a predictor observed

in period t − 1, and ut the remaining forecast error. As specified in the transition

equation (1.2), the predictor xt is commonly formulated by an autoregressive model

with order 1, or AR(1). Notably, vt is the innovation in xt. The unknown parameter

ρ captures the degree of persistence in xt. If |ρ| < 1 and fixed, xt is integrated of

order zero, or I(0). If ρ = 1, xt is integrated of order one, or I(1). If |ρ| > 1, xt is

explosive. Herein, I exclude the explosive case and assume |ρ| ≤ 1. I am particularly

interested in the case where ρ ≈ 1, i.e., when a predictor is nearly integrated.

Generally, I can allow the innovation term vt in (1.2) to have short-run dynamics

that are captured by an AR(p) process, writing

Φ(L)vt = et,

where Φ(L)vt =
∑p

j=0 ΦjL
j, with Φ0 = 1 and Φ(1) 6= 0. Moreover, the vector (ut, et)

′

is a martingale difference sequence with the conditional covariance matrix Σt, which

can be time-varying in principle. Recently, Casini (2020) has proposed double-kernel

heteroskedasticity and autocorrelation (DK-HAC) estimators using a segmented lo-

cally stationary framework, thereby showing that the use of nonparametric smoothing

over time can substantially improve power for tests based on the HAC estimators un-
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der such a nonstantionary environment. Further, Casini et al. (2020) studies the

consequences for heteroskedasticity and autocorrelation robust (HAR) inference un-

der such a setting. However, to facilitate my analysis, I restrict that (ut, vt)
′ is a

martingale difference sequence with a time-invariant conditional covariance matrix.

Throughout the paper, the following conditions are assumed for innovations driving

the data generating processes (1.1) and (1.2), unless otherwise stated.

Assumption 1.1.1 (Martingle Difference) Denote the two dimensional process
wt = (ut, vt)

′. Let Ft = {ws|s ≤ t} be the induced filtration. Assume wt is a
martingale difference sequence with finite fourth moments satisfying

1. E[wt|Ft−1] = 0,

2. suptE[u4
t ], suptE[v4

t ], E[x2
0] <∞,

3. E[wtw
′
t] = Σ, with

Σ = Cov(ut, vt) =

[
σ2
u θσuσv

θσuσv σ2
v

]
,

where θ denotes the correlation coefficient Cor(ut, vt), which can be further
assumed to be negative for the sake of practical relevance.

The assumption that the correlation coefficient θ between ut and vt is negative

is without loss of generality because redefining the predictor variable xt as −xt flips

the sign. In the empirical finance literature, the outcome variable yt is usually the

stock excess return in the t-th period. The predictor xt−1 could be a financial ratio,

such as the log of the dividend-price ratio (d-p) or log of earning-price ratio (e-p) in

the (t − 1)-th period. Under this setting, as price enters both the outcome variable

yt = log pt − log pt−1 and the predictor xt = log dt − log pt and further affects their

values in an opposite way, the correlation coefficient θ is very negative (see Table 1.3).

I am mainly interested in whether the lagged regressor xt−1 can predict the out-

come variable yt. Therefore, the parameter β is the unknown parameter of interest.
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I say that xt−1 is able to predict yt if β 6= 0. I focus on the null hypothesis β = 0

versus the one-sided composite alternative β > 0, following the previous literature.

The rest of the paper proceeds as follows: the existing popular estimation and

inference procedures for the predictive regression model are discussed in the Section

2. In Section 3, I review the so-called local-to-unity asymptotics used here. My

main inference procedure for testing predictability, using the framework of augmented

regressions, is proposed in Section 4. In Section 5, concerning possible outlying events

and regime changes, I propose a family of robust tests under model instability. The

finite sample properties of my proposed tests are evaluated in Section 6. An empirical

application of my methods, along with a comparison of the popular Campbell and

Yogo (2006) Bonferroni procedure is presented in Section 7, while the conclusions are

given in Section 8.

1.2 Inference with a Nearly Integrated Predictor

Direct runs of the first regression (1.1) produce large t-values, typically greater than

two and sometimes greater than three (see Table 1.3 in Section 7). New researchers

unfamiliar with this setting might mistakenly conclude that certain predictors, such

as financial ratios could indeed strongly forecast outcome variables such as stock

returns. However, Mankiw and Shapiro (1986) and Stambaugh (1986) show that when

the contemporaneous correlation coefficient θ is close to −1 and the autoregressive

coefficient ρ is close to 1, the usual t-test of the null hypothesis that β = 0 leads to

rejections too often. Figure 1·1 displays time series plots of the log dividend-price ratio

for the NYSE/AMEX value-weighted index and the log smoothed earnings-ratio for

the S&P 500 index at monthly frequency, from 1926 to 2018. (The shaded regions are

the recession periods dated by the NBER.) Note that both valuation ratios are very

persistent. Heuristically, the predictor’s variance σ2
x = σ2

v/(1−ρ2) diverges to infinity



6

as ρ→ 1; hence, the traditional first-order asymptotics provides poor approximations

in finite sample. Consequently, the usual tests can have large size distortions.

However, recall that the martingale difference assumption only specifies that ut is

serially uncorrelated and E(ut|xt−1, xt−2, . . .) = 0. In fact, the common assumption

E(ut| . . . , xt+1, xt, xt−1,...) = 0 typically fails to hold in predictive regression settings.

This can be easily seen by setting the autoregressive coefficient ρ = 0. In this case

xt is highly correlated with vt and thus ut. As ρ increases, given the correlation

coefficient θ, the correlation between xt and ut−s(s > 0) through vt−s becomes larger.

In practice, if yt is the excess stock return reflecting price change in period t while xt is

the log dividend-price ratio inversely affected by the price change at the same period,

it must be true that E(ut|xt, xt−1) 6= 0. Therefore, the Gauss-Markov theorem does

not apply, and the OLS estimator of β, though consistent, is biased in finite sample.

In fact, the finite sample bias of the OLS estimator β̂ is proportional to the bias

of ρ̂, which has been extensively analyzed by, for example, Kendall (1954), White

(1961), Dickey and Fuller (1979), Dickey and Fuller (1981), and Evans and Savin

(1984). Denote the T × 1 regressor vectors ι = (1, 1, . . . , 1)′ and x−1 = (x1, . . . , xT )′,

the regressor matrix X = (ι, x−1), and parameters b = (α, β)′, p = (γ, ρ)′. For OLS

estimators b̂ and p̂, we have

b̂ = (X ′X)−1X ′y = b+ (X ′X)−1X ′u

p̂ = (X ′X)−1X ′x = p+ (X ′X)−1X ′v.

We can decompose the forecast error u by projecting it onto the innovation v, ob-

taining

ut = δvt + et, (1.3)
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where δ = Cov(u, v)/V ar(v). It follows that

b̂− b = δ(p̂− p) + (X ′X)−1X ′e,

or

β̂ − β = δ(ρ̂− ρ) + η, (1.4)

where η is the second entry of (X ′X)−1X ′e. That is,

η =

∑
xµt−1et∑
xµ2
t−1

with xµt−1 = xt−1 − T−1

T∑
t=1

xt−1.

Taking expectation gives

Eβ̂ − β = δ(Eρ̂− ρ). (1.5)

The correlation induces an upward bias for β̂ if δ < 0 (and downward bias if δ > 0)

because ρ̂ is downward biased in finite samples and can be approximated by

Eρ̂− ρ = −1 + 3ρ

T
+O(T−2). (1.6)

By plugging (1.6) into relationship (1.5), we obtain the first-order bias-corrected

estimator given in Stambaugh (1986)

β̂s = β̂ +
δ̂(1 + 3ρ̂)

T
.

However, Stambaugh (1999) shows that the approximation error can be non-trivial

even when the sample size is large.

Instead of using the approximation (1.6), Lewellen (2004) directly refers to (1.4)

to construct his own bias-corrected estimator. Heuristically, ignoring the error term



8

η and then computing the parameter value β gives the estimator

β̂l = β̂ − δ̂(ρ̂− ρ).

The term δ̂(ρ̂ − ρ) is interpreted as finite sample bias. Particularly, setting ρ = 1

gives the most conservative estimator. Under the assumption that ρ < 1, he demon-

strates that one could use standard normal distribution critical values to construct

a conservative test using the classic asymptotics. Unsurprisingly, when ρ is close to

unity, the test has more power than the test proposed in Stambaugh (1999).

To see the nature of this type of estimators, I plug the error decomposition (1.3)

into the original forecasting equation (1.1) and obtain an alternative expression

yt = α + βxt−1 + δvt + et. (1.7)

Suppose we know vt. Subtract vt from both sides to further obtain

yt − δvt = α + βxt−1 + et. (1.8)

Then, the infeasible estimator β̂i is the second element of b̂i with

b̂i − b = (X ′X)−1X ′e = b̂− b− δ(p̂− p).

This shows that Stambaugh (1999) and Campbell and Yogo (2006)’s estimators are

deeply connected to regression (1.8) because the infeasible Q-statistic

Q(β) =

∑T
t=1 x

µ
t−1[yt − δ(xt − ρxt−1)− βxt−1]

σe(
∑T

t=1 x
µ2
t−1)1/2

=

∑T
t=1 x

µ
t−1et

σe(
∑T

t=1 x
µ2
t−1)1/2

proposed in Campbell and Yogo (2006) could be interpreted as the t-statistic obtained

from regression (1.8). Therefore, the t-statistic from this equation is optimal in the

sense that it is the uniformly most powerful conditional on the ancillary statistic
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∑T
t=1 x

µ2
t−1, where x

µ
t−1 = xt−1 − T−1

∑T
t=1 xt−1. In practice, vt can be obtained from

(1.2) once we know the autoregressive coefficient ρ. Thus, Campbell and Yogo (2006)

make the infeasible test feasible by applying the Bonferroni method, following Ca-

vanagh et al. (1995). The confidence interval for the nuisance parameter ρ is obtained

by inverting a unit root test for the predictors, following Stock (1999), using the GLS

detrending procedure from Elliott et al. (1996). Particularly, by restricting ρ = 1,

this procedure nests the conservative estimation and inference procedures conducted

by Lewellen (2004).

Finally, inspired by the expression (1.7), Amihud and Hurvich (2004) obtain their

estimator β̂a by running the augmented regression

yt = α + βxt−1 + δv̂t + εt,

where v̂t is the residual from regression (1.2). Cai and Wang (2014) then establish the

asymptotic distribution for β̂a using local-to-unity asymptotics, which is not pivotal

and depends on nuisance parameters. Consequently, one is unable to directly use it

to conduct inference, and one needs to estimate the unknown parameters first.

The procedure proposed here follows this prior literature, and I directly work with

the augmented equation (1.7). Together with a restriction procedure for ρ, I am able

to conduct valid inferences for predictability. In the simplest case restricting ρ = 1, I

provide a fairly simple method that only requires one step to conduct conservative but

valid inferences. Moreover, the t-statistic proves to be asymptotically equivalent to

Campbell and Yogo (2006) infeasible Q-statistic due to the nearly integrated nature

of the predictor.
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1.3 Local-to-Unity Asymptotics

Instead of resorting to the exact finite-sample theory under the normality assumption

to study estimators in the setting of predictive regression, e.g., Evans and Savin

(1981), Evans and Savin (1984), and Stambaugh (1999), I employ the local-to-unity

asymptotic theory, following, e.g., Phillips (1987), Perron (1991), Elliott and Stock

(1994), and Cavanagh et al. (1995).

There are two practical advantages of using local-to-unity asymptotics over the

exact Gaussian theory. The first is that the asymptotic distribution of test statistics

does not depend on sample size; thus, we do not need to recompute the critical values

for relevant test statistics according to different sample sizes. The second is that

large sample theory does not require the strict normality assumption, allowing for

short-run dynamics in the predictors and heteroskedasticity in innovations.

Local-to-unity asymptotics is an asymptotic framework where the largest autore-

gressive root is modeled as ρ = exp(c/T ) ≈ 1 + c/T , with c = T (ρ − 1) is a fixed

constant as T becomes arbitrarily large. For example, if c = −10, then ρ = 0.80 for

T = 50, ρ = −0.9 for T = 100, and ρ = 0.98 for T = 500. Within this framework,

the asymptotic distribution theory is continuous even when xt is I(1)(c = 0), thereby

allowing xt to be nearly integrated (c < 0) or even nearly explosive (c > 0). An im-

portant feature of the nearly integrated case is that the sample moments (e.g., mean

and variance) of the process xt do not converge to constant probability limits but to

functionals of a diffusion process when appropriately scaled.

Let W (r) be the standard Brownian motion. Let Jc(r) be the diffusion process

induced by the stochastic differential equation dJc(r) = cJc(r)dr+dW (r) with initial

condition Jc(0) = 0. Denote its centered counterpart Jµc (r) = Jc(r)−
∫
Jc(r)dr, where

the integration is over [0, 1] unless otherwise noted. Let ⇒ denote weak convergence

in the space of D[0, 1] of cadlag functions.
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To obtain some intuitions, assume γ = x0 = 0. Since ρ = exp(c/T ),

xt = ec/Txt−1 + vt =
t∑

j=1

ec(t−j)/Tvt,

the invariance principle gives

Jc(r) =

r∫
0

ec(r−s)dW (s) = W (r) + c

r∫
0

ec(r−s)W (s)ds.

Alternatively, since ρ ≈ 1 + c/T ,

∆xt = c
xt−1

T
+ vt.

yielding

dJc(r) = cJc(r)dr + dW (r). (1.9)

Solving this stochastic differential equation gives the same result. Now, I list some

weak convergence results obtained from Phillips (1987) and Cavanagh et al. (1995)

that will be used later.

Lemma 1.3.1 (Weak Convergence) Suppose the Martingale Difference Assump-
tion 1.1.1 holds and ρ = 1 + c/T . Let

xµt−1 = xt−1 − T−1

T∑
t=1

xt−1, Jµc = Jc(r)−
1∫

0

Jc(s)ds.

The following limits hold jointly.

1. T−3/2
∑T

t=1 x
µ
t−1 ⇒ σv

∫ 1

0
Jµc (r)dr.

2. T−2
∑T

t=1 x
µ2
t−1 ⇒ σ2

v

∫ 1

0
Jµc (r)2dr.

3. T−1
∑T

t=1 x
µ
t−1vt ⇒ σ2

v

∫ 1

0
Jµc (r)dW (r).

Recall the decomposition ut = δvt + et such that Cov(vt, et) = 0. Then, ut =
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θ σu
σv
vt+ et and σ2

e = (1− θ2)σ2
u. Under the null hypothesis that β = β0, simple algebra

gives the t-statistic obtained from regression (1.1) as follows:

tOLS(β0) =
β̂OLS − β0

se(β̂OLS)
=

T−1
∑T

t=1 x
µ
t−1ut

σ̂u
∑T

t=1

(∑T
t=1 x

µ2
t−1

)1/2

= θ
σu
σ̂u

T−1
∑T

t=1 x
µ
t−1vt

σv
∑T

t=1

(∑T
t=1 x

µ2
t−1

)1/2
+ (1− θ2)1/2σu

σ̂u

T−1
∑T

t=1 x
µ
t−1et

σe
∑T

t=1

(∑T
t=1 x

µ2
t−1

)1/2
.

By construction, [
T−1/2

∑[Tr]
t=1 vt

T−1/2
∑[Tr]

t=1 et

]
⇒
[
σvW (r)
σeG(r)

]
,

where W and G are two independent standard Brownian motions. Thus we have

T−1

T∑
t=1

xµt−1ut ⇒ σuσv

θ 1∫
0

Jµc (r)dW (r) + (1− θ2)1/2

1∫
0

Jµc (r)dG(r)

 .

It follows the usual t-statistic has the limiting distribution

tOLS(β0)⇒ θ

∫ 1

0
Jµc (r)dW (r)

(
∫ 1

0
Jµc (r)2dr)1/2

+ (1− θ2)1/2

∫ 1

0
Jµc (r)dG(r)

(
∫ 1

0
Jµc (r)2dr)1/2

= θq(c) + (1− θ2)
1/2
Z,

where

q(c) =

∫ 1

0
Jµc (r)dW (r)(∫ 1

0
Jµc (r)2dr

)1/2

and Z is a standard normal random variable independent of W and thus q(c) (see

Elliott and Stock (1994)). Note that this usual t-statistic is not asymptotically pivotal.

That is, its asymptotic distribution depends on the nuisance parameters θ and c

through the nonstandard distribution q(c), which makes the test infeasible.
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In general, the asymptotic distribution of the t-statistic is nonstandard because

of its dependence on q(c). However, the t-statistic returns to the usual standard

normal distribution in the special case θ = 0. Likewise, the t-statistic should be

approximately normal when c� 0 because first-order asymptotics are a satisfactory

approximation when the predictor is stationary. Formally, Phillips (1987) shows that

q(c) ⇒ Z̃ as c → −∞, where Z̃ is a standard normal random variable independent

of Z.

The size distortion ensues from the fact that the distribution of q(c) is skewed to

the left, which in turn skews the distribution of the t-statistic to the right when θ < 0.

This causes a right-tailed t-test that uses conventional critical values to over-reject,

and a left-tailed test to under-reject. The larger the absolute value of the persistence

of a predictor c or the correlation coefficient θ, the larger the size distortion. Campbell

and Yogo (2006) plot the asymptotic size of the nominal 5% one-sided t-test, i.e., the

plot of

p(c, θ; 0.05) = Pr
(
θq(c) + (1− θ2)1/2Z > z0.05

)
,

where z0.05 = 1.645 denotes the 95th percentile of the standard normal distribu-

tion. Moreover, given the correlation coefficient θ, they tabulate the values of c ∈

(cmin, cmax) for which the size of the right-tailed t-test exceeds 7.5%; thus, it can be

used to construct a pretest to decide whether inference based on the conventional

t-test is sufficiently reliable.
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1.4 Testing Predictability using an Augmented Re-
gression

To motivate the proposed estimator, I consider the infeasible estimator obtained from

the aforementioned infeasible augmented regression

yt = α + βxt−1 + δvt + et, (1.10)

where vt = xt − ρxt−1 and et = ut − δvt.

Theorem 1.4.1 Suppose the errors (ut, vt) are serially independent and identically
distributed as bivariate normal. The infeasible estimator β̃ is unbiased, i.e., E[β̃] = β.

The estimation and inference would be easy if we knew vt or ρ. However, vt is

not directly observable, and thus the estimator is infeasible. We may construct a

proxy ṽt = xt − ρ̃xt−1 for some specified ρ̃. As the nuisance parameter ρ is nearly

integrated, we can reparameterize ρ = 1 + c/T and, analogously, ρ̃ = 1 + c̃/T . Then

we can rewrite (1.10) as

yt = α + βxt−1 + δṽt + δ(vt − ṽt) + et,

where vt − ṽt = (c̃ − c)xt−1/T . Hence, we have the following feasible augmented

regression

yt = α + βxt−1 + δṽt + εt. (1.11)

Note that c is not identified. Nevertheless, in practice, one can simply set c̃ = 0 or

ρ̃ = 1, yielding ṽt = xt − xt−1 = ∆xt. Therefore, one can use the feasible augmented

regression

yt = α + βxt−1 + δ∆xt + εt.
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Theorem 1.4.2 Suppose the innovations (ut, vt)
′ satisfy the Martingale Difference

Assumption 1.1.1. Let (xt, yt) be generated according to the predictive regression (1.1)-
(1.2). Suppose ρ = 1 + c/T and ρ̃ = 1 + c̃/T . Obtained from (1.11), t(β0) is denoted
as the t-statistic that tests β = β0. Then

t(β0)⇒
√

1− θ2
∫ 1

0
Jµc (r)dG(r) + (c̃− c)θ

∫ 1

0
Jµc (r)2dr

√
1− θ2(

∫ 1

0
Jµc (r)2dr)1/2

= Z +
(c̃− c)θ

(1− θ2)1/2

 1∫
0

Jµc (r)2dr

1/2

,

t(δ0)⇒ Z̃,

where Z and Z̃ are standard normal variables.

Remark 1.4.1 For fixed c, the extent to which the t-statistic on β is located below
the standard normal distribution is controlled by c̃. Consequently, the t-test using
standard normal critical values is conservative yet valid for any predictor with c ≤ c̃.
For the special case where c = c̃, the distribution of the t-statistic aligns with the
normal; thus, the test is correctly sized. In particular, we can set c̃ = 0 to make the
t-test conservative for any stationary or integrated predictor (c ≤ 0 or ρ ≤ 1).

Remark 1.4.2 The rate of convergence of β̂ is O(T−1), faster than O(T−1/2), i.e.,
the rate of convergence of δ̂, thereby leading to the annihilation of the diagonal entry
of the scaled design matrix Γ−1

T XXΓ−1
T , whose expression is given in the appendix.

As a consequence, the t-statistic on δ is standard normal and free from the nuisance
parameter c. Furthermore, the distribution of the t-statistic is asymptotically equiv-
alent to the infeasible Q-statistic proposed by Campbell and Yogo (2006). Hence,
choosing c̃ = 0 makes the t-test asymptotically equivalent to the procedure proposed
in Lewellen (2004).

Because of the high degree of persistence, the available predictors often appear to

be an I(1) process, even if they are actually I(0). However, the outcome variable,

for example, the excess stock return, often has a very low level of autocorrelation.

On the one hand, Figure 1·2 presents a time series of the excess stock return for

the NYSE/AMEX value-weighted index at monthly frequency. It evidently shows a
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starkly different pattern from the predictor plot of Figure 1·1. Thus, we would expect

the OLS estimation to fail. On the other hand, Figure 1·3 is the time series of the

first difference of the corresponding financial ratio, which commoves with the outcome

variable because of the endogeneity. Taking advantage of the correlation information

between the forecast error ut and innovation vt, we can alleviate the endogeneity

problem by including the first difference of the persistent predictor in my regression.

Recall that the local-to-unity approximation crucially assumes that the value of

the parameter c is close to zero, i.e., the predictor is nearly integrated. A legitimate

concern is whether the proposed test could produce spurious inferences when a sta-

tionary predictor is used. Therefore, the validity of the conservative test should be

evaluated when c→ −∞ as well. To do this, we resort to the joint moment generating

function m(u, v) of the functional pairs
(∫ 1

0
Jc(r)dW (r),

∫ 1

0
Jc(r)

2dr
)
. But the joint

weak convergence result holds:(
T−1

T∑
t=1

xt−1ut, T
−2

T∑
t=1

x2
t−1

)
⇒

 1∫
0

Jc(r)dW (r),

1∫
0

Jc(r)
2dr

 ,

given that ut satisfies the conditions in the Martingale Difference Assumption 1.1.1

and σu = 1. Thus I refer to the joint moment generating function M(u, v) of(∑T
t=1 xt−1ut,

∑T
t=1 x

2
t−1

)
first.

Lemma 1.4.3 Suppose xt = αxt−1 + ut, where α < 1 and ut is independent iden-
tically N(0, σ2) and x0 = 0. The joint moment generating function M(u, v) of
(
∑T

t=1 xt−1ut,
∑T

t=1 x
2
t−1) has the following expression

M(u, v) = E exp

{
u

(
T∑
t=1

xt−1ut

)
+ v

(
T∑
t=1

x2
t−1

)}

= E exp

{
u

(
T∑
t=1

xt−1xt − α
T∑
t=1

x2
t−1

)
+ v

(
T∑
t=1

x2
t−1

)}

=

{
1− s
r − s

rT +
1− r
s− r

sT
}−1/2

,
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where r, s are roots of the equation x2 − px + q2, with p = 1 + α2 + 2αu − 2v and
q = −(α + u).

To study the joint behaviors of the functional pairs
(∫ 1

0
Jc(r)dW (r),

∫ 1

0
Jc(r)

2dr
)
,

the limiting behavior of the joint moment generating function mT (u, v) of

(T−1
∑T

t=1 xt−1ut, T
−2
∑T

t=1 x
2
t−1) should be investigated instead. Hence, correct scal-

ing should be applied first and then let T →∞, reaching the targeting joint moment

generating function

m(u, v) = lim
T→∞

mT (u, v) = lim
T→∞

M(uT−1, vT−2).

Remark 1.4.3 The assumption that ut is independently identically normal serves as
an apparatus for deriving the targeting joint moment generating function m(u, v) of(∫ 1

0
Jc(r)dW (r),

∫ 1

0
Jc(r)

2dr
)
. Once the correct expression is obtained, we can relax

ut to be martingale difference sequence by simply referring to the functional central
limit theorem or invariance principle.

It turns out that

L(u, v) = lim
c→−∞

m[(−2c)1/2u, (−2c)v] = exp

(
u2

2
+ v

)
.

Thus, I have the following results, as given in Phillips (1987).

Theorem 1.4.4 Suppose that Jc(r) is an Ornstein-Uhlenbeck process generated by a
Brownian motion according to (1.9). As c→ −∞:

1. (−2c)
∫ 1

0
Jc(r)

2dr → 1

2. (−2c)1/2
∫ 1

0
Jc(r)dW (r)⇒ N(0, 1),

The centered counterpart of this theorem can also be easily obtained, as presented

in corollary 1.4.5.

Corollary 1.4.5 Suppose that Jc(r) is an Ornstein-Uhlenbeck process generated by a
Brownian motion according to (1.9). As c→ −∞:
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1. (−2c)
∫ 1

0
Jµc (r)2dr → 1.

2. (−2c)1/2
∫ 1

0
Jµc (r)dW (r)⇒ N(0, 1).

Using these stochastic bounded terms appearing in the asymptotic distribution of

the proposed test, the test can, thus, be easily validated even if the predictor is far

from the nearly integrated case.

Theorem 1.4.6 Suppose innovations (ut, vt)
′ satisfy the Martingale Difference As-

sumption 1.1.1. Let (xt, yt) be generated according to the predictive regression (1.1)-
(1.2). Given c ≤ 0 and θ ≤ 0, under the null hypothesis that β = β0, we have
limT→∞ Pr(t(β0) > x) ≤ Pr(Z > x).

Therefore, my test is conservative, independent of the persistence level of the

predictors used. That is, even if using the test for a predictive regression with a

less persistent predictor could lead to a loss of power, this approach will not produce

spurious predictability. By including a proxy variable that can take away endogeneity

and possibly some predictive element, which is usually the first difference of the

persistent predictor, a conservative testing procedure is established. The critical

values are just standard normal, which makes the testing procedure fairly easy.

The asymptotic distribution of the t-statistic is plotted against the standard nor-

mal distribution in Figure 1·4. Apparently, when c = 0, the two distributions align

with each other. As the magnitudes of c and θ increases, the test becomes more

conservative. Finally, to analyze the power of my proposed t-test, the following weak

convergence result is derived under the local alternative.

Theorem 1.4.7 Suppose innovations (ut, vt)
′ satisfy the Martingale Difference As-

sumption 1.1.1. Let (xt, yt) be generated according to the predictive regression (1.1)-
(1.2). Under the local alternative β = β0 + b/T , where b > 0, we have

t(β0)⇒ Z +

(
(c̃− c)θ

(1− θ2)1/2
+

b

(1− θ2)1/2

) 1∫
0

Jµc (r)2dr

1/2

.
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Remark 1.4.4 The term (c̃−c)θ
(1−θ2)1/2

is the source of the power-loss, where c̃ = 0 is
usually chosen for nearly integrated predictors. The term involving the parameter
b = T (β − β0) will need to be sufficiently large to dominate the first term so that the
test can reject the null hypothesis when the alternative is true.

Remark 1.4.5 The local power comparison between the t-statistic and Q-statistic
proposed by Campbell and Yogo (2006) is shown in Figure 1·5. Evidently, when the
predictor is nearly integrated, my t-test generally exhibits more power than the Q-
test, particularly for the unit root case c = 0. This is because the Q-statistic involves
constructing Bonferroni intervals for the unknown parameter c, leading to a loss of
power. However, as c moves toward the negative direction, the power of the Q-test
starts to outperform my t-test that sets c̃ = 0.

1.5 A Family of Robust Tests under Model Instabil-
ity

In practice, as Stock and Watson (1996a) and Lettau and Van Nieuwerburgh (2008)

report, economic and financial time series are subject to smooth or abrupt changes.

Structural breaks in predictive regressions are formally discussed in, for example, Paye

and Timmermann (2006) and Rapach and Wohar (2006), and they have found strong

evidence of model instability. Such events might render the already conservative test

proposed in the last section and other existing tests uninformative.

To remedy this issue, I follow Qu (2007) and propose a family of robust tests

to determine whether predictability exists in any one or more parts of the sample.

Specifically, I test the null hypothesis of β = 0 against the alternative hypothesis of

β > 0 in some subsamples. The class of tests I aim to propose allows us to uncover

the hidden predictability when the system is affected by possible structural changes.

To put it in a concrete way, we will first construct a test which allows m structural

changes, hence m+1 segments. Let (T1, . . . , Tm) be a partition of the original sample,

with the convention that T0 = 0 and Tm+1 = T . The partition divides the sample
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into m+ 1 subsamples, which are denoted as subsample 1 to subsample m+ 1. That

is, for k = 1, . . . ,m+ 1, we specify

yt = αk + βkxt−1 + ut, (1.12)

xt = γ + ρxt−1 + vt. (1.13)

The null hypothesis is βk = 0 for k = 1, . . . ,m + 1 while the alternative is βk > 0

for some k. In our context, we need to evaluate the t-statistics using subsamples and

compute linear combinations of the segmented t-statistics.

Let the t-statistic over a typical subsample k be

tk(β) =
β̂k − β
se(β̂k)

,

which can be constructed for different partitions of the sample and we are interested in

searching for the ones that contain subsamples with the most evitable predictability.

Since we need to consider all possibilities, a specification for the minimum length of

each subsample is necessary. Let

Πε = {(T1, . . . , Tm) : |Tk+1 − Tk| ≥ εT, k = 1, . . . ,m}

be the admissible set of dates splitting a sample and let

Λε = {(λ1, . . . , λm) : |λk+1 − λk| ≥ ε, k = 1, . . . ,m}

be the corresponding admissible set for cut-offs partitioning the unit interval [0, 1].

The parameter ε > 0 plays the fundamental role in determining the minimum length

of a subsample. The partitions restricted then contain subsamples with at least [εT ]

observations. If one has prior knowledge about it, power gain could be achieved. For

example, if it is believed that breaks are rare, then a large ε could be used, through
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which power could be improved. Otherwise, a small ε should be specified to avoid a

situation where the test becomes inconsistent. A rule of thumb is to choose ε = 0.2.

I use this parameter value to produce critical values for my tests.

As the testing statistics will involve joint convergence results of subsamples, it

is useful to first introduce a lemma implied by the property of Wiener processes.

Analogous to the sample cut-offs Tk, denote λk = [Tk/T ]. These points are used to

divide the unit interval [0, 1] into m+ 1 subintervals for the sake of asymptotics.

Lemma 1.5.1 Suppose innovations (ut, vt)
′ satisfy the Martingale Difference As-

sumption 1.1.1 and et = ut − δvt. For segments k = 1, . . . ,m + 1, we have the
following joint weak convergence result:[

T−1/2
∑Tk

t=Tk−1+1 vt

T−1/2
∑Tk

t=Tk−1+1 et

]
⇒
[
σv (W (λk)−W (λk−1))
σe (G(λk)−G(λk−1))

]
,

where W and G are two independent standard Brownian motions.

