
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2021

Fleet management strategies for
urban Mobility-on-Demand systems

https://hdl.handle.net/2144/43922
Boston University

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

FLEET MANAGEMENT STRATEGIES FOR URBAN

MOBILITY-ON-DEMAND SYSTEMS

by

HARSHAL ANIL CHAUDHARI

B.E., Birla Institute of Technology and Science, Pilani, 2013
M.S., Boston University, 2015

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2021

c© 2021 by
HARSHAL ANIL CHAUDHARI
All rights reserved

Approved by

First Reader

Evimaria Terzi, Ph.D.
Professor of Computer Science

Second Reader

John W. Byers, Ph.D.
Professor of Computer Science

Third Reader

Mark Crovella, Ph.D.
Professor of Computer Science

The people who are crazy enough
to think they can change

the world are the ones who do.

– Apple’s ‘Think Different’ commercial, 1997.

iv

Acknowledgments

“They say the secret of success is being at the right place at the right

time. But since you never know when the right time is going to be, I

figure the trick is to find the right place, and just hang around!”

– Calvin, in the comic book ‘Calvin and Hobbes’.

The truth of the matter is that I took the words of Bill Watterson a tad bit too

seriously, but the time spent at Boston University has unequivocally been one of

the most beautiful chapters of my life so far. I have so many great experiences and

memories that will last a lifetime. So, I dedicate this dissertation to all the great

individuals I met along the way, to all those who inspired it but may not read it.

First, I am incredibly grateful to have found two amazing research advisors in

Professor Evimaria Terzi and Professor John Byers. Evimaria’s open-minded and

cheerful guidance has made my research work an enjoyable experience. John’s broad

vision and attention to detail have undoubtedly raised the quality of my work. When

I felt confused, both of them were always there to guide me out of the troubled waters

and help me find my way. My Ph.D. work would have been impossible without their

generous help and guidance.

I would like to extend my sincere gratitude to Professor Michael Mathioudakis,

whose patience and help during the initial stages of my Ph.D. contributed to a sig-

nificant part of this dissertation. I would also like to thank the other members of my

dissertation committee. Professor Manos Athanassoulis introduced me to exciting

problems outside of my primary field of research and made my last few years in the

program thoroughly enjoyable. Professor Mark Crovella was always an encouraging

presence in the department. Having followed his impactful research, I hope to work

v

with him in the future. I am very grateful to the amazing colleagues and friends in the

department front office whose timely help and support were pivotal to my research.

Meanwhile, my life in Boston has been full of great memories with my peers and

friends. From my friends within our research community (Giovanni, Harry, Andy,

Panayota, Sofia, Thomas, Gavin, Sanaz, Isidora, Konstantinos, etc.), to my friends

from other walks of life (Alexander, Marin, Joan, Dana, Kirstie, Annika, Mason,

Jessica, Andrea, Tanmaya, Suraj, Gabriel, etc.), we had so much fun together. I will

never forget the time we spent hanging out together, trying great food, making jokes

about one another, and playing board games. I would like to thank them for putting

up with my eccentricities and wish them all the best. A special shoutout to Marley,

whose constant warmth and companionship I could not repay even with a lifetime of

dog treats. But I will try anyway. Last but not least, I want to thank my brother,

Pratik, for our numerous insightful discussions and my parents, Anil and Jyotsna, for

their words of support and encouragement.

This journey may have reached its ceremonial end, but it would continue to be

played out over and over again in the quietest chambers of my mind.

vi

FLEET MANAGEMENT STRATEGIES FOR URBAN

MOBILITY-ON-DEMAND SYSTEMS

HARSHAL ANIL CHAUDHARI

Boston University, Graduate School of Arts and Sciences, 2021

Major Professor: Evimaria Terzi, Ph.D.
Professor of Computer Science

ABSTRACT

In recent years, the paradigm of personal urban mobility has radically evolved as an

increasing number of Mobility-on-Demand (MoD) systems continue to revolutionize

urban transportation. Hailed as the future of sustainable transportation, with signif-

icant implications on urban planning, these systems typically utilize a fleet of shared

vehicles such as bikes, electric scooters, cars, etc., and provide a centralized matching

platform to deliver point-to-point mobility to passengers. In this dissertation, we

study MoD systems along three operational directions – (1) modeling: developing

analytical models that capture the rich stochasticity of passenger demand and its im-

pact on the fleet distribution, (2) economics: devising strategies to maximize revenue,

and, (3) control: developing coordination mechanisms aimed at optimizing platform

throughput.

First, we focus on the metropolitan bike-sharing systems where platforms typ-

ically do not have access to real-time location data to ascertain the exact spatial

distribution of their fleet. We formulate the problem of accurately predicting the

fleet distribution as a Markov Chain monitoring problem on a graph representation

of a city. Specifically, each monitor provides information on the exact number of bikes

vii

transitioning to a specific node or traversing a specific edge at a particular time. Un-

der budget constraints on the number of such monitors, we design efficient algorithms

to determine appropriate monitoring operations and demonstrate their efficacy over

synthetic and real datasets.

Second, we focus on the revenue maximization strategies for individual strategic

driving partners on ride-hailing platforms. Under the key assumption that large-scale

platform dynamics are agnostic to the actions of an individual strategic driver, we

propose a series of dynamic programming-based algorithms to devise contingency

plans that maximize the expected earnings of a driver. Using robust optimization

techniques, we rigorously reason about and analyze the sensitivity of such strategies

to perturbations in passenger demand distributions.

Finally, we address the problem of large-scale fleet management. Recent ap-

proaches for the fleet management problem have leveraged model-free deep reinforce-

ment learning (RL) based algorithms to tackle complex decision-making problems.

However, such methods suffer from a lack of explainability and often fail to gener-

alize well. We consider an explicit need-based coordination mechanism to propose a

non-deep RL-based algorithm that augments tabular Q-learning with a combinatorial

optimization problem. Empirically, a case study on the New York City taxi demand

enables a rigorous assessment of the value, robustness, and generalizability of the

proposed approaches.

viii

Contents

1 Introduction 1

1.1 Rise of Mobility-on-Demand Systems 2

1.2 Operational Challenges . 3

1.3 Summary of Contributions . 4

1.3.1 Fleet Monitoring . 4

1.3.2 Driver Revenue Maximization 5

1.3.3 Fleet Management . 5

1.4 Related Publications . 6

2 Literature Review 7

2.1 Bike-sharing Systems . 7

2.1.1 Station Location . 8

2.1.2 Fleet Size and Station Inventory 8

2.1.3 Vehicle Rebalancing . 9

2.2 Ride-sharing Systems . 10

2.2.1 Taxi Fleet Optimization . 10

2.2.2 Vehicle Repositioning . 11

2.2.3 Capacity Repositioning . 12

2.2.4 Platform Studies . 13

3 Fleet Monitoring 15

3.1 Background . 17

3.2 Problem Setup . 19

ix

3.2.1 Problem Statement . 26

3.3 Greedy Algorithm for Node-Monitoring 27

3.4 Algorithms for Edge-Monitoring 29

3.4.1 The EdgeDP Algorithm . 29

3.4.2 The EdgeGreedy Algorithm 32

3.5 Data and Experiments . 33

3.5.1 Experimental Setup . 33

3.5.2 Experimental Results . 39

4 Driver Revenue Maximization 50

4.1 Problem Setup . 52

4.1.1 Modeling the City . 52

4.1.2 Modeling the Driver . 54

4.1.3 Computing Driver Earnings 55

4.1.4 Problem Statement . 56

4.2 Driver Strategies . 56

4.3 Maximizing Earnings under Uncertainty 59

4.3.1 Modeling Uncertainty . 60

4.3.2 The RobustEarnings Problem 61

4.4 Robust Dynamic Programming . 61

4.4.1 Dynamic Program Formulation 62

4.4.2 Bisection Algorithm . 63

4.5 Data and Experiments . 67

4.5.1 Data Pre-processing . 67

4.5.2 Experimental Results . 74

5 Fleet Management 82

5.1 Problem Setup . 84

x

5.1.1 City Attributes . 84

5.1.2 Model Attributes . 86

5.1.3 Problem Statement . 87

5.2 Learning Framework . 88

5.2.1 Model-based Reinforcement Learning Algorithm 89

5.2.2 Exploratory Phase . 91

5.2.3 Exploitative Phase . 91

5.3 Data and Experiments . 98

5.3.1 Data Pre-processing . 99

5.3.2 Experimental Results . 100

6 Conclusion 113

References 116

Curriculum Vitae 128

xi

List of Tables

3.1 Comparison of greedy algorithms with the best-performing baselines . 38

xii

List of Figures

3·1 Node-Monitoring on Hubway dataset 39

3·2 Edge-Monitoring on Hubway dataset 40

3·3 Node-Monitoring Geo dataset . 43

3·4 Edge-Monitoring Geo dataset . 43

3·5 Node-Monitoring AS dataset . 44

3·6 Edge-Monitoring AS dataset . 44

3·7 Node-Monitoring BA dataset . 45

3·8 Edge-Monitoring BA dataset . 45

3·9 Node-Monitoring Grid dataset . 46

3·10 Edge-Monitoring Grid dataset . 46

3·11 Boston stations picked as k = 5 solution for Node-Monitoring on

Hubway dataset . 47

3·12 Pairs of Boston stations picked as k = 10 solution for Edge-Monitoring

on Hubway dataset . 48

4·1 Probability of finding a passenger across New York City zones at dif-

ferent times . 68

4·2 States of Skellam distribution . 70

4·3 Average daily earnings for different strategies 73

4·4 Comparison of preferred relocation destinations between relocation and

flexible-relocation strategies . 73

xiii

4·5 Comparison of driving schedules between flexible and flexible-relocation

strategies . 76

4·6 Surge multiplier across New York City zones at different times 78

4·7 Impact of surge pricing on driver strategies 79

4·8 Sensitivity of driver strategies to uncertain inputs 80

5·1 Improvement in mean driver earnings during training 101

5·2 Demand fulfillment by a fleet following the trained policy 102

5·3 Probability of coordinated wait across New York City zones at different

times . 103

5·4 Performance stability with respect to overlap between independent and

coordinated learning . 105

5·5 Impact of fleet size on demand fulfillment 106

5·6 Differential impact of platform objectives on demand fulfillment and

driver earnings . 106

5·7 Impact of strategic fleet management on driver earnings 108

5·8 Model robustness to uncertainty in supply and demand distributions . 109

5·9 Model comparison with baselines methods like cDQN and cA2C . . . 110

xiv

List of Abbreviations

A2C Advantage Actor-Critic Network
DQN Deep Q-Network
GDPR General Data Protection Regulation
MARL Multi-agent Reinforcement Learning
MDP Markov Decision Process
MoD Mobility-on-Demand
RL Reinforcement Learning

xv

1

Chapter 1

Introduction

In the past century, unprecedented growth in urban population has caused a dramatic

increase in the cost of a finite resource – urban space. The ever-increasing demand for

congestion-free roads and parking spaces in dense urban environments has made pri-

vate automobile ownership an unsustainable solution for an urbanite’s transportation

needs. However, in recent years, widespread adoption of smartphones, advancements

in wireless communication technologies, coupled with tremendous growth in the com-

putational power at our disposal have paved the way for a transformational change

in urban mobility in the form of Mobility-on-Demand (MoD) services.

In MoD systems, transportation solutions can come in the form of fleets of cars,

bikes, electric scooters, etc., managed by private companies, public entities, or even

independent contractors. Built upon the bedrock of technology, such systems have

revolutionized personal transit by providing an individual with the convenience and

comfort of private automobiles without the associated high cost of vehicle main-

tenance, fueling, or parking problems. In addition to providing a reliable mode of

mobility, they also offer a sustainable longer-term solution to external challenges such

as greenhouse gas emissions, transit time uncertainties, and propensity for accidents.

This dissertation focuses on understanding and resolving some of the key operational

challenges – MoD fleet monitoring and management – faced during their deployment.

2

1.1 Rise of Mobility-on-Demand Systems

There are multiple kinds of MoD systems deployed in different cities across the world.

All major cities across the globe typically have bike-sharing systems. In such cases,

the MoD systems provide bike stations at closely spaced intervals throughout the city.

When a user wishes to go somewhere, they walk to the nearest station, swipe a card

to pick up a bike, ride it to the nearest station to their destination, and drop it off.

Recently, station-less electric scooter MoDs such as Bird follow similar setups such as

bike-sharing. However, the users are allowed to drop off the scooters anywhere near

their destination. In a similar vein, car-sharing MoDs such as ZipCar, Enterprise

Rentals, etc., offer a car rental with the caveat that the rented car has to be returned

to its original pickup location.

In the last decade, the rise of MoD ride-hailing services such as Uber, Lyft,

DiDi, Ola, etc., have disrupted the century-old taxi industry. Such services utilize

smartphone-based applications to dispatch their vehicles to the location of a user.

The emergence of automated vehicles provides opportunities for creating fleets of

MoD vehicles with centralized control. Integration of automated vehicle fleets into

existing MoD services such as ride-hailing is widely considered to be the future of ur-

ban vehicular transportation. Irrespective of the specific kind of MoD, the key factors

determining the success of such systems are the costs to users and the wait times, i.e.,

the times needed to walk to/from the bike station or the time spent waiting for the

driver pickup. Well-designed and well-managed MoD systems usually provide better

combinations of costs and wait times than traditional alternatives such as taxis and

mass transit systems.

3

1.2 Operational Challenges

MoD systems currently face a lot of challenges. Specifically, the spatio-temporal

asymmetric nature of urban transportation demand leads to the evolution of vehicle

imbalances over time. Vehicles tend to accumulate in some regions of the city, while

they are depleted in others. Over time unless the operator of MoD undertakes a

rebalancing operation, this uneven distribution of vehicles can be severely detrimental

to the utilization of the fleet and the quality of service being provided to the users.

Currently, different kinds of MoD systems typically address this challenge in different

ways. Systems using smaller vehicles such as bikes or electric scooters typically employ

a human-in-loop rebalancing operation wherein a pickup truck collects excess vehicles

from one region of the city and drops them off at places experiencing vehicle deficit.

Ride-hailing services have deployed more sophisticated solutions in the form of dy-

namic pricing, in which mathematical models determine appropriate prices for each

ride to ensure that cost-sensitive excess demand drops out. At the same time, the

potential to increase their earnings incentivizes the human drivers of their fleet to re-

locate themselves to regions with no supply, thereby alleviating the imbalances. Thus,

the optimal MoD system performance in terms of maximizing pickup vehicle avail-

ability across the city, minimizing user wait times, minimizing cost to the platform

operator is predicated upon several factors such as:

– Real-time passenger demand data

– Size of the vehicle fleet

– Vehicle location data

– System rebalancing operations

– Dynamic pricing algorithms

4

– Driver-passenger matching algorithms

Inevitably, such a complex system with varied components gives rise to a num-

ber of different operational challenges, which have stoked the interest of researchers

from different disciplines such as Computer Science, Economics, Management Sci-

ence, Operations Research, etc. Moreover, as a growing number of algorithms used

to power such complicated systems rely on non-deterministic techniques from Ma-

chine Learning, the issues of fairness of such algorithms towards human operators

and passengers have been brought to light. The European Union’s General Data

Protection Regulation (GDPR), which came into effect in 2018, has imposed anti-

discriminatory regulations on such algorithms, thereby drawing significant interest of

the legal community towards MoD system operations.

1.3 Summary of Contributions

In this dissertation, we address multiple problems of theoretical and practical impor-

tance to the operations of MoD systems.

1.3.1 Fleet Monitoring

In Chapter 3, we focus on the problem of monitoring fleet distribution. MoDs with

shared bikes typically do not have access to real-time location data of their entire

fleet. The platform operators cannot track the bikes during transits and thus can

only observe the spatial distribution of partial fleet at a time. Inability to accurately

estimate the distribution of fleet introduces a time delay in the rebalancing opera-

tions. In this chapter, given an initial starting distribution of the fleet, we focus on

minimizing the variance of estimated distribution in future timesteps. We do this

by issuing queries that retrieve the precise information regarding exact number of

vehicles departing a particular MoD station or traversing a specific road. Under bud-

5

get constraints on the maximum number of queries that can be issued, we propose

efficient algorithms to minimize uncertainty in the fleet distribution. We demonstrate

the efficacy of our algorithms on synthetic datasets as well as real dataset obtained

from Hubway bike-sharing service in Boston.

1.3.2 Driver Revenue Maximization

In Chapter 4, we turn our attention towards the welfare of the independent driving

partners on ride-hailing platforms. While ride-hailing platforms typically adopt a

longer-term view and optimize the systems for the best quality of service to their

customers, it can often lead to a suboptimal system with respect to driver earnings.

In this chapter, we formalize the problem of devising strategies for maximizing the

earnings of individual self-interested drivers. We augment the publicly available New

York City taxi demand data with a newly collected real-time dataset from Uber API to

analyze our proposed strategies. One of the fundamental challenges in using historical

data to inform driver strategies is the potential for sub-optimal performance in the

presence of perturbations in demand distribution in the future. Using techniques from

the field of robust optimization, we alleviate this concern by performing a rigorous

analysis on the sensitivity of our strategies to perturbations in observed data.

1.3.3 Fleet Management

Finally, in Chapter 5, we shift our focus to the problem of fleet management. While

the strategies proposed in Chapter 3 will increase the earnings of individual drivers,

they are not optimal when adopted by a large portion of the drivers in the fleet.

Any approach towards fleet management needs to find an optimal tradeoff between

maximizing driver earnings and maintaining a high demand satisfaction. Typically,

coordination mechanisms for fleet management are learned using deep neural net-

works. Such black-box approaches suffer from a lack of explainability. Under GDPR

6

described above, algorithmic recommendations made by an MoD platform are man-

dated to be explainable to prevent discrimination. In pursuit of explainability, we

design an explicit need-based coordination mechanism that allows drivers to coordi-

nate only when required for a vehicle rebalancing operation and operate independently

otherwise. Our approach combines classical techniques like model-based tabular Q-

learning with reward maximizing combinatorial optimization problems to propose an

efficient, scalable and robust framework that can be used to optimize either driver

revenue or platform throughput. Furthermore, similar to driver revenue maximization

strategies, we extensively study the generalizability of our framework with respect to

hyperparameter tuning and changes in data distribution.

1.4 Related Publications

The work presented in this dissertation has been partially presented in three publi-

cations listed below.

Harshal A. Chaudhari, Michael Mathioudakis, and Evimaria Terzi. Markov

Chain Monitoring. SIAM International Conference on Data Mining 2018

Harshal A. Chaudhari, John W. Byers, and Evimaria Terzi. Putting Data

in the Driver’s Seat: Optimizing Earnings for On-Demand Ride-Hailing. ACM

International Conference on Web Search and Data Mining 2018.

Harshal A. Chaudhari, John W. Byers, and Evimaria Terzi. Learn to Earn:

Enabling Coordination Within a Ride-Hailing Fleet. IEEE International Con-

ference on Big Data 2020.

7

Chapter 2

Literature Review

Urban transportation has been transformed in the recent decade due to the emergence

of MoD systems. Their success has been made possible due to advances in both wire-

less communication technology and algorithmic research on the interesting problems

and challenges. There is a vast amount of academic and industrial literature covering

several levels of planning involved in the deployment of MoD systems, from strategic

to operational planning. Locating shared-vehicle stations, choosing the number of

vehicles per station, moving vehicles between stations, encouraging users to change

their destinations, etc., are some of the management challenges to be resolved to

provide a high quality of service. The development of effective tools to guide such

decisions provides important motivation to researchers across different disciplines of

science. In this chapter, we position this dissertation in the context of other related

works on similar problems and fields of study.

2.1 Bike-sharing Systems

While the oldest public bike-sharing systems have been tested in Europe since the

1960s, the concept experienced a dramatic improvement with advancements in wire-

less communication technology. As of December 2016, roughly 1,000 cities worldwide

have a bike-sharing program. This has led to a significant amount of research in-

terest across different domains of bike-sharing – station location, fleet sizing, station

sizing, rebalancing incentives, and vehicle repositioning – which we discuss in this

8

section [94]. However, we refer the reader to Laporte et al. [47] for a more compre-

hensive survey on the state-of-the-art literature about bike-sharing. We should note

that bike-sharing literature is often relevant to other MoDs such as shared-car rental

systems, which are also included in this section.

2.1.1 Station Location

The success of a bike-sharing system relies predominantly on two factors, viz., (1)

stations located at convenient walking distance from the popular origin and destina-

tion spots in the city (2) availability of bikes at these stations. Some of the earliest

works by Lin and Yang et al. [55] and Lin et al. [56] on station location problem

for bike-sharing formulate it as a joint non-linear optimization problem considering

decision variables such as the number of stations, user flow, bike lanes, etc.

Some researchers have used real-life data – Martinez et al. [60] simultaneously

optimizes station locations, size of the fleet, and rebalancing operation in Lisbon. In

contrast, Chow and Sayarshad [20] use a game-theoretic approach to evaluate the

impact of shared-transportation network design in Toronto. Regarding one-way car

rental systems, Kumar and Bierlaire [46] study the problem of locating electric car-

sharing stations in the city of Nice, while Li et al. [53] uses a case study of Sioux Falls

in North Dakota to explore a similar problem.

2.1.2 Fleet Size and Station Inventory

Queuing-theoretic approaches have been used to analyze the effect of fleet size and

station capacity on overall system performance by multiple studies such as that of

George and Xia [31], Fricker and Gast [25], etc. Nair and Miller-Hooks [64] also ad-

dressed the problem of setting the proper initial inventory of bikes at each station.