The lemma is a direct consequence of invariance principle. I now evaluate the joint

behavior of the t-statistics over each segment. For ease of notation, denote, given a

partition dividing the sample into m + 1 segments, denote the demeaned series over

each segment,

xµkt−1 = xt−1 − x̄k = xt−1 −
∑Tk

t=Tk−1+1 xt−1

Tk − Tk−1

.

By adjusting the series according to segments, I ensure that the test has power when

structural changes in the deterministic component do occur. Denote further the two
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bounds

sk(c) =

√
1− θ2

∫ λk
λk−1

Jµkc (r)dG(r)− cθ
∫ λk
λk−1

Jµkc (r)2dr

√
1− θ2

(∫ λk
λk−1

Jµkc (r)2dr
)1/2

,

qk(c) =

∫ λk
λk−1

Jµkc (r)dG(r)(∫ λk
λk−1

Jµkc (r)2dr
)1/2

,

where

Jµkc = Jc(r)− (λk − λk−1)−1

λk∫
λk−1

Jc(s)ds.

Theorem 1.5.2 Suppose the innovations (ut, vt)
′ satisfy the Martingale Difference

Assumption 1.1.1. Let (xt, yt) be generated according to the predictive regression
(1.12)-(1.13). Then, under the null hypothesis, for each segment k = 1, 2, . . . ,m+ 1,
the corresponding t-statistic tk(β0) has the following joint weak convergence result:

tk(β0) =
T−1

∑Tk
t=Tk−1+1 x

µk
t−1εt

σ̂e

(
T−2

∑Tk
t=Tk−1+1 x

µk2
t−1

)1/2

⇒

√
1− θ2

∫ λk
λk−1

Jµkc (r)dG(r)− cθ
∫ λk
λk−1

Jµkc (r)2dr

√
1− θ2

(∫ λk
λk−1

Jµkc (r)2dr
)1/2

= sk(c),

Moreover, conditional on the path of (W (r), G(r)), the following inequalities hold
jointly

sk(c) =

√
1− θ2

∫ λk
λk−1

Jµkc (r)dG(r)− cθ
∫ λk
λk−1

Jµkc (r)2dr

√
1− θ2

(∫ λk
λk−1

Jµkc (r)2dr
)1/2

≤

∫ λk
λk−1

Jµkc (r)dG(r)(∫ λk
λk−1

Jµkc (r)2dr
)1/2

= qk(c).

Remark 1.5.1 I establish a result similar to the previous Theorem 1.4.2. But at
this time, the joint bound {qk(c)}m+1

k=1 of {tk(β0)}m+1
k=1 is not free from the nuisance

parameter c, even though, marginally, its component qk(c) still is. This is because
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the Ornstein-Uhlenbeck process Jc(r) affects the joint behavior of the t-statistic over
each segment, say, tk(β0) and tk+1(β0), through the Brownian motion dG(r).

Now, I introduce the robust tests based on the supremum operator, where the

supremum is taken over the admissible partitions.

Theorem 1.5.3 Suppose innovations (ut, vt)
′ satisfy the Martingale Difference As-

sumption 1.1.1. Let (xt, yt) be generated according to the predictive regression (1.12)-
(1.13). For a given ε > 0, denote

SupTk = sup
Π∈Πε

tk, SupSk = sup
Λ∈Λε

sk, SupQk = sup
Λ∈Λε

qk.

Then under the null hypothesis, for k = 1, . . . ,m+ 1,

SupTk ⇒ SupSk.

Moreover, conditional on the path of (W (r), G(r)), the following inequalities hold
jointly:

SupSk ≤ SupQk.

Remark 1.5.2 In practice, qk(c), and thus SupQk, depends on the parameter c,
which is usually unknown. A natural choice is to replace Jc(r) in qk(c) with W (r) by
setting c = 0. That is, I can use

rk = qk(0) =

∫ λk
λk−1

W µk(r)dG(r)(∫ λk
λk−1

W µk(r)2dr
)1/2

,

to form a feasible distribution bound SupRk = supΛ∈Λε rk, because the simulations
(Figure 1·6 and Table 1.1) demonstrate that the cumulative distribution of SupRk

always provides an upper envelope for that of SupQk(c) with c ≤ 0. Testing with
the critical values of SupRk is more conservative than with that of SupQk(c), but
nevertheless valid. In fact, as c → −∞ (c ≤ −50), the cumulative distribution of
SupQk(c) converges to a lower bound which is not far from the upper bound SupRk.

The joint segmental convergence results facilitates the construction of a pre-

dictability test allowing for m changes (and hence m + 1 segments) using a simple
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linear combination as well.

Corollary 1.5.4 Suppose the innovations (ut, vt)
′ satisfy the Martingale Difference

Assumption 1.1.1. Let (xt, yt) be generated according to the predictive regression (1.1)-
(1.2). For a given ε > 0, denote

SupTm = sup
Π∈Πε

m+1∑
k=1

tk, SupSm = sup
Λ∈Λε

m+1∑
k=1

sk, SupQm = sup
Λ∈Λε

m+1∑
k=1

qk.

Then, under the null hypothesis,

SupTm ⇒ SupSm.

Moreover, conditional on the path of (W (r), G(r)), the following inequality holds
pointwisely:

SupSm ≤ SupQm.

Now we consider the behavior of SupTm under the alternative hypothesis. Then

there will be at least one segment with predictability, i.e., βk > 0 for some k. The k-th

segment tk will diverge to infinity, so will SupTm. Therefore, the test is consistent.

In practice, we may have some knowledge about the timing of the change. Sup-

pose we suspect that a structural change occurs at the end of the sample, then a

forward recursive t-test can be used to check whether predictability exists prior to

that. Let T1 = [εT ] be the earliest possible date that the change happens. The

limiting distribution under the null hypothesis is stated in the following corollary.

Corollary 1.5.5 (A Forward Recursive t-test) Suppose the innovations (ut, vt)
′

satisfy the Martingale Difference Assumption 1.1.1. Let (xt, yt) be generated according
to the predictive regression (1.12)-(1.13). For a given ε > 0, define the admissible set
for the earliest possible change date

ΠF
ε = {T1 : εT ≤ T1 ≤ T},
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and its counterpart

ΛF
ε = {λ : ε ≤ λ1 ≤ 1}.

Let t1 denote the t-statistic for the first subsample. Further denote

SupT F = sup
T1∈ΠFε

t1, SupSF = sup
λ1∈ΛFε

s1, SupQF = sup
λ1∈ΛFε

q1.

Then, we have

SupT F ⇒ SupSF .

Moreover, conditional on the path of (W (r), G(r)), the following inequality holds:

SupSF ≤ SupQF .

Remark 1.5.3 For implementation, we can use

r1 = q1(0) =

∫ λ1
0
W µ1(r)dG(r)(∫ λ1

0
W µ1(r)2dr

)1/2
,

to form a feasible distribution bound given by SupRF = supλ1∈ΛFε
r1 because the sim-

ulations (Subfigure (a) of Figure 1·6 and Table 1.1) demonstrate that the cumulative
distribution of SupRF always provides an upper envelope for that of SupQF (c) with
c ≤ 0.

Suppose we suspect that a structural change occurs at the beginning of the sample,

a reverse recursive t-test can be used to check whether predictability exists after that.

Let T1 = [(1− ε)T ] be the latest possible date that the change happens. The limiting

distribution under the null hypothesis is stated in the following corollary:

Corollary 1.5.6 (A Reverse Recursive t-test) Suppose the innovations (ut, vt)
′

satisfy the Martingale Difference Assumption 1.1.1. Let (xt, yt) be generated according
to the predictive regression (1.12)-(1.13). For a given ε > 0, define the admissible set
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for the change date T1

ΠR
ε = {T1 : 1 ≤ T1 ≤ (1− ε)T},

and its counterpart

ΛR
ε = {λ1, 0 ≤ λ1 ≤ 1− ε}.

Let t2 denote the t-statistic for the second subsample, Moreover, define

SupTR = sup
T2∈ΠRε

t2, SupSR = sup
λ1∈ΛRε

s2, SupQR = sup
λ1∈ΛRε

q2.

Then, we have

SupTR ⇒ SupSR.

Moreover, conditional on the path of (W (r), G(r)), the following inequality holds:

SupSR ≤ SupQR.

Remark 1.5.4 For implementation, we can use

r2 = q2(0) =

∫ 1

λ1
W µ2(r)dG(r)(∫ 1

λ1
W µ2(r)2dr

)1/2
,

to form a feasible distribution bound given by SupRR = supλ2∈ΛRε
r2, because sim-

ulations (Subfigure (b) of Figure 1·6 and Table 1.1) demonstrate the cumulative
distribution of SupRR always provides an upper envelope for that of SupQR(c) with
c ≤ 0.

Suppose we conjecture that return predictability exists in the middle of the sample,

then we can conduct the rolling window t-test as follows: let (T1, T2) be the cut-off

for a subsample. The limiting distribution under the null hypothesis is stated in the

following corollary.

Corollary 1.5.7 (A Rolling Window t-test) Suppose the innovations (ut, vt)
′

satisfy the Martingale Difference Assumption 1.1.1. Let (xt, yt) be generated according
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to the predictive regression (1.12)-(1.13). For a given ε > 0, define the admissible set
for the subsample cut-off

ΠW
ε = {(T1, T2) : T2 − T1 ≥ εT, T1 ≥ 1, T2 ≤ T},

and its counterpart

ΛW
ε = {(λ1, λ2) : λ2 − λ1 ≥ ε, λ1 ≥ 0, λ2 ≤ 1}.

Let the t2 denote the t-statistic for the selected subsample. Define

SupTW = sup
(T1,T2)∈ΠWε

t2, SupSW = sup
(λ1,λ2)∈ΛWε

s2 SupQW = sup
(λ1,λ2)∈ΛWε

q2

Then, we have

SupTW ⇒ SupSW .

Moreover, conditional on the path of (W (r), G(r)), the following inequality holds:

SupSW ≤ SupQW .

Remark 1.5.5 For implementation, we can use

r2 = q2(0) =

∫ λ2
λ1
W µ2(r)dG(r)(∫ λ2

λ1
W µ2(r)2dr

)1/2
,

to form a feasible distribution bound given by SupRW = supλ1∈ΛWε
r2 because the

simulations (Subfigure (c) of Figure 1·6 and Table 1.1) demonstrate that the cumula-
tive distribution of SupRW always provides an upper envelope for that of SupQW (c)

with c ≤ 0.

1.6 Finite Sample Properties of the Proposed Tests

In this section, I will evaluate the finite sample properties of my proposed tests,

including the usual t-test, the forward recursive t-test, the reverse recursive t-test,
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and the rolling window t-test. Specifically, I use the predictive regression model (1.1)-

(1.2) to simulate N = 10, 000 samples. To evaluate large sample properties, I choose

the sample size T = 500 to generate distributions and relevant critical values. Since

we need to use bounds that are free from nuisance parameters to conduct inference,

it is of interest to compare the statistics with their known bounds c = 0. Recall that

c = 0 corresponds to the case when the predictor is a unit root process, and θ = 0

corresponds to the case when the innovations in the predictor are uncorrelated with

the outcome variable.

We first evaluate the large sample (T = 500) properties of the proposed tests.

Figure 1·4 displays the cumulative distribution functions of the usual t-statistic and

the standard normal distribution, with different parameter specifications. As evident

from the graph, the t-statistic always falls to the left-hand side of the standard normal

distribution for c ≤ 0 and θ ≤ 0. Therefore, even though the t-statistic depends on

the nuisance parameter c that is difficult to estimate, it is still possible to conduct a

conservative test by using the traditional critical values given by the standard normal

distribution. As the magnitude of c or θ increases, the distribution of t-statistic shifts

further toward the left of the standard normal distribution. When c = 0 or θ = 0,

the t-statistic distribution returns to the standard normal distribution. Hence, the

test becomes exact.

Figure 1·5 displays the comparison of the local power of my t-test with that of

Q-test from Campbell and Yogo (2006), with different parameters specifications. As

we can see from the graph, the t-test is more powerful than the Q-test when c = 0.

When c decreases to c = −2, the t-test still has good power relative to the more

complicated Q-test. As it c continues to decrease, the Q-test starts to outperform my

t-test.

Figure 1·6 displays the bounds SupQF , SupQR, and SupQW for different c. As
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c becomes more negative, these bounds shift to the left until reaching some lower

contours. At the same time, when c = 0, they become the upper contours, given by

SupRF , SupRR, and SupRW , respectively.

Figure 1·7 displays the cumulative distribution of the forward recursive t-statistic

SupT F and the two proposed bounds SupQF and SupRF with different parameters

specifications. The dashed line lying in the middle is the SupQF bound, which

depends on the nuisance parameter c. The solid line lying on the right-hand side is

the SupRF bound, whose critical values are used to conduct conservative inference.

These two bounds are very close, even for c = −20. Additionally, the SupQF bound

lies strictly on the left-hand side of the SupRF bound in my simulations. Same

as before, as the magnitudes of c and θ increase, the distribution of the forward

recursive t-statistic shifts toward the left of the two bounds. When c = 0 or θ = 0,

the distribution of the forward recursive t-statistic coincides with the two bounds,

implying that the test becomes exact.

Figure 1·8 displays the cumulative distributions of the reverse recursive t-statistic

SupTR and the two proposed bounds, with different parameter specifications. The

dashed line lying in the middle is the SupQR bound, which depends on the nuisance

parameter c. The solid line lying on the right-hand side is the SupRR bound, whose

critical values are used to conduct conservative inference. These two bounds lie very

close, even for c = −20. Furthermore, the SupQR bound lies strictly on the left-hand

side of the SupQR bound in my simulations. Same as before, as the magnitude of c or

θ increases, the distribution of the forward recursive t-statistic further shifts toward

the left of the two bounds. When c = 0 or θ = 0, the distribution of the reverse

recursive t-statistic coincides with the two bounds. Hence, the test becomes exact.

Figure 1·9 displays the cumulative distributions of the rolling window t-statistic

SupTW and the two proposed bounds, with different parameters specifications. The
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dashed line lying in the middle is the SupQW bound, which depends on the nuisance

parameter c. The solid line lying on the right-hand side is the SupRW bound, whose

critical values are used to conduct conservative inference. These two bounds lie very

close, even for c = −20. Further, the SupQW bound lies strictly on the left-hand side

of the SupQW bound in my simulations. Same as before, as the magnitude of c or θ

increases, the distribution of the rolling window t-statistic further shifts toward the

left of the two bounds. When c = 0 or θ = 0, the distribution of the rolling window

t-statistic coincides with the two bounds. Hence, the test becomes exact.

Figure 1·10 uses the SupT F to illustrate the local power of the robust statistics

versus that of the t-statistic. Specifically, I assume there is only one structural change

occurring at Tb at which β changes from b/T to 0. Moreover, I consider two cases,

Tb = 400 and Tb = 100, as well as the situation where there is no structural change.

The results show that when there is no structural change, the vanilla t-statistic has

higher power than the SupT F . When the change date is near the end of the sample

(Tb = 400), the forward recursive t-statistic has larger power, despite the fact that the

critical values are simulated under the assumption that the structural change could

happen as early as Tb = 100. Finally, when Tb = 100, the forward recursive t-statistic

displays significantly higher power. These findings show that the robust statistics are

useful when we conjecture there exist structural changes.

Table 1.1 reports the critical values of all relevant quantities using samples with

sample size T = 500. These critical values could be treated as critical values coming

from their corresponding asymptotic distributions. As we can see in Panel A, in the

unit root case (c = 0) or the contemporaneous independent innovations case (θ = 0),

all statistics coincide with their corresponding bounds. Regarding the other nontrivial

cases, it is evident that we see the critical values of all the bounds are larger than their

counterparts. Again, we see the bounds Q and the bound R are very close, even for
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a large degree of c = −20, and the critical values of the Q bounds are always smaller

than those of the R bounds. Moreover, keeping c fixed, the correlation coefficient θ

also pushes the distribution of the test statistics as well as the Q bounds toward the

left, hence deteriorating the approximation by the R bounds.

Finally, I evaluate the small sample properties of these inference procedures by

checking their empirical rejection rate samples with sample size T = 50, 100, and

200 (see Table 1.2). The small size T = 50 is relevant to my application when using

annual data. Apparently, the usual t-statistic, the forward recursive t-statistic, and

the reverse recursive t-statistics all have good small sample properties when c = 0 or

θ = 0. However, the over-rejection rate of rolling window tests comes from the fact

that when the trimming parameter ε = 0.2 is chosen, the subsample has a very small

sample size. For example, for a sample of size T = 50, the subsample only has 10 data

points, which is clearly inadequate for convergence. Therefore, one should either have

a bigger sample or choose a bigger trimming parameter to apply the rolling window

t-test. Similarly, as the degree of c or θ increases, the tests become conservative; thus,

the empirical rejection rates become lower than the nominal rates.

1.7 Empirical Application

In this section, I apply my methods of inference in predictive regressions with nearly

integrated predictors on US financial data and compare my results with previous

findings in the literature. Specifically, for the outcome variable, I use excess returns

of stocks over a risk-free return. For the nearly integrated predictors, I use dividend-

price and earnings-price ratios.

My data span from 1926 to 2018. I follow Campbell and Shiller (1988) and Camp-

bell and Yogo (2006) to process data. The excess returns and the financial ratios are

all in logs. To compute the excess returns, I collect the NYSE/AMEX value-weighted
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index for the stock returns and the T-bill returns for the risk-free returns at various

frequencies from the Center for Research in Security Prices (CRSP). In particular,

I use the return on the one-month T-bill for the monthly series and the return on

the three-month T-bill for the quarterly series. Rolling over the return on the three-

month T-bill gives the annual risk-free return. Regarding the financial ratios, the

dividend-price ratio is computed as dividends over the past year divided by the cur-

rent price, and the earnings-price ratio is computed as a moving average of earnings

over the last ten years divided by the current price. While the dividend data for the

NYSE/AMEX index are available at the CRSP, the earning counterpart is missing.

Hence, the earnings-price ratio from the S&P 500 is used instead. Earnings data have

been available at quarterly frequency since 1935, and annual frequency before that.

I follow Shiller (2016) to construct the monthly earning by linear extrapolation.

In addition to the testing predictability for the full sample, I also evaluate the

results for various subsamples corresponding to previous empirical work. I consider

five additional subsamples in total. For the extra beginning dates, 1946 and 1952 are

important. The former date marks the end of WWII and is used by Amihud and

Hurvich (2004) and Lewellen (2004) to construct their subsamples. The later date

1952 was used by Stambaugh (1999), Lewellen (2004), Campbell and Yogo (2006)

to construct their subsamples. For the extra ending date, 2002 is used by Campbell

and Yogo (2006) and is close to the ending date of samples used by much previous

literature on testing predictability.

Table 1.3 summarizes the results from running only regression (1.1). The estimates

β̂ obtained from all subsamples produce large magnitude values. Not surprisingly,

the corresponding t-statistics are all significant, often larger than two. However,

the inference drawn from the usual practice could be invalid because the predictors

are highly persistent, and their innovations are highly correlated with the outcome
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variable. This table also reports the correlation coefficient estimate θ̂. Evidently, the

estimates of the correlation coefficient are often very close to minus one. Moreover,

the table displays the DF-GLS statistic and the 95% confidence for the autoregressive

coefficient ρ (and its corresponding location coefficient c) for the predictors, as well

as the log dividend and the log earnings-price ratios. The results suggest that all the

series are highly persistent and the obtained confidence interval always coverer a unit

root. Indeed, the traditional inference practice is invalid.

Therefore, alternative procedures are needed to draw the correct statistical infer-

ence. I summarize the results yielded by my proposed tests in Table 1.4. The table

first reports the estimate δ̂ of the regression coefficient of the disturbance in outcome

variable on innovations in predictors and the estimate β̂ capturing the predictability,

both obtained from the augmented regressions. Thereafter, I compute the t-statistic

to draw statistical inference about the predictability of selected predictors at different

frequencies and compare the results with those obtained from the Q-statistic proposed

by Campbell and Yogo (2006). Finally, I apply my various supremum t-statistics to

pick up possible predictability existing over some subsamples but hard to be detected

by the usual t-statistic.

For the full sample (1927-2018), my t-statistic demonstrates that the earnings-

price ratio can predict the excess stock return while the dividend-price can not.

For the subsample (1927-2002), the earnings-price ratio continues to be a reliable

predictor, and it is more significant than when using the full sample. Meanwhile,

the t-statistic picks the dividend-price ratio as a weak predictor only at the annual

frequency. Regarding the post-WWII subsample (1946-2018), I find that the time

dividend-price ratio is a more reliable predictor than the earnings-price ratio and

earning-price ratio, which only serves as a weak predictor at quarterly frequency.

The subsample (1946-2002) produces the same quantitative result, but with a more
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significant degree, and consequently, the two predictors at all frequencies display the

predictive power. Next, for the 1952-2018 subsample, all the predictors lose the ability

to forecast the return, according to the t-statistic. Finally, for the 1952-2002 subsam-

ple, the t-statistic reveals that the dividend-price ratio is highly capable of predicting

the excess return at quarterly and monthly frequencies, but not at annual frequency.

For comparison, Table 1.4 also provides the 90% confidence interval obtained by the

Q-statistic of Campbell and Yogo (2006), which corresponds to a 95% one tailed-test.

To make the comparison fair, I only compare my results with significant levels above

95% with the Q-test. As the outcome shows, the inference results are similar but gen-

erally weaker than those drawn from the proposed t-statistic, except for two cases:

For e-p at annual frequency over the 1927-2018 sample, the resulting Q-statistic is

more significant than my t-statistic. For the 1946-2018 subsample, the Q-statistic

picks the predictability of e-p at annual frequency, while the t-statistic can not. This

is because e-p in this case lacks sufficient persistency and my test becomes too con-

servative. For the other few cases, i.e., d-p at quarterly and monthly frequencies over

the 1952-2002 subsample, as well as e-p at monthly frequency over the 1927-2018,

1946-2018, and 1946-2002 subsamples, my t-statistic demonstrates more power, not

only due to the nearly integrated nature of the predictors I employ, but also can be

due to the fact that Q-test is more vulnerable to model instability because of the

Bonferroni procedure. Generally speaking, the proposed t-statistic performs satisfac-

torily when a predictor is highly persistent, usually corresponding to a predictor at

high frequency.

Lastly, as the testing results vary over different subsamples, it is likely that the

t-statistic and the Q-statistic may become uninformative due to possible structural

changes. Hence, I apply the proposed supremum tests to the available data. Recall

that the SupT F test is robust with respect to structural changes at the end of the
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sample but not at the beginning, the SupTR test is robust to structural changes at

the beginning of the sample but not at the end, and the SupTW test is able to detect

predictability in the middle of the sample. Therefore, SupTW should be the most

robust statistic against possible structural changes, and we look at the corresponding

results first. Unsurprisingly, the SupTW test suggests that the dividend and earnings-

price ratios are almost always able to predict the returns. The special case is that

when it comes to the full sample, the dividend-price ratio at the monthly frequency

cannot significantly predict the return at the 5% significance level, but it can at the

10% significance level. Furthermore, the SupT F statistic produces similar results to

the vanilla t-statistic for the full sample (1927-2018) and the 1927-2002 subsample, but

more significant. For the other subsamples, the SupT F test yields the inference that

all the predictors are able to predict the outcome variable at all frequencies, although

for the 1952-2018 and 1952-2002 subsamples, we need to withhold a 10% significance

level to conclude that the dividend-price ratio is able to predict the returns at the

annual frequency. Lastly, the SupTR statistic shows dividend-price and earnings-

price ratio at quarterly and monthly frequencies display predictability for the full

sample (1927-2018), the 1927-2002 and 1946-2002 subsamples, with two exceptions:

the dividend-price ratio for the 1927-2018 subsample and the earnings-price ratio

for the 1946-2002 subsample, both at quarterly frequency, can only weakly predict

the excess returns, meaning that one needs to endure the 10% significance level.

Additionally, the dividend-price at monthly frequency shows predictability for the

1952 - 2002 subsample.

1.8 Conclusion

Herein this paper, I proposed a conservative t-statistic that is fairly easy to use. First,

unlike the previous relatively complicated proposed procedures, the inference results
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can be obtained from running a single augmented regression. Second, the simple t-

statistic uses standard normal critical values to draw conservative inferences. Third,

although the test is conservative, in practice, it yields similar results given by the

efficient Q-test proposed by Campbell and Yogo (2006), when practitioners use a

nearly integrated predictor, such as the dividend or earnings-price ratio. Notebly, my

tests are sensitive to the sample periods I use, and they are particularly responsive

to the starting and ending dates. This suggests that structural changes could affect

the informativeness of my tests. Therefore, I also propose a class of robust tests by

resorting to the supremum operator to address such concerning situations. Overall,

my results show that both predictors have predictability for the returns at least over

subsamples.
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1.9 Figures

Figure 1·1: Time Series Plot of the Financial Ratios
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Figure 1·2: Time Series Plot of the Excess Stock Return
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Figure 1·3: Time Series Plot of the First Differences of Financial
Ratios
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(a) c = −2, θ = −0.75 (b) c = −2, θ = −0.95

(c) c = −20, θ = −0.75 (d) c = −20, θ = −0.95

Figure 1·4: t-statistic vs standard normal; T = 500, N = 10, 000
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(a) c = 0, θ = −0.75
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(b) c = 0, θ = −0.95
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(c) c = −2, θ = −0.75
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(d) c = −2, θ = −0.95

Figure 1·5: t-statistic vs Q-statistic local power; T = 500, N = 10, 000
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(a) SupRF as Feasible Distribution Bound for SupQF
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(b) SupRR as Feasible Distribution Bound for SupQR
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(c) SupRW as Feasible Distribution Bound for SupQW

Figure 1·6: Feasible Distribution Bounds for typical cases; c =
[−50, 0]; T = 500, N = 10, 000
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(a) c = −2, θ = −0.75 (b) c = −2, θ = −0.95

(c) c = −20, θ = −0.75 (d) c = −20, θ = −0.95

Figure 1·7: SupT F vs SupQF vs SupRF ; T = 500, N = 10, 000
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(a) c = −2, θ = −0.75 (b) c = −2, θ = −0.95

(c) c = −20, θ = −0.75 (d) c = −20, θ = −0.95

Figure 1·8: SupTR vs SupQR vs SupRR; T = 500, N = 10, 000
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(a) c = −2, θ = −0.75 (b) c = −2, θ = −0.95

(c) c = −20, θ = −0.75 (d) c = −20, θ = −0.95

Figure 1·9: SupTW vs SupQW vs SupRW ; T = 500, N = 10, 000
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(b) One Structural Change: After Tb = 400, b = 0
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(c) One Structural Change: After Tb = 100, b = 0

Figure 1·10: SupT F vs t-statistic local power; T = 500, N = 10, 000,
c = −2, θ = −0.75
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1.10 Tables

Table 1.1: Large Sample (T = 500) Critical Values for the Proposed
Statistics

α t-statistic Normal SupT F SupTR SupTW SupQF SupQR SupQW SupRF SupRR SupRW

Panel A: c = 0 or θ = 0
.10 1.283 1.282 2.297 2.292 2.950 2.298 2.281 2.862 2.298 2.281 2.862
.05 1.647 1.645 2.642 2.638 3.255 2.612 2.587 3.120 2.612 2.587 3.120
.01 2.361 2.326 3.260 3.254 3.795 3.196 3.202 3.661 3.196 3.202 3.661

Panel B: c = −2, θ = −0.75
.10 0.647 1.282 1.957 1.931 2.755 2.269 2.237 2.838 2.301 2.279 2.859
.05 1.019 1.645 2.285 2.266 3.034 2.582 2.555 3.116 2.624 2.586 3.126
.01 1.791 2.326 2.965 2.862 3.592 3.145 3.171 3.604 3.197 3.160 3.607

Panel C: c = −2, θ = −0.95
.10 -0.327 1.282 1.513 1.492 2.509 2.267 2.224 2.845 2.303 2.277 2.855
.05 0.087 1.645 1.868 1.828 2.785 2.593 2.577 3.095 2.620 2.589 3.101
.01 0.825 2.326 2.526 2.501 3.352 3.183 3.125 3.634 3.217 3.211 3.654

Panel D: c = −20, θ = −0.75
.10 -1.886 1.282 0.638 0.555 1.729 2.169 2.135 2.785 2.279 2.276 2.854
.05 -1.483 1.645 0.992 0.916 2.016 2.472 2.442 3.045 2.606 2.583 3.109
.01 -0.754 2.326 1.672 1.598 2.549 3.066 3.025 3.567 3.202 3.178 3.606

Panel E: c = −20, θ = −0.95
.10 -6.787 1.282 -1.161 -1.330 0.243 2.201 2.133 2.782 2.329 2.277 2.855
.05 -6.144 1.645 -0.753 -0.926 0.555 2.516 2.457 3.046 2.622 2.601 3.130
.01 -5.211 2.326 0.027 -0.123 1.134 3.113 3.042 3.573 3.207 3.213 3.671
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Table 1.2: Small Sample (T = 50, 100, 200) Rejection Rates for the
Proposed Statistics

α t-statistic SupT F SupTR SupTW

T = 50
Panel A: c = 0 or θ = 0

.10 0.102 0.117 0.112 0.210

.05 0.053 0.071 0.068 0.152

.01 0.011 0.028 0.023 0.082
Panel B: c = −2, θ = −0.75

.10 0.031 0.068 0.062 0.160

.05 0.012 0.040 0.037 0.112

.01 0.002 0.015 0.014 0.053
Panel C: c = −2, θ = −0.95

.10 0.004 0.029 0.026 0.097

.05 0.002 0.018 0.015 0.069

.01 0.000 0.006 0.005 0.032
T = 100

Panel A: c = 0 or θ = 0
.10 0.103 0.102 0.101 0.149
.05 0.057 0.055 0.054 0.093
.01 0.011 0.017 0.012 0.034

Panel B: c = −2, θ = −0.75
.10 0.035 0.048 0.046 0.105
.05 0.014 0.026 0.025 0.063
.01 0.003 0.008 0.005 0.022

Panel C: c = −2, θ = −0.95
.10 0.003 0.020 0.020 0.056
.05 0.001 0.011 0.010 0.029
.01 0.000 0.002 0.003 0.010

T = 200
Panel A: c = 0 or θ = 0

.10 0.097 0.099 0.099 0.131

.05 0.049 0.051 0.053 0.071

.01 0.009 0.013 0.013 0.019
Panel B: c = −2, θ = −0.75

.10 0.029 0.047 0.049 0.082

.05 0.011 0.022 0.024 0.046

.01 0.001 0.004 0.005 0.013
Panel C: c = −2, θ = −0.95

.10 0.003 0.019 0.017 0.041

.05 0.002 0.008 0.008 0.024

.01 0.000 0.001 0.001 0.006
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Table 1.3: Estimates of the Model Parameters ignoring Non-standard
Features

Frequency Variable Observation β̂ t-statistic θ̂ DF-GLS 95% CI:c 95% CI:ρ
Panel A: 1927-2018

Annual d-p 92 0.112 2.148** -0.684 -1.355 [-10.199 3.132] [0.889 1.034]
e-p 92 0.137 2.680*** -0.963 -2.011 [-16.365 1.087] [0.822 1.012]

Quarterly d-p 368 0.036 2.140** -0.943 -1.782 [-14.155 1.884] [0.962 1.005]
e-p 368 0.039 2.838*** -0.986 -1.838 [-14.155 1.884] [0.962 1.005]

Monthly d-p 1104 0.006 1.520* -0.956 -1.627 [-12.102 2.583] [0.989 1.002]
e-p 1104 0.011 2.597*** -0.987 -1.500 [-11.147 2.870] [0.990 1.003]

Panel B: 1927-2002
Annual d-p 77 0.136 2.231** -0.700 -1.218 [-8.528 3.532] [0.889 1.046]

e-p 77 0.150 2.598*** -0.961 -1.957 [-16.365 1.087] [0.788 1.014]
Quarterly d-p 305 0.036 2.140** -0.943 -1.782 [-14.155 1.884] [0.954 1.006]

e-p 305 0.047 2.948*** -0.987 -2.063 [-16.365 1.087] [0.946 1.004]
Monthly d-p 913 0.009 1.781** -0.955 -1.525 [-11.147 2.870] [0.988 1.003]

e-p 913 0.013 2.700*** -0.988 -1.732 [-13.124 2.203] [0.986 1.002]
Panel C: 1946-2018

Annual d-p 73 0.115 2.302** -0.618 -1.248 [-8.528 3.532] [0.883 1.048]
e-p 73 0.120 2.175** -0.949 -1.814 [-14.155 1.884] [0.806 1.026]

Quarterly d-p 292 0.029 2.348** -0.953 -1.657 [-13.124 2.203] [0.955 1.008]
e-p 292 0.029 2.140** -0.977 -1.575 [-12.102 2.583] [0.959 1.009]

Monthly d-p 876 0.009 2.346*** -0.957 -1.625 [-12.102 2.583] [0.986 1.003]
e-p 876 0.009 2.110** -0.981 -1.377 [-10.199 3.132] [0.988 1.004]

Panel D: 1946-2002
Annual d-p 58 0.131 2.377*** -0.641 -0.943 [-6.415 3.967] [0.889 1.068]

e-p 58 0.116 1.922** -0.940 -1.503 [-11.147 2.870] [0.808 1.050]
Quarterly d-p 229 0.040 2.772*** -0.962 -1.272 [-9.362 3.352] [0.959 1.015]

e-p 229 0.034 2.166** -0.976 -1.621 [-12.102 2.583] [0.947 1.011]
Monthly d-p 685 0.013 2.778*** -0.957 -1.278 [-9.362 3.352] [0.986 1.005]

e-p 685 0.010 2.137** -0.980 -1.481 [-11.147 2.870] [0.984 1.004]
Panel E: 1952-2018

Annual d-p 67 0.112 1.923** -0.665 -0.875 [-6.415 3.967] [0.904 1.059]
e-p 67 0.114 1.927** -0.962 -1.641 [-10.801 1.200] [0.839 1.018]

Quarterly d-p 268 0.028 1.948** -0.966 -0.832 [-5.779 4.072] [0.978 1.015]
e-p 268 0.027 1.833** -0.981 -1.171 [-8.528 3.532] [0.968 1.013]

Monthly d-p 804 0.008 1.926** -0.965 -0.690 [-5.293 4.166] [0.993 1.005]
e-p 804 0.008 1.784** -0.982 -0.915 [-6.415 3.967] [0.992 1.005]

Panel F: 1952-2002
Annual d-p 52 0.124 1.929** -0.699 -0.630 [-4.758 4.256] [0.909 1.082]

e-p 52 0.107 1.643** -0.958 -1.386 [-10.199 3.132] [0.804 1.060]
Quarterly d-p 205 0.039 2.326** -0.978 -0.453 [-4.289 4.316] [0.979 1.021]

e-p 205 0.030 1.812** -0.980 -1.280 [-7.122 3.827] [0.965 1.019]
Monthly d-p 613 0.012 2.329** -0.968 -0.286 [-3.463 4.436] [0.994 1.007]

e-p 613 0.009 1.771** -0.982 -1.056 [-7.122 3.827] [0.988 1.006]
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Table 1.4: Tests of Predictability using Proposed Methods and
Campbell-Yogo Method

Frequency Predictor Observation δ̂ β̂ t-statistic SupT F SupTR SupTW 90% CY-CI:β
Panel A: 1927-2018

Annual d-p 92 -0.909 0.046 1.181 2.214 2.021 3.408** [-0.010 0.189]
e-p 92 -0.951 0.019 1.303* 3.175** 1.895 5.129*** [0.011 0.194]

Quarterly d-p 368 -0.962 -0.007 -1.598 -0.078 2.578* 3.452** [-0.012 0.034]
e-p 368 -0.974 0.005 2.024** 5.163*** 2.737** 6.588*** [0.002 0.043]

Monthly d-p 1104 -0.917 -0.003 -2.569 -0.821 2.746** 3.047* [-0.005 0.008]
e-p 1104 -0.961 0.002 2.228** 5.628*** 3.512*** 6.907*** [-0.000 0.011]

Panel B: 1927-2002
Annual d-p 77 -0.891 0.070 1.573* 2.214 2.500* 3.221** [-0.002 0.223]

e-p 77 -0.942 0.029 1.762** 5.724*** 2.177 5.470*** [0.023 0.228]
Quarterly d-p 305 -0.960 -0.000 -0.078 -0.078 5.842*** 3.257** [-0.007 0.047]

e-p 305 -0.968 0.008 2.878*** 5.163*** 3.375*** 6.347*** [0.009 0.061]
Monthly d-p 913 -0.916 -0.001 -0.841 -0.841 5.568*** 2.851 [-0.004 0.011]

e-p 913 -0.956 0.002 3.060*** 5.628*** 4.100*** 6.466*** [0.000 0.016]
Panel C: 1946-2018

Annual d-p 73 -0.778 0.072 1.780** 3.345*** 1.853 3.483** [0.011 0.213]
e-p 73 -0.956 0.019 1.048 4.409*** 1.048 5.443*** [0.002 0.214]

Quarterly d-p 292 -0.982 0.008 2.178** 5.570*** 2.178 3.229** [0.003 0.052]
e-p 292 -0.997 0.005 1.539* 6.164*** 1.652 5.866*** [-0.002 0.045]

Monthly d-p 876 -0.915 0.003 2.293** 5.310*** 2.293* 2.714 [0.001 0.016]
e-p 876 -0.977 0.002 2.143** 6.653*** 2.322* 6.066*** [-0.001 0.013]

Panel D: 1946-2002
Annual d-p 58 -0.738 0.096 2.235** 3.345*** 2.288* 3.630** [0.019 0.232]

e-p 58 -0.944 0.030 1.397* 4.409*** 1.397 3.331** [-0.011 0.222]
Quarterly d-p 229 -0.989 0.022 5.570*** 5.570*** 5.570*** 3.666*** [0.010 0.063]

e-p 229 -0.991 0.008 2.263** 6.164*** 2.363* 3.501** [0.000 0.060]
Monthly d-p 685 -0.914 0.007 5.285*** 5.304*** 5.285*** 2.639 [0.003 0.020]

e-p 685 -0.970 0.003 2.834*** 6.653*** 3.003** 3.881*** [-0.000 0.018]
Panel E: 1952-2018

Annual d-p 67 -0.910 0.036 0.801 2.429* 1.646 3.580** [-0.047 0.173]
e-p 67 -0.967 -0.003 -0.149 3.278*** 0.517 3.158** [-0.027 0.183]

Quarterly d-p 268 -1.011 -0.003 -0.901 3.245*** 0.882 3.730*** [-0.019 0.021]
e-p 268 -0.998 -0.001 -0.318 3.994*** 0.211 3.537** [-0.013 0.030]

Monthly d-p 804 -0.933 -0.001 -0.898 2.717** 0.474 2.726 [-0.006 0.006]
e-p 804 -0.980 0.000 0.129 4.613*** 0.129 3.846*** [-0.004 0.008]

Panel F: 1952-2002
Annual d-p 52 -0.882 0.061 1.280* 2.429* 1.327 3.653** [-0.039 0.197]

e-p 52 -0.954 0.008 0.398 3.278*** 0.398 3.216** [-0.038 0.199]
Quarterly d-p 205 -1.026 0.011 3.194*** 3.245*** 3.194** 3.369** [-0.009 0.033]

e-p 205 -0.992 0.002 0.626 3.994*** 0.626 3.488** [-0.011 0.046]
Monthly d-p 613 -0.936 0.004 2.687*** 2.717** 2.723** 2.661 [-0.003 0.010]

e-p 613 -0.972 0.001 1.015 4.613*** 1.015 3.815*** [-0.004 0.012]
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Chapter 2

Theory of Low Frequency Contamination
from Nonstationarity and Misspecification:
Consequences for HAR Inference

2.1 Introduction

Economic and financial time series are highly nonstationary [see, e.g., Perron (1989),

Stock and Watson (1996b), Ng and Wright (2013), and Giacomini and Rossi (2015)].

We develop theoretical results about the behavior of the sample autocovariance (Γ̂ (k) ,

k ∈ Z) and the periodogram (IT (ω) , ω ∈ [−π, π]) for a short memory nonstationary

process.1 We show that nonstationarity (e.g., time-variation in the mean or autoco-

variances) induces low frequency contamination, meaning that the sample autocovari-

ance and the periodogram share features that are similar to those of a long memory

series. We present explicit expressions for the asymptotic bias of these estimates,

showing that it is always positive and increases with the degree of heterogeneity in

the data.

The low frequency contamination can be explained as follows. For a short memory

series, the autocorrelation function (ACF) is known to display exponential decay and

to vanish as the lag length k → ∞, and the periodogram is known to be finite
1By short memory nonstationary processes we mean processes that have non-constant moments

and whose sum of absolute autocovariances is finite. The latter rules out processes with unbounded
second moments (e.g., unit root). For unit root or trending time series, one has to first apply some
differencing or de-trending technique.
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at the origin. Under general forms of nonstationarity, we show theoretically that

Γ̂ (k) = limT→∞ ΓT (k)+d∗, where ΓT (k) = T−1
∑T

k+1 E (VtVt−k), k ≥ 0 and d∗ > 0 is

independent of k. Assuming positive dependence for simplicity (i.e., limT→∞ ΓT (k) >

0), this means that each sample autocovariance overestimates the true dependence in

the data. The bias factor d∗ > 0 depends on the type of nonstationarity. Interestingly,

d∗ in general does not vanish as T → ∞. This yields a slower than exponential

decay. In addition, since short memory implies ΓT (k) → 0 as k → ∞, it follows

that d∗ generates long memory effects since Γ̂ (k) ≈ d∗ > 0 as k → ∞. As for the

periodogram, IT (ω), we show that under nonstationarity E (IT (ω))→∞ as ω → 0,

a feature shared by long memory processes.

This low frequency contamination holds as an asymptotic approximation. We

verify analytically the quality of the approximation to finite-sample situations. We

distinguish cases where this contamination only occurs as a small-sample problem

and cases where it continues to hold asymptotically. The former involves d∗ ≈ 0

asymptotically but a consistent estimate of d∗ satisfies d̂∗ > 0 in finite-sample. We

show analytically that using d̂∗ in place of d∗ provides a good approximation in

this context. This helps us to explain the long memory effects in situations where

asymptotically no low frequency contamination should occur. An example is a t-test

on a regression coefficient in a correctly specified model with nonstationary errors

that are serially correlated. Other examples include t-tests in the linear model with

mild forms of misspecification that do not undermine the conditions for consistency

of the least-squares estimator. Further, similar issues arise if one applies some prior

de-trending techniques where the fitted model is not correctly specified (e.g., the data

follow a nonlinear trend but one removes a linear trend). Yet another example for

which our results are relevant is the case of outliers. In all these examples, d∗ ≈

0 asymptotically but one observes enhanced persistence in finite-sample that can
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affect the properties of heteroskedasticity and autocorrelation robust (HAR) inference.

Most of the HAR inference in applied work (besides the t- and F -test in regression

models) are characterized by nonstationary alternative hypotheses for which d∗ > 0

even asymptotically. This class of tests is very large. Tests for forecast evaluation

[e.g., Casini (2018), Diebold and Mariano (1995), Giacomini and Rossi (2009, 2010),

Giacomini and White (2006), Perron and Yamamoto (2019) and West (1996)], tests

and inference for structural change models [e.g., Andrews (1993), Bai and Perron

(1998), Casini and Perron (2020c, 2020d, 2020b), Elliott and Müller (2007), and Qu

and Perron (2007)], tests and inference in time-varying parameters models [e.g., Cai

(2007) and Chen and Hong (2012)], tests and inference for regime switching models

[e.g., Hamilton (1989) and Qu and Zhuo (2021)] and others are part of this class.

We propose a solution to these problems via nonparametric smoothing over time

which we show theoretically to be robust to low frequency contamination. By applying

nonparametric smoothing, we prove that the sample local autocovariance and the

local periodogram do not exhibit long memory features. Nonparametric smoothing

avoids mixing highly heterogeneous data coming from distinct nonstationary regimes

as opposed to what the sample autocovariance and the periodogram do. It was

introduced recently for robust inference under nonstationarity by Casini (2019). He

proposed a new HAC estimator that applies nonparametric smoothing over time

in order to account flexibly for nonstationarity. Our results provide a theoretical

justification for his double-kernel heteroskedasticity and autocorrelation consistent

(DK-HAC) estimators.

Our work is different from the literature on spurious persistence caused by the

presence of level shifts or other deterministic trends. Perron (1990) showed two use-

ful results: first, the presence of breaks in mean often induces spurious non-rejection

of the unit root hypothesis; second, the presence of a level shift asymptotically biases



54

the estimate of the AR coefficient towards one. Bhattacharya et al. (1983) demon-

strated that certain deterministic trends can induce the spurious presence of long

memory. Via simulations, Lamoureux and Lastrapes (1990), and analytically, Hille-

brand (2005), showed that when the mean of a GARCH process changes, the sum

of the estimated AR parameters of the conditional variance converges in probability

to one. Christensen and Varneskov (2017) and McCloskey and Hill (2017) provided

methods to estimate the parameters of, respectively, fractional cointegrating vector

and a stationary ergodic time series, robust to some forms of mean/trend changes.

Diebold and Inoue (2001), Granger and Hyung (2004), Mikosch and Stărică (2004)

and Perron and Qu (2010) showed via simulations and theoretical arguments that

changes in mean induce hyperbolically decaying autocorrelations and spectral den-

sity estimates that approach infinity at the null frequency. Our results are different

from theirs in that we consider a more general problem and we allow for more general

forms of nonstationarity using the segmented locally stationary framework of Casini

(2019). Importantly, we provide a general solution to these problems and show theo-

retically its robustness to low frequency contamination. Finally, we discuss in detail

the implications of our theory for HAR inference.

HAR inference relies on estimation of the long-run variance (LRV). The latter,

from a time domain perspective, is equivalent to the sum of all autocovariances of

some relevant process while, from a frequency domain perspective, is equal to 2π

times an integrated time-varying spectral density at the zero frequency. From a time

domain perspective, estimation involves a weighted sum of the sample autocovari-

ances, while from a frequency domain perspective estimation is based on a weighted

sum of the periodogram ordinates near the zero frequency. Therefore, our results

on low frequency contamination for the sample autocovariances and the periodogram

can have important implications in this context.
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There are two main approaches in HAR inference which relies on whether the LRV

estimator is consistent or not. The classical approach relies on consistency which re-

sults in HAC standard errors [cf. Newey and West (1987, 1994) and Andrews (1991)].

Inference is standard because HAR tests follow asymptotically standard distributions.

It was shown early that HAC standard errors can result in oversized tests when there

is substantial temporal dependence. This stimulated a second approach based on

inconsistent LRV estimators that keep the bandwidth at a fixed fraction of the sam-

ple size [cf. Kiefer et al. (2000)]. Inference becomes nonstandard and it is shown

that fixed-b achieves high-order refinements [e.g., Sun et al. (2008)] and reduces the

oversize problem of HAR tests.2 However, unlike the classical approach, fixed-b HAR

inference is only valid under stationarity.

Recent work by Casini (2019) questioned the performance of HAR inference tests

under nonstationarity from a theoretical standpoint. In the past, simulation evidence

of serious (e.g., non-monotonic) power or related issues in specific HAR inference con-

texts were documented by Altissimo and Corradi (2003), Casini (2018), Casini and

Perron (2019, 2020c, 2020d), Chan (2020), Chang and Perron (2018), Crainiceanu

and Vogelsang (2007), Deng and Perron (2006), Juhl and Xiao (2009), Kim and Per-

ron (2009), Martins and Perron (2016), Perron and Yamamoto (2019) and Vogeslang

(1999), among others]. Our theoretical results show that these issues occur because

the unaccounted nonstationarity alters the spectrum at low frequencies. Each sample

autocovariance is upward biased (d∗ > 0) and the resulting LRV estimators tend to

be inflated. When these estimators are used to normalize test statistics, the latter

lose power. Interestingly, d∗ is independent of k so that the more lags are included
2The fixed-b literature is vast. Various contributions can be found in Dou (2019), Lazarus et al.

(2017), Lazarus et al. (2018), Gonçalves and Vogelsang (2011), de Jong and Davidson (2000), Ibrag-
imov and Müller (2010), Jansson (2004), Kiefer and Vogelsang (2002, 2005), Müller (2007, 2014),
Phillips (2005), Politis (2011), Preinerstorfer and Pötscher (2016), Pötscher and Preinerstorfer (2018,
2019), Robinson (1998), Sun (2013, 2014a, 2014b), Velasco and Robinson (2001) and Zhang and Shao
(2013).
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the more severe is the problem. Further, by virtue of weak dependence, we have that

ΓT (k)→ 0 as k →∞ but d∗ > 0 across k. For these reasons, long bandwidths/fixed-b

LRV estimators are expected to suffer most because they use many/all lagged auto-

covariance. Our theoretical results further show that nonparametric smoothing effec-

tively solves the problem; the DK-HAC estimators from Casini (2019) lead to HAR

tests with good size and good power even when existing HAR tests have little or no

power.

This paper makes an independent contribution relative to other recent working

papers by two of the authors. Casini and Perron (2020e) establishes minimax MSE

bounds for LRV estimation and proposes a new prewhitening procedure robust to

nonstationarity. Casini and Perron (2020a) presents change-point tests for time series

with an evolutionary spectra that can also be used to eliminate the bias of the local

periodogram when there are discontinuities in the spectrum. The paper is organized

as follows. Section 2.2 presents the statistical setting and Section 2.3 establishes the

theoretical results. The implications of our results for HAR inference are analyzed

analytically and computationally through simulations in Section 2.4. Section 2.5

concludes. The code to implement our method is provided in Matlab, R and Stata

languages through a Github repository.

2.2 Statistical Framework for Nonstationarity

Suppose {Vt,T}Tt=1 is defined on an abstract probability space (Ω, F , P), where Ω

is the sample space, F is the σ-algebra and P is a probability measure. In order

to analyze time series models that have a time-varying spectrum it is useful to in-

troduce an infill asymptotic setting whereby we rescale the original discrete time

horizon [1, T ] by dividing each t by T. Letting u = t/T and T → ∞, we define a

new time scale u ∈ [0, 1] on which as T → ∞ we observe more and more realiza-
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tions of Vt,T close to time t. As a notion of nonstationarity, we use the concept of

segmented locally stationary processes introduced in Casini (2019). This extends the

class of locally stationary processes [cf. Dahlhaus (1997)] that have been used widely

in both statistics and economics, often simply referred to as time-varying parameter

processes [see e.g., Cai (2007) and Chen and Hong (2012)]. Due to imposed smooth-

ness restrictions, these processes exclude many prominent econometric models that

account for time variation in the parameters. For example, structural change and

regime switching-type models do not belong to this class because parameter changes

occur suddenly at a particular point in time rather than smoothly over short periods.

Segmented locally stationary processes allow for a finite number of discontinuities in

the spectrum over time. We collect the break dates in the set T , {T 0
1 , . . . , T

0
m}.

Let i ,
√
−1. A function G (·, ·) : [0, 1]×R→ C is said to be left-differentiable at u0

if ∂G (u0, ω) /∂−u , limu→u−0
(G (u0, ω)−G (u, ω)) / (u0 − u) exists for any ω ∈ R.

Section 2.2.1 introduces short-memory segmented locally stationary processes. The

extension to long memory processes is presented in Section 2.2.2.

2.2.1 Short Memory Segmented Locally Stationary Processes

Definition 2.2.1 A sequence of stochastic processes {Vt,T}Tt=1 is called segmented
locally stationary (SLS) with m0 + 1 regimes, transfer function A0 and trend µ· if
there exists a representation

Vt,T = µj (t/T ) +

π∫
−π

exp (iωt)A0
j,t,T (ω) dξ (ω) ,

(
t = T 0

j−1 + 1, . . . , T 0
j

)
,

(2.1)

for j = 1, . . . , m0 + 1, where by convention T 0
0 = 0 and T 0

m0+1 = T . The following
technical conditions are also assumed to hold:
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(i) ξ (λ) is a stochastic process on [−π, π] with ξ (ω) = ξ (−ω) and

cum {dξ (ω1) , . . . , dξ (ωr)} = ϕ

(
r∑
j=1

ωj

)
gr (ω1, . . . , ωr−1) dω1 . . . dωr,

where cum {· · · } denotes the cumulant spectra of r-th order, g1 = 0, g2 (ω) = 1,
|gr (ω1, . . . , ωr−1)| ≤ Mr for all r with Mr being a constant that may depend on r,
and ϕ (ω) =

∑∞
j=−∞ δ (ω + 2πj) is the period 2π extension of the Dirac delta function

δ (·).
(ii) There exists a constant K and a piecewise continuous function A : [0, 1] ×

R → C such that, for each j = 1, . . . , m0 + 1, there exists a 2π-periodic function
Aj : (λ0

j−1, λ
0
j ]× R→ C with Aj (u, −ω) = Aj (u, ω), λ0

j , T 0
j /T and for all T,

A (u, ω) = Aj (u, ω) for λ0
j−1 < u ≤ λ0

j , (2.2)

sup
1≤j≤m0+1

sup
T 0
j−1<t≤T 0

j , ω

∣∣A0
j,t,T (ω)− Aj (t/T, ω)

∣∣ ≤ KT−1. (2.3)

(iii) µj (t/T ) is piecewise continuous.

Assumption 2.2.1 (i) {Vt,T} is a mean-zero SLS process with m0 + 1 regimes; (ii)
A (u, ω) is twice continuously differentiable in u at all u 6= λ0

j , j = 1, . . . , m0 + 1,

with uniformly bounded derivatives (∂/∂u)A (u, ·) and (∂2/∂u2)A (u, ·), and Lips-
chitz continuous in the second component with index ϑ = 1; (iii) (∂2/∂u2)A (u, ·)
is Lipschitz continuous at all u 6= λ0

j (j = 1, . . . , m0 + 1); (iv) A (u, ω) is twice
left-differentiable in u at u = λ0

j (j = 1, . . . , m0 + 1) with uniformly bounded deriva-
tives (∂/∂−u)A (u, ·) and (∂2/∂−u

2)A (u, ·) and has piecewise Lipschitz continuous
derivative (∂2/∂−u

2)A (u, ·).

We define the time-varying spectral density as fj (u, ω) , |Aj (u, ω) |2 for T 0
j−1/T <

u = t/T ≤ T 0
j /T . Given f (u, ω) , we can define the local covariance of Vt,T at the

rescaled time u with Tu /∈ T and lag k ∈ Z as c (u, k) ,
∫ π
−π e

iωkf (u, ω) dω. The

same definition is also used when Tu ∈ T and k ≥ 0. For Tu ∈ T and k < 0 it is

defined as c (u, k) ,
∫ π
−π e

iωkA (u, ω)A (u− k/T, −ω) dω.

Next, we impose conditions on the temporal dependence (we omit the second



59

subscript T when it is clear from the context). Let

κ
(a1,a2,a3,a4)
V,t (u, v, w)

, κ(a1,a2,a3,a4) (t, t+ u, t+ v, t+ w)− κ(a1,a2,a3,a4)
N (t, t+ u, t+ v, t+ w)

, E
(
V

(a1)
t − EV (a1)

t

)(
V

(a2)
t+u − EV (a2)

t+u

)(
V

(a3)
t+v − EV (a3)

t+v

)(
V

(a4)
t+w − EV (a4)

t+w

)
−

E
(
V

(a1)
N ,t − EV (a1)

N ,t

)(
V

(a2)
N ,t+u − EV (a2)

N ,t+u

)(
V

(a3)
N ,t+v − EV (a3)

N ,t+v

)(
V

(a4)
N ,t+w − EV (a4)

N ,t+w

)
,

where {VN ,t} is a Gaussian sequence with the same mean and covariance structure as

{Vt}, κ(a1,a2,a3,a4)
V,t (u, v, w) is the time-t fourth-order cumulant of (V

(a1)
t , V

(a2)
t+u , V

(a3)
t+v ,

V
(a4)
t+w ) while κ(a1,a2,a3,a4)

N (t, t + u, t + v, t + w) is the time-t centered fourth moment

of Vt if Vt were Gaussian.

Assumption 2.2.2 (i)
∑∞

k=−∞ supu∈[0, 1] ‖c (u, k)‖ <∞ and∑∞
k=−∞

∑∞
j=−∞

∑∞
l=−∞ supu∈[0, 1] |κ

(a1,a2,a3,a4)
V,bTuc (k, j, l) | < ∞ for all a1, a2, a3, a4 ≤ p.

(ii) For all a1, a2, a3, a4 ≤ p there exists a function κ̃a1,a2,a3,a4 : [0, 1]×Z×Z×Z→ R
such that sup1≤j≤m0+1 supλ0j−1<u≤λ0j

|κ(a1,a2,a3,a4)
V,bTuc (k, s, l) − κ̃a1,a2,a3,a4 (u, k, s, l) | ≤

LT−1 for some constant L; the function κ̃a1,a2,a3,a4 (u, k, s, l) is twice differentiable in
u at all u 6= λ0

j (j = 1, . . . , m0 + 1) with uniformly bounded derivatives
(∂/∂u) κ̃a1,a2,a3,a4 (u, ·, ·, ·) and (∂2/∂u2) κ̃a1,a2,a3,a4 (u, ·, ·, ·), and twice left-differentiable
in u with uniformly bounded derivatives (∂/∂−u) κ̃a1,a2,a3,a4 (u, ·, ·, ·) and
(∂2/∂−u

2) κ̃a1,a2,a3,a4 (u, ·, ·, ·), and piecewise Lipschitz continuous derivative
(∂2/∂−u

2) κ̃a1,a2,a3,a4 (u, ·, ·, ·).

If {Vt} is stationary then the cumulant condition of Assumption 2.2.2-(i) reduces

to the standard one used in the time series literature [see Andrews (1991)]. Note that

α-mixing and moment conditions imply that the cumulant condition of Assumption

2.2.2 holds.

2.2.2 Long Memory Segmented Locally Stationary Processes

One of our goals is to show that the sample autocovariances and the periodogram

based on short memory SLS processes have properties similar to those of of long
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memory processes. Thus, we need to first define long memory SLS processes and

illustrate the properties of these statistics for such processes. Define the backward

difference operator ∆Vt = ∆1Vt = Vt − Vt−1 and ∆lVt recursively. Long memory

features can be expressed as a “pole” in the spectral density at frequency zero. That

is, for a stationary process, long memory implies that f (ω) ∼ ω−2ϑ as ω → 0 where

ϑ ∈ (0, 1/2) is the long memory parameter. In what follows, l is some non-negative

integer.

Definition 2.2.2 A sequence of stochastic processes {Vt,T} is called long memory
segmented locally stationary with m0 + 1 regimes, transfer function A0 and trend µ·
if there exists a representation

∆lVt = µj (t/T ) +

π∫
−π

exp (iωt)A0
j,t,T (ω) dξ (ω) ,

(
t = T 0

j−1 + 1, . . . , T 0
j

)
,

(2.4)

for j = 1, . . . , m0 + 1, where by convention T 0
0 = 0 and T 0

m0+1 = T , (i) and (iii) of
Definition 2.2.1 hold, and (ii) of Definition 2.2.1 is replaced by

(ii) There exists two constants L2 > 0 and D < 1/2 (which depend on j) and a
piecewise continuous function A : [0, 1]×R→ C such that, for each j = 1, . . . , m0+1,
there exists a 2π-periodic function Aj : (λ0

j−1, λ
0
j ] × R → C with Aj (u, −ω) =

Aj (u, ω),

A (u, ω) = Aj (u, ω) for λ0
j−1 < u ≤ λ0

j , (2.5)

sup
1≤j≤m0+1

sup
T 0
j−1<t≤T 0

j , ω

∣∣A0
j,t,T (ω)− Aj (t/T, ω)

∣∣ ≤ L2T
−1 |ω|−D , (2.6)

and

sup
0≤v≤u≤1, u 6=λ0j (j=1,...,m0+1,), ω

|A (u, ω)− A (u′, ω)| ≤ L2 |u− u′| |ω|−D . (2.7)

The spectral density of {Vt,T} is given by fj (u, ω) = |1− exp (−iω) |−2l|Aj (u, ω) |−2

for j = 1, . . . , m0 + 1. We say that the process {Vt,T} has local memory parameter
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ϑ (u) ∈ (−∞, l + 1/2) at time u ∈ [0, 1] if it satisfies (2.4)-(2.7), and its generalized
spectral density fj (u, ω) (j = 1, . . . , m0 + 1) satisfies the following condition,

fj (u, ω) =
∣∣1− e−iω∣∣−2ϑj(u)

f ∗j (u, ω) , (2.8)

with f ∗j (u, ω) > 0 and∣∣f ∗j (u, ω)− f ∗j (u, 0)
∣∣ ≤ L4f

∗
j (u, ω) |ω|ν , ω ∈ [−π, π] , (2.9)

where L4 > 0 and ν ∈ (0, 2].

Definition 2.2.2 extends Definition 2.2.1 and Assumption 2.2.1 by requiring the

bound on the smoothness of A (·, ω) to depend also on |ω|−D thereby allowing a

singularity at ω = 0. Casini (2019) showed that fj (u, ω) = |Aj (u, ω)|2 for j =

1, . . . , m0 + 1. Using similar arguments, we obtain the form fj (u, ω) given in (2.8).

See Roueff and von Sachs (2011) for a definition of long memory local stationarity.

Definition 2.2.2 extends their definition to allow for m0 discontinuities. We have

assumed that breaks in the long memory parameter occur at the same locations as

the breaks in the spectrum. This can be relaxed but would provide no added value

in this paper.