Raviv and Kolka [72] devised an approximation method to minimize user dissatisfac-

tion by determining the correct number of bikes at each station. Vogel et al. [88] has

9

approached the vehicle imbalance problem through the lens of determining the right

inventory size for each station.

2.1.3 Vehicle Rebalancing

As noted in Chapter 1, the need to rebalance stations by redistributing the fleet

vehicles across the city is pivotal to the success of an MoD system. Incentives could

be provided to users to pick up vehicles from stations with ample supply and drop

them off at stations with low inventory vehicles. Chemla et al. [15], Pfrommer et

al. [70], and Waserhole [90] have studied dynamic pricing models for bike-sharing

where the price paid by users depends on the current state of the system.

An alternate approach to vehicle rebalancing involves the use of human-operated

trucks to reposition bikes. Raviv et al. [72] and Schuijbroek et al. [76] use a time-

indexed model and queuing theory to compute the optimal inventory size required to

maintain service levels. Later, they route the repositioning truck between stations to

rebalance the bikes, taking into account the capacity constraints of the truck itself.

Benchimol et al. [3] adopt a more theoretical view of the rebalancing problem and

propose an approximation algorithm to minimize routing cost. Numerous other works

[44, 10, 54, 24, 23, 21] have studied the problem of vehicle rebalancing under different

settings with constraints based upon routing costs, unmet demand, number of vehicles

repositioned, number of truck stops, etc.

A common theme across all the literature related to bike-sharing systems is the

assumption of perfect knowledge regarding the exact spatiotemporal distribution of

the fleet of bikes. Such an assumption contrains the problem formulations to be static

in nature. For example, they assume that vehicle rebalancing operation occurs at a

time when users are not actively interacting with the system. Any dynamic problem

formulation needs to account for the fleet’s movement in real-time, thereby creating

an additional difficulty in knowing the exact spatiotemporal distribution of the fleet.

10

Our work on fleet monitoring aims to address this difficulty in estimating the fleet

distribution at any given time. The uncertainty in fleet distribution, as defined in

Chapter 3, can be used to augment the optimization problems in the above works to

reduce their reliance on perfect knowledge of the system.

2.2 Ride-sharing Systems

Ride-sharing systems are a collection of websites and smartphone applications that

match passengers with drivers of vehicles for hire. While rudimentary ride-matching

programs have existed since the late 1990s, a report by the Federal Transit Adminis-

tration of the United States Department of Transportation [39] stated that dynamic

ridematching in real-time had not yet been successfully implemented in 2006. How-

ever, the advent of online ride-matching platforms such as Uber and Lyft in the United

States, Ola, Didi Chuxing, etc., in Asia rejuvenated the ride-sharing industry by the

late 2010s. The mode of operation of ride-sharing systems, wherein a single passenger

is matched with a driver, is commonly known as ride-hailing. While the problems re-

lated ride-sharing systems appear under different names in the literature, viz., order

dispatching, order-driver assignment, etc., they usually refer to an online bipartite

matching problem where both supply of vehicles and demand are dynamic, with un-

certainty arising from spatiotemporal variations in both supply and demand. Now,

we describe some of the prominent works studying different facets of the ride-sharing

systems.

2.2.1 Taxi Fleet Optimization

A considerable body of work has focused on optimizing taxi fleets, for example build-

ing economic network models to describe demand and supply equilibria of taxi ser-

vices under various tariff structures, fleet size regulations, and other policy alterna-

tives [1, 97]. Other work seeks to optimize the allocation of taxi market resources [78].

11

Another direction focuses on route optimization by a centralized administrator (e.g.,

taxi dispatching services) [59, 66] or maximizing occupancy and minimizing travel

times in a shared-ride setting [42]. Other work has studied the supply side of the

driving market from the viewpoint of behavioral economics. A seminal paper by

Camerer et al. [12] studied cab drivers and found that inexperienced cab drivers (1)

make labor supply decisions “one day at a time” instead of substituting labor and

leisure across multiple days, and (2) set a loose daily income target and quit working

once they reach that target.

2.2.2 Vehicle Repositioning

The problem of spatiotemporal demand prediction to inform an individual taxi driver

of favorable locations for passenger pickups had been studied extensively even before

the advent of ride-hailing services. These studies typically assume that overall system

dynamics are agnostic to the choices of individual drivers. We can view these studies

from the lens of developing recommender systems for individual drivers. Alongside

individual earnings, some other common objectives to be optimized include total

cruising distance [29], vehicle utilization, i.e., the ratio of passenger trip mileage to

idle cruising mileage [28], individual trip fares [74], etc. Li et al. [51] use a large-scale

taxi GPS trace dataset to identify salient features associated with successful passenger

pickup locations. In two separate studies, Yuan et al. [98, 99] develop a recommender

system to guide both idle taxi drivers and waiting passengers to convenient locations

in order to optimize social welfare. More recently, Özkan and Ward [68] looked at

strategic matching between supply (individual drivers) and demand (requested rides)

for Uber and Lyft. Initial works focused on optimizing the objective up to the next

successful passenger trip, while recently, the focus has shifted to optimization over a

longer horizon.

Most of the works above are relatively diverse in specifics of the approach, but

12

they broadly adopt value-based reinforcement learning approaches to solve Markov

Decision Processes (MDP). A few, such as Verma et al. [85] propose Monte Carlo

learning, while more recent work by Wen et al. [91] use Deep Q-Networks (DQN).

In Chapter 4, we devise driver-oriented strategies to recommend favorable driving

schedules and pickup locations to optimize the earnings of an individual on-demand

ride-sharing driver. While our work tackles the problem of an individual self-interested

strategic driver, it notably differs from a typical taxi routing literature because it takes

into account elements from ride-hailing platforms such as flexibility of schedule, surge

pricing, etc.

2.2.3 Capacity Repositioning

A major limitation of the recommender systems developed for individual drivers is

that they are agnostic to driver interactions and may result in unfavorable supply

excesses in certain locations when adopted by many drivers simultaneously. Plat-

form level optimization for objectives such as platform revenue maximization, vehi-

cle utilization, demand fulfillment, etc., requires a robust system-level coordination

mechanism.

While traditional works in driver dispatch systems [48, 101, 77] typically relied on

queuing-theoretical fluid models to asymptotically optimize supply-demand matching,

numerous recent works [52, 41, 102] leverage advances in Multi-agent Reinforcement

Learning (MARL) to directly optimize matching for multiple drivers simultaneously.

Some works [95, 100] have attempted to leverage demand volume and ride destination

forecasting models to use in combinatorial optimization techniques. However, these

approaches do not scale well to use cases on contemporary platforms, where fleets of

as many as 10,000 drivers serve a single city. Lin et al. [57], Wang et al. [89] and Tang

et al. [81] have attempted to bypass the complication of optimizing joint actions in

the multi-agent setting by simply using a single value function aggregated over all

13

the drivers’ data. We refer the reader to Qin et al. [71] for a comprehensive survey

on different reinforcement learning-based approaches for supply-demand matching.

While providing the advantage of simplicity, in Chapter 5, we show that model-free

reinforcement learning-based methods often fail to generalize well. Moreover, deep-

learning-based techniques suffer from a lack of explainability. They often require

highly specialized proprietary model inputs to aid in the learning process. Cognizant

of these issues, our approach does not rely on any proprietary models but instead

learns high-quality solutions from scratch based solely upon historically observed

data. Moreover, we achieve that without sacrificing the explainability of the model.

In the absence of the need for coordination, our model assumes homogeneity of drivers

in the same location and provides envy-free recommendations while also making it

scalable. This is achieved by augmenting vanilla reinforcement learning (in the form

of tabular Q-learning) with combinatorial techniques to aid the rebalancing of driver

distribution.

2.2.4 Platform Studies

Studies of ride-hailing services as multi-sided economic marketplaces have investigated

the impacts of the platform’s pricing policies on the platform profits, the consumer

surplus, and the driver wages [13, 5, 4, 58]. The popular press has investigated the

supply-side effects of specific incentives (e.g., surge pricing) that Uber and Lyft pro-

vide to drivers [84]. Chen and Sheldon [19] showed a causal relationship that drivers

on Uber respond to surges by driving more during high surge times, differentiating

from previous work that suggests taxi drivers primarily focus on achieving earnings

goals [12]. Hall and Krueger [37] showed that drivers were attracted to the Uber

platform due to the flexibility it offers and the level of compensation, but earnings

per hour do not vary much with the number of hours worked. In another line of re-

search, Chen et al. [18] measured many facets of Uber in New York City, including the

14

prevalence and extent of surge pricing. Castillo et al. [13] showed that surge pricing

is responsible for effectively relocating drivers during high-demand periods, thereby

preventing them from engaging in ‘wild goose chases’ to pick up distant customers,

which only exacerbates the problem of low driver availability.

In another line of work, Banerjee et al. [2] studied dynamic pricing strategies for

ride-hailing platforms using a queuing-theoretic economic model. They showed that

dynamic pricing is robust to changes in system parameters, even if it does not achieve

higher performance than static pricing. Sühr et al. [79] investigate fairness in driver

earnings distribution using driver-passenger matchings optimized to attain income

equality goals. Recently, Chen et al. [16] combines platform economics with the

capacity repositioning problem using a contextual bandit framework. They showed

that matching based on time-varying parameters like driver and customer arrival

rates and the willingness of customers to wait could achieve better performance than

naively matching passengers with the closest driver. Although these works build

attractive models for ride-hailing economies, they are orthogonal to the contents of

this dissertation, as they take a holistic view of such economies, while we focus on

specific supply-demand matching problems.

There is a growing body of literature studying the interplay between platform pric-

ing and strategic driver behaviors, for which we refer the readers to Yan et al. [96].

Our work contributes to this domain by developing a scalable framework that can be

used to verify the results of asymptotic dynamic pricing models via realistic simula-

tions.

15

Chapter 3

Fleet Monitoring

Ever since their first deployment in Paris in 2007, modern bike-sharing systems have

proliferated across the globe and transformed urban transit. Roughly 1,000 cities

worldwide have a bike-sharing program, with some of the most extensive programs

being operated in China, with fleets comprised of close to 100,000 bikes [94]. The

explosive growth of urban bike-sharing programs has led to numerous academic and

industrial research studies exploring problems at the intersection of multiple acad-

meic disciplines such as Operations Research, Economics and Computer Science, etc.

Operations Research community focuses on practical problems such as choosing ap-

propriate locations for bike-sharing stations and determining the correct inventory

levels at these stations to satisfy the demand. Economists design dynamic pricing

algorithms and determine appropriate customer incentive mechanisms to maintain a

high quality of service. Computer scientists have concentrated their efforts on devel-

oping efficient algorithms to rebalance bike fleets across the city. While considering

such platform challenges, these studies generally assume perfect knowledge about the

spatial distribution of the fleet of shared bikes. However, even today, most bike-

sharing programs do not typically track the location of their bikes in real-time. Until

recently, the platforms only became aware of the updated locations of the bikes when

they were docked into stations at the end of the ride.

In this chapter, we formalize the problem of minimizing the uncertainty in the

spatial distribution of a bike-sharing MoD fleet with access to only partial information

16

regarding its distribution. It should be noted that in a discrete time setting, the

fleet distribution at any point in time depends only upon its distribution in the

immediately preceeding timestep and the passenger demand. In other words, the

fleet distribution is appropriately modeled by a memoryless stochastic process in

the form of a Markov Chain in which shared bikes traverse along the edges of a

graph representation of a city. While the expected distribution of bikes can be easily

estimated using higher powers of the corresponding transition matrix from the Markov

Chain, we seek to identify a limited number of nodes (or edges) so that, once we know

exactly how many bikes reside on (resp. traverse) them, the uncertainty in the spatial

distribution of the fleet is minimized. Henceforth, we refer to this objective as the

Markov Chain Monitoring problem. Indeed, solutions to this problem can have

widespread applications in domains beyond bike-sharing MoDs, viz., urban traffic

networks, peer-to-peer computer networks, postal and freight networks, etc. In all

of these settings, one wishes to have an accurate estimate of the number of items

that reside at various nodes of a network (e.g., vehicles that are at the intersections

of a road network) but faces constraints on how big a part of the network (e.g.,

intersections or road segments) they can monitor at any time.

We make two assumptions in our problem definition: (1) there is a point in time

when we have an accurate estimate of the placement of all items on the graph (2)

we can monitor the subsequent placement of items by issuing a predefined number

of monitoring operations (i.e., real-time queries on the Markov chain). We consider

different types of operations: ones that retrieve the number of items that reside on

specific nodes; and ones that retrieve the number of items that traverse specific edges.

In bike-sharing MoD systems, the queries correspond to information regarding the

number of bikes docked in a particular station or bike rides between a pair of stations.

The concept generalizes to applications such as urban and computer traffic networks,

17

wherein the queries correspond to placing measurement (or monitoring) devices on

particular nodes or edges of the network and retrieving their measurements.

Technically, different monitoring operations result in different variants of Markov

Chain Monitoring. For example, monitoring of the items that pass through an

edge leads to a different problem definition than monitoring of the nodes. For each

variant, we design efficient polynomial-time algorithms. For some of these algorithms,

we demonstrate that they are optimal, while for others, we show that they perform

well in practice. Our experiments use a diverse set of datasets from urban networks

and computer networks to demonstrate the practical utility of our setting. We then

exemplify our approaches using data from the Hubway bike-sharing network of Boston

(rebranded as BlueBikes) and identify candidate monitoring stations. The monitoring

operations chosen by the algorithms encompass stations in close proximity to down-

town Boston or university student housings and are well supported by anecdotal

experiences.

Chapter Organization

The rest of the chapter is organized as follows. First, in Section 3.1, we place the fleet

monitoring problem in the context of other graph centrality measures. We formally

define the Markov Chain Monitoring problem and its variants in Section 3.2.

Next, in Sections 3.3-3.4, we provide efficient algorithms to solve each of the variants.

Finally, in Section 3.5, we evaluate the performance of our proposed algorithms on

various real and synthetic datasets. Notably, we use the Hubway dataset to showcase

their use on a fleet monitoring operation on a bike-sharing MoD system.

3.1 Background

To the best of our knowledge, we are the first to introduce and study the Markov

Chain Monitoring problem. However, this problem is similar to tasks such as

18

outbreak detection, sparsification of influence network, and the broader field of node

and edge centrality on graphs, where one seeks to identify k “central” nodes or edges to

intercept the movement of items on a graph to contain the spread. A major difference

in our definition of the Markov Chain Monitoring is that the “centrality” of

nodes or edges is based not just on the underlying graph structure but also on the

dynamic propagation of items through the network. Nevertheless, in this section, we

discuss some of the existing works on graph centrality measures.

Graph centrality measures can be broadly cast into two categories: individual and

group centrality measures. Individual measures assign a score to each node or edge.

Group centrality measures assign scores to sets of nodes or edges. Usually, computing

group-centrality measures requires solving complex combinatorial problems.

Examples of individual centrality scores for nodes and edges are the Pagerank [69],

betweenness [7, 22, 73], and current flow centralities [8]. Pagerank is one classic

example of a centrality measure based on a Markov chain – where the centrality of

nodes is quantified as the stationary distribution of a Markov chain on the graph.

Betweenness centrality and current flow centrality assign high centrality scores to

nodes/edges that participate in one or many shortest paths between all pairs of nodes

in the input network. Although a Markov chain is used for Pagerank, its computation

is very different from ours – after all, Pagerank is an individual centrality measure,

while our measures are group centralities.

Group centrality measures that use a Markov chain model include the Absorbing

Random Walk Centrality introduced by Mavroforakis et al. [62]. In their work, the

centrality of a set of nodes is defined as the transient time of the Markov chain when

the given nodes are “absorbing”. The work of Gionis et al. [32] also assumes an

absorbing Markov chain. In that setting, the authors aim to maximize the positive

opinion of the network concerning a specific topic by picking k nodes appropriately

19

to endorse this positiveness via posts (e.g., in a social network). Both these problems

are different from ours because we do not consider absorbing random walks but rather

a simple Markov chain. Moreover, our objective to minimize uncertainty is different

from the objectives of the above papers.

While Markov chain is a simple model that quantifies centrality, different models

may be more appropriate in other settings. For example, Ishakian et al. [40] proposed

an extension of betweenness centrality called group betweenness centrality. They aim

to find a group of nodes with have maximum number of shortest paths passing through

them. In epidemiology and information propagation settings, the underlying process

of interest, spread of a virus or a piece of information, is better modeled as a random

cascade. Centrality of a node attempts to capture the notion of its influence, i.e., the

expected size of the random cascade beginning at that node [6, 26, 35, 43, 67, 82].

Two common applications of this methodology are those of outbreak detection [50]

and graph sparsification [61]. The first one tasks a practitioner with identifying

central nodes that can intercept an evolving cascade as soon as possible, while the

latter one seeks to identify edges that are cruicial towards the explanation (from a

model-sparsity point of view) of an observed cascade.

In terms of categorization, the Markov Chain Monitoring problem is a group-

centrality measure. The distinguishing factor of the Markov Chain Monitoring

problem in comparison to the aforementioned works is that we define centrality in

terms of a combination of a static graph structure, a dynamic Markov chain, and a

real-time activity in the form of moving items.

3.2 Problem Setup

In this section, we introduce our setting and notation.

20

Markov Chain

Consider a weighted directed graph G = (V,E, p) with |V | = n and |E| = m. We

use π(v) ⊆ V and κ(v) ⊆ V to denote the set of parent and child nodes of node v,

respectively.

π(v) = {u | u ∈ V, e(u→ v) ∈ E}

κ(v) = {u | u ∈ V, e(v → u) ∈ E}

Edges e(u → v) ∈ E are associated with real-valued weights p(u → v) ∈ [0, 1] such

that ∀u ∈ V :
∑

v∈V p(u→ v) = 1.

These weights give rise to a Markov chain with transition matrix P – where p(u, v)

denotes the probability of a transition from node u to node v. Moreover, we assume

that a set of items are distributed among the nodes of G. We use the row vector x

to denote the the initial number of items per node; that is, x(u) is the number of

items initially at node u. For the entirety of this chapter, transition matrix P and

distribution x are assumed known and part of the input.

Consider now a single step of the Markov chain. During this step, each and

every item transitions from the node u where it resides originally to another node

v, according to transition probabilities p(u, v). At the end of this step, items are

redistributed among the nodes - and we are no longer certain about their position.

We use z to denote the random vector with the number of items at each node after

one transition. The expected number of items at each node is given by: E[z] = xP.

Quantifying uncertainty

We quantify uncertainty in terms of the variance in the number of items on each

node afer the transition step. Specifically, let us consider the number z(v) of items

on node u after the transition step: an item previously at node u will transition to

21

node v according to a Bernoulli distribution with success probability p(u, v); and since

items transition from node to node independently from each other, the variance in

the number of items z(v) is

var(z(v)) =var(z(v)|P,x)

=
∑
u∈V

x(u)p(u, v) (1− p(u, v)) . (3.1)

To obtain an aggregate measure of uncertainty F0, we opt to sum the aforementioned

quantity over all nodes.

F0 =
∑
v∈V

var(z(v))

=
∑
u∈V

x(u)
∑
v∈V

p(u, v) (1− p(u, v)) (3.2)

Monitoring

Given the transition matrix P and the initial distribution of items x, we estimate

the distribution of items z after one transition step, with the uncertainty given in

Equation (3.2). After one transition step, we are allowed to retrieve information

about the position of the items and thus reduce uncertainty. We do this by performing

“monitoring operations”, i.e. queries on the position of items on the Markov chain.

These operations are of the following types:

• ParentTransitions Retrieve the number of items that transitioned to node

v from each u ∈ π(v);

• NodeItems Retrieve the number of items that reside on node v after the tran-

sition step;

• EdgeTransitions Retrieve the number of items that transitioned from node

u to node v;

22

• ChildrenTransitions Retrieve the number of items that transitioned from

node u to each child v ∈ κ(u).

From the above four types of monitoring operations, the last one (i.e., Children-

Transitions) leads to trivial combinatorial problem. Thus, we omit it from the rest

of the discussion.

Expected uncertainty

Once we retrieve the answer A to a set of monitoring operations, we have more

information about the positioning of items over nodes V – and thus an updated (and

non-increased) uncertainty

F (A) =
∑
v∈V

var(z(v)|A).

In the setting we consider, however, the challenge we face is not to compute the uncer-

tainty given the information retrieved via a monitoring operation, but rather to select

the monitoring operations so that the uncertainty faced after retrieving A is minimized

in expectation. Therefore, the quantity of interest is that of expected uncertainty for

a set of operations that we choose to perform, expressed as E[
∑

v∈V var(z(v)|A)].

Let us now assume we have chosen to perform a set of operations of either one

of the aforementioned types. In what follows, we provide formulas for the expected

uncertainty in each case.

Expected uncertainty under ParentTransitions

We perform monitoring operations for a subset S ⊆ V of nodes – and obtain an

answer A
PT

(S) = {nuv; v ∈ S, e(u→ v) ∈ E}, where nuv is the number of transitions

to v from its parent node u. The expected value F
PT

(S) of the uncertainty F (A
PT

(S))

23

after these operations is given by

F
PT

(S) =E[F (A
PT

(S))]

=
∑
u∈V

x′(u)
∑
v∈V \S

p′(u, v) (1− p′(u, v)) (3.3)

where

ρ(u, S) =
∑
v∈S

p(u, v)

x′(u) = x(u) (1− ρ(u, S)) (3.4)

p′(u, v) =
p(u, v)

1− ρ(u, S)
. (3.5)

Intuitively, x′(u) expresses the expected number of items that transition from u to

nodes v other than those in S; and p′(u, v) expresses the probability an item transitions

from u to v given that it does not transition to those in S. We see, then, that

Equation (3.3) has the same form as Equation (3.2) but is evaluated on adjusted

values of x and P, to take into account the information we obtain via A
PT

.

Note that the expected uncertainty after the monitoring operations is no larger

than F0.

Lemma 1. The information retrieved via ParentTransitions monitoring opera-

tions decrease the expected uncertainty about the positioning of items after the tran-

sition step.

F
PT

(S) ≤ F0

24

Proof. Using Equations (3.4) and (3.5) to expand Equation (3.3) we have

F
PT

(S) =
∑
u∈V

x′(u)
∑
v∈V \S

p′(u, v) (1− p′(u, v))

=
∑
u∈V

x(u)
∑
v∈V \S

p(u, v)

(
1− p(u, v)

1− ρ(u, S)

)
≤
∑
u∈V

x(u)
∑
v∈V \S

p(u, v) (1− p(u, v))

= F
PT

(∅).

Expected uncertainty under NodeItems

We perform monitoring operations for a subset S ⊆ V of the nodes – and obtain

an answer A
NI

(S) = {nv; v ∈ S}, where nv is the number of items at node v after

the transition. For an instance of an answer A
NI

(S), let also A
PT

(S) = {nuv; v ∈

S, e(u → v) ∈ E} be an answer for ParentTransitions on the same set S of

nodes. By definition A
NI

(S) can be computed from A
PT

(S) using the relationship

nv =
∑
u∈V

e(u→v)∈E

nuv,∀v ∈ S. (3.6)

Hence, we use the notation APT (S) ' ANI(S) to denote this interchangeability be-

tween the answers of two different kinds of monitoring operations. It can be shown

that the expected uncertainty is equal for the two cases. That is: F
PT

(S) = F
NI

(S).

Theorem 1. For the same set of monitored nodes, ParentTransitions and NodeIt-

ems lead to the same value of the objective function.

F
NI

(S) = F
PT

(S)

25

Proof. We express F (A
NI

) in terms of F (A
PT

) as follows.

F (A
NI

) =
∑

A
PT
'A

NI

F (A
PT

)Pr(A
PT
|A

NI
) (3.7)

We can now use the above equation to express the expected uncertainty F
NI

(S) in

terms of F
PT

(S) as:

F
NI

(S) = E[F (ANI)]

=
∑
A
NI

F (ANI)Pr(A
NI

)

=
∑
A
NI

∑
A
PT
'A

NI

F (A
PT

)Pr(A
PT
|A

NI
)Pr(A

NI
)

=
∑
A
NI

∑
A
PT
'A

NI

F (A
PT

)Pr(A
PT
, A

NI
)

=
∑
A
NI

∑
A
PT
'A

NI

F (A
PT

)Pr(A
PT

)

=
∑
A
PT

F (A
PT

)Pr(A
PT

)

= F
PT

(S), (3.8)

which concludes the proof.

Expected uncertainty under EdgeTransitions

We perform monitoring operations for a subset D ⊆ E of the edges – and obtain an

answer A
ET

= A
ET

(D) = {ne; e ∈ D}, where ne is the number of transitions over edge

e. The expected value F
ET

(D) of the uncertainty F (A
ET

(D)) after these operations

is given by

F
ET

(D) =E[F (A
ET

)]

=
∑
u∈V

x′′(u)
∑

e(u→v)∈E\D

p′′(u, v) (1− p′′(u, v)) (3.9)

26

where

ρ(u,D) =
∑

e(u→v)∈D

p(u, v)

x′′(u) = x(u) (1− ρ(u,D)) (3.10)

p′′(u, v) =
p(u, v)

1− ρ(u,D)
(3.11)

Similar to ParentTransitions and NodeItems, expected uncertainty F
ET

(S) is

no greater than F0.

3.2.1 Problem Statement

The general problem of Markov Chain Monitoring is to select the appropriate

monitoring operations to reduce the expected uncertainty after they are performed.

Stated formally:

Problem 1 (Markov Chain Monitoring). Given a transition matrix P and an

initial distribution of items x, select a set of up to k monitoring operations to minimize

the expected uncertainty F .

We study variants of the problem – each defined for a specific type of monitoring

operation. For simplicity, we refer to these problems with the same name as that of

the operation type: ParentTransitions, NodeItems, ChildrenTransitions,

and EdgeTransitions.

Furthermore, as we saw in Section 3.2, variants ParentTransitions and NodeIt-

ems are equivalent: for the same set of nodes, operations of the first type reduce ex-

pected uncertainty as much as the second. Therefore, in what follows, we treat only

the variant of NodeItems, as our claims apply directly to ParentTransitions as

well.

27

3.3 Greedy Algorithm for Node-Monitoring

In this section, we provide the formal problem definition of the NodeItems problem

variant and describe a greedy polynomial-time algorithm for solving it.

Problem 2 (NodeItems). Given G = (V,E), transition matrix P, initial distri-

bution of items to nodes x and integer k, find S ⊆ V such that |S| = k such that

FNI (S) is minimized.

A brute-force way to solve Problem 2 would be to evaluate the objective function

over all node-sets of size k. Obviously such an algorithm is infeasible as the runtime is

exponential in k. Thus, we study a natural greedy algorithm for the problem, namely

NodeGreedy.

The NodeGreedy algorithm

This is a greedy algorithm that performs k iterations; at each iteration, it adds one

more node in the solution. If St is the solution at iteration t, then solution St+1 is

constructed by finding the node u ∈ V \ St such that:

v∗ = arg min
v∈V \St

FNI
(
St ∪ {v}

)
. (3.12)

Although in the majority of our experiments that compare the brute-force solutions

with those of NodeGreedy the two solutions were identical, we identified some con-

trived instances for which this was not the case. Thus, NodeGreedy is not an optimal

algorithm for Problem 2.

Running time

NodeGreedy evaluates Equation (3.12) at each iteration. A naive implementation of

this would require computing Equation (3.3) O(|V |) times per iteration, each time

using O(|V |2) numerical operations. As a first improvement, we avoid the full double

28

summation over V via a summation over edges E,

F
PT

(S) =
∑
u∈V

x′(u)
∑
v∈V \S

p′(u, v) (1− p′(u, v))

=
∑

(u,v)∈E
v∈V \S

x′(u)p′(u, v) (1− p′(u, v)) , (3.13)

that involves O(k|V ||E|) numerical operations.

Clearly, the NodeGreedy is infeasible to run even for small-size datasets over dense

graphs, as the runtime approximately translates to O(k|V |3). We can further speed-

up the algorithm if we re-use at each step the computations done in the previous one.

To see how, let St (resp. St+1) be the solution we construct after t (resp. (t + 1))

iterations and let v∗ be the node such that St+1 = St ∪ v∗. Then, for any u ∈ V we

have ρ(u, St) =
∑

v∈St p(u, v), and therefore

ρ(u, St+1) = ρ(u, St) + p(u, v∗). (3.14)

Moreover, for any S ⊆ V let

B(u, S) =
∑

(u,v)∈E
s.t. v∈V \S

p′(u, v) (1− p′(u, v)) (3.15)

=
∑
v∈V \S

p(u, v)

1− ρ(u, S)

(
1− p(u, v)

1− ρ(u, S)

)
.

We can then express B(u, St+1) in terms of B(u, St):

B(u, St+1) = B(u, St)− 2p(u, v∗) (1− ρ(u, St)− p(u, v∗)) . (3.16)

Finally, using Equations (3.14) and (3.16) and algebraic manipulations, we can express

29

FNI(St+1) as follows:

FNI(St+1) =
∑
u∈V

x(u)

(
B(u, St)

1− ρ(u, St+1)
− 2p(u, v∗)

)

Thus, if we store B(u, St) and ρ(u, St) at iteration t, then evaluating Equation (3.17)

at iteration t+ 1 takes only O(|V |) numerical operations.

For all iterations but the first one, the above sequence of rewrites enables us

to achieve a speedup from O(|V ||E|) to O(|V |2) numerical operations per iteration.

For the first iteration, initializing the auxiliary quantities B(u, ∅), u ∈ V , still takes

O(|E|). With this book-keeping, the running time of NodeGreedy is reduced from

O(k|V ||E|) to O(|E| + k|V |2) = O(k|V |2|). Note also that NodeGreedy is amenable

to parallelization, as, given the auxiliary quantities from the previous step, we can

compute the objective function independently for each candidate node.

3.4 Algorithms for Edge-Monitoring

Whereas NodeItems (Problem 2) seeks k nodes to optimize expected uncertainty,

EdgeTransitions seeks k edges.

Problem 3 (Edge-Monitoring). Given G = (V,E), transition matrix P, initial

distribution of items to nodes x and integer k, find S ⊆ V such that |S| = k such

that FET (S) (Equation (3.9)) is minimized.

We provide two polynomial-time algorithms to solve the problem, namely EdgeDP

and EdgeGreedy. For the former, we can also prove that it is optimal, and thus

Problem 3 is solvable in polynomial time.

3.4.1 The EdgeDP Algorithm

EdgeDP is a dynamic-programming algorithm that selects edges in two steps: first,

it sorts the outgoing edges of each node in decreasing order of transition probability,

30

thus creating |V | = n corresponding lists; secondly, it combines top edges from each

list to select a total of k edges.

In more detail, let SOLi(k) be the cost of an optimal solution for the special case

of a budget of k edges allocated among outgoing edges of nodes Vi: = {i, i+1, . . . , n}.

According to this notational convention, the cost of an optimal solution Dopt for the

problem is given by SOL1(k). Moreover, considering Equation (3.9), let Fi be the

function that corresponds to the (outer) summation term for node i

Fi(D) = x′′(i)
∑

e(i→v)∈E\D

p′′(i, v) (1− p′′(i, v)) (3.17)

(under the auxilliary definitions of Equations (3.10) and (3.11)) and ISOLi(m) its

optimal value when D contains no more than m ≤ k outgoing edges from node i. Let

also Dm
i be a subset of k outgoing edges of i with the highest transition probabilities.

It can be shown that the optimal value for Fi(D) is achieved for the edges Dm
i with

highest transition probability.

Lemma 2. With choice restricted among the outgoing edges of a node, the optimal

objective value in the EdgeTransitions setting is obtained for the edges of highest

transition probability.

ISOLi(m) = Fi(D
m
i)

Proof Sketch. The optimization function is proportional to the following quantity:

f(E) ∝
∑

i∈Du(E)

pi −
∑

i∈Du(E) p
2
i∑

i∈Du(E) pi
(3.18)

where Du(E) are the remaining (i.e., non-queried) outgoing edges of parent-node u.

Consider two sets of edges E0, E1 ⊆ κ(u) of the same size, all outgoing from

a single parent-node u, that differ only at one element. The probabilities of the

corresponding sets of remaining edges are:

Du(E0) : {p0} ∪ C; Du(E1) : {p1} ∪ C (3.19)

31

where p0, p1 6∈ C, and without loss of generality p0 ≤ p1.

Let S =
∑

i∈C pi and SS =
∑

i∈C p
2
i . We take the difference of the optimization

functions for the two sets E0 and E1.

f(E0)− f(E1) ∝ p0 − p1 −
∑

i∈Du(E0) p
2
i∑

i∈Du(E0) pi
+

∑
i∈Du(E1) p

2
i∑

i∈Du(E1) pi

∝ −(p1 − p0)
SS + S2

(S + p0)(S + p1)
≤ 0.

The above shows that selecting the set of edges so that the remaining edges are

associated with smaller probabilities leads to lower (better) values of the optimization

function.

Having the outgoing edges of i sorted by transition probability, we can compute

ISOLi(m) for all m = 0 . . . k. The dynamic programming equation is:

SOLi(k) = arg min
0≤m≤k

{ISOLi(m) + SOLi+1(k −m)} (3.20)

EdgeDP essentially computes and keeps in memory ‖V ‖× (k+ 1) values according to

Equation(3.20) and is described in Algorithm 1.

ALGORITHM 1: Dynamic programming for the EdgeTransitions vari-
ant.

Input: k
Output: SOL: Dynamic programming array

1 Initialize empty array SOL‖V ‖×(k+1);
2 for i = ‖V ‖ · · · 1
3 for k′ = 0 · · · k
4 SOL[i, k′] := arg min0≤ki≤k′{ISOLi(ki) + SOL[i+ 1, k′ − ki]}}
5 return SOL;

Theorem 2. EdgeDP is optimal for the EdgeTransitions variant of the Markov

Chain Monitoring problem.

Proof. The proof follows from Lemma 2 and by construction of the dynamic pro-

gramming algorithm (Equation (3.20)).

32

Running time

EdgeDP computes k × |V | values. For each value to be computed, up to O(k) nu-

merical operations are performed. Therefore, EdgeDP runs in O(k2|V |) operations.

Backtracking to retrieve the optimal solution requires at most equal number of steps,

so it does not increase the asymptotic running time.

3.4.2 The EdgeGreedy Algorithm

EdgeGreedy is a natural greedy algorithm that selects k edges in an equal number of

steps, in each step selecting one more edge to minimize FET . EdgeGreedy is described

in Algorithm 2.

ALGORITHM 2: Greedy algorithm for the EdgeTransitions variant.

Input: k
Output: ResultEdges: Set of selected edges

1 ResultEdges = {}
2 for i = 1 · · · k
3 Select e ∈ E := arg minFET (ResultEdges ∪ {e})
4 ResultEdges := ResultEdges ∪ {e};
5 E := E \ {e};
6 return ResultEdges;

In all our experiments the output of EdgeGreedy is the same as that of the optimal

EdgeDP algorithm. However, we do not have a proof that the former is also optimal.

We leave this as a problem for future work.

Running time

Following Equation (3.9), to select k edges, EdgeGreedy invokes up to k × O(|E|)

evaluations of FET . As we discussed for NodeGreedy, if the evaluation of the objec-

tive function is naively implemented with a double summation, the running time of

EdgeGreedy is O(k|E||V |2) numerical operations. If the objective function is imple-

33

mented as a summation over edges, the running time improves to O(k|E|2). Further-

more, following the observations similar to those we saw for NodeGreedy, the running

time of EdgeGreedy becomes O(|E|+ k|E|) = O(k|E|).

We notice that EdgeDP has better performance than EdgeGreedy for dense graphs

(|E| u |V |2) and small k. Moreover, as with NodeGreedy, EdgeGreedy is amenable

to parallelization - the new value of the objective function can be computed in inde-

pendently for each candidate edge.

3.5 Data and Experiments

In this section, we describe the results of our experimental evaluation using real and

synthetic data. The results demonstrate that our methods perform better than other

baseline methods with respect to our objective function. Moreover, using the bike-

sharing network of Boston, we provide anecdotal evidence that our methods pick

meaningful nodes to monitor.

3.5.1 Experimental Setup

Let us first describe the experimental setup, i.e., the datasets and baseline algorithms

used for evaluation.

Graph datasets

We use the following graphs to define Markov chains for our experiments.

• AS graphs: The AS is a graph that contains information about traffic between

Autonomous Systems of the Internet. An Autonomous System (AS) is a set

of IP addresses, typically characterized by their common prefix and belonging

to a single internet provider or large organization. The dataset was retrieved

through the Stanford Large Network Dataset Collection (SNAP) [49]. We ex-

perimented with three snapshots of the Autonomous Systems communication

34

graphs between the years 1997–2000. Here we demonstrate results for one of the

snapshots (1999-2000), as we did not find a significant difference among them.

The AS graph contains one node for each AS. Moreover, for every pair of nodes

with internet traffic between them, we place two directed edges between the

nodes, one in each direction. To create an instance of the transition matrix, we

assign equal probabilities to the outgoing edges of each node.

• Grid graphs: The Grid graphs are planar, bi-directed grid graphs, where each

node has in- and out-degree 4 (with the exception of border nodes).

• Geo graphs: The Geo graphs are bi-directed geographic graphs. They are gen-

erated as follows: each node is placed randomly within a unit square on the

two-dimensional Euclidean plane. Subsequently, pairs of nodes are connected

with directed edges in both directions if their euclidean distance is below a

pre-defined threshold ds = 0.01.

• BA graphs: The BA graphs are generated according to the Barabasi-Albert

model. According to the model, nodes are added to the graph incrementally

one after the other, each of them with outgoing edges to m existing nodes se-

lected via preferential attachment. Here we show results for m = 3, but they

are similar for other values m.

Similar to the methodology of Gionis et al. [33], the Grid, Geo and BA graphs

provide us with different varieties of synthetic graphs to explore the performance of

our methods. While the AS and Grid graphs are included to capture the network and

city-wide traffic applications, the Geo and BA graphs are motivated from applications

in understanding the spread of an influence or an outbreak.

35

Item distributions

While the graph datasets described above provide us with illustrative graph structures

underneath the Markov Chain, they are not naturally associated with a wide varity

of item distributions relevant to our problem. Hence, for each of the aforementioned

graphs, we generate an initial distribution of items x according to one of the following

four schemes.

• Ego: Items are assigned in two steps. Firstly, one node is selected uniformly at

random among all nodes. Secondly, 70% of items are assigned randomly to the

neighbors of the selected node (including the selected node itself). Finally, the

remaining items are distributed randomly to the nodes outside the neighborhood

of the selected node.

• Uniform: Each node is assigned the same number of items.

• Direct: The number of items on each node is directly proportional to its out-

degree. Note that items are distributed in a deterministic manner.

• Inverse: The number of items on each node is assigned deterministically to be

inversely proportional to its out-degree.

Now each graph described above is combined with each item-distribution scheme.

As a result, we obtain datasets of the form G-X, where G is any of AS, Grid, Geo and

BA and X is any of the Ego, Uniform, Direct and Inverse. For simplicity, we perform

experiments over a single fixed instantiation of all the datasets generated above.

The Hubway dataset

Hubway (now rebranded as BlueBikes) is a bike-sharing system in the Boston metro

area, with a fleet of over 1000 bikes and over 100 stations where users can pick up or

36

drop off bikes. Whenever a user picks up a bike from a Hubway station, the system

records basic information about the trip, such as the pick-up and drop-off station

and the corresponding pick-up and drop-off times. Moreover, the data contain the

number of available bikes at each Hubway station every minute. The dataset was

made publicly available by Hubway for its Data Visualization Challenge1.

Using the dataset, we create instances of the problems we consider as follows.

Firstly, we create a complete graph by representing each station with one node in

the graph and considering all possible edges between them. Next, we consider a time

interval (ts, te) and the bikes that are located at each station (node). Representing

bikes as items in our setting, we assign a transition probability p(u, v) between nodes

u and v by considering the total number nu of bikes at station u at start time ts and,

among these bikes, the number nuv of them that were located at station v at end time

te. We then set p(u, v) = nuv/nu and ignore edges with zero transition probability.

We experimented with a large number of such instances for different intervals

(ts, te), with a moderate length of 2 hours, to capture real-life transitions from one

node to another. For the experiments presented in the chapter, we use a fixed instance

for the interval between 10 am and 12 pm on April 1st, 2012. In this interval, we

consider 61 stations with at least one trip starting or ending at each. We refer to the

dataset so constructed as the Hubway dataset.

Baseline algorithms

To the best of our knowledge, we are the first to tackle the prolem of Markov

Chain Monitoring. However, in order to assess the performance of our proposed

algorithms for the Node-Monitoring and Edge-Monitoring problem variants,

we compare it to that of well-known baseline algorithms targeting similar centrality-

based objectives. Below, we describe the respective baselines for the two variants of

1http://hubwaydatachallenge.org/

37

the problem.

Baselines for Node-Monitoring

For a budget k, the following baselines return a set of k nodes with highest value for

the respective measure:

• In-Degree: number of incoming edges;

• In-Probability: total probability of incoming edges;

• Node-Betweenness: as defined in [7, 22, 73];

• Closeness: as defined in [75];

• Node-NumItems: number of items before transition;

Baselines for Edge-Monitoring

For a budget k, the following baselines return a set of k edges with highest value for

the respective measure:

• Edge-Betweenness: as defined in [7, 22, 73];

• Edge-NumItems: expected number of items to transition over the edge;

• Probability: transition probability of the edge.

Henceforth, the baseline and the variants are deterined by context.

38

Graph Item Distribution r(NodeGreedy) r(Node− Baseline∗) r(EdgeGreedy) r(Edge− Baseline∗)

AS

Ego 0.06 0.24 0.14 0.15
Direct 0.66 0.67 0.99 0.99
Uniform 0.38 0.40 0.97 0.99
Inverse 0.38 0.40 0.97 0.99

Geo

Ego 0.00 0.06 0.01 0.02
Direct 0.00 0.06 0.20 0.65
Uniform 0.00 0.06 0.15 0.65
Inverse 0.00 0.07 0.15 0.65

Grid

Ego 0.27 0.27 0.29 0.29
Direct 0.92 0.92 0.98 0.98
Uniform 0.92 0.92 0.98 0.98
Inverse 0.92 0.92 0.98 0.98

BA

Ego 0.18 0.56 0.26 0.26
Direct 0.71 0.71 0.99 0.99
Uniform 0.63 0.63 0.98 0.98
Inverse 0.63 0.63 0.98 0.98

Table 3.1: Comparison of greedy algorithms with the best-performing baseline (Node− Baseline∗ and
Edge− Baseline∗) for k = 50. For a given pair of graph and item-distribution scheme, r(A) expresses the
ratio of the expected uncertainty that algorithm A achieves with k = 50 monitoring operations over the
initial uncertainty F0 (for k = 0). Note that the best-performing baseline is different for different rows of
the table.

39

0

100

200

0 15 30 45 60

k

F N
I(S

)

Node−Betweenness

Closeness

In−Degree

In−Probabibility

Node−NumItems

NodeGreedy

Figure 3·1: Node-Monitoring on Hubway data; y-axis: expected
uncertainty, x-axis: number of monitored nodes or edges.