Example 2.2.1 A time-varying AR fractionally integrated moving average (p, ϑ, q)

process with m0 structural breaks satisfies Definition 2.2.2 with
ϑj : [0, 1] → (−∞, l + 1/2), σj : [0, 1] → R+, φj = [φ1, . . . , φp]

′ : [0, 1] →
Rq and θj = [θ1, . . . , θq]

′ : [0, 1] → Rp are left-Lipschitz functions for each j =

1, . . . , m0 + 1 such that 1 −
∑p

k=1 φj,k (u) zk does not vanish for all u ∈ [0, 1] and
z ∈ C such that |z| ≤ 1. Using the latter condition, the local transfer function
Aj (u; ·) defines for each j a causal autoregressive fractionally integrated moving av-
erage (ARFIMA(p, ϑ (u)− l, q) process whose spectral density satisfies the conditions
(2.8) and (2.9) with ν = 2. Using Lemma 3 in Roueff and von Sachs (2011), condition
(2.7) holds with with D > sup1≤j≤m0+1 supλ0j−1<u≤λ0j , ω

ϑj (u)− l.

Definition 2.2.2 implies that ρV (u, k) , Corr(VbTuc, VbTuc+k) ∼ Ck2dj(u)−1 for

λ0
j−1 < u < λ0

j and large k where C > 0. This means that the rescaled time-u autocor-
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relation function (ACF(u)) has a power law decay which implies
∑∞

k=−∞ |ρV (u, k)| =

∞ if dj (u) ∈ (0, 1/2).

2.3 Theoretical Results on Low Frequency Contam-
ination

In this section we establish theoretical results about the low frequency contamination

induced by nonstationarity including results covering the case of misspecification and

outliers. We first consider the asymptotic proprieties of two key quantities for in-

ference in time series contexts, i.e., the sample autocovariance and the periodogram.

These are defined, respectively, by

Γ̂ (k) = T−1

T∑
t=|k|+1

(
Vt − V

) (
Vt−|k| − V

)
, (2.10)

where V is the sample mean and

IT (ω) =

∣∣∣∣∣ 1√
T

T∑
t=1

exp (−iωt)Vt

∣∣∣∣∣
2

, ω ∈ [0, π] ,

which is evaluated at the Fourier frequencies ωj = (2πj) /T ∈ [0, π]. In the context

of autocorrelated data, hypotheses testing and construction of confidence intervals

require estimation of the so-called long-run variance. Traditional HAC estimators

are weighted sums of sample autocovariances while frequency domain estimators are

weighted sums of the periodograms. Casini (2019) considered an alternative estimate

for the sample autocovariance to be used in the DK-HAC estimators,3 namely,

Γ̂DK (k) ,
nT
T

bT/nT c∑
r=1

ĉT (rnT/T, k) ,

3The DK-HAC estimators are defined in Section 2.4.1.
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where k ∈ Z, nT →∞ satisfying the conditions given below, and

ĉT (rnT/T, k)

=n−1
2,T

n2,T−1∑
s=0

(
VrnT+b|k/2|c−n2,T /2+s+1 − V rnT ,T

) (
VrnT−b|k/2|c−n2,T+s+1 − V rnT ,T

)
,

(2.11)

where n2,T →∞ and V rnT ,T = n−1
2,T

∑n2,T−1
s=0 VrnT−n2,T /2+s+1. For notational simplicity

we assume that nT and n2,T are even. ĉT (rnT/T, k) is an estimate of the autoco-

variance at time rnT and lag k, i.e., cov (VrnT , VrnT−k). One could use a smoothed

or tapered version. However, to clearly focus on the main intuition, we prefer to

omit these estimates to keep the notation simple. The theoretical results remain the

same. The estimate Γ̂DK (k) is an integrated local sample autocovariance. It extends

Γ̂ (k) to better account for nonstationarity. Similarly, the DK-HAC estimator does

not relate to the periodogram but to the local periodogram defined by

IL,T (u, ω) ,

∣∣∣∣∣ 1
√
nT

nT−1∑
s=0

VbTuc−nT /2+s+1,T exp (−iωs)

∣∣∣∣∣
2

,

where IL,T (u, ω) is the (untapered) periodogram over a segment of length nT with

midpoint bTuc. We also consider the statistical properties of both Γ̂DK (k) and

IL,T (u, ω) under nonstationarity. Define rj = (λ0
j − λ0

j−1) for j = 1, . . . , m0 + 1

with λ0
0 = 0 and λ0

m0+1 = 1. Note that λ0
j =

∑j
s=0 rs.

2.3.1 The Sample Autocovariance under Nonstationarity

We now establish some asymptotic properties of the sample autocovariance under

nonstationarity. We consider the case k ≥ 0 only; the case k < 0 is similar and
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omitted. Let

µj = r−1
j

λ0j∫
λ0j−1

µj (u) du, for j = 1, . . . , m0 + 1,

where µj (·) is defined in (2.1). We use
∑

j1 6=j2 as a shorthand for the double sum∑
{j1, j2=1,...,m0+1, j1 6=j2} .

Theorem 2.3.1 Assume that {Vt,T} satisfies Definition 2.2.1. Under Assumption
2.2.1-2.2.2,

Γ̂ (k) ≥
1∫

0

c (u, k) du+ d∗ + oa.s. (1) , (2.12)

where d∗ = 2−1
∑

j1 6=j2 rj1rj2(µj2 − µj1)
2. Further, as k → ∞, Γ̂ (k) ≥ d∗ P-a.s. If in

addition it holds that µj (t/T ) = µj for j = 1, . . . , m0 + 1, then

Γ̂ (k) =

1∫
0

c (u, k) du+ d∗Sta + oa.s. (1) ,

where d∗Sta = 2−1
∑

j1 6=j2 rj1rj2 (µj2 − µj1)
2 and, as k →∞, Γ̂ (k) = d∗Sta + oa.s. (1).

Theorem 2.3.1 reveals interesting features. It is easier for illustrative purposes to

discuss the case µj (t/T ) = µj for j = 1, . . . , m0 + 1 for which the mean of Vt in each

regime is constant. The theorem states that Γ̂ (k) is asymptotically the sum of two

terms. The first is the true autocovariance of {Vt} at lag k. The second depends

on the difference in the mean of {Vt} across regimes. This term is always positive

and it increases in magnitude with the difference in the mean across regimes. Thus,

nonstationarity (here in the form of structural breaks in the mean) induces a positive

bias. In the next section, we shall discuss cases in which this bias arises as a finite-

sample problem and cases where the bias remains even asymptotically. The result that

Γ̂ (k) = d∗ + oa.s. (1) as k → ∞ implies that unaccounted nonstationarity generates
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long memory effects. The intuition is straightforward. In the previous section we

defined a long memory SLS process via the condition
∑∞

k=−∞ Γ (u, k)→∞ for some

u ∈ (0, 1). Similarly, a stationary long memory process implies
∑∞

k=−∞ Γ (k) → ∞.

The theorem shows that Γ̂ (k) exhibits a similar property. Thus, Γ̂ (k) decays more

slowly than for a corresponding short memory stationary process for small lags and

then approaches a strictly positive constant d∗ for large lags. A similar result for the

case µj (t/T ) = µj was discussed under stationarity in Mikosch and Stărică (2004)

to explain long memory in the volatility of financial returns. Their result is driven

by abrupt breaks in the second moments of a stationary process. Our result is more

general since it allows for general forms of nonstationarity and has many empirical

implications.

Theorem 2.3.1 suggests that any deviation from stationarity can generate a long

memory component d∗ or d∗Sta that leads to overestimation of the true autocovari-

ance. That is, either a stationary model with breaks or a locally stationary model or

a combination of the two can generate these issues. It follows that also the LRV is

overestimated. Since the LRV is used to normalized test statistics, this has impor-

tant consequences for many HAR inference tests that are characterized by deviations

from stationarity under the alternative hypotheses. These include tests for forecast

evaluation, tests and inference for structural change models, time-varying parameters

models and regime switching models. In the context of the linear regression model, Vt

corresponds to the least-squares residuals. Thus, Theorem 2.3.1 is relevant for regres-

sion models with mild forms of misspecification that do not undermine the conditions

for consistency of the least-squares estimator. In those cases, the misspecification

contaminates the residuals and so generates a long memory component. Examples

include exclusion of a relevant regressor uncorrelated with the included reggressors, or

inclusion of an irrelevant regressor. Also unaccounted nonlinearities and outliers can
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contaminate the mean of Vt and therefore contribute to d∗. The difference between d∗

and d∗Sta is that the latter is generated only by structural breaks or regime switching.

2.3.2 The Periodogram under Nonstationarity

Classical LRV estimators are weighted averages of periodogram ordinates around the

zero frequency. Thus, it is useful to study the behavior of the periodogram as the

frequency ω approaches zero. We now establish some properties of the asymptotic bias

of the periodogram under nonstationarity. We consider the Fourier frequencies ωl =

2πl/T ∈ (−π, π) for an integer l 6= 0 (mod T ) and exclude ωl = 0 for mathematical

convenience.

Assumption 2.3.1 (i) For each j = 1, . . . , m0 + 1 there exists a Bj ∈ R such that∣∣∣∣∣∣∣
m0+1∑
j=1

bTλ0jc∑
t=bTλ0j−1c+1

µj (t/T ) exp (−iωlt)

∣∣∣∣∣∣∣
2

≥

∣∣∣∣∣∣∣
m0+1∑
j=1

Bj

bTλ0jc∑
t=bTλ0j−1c+1

exp (−iωlt)

∣∣∣∣∣∣∣
2

,

ωl ∈ (−π, π) ,

where Bj1 6= Bj2 for j1 6= j2; (ii) |Γ (u, k)| = Cu,kk
−m for all u ∈ [0, 1] and all

k ≥ C3T
κ for some C3 < ∞ , Cu,k < ∞ (which depends on u and k), 0 < κ < 1/2,

and m > 2.

Part (i) is easily satisfied (e.g., the special case with µj (t/T ) = µj). Part (ii)

is satisfied if {Vt} is strong mixing with mixing parameters of size −2ν/ (ν − 1/2)

for some ν > 1 such that supt≥1 E |Vt|
4ν < ∞. This is less stringent than the size

condition sufficient for Assumption 2.2.2-(i).

Theorem 2.3.2 Assume that {Vt,T} satisfies Definition 2.2.1. Under Assumption
2.2.1-2.2.2 and 2.3.1,

E (IT (ωl)) = 2π

1∫
0

f (u, ωl) du (2.13)
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+
1

Tω2
l

∣∣∣∣∣
[
B1 −Bm0+1 −

m0∑
j=1

(Bj −Bj+1) exp
(
−2πilλ0

l

)]∣∣∣∣∣
2

+ o (1) .

Under Assumption 2.2.1-2.2.2 and 2.3.1-(ii), if µj (t/T ) = µj for each j = 1, . . . , m0+

1, then

E (IT (ωl)) = 2π

1∫
0

f (u, ωl) du

+
1

Tω2
l

∣∣∣∣∣
[
µj − µm0+1 −

m0∑
j=1

(µj − µj+1) exp
(
−2πilλ0

j

)]∣∣∣∣∣
2

+ o (1) .

In either case, if Tω2
l → 0 as T →∞ then E (IT (ωl))→∞ for many values in {ωl}

as ωl → 0.

The theorem suggests that for small frequencies ωl close to 0, the periodogram at-

tains very large values. This follows because the first term of (2.13) is bounded for all

frequencies ωj. Since B1, . . . , Bm0+1 are fixed, the order of the second term of (2.13)

is O((Tω2
j )
−1). Note that as ωl → 0 there are some values l for which the correspond-

ing term involving |·|2 on the right-hand side of (2.13) is equal to zero. In such cases,

E (IT (ωl)) ≥ 2π
∫ 1

0
f (u, ωl) du > 0. For other values of {l} as ωl → 0, the second

term of (2.13) diverges to infinity. Thus, considering the behavior of the sequence

{E (IT (ωl))} as ωl → 0, it generally takes arbitrary unbounded values except for some

ωl for which E (IT (ωl)) is bounded below by 2π
∫ 1

0
f (u, ωl) du > 0. This behavior is

consistent with long memory as discussed in the previous section. A SLS process

with long memory has an unbounded local spectral density f (u, ω) as ω → 0 for

some u ∈ [0, 1]. Since f (·, ·) cannot be negative, it follows that
∫ 1

0
f (u, ω) du is also

unbounded as ω → 0. Theorem 2.3.2 suggests that nonstationarity consisting of time-

varying first moment results in a periodogram sharing features of the periodogram

of a long memory series around the zero frequency. Since the periodogram behavior

around the zero frequency characterizes a long memory process, nonstationarity can
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generate long memory effects.

2.3.3 The Sample Local Autocovariance under Nonstationar-
ity

We now consider the behavior of ĉT (rnT/T, k) as defined in (2.11) for fixed k as well

as for k →∞. For notational simplicity we assume that k is even.

Theorem 2.3.3 Assume that {Vt,T} satisfies Definition 2.2.1, nT , n2,T → ∞ with
nT/T → 0 and nT/n2,T → 0. Under Assumption 2.2.1-2.2.2,

(i) for any u ∈ (0, 1) such that
T 0
j /∈ [bTuc+ k/2− n2,T/2 + 1, . . . , bTuc+ k/2 + n2,T/2]

for all j = 1, . . . , m0, ĉT (u, k) = c (u, k) + oP (1);
(ii) for any u ∈ (0, 1) such that

T 0
j ∈ [bTuc+ k/2− n2,T/2 + 1, . . . , bTuc+ k/2 + n2,T/2]

for some j = 1, . . . , m0 we have two sub-cases: (a) if (T 0
j − (bTuc + k/2− n2,T/2 +

1))/n2,T → γ or ((bTuc+ k/2 + n2,T/2 + 1)− T 0
j )/n2,T → γ with γ ∈ (0, 1), then

ĉT (u, k) ≥ γc
(
λ0
j , k
)

+ (1− γ) c (u, k) + γ (1− γ)
(
µj
(
λ0
j

)
− µj+1 (u)

)2
+ oP (1) .

(b) if (T 0
j − (bTuc+ k/2− n2,T/2 + 1))/n2,T → 0 or ((bTuc+ k/2 + n2,T/2 + 1) −

T 0
j )/n2,T → 0, then ĉT (u, k) = c (u, k) + o (1).
Further, if there exists an r = 1, . . . , bT/nT c such that there exists a j = 1, . . . , m0

with T 0
j ∈ [rnT + k/2− n2,T/2 + 1, . . . , rnT + k/2 + n2,T/2] satisfying (ii-a), then as

k → ∞ Γ̂DK (k) ≥ d∗T P-a.s. where d∗T = (nT/T ) γ (1− γ) (µj(λ
0
j) − µj+1 (u))2 > 0

and d∗T → 0 as T →∞.

The theorem shows that the behavior of ĉT (u, k) depends on whether a change-

point in mean is present or not, and if present whether it is close enough to bTuc

or not. For a given u ∈ (0, 1) and k ∈ Z, if the condition of part (i) of the the-

orem holds, then ĉT (u, k) is consistent for cov(VbTucVbTuc−k) = c (u, k) + O (T−1)

[see Casini (2019)]. If a change-point falls close to either boundary of the window

[bTuc + k/2 − n2,T/2 + 1, . . . , bTuc + k/2 +n2,T/2], as specified in case (ii-b), then

ĉT (u, k) remains consistent. The only case in which a non-negligible bias arises is
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when the change-point falls in the neighborhood around bTuc sufficiently far from

either boundary. This represents case (ii-a), for which a biased estimate results.

However, the bias vanishes asymptotically. Since Γ̂DK (k) is an average of ĉT (rnT , k)

over blocks r = 1, . . . , bT/nT c, if case (ii-a) holds then Γ̂DK (k) ≥ d∗T as k → ∞ but

d∗T → 0 as T →∞. Thus, comparing this result with Theorem 2.3.1, in practice the

long memory effects are unlikely to occur when using Γ̂DK (k) instead of Γ̂ (k). Fur-

thermore, one can avoid altogether this issue for Γ̂DK (k) by appropriately choosing

the blocks r = 1, . . . , bT/nT c. A procedure was proposed in Casini (2019) using the

methods developed in Casini and Perron (2020a). Another way to see that Γ̂DK (k)

suffers less from these problems is to look at the form of ĉT (rnT , k). Usually one

would use a kernel or a taper to assign more weight to observations that are close to

bTuc. This automatically would reduce the contamination which arises from mixing

observations belonging to two different regimes because the shorter regime would be

down-weighted by the kernel or taper.

2.3.4 The Local Periodogram under Nonstationarity

We now study the asymptotic properties of IL,T (u, ω) as ω → 0 for u ∈ [0, 1]. We

consider the Fourier frequencies ωl = 2πl/nT ∈ (−π, π) for an integer l 6= 0 (mod

nT ). We need the following high-level conditions.

Assumption 2.3.2 (i) For each u ∈ [0, 1] with
T 0
j ∈ [bTuc − nT/2 + 1, . . . , bTuc+ nT/2] there exist Bj ∈ R, j = 1, . . . , m0 with
Bj1 6= Bj2 for j1 6= j2 such that∣∣∣∣∣

nT−1∑
s=0

µ ((bTuc − nT/2 + s+ 1) /T ) exp (−iωls)

∣∣∣∣∣
2

≥∣∣∣∣∣∣Bj

T 0
j −(bTuc−nT /2+1)∑

s=0

exp (−iωls) +Bj+1

nT−1∑
s=T 0

j −(bTuc−nT /2)

exp (−iωls)

∣∣∣∣∣∣
2

.
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(ii) supu∈[0, 1] (∂2/∂u2) f (u, ω) is continuous in ω.

Theorem 2.3.4 Assume that {Vt,T} satisfies Definition 2.2.1 and that nT →∞ with
nT/T → 0. Under Assumption 2.2.1-2.2.2, 2.3.1-(ii) and 2.3.2,

(i) for any u ∈ (0, 1) such that T 0
j /∈ [bTuc − nT/2 + 1, . . . , bTuc+ nT/2] for all

j = 1, . . . , m0, E (IL,T (u, ωl)) ≥ f (u, ωl) as ωl → 0;
(ii) for any u ∈ (0, 1) such that T 0

j ∈ [bTuc − nT/2 + 1, . . . , bTuc+ nT/2] for
some j = 1, . . . , m0 we have two sub-cases: (a) if (T 0

j − (bTuc − nT/2 + 1))/nT → γ

or (T 0
j − (bTuc+ nT/2 + 1)) /nT → γ with γ ∈ (0, 1) , and nTω2

l → 0 as T → ∞,
then E (IL,T (u, ω)) → ∞ for many values in the sequence {ωl} as ωl → 0; (b) if
(T 0

j − (bTuc − nT/2 + 1))/nT → 0 or (T 0
j − (bTuc + nT/2 + 1))/nT → 0, then

E (IL,T (u, ωl)) ≥ f (u, ωl) as ωl → 0.

It is useful to compare Theorem 2.3.4 with Theorem 2.3.2. Unlike the peri-

odogram, the asymptotic behavior of the local periodogram as ωl → 0 depends on

the vicinity of u to λ0
j (j = 1, . . . , m0). Since IL,T (u, ωl) uses observations in the

window [bTuc − nT/2 + 1, . . . , bTuc + nT/2], if no discontinuity in the mean occurs

in this window then IL,T (u, ωl) is asymptotically unbiased for the spectral density

f (u, ωl) and therefore bounded below by it. More complex is its behavior if some T 0
j

falls in the window [bTuc − nT/2 + 1, . . . , bTuc+ nT/2]. The theorem shows that if

T 0
j is close to the boundary, as indicated in case (ii-b), then IL,T (u, ωl) is bounded

below by f (u, ωl), similarly to case (i). If instead T 0
j falls sufficiently close to the

mid-point bTuc , as indicated in case (ii-a), then E (IL,T (u, ω))→∞ for many values

in the sequence {ωl} as ωl → 0 provided it satisfies nTω2
l → 0 as T →∞. Hence, un-

less Tλ0
j is close to bTuc , the local periodogram IL,T (u, ωl) behaves very differently

from the periodogram IT (ωl). Accordingly, nonstationarity is unlikely to generate

long memory effects if one uses the local periodogram. Further, if one uses prelim-

inary inference procedures for the detection and estimation of the discontinuities in

the spectrum and for the estimation of their locations, then one can construct the

window efficiently and avoid T 0
j being too close to bTuc . Such procedures have been

proposed recently in Casini and Perron (2020a).
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2.4 Consequences for HAR Inference

In this section we discuss the implications of the theoretical results from Section 2.3

for inference in the context of potentially autocorrelated data (i.e., HAR inference).

We separate the discussion into two parts. We first discuss HAR inference tests for

which the issues of low frequency contamination arise as a finite-sample problem.

Then we discuss HAR inference tests for which the results presented in the previous

section apply even asymptotically. We begin with a review of HAR inference methods

and their connection to the estimates considered above.

2.4.1 HAR Inference Methods

There are two main approaches for HAR inference which differ on whether the long-

run variance estimator is consistent or not. The classical approach relies on consis-

tency which results in HAC standard errors [cf. Newey and West (1987, 1994) and

Andrews (1991)]. Classical HAC standard errors require estimation of the long-run

variance defined as J , limT→∞JT where JT = T−1
∑T

s=1

∑T
t=1 E(VsV

′
t ). The form of

{Vt} depends on the specific problem under study. For example, for a t-test on a re-

gression coefficient in the linear model yt = xtβ0 +et (t = 1, . . . , T ) we have Vt = xtet.

Classical HAC estimators take the following form,

ĴCla,T ,
T−1∑

k=−T+1

K1 (b1,Tk) Γ̂ (k),

where Γ̂ (k) is given in (2.10) with V̂t = xtêt where {êt} are the least-squares residuals,

K1 (·) is a real-valued kernel and b1,T is bandwidth parameter. One can use the the

Bartlett kernel, advocated by Newey and West (1987), or the quadratic spectral kernel

as suggested by Andrews (1991), or any other kernel suggested in the literature,

see e.g. Ng (1996). Under b1,T → 0 at an appropriate rate, we have ĴCla,T
P→ J.
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Hence, equipped with ĴCla,T , HAR inference is standard because HAR tests follow

asymptotically standard distributions. This is the simplest approach.

It was shown that classical HAC standard errors can result in oversized tests when

there is substantial temporal dependence [e.g., Andrews (1991)]. This stimulated a

second approach based on inconsistent long-run variance estimators that keep the

bandwidth at some fixed fraction of the sample size [cf. Kiefer et al. (2000)], e.g.,

using all autocovariances, so that ĴKVB,T , T−1
∑T

t=1

∑T
s=1 (1− |t− s| /T )VtVs which

is equivalent to the Newey-West estimator with b1,T = T−1, in which case ĴKVB,T

is an inconsistent estimate of J . ĴKVB,T is essentially a weighted average of the

periodogram ordinates with weights that do not spread out as T → ∞. Because of

the inconsistency, inference is nonstandard and HAR tests do not have asymptotically

standard distributions. The validity of fixed-b HAR inference rests on stationarity.

Many authors have considered modifications of ĴKVB,T . However, the one that leads

to HAR inference tests that are least oversized is the original ĴKVB,T [see Casini and

Perron (2020e)]. Here for comparison we also report the equally weighted cosine

(EWC) estimator of Lazarus et al. (2017). This is an orthogonal series estimators

that use large-bandwidths,

ĴEWC,T , B−1

B∑
j=1

Λ2
j , where Λj =

√
2

T

T∑
t=1

Vt cos

(
πj

(
t− 1/2

T

))

with B some fixed integer. Assuming B satisfies some conditions, under fixed-b

asymptotics a t-test normalized by ĴEWC,T follows a tB distribution where B is the

degree of freedom.

Recently, a new HAC estimator was proposed in Casini (2019). Motivated by

the signs of low frequency contamination of existing long-run variance estimators, he
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proposed a double kernel HAC (DK-HAC) estimator. This is defined as

ĴDK,T ,
T−1∑

k=−T+1

K1 (b1,Tk) Γ̂DK (k),

where b1,T is a bandwidth sequence and Γ̂DK (k) defined in Section 2.3 with ĉT (·, k)

replaced by

ĉDK,T (rnT/T, k) = (Tb2,T )−1
T∑

s=|k|+1

K2

(
(rnT − (s− |k|/2)) /T

b2,T

)
VsV s−|k|,

with K2 a real-valued kernel and b2,T a bandwidth sequence. Note that ĉDK,T and

ĉT are asymptotically equivalent and the results of Section 2.3 continue to hold for

ĉDK,T . More precisely, ĉT is a special case of ĉDK,T with K2 being a rectangular

kernel and n2,T = Tb2,T . This approach falls in the first category of standard infer-

ence ĴDK,T
P→ J and HAR tests normalized by ĴDK,T follows standard distribution

asymptotically. Additionally, Casini and Perron (2020e) proposed prewhitened DK-

HAC (Ĵpw,DK,T ) estimator that improves the size control of HAR tests normalized

by ĴDK,T . The estimator Ĵpw,DK,T applies a prewhitening transformation to the data

before constructing ĴDK,T and enjoys the same asymptotic properties as the non-

prewhitened DK-HAC estimator ĴDK,T . Due to their ability to more flexibly account

for nonstationarity, Casini (2019) and Casini and Perron (2020e) demonstrate that

ĴDK,T and Ĵpw,DK,T have superior power properties relative to the other estimators

mentioned above. In terms of size, Ĵpw,DK,T performs better than ĴCla,T and ĴDK,T ,

and is competitive with ĴKVB,T when the latter works well.4 We include ĴDK,T and

Ĵpw,DK,T in our simulations below. We report the results only for the DK-HAC esti-

mators that do not use the pre-test for discontinuities in the spectrum [cf. Casini and

4There are some empirical cases where ĴKVB,T does not work well in terms of both size and
power. In those cases our method works well. For the cases where ĴKVB,T leads to tests that have
good size, our method is competitive.
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Perron (2020a)] because we do not want the results to be affected by the pre-test.

Since the pre-test improves the results, what we report here are the worst-case results

for the DK-HAC estimators.

2.4.2 Small-Sample Low Frequency Contamination

We now discuss situations in which the low frequency contamination arises as a small-

sample problem. These comprises situations where d∗ ≈ 0 asymptotically but a

consistent estimate of d∗ satisfies d̂∗ > 0 in finite-sample. In these situations, no bias

due to long memory effects should occur asymptotically but can have an effect with

a small sample-size. We begin with a simple model which involves a zero-mean SLS

process with changes in persistence. The combination of nonstationarity and serial

dependence generates long memory effects because d̂∗ > 0.

We specify {Vt} as a SLS process given by a two-regimes zero-mean time-varying

AR(1), labeled model M1. That is, Vt = 0.9Vt−1 + ut, ut ∼ i.i.d.N (0, 1) for t =

1, . . . , T 0
1 with T 0

1 = Tλ0
1, and Vt = ρ (t/T )Vt−1+ut, ρ (t/T ) = 0.3 (cos (1.5− cos (t/T ))),

ut ∼ i.i.d.N (0, 0.5) for t = T 0
1 + 1, . . . , T . Note that ρ (·) varies between 0.172

and 0.263. We set λ0
1 = 0.1 and T = 200. A plot of {Vt} is reported in Figure

2·1. Note that E (Vt) = 0 for all t and so d∗ = d∗Sta = 0. However, if we re-

place µ1 and µ2 by V 1 and V 2, respectively, where V 1 = (T 0
1 )
−1∑T 0

1
t=1 Vt = 1.27 and

V 2 = (T − T 0
1 )
−1∑T

t=T 0
1 +1 Vt = −0.03, then our estimate d̂∗ of d∗ would be different

from zero and can generate a finite-sample bias which can give rise to effects akin to

long memory.

We first look at the behavior of the sample autocovariance Γ̂ (k). We compare

it with the theoretical autocovariance ΓT (k) = T−1
∑T

t=k+1 E (VtVt−k). The latter is

equal to ΓT (k) ≈ λ0
10.9k/ (1− 0.81) +

∫ 1

λ01
c (u, k) du. We can compute ΓT (k) numer-
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ically using,

c (u, k) =

π∫
−π

eikωf (u, ω) dω

=

π∫
−π

eikω
0.5

2π

(
1 + ρ (u)2 − 2ρ (u) cos (ω)

)−1
dω.

Table 2.1 reports ΓT (k) , Γ̂ (k), Γ̂ (k) − d̂∗ and Γ̂DK (k) for several values of k. It is

known that the autocovariance estimates are quite noisy in general. However, it is still

possible to discern some patterns. For all k, Γ̂ (k) largely overestimates ΓT (k). This

is consistent with Theorem 2.3.1 which suggests that this is due to the bias d∗ > 0.

This is also supported by the bias-corrected estimate Γ̂ (k)− d̂∗ which is accurate in

approximating ΓT (k) . This is especially so for small k. In general, Theorem 2.3.1

provides excellent approximations confirming that Γ̂ (k) suffers from low frequency

contaminations. Theorem 2.3.3 suggests that this issue should not occur for Γ̂DK (k).

In fact, Γ̂DK (k) is more accurate than Γ̂ (k) (except for k = 0). For k ≥ 20 the form

of ΓT (k) is different, because T 0
1 = 20, and is simply given by the autocovariance of

Vt for t ≥ 21 (i.e., the second regime). Thus, ΓT (k)≈ 0 for k ≥ 20 whereas Γ̂ (k)

is often small but positive. In contrast, Γ̂DK (k) ≈ 0 for k ≥ 20 thereby confirming

that Γ̂DK (k) does not suffer from low frequency contamination. These results are

confirmed in Figure 2·2 which plots the autocorrelation function (ACF) of V1,t = Vt

(t = 1, . . . , 20), V2,t = Vt (t = 21, . . . , 200) and Vt (t = 1, . . . , 200). Although the

ACF of Vt should be a weighted average of the ACF of V1,t and of V2,t, the ACF of Vt

in the bottom panel shows much higher persistence than either ACF in the top (V1,t)

and mid (V2,t) panels. This is odd since V1,t is a highly persistent series. Further,

it shows that the dependence is essentially always positive. This is also odd. These

features are consistent with our theory which suggests that nonstationarity makes Vt

appear more persistent and that the bias is positive. Other examples involve Vt given
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by the least-squares regression residuals under mild forms of misspecification that

do not undermine the conditions for consistency of the least-squares estimator. For

example, exclusion of a relevant regressor uncorrelated with the included reggressors,

or inclusion of an irrelevant regressor. Another example involves Vt obtained after

applying some de-trending techniques where the fitted model is not correctly specified

(e.g., the data follow a nonlinear trend but one removes a linear trend). A final

example is the case of outliers because outliers influence the mean of Vt and therefore

d∗.