3.5.2 Experimental Results

In this section, we report the performance of algorithms for the Markov Chain

Monitoring problem - first on the graph datasets, combined with item distribution

schemes; then on the Hubway dataset. As objective we always use the expected

uncertainty achieved for a given budget k of nodes or edges – the smaller its value,

the better the performance of the algorithm. While EdgeDP always provides same

solution as that of EdgeGreedy, it compares unfavorably in terms of runtime. Hence,

we do not report its statistics separately.

We provide the results for the graph datasets in Table 3.1. In all these experiments

we use k = 50. Moreover, r(A) is the ratio of the achieved objective value (for

k = 50) over the initial value F0 of the measure (for no monitoring operations, i.e.,

k = 0). The table shows four quantities for every graph-item distribution pair: r(A)

for A = {NodeGreedy, Node-Baseline∗, EdgeGreedy, Edge-Baseline∗ }. Note that

Node-Baseline∗ (resp. Edge-Baseline∗) refers to the baseline algorithm with the

40

0

50

100

150

200

0 50 100 150 200 250 300

k

F E
T(

D
)

Edge−Betweenness

Edge−NumItems

Probability

EdgeGreedy

Figure 3·2: Edge-Monitoring on Hubway data; y-axis: expected
uncertainty, x-axis: number of monitored nodes or edges.

best performance. For every algorithm A, r(A) ∈ [0, 1] and the smaller the value of

r(A) the better the performance of the algorithm.

From the table, we observe that for the AS dataset, NodeGreedy significantly out-

performs the best baseline for the Ego item distribution, while performing marginally

better for other item distributions. The value of r(EdgeGreedy) is only slightly less

than the best baselines across all the configurations. However, we observe that there

is no baseline which performs uniformly the best across different item distributions.

For example, Edge-Betweenness is the best baseline for Direct item distribution, the

Edge-NumItems for Ego, while they both perform worse than even randomly chosen

edges for Uniform and Inverse item distributions. Notably, for the Geo graphs, the

greedy algorithms significantly outperform the baselines

For the Grid graphs, the baselines perform exactly the same as our algorithms.

This can be explained by the nature of the Grid graph, where all the nodes except

the ones on the boundary are similar to each other, thereby rendering the Direct,

Uniform and Inverse item distributions very similar to each other. For the Ego dis-

41

tribution, the greedy algorithms perform marginally better than the baselines. Again,

there is no baseline which performs uniformly the best. Similar is our explanation for

the results on BA graphs as in these graphs most of the nodes have almost the same

(small) degrees too.

Figure 3·3 shows the performance of the NodeGreedy algorithm for the the Geo

graphs, with each plot corresponding to a different item distribution schemes. Observe

that NodeGreedy significantly outperforms all other baselines, which capture different

semantics of centrality. In particular, we observe that NodeGreedy achieves zero or

near-zero expected uncertainty with a small fraction of selected nodes compared to

baselines. Among the baselines, Closeness performs second-best in many cases, while

In-Degree performs as well as Closeness for small k.

Similarly, Figure 3·4 shows the performance of the different algorithms for the

Edge-Monitoring and the Geo graphs, for all possible item-distribution schemes.

As before, we observe that EdgeGreedy outperforms the baselines in all cases. We

notice also that the pattern of performance differs somewhat for the case of Ego

item distribution. With the exception of one baseline (Probability), all algorithms

achieve steep decline in expected uncertainty for small value of k - EdgeGreedy per-

forms best, but baselines are competitive. However, for larger k, the performance of

baselines does not keep up with that of EdgeGreedy. We believe that this is can be

explained as follows: the first edges selected by baselines are either central in terms

of graph structure – and therefore near the part of the graph with high concentration

of items (Edge-Betweenness) – or directly in the area of the graph with many items

(Edge-NumItems). In terms of reducing expected uncertainty, this is beneficial at

first. However, these baselines as they do not optimize our objective are not able to

continue reducing the expected uncertainty with their subsequent selections.

Figure 3·5 and Figure 3·6 show the performance of the greedy algorithms on

42

the Node-Monitoring and the Edge-Monitoring problems respectively. We

observe that both the NodeGreedy and the EdgeGreedy algorithms are consistently

the best when compared to the baselines. However, k = 50 represents about 1% of

the total edges in the graph, hence their monitoring does not decrease the uncertainty

significantly. While experiments with larger values of k are prohibitive due to time

complexity of the EdgeGreedy algorithm, we postulate that the greedy algorithm will

still continue outperforming the baselines.

Figures 3·7 and 3·8 provide a similar comparison for the different configurations

of the BA graph. The greedy algorithms provide marginal benefits or perform on par

with competitive baselines. On the BA graphs, for Direct, Uniform and Inverse

item distributions, some baselines perform exactly the same as the greedy algorithms

for relatively small number of monitoring operations i.e., k = 50. Lastly, we observe

similar trends in case of the Grid graphs as evident in Figures 3·9 and 3·10. It should

be noted that there is no baseline method that provides a consistently competitive

performance with the greedy algorithms across all different configurations described

above.

43

Ego Direct Uniform Inverse

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0

5

10

15

0

5

10

15

0

25

50

75

100

0

1

2

3

4

k

F N
I(S

)

Node−Betweenness Closeness In−Degree In−Probabibility Node−NumItems NodeGreedy

Figure 3·3: Node-Monitoring Geo dataset; y-axis expected uncertainty, x-axis: number of monitored
nodes (k).

Ego Direct Uniform Inverse

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

10

20

10

20

30

60

90

120

150

0

10

20

30

k

F E
T(

D
)

Edge−Betweenness Edge−NumItems Probability EdgeGreedy

Figure 3·4: Edge-Monitoring Geo dataset; y-axis expected uncertainty, x-axis: number of monitored
edges (k).

44

Ego Direct Uniform Inverse

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

400

600

800

1000

400

600

800

1000

1600

1800

2000

2200

800

1000

1200

1400

k

F N
I(S

)

Node−Betweenness Closeness In−Degree In−Probabibility Node−NumItems NodeGreedy

Figure 3·5: Node-Monitoring AS dataset; y-axis expected uncertainty, x-axis: number of monitored
nodes (k).

Ego Direct Uniform Inverse

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

1000

1010

1000

1010

2155

2160

2165

750

1000

1250

1500

1750

k

F E
T(

D
)

Edge−Betweenness Edge−NumItems Probability EdgeGreedy

Figure 3·6: Edge-Monitoring AS dataset; y-axis expected uncertainty, x-axis: number of monitored
edges (k).

45

Ego Direct Uniform Inverse

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

500

600

700

500

600

700

600

650

700

750

800

400

600

800

k

F N
I(S

)

Node−Betweenness Closeness In−Degree In−Probabibility Node−NumItems NodeGreedy

Figure 3·7: Node-Monitoring BA dataset; y-axis expected uncertainty, x-axis: number of monitored
nodes (k).

Ego Direct Uniform Inverse

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

745

750

755

760

745

750

755

760

826

828

830

832

300

400

500

600

700

800

k

F E
T(

D
)

Edge−Betweenness Edge−NumItems Probability EdgeGreedy

Figure 3·8: Edge-Monitoring BA dataset; y-axis expected uncertainty, x-axis: number of monitored
edges (k).

46

Ego Direct Uniform Inverse

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

680
690
700
710
720
730

680
690
700
710
720
730

690
700
710
720
730

200

400

600

k

F N
I(S

)

Node−Betweenness Closeness In−Degree In−Probabibility Node−NumItems NodeGreedy

Figure 3·9: Node-Monitoring Grid dataset; y-axis expected uncertainty, x-axis: number of monitored
nodes (k).

Ego Direct Uniform Inverse

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

715

720

725

730

715

720

725

730

724

728

732

736

200

300

400

500

600

700

k

F E
T(

D
)

Edge−Betweenness Edge−NumItems Probability EdgeGreedy

Figure 3·10: Edge-Monitoring Grid dataset; y-axis expected uncertainty, x-axis: number of monitored
edges (k).

47

●
●

● ●

●

41

33 52 36

42

Figure 3·11: Hubway dataset. IDs of stations picked as a solution
to Node-Monitoring for k = 5; 33: Kenmore Sq., 36: Copley
Sq./Boston Public Library, 41: Packard’s Corner, 42: Boston Public
Garden, 52: Newbury Street.

Experiments with Hubway data

In our last experiment, we explore the performance of our algorithms on the Hubway

dataset. From Figure 3·1 and Figure 3·2 we observe that the NodeGreedy and

EdgeGreedy algorithms are consistently the best at reducing expected uncertainty,

although the baselines are competitive on the relatively smaller graph. In Figure

3·11, we plot the Hubway stations across Boston chosen by the NodeGreedy algo-

rithm with k = 5. The nodes chosen by the algorithm are supported by the anecdotal

evidence of being exactly some of the of the most popular landmarks around the city.

While Boston Public Garden, Boston Public Library, and Newbury Street are im-

portant landmark locations near downtown Boston, Kenmore Square and Packard’s

Corner are busy intersections near Boston University. In Figure 3·12, we plot the pairs

of Hubway stations across Boston chosen by the EdgeGreedy algorithm for k = 10.

Anecdotally, it is should be noted that chosen source–destination pairs connect sta-

tions that are not otherwise well connected by subway. From a managerial perspective,

tracking the number of trips starting or ending at these Hubway stations can help

48

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

Source Station

Destination Station

Figure 3·12: Hubway dataset. Pairs of Boston stations picked as solu-
tion to Edge-Monitoring for k = 10.

the operators better reduce the expected uncertainty around the expected number

of bikes available at its different stations and anticipate future bike “re-balancing” 2

operations.

Running times

For all our experiments we use a single process implementation of our algorithms on a

24-core 2.9GHz Intel Xeon E5 processor with 512GB memory. For the largest graph

in our experiments, the parallelized version of the NodeGreedy takes about 5 − 10

seconds per selected node, while the parallelized version of EdgeGreedy takes about

1 minute per selected edge.

Discussion

Our experiments show that NodeGreedy and EdgeGreedy consistently perform better

than or on par with other popular baseline methods. Also, for graphs with rela-

2https://www.citylab.com/transportation/2014/08/balancing-bike-share-stations-has-become-a-
serious-scientific-endeavor/379188/

49

tively large number of nodes, the solutions to the Node-Monitoring problem are

more effective at reducing the expected uncertainty than the solutions to the Edge-

Monitoring problem for the same number of node (resp. edge) monitors. This is

especially important considering our analysis from Section 3.3 and 3.4 which show that

the NodeGreedy algorithm has a better time complexity compared to the EdgeGreedy

for dense graphs.

Chapter Summary

In this chapter, we introduced the problem of Markov Chain Monitoring, a

problem of both theoretical and practical interest in the operations of an MoD sys-

tem. Given an initial distribution of fleet vehicles over the graph representation of a

city in the form of a Markov chain, we aim to perform a limited number of monitor-

ing operations in order to minimize the uncertainty around the fleet distribution in

future steps. We studied variants of this problem and proposed efficient algorithms

to solve them. We rigorously evaluated these algorithms on various real and syn-

thetic datasets. Finally, we showcased its use on a dataset from the bike-sharing

MoD system, Hubway, from the city of Boston.

50

Chapter 4

Driver Revenue Maximization

The proliferation of on-demand ride-hailing platforms like Lyft and Uber has begun

to fundamentally change the nature of urban transit. In the last two years alone,

the number of daily trips using ride-hailing platforms like Uber and Lyft in New

York City has grown five-fold, to about 350,000 trips per day. Today, over 65,000

drivers drive on the streets of New York City as Uber or Lyft drivers. The explosive

growth of these ride-hailing platforms has motivated a wide array of questions for

academic research at the intersection of computer science and economics, ranging

from the design of effective pricing mechanisms, to equilibrium analysis, to the design

of reputation management systems for drivers, to algorithms for matching drivers

with customers, as we discuss in our related work section.

While these studies consider the study of ride-hailing platforms holistically, little

work has been done on optimizing strategies for individual drivers. Nevertheless, the

challenge of how to maximize one’s individual earnings as a driver for a ride-hailing

platform like Uber or Lyft is a pressing question that millions of micro-entrepreneurs

across the world now face. Anecdotally, many drivers spend a great deal of time

strategizing about where and when to drive. However, drivers today are self-taught,

using heuristics of their own devising or learning from one another, and employ rela-

tively simple analytics dashboards such as SherpaShare. Indeed, rumors suggest that

some drivers even collude in attempts to induce spikes in surge prices that they can

then exploit. But in terms of concrete guidance, to date, there are only articles in

51

the popular press and on blogs that offer (often contradictory) advice to ride-hailing

drivers on how to maximize their earnings [36, 38, 83].

In this chapter, we formalize the problem of devising a driver strategy to maximize

expected earnings and describe a series of dynamic programming algorithms to solve

this problem under different sets of modeled actions available to the drivers. Our

strategies take as input a detailed model of city-level data that constitutes a fine-

grained weekly projection of forecasted demand for rides, comprising predicted spa-

tiotemporal distributions of source-destination pairs, driver payments, transit times,

and surge multipliers. The optimization framework we propose not only produces

contingency plans in the form of highly optimized driving schedules and real-time

in-course corrections to drivers, but also enables us to rigorously reason about and

analyze the sensitivity of our output results to perturbations in the input data. Thus,

we can justify the proposed strategies even under an uncertainty level in the collected

data and the data model itself.

We then exemplify our results with a large-scale simulation of driving for Uber

in New York City. For this simulation, we assemble a new dataset that uses both

the publicly available New York City taxi rides dataset 1 as well as calls to the

Uber API. From the former, we obtain information about over 200,000 taxi rides

that occurred between different New York City zones. From the latter, we obtain

representative pricing and traffic-time information for those trips, were they to reoccur

on Uber. From this dataset, we construct a mathematical model to produce input

to our algorithms. However, we view the dataset to be of independent interest that

could subsequently be used for a multitude of other studies.

Our experiments with our methods on this dataset demonstrate the following

findings. Being strategic about the areas they focus on picking up riders and the times

they work, drivers can significantly increase their income, sometimes by as much as

1http://www.nyc.gov/html/tlc/html/about/trip record data.shtml

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

52

1.5x, when compared to a naive optimization strategy. Moreover, we show that a

pronounced difference between earnings holds even when there is large uncertainty in

the input data. We argue that our results are therefore not purely an artifact of the

New York City dataset we employ, but also have high potential to generalize. Finally,

our experiments show that naively chasing surging prices does not typically lead to

significant earnings gains, but it can actually introduce large opportunity costs, as

drivers waste time driving to subsiding surges.

Chapter Organization

The rest of the chapter is organized as follows. We begin by discussing the problem

setup in Section 4.1. Based on the assumptions discussed in Section 4.1, we formulate

various strategic driver strategies in Section 4.2. Sections 4.3-4.4 are devoted to

developing robust optimization techniques to evaluate the impact of perturbations

in input data. Finally, Section 4.5 starts by discussing the data collection and pre-

processing strategies and follows it up with a rigorous evaluation of the proposed

driver revenue maximization strategies.

4.1 Problem Setup

In this section, we describe the basics of our problem setup and provide the necessary

notation.

4.1.1 Modeling the City

Throughout the chapter, we will assume that a city is divided into non-overlapping

set of zones denoted by X , and time t runs in discrete time steps. We represent a

city in the form of a complete weighted directed graph G = (X , E) with |X | = n and

|E| =
(
n
2

)
edges, where the edge weight on edge e(i→ j) corresponds to the likelihood

of a driver currently at location i receiving a ride request to location j. Additionally,

53

each edge is associated with a travel time τ(i, j), a travel cost, and a reward r(i, j).

In the general formulation of our problem, all of these edge attributes are time-

varying, e.g., the rewards would vary with t as rt(i, j), but to avoid excess notation,

we drop those superscripts in our following discussion of models and algorithms, and

reintroduce them only in our experiments in Section 4.5. These attributes of a city,

which we use as an input to our solver, are specified as follows:

Empirical transition matrix (F)

Every edge e(i → j) ∈ E is associated with a transition probability f(i, j) ∈ [0, 1]

such that
∑

j∈X f(i, j) = 1, ∀i ∈ X .

Since the entries of F correspond to probabilities, the weights give rise to a Markov

chain with a transition matrix F – where each entry f(i, j) denotes the probability

of a passenger in zone i traveling to zone j. As we disallow trips within the same

zone in our model (an assumption which could be relaxed), we let f(i, i) denote the

probability of a driver not finding a passenger in zone i at a given time step.

Travel time matrix (T)

Every edge e(i→ j) ∈ E is also associated with τ(i, j) > 0, the travel time of a ride

from zone i to zone j. These weights give us a travel time matrix T with entries

τ(i, j).

Rewards matrix (R)

Every edge e(i→ j) ∈ E is also associated with a real valued reward r(i, j) denoting

the net reward for a driver delivering a passenger from zone i to zone j. The net

rewards include the driver’s share of earnings from a passenger minus the sundry

costs like gas, vehicle depreciation, etc. Since these earnings and costs vary with

mileage and transit time, each entry in the rewards matrix R is of the form r(i, j) =

54

earnings(i, j) - cost(i, j).

Again, in general, all of the input matrices: F, T and R, are time-dependent, i.e.,

their entries could change throughout the day

4.1.2 Modeling the Driver

Our model assumes that each driver comes with a maximum work budget of B time

units, during which the driver can pick up passengers. Depending on the specific

setting, the driver can work B time units consecutively or split them over a finite

horizon of N time units, where N ≥ B. As an example, a driver seeking to optimize

an 8 hour work day over a 24 hour day at a ten-minute decision granularity (at most

six decisions per hour), will have B = 48 and N = 144.

Home zone (i0)

Each driver has a unique home zone denoted by i0 ∈ X . We always assume that each

driver starts from their home zone and returns to it at the end of each of their shifts.

Driver actions (A)

In a driver strategy, whenever faced with a choice regarding their next decision, a

driver has n+ 2 possible actions to choose from:

• Get Passenger (a0): Wait for a passenger in the current zone.

• Go Home (a1): Log out of the on-demand ride service, relocate to the home

zone (if needed) and stop working. This action does not consume the driver’s

budget.

• Relocate (a2(j)): Relocate to city zone j. This action consumes the driver’s

budget.

55

Driver policy (π)

A driver policy is a sequence of time and location-dependent actions taken by a driver

at different steps of the strategy. As the total number of actions taken by a driver

while exhausting the budget B depends on the actual actions, the length of a driver

policy π varies.

Each time and location dependent action in π, denoted by a, can be expressed in

form of a 3-tuple – (̂i, t̂, â) where â ∈ A refers to actual action, î ∈ X is the zone at

which action was taken and t̂ ≤ N is the time at which the action was taken. Finally,

we use Π to denote the set of all possible policies.

4.1.3 Computing Driver Earnings

In this section, we describe the computation of the expected earnings of a driver who

at a specific time t is in zone i and takes action a. We denote this by E(i, t, a) and

depending on the action a it is computed as follows.

• For action a0 (Get Passenger), taken inside zone i at time t, the action earnings

function is calculated as an expectation over possible rides,

E(i, t, a0) = Fi • Ri (4.1)

where Fi and Ri denote the i-th rows of F and R respectively.

• For action a1 (Go Home), taken inside zone i at time t, the action earnings

function is simply

E(i, t, a1) = −cost(i, i0) (4.2)

where we incur a negative reward due to the absence of a paying customer.

• Action a2(j) (Relocate), taken inside zone i at time t, takes the driver to zone

56

j 6= i. Therefore, the action earnings function is

E(i, t, a2(j)) = −cost(i, j) (4.3)

where the driver again incurs a negative reward due to the absence of a paying

customer.

4.1.4 Problem Statement

Given input specification matrices F, T and R, as well as the driver’s budget B, the

total expected earnings of the driver with policy π is:

E(π,F,T,R, B) =
∑

(̂i,t̂,â)∈π

E (̂i, t̂, â), (4.4)

where E (̂i, t̂, â) is computed using the Equations (4.1), (4.2) and (4.3).

As we seek to maximize the total expected earnings of the driver, we aim to solve

the following optimization problem.

Problem 4 (MaxEarnings). Given sets of time-evolving F, T and R, as well as

the driver’s budget B, find a π∗ such that:

π∗ = arg max
π∈Π

E(π,F,T,R, B).

4.2 Driver Strategies

We now describe the different driver strategies, which are defined based on the set of

actions A at the driver’s disposal. We also show how to optimally solve the Max-

Earnings problem in polynomial time for different sets A.

For the rest of the section, we will denote by Φ(i, b, t) the total expected future

earnings of a driver who is in zone i at time t with budget b time units remaining.

Hence, the total expected earnings of a driver can be expressed as Φ(i0, B,N).

57

If a driver at zone i at time t with b budget units remaining either takes a passenger

ride to zone j or relocates to zone j, that trip ends at time t′ = t + τ t(i, j) with

remaining budget b′ = b−τ t(i, j). The total expected future earnings at that point for

the driver is: Φ(j, b′, t′). Let v(i, b, t) denotes the vector of such cumulative earnings

across different zones j induced when a driver takes an a0 action i.e., v(i, b, t) =[
Φ(j, b′, t′)

]
j∈X .

We now define the driver strategies as well as the solutions to the instances of the

MaxEarnings problem they induce.

The flexible-relocation strategy

This is the most general strategy where a driver has complete freedom for choices

regarding work schedule as well relocation to different zones. Specifically, a driver

has a budget constraint of B time units to be consumed over a finite horizon N time

units. An idle driver in zone i following this strategy has following set of available

choices,

A = {a0, a1} ∪ {a2(j)|∀j ∈ X , j 6= i} (4.5)

Note that we restrict the Relocate actions to ones which do not result in t ≥ N or

b < 0.

A driver following the flexible-relocation strategy chooses the action that maxi-

mizes total expected earnings. For this strategy, the solution to the MaxEarnings

problem can be found by the following dynamic programming (DP) recurrence:

Φ(i, b, t) = max
a∈A


Fi(Ri + v(i, b, t)), if a = a0

−cost(i, i0) + Φ(i0, b, t
′), if a = a1

maxj{−cost(i, j) + Φ(j, b′, t′)}, if a = a2(j)

(4.6)

Each of the O(nNB) entries in the output of this dynamic program involves consid-

58

eration of at most O(n) actions. Hence, the solution to the MaxEarnings problem

can be found in O(n2NB) time.

Other strategies

In addition to the general flexible-relocation strategy, we also consider the following

three special cases to model other plausible strategies of ride-hailing drivers: the

naive, the relocation and the flexible strategies.

In the naive strategy, a driver performs a random walk over the city on weekdays

from 9AM - 5PM, with locations dictated exclusively by the passengers picked up. At

the end of every passenger ride, the driver waits in the current zone for next passenger

pickup. Hence, the only allowable action is Get Passenger.

In the relocation strategy, an idle driver in zone i has two choices: Get Passenger

and Relocate. Hence, the set of allowable actions for a driver contains n different

actions, one of which is Get Passenger and (n − 1) Relocate actions, one for each

different city zone. Thus: A = {a0} ∪ {a2(j)|∀j ∈ X , j 6= i}. We remove from

consideration the zones where relocating exhausts the budget or where t ≥ N .

In the flexible strategy, a driver has the flexibility to decide working times, mod-

eling a driver who uses heuristics to decide the most profitable times to work. As a

result, we impose an additional constraint of a working time budget B that a driver

can split over a finite horizon of N time units. Thus, this strategy aims to figure

out an optimal in-expectation work schedule for the driver. At any stage, a driver

can log out of the on-demand ride service and return to home zone. Hence, the set

of allowable actions for a driver contains 2 different actions, Get Passenger and Go

Home. Thus: A = {a0, a1}. It is common for drivers to structure their day around a

desired target earning, rather than a time budget. The flexible strategy also naturally

computes a schedule that minimizes working time required for achieving the desired

target earning.

59

Solving MaxEarnings for the naive, the relocation and the flexible strategies

can be done by streamlined versions of the DP presented in Equation (4.6).

4.3 Maximizing Earnings under Uncertainty

The primary source of variability in the input of the MaxEarnings problem is the

set of empirical transition matrices F. In a typical application, we expect that predic-

tive models would be employed to generate estimates of these matrices based upon

observations from historical data (as we do in our own experiments). Empirically

observed transition matrices may suffer from estimation errors due to the presence

of external confounding factors (e.g., weather, special events inside the city) while

gathering the data. As a result, the dynamic programming solution to MaxEarn-

ings may also be sensitive to the transition probabilities. In this section, we address

the question of how the results of the solutions we described in the previous section

change under the assumption that there is some uncertainty (and thus noise) in the

underlying empirical transition matrices we use as part of our input.

Concretely, we now assume that the empirical transition matrix (F) is generated

from an underlying traffic matrix, or count matrix, recording trips between locations

i and j.

Count matrix (C)

Every edge e(i → j) ∈ E is associated with an integer-valued weight c(i, j) that

denotes the number of requests at zone i that had node j as their destination. Then,

we compute frequencies f(i, j) = c(i,j)∑
k c(i,k)

, for all outbound trips from i.

With this, we now describe how to quantify uncertainty in the rows of F (and the

underlying C, by construction). This will enable us to modify the MaxEarnings

into the RobustEarnings problem following ideas developed by [65].

60

4.3.1 Modeling Uncertainty

We now assume that there is an underlying true transition matrix P, and the question

we explore is our confidence that the C we observe is actually generated by the true

transition matrix P. As before, both P and C are clearly time-dependent in practice,

but for ease of exposition, we ignore the time-dependency aspect of the problem here.

We consider each row of the true transition matrix and the count matrix sepa-

rately; let p and c denote any particular row of P and C respectively.

Following the ideas of Kullback et al. [45], we have a discriminatory random vari-

able 2Î, which follows a χ2 distribution with (n−1) degrees of freedom. Heuristically,

2Î can be considered as a measure of the “divergence” of c from p. Thus, for c to be

in the (1− α) (or 100(1− α)%) confidence interval of p, we need:

Fχ2
n−1

[
2Î
]

= Fχ2
n−1

[
2

n∑
i=1

c(i) log c(i)− 2n log n− 2
n∑
i=1

c(i) log p(i)

]
= 1− α,

where p(i) (resp. c(i)) is the i-th element of vector p (resp. c). In the above equation,

α quantifies the uncertainty that one can tolerate and is an upper bound on what

one believes actually exists in the set of observations p. Thus, we call α the input

uncertainty level.

By setting βmax =
∑n

i=1 c(i) log c(i), we get

n∑
i=1

c(i) log p(i) ≥
2(βmax − n log n)− F−1

χ2
n−1

(1− α)

2
, (4.7)

where F−1
χ2
n−1

is the inverse of the χ2 cdf. In other words, for all vectors p for which

Equation (4.7) is satisfied, c is within the (1− α)-confidence interval of p.

Thus given C and α, we define the α-feasible matrices Pα to be the set of true

transition matrices such that for every matrix P in Pα and every row p of P, Equa-

61

tion (4.7) is satisfied.

4.3.2 The RobustEarnings Problem

Our approach is to compute the worst-case total expected earnings for a driver, by

finding the P among all matrices in Pα such that the total expected earnings of the

driver are minimized. This quantifies the worst-case difference between the earnings

computed as a solution to the MaxEarnings and the worst-case earnings of the

driver, given bounded uncertainty α. We formalized this as the following problem

definition:

Problem 5 (RobustEarnings). Given sets of time evolving C, T and R, the

driver’s budget B and input uncertainty level α, find π̂ such that:

π̂∗ = arg max
π∈Π

min
P∈Pα

E(π,P,T,R, B).

Note that the above problem requires searching among all possible true transition

matrices in Pα, which is a non-enumerable set. In fact, we can show that Problem 5

can be solved by enhancing the total expected future earnings associated with Get

Passenger action in the dynamic-programming routines we described in Section 4.2

with an optimization problem. We use an off-the-shelf minimizer to solve this opti-

mization problem in the results presented in this chapter. However, using techniques

introduced by Nilim and El Ghaoui [65], in the following section, we show that a bisec-

tion algorithm can approximate this problem within an accuracy ε in O(log(Vmax/δ))

time, where Vmax is the maximum value of the value function.

4.4 Robust Dynamic Programming

In this section, we describe the setup of the robust finite horizon dynamic program

and a bisection algorithm to solve it approximately. We demonstrate our approach for

solving robust dynamic program using the relocation strategy. However, the approach

62

generalizes to all the other strategies described in the earlier sections. Without loss

of generality, we make the assumption that all entries of the rewards matrix R are

non-negative and finite.

4.4.1 Dynamic Program Formulation

We consider a case of an adversarial two-player game between the driver and the

nature, where the driver seeks to maximize the minimum expected earnings, while

the nature is the minimizing player. Nature does this by choosing the worst-case

transition matrix P ∈ Pα at each step of the play. Thus, the worst case optimal

value vector v(i, t) is given by,

v(i, t) = max
a∈A

[
E(i, t, a) + σPαi

(
v(i, t)

)]
, ∀i ∈ X , t ≤ N

where Pαi refers to the set of the i-th rows of the transition matrices P ∈ Pα and

σP(v) = inf(pᵀv : p ∈ P)

is the inner problem to be solved in each step of the recursion. A corresponding

optimal robust policy π̂∗ is obtained by solving,

â∗(i, t) = arg max
a∈A

[
E(i, t, a) + σPαi

(
v(i, t)

)]
,∀i ∈ X

for all time steps. With trivial algebraic simplification, we can show that Equa-

tion (4.7) implies

Pαi =
{
p ∈ ∆n :

∑
j

f(j) log p(j) ≥ β
}

(4.8)

where,

β =
2βmax − F−1

χ2
n−1

(1− α)

2

βmax =
∑

j f(j) log f(j), and ∆n denotes the probability simplex of size n.

63

4.4.2 Bisection Algorithm

In this section, we describe the bisection algorithm that can be used to approximately

solve the robust dynamic program described above. The inner problem of the robust

dynamic program can be formalized as,

σ∗ = min
p

pᵀv : p ∈ ∆n,
∑
j

f(j) log p(j) ≥ β.

The Lagrangian L associated with the inner problem is therefore,

L(v, ζ, µ, λ) = pᵀv − ζᵀp + µ(1− pᵀ1) + λ(β − fᵀ log p)

where ζ, µ, and λ are Lagrange multipliers. The dual function d is the minimum value

of the Lagrangian over p for ζ ∈ Rn, µ ∈ R, and λ ∈ R. The optimal p∗ minimizing

the above dual function is obtained by solving ∂L
∂p

= 0, which gives us,

p∗(j) =
λf(j)

v(j)− ζ(j)− µ
.

Plugging in the value of p∗(i) into the dual function d gives us the dual problem,

σ = max
ζ,µ,λ

λ(1 + β) + µ− λ
∑
j

f(j) log

(
λf(j)

v(j)− ζ(j)− µ

)
: λ ≥ 0, ζ ≥ 0,v ≥ ζ + µ1

where the inequalities hold element-wise. As this problem has a feasible set with

non-empty interior, there is no duality gap and σ = σ∗. Moreover, by monotonicity

argument, we can conclude that ζ is zero. Thus, the last constraint of the dual

64

problem can be expressed as µ ≤ vmin = mini v(i). Hence, we get,

σ∗ = max
λ,µ

h(λ, µ)

where,

h(λ, µ) =


λ(1 + β) + µ− λ

∑
i f(j) log

(
λf(j)

v(j)−µ

)
, if λ > 0, µ < vmin,

−∞, otherwise

(4.9)

The gradient of h is given by,

∂h(λ, µ)

∂λ
= β −

∑
j

f(j) log

(
λf(j)

v(j)− µ

)
∂h(λ, µ)

∂µ
= 1− λ

∑
j

(
f(j)

v(j)− µ

)

The optimal value of λ for a fixed value of µ, λ(µ) given by,

λ(µ) =

(∑
j

f(j)

v(j)− µ

)−1

which further reduces the problem to a 1-dimensional optimization problem,

σ∗ = max
µ<vmin

σ(µ)

where, σ(µ) = h(λ(µ), µ). σ(µ) is a concave function. Now, we may use a bisection

algorithm to maximise this function.

To initialize the bisection algorithm, we need upper and lower bounds µ+ and

µ− on a minimizer of σ. When µ → vmin, σ(µ) → vmin and σ
′
(µ) → −∞ Thus, we

may set upper bound µ+ = vmin. The lower bound µ− must be chosen such that

σ
′
(µ−) > 0.

σ
′
(µ) =

∂h

∂µ
(λ(µ), µ) +

∂h

∂λ
(λ(µ), µ)

∂λ(µ)

∂µ

By construction of λ(µ), the first term of the above derivative is zero. Furthermore,

65

∂λ(µ)
∂µ

< 0. Hence, we need µ such that ∂h
∂λ

(λ(µ), µ) < 0. Using the bounds on λ(µ),

vmin − µ ≤ λ(µ) ≤ vmax − µ, we can show that,

∂h

∂λ
(λ(µ), µ) = β −

∑
j

f(j) log

(
λ(µ)f(j)

v(j)− µ

)
≤ β − βmax − log

(∑
j

f(j)λ(µ)

v(j)− µ

)
≤ β − βmax − log

(∑
j

λ(µ)

v(j)− µ

)
≤ β − βmax − log

(∑
j

vmin − µ
v(j)− µ

)
≤ β − βmax − log

(∑
j

vmin − µ
vmax − µ

)
< β − βmax − log

(
vmin − µ
vmax − µ

)
(n > 1)

Therefore, the sufficient condition is,

0 > β − βmax − log

(
vmin − µ
vmax − µ

)
log

(
vmin − µ
vmax − µ

)
> β − βmax(

vmin − µ
vmax − µ

)
> eβ−βmax

(vmin − µ) > eβ−βmax(vmax − µ)

vmin − eβ−βmaxvmax > µ(1− eβ−βmax)

Hence,

µ0
− =

vmin − eβ−βmaxvmax

1− eβ−βmax
> µ

By construction, the interval [µ0
−,vmin) is guaranteed to contain the global maximiser

66

of σ over (−∞,vmin). The bisection algorithm is as follows:

1. Set µ+ = vmin and µ− = µ0
−. Let k = 1, µ1 = (µ+ + µ−)/2.

2. While k ≤ N :

(a) If σ
′
(µ1) > 0, set µ− = µ1, if σ

′
(µ1) < 0 then µ+ = µ1, else break

(b) k = k + 1,

(c) µk = (µ+ + µ−)/2

3. µ̂∗ = arg maxj{σ(µj)}

Lemma 3. After N ≈ log2(V/δ) where V = max
(
σ∗ − σ(µ+), σ∗ − σ(µ−)

)
, the

bisection algorithm provides optimal solution to the inner problem within an accuracy

δ > 0, i.e., σ∗ − σ(µ̂∗) ≤ δ which we call as the δ-solution.

Proof. Let the interval [µ−, µ+] from step 1 of the bisection algorithm be denoted by

G. At each iteration, the length of the interval that contains the global maximiser

of σ is exactly halved. Hence, let [µN−, µN+] be the corresponding interval after N

iterations of the bisection algorithm. Length of the interval GN is 2−N times the

length of G. Using the bisection algorithm, we know that,

∀µ : µ ∈ G \GN → σ(µ) ≤ σ(µ̂∗)

Let 2−N < α < 1. α-contraction of G to µ∗ is the segment given by points,

Gα = (1− α)µ∗ + αG =
{

(1− α)µ∗ + αz
∣∣z ∈ G}

Since, α > 2−N , we know that length of Gα > GN , in fact, length of Gα is α(µ+−µ−).

Hence, ∃y ∈ Gα such that y /∈ GN . Furthermore, ∃z ∈ G such that y = (1−α)µ∗+αz.

By the concavity of σ(µ) function,

σ(y) ≥ (1− α)σ(µ∗) + ασ(z)

σ(µ∗)− σ(y) ≤ α(σ(z)− σ(µ∗))

≤ αV

67

Hence, y is an αV -solution to our problem.

σ(µ̂∗) ≥ σ(y)

σ(µ∗)− σ(µ̂∗) ≤ σ(µ∗)− σ(y) ≤ αV

Hence, sufficient condition for obtaining a δ-solution is, αV ≤ δ i.e., N ≥ log2(V/δ).

However, V is unknown by itself. But, the objective function of the inner problem,

pᵀv, is bounded from above by vmax. Therefore, the lemma still holds for V =

max
(
vmax − σ(µ+),vmax − σ(µ−)

)
.

Hence, the bisection algorithm provides an optimal solution to the inner problem

within an accuracy δ > 0. Given a v ∈ Rn
+ and δ > 0, we can use the bisection

algorithm above to find a solution σ̂P(v) = σP(v)− δP(v) where 0 < δP(v) ≤ δ. For

a total of N time steps in the finite horizon, setting δ = ε/N for each timestep, we

can compute an ε-suboptimal robust policy for the RobustEarnings problem.

4.5 Data and Experiments

We now evaluate our strategies for drivers in practice. First, we discuss how we collect

and combine the appropriate data from multiple data sources. Then, we perform a

comprehensive experimental study that provides specific insights as to how New York

City drivers can maximize their earnings.

4.5.1 Data Pre-processing

In order to evaluate our strategies, we need to construct time-evolving matrices F,

T and R as defined in Section 4.1, and C as defined in Section 4.3. For this, we use

two data sources: (1) the New York City taxi rides dataset 2 and (2) information we

obtain from the Uber platform via queries to the Uber API. 3

2http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
3https://developer.uber.com/docs/riders/ride-requests/tutorials/api/introduction

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://developer.uber.com/docs/riders/ride-requests/tutorials/api/introduction

68

Evening 5PM Night 10PM

Morning 8AM Noon 12PM

0.25

0.50

0.75

Probability
of finding a
passenger

Figure 4·1: Probability of finding a passenger in 10 minutes across
New York City zones at different times of a representative day.

69

Forming time-evolving matrices C and F

Our starting point is the New York City Taxi dataset (2015-2016), which contains

yellow street-hail records of over 200,000 taxi rides per day with fields capturing

pickup and dropoff times, location co-ordinates, trip distances, and fares. Each taxi

record is accompanied with a taxi location ID for the pick-up and drop-off locations.

Each location ID is associated with one of 29 non-overlapping city zones, as defined

in the dataset. While the set of taxi rides is undoubtedly produced from a different

ridership than Uber, it nonetheless provides a useful baseline that reflects many of

the broader dynamics of ridership demand in New York City.

Given this data, we divide each 24-hour day of the week into 144 time-slices of

duration 10 minutes each, indexed by their start time. To model traffic demand in

the city at time t, the c(i, j) entry of count matrix Ct is the total number of rides from

zone i to zone j in a 30-minute long time window centered at time t. For example,

c(i, j) for the time slot [10:40, 10:50] on a Wednesday is a count of all rides from i to j

that were initiated between 10:30 and 11:00 on any Wednesday in the dataset. Since

our model disallows rides within the same zone, we ignore such rides while populating

the entries of the matrix Ct, resulting in all diagonal entries of the count matrix being

zero.

To populate the entries of the empirical transition matrix Ft, as defined in Section

4.1, we must estimate its diagonal entries, which correspond to the probability of not

finding a ride, as well as the transition probabilities. We derive these from the data

as follows. Assuming that the parameters do not change significantly within a single

time-slice, let N(λ) and N(µ) denote the number of passenger and driver arrivals in

zone i in one time unit, with independent Poisson arrival rates λ and µ respectively.

Although we assume the independence of the passenger and driver arrival processes,

we can also accommodate correlated processes with slight modification. Hence, the

70

... −2 −1 0 1 2 ...

λ λ

µ

λ

µ

λ

µ

λ

µ

λ

µ µ

Figure 4·2: States of a skellam-distributed random variable K.

random variable K = N(λ)−N(µ) follows a Skellam distribution such that:

Pr[K = k] = e−(λ+µ)

(
λ

µ

)
Ik
(
2
√
λµ
)

where Ik(z) is the modified Bessel function of the first kind [92]. States of the random

variable K are depicted in Figure 4·2.

Whenever K < 0, there are more drivers than passengers. We assume a worst

case scenario in which a driver (conceptually) joins the end of a FIFO queue for that

zone. Hence, for k ≤ 0, the driver has to wait for (|k| + 1) passenger arrivals for a

successful passenger pickup. Then, the probability of a successful passenger pickup

is:

Pr[N(λ) = |k|+ 1] =
λ

(
|k|+1

)
e−λ(

|k|+ 1
)
!
.

Thus, we can express a diagonal entry f t(i, i) as follows:

f t(i, i) = 1−
∑
k≤0

Pr[K = k]× Pr[N(λ) ≥ |k|+ 1].

For F to be stochastic, we set every other entry f t(i, j) to:

f t(i, j) = (1− f t(i, i))× ct(i, j)∑
j c

t(i, j)
.

The matrix Ft built in this manner satisfies all our assumptions.

Figure 4·1 shows an example of varying estimated probabilities of successful pick-

ups in different zones at various times of the day derived from the New York City data

71

using the methods above. As expected, we see that the probability of a successful

pickup is higher outside Manhattan in the morning, and this trend reverses in the

evening.

Forming time-evolving matrices T and R

We obtain information regarding travel times and rewards using the estimates/price

endpoint of the Uber API. The API takes longitude and latitude of pick-up and

drop-off locations and returns price estimates for all types of Uber products – UberX,

UberXL and UberBlack – together with the active surge multiplier rate at the pick-

up location at the time of query. We only focus on UberX, the most popular Uber

product. We also use the /products API endpoint to get information on the base

fare, minimum fare, cost per minute and cost per unit distance for UberX. However,

none of the Uber API endpoints provide information about the supply of drivers or

demand of passengers; we impute this information from the New York City taxi rides

dataset.

To create a representative sample of the data, we “recreated” New York City taxi

rides virtually on the Uber platform. Using the Uber API, we were able to take a New

York City taxi ride recorded in 2015, and capture the Uber attributes of that ride

exactly one year later, collecting price estimates and other data above for that virtual

ride. To respect the Uber rate limit of 1,000 API requests per hour per account, we

sub-sampled one ride between each pair of zones in the city every 15 minutes. We

implicitly assume that price estimates, travel times, and distance of preferred travel

paths by drivers do not vary significantly in 15 minutes. Every 5 minutes, we also

queried the surge multiplier active within each zone. Chen et al. [18] have observed

that 90% of the surges on Uber platform have durations lasting multiples of 5 minutes.

Using this approach, we collected data from the Uber API for a 6-month period (Oct.

2016–Mar 2017), recreating rides that originally occurred from Oct. 2015 to Mar

72

2016. Thus, we built realistic estimates for r(i, j) and τ(i, j) for all pairs of zones

We take into account the Uber fee structure in New York City as reported by the

Uber API, as well as the overall cost per mile estimates provided by the American

Automobile Association (AAA) in order to build estimates for r(i, j). Finally, we

maintained same-day of week estimates, so that, for example, travel time estimates

and rewards computed for Sunday, Oct 16, 2016, were paired with frequency estimates

drawn from the New York City taxi rides dataset for Sunday, Oct. 18, 2015. In the

remainder of this section, we provide results for driving during one representative

week in October. Our results do not vary qualitatively across different weeks, with

the exception of seasonal peak days, such as New Year’s Eve.