What is especially relevant is whether this evidence of long memory feature has

any consequence for HAR inference. We obtain the empirical size and power for a t-

test on the intercept normalized by several LRV estimators for the model yt = δ+ Vt

with δ = 0 under the null and δ > 0 under the alternative hypothesis. In ad-

dition to model M1, we consider other models: M2 involves a locally stationary

Vt = ρ (t/T )Vt−1 + ut, ρ (t/T ) = 0.7(cos (1.5t/T )), ut ∼ i.i.d.N (0, 0.5); M3 is

the same as M2 with outliers Vt ∼ Uniform (c, 10c) for t = T/4, T/2, 3T/4 where

c = −1/(
√

2erfc−1 (3/2))med (|V −med (V )|) where erfc−1 is the inverse complemen-

tary error function, med (·) is the median and V = (Vt)
T
t=1;

5 M4 involves a locally

stationary model with periods of strong persistence where Vt = ρ (t/T )Vt−1 + ut,

ρ (t/T ) = 0.95(cos (1.5t/T )), ut ∼ i.i.d.N (0, 0.4). Note that ρ (·) varies between 0.7

and 0.05 in M2-M3 and between 0.95 and 0.07 in M4.

We consider the DK-HAC estimators with and without prewhitening (ĴDK,T ,

ĴDK,pw,SLS,T , ĴDK,pw,SLS,µ,T ) of Casini (2019) and Casini and Perron (2020e), respec-

tively; Andrews’s (1991) HAC estimator with and without the prewhitening procedure

of Andrews and Monahan (1992); Newey and West’s (1987) HAC estimator with the

usual rule to select the number of lags (i.e., b1,T = 1/(0.75T 1/3); Newey-West with the
5We follow the literature on outlier detection for continuous functions and use the median absolute

deviation to generate the outlier. This notion used in this literature does not deem a value smaller
than c as an outlier.
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fixed-b method of Kiefer et al. (2000) (labeled KVB); and the Empirical Weighted

Cosine (EWC) of Lazarus et al. (2018). For the DK-HAC estimators we use the

data-dependent methods for the bandwidths, kernels and choice of nT as proposed in

Casini (2019) and Casini and Perron (2020e), which are optimal under mean-squared

error (MSE).6 Let V̂t denote the least-squares residual based on δ̂ where the latter is

the least-squares estimate of δ. We set b̂1,T = 0.6828(φ̂ (2)T b̂2,T )−1/5 where

φ̂ (2) =

18

nT
T

bT/n3,Tc−1∑
j=0

(σ̂ ((jnT + 1) /T ) â1 ((jnT + 1) /T ))2

(1− â1 ((jnT + 1) /T ))4


2 /

nT
T

bT/n3,Tc−1∑
j=0

(σ̂ ((jnT + 1) /T ))2

(1− â1 ((jnT + 1) /T ))2


2

,

with

â1 (u) =

∑t
j=t−nT+1 V̂jV̂j−1∑t
j=t−nT+1(V̂j−1)2

, σ̂ (u) =

(
t∑

j=t−nT+1

(V̂j − â1 (u) V̂j−1)2

)1/2

;

and

b̂2,T = (nT/T )

bT/nT c−1∑
r=1

b̂2,T (rnT/T ) , b̂2,T (u) = 1.6786(D̂1 (u))−1/5(D̂2 (u))1/5T−1/5

where D̂2 (u) , 2
∑bT 4/25c

l=−bT 4/25c ĉDK,T (u, l)2 and

D̂1 (u) ,

([Sω]−1
∑
s∈Sω

[
3

π
(1 + 0.8(cos 1.5 + cos 4πu) exp(−iωs))−4(0.8(−4π sin(4πu))) exp(−iωs)

− 1

π
|1 + 0.8(cos 1.5 + cos 4πu) exp(−iωs)|−3 (0.8(−16π2 cos(4πu))) exp(−iωs)])2,

with [Sω] being the cardinality of Sω and ωs+1 > ωs, ω1 = −π, ω[Sω ] = π. We set

6See Belotti et al. (2021) for an alternative data-dependent method and for some comparisons.
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nT = T 0.6, Sω = {−π, −3, −2, −1, 0, 1, 2, 3, π}. K1 (·) is the QS kernel andK2 (x) =

6x (1− x) for x ∈ [0, 1] .

Table 2.2-2.5 report the results. The t-test normalized by Newey and West’s

(1987) and Andrews’s (1991) prewhitened HAC estimators are excessively oversized.7

Andrews’s (1991) HAC estimator is slightly undersized while KVB’s fixed-b and EWC

are severely undersized.8 These outcomes arise from nonstationarity and is consistent

with our theoretical analysis of Γ̂ (k). Since Γ̂ (k) > 0 for many large lags k, the

KVB’s fixed-b and EWC’s estimators that include many lags (i.e., long bandwidths)

are inflated and reduce the magnitude of the test statistic even under the null hy-

potheses. For the t-test on the intercept, ĴDK,T can be oversized when there is strong

dependence, as shown in Table 2.2. However, the prewhitened DK-HAC estimators

ĴDK,pw,SLS,T and ĴDK,pw,SLS,µ,T show very accurate rejection rates. Overall, inspection

of the size properties suggests that the DK-HAC estimators do not suffer from low

frequency contamination which, in contrast, affects the LRV estimators that rely on

the full sample estimates Γ̂ (k) or equivalently on IT (ω) (e.g., the EWC). The same

issue also affects the power properties of the tests. The KVB’s fixed-b and EWC’s

estimators suffer from relatively large power losses. The power of Newey and West’s

and Andrews’s (1991) prewhitened HAC is not comparable because they are signifi-
7This is not in contradiction with our theoretical results. The prewhitening of Andrews and

Monahan (1992) is unstable when there is nonstationarity as shown by Casini and Perron (2020e).
The reason is that there is a bias both in the whitening and the recoloring stages. The biases have
opposite signs so that here the underestimation of the LRV dominates. Newey-West uses a fixed
rule for determining the number of lags. The number of included lags is small. This estimator is
known to be largely oversized when the data are stationary with high dependence. Our results say
that the included sample autocovariances may be inflated if there is nonstationarity. However, given
that the fixed rule selects a small number of lags then nonstationarity results in a smaller oversize
problem.

8In general, Andrews’s (1991) HAC estimator leads to tests that are oversized when the data are
stationary with strong dependence. Here nonstationarity reduces the oversize problem. It follows
a similar argument as for the Newey-West estimator even though Andrews’s (1991) HAC estimator
uses a data-dependent method for the selection of the number of lags. Thus, it selects more lags than
the ones suggested by the fixed rule. Consequently, more sample autocovariances are overestimated
and this helps to reduce its oversize problem.
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cantly oversized. The DK-HAC estimators have the best power, the second best being

Andrews’s (1991) HAC estimator.

Turning to M2, Table 2.3 shows even larger size distortions and power losses for

KVB’s fixed-b and EWC’s estimators. All the DK-HAC estimators display accurate

size control and good power. Newey and West’s and Andrews’s (1991) prewhitened

HAC estimators are again excessively oversized. Andrews’s (1991) HAC estimator

sacrifices some power relative to the DK-HAC even though the margin is not high.

For model M3-M4, Table 2.4-2.5 show that Andrews’s (1991) HAC estimator also

suffers from strong size distortions and power losses, thus sharing the same issues

as KVB’s fixed-b and EWC’s estimators. In model M4, even Newey and West’s and

Andrews’s (1991) prewhitened HAC estimators are undersized and have relatively low

power. The DK-HAC estimators perform best both in terms of size and power. Table

2.2-2.5 suggest that the low frequency contamination can equally arise from different

forms of nonstationarity. Overall, the evidence for quite substantial underejection

and power losses in model M1-M4 for the existing LRV estimators is consistent with

our theoretical results. These represent situations where the contamination occurs as

a small-sample problem. In the next section, we show that when the contamination

holds asymptotically then the size distortions and power problems can be even more

severe.

2.4.3 General Low Frequency Contamination

We now discuss statistical environments and HAR inference tests for which the low

frequency contamination results of Section 2.3 hold even asymptotically. This means

that d∗ > 0 for all T and as T → ∞. This comprises the class of HAR tests that

admit a nonstationary alternative hypotheses. This class is very large and include

most HAR-based tests. Examples include tests for forecast evaluation [e.g., Casini

(2018), Diebold and Mariano (1995), Giacomini and Rossi (2009, 2010), Giacomini
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and White (2006), Perron and Yamamoto (2019) and West (1996)], tests for structural

changes [e.g., Andrews (1993), Bai and Perron (1998), Casini and Perron (2020c,

2020d, 2020b), Elliott and Müller (2007), and Qu and Perron (2007)], tests for time-

varying parameters [e.g., Cai (2007) and Chen and Hong (2012)], tests for regime

switching [e.g., Hamilton (1989) and Qu and Zhuo (2021)] and many others.9 Here

we consider the Diebold-Mariano test for the sake of illustration and remark that

similar issues apply to the other HAR tests mentioned above.

The Diebold-Mariano test statistic is defined as tDM , T
1/2
n dL/

√
ĴdL,T , where

dL is the average of the loss differentials between two competing forecast models,

ĴdL,T is an estimate of the LRV of the the loss differential series and Tn is the num-

ber of observations in the out-of-sample. We use the quadratic loss. We consider

an out-of-sample forecasting exercise with a fixed forecasting scheme where, given

a sample of T observations, 0.5T observations are used for the in-sample and the

remaining half is used for prediction [see Perron and Yamamoto (2019) for recom-

mendations on using a fixed scheme in the presence of breaks]. The DGP under

the null hypotheses is given by yt = 1 + β0x
(0)
t−1 + et where x(0)

t−1 ∼ i.i.d.N (1, 1),

et = 0.3et−1 + ut with ut ∼ i.i.d.N (0, 1), and we set β0 = 1 and T = 400. The

two competing models both involve an intercept but differ on the predictor used in

place of x(0)
t . The first forecast model uses x(1)

t while the second uses x(2)
t where

x
(1)
t and x

(2)
t are independent i.i.d.N (1, 1) sequences, both independent from x

(0)
t .

9In some cases the low frequency contamination could be reduced if one uses a test that accounts
properly for the form of nonstationary under the alternative hypotheses. For example, consider
testing for breaks. Suppose that there are two breaks and one first uses a test for one break versus
no break and then a test of two breaks versus one break if the first test rejects the null hypotheses of
no break, and so on. The test in the first step would suffer from low frequency contamination since
under the alternative of one break the estimate of the LRV is contaminated by the presence of the
second break. Thus, one would conclude that there is no break. In contrast, if one uses a test that
allows for an unknown number of breaks given some upper bound [i.e., the UDmax test of Bai and
Perron (1998)], the contamination can be reduced because this test would account for the correct
form of nonstationarity. However, if instead of two breaks the true model involves other forms of
nonstationarity (e.g., slowly-varying parameters, smooth breaks, etc.) then also the UDmax test
would suffer from low frequency contamination.
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Each forecast model generates a sequence of τ (= 1)-step ahead out-of-sample losses

L
(j)
t (j = 1, 2) for t = T/2 + 1, . . . , T − τ. Then dt , L

(2)
t − L

(1)
t denotes the loss

differential at time t. The Diebold-Mariano test rejects the null hypotheses of equal

predictive ability when dL is sufficiently far from zero. Under the alternative hypoth-

esis, the two competing forecast models are as follows: the first uses x(1)
t = x

(0)
t +uX1,t

where uX1,t ∼ i.i.d.N (0, 1) while the second uses x(2)
t = x

(0)
t + 0.2zt + 2uX2,t

for t ∈ [1, . . . , 3T/4− 1, 3T/4 + 21, . . . T ] and x
(2)
t = δ (t/T ) + 0.2zt + 2uX2,t for

t = 3T/4, . . . , 3T/4 + 20 with uX2,t ∼ i.i.d.N (0, 1), where zt has the same distribu-

tion as x(0)
t .

We consider four specifications for δ (·) . In the first x(2)
t is subject to an abrupt

break in the mean δ (t/T ) = δ > 0, in the second x(2)
t is locally stationary with time-

varying mean δ (t/T ) = δ (sin (t/T − 3/4)), in the third specification x
(2)
t = x

(0)
t +

0.2zt+2uX2,t for t ∈ [1, . . . , T/2−30, T/2 +21, . . . T ] and x(2)
t = δ (t/T )+0.2zt+2uX2,t

for t = T/2−30, . . . , T/2 + 20 with δ (t/T ) = δ(sin(t/T −1/2 −30/T )), in the fourth

x
(2)
t is the same as in the second with in addition two outliers x(2)

t ∼ Uniform (|c| , 5 |c|)

for t = 6T/10, 8T/10 where c = −1/
(√

2erfc−1 (3/2)
)

med(|x(2)−med
(
x(2)
)
|) where

x(2) =
(
x

(2)
t

)T
t=1

. That is, in the second model x(2)
t is locally stationary only in the out-

of-sample, in the third it is locally stationary in both the in-sample and out-of sample

and in the fourth model x(2)
t has two outliers in the out-of-sample. The location of

the outliers is irrelevant for the results; they can also occur in the in-sample.

Table 2.6 reports the size and the power for all models. We begin with the case

δ (t/T ) = δ > 0 (top panel). The size of the test using the DK-HAC estimators is

accurate while the test using other LRV estimators are oversized with the exception

of the KVB’s fixed-b method for which the rejection rate is equal to zero. The HAR

tests using existing LRV estimators have lower power relative to that obtained with

the DK-HAC estimators for small values of δ. When δ increases the tests standardized
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by the HAC estimators of Andrews (1991) and Newey and West (1987), and by the

KVB’s fixed-b and EWC LRV estimators display non-monotonic power gradually

converging to zero. In contrast, when using the DK-HAC estimators the test has

monotonic power that reaches and maintains unit power. The results for the other

models are even stronger. In general, except for the DK-HAC estimators, all other

tests display serious power problems. Thus, either form of nonstationarity or outliers

leads to similar implications, consistent with our theoretical results.

In order to further assess the theoretical results from Section 2.3, Figure 2·3-

2·5 report the plots of dt, its sample autocovariances and its periodogram, for δ =

1, 2, 5, respectively. We only consider the case δt = δ > 0. The other cases lead

to the same conclusions. For δ = 1, Figure 2·3 (mid panel) shows that Γ̂ (k) decays

slowly. As δ increases, Figure 2·4-2·5 (mid panels), Γ̂ (k) decays even more slowly at

a rate far from the typical exponential decay of short memory processes. It shows

a power-like decay that is statistically significant at the 10% significance level up

to lag 80. This suggests evidence of long memory. However, the data are short

memory with small temporal dependence. What is generating the spurious long

memory effect is the nonstationarity present under the alternative hypotheses. This

is visible in the top panels which present plots of dt for the first specification. The

shift in the mean of dt for t = 3T/4, . . . , 3T/4+20 is responsible for the long memory

effect. This corresponds to the second term of (2.12) in Theorem 2.3.1. The negative

autocovariances follow from the behavior of dt for observations t 6= 3T/4, . . . , 3T/4 +

20. That is, a positive dt at time t corresponds to x(2)
t−1 predicting yt worse than what

x
(1)
t−1 does and this is likely to be followed by x(2)

t predicting yt+1 better than what

x
(1)
t does. Thus, the overall behavior of the sample autocovariance is as predicted by

Theorem 2.3.1. For small lags, Γ̂ (k) shows a power-like decay and it is positive. As

k increases to medium lags, the autocovariances turn negative. However, d∗ in (2.12)
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makes these autocovariances closer to zero since d∗ > 0. For large k, Γ̂ (k) approaches

zero. Next, we move to the bottom panels which plot the periodogram of {dt}. It is

unbounded at frequencies close to ω = 0 as predicted by Theorem 2.3.2 and as would

occur if long memory was present. It also explains why the Diebold-Mariano test

normalized by Newey-West’s, Andrews’, KVB’s fixed-b and EWC’s LRV estimators

have serious power problems. These LRV estimators are inflated and consequently

the tests lose power. The figures show that as we raise δ the more severe these issues

and the power losses so that the power eventually reaches zero. This is consistent

with our theory since d∗ is increasing in δ (cf. d∗ ≈ 0.1 · 0.9δ2).

We now verify the results about the local sample autocovariance ĉT (u, k) and the

corresponding local periodogram from Theorem 2.3.3-2.3.4. We set n2,T = T 0.6 = 36

following the MSE criterion of Casini (2019). We consider (i) u = 236/T , (ii-a)

u = T 0
1 /T = 3/4 and (ii-b) u = 264/T . Note that cases (i)-(ii-b) correspond to parts

(i)-(ii-b) in Theorem 2.3.3-2.3.4. We consider δ = 1, 2 and 5. According to Thereon

2.3.3-2.3.4, we should expect long memory features only for case (ii-a). Figure 2·6-

2·11 confirm this. The results pertaining to case (ii-a) are plotted in the middle

panels. Figures 2·6, 2·8 and 2·10 show that the local autocovariance displays slow

decay similar to the pattern discussed above for the sample autocovariance Γ̂ (k) and

that this problem becomes more severe as δ increases. Such long memory features

also appear for IL (3/4, ω). The middle panels in Figure 2·7, 2·9 and 2·11 show that

the local periodogram at u = 3/4 and at a frequency close to ω = 0 are extremely

large. The latter result is consistent with Theorem 2.3.4-(ii-a) which suggests that

IL,T (3/4, ω) → ∞ as ω → 0. For case (i) and (ii-b) both figures show that the

local autocovariance and the local periodogram do not display long memory features.

Indeed, they have forms similar to those of a short memory process, a result consistent

with Theorem 2.3.3-2.3.4 also for cases (i) and (ii-b).
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It is interesting to explain why HAR inference based on the DK-HAC estimators

does not suffer from the low frequency contamination even if case (ii-a) occurs. Note

that the DK-HAC estimator computes an average of the local spectral density over

time blocks. If it happens that one of these blocks contains a discontinuity in the

spectrum, then as in case (ii-a) some bias would arise for the local spectral den-

sity estimate corresponding to that block. However, by virtue of the time-averaging

over blocks that bias becomes negligible. Hence, nonparametric smoothing over time

asymptotically cancels the bias, so that inference based on the DK-HAC estimators

is robust to nonstationarity.

2.4.4 Discussion

In summary, the sample autocovariance and the periodogram are sensitive to nonsta-

tionarity in that they may display characteristics typical of long memory even if the

data are short memory. We refer to this phenomenon as low frequency contamination

induced by unaccounted nonstationarity. In some situations these issues only imply a

small-sample problem [cf. Section 2.4.2]. In others, they have an effect even asymp-

totically. In either case, the theory in Section 2.3 provides useful guidance about the

properties of the sample autocovariance and the periodogram in finite-samples. It

also provides accurate approximations for misspecified models or models with out-

liers as discussed above. Since LRV estimates are direct inputs for inference methods

in the context of potentially autocorrelated data, our theory offers new insights for

the properties of HAR inference tests. The use of HAC standard errors has become

the standard practice, and recent theoretical developments in HAR inference advo-

cated the use of fixed-b or long bandwidth LRV estimators on the basis that they

offer better size control when there is strong dependence in the data. Our results

suggest that care is needed before applying such methods because they are highly

sensitive to effects akin to long memory arising from nonstationarity. The concern is



85

then that the use of long bandwidths leads to overestimation of the true LRV due to

low frequency contamination. Consequently, HAR tests can lose power dramatically,

a problem that occurs also for the classical HAC estimators, though to a lesser extent

since they use a smaller number of sample autocovariances.

Our theory also suggests a solution to this problem. This entails the use of non-

parametric smoothing over time which avoids combining observations that belong

to different regimes. This accounts for nonstationarity and prevents spurious long

memory effects. An exception where some bias may arise for ĉT (u, k) and IT (u, ω)

is when a discontinuity in the spectrum falls close to bTuc . However, this problem is

simple to address because one can use a pre-test for discontinuities in the spectrum

and exclude those u ∈ (0, 1) that are close to a discontinuity in the spectrum. Casini

and Perron (2020a) proposed such a test and used it for the DK-HAC estimators

which were shown to be robust to such cases.

2.5 Conclusions

Economic time series are highly nonstationary and models might be misspecified. If

nonstationary is not accounted for properly, parameter estimates and, in particular,

asymptotic variance estimates can be largely biased. We establish results on the

low frequency contamination induced by nonstationarity and misspecification for the

sample autocovariance and the periodogram. These estimates can exhibit features

akin to long memory when the data are nonstationary short memory. We distin-

guish cases where this contamination only implies a small-sample problem and cases

where the problem remains asymptotically. We propose a solution to this problem

based on nonparametric smoothing which is shown, using theoretical arguments, to

be robust. Since the autocovariances and the periodogram are basic elements for

heteroskedasticity and autocorrelation robust (HAR) inference, our results provide
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insights on the important debate between consistent versus inconsistent LRV esti-

mation. Indeed, the properties of long bandwidths/fixed-b methods are only known

under stationarity. Our results show that existing LRV estimators tend to be inflated

when the data are nonstationarity. This results in HAR tests that can be undersized

and exhibit dramatic power losses or even no power. Long bandwidths/fixed-b HAR

tests suffer more from low frequency contamination relative to HAR tests based on

HAC estimators, whereas the DK-HAC estimators do not suffer from this problem.
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2.6 Figures
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Figure 2·1: Plot of Vt for model M1. The sample size is T = 200.
T 0

1 = 20. Also reported in red dashed lines are the sample averages in
the two regimes with V 1 = 1.27 and V 2 = −0.03.
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Figure 2·2: ACF of V1,t (top panel), ACF of V2,t (mid panel) and ACF
of Vt (bottom panel) for model M1.
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Figure 2·3: a) top panel: plot of {dt}; b) mid-panel: plot of the sample
autocovariances Γ̂ (k) of {dt}; c) bottom panel: plot the periodogram
I (ω) of {dt}. In all panels δ = 1.
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Figure 2·4: a) top panel: plot of {dt}; b) mid-panel: plot of the sample
autocovariances Γ̂ (k) of {dt}; c) bottom panel: plot the periodogram
I (ω) of {dt}. In all panels δ = 2.
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Figure 2·5: a) top panel: plot of {dt}; b) mid-panel: plot of the sample
autocovariances Γ̂ (k) of {dt}; c) bottom panel: plot the periodogram
I (ω) of {dt}. In all panels δ = 5.
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Figure 2·6: The figure plots ĉT (u, k) for u = 236/400, λ0
1, 264/400 in

the top, mid and bottom panel, respectively. In all panels δ = 1.
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Figure 2·7: The figure plots IL (u, ω) for u = 236/400, λ0
1, 264/400 in

the top, mid and bottom panel, respectively. In all panels δ = 1.
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Figure 2·8: The figure plots ĉT (u, k) for u = 236/400, λ0
1, 264/400 in

the top, mid and bottom panel, respectively. In all panels δ = 2.
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Figure 2·9: The figure plots IL (u, ω) for u = 236/400, λ0
1, 264/400 in

the top, mid and bottom panel, respectively. In all panels δ = 2.
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Figure 2·10: The figure plots ĉT (u, k) for u = 236/400, λ0
1, 264/400

in the top, mid and bottom panel, respectively. In all panels δ = 5.
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Figure 2·11: The figure plots IL (u, ω) for u = 236/400, λ0
1, 264/400

in the top, mid and bottom panel, respectively. In all panels δ = 5.
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2.7 Tables

Table 2.1: Comparison between the theoretical autocovariance and
the sample estimates

ΓT (k) Γ̂ (k) Γ̂ (k)− d̂∗ Γ̂DK (k)
k = 0 0.37 0.54 0.37 0.63
k = 1 0.13 0.29 0.13 0.25
k = 2 0.01 0.16 0.01 0.03
k = 5 0.00 0.05 -0.03 0.00
k = 10 -0.03 0.02 -0.07 0.00

The table reports the values of a) the theoretical autocovariance ΓT (k); b) the sample autocovariance
Γ̂ (k); c) the corrected sample autocovariance Γ̂ (k)− d̂; d) the double kernel sample autocovariance
Γ̂DK (k), for k = 0, 1, 2, 5 and 10, with the process {Vt} as in model M1 with T = 200.

Table 2.2: Empirical small-sample size and power of t-test for model
M1

α = 0.05, T = 200 δ = 0 (size) δ = 0.05 δ = 0.1 δ = 0.15 δ = 0.25 δ = 1 δ = 1.5

ĴDK,T 0.068 0.189 0.286 0.460 0.661 0.992 1.000
ĴDK,pw,SLS,T 0.045 0.085 0.199 0.332 0.612 0.976 1.000
ĴDK,pw,SLS,µ,T 0.046 0.090 0.202 0.333 0.613 0.977 1.000
Andrews (1991) 0.039 0.095 0.185 0.383 0.623 0.968 0.999
Andrews (1991), prewhite 0.115 0.168 0.304 0.447 0.650 0.988 0.999
Newey-West (1987) 0.209 0.272 0.398 0.516 0.689 0.997 1.000
Newey-West (1987), fixed-b (KVB) 0.004 0.018 0.063 0.139 0.301 0.870 0.969
EWC 0.011 0.038 0.137 0.273 0.539 0.978 0.999

Table 2.3: Empirical small-sample size and power of the of t-test for
model M2

α = 0.05, T = 200 δ = 0 (size) δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.3 δ = 0.5

ĴDK,T 0.059 0.415 0.815 0.974 0.974 1.000
ĴDK,pw,SLS,T 0.058 0.262 0.632 0.899 0.899 1.000
ĴDK,pw,SLS,µ,T 0.053 0.246 0.616 0.894 0.894 1.000
Andrews (1991) 0.064 0.228 0.564 0.892 0.830 1.000
Andrews (1991), prewhite 0.252 0.564 0.904 0.992 0.991 1.000
Newey-West (1987) 0.133 0.388 0.821 0.981 0.971 1.000
Newey-West (1987), fixed-b (KVB) 0.000 0.077 0.018 0.356 0.356 0.971
EWC 0.004 0.045 0.255 0.632 0.637 1.000
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Table 2.4: Empirical small-sample size and power of the of t-test for
model M3

α = 0.05, T = 200 δ = 0 (size) δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25

ĴDK,T 0.086 0.552 0.930 0.992 1.000
ĴDK,pw,SLS,T 0.065 0.436 0.887 0.971 1.000
ĴDK,pw,SLS,µ,T 0.063 0.415 0.875 0.981 1.000
Andrews (1991) 0.017 0.257 0.696 0.950 0996
Andrews (1991), prewhite 0.036 0.456 0.864 0.952 0.998
Newey-West (1987) 0.031 0.344 0.795 0.976 0.994
Newey-West (1987), fixed-b (KVB) 0.000 0.084 0.245 0.442 0.627
EWC 0.000 0.051 0.299 0.699 0.937

Table 2.5: Empirical small-sample size and power of the of t-test for
model M4

α = 0.05, T = 200 δ = 0 (size) δ = 0.1 δ = 0.15 δ = 0.2 δ = 0.25 δ = 0.5

ĴDK,T 0.067 0.558 0.748 0.870 0.945 1.000
ĴDK,pw,SLS,T 0.065 0.301 0.495 0.618 0.736 1.000
ĴDK,pw,SLS,µ,T 0.037 0.351 0.508 0.656 0.766 1.000
Andrews (1991) 0.016 0.253 0.448 0.564 0.675 0.999
Andrews (1991), prewhite 0.456 0.804 0.916 0.904 0.992 1.000
Newey-West (1987) 0.346 0.954 0.981 0.821 0.981 1.000
Newey-West (1987), fixed-b (KVB) 0.000 0.000 0.000 0.005 0.015 0.333
EWC 0.024 0.240 0.486 0.596 0.681 0.999
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Table 2.6: Empirical small-sample size and power of the DM (1995)
test

(1) δ > 0
α = 0.05, T = 200 size δ = 0.2 δ = 0.5 δ = 2 δ = 5 δ = 10

ĴDK,T 0.033 0.312 0.551 0.997 1.000 1.000
ĴDK,pw,SLS,T 0.042 0.322 0.563 0.999 1.000 1.000
ĴDK,pw,SLS,µ,T 0.046 0.348 0.573 0.998 1.000 1.000
Andrews (1991) 0.085 0.254 0.305 0.114 0.000 0.000
Andrews (1991), prewhite 0.085 0.246 0.293 0.401 0.045 0.000
Newey-West (1987) 0.083 0.246 0.299 0.612 0.817 0.782
Newey-West (1987), fixed-b (KVB) 0.002 0.212 0.185 0.000 0.000 0.000
EWC 0.083 0.252 0.268 0.045 0.000 0.000

(2) δ (t/T ) locally stationary
α = 0.05, T = 200 δ = 0.2 δ = 0.5 δ = 2 δ = 5 δ = 10

ĴDK,T 0.278 0.297 0.592 0.889 1.000
ĴDK,pw,SLS,T 0.301 0.363 0.634 0969 1.000
ĴDK,pw,SLS,µ,T 0.327 0.368 0.642 0.969 1.000
Andrews (1991) 0.255 0.259 0.255 0.110 0.005
Andrews (1991), prewhite 0.249 0.243 0.268 0.188 0.031
Newey-West (1987) 0.281 0.282 0.313 0.268 0.078
Newey-West (1987), fixed-b (KVB) 0.203 0.202 0.178 0.025 0.000
EWC 0.244 0.252 0.219 0.045 0.000

(3) δ (t/T ) locally stationary
α = 0.05, T = 200 δ = 0.2 δ = 1 δ = 2 δ = 5 δ = 10

ĴDK,T 0.540 0.862 0.992 1.000 1.000
ĴDK,pw,SLS,T 0.396 0.664 0.988 1.000 1.000
ĴDK,pw,SLS,µ,T 0.412 0.724 0.987 1.000 1.000
Andrews (1991) 0.328 0.234 0.235 0.241 0.777
Andrews (1991), prewhite 0.342 0.315 0.512 0.296 0.882
Newey-West (1987) 0.381 0.384 0.720 0.972 0.999
Newey-West (1987), fixed-b (KVB) 0.100 0.032 0.000 0.002 0.040
EWC 0.312 0.152 0.142 0.296 0.852

(4) case (2) with outliers
α = 0.05, T = 400 δ = 0.5 δ = 1 δ = 2 δ = 5 δ = 10

ĴDK,T 0.694 0.733 0.822 0.981 1.000
ĴDK,pw,SLS,T 0.724 0.777 0.846 0.982 1.000
ĴDK,pw,SLS,µ,T 0.727 0.771 0.847 0.981 1.000
Andrews (1991) 0.192 0.242 0.245 0.203 0.022
Andrews (1991), prewhite 0.182 0.233 0.243 0.288 0.114
Newey-West (1987) 0.222 0.271 0.245 0.345 0.225
Newey-West (1987), fixed-b (KVB) 0.203 0.222 0.212 0.075 0.000
EWC 0.186 0.221 0.174 0.062 0.000
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Chapter 3

A New Particle Filter for Nonlinear
Dynamic Stochastic General Equilibrium
Models

3.1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models are widely used by re-

searchers working in the field of macroeconomics. These models are also increasingly

used by central banks around the world, to evaluate the current state of the econ-

omy, to analyze the effects of monetary or fiscal policies, and to forecast prominent

macroeconomic variables such as the aggregate output and inflation.

The parameter estimation and inference for DSGE models typically requires com-

puting the likelihood function. If the model is driven by Gaussian structural shocks

and solved through (log) linearization, evaluating the likelihood can be efficiently im-

plemented using the Kalman filter. In other cases, when the shocks are not Gaussian

or the model is nonlinear, alternative filters are required.

One such choice is the particle filter. Since its introduction in Gordon et al.