73

0

100

200

300

400

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

E
a

rn
in

g
s
 (

$
 /

 w
o

rk
d
a
y
) naive relocation flexible flexible−relocation

Figure 4·3: Daily driver earnings for different strategies averaged over different home zones on a repre-
sentative day.

0

200

400

600

800

West Side Midtown East Side Midtown South Financial District Queens Brooklyn

#
 r

e
lo

ca
tio

n
s

relocation flexible−relocation

Figure 4·4: Contrast between preferred relocation destinations for drivers with relocation and flexible-
relocation strategies on a representative day.

74

4.5.2 Experimental Results

For all our experiments we use a single process implementation of our algorithms on a

24-core 2.9GHz Intel Xeon E5 processor with 512GB memory. Running time for naive

and relocation is less than a minute, and about 5 minutes for flexible and flexible-

relocation. Uncertainty analysis (Section 4.5.2) with an off-the-shelf minimizer takes

around 3 hours. Our code has been made publicly available in order to encourage

reproducible research [14].

Comparison of strategies

First, we address the question: what is the best driver strategy? Intuitively, it is clear

that flexible-relocation is the best strategy, as it takes advantage of spatial as well as

temporal variations in the passenger demand across New York City. In order to verify

this intuition, we compare driver earnings across different strategies. Drivers following

the naive and the relocation strategies are assumed to drive from 9 AM to 5 PM, a

standard 8 hour workday, while those following the flexible or the flexible-relocation

strategies drive for a total of 8 hours each day with a flexible schedule.

In order to evaluate the performance of our strategies, we find the solution to

MaxEarnings and simulate 100 drivers, each randomly assigned a home zone, op-

erating on these strategies on the same day of the following week, for a total of 10

weeks. Figure 4·3 presents a box-plot of the resulting earnings. The lower and upper

edges of the boxes in Figure 4·3 indicate quartiles Q1 and Q3 respectively, and length

of whisker is 1.5 times IQR.

We observe that all “smart” strategies consistently outperform naive; as expected.

On most days, flexible-relocation is the strategy with the highest earnings. The

median earning of a driver following the naive strategy on a Sunday is $104 while

that of a driver following flexible-relocation is $177, representing a 70% increase in

75

median earnings. Averaged over all days of the week, this results in a 47% increase in

median earnings per work day when following the flexible-relocation strategy. Thus,

our strategies do exploit the spatial and the temporal variation in demand across New

York City. The results also show that for a part-time Uber driver in New York City,

it is more beneficial to drive midweek, from Wednesday to Friday, and Sunday than

during Saturday and Monday.

Spatial dynamics of strategies

Next, we address the question - what are the benefits of the Relocate action? Figure

4·1 already shows the spatial variation in the demand across different New York

City zones at different times of the day. Intuitively, this spatial variation can cause

a disparity in the driver earnings based on the zone of the driver. For example,

drivers based in Manhattan should be expected to earn more than those based in

Brooklyn due to persistently higher demand in Manhattan. Similarly, Figure 4·3

shows temporal variation in earnings across days of the week. We observe that on

the days of low-demand, not only are the median earnings for relocation consistently

higher than those for naive but also the inter-quartile range (IQR) and the length of

whiskers for relocation are narrower. On days with high but localized demand like

Fridays, the relocation strategy performs on par with the flexible-relocation strategy

and significantly outperforms naive.

These observations indicate that the location-based disparity in earnings for the

naive strategy is much larger than the relocation strategy. Thus, we conclude that

smart relocations throughout the day prevent a driver from becoming “trapped” in

low-earning neighborhoods, translating into significant increases in the earnings. This

may be counterintuitive to some drivers, as a Relocate action (essentially an empty

ride) incurs a cost to the driver. Yet, the results demonstrate that these actions,

when timed appropriately, lead to earnings far higher than the costs they incur.

76

0.00

0.25

0.50

0.75

1.00

1AM 4AM 7AM 10AM 1PM 4PM 7PM 10PM

%
 A

ct
iv

e
D

riv
er

s
flexible flexible−relocation

Figure 4·5: Active drivers with flexible and flexible-relocation strate-
gies at different times of a representative day. Drivers adopting flexible-
relocation strategy are more active during the evening hours; x-axis:
time of the day, y-axis: percentage of drivers active on the platform.

Temporal dynamics of strategies

Intuitively, due to the periodicity of demand, we expect driver earnings to strongly

depend on the time of the day they are driving. Thus, we address the question:

what is the best time of the day to drive in order to maximize earnings? To answer

this, we simulate 1000 drivers, each randomly assigned a home zone, for each of the

flexible and flexible-relocation strategies. We solve the MaxEarnings problem for

both strategies and create a recommended plan of action for the simulated drivers.

Then, at every step of the simulation, a driver undertakes the personalized action

recommended by the strategy, corresponding to their location, the time of day and

their budget remaining.

In Figure 4·5, we plot the percentage of simulated drivers driving in the city at

different times of the day. We observe a noticeable difference between the “preferred”

driving schedules output by flexible and flexible-relocation. In particular, a high

percentage of flexible schedule drivers are active during the standard working hours

of the day from 9AM to 6PM. This also supports our choice to evaluate fixed schedule

strategies in the interval 9AM to 5PM. In contrast, the number of active drivers that

77

follow flexible-relocation exhibits two distinct peaks, corresponding to the morning

and the evening rush hours. Furthermore, over 50% of flexible-relocation drivers use

their driving budget in the latter half of the day starting approximately at 3PM,

continuing through until midnight. Since flexible and flexible-relocation only differ

in the Relocate action, all observed differences are due to this action. Hence, we

can conclude that the Relocate action is most effective in the evening hours, thereby

prompting higher active percentages of flexible-relocation drivers at that time.

Preferred relocation zones

By simulating drivers, we can also compare the Relocate actions between drivers

following the relocation strategy and those following the flexible-relocation strategy.

The contrast between popular destinations of Relocate actions for drivers following

the two strategies can be seen in Figure 4·4. Drivers following the relocation strat-

egy predominantly relocate themselves to the center of Manhattan. In contrast, the

drivers following the flexible-relocation strategy do not exhibit a clear most-preferred

relocation destination. Furthermore, the number of relocations performed by the re-

location strategy drivers, surprisingly, is significantly higher than those performed by

the flexible-relocation strategy drivers. This is due to the flexible work schedule of the

latter, which allows them to drive continuously during the hours of highest demand,

reducing the frequency of Relocate actions they take.

Surge chasing

We now turn our attention to surge pricing. Surge pricing is a feature of the Uber

platform aimed at matching supply with passenger demand by increasing prices at

times of high demand. According to Uber, it incentivizes drivers to start driving

during the peak hours in order to efficiently meet demand with supply, albeit at

a higher cost to passengers. It also decreases demand, since more price-sensitive

78

Morning 8AM Evening 5PM

1.0

1.2

1.4

1.6

 Surge
multiplier

Figure 4·6: Active surge multiplier across New York City zones at
different times of a representative day.

customers drop out, as surge prices rise.

Figure 4·6 shows the active surge multiplier across different neighborhoods of New

York City at different times of the day. This information is readily available to the

drivers; however, due to uncertainty in the duration of surges as well as the proprietary

nature of Uber’s surge pricing algorithm, it is unclear whether drivers should relocate

themselves to surging areas in order to maximize their earnings.

Next, we address the question– Should drivers engage in surge chasing? In order

to do so, we evaluate earnings of simulated drivers in three scenarios viz., “no surge” -

where we disable the surge multiplier to compute earnings; “surge” - where the multi-

plier is used while calculating earnings; and “surge chasing” - wherein a driver located

in a non-surging zone always relocates to the zone with highest surge multiplier within

a 10-minute drive radius. Simulated driver earnings in these three scenarios for each

of the strategies are shown in Figure 4·7. We observe that blind “surge chasing” leads

to lower earnings irrespective of the strategy being followed. Figure 4·7 reinforces our

previous observation regarding the high variance of the naive strategy. At times,

79

100

200

naive relocation flexible flexible−relocation

E
ar

ni
ng

s
($

 /
w

or
kd

ay
)

No surge Surge Surge Chasing

Figure 4·7: Exploring surge: Naively ‘chasing surge’ is sub-optimal
in terms of improved earnings in comparison to proposed strategies;
x-axis: driver strategies, y-axis: earnings of simulated drivers over an
8-hour workday.

drivers following the naive strategy with surge multiplier enabled may earn less than

when it is disabled. For other strategies, “surge chasing” consistently fails to provide

any tangible benefits as compared to following the pre-determined strategy. We con-

clude that actively and blindly chasing the surge is an ill-advised strategy and may

lead to losses. Furthermore, surges last for short durations, and an unsuccessful surge

chase may land a driver in a sub-optimal location with respect to longer term earn-

ings. Note that although the New York City taxi demand data strongly correlates

with active surge multipliers, we do currently model the impact of surge multiplier

on consumer demand. This should be considered a limitation of our study.

Effect of uncertainty

Our experiments indicate that our strategies always outperform a naive strategy that

is likely prevalent among Uber drivers. However, all our strategies use historical

data. Consequently, our results can potentially be sensitive to perturbations of the

empirically-observed transition matrices. Thus, we can only conclude that our results

80

●

●●●●●●●●●●●

100

200

300

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Uncertainty level (α)

E
ar

ni
ng

s
($

 /
w

or
kd

ay
)

●naive relocation flexible flexible−relocation

Figure 4·8: Sensitivity to uncertainty in parameters. Even in presence
of high levels of uncertainty in the input data, the proposed strategies
continue to outperform a naive strategy with perfect knowledge; x-axis:
level of uncertainty in the input data, y-axis: earnings of simulated
drivers over an 8-hour workday.

are robust if the drivers following one of the relocation, flexible and flexible-relocation

strategies have higher earnings than those following naive, even when the input data

is perturbed.

Hence, the question we have to address is the following: Are the conclusions we

drew above robust to perturbations of the empirical transition matrices? We do so

using the framework we developed in Section 4.3: we solve the RobustEarnings

problem for each of the four strategies for increasing levels of uncertainty (α) using the

Sequential Least Squares Programming (SLSQP) minimizer implementation provided

by Jones et al. [87].

Figure 4·8 shows the effect of increasing uncertainty on the earnings of drivers

for each of the four strategies. We observe two main takeaways. First, we find that

all strategies suffer a loss under small amounts of uncertainty, even at levels of α in

the range of 0.02, so all strategies are tuned closely to the empirical data. However,

all strategies then remain resilient to a wide range of additional uncertainty, and we

81

find that the relocation, flexible and flexible-relocation strategies are most tolerant to

uncertainty in the input transition matrices. Interestingly, even with 99% uncertainty,

the flexible-relocation strategy significantly outperforms the naive strategy with no

uncertainty. This observation further supports our claim that being strategic using

historical data can significantly improve driver earnings in on-demand ride-hailing

platforms.

Chapter Summary

This chapter focussed on maximizing the earnings of an individual self-interested

driving partner of a ride-hailing MoD system. We showed that adopting a data-

driven strategic approach while driving on such platforms can significantly increase

daily earnings. Moreover, we favorably evaluated the impact of perturbations in data

distribution on the effectiveness of such strategies. One of the limitations to our

approach is that their effectiveness decreases with an increasing number of drivers

adopting the same strategy. We resolve this difficulty in Chapter 5, where we maxi-

mize the earnings of an entire fleet.

82

Chapter 5

Fleet Management

Popular ride-hailing platforms, e.g., Uber, Lyft, Didi Chuxing, and Ola, have revo-

lutionized the daily commute in cities across the world. Globally valued at over $61

billion and expected to grow to over $200 billion by 2025 these platforms operate

as multi-sided marketplaces, seamlessly connecting drivers with riders through their

smartphone applications [11]. The explosive growth of these ride-hailing platforms

has motivated a wide array of questions for academic research at the intersection of

computer science and economics, as we discuss in the related work section.

A large segment of these works aims to improve the performance of the plat-

forms, ensuring high-reliability service for the passengers alongside high utilization

and earnings for the drivers. The two main thrusts are dynamic pricing and capacity

repositioning. Dynamic pricing [96, 4, 2, 13, 30] aims to balance demand and sup-

ply by increasing prices in certain neighborhoods. Intuitively, temporary increases

in prices curtail price-sensitive demand and assist the platform in ensuring a high-

reliability service. On the flip side, the potential for higher earnings also encourages

more drivers to join the platform during such “price surges”. The dynamic pric-

ing literature uses game-theoretic analyses of the ride-hailing markets to show its

effectiveness as a platform control mechanism.

The capacity repositioning approach aims to improve the platforms’ performance

by assisting drivers with recommendations for relocations inside a city. Although the

initial work in this domain has focused on modeling the driver-repositioning problems

83

as combinatorial optimization problems [48, 101, 77, 95, 100], the need for optimiz-

ing large driver fleets and the availability of high-dimensional historical data has

recently led to the development of machine learning methods for the same problem

[63, 81, 57, 91, 89]. Such approaches predominantly use multi-agent coordination

reinforcement learning to solve a global capacity repositioning problem, using various

forms of attention mechanisms in neural networks to achieve coordination. By de-

sign, they make a key assumption that there is always a need for coordination in the

market. This assumption necessitates them to leverage recent breakthroughs in the

scalability of deep learning models to exploit the high-dimensional historical data.

Deep-learning based methods have a large number of hyperparameters required in

their training, making their performance susceptible to external perturbations. More-

over, the black-box coordination issue, as yet unresolved, is a potential liability when

using deep-learning based systems in domains such as this, where platform controllers

would like to understand how the choices of recommendations to human drivers were

made.

We aim to revise the capacity-repositioning approach by relaxing the assumption

that coordination is always necessary. Specifically, our approach leverages the obser-

vation that driver actions are independent at most times of the day, with coordination

required only during periodic times of peak demand, such as rush hours. Further-

more, the instances of supply-demand imbalances in a city are usually restricted to

distinct neighborhoods. We exploit this loose spatio-temporal coupling of supply and

demand to learn when and where the drivers need to coordinate, and otherwise act

independently for the rest of the time. This observation allows us to combine vanilla

reinforcement learning (i.e., not deep learning) algorithms with simple combinatorial

techniques for solving the repositioning problem. Moreover, our framework is scalable

because the sizes of the combinatorial problems we need to solve in order to achieve

84

capacity repositioning are constrained by the number of imbalanced neighborhoods.

Broadly, our model is a combination of the combinatorial and machine-learning ap-

proaches to capacity repositioning.

As our framework does not rely on deep learning, we are able to explain ex-post all

the recommendations given to the drivers, taking a step in direction of transparent AI

proposed in the recent General Data Protection Regulations (GDPR) guidelines [86].

Moreover, our approach is envy-free in the sense that drivers at the same location

and time do not envy one another’s future earnings. The resulting model is relatively

parameter-free and hence generalizes well in presence of daily variations in supply and

demand. Finally, our framework is amenable to integration with any dynamic-pricing

models by easily augmenting our data with the effects of such a model.

Chapter Organization

The rest of the chapter is organized as follows. We begin by setting up the problem

of fleet management in Section 5.1 where we discuss different modeling assumptions.

Section 5.2 provides a methodical explanation of our proposed approach. We also

discuss some of the pivotal components of our approach and contrast them with

some of the related works. Finally, Section 5.3 concludes the chapter by designing

representative experiments to evaluate our fleet management framework.

5.1 Problem Setup

In this section, we describe the basics of our problem setup and provide the necessary

notation.

5.1.1 City Attributes

Throughout the chapter, we assume that the city is divided into a set of m non-

overlapping hexagonal zones denoted by H. We also assume that time t advances in

85

discrete time steps i.e., T = {1, · · · , T}, a standard industry practice [17]. Finally,

we assume a total of n homogeneous drivers traveling between hexagon zones picking

up and dropping off the passengers.

Our model uses the following city matrices and vectors that are time-varying; i.e.,

their entries change at every time step. However, for notational convenience, we do

not introduce the time step t subscript unless required for context.

Demand matrix (D): A matrix D ∈ Rm×m such that each entry d(h, h′) denotes

the number of passengers requesting a ride from zone h to zone h′ at time t. With

appropriately sized hexagonal city zones, we find that ∀h ∈ H, d(h, h) = 0.

Travel time matrix (T): A matrix T ∈ Rm×m such that each entry τ(h, h′) denotes

the number of discrete time steps required for transiting from zone h to zone h′.

Reward matrix (R): A matrix R ∈ Rm×m such that each entry r(h, h′) denotes

the net reward for a taxi driver carrying a passenger from zone h to zone h′. The

net rewards include driver’s earnings for delivering the passenger at the destination

minus the sundries such as gas cost, vehicle depreciation, etc. Hence, each entry of

the matrix is of form r(h, h′) = earnings(h, h′)− cost(h, h′).

Driver actions (A): At each time step t, a driver in zone h who is not currently on

a trip can choose one of the two actions.

• Wait: A wait action a(h, h) involves waiting for a passenger in the current zone

i for the current time step. If successful, it can lead to a trip to some other zone

h′ with the driver earning a reward of r(h, h′). When the number of drivers

choosing to wait in a zone exceeds the demand of the zone at the particular

time, an unsuccessful wait may occur, and the driver earns a net reward of zero

while staying in the same zone h for the next time step.

• Relocate: A relocate action a(h, h′) involves relocation without a passenger

86

from zone h to zone h′. Undertaking a relocate action costs a driver a value

denoted by cost(h, h′).

Thus, we consider a total of |A| = m2 actions. In case of a relocate action or a

successful passenger pickup to zone h′, the driver is busy traveling for next τ(h, h′)

time steps and is presented with the next action choice at time t + τ(h, h′), while in

case of an unsuccessful wait, the driver chooses the next action at time t+ 1.

5.1.2 Model Attributes

Using the city attributes from the previous section, we now define the attributes of

our model:

Policy (π): A policy function π : H × T → A recommends the best action to

drivers in every zone of the city at each time step, to maximize the model’s objective

function. We impose a constraint that all drivers in the same zone at the same time

be recommended the same action unless driver coordination is required to resolve a

supply-demand imbalance in the zone.

A driver i following a policy π performs location and time-dependent actions

represented by a 3-tuple φπt (i) = (t, h, a), where h and a are the location of the driver

and the action chosen at time t respectively. We assume that if a driver is busy at

time t, the corresponding 3-tuple is (t,∅,∅).

Driver earnings (E)

Let function E(t, h, a) denote the net earnings of a driver on taking action a at time

t while located in zone h. If the action leads a driver to zone h′, E(t, h, a) = r(h, h′).

In the case of the relocate action, net earnings simply constitute the cost of relocation

i.e., r(h, h′) = −cost(h, h′). We can denote the gross earnings of n drivers following

a policy π by: Eπ(n,D,T,R) =
∑T

t=1

∑n
i=1E

(
φπt (i)

)
, where E(t,∅,∅) = 0.

87

Supply (S)

A policy π induces the movement of drivers between different city zones through

action choices. The supply, i.e., the number of drivers at zone h at time t induced by

a policy π, is denoted using the supply function Sπ(t, h).

Demand fulfillment (F)

A driver in zone h choosing the wait action a(h, h) at time t is randomly matched

with any of the
∑

h′ dt(h, h
′) passengers requesting a ride in zone h at the same time.

Hence, a policy π, via its supply function, induces a demand fulfillment function.

Demand fulfilled in zone h at time t when drivers follow a policy π is denoted using

the demand satisfaction function F π(t, h). Obviously, ∀π∈ΠF
π(t, h) ≤

∑
h′ dt(h, h

′).

Hence, total demand fulfilled over the course of time steps t ∈ T by n drivers following

the policy π can be given by: Fπ(n,D,T,R) =
∑T

t=1

∑m
h=1 F

π(t, h).

5.1.3 Problem Statement

Based on the above definitions, we now formulate the problem that we solve.

Problem 1(MaxEarnings): Given time-varying matrices D,T,R and the number

of homogeneous drivers n, devise a policy π∗ such that

π∗ = arg max
π∈Π

Eπ(n,D,T,R). (5.1)

Replacing the driver earnings (E) by demand fulfillment (F) in the Equation (5.1)

above results in a variant of MaxEarnings problem, in which the goal is to maximize

fulfilled rides, referred to henceforth as the MaxFulfillment problem.

88

Discussion

At a high level, our revenue maximization problem statement is similar to existing

work in the area. However, our modeling assumptions are significantly more realistic

than previous work, making our methods more amenable to operational deployment.

For example, whereas our work assigns drivers to rides explicitly (and allocates re-

wards accordingly), previous work performs reward allocations proportionally, in a

fluid model. In our model, when two drivers compete for a single ride from i to j, one

of the two driver gets the ride, gets paid, and ends up in j after a travel time t. In

the representative fluid model of Lin et al. [57], both drivers get half of the payment,

and two halves of drivers (conceptually) transit to j in a fixed time step, regardless

of the distance traveled. Although a fluid model such as this is tractable to solve for

and optimize around, it has strong implications on the solution space, as it notably

removes time-dependent and driver-dependent features from the model. Issues such

as studying variance of driver earnings are not possible in these models, as all drivers

starting at the same time and place will end up with identical (quantized) trajectories

and earnings.

We also note that in our framework, a wait action for an individual driver is only

successful if the driver is present in the same zone as the ride request. Hence, our

framework cannot result into the Wild Goose Chase (WGC) phenomenon described

by Castillo et al. [13], in which high demand causes depletion of idle drivers on

the streets, leading to suboptimal FCFS matches where drivers spend a significantly

higher duration of time en route to pick up passengers.

5.2 Learning Framework

In this section, we describe our approach for solving the MaxEarnings problem.