(1993), the particle filter has become a popular method for studying non-linear or

non-Gaussian state-space models. Surveys are provided, for example, by Doucet

and Johansen (2011) and Creal (2012). Pitt and Shephard (1999) and Kim et al.

(1998) are among the first to apply particle filters in finance and economics. When

it comes to DSGE models, Fernández-Villaverde and Rubio-Ramírez (2007) is the
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first to demonstrate how to use particle filter to evaluate the likelihood function of

a nonlinear model. Much progress has been made since; see the review in Herbst

and Schorfheide (2015). A challenging issue with particle filtering, however, is that

the filter in its standard implementation will breakdown when there is no error term

in the measurement equation. To address this, researchers commonly assume that

there is a nontrivial amount of measurement errors, say 20% standard deviation of

the data. Unfortunately, this practice is questionable because the measurement errors

are not introduced to improve the model or its match with the data, but instead as a

convenience such that the filter is applicable. It potentially leads to miss-specification,

which can further cause bias in parameter estimation and inference.

Motivated by this limitation, in this paper we develop a new particle filter for non-

linear DSGE models without adding measurement errors. The measurement equation

in a DSGE model is usually a selection equation that selects a subset of variables

from the state vector for the estimation. We can map the entire state vector into two

subvectors: a subvector whose components are observed and a subvector whose com-

ponents are latent. Then, by only sampling and propagating particles of the latent

variables, we avoid the need to introduce measurement errors. To implement this

filter, a key step is to nonparametrically evaluate the data’s density conditional on

the latent subvector. We propose a global approximation approach based on series

expansion such as the Gram-Charlier A series for this purpose.

As a by-product, the new filter also allows us to study singular DSGE model

using the composite likelihood. Economic theory often produce stochastically singular

DSGE models when the dimension of the observable is greater than the dimension of

shocks. Qu (2018) proposed to use the composite likelihood to bridge such models

with data. By combining the composite likelihood with our new filter, we can provide

a unified treatment of both singular and nonlinear DSGE models.
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3.2 The Model

Throughout this paper we are concerned with the filtering problem of nonlinear Dy-

namic Stochastic General Equilibrium (DSGE) models whose solution has the follow-

ing state space representation:

Yt = Ψ(θ)Xt + ut, (3.1)

Xt = Φ(θ,Xt−1, εt). (3.2)

Equation (3.1) is the measurement equation characterizing the relationship between

data and state. Equation (3.2) is the transition equation describing the dynamics

of the system. Specifically, the ny-by-1 vector Yt contains observables available as

data and the nx-by-1 vector Xt includes the states, whose dynamics is driven by the

structural shocks contained in the nε-by-1 vector εt. For convenience, we assume

the shocks are orthogonal with unit variance. The nu-by-1 vector ut comprises the

measurement errors, just to relate our method to the conventional ones. In particular,

ut can have zero variance, meaning measurement errors do not exist as we commonly

see in DSGE models. The vector θ consists of the structural parameters, serving as

input for the function Ψ(·) and transition function Φ(·, X, ε). Here, we allow Φ(θ, ·, ·)

to be nonlinear. For a concise notation, we will henceforth suppress θ unless further

clarity is needed. When Φ is linear, say

Xt = Φ1Xt−1 + Φεεt,

we are back to the familiar linear DSGE models, e.g. small scale models such as

Lubik and Schorfheide (2004) and medium scale models such as Smets and Wouters

(2007). When it comes to the filtering problems of linear models, Kalman filter is the

standard choice. For general cases involving nonlinear dynamics, the particle filter
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has become a popular approach.

If ny > nε + nu, the system is stochastically singular. It is well known that the

conventional time and frequency domain likelihoods are not well defined in this case

because the conditional covariance and the spectral density of Yt are singular. A few

approaches have been proposed, including "measurement error" approach (e.g. Altug

(1989), Sargent (1989), Ireland (2004)), "more structural shocks" approach (e.g.,

Schorfheide (2000), Rabanal and Rubio-Ramírez (2005), Smets and Wouters (2007)),

and "fewer observables" approach (e.g., Guerron-Quintana (2010), Canova (2014)).

Instead of augmenting measurement errors, introducing additional structural shocks,

or excluding observables, Qu (2018) suggests a framework based on the composite

likelihood. This approach can be conveniently combined with our new particle filter

to handle singular nonlinear DSGE models. For now, we assume ny ≤ nε + nu.

We will use the same letter, say, X, to denote a random variable and its realization

interchangeably. That is, small letter x will NOT be used to denote the realization

of X. Instead, it will reserved for the random variable X’s standardized counterpart

x = V̂−
1
2 (X)(X − Ê(X)),

Moreover, Y t is a shorthand for the filtration σ(Y1, Y2, . . . , Yt), i.e., the information

provided by the history of Yt.

3.3 Traditional Particle Filter and
the No-measurement-error Problem

Before introducing the new particle filter, we first review the traditional particle filter

and the measurement error issue. The traditional particle filter is constructed using

the properties of a Markovian process. Suppose the initial distribution of X is given

by p(X0|Y −1) = p(X0). For any t ≥ 1, given p(Xt−1|Y t−1), the predictive distribution
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is

p(Xt|Y t−1) =

∫
p(Xt|Xt−1, Y

t−1)p(Xt−1|Y t−1)dXt−1.

The filtered distribution follows from this distribution and the Bayes Rule:

p(Xt|Y t) =
p(Yt|Xt, Y

t−1)p(Xt|Y t−1)

p(Yt|Y t−1)
.

The traditional particle filter uses a swarm of particles {Xj
t ,W

j
t }Nj=1 represent a state

space model and approximate the distributions of interest. For instance, we approxi-

mate the filtered distribution using

p̂(Xt|Yt) =
1

N
W j
t δ(Xt = Xj

t ),

where δ(·) is the Dirac measure. Through out this paper, we let W j
t = 1 as we

resample in each period. The predictive distribution can be obtained in a similar

fashion. Formally, the traditional particle filter proceeds as follows.

Algorithm 3.3.1 (Traditional Particle Filter) The algorithm is initialized by
drawing N particles at time zero:

Xj
0 ∼ p(X0|Y −1) = p(X0), j = 1, . . . , N.

For any t ≥ 1, the particles are propagated and updated through three steps recur-
sively:

1. Propagation: Given period-(t− 1) particles, i.e.,

Xj
t−1 ∼ p(Xt−1|Y t−1), j = 1, . . . , N,

propagating according to proposal distribution of choice yields the predictive
particles

X̃j
t ∼ q(Xt|Xj

t−1, Y
t), j = 1, . . . , N.

The notation of the proposal distribution indicates potential use of information
contained in Yt.
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2. Weighting: The predictive particles X̃j
t are evaluated using unnormalized weights

wjt = p(Yt|X̃j
t , Y

j
t−1)

p(X̃t|Xj
t−1, Y

t−1)

q(X̃j
t |X

j
t−1, Y

t)
.

The second factor is the importance weight taking into account the difference
between the proposal distribution and transition distribution.

3. Resampling: The recursion is closed by updating filtered state particles Xj
t .

Since we have pairs (X̃j
t , w

j
t ), resampling Xj

t according to wjt yields the result.

Remark 3.3.1 When q(Xt|Xt−1, Y
t) = p(Xt|Xt−1, Y

t−1), i.e., when the proposal
distribution is chosen to be the transition distribution, the particle filter is called
bootstrap particle filter. We will use bootstrap particle filter as the default method
to compare with our new filter.

Now, we examine how the measurement issue affects computing the likelihood.

Suppose we obtain an approximation for the filtered distribution p(Yt|Xt, Y
t−1) using

the particle filter. Then, the period- t likelihood follows after integrating out Xt:

p(Yt|Y t−1) =

∫
p(Yt|Xt, Y

t−1)p(Xt|Y t−1)dXt.

Therefore, we can approximate the period-t likelihood by averaging the unnormalized

weights. In particular, for the bootstrap particle filter,

p̂(Yt|Y t−1) =
1

N

N∑
j=1

p(Yt|X̃j
t , Y

t−1).

Inside the summation, the conditional density p(Yt|Xt, Y
t−1) is given by the measure-

ment equation (3.1). Under normality,

Yt|Xt ∼ N (ΨXt,Σu)

which gives

p(Yt|Xt) = (2π)−
ny
2 |Σu|−

1
2 (Yt −ΨXt)

′Σ−1
u (Yt −ΨXt).
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Clearly, this is well-defined only if Σu is nonsingular. Otherwise, suppose the mea-

surement error ut = 0, or Σu = 0, then

p(Yt|Xj
t , Y

t−1) =


∞ ΨXj

t = Yt

0 otherwise
,

As a result, the traditional particle filter breaks down. More generally, the filter

becomes computationally inefficient or even impractical when the measurement errors

have small variances because most particles will receive weights close to zero. To

remedy this problem, practitioners often assume there is a sizeable measurement error

for each observable. A common practice is to make the magnitude of its standard

deviation 10 percent or 20 percent of observable’s standard deviation. Here, we argue

that a new particle filter can be developed without taking this questionable direction.

3.4 The New Particle Filter

Recall that the measurement equation (3.1) links the states to the observables. When

measurement error is absent, the ny-by-nx selection matrix Ψ induces a ny-dimensional

subspace containing observables. In this case, we define a companion matrix Π such

that

ΨΠ′ = 0,

where Π induces a (nx− ny)-dimensional subspace orthogonal to the row space of Ψ.

As it turns out, this observation is the key step toward designing our filter. We thus

formally define the following notion:

Definition 3.4.1 (Unobservable) Let X be the state vector and Ψ the selection
matrix. A companion matrix Π can be constructed such that ΨΠ′ = 0. Then, Z =

ΠX is defined as unobservable vector whose components are called unobservables.
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Define a transformation matrix Λ such that

Λ =

[
Ψ
Π

]
.

Note that Λ is invertible by definition. Because Ψ is a selection matrix, with appro-

priate ordering, Λ will often have a diagonal form, i.e.,

Λ =

[
Ψy 0
0 Iz

]
,

where Ψy is a ny-by-ny matrix with nonzero column vectors and Iz is a nz-by-nz

identity matrix. Further, we stack the observables Yt and unobservables Zt = ΠXt as

a transformed state vector

St =

[
Yt
Zt

]
= ΛXt.

Note that St contains the information as the original state variable Xt because Λ is

invertible. We can now rewrite the transition equation as

St = ΛXt = ΛΦ(Λ−1ΛXt−1, εt) = ΛΦ(Λ−1St−1, εt) = Φs(St−1, εt).

Consequently, the measurement equation can be rewritten as

Yt =
[
Iy 0

]
St,

where Iy is the ny-by-ny identity matrix. This is essentially saying only a subset of

the transformed states directly contribute to the observations. As we will see, this

representation ensures that when resampling particles, the observable particles can

be exactly matched to observations in each recursion.

Turning to the likelihood, we propose using the density of data Yt conditioning
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only on unobservable Zt, not Xt:

p(Yt|Y t−1) =

∫
p(Yt|Zt, Y t−1)p(Zt|Y t−1)dZt.

That is, after we generate Zj
t ∼ p(Zt|Y t−1) and estimate p(Yt|Zj

t , Y
t−1), the period-t

likelihood can be approximated as

p̂(Yt|Y t−1) ≈ 1

N

N∑
i=1

p̂(Yt|Zj
t , Y

t−1).

Since unobservable Zt is orthogonal to observable Yt, p(Yt|Zt, Y t−1) is always well-

defined and not degenerated. Now we formally lay out the algorithm for the New

(Bootstrap) Particle Filter.

Algorithm 3.4.1 (New Particle Filter in Generic Form) The algorithm is
initialized by drawing N particles at period-0,

Xj
0 ∼ p(X0), j = 1, . . . , N.

For any t ≥ 1 period, the propagation and updating of particles takes three steps:

1. Propagation: Given period-(t− 1) particles

Xj
t−1 ∼ p(Xt−1|Y t−1), j = 1, . . . , N,

we propagate them according to the transition equation to obtain

X̃j
t ∼ p(Xt|Xj

t−1, Y
t−1), j = 1, . . . , N.

2. Decomposition: The predictive state particle X̃j
t can be decomposed as observ-

able particle and unobservable particle using the decomposition matrix Λ:

ΛX̃j
t =

[
ΦX̃j

t

ΠX̃j
t

]
=

[
Y j
t

Zj
t

]
≡ Sjt .
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3. Weighting: The unobservable particles Zt are evaluated by unnormalized weight

wjt = p̂(Yt|Zj
t , Yt−1),

where the conditional density is nonparametrically approximated using the par-
ticle pairs (Y j

t , Z
j
t ), described later.

4. Updating: Resample unobservable particles Zj
t according to the weights wjt

while fix the unobservable particles Y j
t = Yt. Then state particles Xj

t can be
updated through inversion:

Xj
t = Λ−1

[
Yt
Zj
t

]
Crucially, in the weighting step we approximately compute the observable’s density

conditional on the unobservables, i.e., p(Yt|Zt, Y t−1) for each unobservable particle

Zj
t that we generate. We propose a global approximation approach based on the

Gram-Charlier A series expansion. For a clear presentation of the idea underlying

this approximation, we start by considering the approximation of an unconditional

density.

3.4.1 Gram-Charlier Unconditional Density Approximation

Univariate Case

We examine a continuous random variable X. Let ϕ(t) be the characteristic

function of its distribution whose density function is p(x), and κr its cumulants. By

the definition of a characteristic function, we have

ϕ(t) =

∞∫
−∞

p(x) exp(itx)dx.

Alternatively, ϕ(t) can be rewritten entirely in terms of the cumulants,

ϕ(t) = exp

(
∞∑
r=1

κr
(it)r

r!

)
.
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Then, we have the cumulant generating function

logϕ(t) =
∞∑
r=1

κr
(it)r

r!
.

We consider expanding p(x) around a known distribution with probability density

function q(x), characteristic function φ(t), and cumulants γr:

φ(t) = exp

(
∞∑
r=1

γr
(it)r

r!

)

The density q(x) here, as generally, is chosen to be that of the normal distribution,

but other choices are possible as well. Then,

ϕ(t) = exp

(
∞∑
r=1

(κr − γr)
(it)r

r!

)
φ(t).

Note that the exponential component can be expressed in terms of Bell polynomials,

i.e.,

exp

(
∞∑
r=1

xr
tr

r!

)
=
∞∑
r=0

Br(x1, . . . , xr)
tr

r!
,

leading to

ϕ(t) =
∞∑
r=0

Br(κ1 − γ1, . . . , κr − γr)
(it)r

r!
φ(t).

But (it)rq(t) is the Fourier transform of (−1)rdrq(−x)/dx when q(x) is symmetric

and limx→∞ d
rq(x)/dx = 0 for r = 0, 1, . . ., as

∞∫
−∞

drq(−x)

dxr
exp(−itx)dx

=− dr−1q(−x)

dxr−1
exp(−itx)

∣∣∣∣∞
−∞

+ (−it)
∞∫

−∞

dr−1q(−x)

dxr−1
exp(−itx)dx

= · · · = (−it)r
∞∫

−∞

q(−x) exp(−itx)dx = (−1)r(it)rφ(t).
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This implies

p(x) =
∞∑
r=0

1

r!
Br(κ1 − γ1, . . . , κr − γr)(−1)r

drq(x)

dx

= q(x)
∞∑
r=0

1

r!
Br(κ1 − γ1, . . . , κr − γr)

{
(−1)r

drq(x)

dx
q−1(x)

}
= q(x)

∞∑
r=0

1

r!
Br(κ1 − γ1, . . . , κr − γr)Hr(x).

In the last line of the display, when q(x) is the normal density, Hr(x) is the probablist’s

(not the physicist’s) Hermite polynomials, defined by

Hr(x) = (−1)r
drq(x)

dx
q−1(x).

In practice, before applying the above expansion, we usually standardize a variable

X such that its mean is zero and variance equals to one. That is, we consider

x = V̂(X)−
1
2 (X − Ê(X)).

Once we achieve an approximation for the density of standardized variable x, we can

recover that of X by a change-of-variable technique

pX(X) = V̂(X)−
1
2px(x), where x = V̂(X)−

1
2 (X − Ê(X)).

Here, x is used to denote a standardized variable, not realization of the random

variable X. Further, we use p(·) to denote the standardized variable’s density px(·)

unless extra clarification is needed.

This standardization simplifies the expressions substantially. First, by construc-

tion, x has mean zero and variance one. Second, the cumulants of a standard normal
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variable are zero for r ≥ 2, therefore

p(x) = q(x)
∞∑
r=0

1

r!
(0, 0, κ3, κ4, . . . , κr)Hr(x).

Applying a fourth order approximation, we get

p̂(x) = q(x)
(

1 +
κ3

3!
H3(x) +

κ4

4!
H4(x)

)
.

Multivariate Case

For multivariate case, follow Sobel (1963) to consider a k-dimensional random

vector x = (x1, . . . , xn) that has zero mean and covariance matrix

V(x) = (1− ρ)In + ρ1n1′n,

where −(k−1)−1 < ρ < 1. Let s = r1+· · ·+rn. The multivariate Hermite polynomial

is defined by

Hr1,...,rn(x; ρ) = (−1)s
∂sq(x)

∂xr11 ∂x
r2
2 · · · ∂xrnn

q−1(x).

Expanding p(x; ρ) around q(x; ρ) gives

p(x) =
∞∑
r1=0

· · ·
∞∑

rn=0

(−1)s
cr1,...,rn
r1! · · · rn!

∂sq(x)

∂xr11 · · · ∂xrnn
,

= q(x)
∞∑
r1=0

· · ·
∞∑

rn=0

cr1,...,rn
r1! · · · rn!

Hr1,...,rn(x; ρ).

By orthogonality of hermite polynomials

∞∫
−∞

· · ·
∞∫

−∞

Hi1,...,in(x; p)Hr1,...,rn(x; p)q(x; ρ)dx1 · · · dxn =
k∏

α=1

(rα)δij,
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where δij is the Kronecker delta. This implies that the coefficients satisfy

cr1,...,rn =

∞∫
−∞

· · ·
∞∫

−∞

Hr1,...,rp(x; ρ)p(x)dx1 · · · dxn. (3.3)

On the other hand, for hermite polynomials up to the fourth order we have

H0,...,0 = 1,

H1,0,...,0 = x1,

H2,0,...,0 = x2
1 − 1,

H1,1,0,...,0 = x1x2 − ρ,

H3,0,...,0 = x3
1 − 3x1,

H2,1,0,...,0 = x2
1x2 − x2 − 2x1ρ,

H1,1,1,0,...,0 = x1x2x3 − ρ(x1 + x2 + x3)

H4,0,...,0 = x4
1 − 6x2

1 + 3,

H3,1,0,...,0 = (x3
1 − 3x1)x2 − 3ρ(x2

1 − 1),

H2,2,0,...,0 = (x2
1 − 1)(x2

2 − 1)− 4ρ(x1x2 − ρ)− 2ρ2,

H2,1,1,0,...,0 = (x2
1 − 1)(x2x3 − ρ)− 2ρ(x1x2 − ρ)− 2ρ(x1x3 − ρ)− 2ρ2,

H1,1,1,1,0,...,0 = x1x2x3x4 − ρ(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 − 6ρ)− 3ρ2.

Let µr1,...,rp = E
∏k

α=1 X
rα
α . Combining the Hermite polynomial results with (3.3)

yields

c0,...,0 = 1,

c1,0,...,0 = 0,

c2,0,...,0 = 0,

c3,0,...,0 = µ3,0,...,0,
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c2,1,...,0 = µ2,1,...,0,

c1,1,1,0,...,0 = µ1,1,1,0,...,0,

c4,0,...,0 = µ4,0,...,0 − 3,

c3,1,0,...,0 = µ3,1,0,...,0 − 3ρ,

c2,2,0,...,0 = µ2,2,0,...,0 − 2ρ2 − 1,

c2,1,1,0,...,0 = µ2,1,1,0,...,0 − ρ− 2ρ2,

c1,1,1,1,0,...,0 = µ1,1,1,1,0,...,0 − 3ρ2.

Note that in our setting x has already been standardized such that ρ = 0. Hence

expressions above can be further simplified. Once a fourth order Gram-Charlier ap-

proximation for standardized variable has been achieved, we apply change of variable

to recover the targeting density approximation.

Algorithm 3.4.2 (Gram-Charlier Unconditional Density Approximation in
Practice) In practice, unconditional density can be approximated as follows:

1. Compute the sample mean and covariance, and the third and fourth sample
cumulants of data.

2. Standardize the variable using the sample mean and covariance.

3. Apply, say, the fourth order Gram-Charlier expression. For Univariate case,

p̂(x) = q(x)
(

1 +
κ3

3!
H3(x) +

κ4

4!
H4(x)

)
.

4. Apply the change of variable technique to compute the density for the original
variable X

p̂X(X) = V̂(X)−
1
2 p̂(x), where x = V̂(X)−

1
2 (X − Ê(X)).
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3.4.2 Gram-Charlier Conditional Density Approximation

The above approximation is for unconditional density but we need to approximate

the density of the observable Y conditional on the unobservable Z. Recall when

approximating unconditional density with Gram-Charlier expansions, we standardize

the variable of interest using its mean and variance. When it comes to conditional

density approximation, what we need for standardization, naturally, is conditional

mean and covariance. For a general model, the conditional mean is a nonlinear func-

tion of the conditioning variable. Here, we use Hermite polynomials to approximate

this function. Specifically, we use powers of Y as left hand side variable while hermite

polynomials up to certain order s of standardized Z as right hand side variables.

Again, with slight abuse of notation, the small letter

z = V̂(Z)−
1
2 (Z − Ê(Z)),

denotes standardized Z. The reason why Z has to be standardized is that hermite

polynomials are derived from standard normal density. Also note that conditioning

on Z is the same as conditioning on z because the standardizing transformation is

monotone.

Let the column regressor vectorH(z, s) contain all Hermite polynomialsHr1,...,rnz (z)

such that s = r1 + · · ·+rnz where nz is the dimension of z. For univariate case nz = 1,

an example of s = 4 is

H(z, 4) =


1
z

z2 − 1
z3 − 3z

z4 − 6z2 + 3

 .
Since the dimension of Y , ny, is usually bigger than 1, we will use multivariate
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regression model:

Y j = AH(zj, s) + vj, vj
i.i.d.∼ (0,Σ), j = 1, . . . , N.

Recall that with identical regressors across equations the GLS reduces OLS equation

by equation, implying

Â = (YH′)(HH′)−1, where Y =
[
Y 1 · · · Y N

]
and H =

[
H(z1, s) · · · H(zN , s)

]
.

It follows that the observable’s first moment estimate conditional on a typical observ-

able particle z is

Ê(Y |z) = ÂH(z, s).

Approximating the conditional second moment is slightly more complicated as

this involves cross products of observables when Y is not univariate. To facilitate the

estimation process, we can vectorize unique cross products as left hand side variable

but maintaining the right hand side variable. Once elements of the conditional second

moment matrix are estimated, repositioning gives the observable’s second moment

estimate conditional on a typical observable particle z, Ê(Y Y ′|z). It follows that the

observable’s covariance estimate conditional on for a typical observable particle z is

V̂(Y |z) = Ê(Y Y ′|z)− Ê(Y |z)E(Y |z)′.

With conditional mean and variance estimates at hand, we standardize each observ-

able particle through

y = V̂(Y |z)−
1
2 (Y − Ê(Y |z)).

Now the standardized observable y is our new targets, and we again have N standard-

ized observable particles yj as new "data". To get the conditional moments estimate

of standardized observable y, we can again apply Hermite polynomial regression.
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That is, we estimate desired regressions of powers of y using Hermite polynomials of

z up to certain order.

With conditional moments of y, we can recover its conditional cumulants, from

which Gram-Charlier Approximation p̂(y|z) for density of standardized observable y

conditional on standardized unobservable z is obtained. Again, implementing change

of variable recovers

p̂Y (Y |Z) = p̂Y (Y |z) = V̂(Y |z)−
1
2 p̂(y|z), where y = V̂(Y |z)−

1
2 (Y − Ê(Y |z)).

We summarize the algorithm as follows.

Algorithm 3.4.3 (Gram-Charlier Unconditional Density Approximation in
Practice) In practice, unconditional density can be approximated as follows:

1. Compute the mean and covariance of conditioning variable Z.

2. Standardize the conditioning variable Z using the sample mean and covariance,
reaching

z = V̂(Z)
1
2 (Z − Ê(Z)).

3. Apply Hermite polynomial regression to compute the conditional mean and
variance of Y .

4. Standardize the observable Y using the sample conditional mean and covariance,
reaching

y = V̂(Y |z)
1
2 (Y − Ê(Y |z)).

5. Apply, say, the fourth order Gram-Charlier expression. For univariate case,

p(y|z) ≈ q(y|z)

(
1 +

κ3(z)

3!
H3(y) +

κ4(z)

4!
H4(y)

)
.

6. Apply the change of variable technique to compute the conditional density for
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the original variable Y

p̂Y |Z(Y |Z) = V̂(Y |z)−
1
2 p̂(y|z), where y = V̂(Y |z)−

1
2 (Y − Ê(Y |z)).

With the new generic particle filter algorithm and the Gram-Charlier conditional

density approximation algorithm, we have a new particle filter. However, the new

particle filter assumes there are no redundant states. In practice, we can use the

following operation to remove redundant states from the state vector.

3.4.3 Redundant State Elimination

Redundant states often arise in a linear or partially linear system. Due to the need of

standardization, the new filter requires the system to be represented using a minimal

number of states. That is, Xt has to be independent in the sense that there exists no

vector α such that α′Xt = 0. To achieve this, the following procedure can be applied

in advance:

We start by computing the unconditional covariance matrix of the state Xt. Let

the symmetric n-by-n matrix

Ω = V(Xt),

which has rank r. Apply the eigenvalue decomposition for Ω such that

Ω = UΛU ′ =
[
U1 U2

] [Λ1 0
0 0

] [
U ′1
U ′2

]
= U1Λ1U

′
1,

where the submatrix U1 contains eigenvectors corresponding to the nonzero eigenval-

ues. This implies that the transformed state vector U ′Xt has a covariance

V(U ′Xt) =

[
Λ1 0
0 0

]
,

which essentially means the next n − r states are redundant as the orthonormal
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eigenmatrix U always has a inverse U ′. Rewrite the state transition equation to keep

only the first r non-redundant state vectors

U ′1Xt = U ′1ΦU

[
U ′1Xt−1

0

]
+ U ′1Σεεt

where we have a zero because U ′2Xt−1 = 0 since it has zero variance. Define

X∗t = U ′1Xt, Σ∗ε = U ′1Σε.

Also, let

Φ∗ = U ′1ΦU1,

the first r columns of U ′1ΦU that will multiply X∗t . Then, the new transition equation

is

X∗t = Φ∗X∗t + Σ∗εet.

We now turn to the measurement equation. We have

Yt = ΨXt = ΨU

[
U ′1Xt

0

]
.

Define

Ψ∗ = ΨU1

the first r columns of ΨU that will multiply U ′1Xt. Then,

Yt = Ψ∗X∗t .

The above reduction steps leads to a new representation

Yt = Ψ∗X∗t



121

X∗t = Φ∗X∗t + Σ∗εεt.

In this presentation, X∗t is r-by-1 and n− r redundant states are dropped.

Algorithm 3.4.4 (Redundant State Elimination)

1. Compute the unconditional covariance matrix Ω for the state vector Xt. Apply
eigenvalue decomposition such that UΛU ′ = Ω.

2. Collect the orthonormal sub-eigenmatrix U1 corresponding to the nonzero eigen-
values.

3. Define

X∗t = U ′∗1 = U ′1ΦU1, Q∗ = U ′∗1 = ΨU1,

Then a minimal state representation is obtained.

3.5 Particle MCMC

Previously we mainly discussed how to approximate likelihood function using a new

particle filter. The approximate likelihood can further be embeded into a posterior

sampler such as Markov Chain Monte Carlo (MCMC), through which estimation

and inference can be conducted. In one sentence: Particle MCMC uses likelihood

approximation L̂ in place of the likelihood. The theoretical justification is provided

by Andrieu et al. (2010). To see why this works, we introduce the random variable

L as an auxiliary variable. Consider the joint distribution

p(θ,L|yT ) = p(θ|yT )p(L|θ, yT ) =
p(yT |θ)p(θ)p(L|θ, yT )

p(yT )
.

Replacing the intractable likelihood p(yT |θ) with its estimator L̂, we have

π(θ,L|yT ) =
Lp(θ)p(L|θ, yT )

p(yT )
.



122

Suppose L̂ is a non-negative and unbiased estimate of p(yT |θ),∫
π(θ,L|yT )dL =

p(θ)

p(yT )

∫
Lp(L|θ, yT )dL = p(θ|yT ).

For the Metropolis-Hastings ratio,

π(θ′,L′T )

π(θm,Lm|yT )

q(θ|θ′)p(Lm|θm, yT )

q(θ′|θm)p(L′|θ′T )

=
L′p(θ′)p(L′|θ′T )

Lmp(θm)p(Lm|θm, yT )

q(θm|θ′)p(Lm|θm, yT )

q(θ′|θm)p(L′|θ′T )

=
L′p(θ′)
Lmp(θm)

q(θm|θ′)
q(θ′|θm)

.

This is idea is known as pseudo-marginal approach.

Algorithm 3.5.1 (Particle Metropolis-Hastings)

1. Initialization: Set θ0 and run the new particle filter to obtain L̂0.

2. For m = 1 to M ,

(a) Sample θ′ ∼ q(θ|θm−1) and compute L̂.

(b) Compute the acceptance probability

αm = min

(
1,

L̂′p(θ′)
L̂m−1p(θm−1)

q(θm−1|θ′)
q(θ′|θm−1)

)
(3.4)

and accept {θ′, L̂′} with probability αm.

3.6 Nonlinear Composite Likelihood Method

Building on the composite likelihood concept of Lindsay (1988), Qu (2018) develops a

likelihood-based framework for analyzing linear singular DSGE models that does not

require adding measurement errors, introducing new structural shocks, or excluding

observables for the purpose of convenience. The composite likelihood framework
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extends naturally the existing state space representation by introducing a selection

matrix Ps:

Ys,t = PsYt = PsΨXt + PsΨut. (3.5)

Consequently, the selection matrix Ps induces a submodel s consisting of the new

measurement equation (3.5) and the original transition (3.2). In particular, Ps can

be defined such that any submodel s is nonsingular.

Let Y1,t, . . . , YS,t be some subvectors of Yt, each satisfying (3.5) through its selection

matrix Ps. Suppose any submodel s is nonsingular and denote their corresponding

log-likelihood functions by `s(θ)(s = 1, . . . , S). Then, the composite log-likelihood is

defined as

`(θ) =
S∑
s=1

`s(θ).

By approximating the component log-likelihood functions `s using the new particle

filter, we now have a nonlinear composite likelihood method. Estimation and inference

can be conducted accordingly.

3.7 A Stochastic Volatility Model

For illustrative purposes, we implement the new particle filter algorithm for a stochas-

tic volatility (SV) model. Contrary to the autoregressive conditional heteroscedas-

ticity (ARCH) framework (Engle (1982), Bollerslev et al. (1994)) which models the

conditional volatility as a deterministic function of previous observations and past

volatilities, a SV model specifies the volatility to follow some latent stochastic pro-

cess. After discretization, the transition equation (t ≥ 1) can be written as

rt = ρ1rt−1 + exp(0.5ht−1)ut, (3.6)
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ht = ω + ρ2(ht−1 − ω) + σvt, (3.7)

where rt is the observed asset return and

ut, vt ∼ i.i.d.(0, 1).

The system is initialized by

h0 ∼ ω +
σ√

1− ρ2
2

v0,

r0 ∼
exp(0.5h0)√

1− ρ2
1

u0.

Since ut plays the role of the measurement error, the traditional particle filter works

well. This allows us to use the traditional particle filter as a benchmark to evaluate

the new particle filter.

3.7.1 New Particle Filter for a Stochastic Volatility Model

To apply the new particle filter, the state vector are defined as

Xt =

[
rt
ht

]
,

while the measurement equation is

Yt =
[
1 0

] [rt
ht

]
= rt.

The latent state is

Zt =
[
0 1

] [rt
ht

]
= ht.

Below we explain how to implement the new particle filter algorithm for this con-

crete example. Since the unobservable is univariate, no redundant state elimination

is needed. In a typical period t, we propagate old particles (rjt−1, h
j
t−1) by entering
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the shocks (ujt , v
j
t ) into the transition equation (3.6) and (3.7).

Now we estimate the conditional density p̂(rt|ht) by treating generated particles

(rjt , h
j
t) as data. We start by transforming the original unobservable particles hjt ,

obtaining

zjt =
hjt − µ̂(ht)

σ̂(ht)
, j = 1, . . . , N,

where

µ̂(ht) =
1

N

N∑
j=1

hjt and σ̂(ht) =
√
µ̂(h2

t )− µ̂(ht)2.

With standardized unobservable particles zjt , we can form Hermite polynomials as

regressors. Specifically, we construct Hermite polynomials up to fourth order as

regressors:

H(zt, 4) =


H0(zt)
H1(zt)
H2(zt)
H3(zt)
H4(zt)

 =


1
zt

z2
t − 1

z3
t − 3zt

z4
t − 6z2

t + 3

 .

Next, we need to estimate the conditional mean and standard deviation for the stan-

dardization of observable particles. This can be done through Hermite polynomials

regressions:

rjt = H(zjt , 4)′β1
t + v1,j

t , j = 1, . . . , N,

and

(rjt )
2 = H(zjt , 4)′β2

t + v2,j
t , j = 1, . . . , N.
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With regression estimates, we have

µ̂(rt|zjt ) = H(zjt , 4)′β̂1
t ,

σ̂(rt|zjt ) =

√
µ̂(h2

t |z
j
t )− µ̂(ht|zjt )2 =

√
H(zjt , 4)′β̂2

t − (H(zjt , 4)′β̂1
t )

2.

Therefore, observable particles rjt are standardized as

yjt =
rjt − µ̂(rt|zjt )
σ̂(rt|zjt )

, j = 1, . . . , N.

Remark 3.7.1 Due to approximation error and estimation uncertainty, the value
of σ̂(rt|zjt ) for certain outlying particles zjt can be very small or even negative. The
corresponding standardized observable can thus take extremely large values or have
the wrong sign. Although such cases are fairly rare, they can have large effects on
the estimation. A rule of thumb is to set

σ̂(rt|ht) = 0.1σ̂(rt) whenever σ̂(rt|ht) < 0.1σ̂(rt).

Now that we have standardized observable and unobservable particles (yjt , z
j
t ),

we are ready for a fourth order Gram-Charlier conditional density approximation.

To compute the conditional cumulants, we first need to approximate standardized

observable’s moments up to fourth order, conditional on standardized unobservable.

That is, we need to run

yjt = H(zjt , 4)′β1
t + ejt ,

(yjt )
2 = H(zjt , 4)′β2

t + e2,j
t ,

(yjt )
3 = H(zjt , 4)′β3

t + e3,j
t ,

(yjt )
4 = H(zjt , 4)′β4

t + e4,j
t ,

for j = 1, . . . , N.
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Let

m1(zt) = µ̂(yt|zt) = H(zt, 4)′β̂1
t ,

m2(zt) = µ̂(y2
t |zt) = H(zt, 4)′β̂2

t ,

m3(zt) = µ̂(y3
t |zt) = H(zt, 4)′β̂3

t ,

m4(zt) = µ̂(y4
t |zt) = H(zt, 4)′β̂4

t .

Then, the conditional cumulants can be recovered through

k3(zt) = m3(zt)− 3m2(zt)m1(zt) + 2m1(zt)
3,

k4(zt) = m4(zt)− 4m3(zt)m1(zt)− 3m2(zt)
2 + 12m2(zt)m1(zt)− 6m4

1(zt).

Therefore, a fourth order Gram-Charlier approximation for the standardized observ-

able’s density conditional on unobservable is

p̂(yt|zt) = q̂(yt)

(
1 +

k3(zt)

3!
H3(yt) +

k4(zt)

4!
H4(yt)

)
By the changing-of-variable technique, the original conditional density is

p̂r(rt|ht) =
1

σ̂(rt|zt)
p̂(yt|zt), where yt =

rt − µ̂(rt|zt)
σ̂(rt|zt)

.

With a valid conditional density approximation at hand, the weighting stage of

the new particle filter assigns to the unobservable particles zjt the weights

wjt = p̂r(rt|hjt),

where the value of rt is fixed to the value of the observation at period t. The likelihood

in period t can be easily approximated, as

p(rt|rt−1) =

∫
p(rt|ht, rt−1)p(ht|rt−1)dht ≈

1

N

N∑
j=1

wjt .
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Next the unobservable particles are resampled with probability proportional to their

weights so that particles with larger weights are replicated more often. Finally, apply

the inverted transformation matrix, here just the 2-dimensional identity matrix, on

the particle pairs (rt, h
j
t). Then the state particles are updated.

3.7.2 A Comparison with the Traditional Particle Filter

Now we evaluate the performance of the new particle filter by comparing it with the

traditional particle filter. It is noteworthy to emphasize that the implementation of

the traditional particle filter would require a different formulation: the state vector

would be defined as

Xo
t =

[
rt−1

ht−1

]
,

while the measurement equation

Y o
t = rt = ρ1rt−1 + exp(0.5ht−1)ut.

Since

rt ∼ N (ρ1rt−1, exp(ht−1)),

a particle (rt−1, ht−1) is evaluated by

wot =
1√

2π exp(ht−1)
exp

(
−(rt − ρ1rt−1)2

2 exp(ht−1)

)
.

As a result, traditional particle filter works fairly well for SV model and can serve as

a good benchmark.

To conduct the simulation exercise, the parameter values are set according to

estimates in Table 7 of Kim, Shephard, and Chib (1998),

ρ1 = 0, ρ2 = 0.9780, ω = −0.8650, σ = 0.1580.
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The sample size T = 1, 000 and the particle size N = 200, 000. Given a typical

set of parameter values, the approximated log-likelihoods of each period produced

by the new particle filter and the traditional particle filter are compared in Figure

3·1. Even though the two filters use entirely different state formulations and particle

weighting schemes, the plots suggest they yield very similar per period log-likelihood

approximations, except for the initial period. Figure 3·2 displays the full log-likelihood

comparison given by the two filters. This shows the new particle filter indeed performs

fairly well for the stochastic volatility model.

3.8 A New Keysesian Monetary DSGE Model

We consider a prototypical New Keynesian Monetary DSGE model studied in Clarida

et al. (2000), Lubik and Schorfheide (2004), and Qu (2018). Since this small scale

DSGE model is linear and Gaussian, Kalman filter can produce its exact likelihood.

This will allow us to evaluate the performance of the new particle filter in more details.

The model can be concisely summarized by three equilibrium conditions, i.e., IS

schedule, Phillips curve, and monetary policy:

yt = Etyt+1 − τ(rt − Etπt+1) + gt, (3.8)

πt = βEtπt+1 + κ(yt − zt), (3.9)

rt = ρrrt−1 + (1− ρr)(ψ1πt + ψ2[yt − zt]) + εr,t, (3.10)

where πt and rt denote (log) deviations of inflation, and nominal interest rate from

their corresponding steady states, and in the case of output yt, from a trend path.

The IS schedule (3.8) results from households’ intertemporal decisions regarding con-

sumptions and savings. The parameter β is the discount factor and τ the intertempo-

ral substitution elasticity. The exogenous process gt captures the aggregate demand

shock. The expectational Phillips curve (3.9) characterizes inflation dynamics due
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to monopolistically competitive firms’ pricing rigidity. The slope κ describes how

responsive the pricing adjustment is with respect to the output gap yt − zt, where

zt is the natural rate, i.e., the output level provided that the economy is frictionless.

The monetary policy rule (3.10) specifies the central bank sets a nominal interest rate

by responding to the output gap and inflation. The parameters ψ1 and ψ2 determine

the tradeoff. The interest rate dynamics is also subject to its lagged value, as well as

the monetary shock εr,t.

The system is driven by three exogenous forces. Besides the serially uncorrelated

monetary policy shock εr,t, the demand shock gt and natural rate zt evolve according

to AR(1) with autoregressive coefficients ρg and ρg:

gt = ρggt−1 + εg,t, zt = ρzzt−1 + εz,t.

The three innovations satisfyεr,tεg,t
εz,t

 ∼ N
0

0
0

 ,
σ2

r 0 0
0 σ2

g ρgzσgσz
0 ρgzσgσz σ2

z

 ,

where σr, σg, and σg demote their standard deviations. In particular, εg,t and εz,t are

allowed to have nonzero correlation ρgz.

In a typical setting, the observables are (log) levels of output, inflation, and interest

rate:

Ȳt = Y ∗ + CYt

=

 0
π∗

γ∗ + π∗

+

1 0 0 0 0 0 0
0 4 0 0 0 0 0
0 0 4 0 0 0 0

ytπt
rt

 .
Here the output is pre-filtered and π∗ and r∗ are annualized steady state of inflation

and real interest rates. Now the discount factor in (3.9) can be replaced by β =

(1 + r∗/100)−1/4. For convenience, the structural parameters are installed into the
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vector θ = (τ, κ, ψ1, ψ2, ρr, ρg, ρz, σr, σg, σz, ρgz, π
∗, r∗)′.

In order to solve the model using Sims (2002) method, we augment the original

system with two expectation equations

yt = Et−1yt + ηy,t, πt = Et−1πt + ηπ,t.

Define the state vector Xt = (yt, πt, rt, gt, zt,Etyt+1,Etπt+1)′. Then, in the canonical

form Γ0Xt = Γ1Xt−1 + Ψεt + Πηt, we have

1 0 τ −1 0 −1 −τ
−κ 1 0 0 κ 0 −β

−(1− ρr)ψ2 −(1− ρr)ψ1 1 0 (1− ρr)ψ2 0 (1− ρr)ψ2

0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0





yt
πt
rt
gt
zt

Etyt+1

Etπt+1



=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 ρr 0 0 0 0
0 0 0 ρg 0 0 0
0 0 0 0 ρz 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





yt−1

πt−1

rt−1

gt−1

zt−1

Et−1yt
Et−1πt


+



0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


εr,tεg,t
εz,t

+



0 0
0 0
0 0
0 0
0 0
1 0
0 1


[
ηy,t
ηπ,t

]
. (3.11)

Since the number of structural shocks is only three while the number of states

are seven, the redundant state elimination algorithm need to be run in advance to

ensure the state space representation has reached the minimal form. As a result, the

selection matrix Ψ will not necessary have a zero block and the companion matrix Π

must be solved through ΨΠ′ = 0. Fortunately, many computation sorfwares provide

such built-in algorithm. Assume this is done and we have unobservable

Zt = ΠXt.

As we will see, the linear and Gaussian structure of the model allows us to evaluate
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the performance of the new particle filter through the following three key items that

can be exactly computed:

1. The particle weights wj = p(Yt|Zj
t , Y

t−1), given unobservable particles Zj
t , can

be computed through the Kalman particle filter that is to be discussed.

2. The filtering density p(Zt|Y t) can be generated by smoothing the unobserv-

able particles resampled according to the particle weights given by the Kalman

particle filter.

3. The log-likelihood log p(Y t|θ) can be produced by the Kalman filter.

3.8.1 Kalman Particle Filter

Once prior filtering distribution p(Zt−1|Y t−1) and particles Zj
t are given, we can com-

pute the exact particle weights wj = p(Yt|Zj
t , Y

t−1) by exploiting the joint normality,

similar to the derivation of Kalman filter. Since the filtering distribution p(Zt|Y t) can

be updated as a result of resampling, we name the procedure the Kalman particle

filter for convenience. For notation, let

X̄t|s ≡ E(Xt|Y s), Ȳt|s ≡ E(Yt|Y s),

Ωt|s ≡ V(Xt|Y s), Σt|s ≡ V(Yt|Y s), Γt|s ≡ E(XtY
′s
t )− X̄t|sȲ

′
t|s.

Recall the Kalman filter is initialized by setting

X0 ∼ N (X̄0|0,Ω0|0).

Starting from this initial condition, the filtering proceeds recursively. In particular,

given

Xt−1|Y t−1 ∼ N (X̄t−1|t−1,Ωt−1|t−1), εt ∼ N (0,Ωε),
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the optimal prediction of Xt and its mean squared error (MSE) are

X̄t|t−1 = ΦX̄t−1|t−1,

Ωt|t−1 = ΦΩt−1|t−1Φ′ + Ωε,

the optimal prediction of Yt and its MSE are

Ȳt|t−1 = ΨX̄t|t−1,

Σt|t−1 = ΨΩt|t−1Ψ′ + Σu,

and the covariance between Xt|t−1 and Yt|t−1satisfies

Γt|t−1 = Ωt|t−1Ψ′,

which leads to the relationship[
Xt

Yt

] ∣∣∣∣Y t−1 ∼ N
([
X̄t|t−1

Ȳt|t−1

]
,

[
Ωt|t−1 Γt|t−1

Γ′t|t−1 Σt|t−1

])
. (3.12)

The forecast error and Kalman gain are

vt = Yt − Ȳt|t−1,

Kt = Γt|t−1Σ−1
t|t−1.

Therefore, the filtering distribution can be updated as

Xt|Y t−1 ∼ N (X̄t|t,Ωt|t),

where

X̄t|t = X̄t|t−1 +Ktvt,

Ωt|t = Ωt|t−1 −KtΓ
′
t|t−1.



134

The derivation of the Kalman particle filter follows the same logic since the joint

Gaussian distribution (3.12) also implies the conditional density p(Yt|Xt, Y
t−1). De-

fine the following conditional moments:

Ȳt|X,s ≡ E(Yt|Xt, Y
s), Ωt|s ≡ V(Xt|Y s),

Σt|X,s ≡ V(Yt|Xt, Y
s), Γt|s ≡ E(XtY

′s
t )− X̄t|sȲ

′
t|s.

The state forecast error and Kalman gain are

et = Xt − X̄t|t−1,

Pt = Γ′t|t−1Ω−1
t|t−1.

Then,

Yt|Xt, Y
t−1 ∼ N (Ȳt|X,t−1,Σt|X,t−1),

where

Ȳt|X,t−1 = Ȳt|t−1 + Ptet,

Σt|X,t−1 = Σt|t−1 − PtΓt|t−1.

Recall Zt = ΠXt and define the particle Kalman gain

Qt = (ΠΓt|t−1)′(ΠΩt|t−1Π′−1.

Then, we arrive at

Yt|Zt, Y t−1 ∼ N (Ȳt|Z,t−1,Σt|Z,t−1),

where

Ȳt|Z,t−1 = Ȳt|t−1 +QtΠet, (3.13)

Ft|Z,t−1 = Ft|t−1 −QtΠΓt|t−1. (3.14)
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3.8.2 A New Particle Filter for the New Keysesian Monetary
Model

Now we illustrate how to implement the new particle filter for the New Keysesian

Monetary Model. We still exploit Hermite polynomial regressions and Gram-Charlier

density approximation to estimate the conditional density p(Yt|Zt, Y t−1). The linear

Gaussian structure of the model allows us to refine the algorithm. To facilitate the

discussion and show how the new particle filter nests simpler method, we will present

the refinement, although we can certainly avoid making use of such a special structure.

Note that this time we have an observable vector

Yt =

ytπt
rt

 = ΨXt.

The linear structure of (3.13) implies only Hermite polynomials up to two are needed,

so the regressors are set as

H(Zt, 2) =

[
1
Zt

]
.

After observable and unobservable particles are generated, we arrange them through

Yt =
[
Y 1
t Y 2

t · · · Y N
t

]
, Ht =

[
H(Z1

t , 2) H(Z2
t , 2) · · · H(ZN

t , 2)
]
.

So the parameter matrix is

Ât = (YtH′t)(HtH′−1
t .

We then have the conditional expectation

Ê(Yt|Zt) =

Ê(yt|Z1
t ) Ê(yt|Z2

t ) · · · Ê(yt|ZN
t )

Ê(πt|Z1
t ) Ê(πt|Z2

t ) · · · Ê(πt|ZN
t )

Ê(rt|Z1
t ) Ê(rt|Z2

t ) · · · Ê(rt|ZN
t )

 = ÂtHt.
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Moreover, (3.14) implies homoskedacticity holds for the multivariate regression. Hence

the conditional covariance matrix for standardization is simply

V(Yt|Zt) =
1

N
(Yt − ÂtHt)(Yt − ÂtHt)

′

Finally, since the normal distribution only have the first two nontrivial cumulants,

the particle weights can be obtained through

p(Yt|Zt) = V̂(Yt|Zt)−
1
2

1

(2π)
ny
2

exp

(
−1

2
yty
′
t

)
, where yt = V̂(Yt|Zt)−

1
2 (Yt − ‘̂E(Yt|Zt)).

3.8.3 Evaluating the New Particle Filter’s Performance

Now we evaluate the performance of the new particle filter. To rule out any indeter-

minacy, the parameter values are calibrated as in Table 3.1, according to the posterior

means reported in Lubik and Schorfheide (2004) when using the post-1982 sample

from 1982:IV to 1997:IV that excludes the Volcker-disinflation period:

Table 3.1: Calibration for Lubik and Schorfheide (2004) Model

Parameter Value Parameter Value
ψ1 2.19 ψ2 0.30
ρr 0.84 π∗ 3.43
r∗ 3.01 κ 0.58
τ−1 1.86 ρg 0.83
ρz 0.85 ρgz 0.36
σr 0.18 σg 0.18
σz 0.64



137

Solving (3.8) in the form of vector autoregression Xt = ΦXt−1 + Σεεt yields

yt
πt
rt
gt
zt

Etyt+1

Etπt+1


=



0 0 −0.90 1.62 0.59 0 0
0 0 −0.96 1.69 −0.28 0 0
0 0 0.46 0.67 −0.11 0 0
0 0 0 0.83 0 0 0
0 0 0 0 0.85 0 0
0 0 −0.44 0.76 −0.13 0 0
0 0 −0.41 0.74 0.60 0 0





yt−1

πt−1

rt−1

gt−1

zt−1

Et−1yt
Et−1πt



+



−0.19 0.51 0.41
−0.21 0.29 −0.20
0.10 0.12 −0.08

0 0.18 0
0 0.23 0.60

−0.09 0.13 −0.09
−0.09 0.32 0.42


εr,tεg,t
εz,t

 .

Note that εt = (εr,t, εg,t, εz,t)
′ are uncorrelated shocks with unit variance.

Depending on the number of observables, we have three cases:

1. One observable and two unobservables.

2. Two observables and one unobservable.

3. Three observables and no unobservable.

In the simulation study, the number of particles N is set to be 200,000 and the

sample size T is set to be 200.

We use the second case to demonstrate how well the new particle filter perform

in the weighting stage and the updating stage. Say we observe yt and πt. In a

typical period, we plot the conditional density p(Yt|Zj
t , Y

t−1) and the filtering density

p(Zt|Y t) in Figure 3·3. The results clearly demonstrate that the particle filter does a

fairly good job in obtaining the observable’s density conditional on the unobservable

as particle weights.

Finally, for all three cases, we compare the log-likelihood produced by the new

particle filter with the Kalman filter and a traditional particle filter. The Kalman



138

filter should obviously serve as a good benchmark. On the other hand, a traditional

particle filter requires the addition of measurement errors. Following the procedure of

An and Schorfheide (2007), Herbst and Schorfheide (2015), Herbst and Schorfheide

(2019) and many others, we choose the standard deviations of the measurement errors

to be 20% of the sample standard deviation of the time series. The results are plotted

in Figure 3·4-3·6. The graphs suggest for the small scale DSGE model, the new

particle filter is much more accurate than the traditional particle filter.

Remark 3.8.1 The new particle filter relies crucially on the conditional density
p(Yt|Zt, Y t−1). One concern is that when the number of observables equals to that of
states, there will be no room for unobservable particles. As it turns out, in this case
the conditional density trivially reduces to p(Yt|Y t−1), whose approximation only
requires the cumulants of Yt conditional on Y t−1. The regression method used to
estimate moments now only uses constant as the regressor. Moreover, all particles
receive the same weights and thus resampling steps can be skipped.

3.9 Conclusion

This paper has developed a new particle filter for analyzing nonlinear DSGE models.

It can avoid arbitrary measurement error specification that is commonly needed by

the traditional particle filter. The main feature of the new particle filter is that only

unobservable particles are updated and corresponding conditional density, or particle

weights, are estimated nonparametrically using series expansions. To estimate the

conditional momments used in the series expansion step, flexible regression method

is proposed. As a plus, it allows us to extend the composite likelihood framework to

a nonlinear setting, thus providng a unified econometric framewok for analyzing both

singular and nonsingular DSGE models.
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3.10 Figures
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Figure 3·1: Log-likelihood of each period (T = 1, 000, N = 200, 000):
New Particle Filter (Blue Solid) vs Traditional Particle Filter (Red
Dashed)
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Figure 3·2: Log-likelihood (T = 1, 000, N = 200, 000): New Particle
Filter (Blue Solid) vs Traditional Particle Filter (Red Dashed). Vertical
dashed-dotted lines signify true values.
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Figure 3·3: Particle Filter vs. Kalman Particle Filter. Top Panel:
Conditional Densities of Particle Filter (Blue Plus) and Kalman Par-
ticle Filter (Red Cross). Bottom Panel: Filtering Densities of Particle
Filter (Blue Solid) and Kalman Particle Filter (Red Dashed)
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Figure 3·4: New Particle Filter (Blue Solid) vs. Kalman Filter (Red
Dashed) and Traditional Particle Filter (Yellow Dotted): log-liklihood
profile for each parameter. One observable and two unobservables.
T = 200 data and N = 200, 000 particles are used. Vertical dashed-
dotted lines signify true values.
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Figure 3·5: New Particle Filter (Blue Solid) vs. Kalman Filter (Red
Dashed) and Traditional Particle Filter (Yellow Dotted): log-liklihood
profile for each parameter. Two observables and one unobservable.
T = 200 data and N = 200, 000 particles are used. Vertical dashed-
dotted lines signify true values.



144

1.7 1.8 1.9 2
-800

-790

-780

-770

2 2.5 3 3.5 4
-800

-790

-780

-770

0.5 0.55 0.6 0.65 0.7
-800

-790

-780

-770

1.5 2 2.5 3
-800

-790

-780

-770

0.2 0.25 0.3 0.35 0.4
-800

-790

-780

-770

0.7 0.75 0.8 0.85 0.9
-800

-790

-780

-770

0.7 0.75 0.8 0.85 0.9
-800

-790

-780

-770

0.8 0.82 0.84 0.86 0.88 0.9
-800

-790

-780

-770

0.16 0.18 0.2 0.22
-800

-790

-780

-770

0.16 0.18 0.2 0.22
-800

-790

-780

-770

0.4 0.5 0.6 0.7 0.8
-800

-790

-780

-770

0.3 0.35 0.4 0.45
-800

-790

-780

-770

2 3 4 5
-800

-790

-780

-770

Figure 3·6: New Particle Filter (Blue Solid) vs. Kalman Filter (Red
Dashed) and Traditional Particle Filter (Yellow Dotted): log-liklihood
profile for each parameter. Three observables and zero unobservable.
T = 200 data and N = 200, 000 particles are used. Vertical dashed-
dotted lines signify true values.



Appendix A

Proof of Chapter 1

A.1 Proof of Theorem 1.4.1

Since (ut, vt)
′ is bivariate normal and E[et|vt] = 0 by construction, et and vt must be

independent for all t. The intertemporal independence of (ut, vt)
′ implies et must be

independent of v1, . . . , vT and thus x0, . . . , xT−1. The result follows.

A.2 Proof of Theorem 1.4.2

To derive the asymptotic distribution for β̂ and δ̂, I apply the Frisch-Waugh-Lovell

theorem to simplify computation. Denote the matrix and its demeaned counterpart

X =


...

...
xt−1 ṽt
...

...

 , X =


...

...
xµt−1 ṽµt
...

...

 ,
which implies

X ′X =

[∑
xµt−1xt−1

∑
xµt−1ṽt∑

xµt−1ṽt
∑
ṽµt ṽt

]
, X ′ε =

[∑
xµt−1εt∑
ṽµt εt

]
.

Moreover, denote the demeaned Ornstein-Uhlebeck process and scaling matrix, (the

reason of whose elements’ different degrees will become obvious)

Jµc (r) = Jc(r)−
∫
Jc(r)dr, ΓT =

[
T 0
0 T 1/2

]
.
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Since the proxy variable

ṽt =
c− c̃
T

xt−1 + vt,

the resulting error term can be represented as

εt = et +
c̃− c
T

δxt−1.

For entries in Γ−1
T XXΓ−1

T ,

T−2
∑

xµt−1xt−1

=T−2
∑

x2
t−1 −

(
T−3/2

∑
xt−1

)2

⇒σ2
v

∫
Jc(r)

2dr − σ2
v

(∫
Jc(r)dr

)2

=σ2
v

∫
Jµc (r)2dr,

T−3/2
∑

xµt−1ṽt

=(c− c̃)T−5/2
∑

x2
t−1 + T−3/2

∑
xt−1vt

+ (c̃− c)T−1/2
(
T−3/2

∑
xt−1

)2

− T−5/2
∑

xt−1

∑
vt

→0,

T−1
∑

ṽµt ṽt

=(c− c̃)2T−3
∑

x2
t−1 + 2(c− c̃)T−2

∑
xt−1vt + T−1

∑
v2
t

− (c− c̃)2T−1
(
T−3/2

∑
xt−1

)2

+ 2(c̃− c)T−3
∑

xt−1

∑
vt − T−1

(
T−1/2

∑
vt

)2

→σ2
v .
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Note the off diagonal entry vanish asymptotically due to different rate of convergence

among the regressors. For entries in Γ−1
T X ε,

T−1
∑

xµt−1εt

=T−1
∑

xt−1et − T−2
∑

xt−1

∑
et

+ (c̃− c)δT−2
∑

x2
t−1 + (c− c̃)δ

(
T−3/2

∑
xt−1

)2

⇒σvσe
∫
Jc(r)dG(r)− σvσe

∫
Jc(r)drZ + (c̃− c)δσ2

v

∫
W (r)2dr

+ (c− c̃)δσ2
v

(∫
W (r)dr

)2

=σvσe

∫
W µ
c (r)dG(r) + (c̃− c)δσ2

v

∫
Jµc (r)2dr,

T−1/2(c̃− c)
∑

xµt εt

=(c− c̃)δT−3/2
∑

xt−1et − (c− c̃)2δ2T−5/2
∑

x2
t−1 + T−1/2

∑
vtet

+ (c̃− c)δT−3/2
∑

xt−1vt + (c̃− c)δT−5/2
∑

xt−1

∑
et

+ (c− c̃)2δ2T−1/2
(
T−3/2

∑
xt−1

)2

− T−3/2
∑

vt
∑

et

+ (c− c̃)δT−5/2
∑

xt−1

∑
vt

⇒σvσeZ̃,

where Z̃ is a standard normal variable. Collecting relevant terms gives[
T (β̂ − β)

T 1/2(δ̂ − δ)

]
=
(
Γ−1
T XXΓ−1

T

)−1
Γ−1
T X

′ε⇒

[
σe

∫
Jµc (r)dG(r)

σv
∫
Jµc (r)2dr

+ (c̃− c)δ
σe
σv
Z̃

]
.

Taking into account the fact that σ̂2
e → σ2

e , I obtain the convergence results for each

t-statistic under the null the

t(β0) =
T−1

∑
xµt−1εt

σ̂e
(
T−2

∑
xµt−1xt−1

)1/2



148

⇒
√

1− θ2
∫ 1

0
Jµc (r)dG(r) + (c̃− c)θ

∫ 1

0
Jµc (r)2dr

√
1− θ2(

∫ 1

0
Jµc (r)2dr)1/2

= Z +
(c̃− c)θ

(1− θ2)1/2

 1∫
0

Jµc (r)2dr

1/2

,

t(δ0) =
T−1/2

∑
ṽt
µεt

σ̂e(T−1
∑

(ṽµt ṽt))
1/2

⇒ Z̃.

A.3 Proof of Lemma 1.4.3

Following White (1958) and Satchell (1984), the quadratic form∑T
t=1 xt−1xt−α

∑T
t=1 x

2
t−1 and

∑
x2
t−1 can be writen as x′Ax and x′Bx, respectively,

where the T × T matrices A and B are defined as

A = −1

2


2α −1 . . . 0 0
−1 2α 0 0
... . . . ...
0 0 2α −1
0 0 . . . −1 0

 , B =


1 0 . . . 0 0
0 1 0 0
... . . . ...
0 0 1 0
0 0 . . . 0 0

 .

Moreover,
∑T

t=1(xt−αxt−1)2 = x′y−α2x′Bx− 2αx′Ax. Let DT be the T ×T matrix

DT =


p q . . . 0 0
q p 0 0
... . . . ...
0 0 p q
0 0 . . . q 1

 .

The joint moment generating function of x′Ax and x′By

M(u, v) = E (exp(ux′Ax+ vx′Bx))
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= (2π)−T/2
∫

exp (−x′DTy/2) dy = (detDT )−1/2,

with p = 1 + α2 + 2αu− 2v and q = −(α + u). Notice that

detDT = D(T ) = pD(T − 1)− q2D(T − 2).

Taking into account the fact that D(1) = 1 and D(2) = p− q2, I obtain

D(T ) =
1− s
r − s

rT +
1− r
s− r

sT ,

where r and s are roots of the equation x2 − px+ q2. That is,

r =
p+

√
p2 − 4q2

2
, s =

p−
√
p2 − 4q2

2
,

with

p2 − 4q2 = (1− α2)2 − 4α(1− α2)u− 4(1− α2)u2 − 4(1 + α2)v − 8αuv + 4v2

= (1− α2)

(
1− α2 − 4αu− 4u2 − 4(1 + α2)

1− α2
v − 8α

1− α2
uv +

4

1− α2
v2

)
,

where the second equation holds if |α| 6= 1.