Our method is a model-based reinforcement learning approach, and its description is

89

provided in Algorithm 3.

5.2.1 Model-based Reinforcement Learning Algorithm

As with any reinforcement learning approach, we train our model by allowing the

drivers to repeatedly interact with an environment in form of the city’s ride demand

data from a representative day. Each interaction, which is T timesteps long, con-

stitutes an episode of the training process. Each episode constitutes of 3 phases

described below.

ALGORITHM 3: Model-based Reinforcement Learning Algorithm

1 Initialization QI(t, h, a)← 0, QC(t, h, a)← 0, ξ(t, h)← 0;
2 for each episode e = 1, · · · , E
3 for each time step t = 1, · · · , T
4 for each driver i = 1, · · · , n
5 Generate two random numbers η0, η1 ∈ [0, 1];
6 if η0 ≤ ε
7 Choose exploratory action;
8 else
9 if η1 ≤ ξ(t, hi)

10 a = Independent action a∗ from QI ;
11 else
12 a = Coordinated action ac from QC ;

13 Receive reward E(t, hi, a);
14 Compute rebalance matrix Z;

15 for each zone h ∈ H
16 ∀t, a update QI(t, h, a) ;
17 ∀t update degree of coordination ξ(t, h) ;
18 ∀t, a update QC(t, h, a) ;

Exploratory phase (lines 5-7)

During this phase of the algorithm, drivers exhibit an exploratory behavior by choos-

ing a pseudo-random action with a probability ε. These randomly chosen actions

allow the model to explore a larger portion of the policy space, preventing its pol-

90

icy from converging to a local minimum. This is similar to the ε-greedy behavior of

Q-learning [80].

Exploitative phase (lines 9-12)

During this phase of the algorithm, the rest of the drivers exhibit an exploitative

behavior using the policy learned up until the previous episode of training. The

policy recommends exploitative actions to individual drivers based upon the time of

the day and their locations, independently of each other, henceforth referred to as

independent actions. However, certain recommended actions may result in supply-

demand imbalances when a large number of drivers relocate to the same city zone with

an insufficient demand, or too few of them relocate to a zone with excess demand.

We postulate that explicit coordination is essential to prevent such supply-demand

imbalances from occurring. Hence, we introduce the degree of coordination (ξ) -

a probabilistic value that signifies the extent to which drivers located in the same

city zone need to coordinate their actions. Whenever a zone has a positive degree

of coordination, the exploitative actions recommended to a ξ fraction of drivers in

the zone are derived from solving a reward-maximizing linear program, henceforth

referred to as coordinated actions.

It should be noted that it is the explicit criterion for recommending a coordinated

action that sets our approach apart from recent works in the field of deep reinforce-

ment learning across different applications and domains.

Learning phase (lines 15-18)

Actions recommended in the exploratory and exploitative phases of the episode re-

sult in drivers picking up passengers or relocating themselves to different city zones,

thereby observing rewards of their actions (line 13). The learning phase of the algo-

rithm computes a rebalancing matrix (line 14) to use in conjunction with the observed

91

rewards to further improve upon the policy.

Having developed an intuition for the major building blocks of Algorithm 3, we

now explain these phases in greater detail.

5.2.2 Exploratory Phase

Over the course of training, when a driver located in zone h chooses to explore, we

model the probability of driver’s exploratory ride distance using a Gaussian function

with a random variable K≥0. Specifically, the probability that a driver relocates to a

zone at distance k ≥ 0 is given by: Pr[K = k] = be−
k2

2c2 .

After sampling an exploration distance k, the driver chooses the actual destination

by sampling uniformly at random from all zones at distance k. When k = 0, the

driver chooses to wait in the current zone, while for k > 0, the driver chooses a

relocate action. The experiments in this chapter were all conducted using b = 0.7

and c = 1 (chosen via grid-search), allowing explorations up to 3 hexagonal zones

away. In contrast, [57] restricts drivers to single zone distance relocations, reducing

their ability to learn policies that mitigate supply-demand imbalances by relocating

supply from zones further away in a single timestep. Over the course of training, ε is

annealed exponentially from 1 to 0, thereby outputting an entirely exploitative model

at the end of the training.

5.2.3 Exploitative Phase

Exploitative behavior is manifested in the form of independent actions (line 10) and

coordinated actions (line 12) when the degree of coordination is positive. We detail

these next.

92

Choice of independent action

For each independent action chosen by a driver, we record the reward earned. This

reward is then used to update the value of the action for the next episode, based on

the learning rate (α) and the discount factor (γ). These values are stored in a Q-table

denoted by QI ∈ RT×m×|A|. For each zone h, at time t, the best independent action

(a∗) is chosen by (line 10, Algorithm 3)

a∗(t, h) = arg max
a∈Ah

QI(t, h, a),

where Ah refers to the h-th row of A.

Independent learning

Based upon the observations of drivers undertaking independent actions (both ex-

ploratory and exploitative), we update the independent learning matrix (QI) as de-

scribed below.

Updating QI for wait actions

Let W(h,h′) denote the number of drivers choosing to wait in zone h at time t, and

ending up in zone h′. A successful wait generates net earnings E
(
t, h, a(h, h)

)
=

r(h, h′) and consumes a travel time τ(h, h′), while an unsuccessful wait i.e., h′ = h,

generates zero net earnings and consumes one timestep. The utility of the wait action

is therefore

U(t,h,h) =
∑
h′

W(h,h′)

[
E
(
t, h, a(h, h)

)
+ γQI(t

′, h′, a∗(t′, h′))

]

93

where t′ = t + τ(h, h′) and we discount the future rewards with a factor γ. We use

the utility of the wait action to update the entry QI(t, h, h) as follows:

QI(t, h, h)← (1− α)QI(t, h, h) +
α∑

h′W(h,h′)
U(t,h,h). (5.2)

Normalizing the update term by the number of drivers choosing the wait action

captures the average utility of the wait action. The term QI(t, h, h) on the right

hand side of the equation denotes the values learned upto the previous episode of the

training, and α is the learning rate.

Updating QI for relocate actions

Let R(h,h′) denote the number of drivers relocating from zone h to zone h′. The utility

of such relocation is given by

U(t,h,h′) = R(h,h′)

[
E(t, h, a(h, h′)) + γQI(t

′, h′, a∗(t′, h′))

]
,

where t′ = t+ τ(h, h′). We use the utility of the relocate actions to update the entry

QI(t, h, h
′) of the independent table as follows:

QI(t, h, h
′)← (1− α)QI(t, h, h

′) +
α

R(h,h′)
U(t,h,h′). (5.3)

Using Equations (5.2) and (5.3), the QI matrix is updated in line 16 of Algorithm 3

using the evidence obtained via simulations in form of utilities U(t,h,h′) of both the

wait and relocate actions.

Choice of coordinated action

The choice of coordinated action is more intricate and non-standard, and we next

explain it in detail. To guide the coordinated behavior of drivers in line 12 of Al-

gorithm 3, we solve a reward-maximizing rebalancing operation between city zones

94

experiencing supply-demand imbalances. There are two principal components driving

the coordinated behavior: degree of coordination (ξ) which controls the need of coor-

dination in a particular zone at a time, and coordinated learning matrix (QC) which

determines the choice of action as a response to the need of coordination. Thus,

each coordinated action is associated with a probability for it to participate in the

rebalancing operation that is stored in the matrix QC . Note that QC contains learned

probabilities, as against the usual action-value nature of QI .

Let the policy learned at the end of k-th episode during training be denoted by

πk. Following this policy induces a driver supply Sπk during the (k + 1)-th episode

of training. For each zone h, at time t, the coordinated action (ac) in line 12 of

Algorithm 3 is obtained by uniformly sampling from the probability vector QC(t, h).

Imbalance matrix (∆)

A matrix ∆ ∈ R|T |×m such that each entry δ(t, h) denotes the supply-demand imbal-

ance experienced at zone h at time t during the (k+ 1)-th episode. Specifically, each

entry of the imbalance matrix can be given by, δ(t, h) = Sπk(t, h)−
∑

h′ dt(h, h
′). We

mask the imbalance matrix using an imbalance threshold parameter Λ such that,

δ(t, h) =


δ(t, h) if

∣∣δ(t, h)
∣∣ ≥ Λ

0 otherwise.

Using this parameter allows us to control the level of imbalances that the framework

should attempt to mitigate.

Rebalancing graph (G)

Based upon the supply-demand imbalance matrix induced at the end of an episode, we

create the rebalancing graph G = (V,E) consisting of imbalanced zones as nodes and

edges as corresponding relocation actions between them. This is a bipartitle graph

95

with nodes V =
{
V+ ∪ V−

}
where V+ is the set of nodes with excess supply, i.e.,

δ(t, h) > 0 and V− is the set of nodes with supply deficit, i.e., δ(t, h) < 0. Thus each

node vi ∈ V in the rebalancing graph is associated with three attribues: imbalanced

zone (vhi), time of imbalance (vti) and magnitude of imbalance
(
δ(vti , v

h
i)
)
. The edge

set E consists of directed edges from the nodes in V+ to nodes in V− and they model

feasible relocations. Thus: E =
{
eij : vi ∈ V+, vj ∈ V−, v

t
i + τ(vhi , v

h
j) ≤ vtj

}
. The

travel time constraint filters out edges where a relocating driver from an excess supply

node cannot reach the deficit node in time. Each edge eij is associated with utility:

U(i,j) = QI(v
t
j, v

h
j , v

h
j)︸ ︷︷ ︸

wait action at vhj

− cost(vhi , v
h
j)︸ ︷︷ ︸

relocation cost

−QI(v
t
i , v

h
i , v

h
i).︸ ︷︷ ︸

wait action at vhi

Thus, the utility of an edge measures the net value for a driver relocating along it

during coordinated behavior.

Rebalancing operation

Given a rebalancing graph G, we wish to relocate drivers from supply excess zones to

supply deficit zones. We aim to find a matching that maximizes the net reward of all

relocations, in order to maximize the driver earnings. Such a rebalancing operation

can be achieved by solving a Minimum Cost Flow problem expressed in the form of

the linear program below.

maximize
∑

eij∈E fij × U(i,j)

s.t.,

∀eij ∈ E, fij ≥ 0

∀vi ∈ V+,
∑

vj∈V− fij ≤ δ(vti , v
h
i)

∀vj ∈ V−,
∑

vi∈V+ fij ≤ |δ(v
t
j, v

h
j)|

96

Here, we calculate the number of excess drivers who should relocate from an excess

node to a deficit node and store it in the form of a flow vector f ∈ R|E| indexed along

the edges set such that fij denote the flow from vi to vj.

If the platform aims to maximize demand fulfillment, we can formulate it as a

Maximum Flow problem by setting the utility associated with each edge U(i,j) = 1.

As the constraint matrices – in both problems – are unimodal, the solutions of the

linear programs are integral flow vectors and are thus optimal. Note that the size of

the constraint matrix increases with a decrease in the Λ parameter. However, we can

greatly reduce the sizes of corresponding linear programs and hence the computation

time by solving a set of smaller linear programs; one for each connected component

of the rebalancing graph.

Coordinated learning

Based upon the computed imbalance matrix (∆) and the solution to the rebalancing

operation above, we are now in a position to update the coordinated learning matrix

(QC) and the degrees of coordination (ξ) as described below. It should be noted

that while the choice of coordinated action from the matrix QC is influenced by

the reward-maximizing rebalancing described above, the degree of coordination ξ is

merely influenced by the supply-demand imbalances induced as a result of the policy

learnt so far.

Updating QC for rebalancing operation

We capture the rebalancing operation in form of a rebalance matrix Z ∈ R|T |×m×m

where each entry ζ(t, h, h′) denotes a probability of a rebalancing relocation from zone

97

h to zone h′ being required at time t. For every edge eij ∈ E, we update Z as follows,

ζ(vti , v
h
i , v

h
i) =

δ(vti , v
h
i)−

∑
vj∈V− fij

δvti , v
h
i

ζ(vti , v
h
i , v

h
j) =

fij
δ(vti , v

h
i)
.

Using the rebalance matrix, we update QC in line 18 of Algorithm 3 as follows,

QC(t, h, h′)← (1− α)QC(t, h, h′) + αζ(t, h, h′). (5.4)

Updating degree of coordination (ξ)

At the end of each training episode (k+ 1), we use the realized imbalance matrix (∆)

to determine the degree of coordination required within each zone at every time step.

We update the degree of coordination as follows:

ξk+1(t, h) = (1− α)ξk(t, h) + αµ(t, h), (5.5)

where the rebalancing raio µ is computed as:

µ(t, h) =


δ(t,h)
Sπk (t,h)

if δ(t, h) > 0.∣∣δ(t,h)

∣∣∑
h′ dt(h,h

′)
if δ(t, h) < 0 and ξk(t, h) > 0.

While the former condition encourages driver relocations in zones with supply excess,

the latter condition discourages it in zones with supply deficit. Thus, we use Equa-

tion (5.5) to update the degree of coordination for each zone in line 17 of Algorithm 3.

Discussion

We conclude this section by highlighting some of the features of our approach that

make it appealing to use in practice.

First of all, over the course of training, our approach learns by trialing driver

98

actions over historically observed demand data and recommends strategic relocations

to drivers when there is enough evidence to do so. This is done proactively, i.e.,

with the goal of preventing such an imbalance from actually occurring. One should

contrast this with other reinforcement learning based approaches [52, 57] that try

to resolve the imbalance issues ex-post, or dynamic pricing based approaches which

assume full knowledge of future demand [58].

On deployment, our model relies only on trends learned from the historical data.

This design decision is motivated by the empirically observed strong periodicity in

demand. It makes our model relatively parameter-free, thereby providing robustness

to demand perturbations. This decision is validated by the model generalizability

experiment in Section 5.3.2, where we show that the recommendations made by our

algorithm are robust to the presence of perturbations in the demand. In contrast,

deep reinforcement learning based approaches [57, 63, 81, 89, 91] require as inputs

full knowledge of supply and demand distribution during deployment. The stochastic

gradient-descent algorithm used during training of networks uniformly samples ex-

periences observed under previous training policies, making it impossible to reliably

trace back and explain the actions recommended to the drivers. Furthermore, this

increases the sensitivity of model performance to the tuning of numerous hyperpa-

rameters, making them difficult to deploy in the real world.

A key characteristic of our approach is the explicit coordination achieved by solv-

ing a minimum cost flow problem, allowing all our recommendations to be easily

traced back and explained.

5.3 Data and Experiments

In this section, we begin by describing the pre-processing we did in order to use the

New York City Yellow taxi rides public dataset and then we evaluate our framework.

99

5.3.1 Data Pre-processing

To train our model, we need to construct the time-evolving city matrices - D, R, and

T described in Section 5.1.

Hexagonal binning of New York City

We employ the popular methodology of hexagonal binning to discretize the city into

a set H of 250 non-overlapping uniform-sized hexagonal zones. The distance from the

center of a zone to its vertices is about 1 mile.

Forming time-evolving matrices

We begin with the New York City Taxi dataset (2015), which contains street-hail

records of over 200,000 taxi rides per day with information regarding pickup and

dropoff locations and times, fare, trip distances, etc., from before the significant

confounding effects of ride-sharing platforms like Uber, Lyft, etc. For each ride in

the dataset, we evaluate its pickup and dropoff zones based on location coordinates.

Assuming that passengers do not hail a taxi for short distances, we ignore a small

percentage of rides which begin and end within the same zone.

We discretize a 24-hour day into 288 time-slices of duration 5 minutes each, in-

dexed by their start time. Thus, to populate the entries of the matrices D, R and

T at time t, we use the rides from the dataset in the 5 minutes time-slice beginning

at time t. Due to variations in the popularity of particular pickup and dropoff zones

at specific times of the day, the R and T matrices obtained using this method are

sparse. However, to compute the best policies, our framework requires the availability

of complete information regarding rewards and travel times. Hence, we estimate the

missing values in these matrices using linear regression models including fixed-effects

for the time of the day, the source and destination zones To compute the travel time

100

entry τ(i, j) at time t, we fit a linear regression model

τ(i, j, t) = β0Xi,j,t + β1αi + β2αj + β3αt + εi,j,t

where Xi,j,t are the time-variant predictors, the αi, αj, and αt are time-invariant fixed-

effects for source, destination and time of the day respectively, while εi,j,t is standard

normal error. The performance of our model is not sensitive to the choice of a specific

linear regression modeling technique.

5.3.2 Experimental Results

Settings

For all experiments, we use a multiprocessor implementation of our algorithm on a

24-core 2.9 GHz Intel Xeon E5 processor with 512 GB memory. The model training

time for 100 episodes of training takes less than an hour. The model testing time is

less than 5 minutes. Our code has been made publicly available for reproducibility

purposes [34]. All our experiments use learning rate α = 0.01 and discount factor

γ = 0.99. During independent learning, the exploration factor (ε) used in ε-greedy

Q-learning decreases exponentially as the training progresses. Unless mentioned oth-

erwise, we train 5,000 drivers over 200 episodes and set the imbalance threshold (Λ)

to 2. Experimental results presented in this chapter are obtained by training models

over a representative day viz., first Monday of September 2015 with a demand of over

232,000 rides. However, our results generalize to any day.

Model performance

First, we address the question: how well does our reinforcement learning-based algo-

rithm learn the driver dispatch policy? In Figure 5·1, we observe the improvement

in mean driver earnings and demand fulfillment as the training progresses. We split

the 200 training episodes into independent learning episodes (EIL = 160) and coor-

101

0 25 50 75 100 125 150 175 200
Learning Episode

0

50k

100k

150k

200k

250k

De
m

an
d

(ri
de

s/
da

y)
Total demand: 232k

Overlap Interval

100
0
100
200
300
400
500
600
700 M

ean driver earnings ($/day)Unfulfilled demand

Mean earnings

Fulfilled demand

Figure 5·1: A representative illustration of improvement in mean
driver earnings during training; x-axis: learning episode, y-axis(left):
Number of ride requests (dotted black, green and red lines), y-
axis(r ight): average earnings (solid blue line) of the simulated drivers
over an entire day, overlap interval refers to episodes where both inde-
pendent and coordinated behavior learning are being learned.

dinated learning episodes (ECL = 60). This can be achieved by setting the degree

of coordination (ξ) to 1 until episode number E − ECL on line 9 of Algorithm 3.

Consequently, episodes [140, 160] utilize both independent and coordinated learning.

In Figure 5·1, we observe a significant improvement in the objective in the interval

denoted by a shaded region. As expected, coordinated learning appropriately relaxes

some of the constraints imposed by single-agent MDP and leads to significantly better

performance.

In Figure 5·2, we plot the total demand at various times in the day, along with

its fulfilled and unfulfilled portions by drivers following our policy. About 95% of

the total demand during the day is satisfied with our framework. We consider a

ride request fulfilled if an idle driver is present in the same zone at the time of the

request. We find that 10% of unfulfilled demand can be fulfilled by nearby drivers by

adding 10 minutes of passenger wait, and 75% of unfulfilled demand with 15 minutes

102

12
AM 3A

M

6A
M

9A
M

12
PM 3P
M

6P
M

9P
M

12
AM

Time of day

0

250

500

750

1000

1250

1500

De
m

an
d

(ri
de

s/
tim

es
te

p)

w
ar

m
up

Unfulfilled demand
Fulfilled demand
Total demand

Figure 5·2: Top: Demand fulfillment by a trained policy at different
times on a representative day; x-axis: time of the day, y-axis: number
of ride requests. Bottom: Bar-plot for waiting times for demand not
immediately fulfilled by the model.

of wait. At the beginning of a day, for lack of better alternative, we initialize drivers

uniformly across the city zones. Hence, our model requires a “warm-up” time for the

drivers to reposition themselves in order to fulfill the demand. This warm-up interval

contributes significantly to the unfulfilled demand at the beginning of the day from

12AM-1AM. One may left-pad the training interval to alleviate this issue.

The explicit coordination in our model allows us to visualize the market conditions

in which it is utilized. In Figure 5·3, we plot snapshots of coordination in form of a

heatmap with probabilities of coordinated wait actions i.e. QC(t, h, h) at 6 AM during

the early morning commute and at 6 PM during the evening commute1. Without

1More detailed visualizations depicting evolution of coordinated actions and degree of coordina-
tion across the city and through the time of the day are available at [34].

103

Time: 6 A.M. Time: 6 P.M.

0.0

0.2

0.4

0.6

0.8

1.0

W
ait probability

Figure 5·3: Heatmaps of probability of coordinated wait i.e.,
QC(t, h, h) during morning commute at 6 A.M. (left) and evening com-
mute at 6 P.M. (right).

coordination, we would expect all the drivers in the city to relocate to Manhattan in

order to satisfy the extremely high volume of demand during the morning commute.

However, as observed in Figure 5·3, our model recommends a certain proportion of

drivers to wait in the outer boroughs of New York City for the early morning commute

to Manhattan. Notably, the model is able to learn demand trends in time-dependent

hotspots such as the J.F.K. airport to the south-east of the city. In contrast, during

the evening commute to outer boroughs, the model strongly recommends that the

drivers wait inside Manhattan.

Impact of independent and coordinated learning

The overlap between the independent and the coordinated learning during training

is a crucial aspect of our framework. In this section, we address the question: how

do we determine the appropriate number of independent learning and coordinated

learning episodes during training? Given a fixed number of training episodes E, we

assume that our model trains the initial EIL episodes with independent learning and

the final ECL episodes with coordinated learning. When EIL + ECL ≥ E, we have

EIL+ECL−E episodes of overlap between independent and coordinated learning. In

Figure 5·4, we use 200 episodes of training, and we vary the values of EIL and ECL in

104

the range [20, 200] to achieve various overlaps2. We then plot the mean driver earnings

for each learned policy. We show that for a large interval of values of EIL and ECL,

our framework provides stable and high performance with up to $535 mean earnings

per day when EIL = 60 and ECL = 160, denoted by a green marker in the figure.