A.4 Proof of Lemma 1.4.4

The joint moment generating funtion of x′AxT−1 and x′BxT−2 can be obtained using

mT (u, v) = M(uT−1, vT−2). For α = exp(cT−1), we have

p = 2
(
1 + (c+ u)T−1 + (c2 + cu− v)T−2

)
+O(T−3),

q = −1− (c+ u)T−1 −
(
c2/2

)
T−2 +O(T−3),

p2 − 4q2 = 4(c2 + 2cu− 2v)T−2 +O(T−3).
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Denote κ = (c2 + 2cu− 2v)1/2. It follows that

r = 1 + (c+ u+ κ)T−1 +O(T−2),

s = 1 + (c+ u− κ)T−1 +O(T−2),

and thus the joint moment generating function of
(∫ 1

0
Jc(r)dW (r),

∫ 1

0
Jc(r)

2dr
)

m(u, v) = lim
T→∞

mT (u, v)

=

{
1

2κ
exp(c+ u)[(κ− (c+ u)) exp(κ) + (κ+ (c+ u)) exp(−κ)]

}−1/2

= exp

(
−1

2
(κ+ c+ u)

){
1

2κ
[κ− (c+ u) + (κ+ (c+ u)) exp(−2κ)]

}−1/2

,

as given in Phillips (1987). Moreover,

κ = |c|
(

1− 2u

|c|
− 2v

c2

)1/2

= |c|
(

1− u

|c|
− v

c2
− u2

2c2
+O(|c|−3)

)
= −c− u+

v

c
+
u2

2c
+O(|c|−2),

which implies

exp

(
−1

2
(κ+ c+ u)

)
= exp

(
− v

2c
− u2

4c
+O(|c|−2)

)
.

Taking into account the fact that

lim
c→−∞

{
1

2κ
[κ− (c+ u) + (κ+ (c+ u)) exp(−2κ)]

}−1/2

= lim
c→−∞

{
κ− (c+ u)

2κ
+
κ+ (c+ u)

2κ exp(2κ)

}−1/2

= 1,
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we have

L(u, v) = lim
c→−∞

m[(−2c)1/2u, (−2c)v] = exp

(
u2

2
+ v

)
.

A.5 Proof of Corollary 1.4.5

Enough to show as c→ −∞,

(−2c)1/2

 1∫
0

Jc(r)dr

→ 0.

Since Jc(r) is Gaussian, it is easy to show

1∫
0

Jc(r)dr ≡ N(0, v),

where v = 1/c2 + (1/2c3)(e2c − 4ec + 3). Hence (−2c)1/2v → 0 as c → −∞, and the

result follows.

A.6 Proof of Theorem 1.4.6

Note for c ≤ 0 and θ ≤ 0,

t(β0)⇒ Z − c θ

(1− θ2)1/2

 1∫
0

Jµc (r)2dr

1/2

≤ Z.

Moreover, as c→ −∞,

Z +

(
|c|
2

)1/2
θ

(1− θ2)1/2

−2c

1∫
0

Jµc (r)2dr

1/2

→ −∞.
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It must be true that

{t(β0) > x} ⊆ {Z > x},

and thus Pr(t(β0) > x) ≤ Pr(Z > x).

A.7 Proof of Theorem 1.4.7

Since β = β0 + b/T , now we have

T
(
β̂ − β

)
= T

(
β̂ − β0

)
+ b+ op(1).

It follows that

t(β0) =
T−1

∑
xµt−1εt

σ̂e
(
T−2

∑
xµt−1xt−1

)1/2
+

b

σ̂e
(
T−2

∑
xµt−1xt−1

)−1/2

⇒ Z +

(
(c̃− c)θ

(1− θ2)1/2
+

b

(1− θ2)1/2

) 1∫
0

Jµc (r)2dr

1/2

.

A.8 Proof of Lemma 1.5.1

Recall the joint weak convergence[
T−1/2

∑T
t=1 vt

T−1/2
∑T

t=1 et

]
⇒
[
σvW (1)
σeG(1)

]
.

By the continuous mapping theorem, the result follows.
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A.9 Proof of Theorem 1.5.2

For k = 1, . . . ,m+ 1, we have for each segment

T−1

Tk∑
t=Tk−1+1

xµkt−1εt ⇒ σeσv

λk∫
λk−1

Jµkc (r)dG(r)− σ2
vδ

λk∫
λk−1

Jµkc (r)2dr,

T−2

Tk∑
t=Tk−1+1

xµk2
t−1 ⇒ σ2

v

λk∫
λk−1

Jµkc (r)2dr,

where Jµkc (r) = Jc(r)−(λk−λk−1)−1
∫ λk
λk−1

Jc(s)ds. By Continuous Mapping Theorem,

tk(β0)⇒

√
1− θ2

∫ λk
λk−1

Jµkc (r)dG(r)− cθ
∫ λk
λk−1

Jµkc (r)2dr

√
1− θ2

(∫ λk
λk−1

Jµkc (r)2dr
)1/2

≤

∫ λk
λk−1

Jµkc (r)dG(r)(∫ λk
λk−1

Jµkc (r)2dr
)1/2

= qk,

where the inequality holds almost sure because 0 ≤ θ ≤ 1 and c ≤ 0.



Appendix B

Proof of Chapter 2

B.1 Proof of Theorem 2.3.1

Let V j = (Trj)
−1∑bTλ0jc

t=bTλ0j−1c+1
Vt, µ2,j (u) = E(VbTuc)

2 for T 0
j−1 ≤ Tu ≤ T 0

j and

µ2,j = r−1
j

∫ λ0j
λ0j−1

µ2,j (u) du. By Assumption 2.2.1-2.2.2-(i), the latter implying ergod-

icity, it follows that for fixed k ≥ 0 that

Γ̂ (k) =

m0+1∑
j=1

rj
1

Trj

bTλ0jc∑
t=bTλ0j−1c+1+k

VtVt−k −

m0+1∑
j=1

rj
1

Trj

bTλ0jc∑
t=bTλ0j−1c+1

Vt


2

+ oa.s. (1)

=

m0+1∑
j=1

λ0j∫
λ0j−1

c (u, k) du+

m0+1∑
j=1

rj
1

Trj

bTλ0jc∑
t=bTλ0j−1c+1+k

E (Vt)E (Vt−k)

−

m0+1∑
j=1

rj
1

Trj

bTλ0jc∑
t=bTλ0j−1c+1

Vt


2

+O
(
T−1

)
+ oa.s. (1)

=

1∫
0

c (u, k) du+

m0+1∑
j=1

rj
1

Trj

bTλ0jc∑
t=bTλ0j−1c+1+k

E (Vt)E (Vt−k)

−

(
m0+1∑
j=1

rjV j

)2

+O
(
T−1

)
+ oa.s. (1)

=

1∫
0

c (u, k) du+

m0+1∑
j=1

rj
1

Trj

bTλ0jc∑
t=bTλ0j−1c+1+k

µ2 (t/T )−

(
m0+1∑
j=1

rjV j

)2

+O
(
T−1

)
+ oa.s. (1) ,

154
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where we have used E (Vt−k) − E (Vt) = O (k/T ) by local stationarity in the third

equality. Note that by ergodicity and an approximation to Riemann sums, we have

m0+1∑
j=1

rjV j −
m0+1∑
j=1

rjµj =

m0+1∑
j=1

rjV j −
m0+1∑
j=1

rjE
(
V j

)
+

m0+1∑
j=1

rjE
(
V j

)
−

m0+1∑
j=1

rjµj

= oa.s. (1) +O
(
T−1

)
. (B.1)

Basic manipulations show that

∑
j2 6=j1

rj1rj2
(
µj2 − µj1

)2

=
∑
j2 6=j1

rj1rj2
(
µ2
j2

+ µ2
j1
− 2µj2µj1

)
=

∑
1≤j2≤m0+1

rj2µ
2
j2

(1− rj2) +
∑

1≤j1≤m0+1

rj1µ
2
j1

(1− rj1)− 2
∑
j1 6=j2

rj1rj2µj2µj1

= 2
∑

1≤j≤m0+1

rjµ
2
j − 2

∑
1≤j≤m0+1

r2
jµ

2
j − 2

∑
j1 6=j2

rj1rj2µj2µj1 . (B.2)

Note that by Cauchy–Schwarz inequality,

(Trj − k)

bTλ0jc∑
t=bTλ0j−1c+1+k

µ2 (t/T ) ≥

 bTλ0jc∑
t=bTλ0j−1c+1+k

µ (t/T )


2

. (B.3)

Thus,

m0+1∑
j=1

rj
1

Trj

bTλ0jc∑
tbTλ0j−1c+1+k

µ2 (t/T )

=

m0+1∑
j=1

rj
1

Trj (Trj − k)
(Trj − k)

bTλ0jc∑
t=bTλ0j−1c+1+k

µ2 (t/T )

≥
m0+1∑
j=1

rj
1

Trj (Trj − k)

 bTλ0jc∑
t=bTλ0j−1c+1+k

µ (t/T )


2
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=
∑

1≤j≤m0+1

rjµ
2
j + o (1) . (B.4)

Using (B.1)-(B.4) we have,

Γ̂ (k) =

1∫
0

c (u, k) du+

m0+1∑
j=1

rj
1

Trj

bTλ0jc∑
t=bTλ0j−1c+1+k

µ2 (t/T )−

(
m0+1∑
j=1

rjV j

)2

+ oa.s. (1)

≥
1∫

0

c (u, k) du+

m0+1∑
j=1

rjµ2,j −

(
m0+1∑
j=1

rjV j

)2

+O
(
T−1

)
+ oa.s. (1)

=

1∫
0

c (u, k) du+ 2−1
∑
j1 6=j2

rj1rj2
(
µj2 − µj1

)2
+O

(
T−1

)
+ oa.s. (1) . (B.5)

The claim that Γ̂ (k) ≥ d P-a.s. as k → ∞ follows from Assumption 2.2.2-(i) since

this implies that c (u, k) → 0 as k → ∞ and from the fact that the second term

on the right-hand side of (B.5) does not depend on k. If in addition it holds that

µj (t/T ) = µj for j = 1, . . . , m0 + 1, then (B.3) holds with equality and the result

follows as a special case of (B.5).

B.2 Proof of Theorem 2.3.2

Lemma B.2.1 Assume that {Vt,T} satisfies Definition 2.2.1. Under Assumption
2.2.1-2.2.2 and 2.3.1-(ii),

∑
j1 6=j2

1

T

bTλ0j1c∑
t=bTλ0j1−1c+1

bTλ0j2c∑
s=bTλ0j2−1c+1

E ((Vt − µ (t/T )) (Vs − µ (s/T ))) exp (−iωl (t− s))

= o (1) .

Proof. Let rj1,j2 = max {rj1 , rj2} and rj1,j2 = min {rj1 , rj2} . We consider the case

of adjacent regimes (i.e., j2 = j1 + 1) which also provides an upper bound for

non-adjacent regimes due to the short memory property. For any k = s − t =
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1, . . . ,
⌊
Trj1,j2

⌋
there are k pairs in the above sum. The double sum above (over t

and s) can be split into

T−1

bCTκc∑
k=1

∣∣Γ{1:bCTκc} (·, k)
∣∣+ T−1

bhT c∑
k=bCTκc+1

∣∣Γ{bCTκc+1:bhT c} (·, k)
∣∣ (B.6)

+ T−1

bTrj1,j2c−1∑
k=bhT c+1

∣∣∣Γ{bhT c+1:bTrj1,j2c−1} (·, k)
∣∣∣+ T−1

bTrj1,j2c∑
k=bTrj1,j2c

∣∣∣Γ{rj1,j2 :rj1,j2} (·, k)
∣∣∣

where C > 0, 0 < h < 1 with bhT c <
⌊
Trj1,j2

⌋
− 1, and ΓS (·, k) is the sum of the

autocovariances at lag k computed at the time points corresponding to k ∈ S. Note

that the term |exp (−iωl (±k))| can be bounded by some constant. The sums run over

only k > 0 because by symmetry Γu (k) = Γu−k/T (−k). Consider the first sum in

(B.6). This is of order O (T−1T 2κ) which goes to zero given κ < 1/2. The second sum

is also negligible using the following arguments. By Assumption 2.3.1-(ii), |Γ (u, k)| =

Cu,kk
−m with m > 2 and choosing C large enough yields that the second sum of (B.6)

converges to zero. In the third sum, the number of summands grows at rate O (T )

and for each lag k there are O (T ) autocovariances. However, by Assumption 2.3.1-(ii)

each autocovariance is O (T−m) . Thus, the bound is O (T−1T 2−m) which goes to zero

as T →∞. The difference between the arguments used for the third sum and fourth

sums is that now we do not have O (T ) autocovariances for each lag k. Thus, the

bound for the fourth sum cannot be greater than the bound for the third sum. Thus,

the fourth sum also converges to zero.

Proof of Theorem 2.3.2. We have,

IT (ωl) =

∣∣∣∣∣∣∣
1√
T

m0+1∑
j=1

bTλ0jc∑
t=bTλ0j−1c+1

exp (−iωlt)Vt

∣∣∣∣∣∣∣
2



158

=

∣∣∣∣∣∣∣
1√
T

m0+1∑
j=1

bTλ0jc∑
t=bTλ0j−1c+1

(Xt − µ (t/T )) exp (−iωlt)

+
1√
T

m0+1∑
j=1

bTλ0jc∑
t=bTλ0j−1c+1

µ (t/T ) exp (−iωlt)

∣∣∣∣∣∣∣
2

.

From Assumption 2.3.1,

∣∣∣∣∣
m0+1∑
j=1

bTλ0jc∑
t=bTλ0j−1c+1

µ (t/T ) exp (−iωlt)

∣∣∣∣∣
2

≥

∣∣∣∣∣∣∣
m0+1∑
j=1

Bj

bTλ0jc∑
t=bTλ0j−1c+1

exp (−iωlt)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
m0+1∑
j=1

Bj exp
(
−iωl

(⌊
Tλ0

j−1

⌋
+ 1
)) bTλ0jc−bTλ0j−1c−1∑

t=0

exp (−iωlt)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣ exp (−iωl)
1− exp (−iωl)

m0+1∑
j=1

Bj exp
(
−iωl

(⌊
Tλ0

j−1

⌋))∣∣∣∣∣
2

∣∣1− exp
(
−iωl

(⌊
Tλ0

j

⌋
−
⌊
Tλ0

j−1

⌋))∣∣2
=

∣∣∣∣∣ exp (−iωl)
1− exp (−iωl)

m0+1∑
j=1

Bj

(
exp

(
−iωl

(⌊
Tλ0

j−1

⌋))
− exp

(
−iωl

⌊
Tλ0

j

⌋))∣∣∣∣∣
2

,

using the formula for the first n-th terms of a geometric series
∑n−1

k=0 ar
k = a

∑n−1
k=0 r

k =

a (1− rn) / (1− r) . Then, using summation by parts,

exp (−iωj)
1− exp (−iωj)

m0+1∑
j=1

Bj

(
exp

(
−iωl

(⌊
Tλ0

j−1

⌋))
− exp

(
−iωl

⌊
Tλ0

j

⌋))
=

exp (−iωj)
1− exp (−iωj)

[
B1 −Bm0+1 −

m0∑
j=1

(Bj −Bj+1) exp
(
−iωl

⌊
Tλ0

j

⌋)]
.
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By Lemma B.2.1, it is sufficient to consider the cross-products within each regime j,

E (IT (ωl))

≥
m0+1∑
j=1

rj
1

Trj
E

bTλ0jc∑
t=bTλ0j−1c+1

bTλ0jc∑
s=bTλ0j−1c+1

(Vt − µ (t/T )) (Vs − µ (s/T )) exp (−iωl (t− s))

+
∑∑
j1 6=j2

1

T
E

bTλ0j1c∑
t=bTλ0j1−1c+1

bTλ0j2c∑
s=bTλ0j2−1c+1

(Vt − µ (t/T )) (Vs − µ (s/T )) exp (−iωl (t− s))

+

∣∣∣∣∣ 1√
T

exp (−iωl)
1− exp (−iωl)

m0+1∑
j=1

Bj

(
exp

(
−iωl

(⌊
Tλ0

j−1

⌋))
− exp

(
−iωl

⌊
Tλ0

j

⌋))∣∣∣∣∣
2

+ o (1)

=

m0+1∑
j=1

E
1

T

bTλ0jc∑
t=bTλ0j−1c+1

(Vt − µ (t/T ))2

+
2

Trj

bTrjc−1∑
k=1

bTλ0jc∑
t=bTλ0j−1c+k+1

Γt/T (k) exp (−iωlk)


+

∣∣∣∣∣ 1√
T

exp (−iωl)
1− exp (−iωl)

m0+1∑
j=1

Bj

(
exp

(
−iωl

(⌊
Tλ0

j−1

⌋))
− exp

(
−iωl

⌊
Tλ0

j

⌋))∣∣∣∣∣
2

+ o (1) .

Next, using the definition of f (u, ωl) , e
−2iωl = 1 by Euler’s formula and letting

ωl → 0 we have,

E (IT (ωl))

≥
m0+1∑
j=1


λ0j∫

λ0j−1

c (u, 0) du+ 2
∞∑
k=1

λ0j∫
λ0j−1

c (u, k) exp (−iωlk) du


+

1

T

1

|1− exp (−iωl)|2

∣∣∣∣∣
[
B1 −Bm0+1 − (1 + o (1))

m0∑
j=1

(Bj −Bj+1) exp
(
−2πilλ0

j

)]∣∣∣∣∣
2

+ o (1)
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= 2π

m0+1∑
j=1

λ0j∫
λ0j−1

f (u, ωl) du

+
1

T

1

|1− exp (−iωl)|2

∣∣∣∣∣
[
B1 −Bm0+1 − (1 + o (1))

m0∑
j=1

(Bj −Bj+1) exp
(
−2πilλ0

j

)]∣∣∣∣∣
2

+ o (1)

= 2π

1∫
0

f (u, ωl) du+
1

Tω2
l

∣∣∣∣∣
[
B1 −Bm0+1 −

m0∑
j=1

(Bj −Bj+1) exp
(
−2πilλ0

j

)]∣∣∣∣∣
2

+ o (1) .

(B.7)

By Assumption 2.2.1-(ii), the first term of (B.7) is bounded for all frequencies ωj.

Since B1, . . . , Bm0+1 are fixed, if Tω2
l → 0 then the order of the second term of

(B.7) is O((Tω2
l )
−1). Note that as ωl → 0 there are some values of l for which the

corresponding term involving |·|2 on the right-hand side of (B.7) is equal to zero

[see the argument in Mikosch and Stărică (2004)]. In such a case, E (IT (ωl)) ≥

2π
∫ 1

0
f (u, ωl) du > 0. For the other values of {l} as ωl → 0, the second term of (B.7)

diverges to infinity. The outcome is that there are frequencies close to ωl = 0 for

which E (IT (ωl))→∞.

B.3 Proof of Theorem 2.3.3

We consider the case k ≥ 0. The case k < 0 follows similarly. Consider any u ∈

(0, 1) such that T 0
j /∈ [Tu+ k/2− n2,T/2 + 1, . . . , Tu+ n2,T/2] for all j = 1, . . . , m0.

Theorem S.B.3 in Casini (2019) showed that

E [ĉT (u, k)] = c (u0, k) +
1

2
(n2,T/T )2

[
∂2

∂2u
c (u, k)

]
+ o

(
(n2,T/T )2)+O (1/n2,T ) .

(B.8)
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Since n2,T → ∞ and n2,T/T → 0, E [ĉT (u, k)] = c (u0, k) + o (1) . The same afore-

mentioned theorem shows that n2,TVar [ĉT (u, k)] = OP (1). This combined with (B.8)

yields part (i) of the theorem.

Next, we consider case (ii-a) with (T 0
j − (Tu+ k/2− n2,T/2 + 1))/n2,T → γ ∈

(0, 1). We have,

ĉT (u, k)

= n−1
2,T

n2,T∑
s=0

VbTuc+k/2−n2,T /2+s+1VbTuc+k/2−n2,T /2+s+1−k −

(
n−1

2,T

n2,T∑
s=0

VbTuc−n2,T /2+s+1

)2

= n−1
2,T

T 0
j −(bTuc+k/2−n2,T /2+1)∑

s=0

VbTuc+k/2−n2,T /2+s+1VbTuc+k/2−n2,T /2+s+1−k

+ n−1
2,T

n2,T∑
s=T 0

j −(bTuc+k/2−n2,T /2)

VbTuc+k/2−n2,T /2+s+1VbTuc+k/2−n2,T /2+s+1−k

−
(
n−1

2,T

T 0
j −(bTuc+k/2−n2,T /2+1)∑

s=0

VbTuc+k/2−n2,T /2+s+1

+ n−1
2,T

n2,T∑
s=T 0

j −(bTuc+k/2−n2,T /2)

VbTuc−n2,T /2+s+1

)2

= n−1
2,T

T 0
j −(bTuc+k/2−n2,T /2+1)∑

s=0

(
VbTuc+k/2−n2,T /2+s+1VbTuc+k/2−n2,T /2+s+1−k

− E
(
VbTuc+k/2−n2,T /2+s+1

)
E
(
VbTuc+k/2−n2,T /2+s+1−k

))
+ n−1

2,T

n2,T∑
s=T 0

j −(bTuc+k/2−n2,T /2)

(
VbTuc+k/2−n2,T /2+s+1VbTuc+k/2−n2,T /2+s+1−k

− E
(
VbTuc+k/2−n2,T /2+s+1

)
E
(
VbTuc+k/2−n2,T /2+s+1−k

))

+ n−1
2,T

T 0
j −(bTuc+k/2−n2,T /2+1)∑

s=0

E
(
VbTuc+k/2−n2,T /2+s+1

)
E
(
VbTuc+k/2−n2,T /2+s+1−k

)
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+ n−1
2,T

n2,T∑
s=T 0

j −(bTuc+k/2−n2,T /2)

E
(
VbTuc+k/2−n2,T /2+s+1

)
E
(
VbTuc+k/2−n2,T /2+s+1−k

)

−
(
n−1

2,T

T 0
j −(bTuc+k/2−n2,T /2+1)∑

s=0

VbTuc−n2,T /2+s+1 (B.9)

+ n−1
2,T

n2,T∑
s=T 0

j −(bTuc+k/2−n2,T /2)

VbTuc−n2,T /2+s+1

)2

+ oP (1)

≥ γc
(
λ0
j , k
)

+ (1− γ) c (u, k) + γµj
(
λ0
j

)2
+ (1− γ)µj+1 (u)2

−
(
γµj

(
λ0
j

)
+ (1− γ)µj+1 (u)

)2
+ oP (1)

= γc
(
λ0
j , k
)

+ (1− γ) c (u, k) + γ (1− γ)
(
µj
(
λ0
j

)
− µj+1 (u)

)2
+ oP (1) . (B.10)

Consider the case (ii-b) with (T 0
j − (bTuc+ k/2− n2,T/2 + 1))/n2,T → 0. The other

sub-case follows by symmetry. Eq. (B.9) continues to hold. The first term, third

term and the first summation of the last term on the right-hand side of (B.9) are

negligible. Thus, using ergodicity, implied by Assumption 2.2.1-2.2.2-(i),

ĉT (u, k) = c (u, k) +

n−1
2,T

n2,T∑
s=T 0

j −(bTuc+k/2−n2,T /2)

E
(
VbTuc+k/2−n2,T /2+s+1

)
E
(
VbTuc+k/2−n2,T /2+s+1

)
− µ (u)2 + oP (1)

= c (u, k) + µj+1 (u)2 − µj+1 (u)2 + oP (1) = c (u, k) + oP (1) ,

where we have used the smoothness of E(Xt) implied by local stationarity. The

second claim of the lemma follows from Assumption 2.2.2-(i) since this implies that

supu∈[0, 1] c (u, k) → 0 as k → ∞ and the fact that the third term on the right-

hand side of (B.10) does not depend on k. Thus, Γ̂DK (k) ≥ d∗T + oP (1) where d∗T =

(nT/T ) γ (1− γ) (µj
(
λ0
j

)
− µj+1 (u))2 > 0 and d∗T → 0 since nT/T → 0.
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B.4 Proof of Theorem 2.3.4

Consider first any u ∈ (0, 1) such that T 0
j /∈ [bTuc − nT/2 + 1, . . . , bTuc+ nT/2] for

all j = 1, . . . , m0. Theorem 3.3 in Casini and Perron (2020a) shows that

E (IL,T (u, ωl)) (B.11)

=

∣∣∣∣∣ 1
√
nT

nT−1∑
s=0

VbTuc−nT /2+s+1,T exp (−iωls)

∣∣∣∣∣
2

= f (u, ωl) +
1

6

(nT
T

)2 ∂2

∂u2
f (u, ωl) + o

((nT
T

)2
)

+O

(
log (nT )

nT

)
. (B.12)

By Assumption 2.2.1 the absolute value of the first term on the right-hand side

is bounded for all frequencies ωl. By Assumption 2.3.2-(iii) |(∂2/∂u2) f (u, ωl)| is

bounded and, since nT/T → 0, the second term converges to zero. Similarly, the

third and fourth terms are negligible. Thus, E (IL,T (u, ωl)) is bounded below by

f (u, ωl) > 0 as ωl → 0 which establishes part (i). Now we consider to part (ii). We

begin with case (a). We only focus on the sub-case (T 0
j −(bTuc − nT/2 + 1))/nT → γ

with γ ∈ (0, 1). We have

IL,T (ωl)

=

∣∣∣∣∣ 1
√
nT

T 0
j −(bTuc−nT /2+1)∑

s=0

VbTuc−nT /2+s+1,T exp (−iωls) +

nT−1∑
s=T 0

j −(bTuc−nT /2)

VbTuc−nT /2+s+1,T exp (−iωls)

∣∣∣∣∣
2

=
1

nT

∣∣∣∣T
0
j −(bTuc−nT /2+1)∑

s=0

(
VbTuc−nT /2+s+1,T − µ ((bTuc − nT/2 + s+ 1) /T )

)
exp (−iωls)

+

nT−1∑
s=T 0

j −(bTuc−nT /2)

(
VbTuc−nT /2+s+1,T − µ ((bTuc − nT/2 + s+ 1) /T )

)
exp (−iωls)
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+

nT−1∑
s=0

µ ((bTuc − nT/2 + s+ 1) /T ) exp (−iωls)
∣∣∣∣2. (B.13)

Using Assumption 2.3.2, we have∣∣∣∣∣
nT−1∑
s=0

µ ((bTuc − nT/2 + s+ 1) /T ) exp (−iωls)

∣∣∣∣∣
2

≥∣∣∣∣∣∣Bj

T 0
j −(bTuc−nT /2+1)∑

s=0

exp (−iωls) +Bj+1

nT−1∑
s=T 0

j −(bTuc−nT /2)

exp (−iωls)

∣∣∣∣∣∣
2

. (B.14)

Note that

Bj

T 0
j −(bTuc−nT /2+1)∑

s=0

exp (−iωls) +Bj+1

nT−1∑
s=T 0

j −(bTuc−nT /2)

exp (−iωls)

= Bj

T 0
j −(bTuc−nT /2+1)∑

s=0

exp (−iωls) (B.15)

+Bj+1 exp
(
−iωl

(
T 0
j − (bTuc − nT/2)

)) nT−1−(T 0
j −(bTuc−nT /2))∑
s=0

exp (−iωls) .

Focusing on the second term on the right-hand side above,

n−1
T

∣∣∣∣∣∣Bj+1

nT−1∑
s=T 0

j −(bTuc−nT /2)

exp (−iωls)

∣∣∣∣∣∣
2

= n−1
T

∣∣∣∣∣∣∣Bj+1 exp
(
−iωl

(
T 0
j − (bTuc − nT/2)

)) nT−1−(T 0
j −(bTuc−nT /2))∑
s=0

exp (−iωls)

∣∣∣∣∣∣∣
2

= n−1
T

∣∣∣∣∣Bj+1 exp
(
−iωl

(
T 0
j − (bTuc − nT/2)

))
1− exp

(
−iωl

(
nT −

(
T 0
j − (bTuc − nT/2)

)))
1− exp (−iωl)

∣∣∣∣∣
2
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= n−1
T

∣∣∣∣∣Bj+1

exp
(
−iωl

(
T 0
j − (bTuc − nT/2)

))
− exp (−iωlnT )

1− exp (−iωl)

∣∣∣∣∣
2

. (B.16)

We show that the above equation diverges to infinity as ωl → 0 with nTω
2
l → 0.

If nTωl → a ∈ (0, ∞) then Re (exp (−iωlnT )) 6= 1 and the order is determined by

the denominator. As in the proof of Theorem 2.3.2, |1 − exp(−iωl)|2 = ω2
l . Since

nTω
2
l → 0, the right-hand side above diverges. If nTωl → 0, we apply L’Hôpital’s rule

to obtain

n−1
T

∣∣∣∣∣Bj+1

−i
(
T 0
j − (bTuc − nT/2)

)
+ inT

i

∣∣∣∣∣
2

= n−1
T B2

j+1

(
−
(
T 0
j − (bTuc − nT/2)

)2
+ n2

T −
(
T 0
j − (bTuc − nT/2)

)
nT

)
= O

(
n2
T/nT

)
= O (nT ) ,

which shows that the right-hand side of (B.16) diverges. A similar argument can be

applied to the first term on the right-hand side of (B.15) and to the product of the

latter term and the complex conjugate of the second term on the right-hand side of

(B.16).

It remains to consider case (b) and the sub-case T 0
j − (bTuc− nT/2 + 1)/nT → 0.

The other sub-case follows by symmetry. We have (B.13) and (B.14). Note that,∣∣∣∣∣ 1
√
nT
Bj+1

nT−1∑
s=T 0

j −(bTuc−nT /2)

exp (−iωls)

∣∣∣∣∣
2

=

∣∣∣∣∣∣ 1
√
nT
Bj+1

nT−1∑
s=0

exp (−iωls)−
1
√
nT
Bj+1

T 0
j −(bTuc−nT /2)−1∑

s=0

exp (−iωls)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣− 1
√
nT
Bj+1

T 0
j −(bTuc−nT /2)−1∑

s=0

exp (−iωls)

∣∣∣∣∣∣
2

→ 0.
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Thus, we have

E (ILT (ωl))

=
1

nT

∣∣∣∣∣
( T 0

j −(bTuc−nT /2+1)∑
s=0

(
VbTuc−nT /2+s+1,T

−µ ((bTuc − nT/2 + s+ 1) /T )

)
exp (−iωls)

)

+

nT−1∑
s=T 0

j −(bTuc−nT /2)

(
VbTuc−nT /2+s+1,T − µ ((bTuc − nT/2 + s+ 1) /T )

)
exp (−iωls)

∣∣∣∣∣
2

+ o (1) .

Note that the first sum above involves at most C <∞ summands. So the first term

is negligible. The expectation of the product of the first term and the conjugate of

the second term is negligible by using arguments similar to the proof in Lemma B.2.1

with nT in place of T . Thus, the limit of E (IT (ωl)) is equal to the right-hand side of

(B.12) plus additional o (1) terms.
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