This observation supports our claim that our framework is robust to imperfections in

hyperparameter tuning. Note that we have used different values of EIL and ECL in

Figure 5·1 in order to clearly portray the incremental impact of coordinated learning

on mean driver earnings per day.

Impact of Driver Supply

We next answer the question: what is an appropriate number of drivers to fulfill

the ride demand? To study this question, we vary the driver supply in the range

[1000, 6000], where the units are individual drivers. Given a fixed supply size, we plot

the ratio of the number of successful driver waits resulting into passenger rides to

the number of unsuccessful driver waits while taking into account the overall demand

fulfillment. When the number of drivers is small compared to the demand, the drivers

should have an easier time finding a passenger. On the other hand, a city saturated

with drivers should result in a higher number of unsuccessful driver waits. In Fig-

ure 5·5, we observe that the framework validates our expectations. The “warm-up”

period described in Figure 5·2 causes underestimation of demand fulfillment while

it simultaneously causes overestimation of the number of unsuccessful driver waits.

Excluding the warm-up interval, this experiment provides evidence that over 96%

demand of New York City can be fulfilled by about 5,000 drivers. Note that in

September 2015, New York City had over 13,500 operational taxicab medallions [93].

It also justifies our decision to use 5,000 drivers in most of our experiments.

2Note that there is no overlap between the independent and the coordinated learning phases in
the lower triangle of Figure 5·4 when EIL + ECL < E.

105

40 80 120 160 200
Independent Learning episodes (EIL)

40

80

120

160

200

Co
or

di
na

te
d

Le
ar

ni
ng

 e
pi

so
de

s (
E C

L)

E
IL +

E
CL =

E

465.0

472.5

480.0

487.5

495.0

502.5

510.0

517.5

525.0
M

ean driver earnings ($/day)

Figure 5·4: Performance stability over a wide range of overlaps be-
tween the independent and the coordinated learning; x-axis: number
of independent learning episodes, y-axis: number of coordinated learn-
ing episodes. The color of the contour indicates average earnings of
simulated drivers over an entire day, dotted red line refers to the main
diagonal where EIL + ECL = E, points above the main diagonal refer
to training schemes where there is an overlap between independent and
coordinated learning.

Impact of platform objectives

So far, our experiments focused on the MaxEarnings problem. A natural ques-

tion is: should a platform optimize driver dispatches to maximize their earnings or to

maximize demand fulfillment? Note that while maximizing the demand fulfillment

might help retain customers over a longer-term, it can be detrimental to drivers’ earn-

ings. To solve MaxFulfillment (see Section 5.1), the framework rewards (resp.

penalizes) a successful passenger pickup (resp. unsuccessful wait) by +1 (resp. -1) net

reward. Figure 5·6 depicts that mean driver earnings per passenger ride can be over

106

1000 2000 3000 4000 5000 6000
Number of drivers

0.0

0.5

1.0

1.5

2.0
Ra

tio
 o

f s
uc

ce
ss

fu
l t

o
un

su
cc

es
sf

ul
dr

iv
er

 w
ai

ts

De
m

an
d

fu
lfi

llm
en

t: 9
4%93
%

86
%

68
%

46
%

24
%

Figure 5·5: Impact of supply size on the ease of finding a passenger
on a representative day; x-axis: number of drivers in the fleet, y-axis:
ratio of successful wait actions to unsuccessful ones, vertical dotted
lines indiciate the total demand fulfilled by the fleet of corresponding
size.

1000 2000 3000 4000 5000 6000
Number of drivers

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

Dr
iv

er
 e

ar
ni

ng
s p

er
 su

cc
es

sf
ul

 w
ai

t
($

/ri
de

) MaxFulfillment
MaxEarnings

0.0

0.2

0.4

0.6

0.8

1.0

%
 Dem

and fulfillm
ent

Figure 5·6: Differential impact of platform objectives; x-axis: num-
ber of drivers in the fleet, y-axis(left): average driver earnings per
passenger ride with 90% confidence interval (solid red and green lines),
y-axis(r ight): % demand fulfillment (dotted red and green lines) for
both objectives on a representative day.

107

a $1 lower in a policy optimized for maximizing demand fulfillment relative to one

optimized for earnings. The additional rides covered by the solution to MaxFul-

fillment may direct drivers to sub-optimal locations and compromise their future

earnings for the day. As the supply increases over the minimum number of required

drivers, the two objectives converge while a statistically significant difference in the

driver earnings per ride persists. Note that higher rewards/penalties while solving

MaxFulfillment result in larger divergence between the two objectives.

Advantage of strategic behavior

Next, we address the question: does our model provide consistently higher earnings

for all the drivers? To explore this, we model the taxi driver population of the city

as comprised of strategic drivers who follow the model recommendations and naive

drivers who act upon heuristics learned via experience. We expect the mean earnings

of drivers to decrease as the number of strategic drivers on the platform increases.

While modeling a naive driver, we assume that taxi drivers, over time, learn the

popular spots in the city. If they are unable to locate passengers reasonably quickly

in other parts of the city, they head back to the popular spots. We designate 15 zones

as popular zones based on the historical demand data. Furthermore, we assume that

an idle naive driver looking for a passenger decides to head back to one of the popular

zones with a fixed probability of 0.25. Upon choosing to relocate, the naive driver

picks the target popular zone with a probability inversely proportional to its distance

from the current location.

In Figure 5·7, we plot the earnings of the two categories of drivers while varying

the percentage of strategic drivers. The lower and upper edges of the boxes indicate

quartiles Q1 and Q3 respectively, and the length of whisker is 1.5 times IQR. As ex-

pected, an increase in the number of strategic drivers causes their individual earnings

to decline. Overall, the strategic drivers not only earn more than the naive drivers,

108

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Strategic driver percentage

0

200

400

600

800
Dr

iv
er

 e
ar

ni
ng

s (
$/

da
y)

Naive driver Strategic driver

Figure 5·7: Earnings advantage of the strategic drivers over the naive
drivers on a representative day; x-axis: % of fleet comprised of strategic
drivers, y-axis: earnings of simulated drivers over an entire day.

but also the variance in their earnings is significantly lower. Thus, our framework is

envy-free, i.e., drivers at the same location and time do not envy each other’s future

earnings.

Model generalizability

In this section, we explore the question of model generalizability: does our model per-

form well when deployed on days with considerably different supply-demand conditions

compared to the day it was trained on? We cross-validate our model by evaluating

the policy of a trained model on different days.

For illustrative purposes, we choose as baseline – m0 – a model trained to satisfy

the demand of 288,000 rides observed on the fourth Tuesday of September using

7,000 drivers. We test the policy π(m0) recommended by our baseline model by

deploying it on other Tuesdays of the month. Note that the observed demand, as

well as the number of active drivers might vary on other Tuesdays compared to our

baseline model. To capture this potential for change in supply, we vary the number

109

-3k -2k -1k 0 +1k +2k +3k
supply

-15k

-10k

-5k

0

+5k

+10k

+15k
de

m
an

d
3rd Tue

2nd Tue

4th Tue

5th Tue

1st Tue

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

%
 generalization error

Figure 5·8: Model robustness: Baseline model (enclosed within a
black box at origin) is deployed on other Tuesdays; x-axis: difference
in fleet size between training and testing datasets, y-axis: difference in
number of ride requests between training and testing datasets.

of simulated drivers during testing in the range [4000, 10000]. In Figure 5·8, enclosed

within a red square box is an illustration of the generalization error associated with

deploying our baseline model’s recommended policy on the second Tuesday of the

month with just 6,000 drivers. Importantly, the policy π(m0) now attempts to fulfill

an increased demand of about 7,000 extra rides (∆demand) using 1,000 fewer drivers

(∆supply) than it was trained for. To evaluate its performance in this task, we

compare it with a model m∗ which was explicitly trained to fulfill the demand of the

second Tuesday with exactly 6000 drivers. Thus, we compute the baseline policy’s

generalization error as

%generalization error =
Fπ(m∗)−Fπ(m0)

Fπ(m∗)
,

where Fπ(m) denotes the demand fulfillment of model m.

Figure 5·8 shows that our framework generalizes well to perturbations in both

supply and demand. We also observe that decreasing the number of drivers excessively

110

impacts harms its generalization performance. As a result, we recommend deploying

models trained with a reasonably higher number of drivers than minimally required so

that they generalize better in cases of varying demand. For brevity, we have presented

a single illustrative example here; the generalizability result holds true across all the

models.

Comparison with baselines

0 20 40 60 80 100
Learning episode

400

300

200

100

0

100

200

300

400

M
ea

n
dr

iv
er

 e
ar

ni
ng

s (
$/

da
y)

cDQN
cA2C

Figure 5·9: Performance of cDQN and cA2C deep-learning ap-
proaches; x-axis: training episode, y-axis: average earnings of the sim-
ulated drivers over an entire day.

A major challenge in comparative studies in this domain is the lack of repro-

ducibility due to proprietory datasets and simulators. To the best of our knowledge,

although Lin et al. [57] uses coordinated deep reinforcement learning approach, it is

most similar to ours with respect to modeling assumptions. In the absence of the Didi

Chuxing’s proprietary driver simulator and datasets, direct comparison of our works

111

is impossible. We make an effort to compare our approaches by re-implementing

their deep reinforcement learning based algorithms (cDQN and cA2C) with minimal

modifications to fit our setting which computes future driver distributions based on

simulating passenger pickups and dropoffs, instead of predicting them using propri-

etary models.

In [57], the authors do not train the neural network from its randomly initialized

state. Instead, they bootstrap the network based on a pre-trained value networks

based on historical means from the aforementioned simulator. As a direct and fair

comparison with our model which does not rely on external pre-trained inputs, our

implementations of their algorithms also attempt to learn from scratch.

Figure 5·9 shows mean driver earnings per day over the course of model training.

Even after extensive hyperparameter tuning, the baselines failed to learn meaningful

strategies, with driver earning net negative rewards of -$20 over a day. In the ab-

sence of a pre-trained value network, the algorithms proposed in [57] are unable to

explore the policy space effectively. Moreover, the reward sharing assumption used

in [57] results in a superficial coordination behavior which fails to learn in a more re-

alistic scenario such as ours, which simulates actual passenger pickups and dropoffs.

Our implementations of contextual DQN (cDQN) and contextual actor-critic (cA2C)

algorithms are publicly available at [34].

Chapter Summary

In this chapter, we considered the problem of capacity repositioning on a ride-hailing

platform to maximize welfare. We proposed a robust, explainable, and scalable

framework that combines simple combinatorial techniques with traditional tabular

Q-learning based RL algorithms. We perform a thorough experimental evaluation

of the dynamics of the fleet-management system, its effectiveness, robustness to im-

perfect hyperparameter tunings, and generalizability in the presence of extraneous

112

perturbations to the input data. In course of this work, we also developed an OpenAI

gym environment3 named nyc-yellow-taxi-v0 available at [34] so that the efficacy

of any future multiagent reinforcement learning algorithm can be easily tested upon

this problem.

3OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms [9].

113

Chapter 6

Conclusion

In recent years, Mobility-on-Demand systems have radically transformed the paradigm

of urban mobility. Successful operations of MoD systems rely on solving a wide vari-

ety of problems from across multiple disciplines of sciences such as Computer Science,

Statistics, Economics, Operations Research, etc. In this dissertation, we focus on few

such problems of theoretical and practical interest.

In the first part of the dissertation, we introduce the problem of Markov Chain

Monitoring: given a distribution of items over a Markov chain, we aim to perform a

limited number of monitoring operations to predict the position of items on the chain

after one transition step with least uncertainty. We study variants of this problem and

provide efficient algorithms to solve them. Our experimental evaluation demonstrates

the superiority of the proposed algorithms compared to baselines and the practical

utility of our algorithms in a fleet monitoring operation for a bike-sharing MoD.

A natural extension of this work is to select monitoring operations under incom-

plete information for initial item distribution – which would allow the operations to

be deployed in perpetuity. Another future-work direction is to consider different types

of monitoring operations, such as those that combine knowledge of item placement

on nodes and edges. Finally, we can also consider more complex traffic models (e.g.,

involving queuing and different transition delays between nodes [27]).

Next, we shift our attention to ride-hailing services and focus on the problem of

maximizing a driver’s individual earnings on ride-hailing platforms. Our work con-

114

firms the power of strategic driving behavior using data-driven projections of ridership

in the New York City area. Our first key takeaway is that a naive driver, armed with

no data, and driving a 9-5 random walk schedule, is leaving roughly a 50% pay raise

on the table by not driving more strategically. In contrast, a data-savvy driver armed

with good historical data can build a forecast and optimal contingency driving plans

with relatively little computational overhead using our dynamic programming algo-

rithms that have provable resilience to input uncertainty. Our experimental results

yield insights into the structure of highly optimized schedules, including relatively

frequent relocation, working at specific peak periods, and taking advantage of surges

when the time is ripe.

An obvious limitation of this approach is that it is tailored to the setting when

self-interested individual drivers employ the methods. If a significant percentage of

the labor supply employs sophisticated optimization methods for driving, one needs

to consider different strategies to achieve equilibria or other global objectives. Indeed,

in the long run, as drivers for ride-hailing platforms like Uber and Lyft are put out

of work by fleets of autonomous vehicles, the formulation and solution of new sets of

optimization problems along those lines are likely to become relevant as well.

In the final part of this dissertation, to alleviate the limitation of the approach

above, we study the problem of maximizing the earnings of an entire fleet of drivers

employed by ride-hailing platforms. Our work confirms that even in a high-dimensional

and big data domain such as ride-sharing, the inherent structure of the data can be

leveraged to develop a simple, interpretable, fair, and highly efficient framework to

achieve this goal. Extensive simulations based on New York City taxi datasets show

that our framework is easy to calibrate due to its robustness to imperfections in hy-

perparameter tuning. Our experiments provide evidence for the differential impact of

the platform’s objectives on driver earnings. Finally, we demonstrate that our model

115

generalizes well to fluctuations in supply and demand. We also make available an

OpenAI gym environment for comparative studies.

As a final remark, as automated electric vehicle technology continues to advance,

we anticipate facing MoD operations problems related to the impact of autonomous

electric vehicles in the future. In such settings, the optimal strategies to match ve-

hicles to ride requests would have to consider additional factors such as the state of

the power grid, cost of electricity, and the inherent slow battery charging processes.

Moreover, it is unlikely that the entire human workforce would be replaced by au-

tomated vehicles instantly. In light of this, we believe that explainable algorithms

and fair compensation strategies for human drivers alongside the automated fleets

of MoDs will be exceedingly important. Based on the works in this dissertation, we

believe that the path of utilizing a diverse tool-set consisting of classic techniques like

approximation algorithms, combinatorial optimization methods, etc., alongside mod-

ern machine learning-based approaches such as reinforcement learning shows promise

in being able to tackle the multi-faceted problem of optimizing Mobility-on-Demand

systems.

References

[1] William A. Bailey and Thomas D. Clark. A Simulation Analysis of Demand and Fleet
Size Effects on Taxicab Service Rates. In Proceedings of the 19th Conference on
Winter Simulation, WSC ’87, pages 838–844, New York, NY, USA, 1987. Associ-
ation for Computing Machinery. ISBN 0911801324. doi: 10.1145/318371.318705.
URL https://doi.org/10.1145/318371.318705.

[2] Siddhartha Banerjee, Ramesh Johari, and Carlos Riquelme. Pricing in Ride-Sharing
Platforms: A Queueing-Theoretic Approach. In Proceedings of the Sixteenth ACM
Conference on Economics and Computation, EC ’15, page 639, New York, NY,
USA, 2015. Association for Computing Machinery. ISBN 9781450334105. doi:
10.1145/2764468.2764527. URL https://doi.org/10.1145/2764468.2764527.

[3] Mike Benchimol, Pascal Benchimol, Benot Chappert, Arnaud de la Taille, Fabien
Laroche, Frdric Meunier, and Ludovic Robinet. Balancing the stations of a self
service “bike hire” system. RAIRO: Recherche Oprationnelle, 45(1):37–61, 01
2011. doi: 10.1051/ro/2011102. URL https://doi.org/10.1051/ro/2011102.

[4] Omar Besbes, Francisco Castro, and Ilan Lobel. Surge pricing and its spatial
supply response. Management Science, 67(3):1350–1367, 2021. doi: 10.1287/
mnsc.2020.3622. URL https://doi.org/10.1287/mnsc.2020.3622.

[5] Kostas Bimpikis, Ozan Candogan, and Daniela Saban. Spatial pricing in ride-
sharing networks. Operations Research, 67(3):744–769, 2019. doi: 10.1287/
opre.2018.1800. URL https://doi.org/10.1287/opre.2018.1800.

[6] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maxi-
mizing Social Influence in Nearly Optimal Time. In Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages
946–957, USA, 2014. Society for Industrial and Applied Mathematics. ISBN
9781611973389. doi: 10.5555/2634074.2634144. URL https://doi.org/10.5555/
2634074.2634144.

[7] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathemat-
ical Sociology, 25(2):163–177, 2001. doi: 10.1080/0022250X.2001.9990249. URL
https://doi.org/10.1080/0022250X.2001.9990249.

[8] Ulrik Brandes and Daniel Fleischer. Centrality Measures Based on Current Flow.
In Proceedings of the 22nd Annual Conference on Theoretical Aspects of Com-

116

https://doi.org/10.1145/318371.318705
https://doi.org/10.1145/2764468.2764527
https://doi.org/10.1051/ro/2011102
https://doi.org/10.1287/mnsc.2020.3622
https://doi.org/10.1287/opre.2018.1800
https://doi.org/10.5555/2634074.2634144
https://doi.org/10.5555/2634074.2634144
https://doi.org/10.1080/0022250X.2001.9990249

117

puter Science, STACS’05, pages 533–544, Berlin, Heidelberg, 2005. Springer-
Verlag. ISBN 3540249982. doi: 10.1007/978-3-540-31856-9 44. URL https:

//doi.org/10.1007/978-3-540-31856-9 44.

[9] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. OpenAI Gym, 2016. URL https://arxiv.org/
abs/1606.01540.

[10] Teobaldo Bulhes, Anand Subramanian, Güneks Erdoğan, and Gilbert Laporte. The
static bike relocation problem with multiple vehicles and visits. European Journal
of Operational Research, 264(2):508–523, 2018. ISSN 0377-2217. doi: 10.1016/
j.ejor.2017.06.028. URL https://doi.org/10.1016/j.ejor.2017.06.028.

[11] Business Traveller. Global ride sharing industry valued at more than $61 Billion,
January 2019. URL www.businesstraveller.com/business-travel/2019/01/
04/value-of-global-ride-sharing-industry-estimated-at-more-than-61-

billion/.

[12] Colin Camerer, Linda Babcock, George Loewenstein, and Richard Thaler. Labor
Supply of New York City Cabdrivers: One day at a Time. The Quarterly Journal
of Economics, 112(2):407–441, 1997. doi: 10.1162/003355397555244. URL https:

//doi.org/10.1162/003355397555244.

[13] Juan Camilo Castillo, Dan Knoepfle, and Glen Weyl. Surge Pricing Solves the Wild
Goose Chase. In Proceedings of the 2017 ACM Conference on Economics and
Computation, EC ’17, pages 241–242, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450345279. doi: 10.1145/3033274.3085098.
URL https://doi.org/10.1145/3033274.3085098.

[14] Harshal A. Chaudhari, John W. Byers, and Evimaria Terzi. Online addendum:
Putting Data in the Driver’s Seat. https://www.bu.edu/cs/groups/dblab/ride-
hailing, 2017.

[15] Daniel Chemla, Frédéric Meunier, Thomas Pradeau, Roberto Wolfler Calvo, and
Houssame Yahiaoui. Self-service bike sharing systems: simulation, reposition-
ing, pricing. 2013. URL https://hal.archives-ouvertes.fr/hal-00824078/
document.

[16] H Chen, Y Jiao, Z Qin, X Tang, H Li, B An, H Zhu, and J Ye. InBEDE: Integrating
Contextual Bandit with TD Learning for Joint Pricing and Dispatch of Ride-Hailing
Platforms. In 2019 IEEE International Conference on Data Mining (ICDM), pages
61–70, 2019. doi: 10.1109/ICDM.2019.00016. URL https://doi.org/10.1109/
ICDM.2019.00016.

https://doi.org/10.1007/978-3-540-31856-9_44
https://doi.org/10.1007/978-3-540-31856-9_44
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://doi.org/10.1016/j.ejor.2017.06.028
www.businesstraveller.com/business-travel/2019/01/04/value-of-global-ride-sharing-industry-estimated-at-more-than-61-billion/
www.businesstraveller.com/business-travel/2019/01/04/value-of-global-ride-sharing-industry-estimated-at-more-than-61-billion/
www.businesstraveller.com/business-travel/2019/01/04/value-of-global-ride-sharing-industry-estimated-at-more-than-61-billion/
https://doi.org/10.1162/003355397555244
https://doi.org/10.1162/003355397555244
https://doi.org/10.1145/3033274.3085098
https://www.bu.edu/cs/groups/dblab/ride-hailing
https://www.bu.edu/cs/groups/dblab/ride-hailing
https://hal.archives-ouvertes.fr/hal-00824078/document
https://hal.archives-ouvertes.fr/hal-00824078/document
https://doi.org/10.1109/ICDM.2019.00016
https://doi.org/10.1109/ICDM.2019.00016

118

[17] Haoyang Chen, Wei Wang, K̊are Kjelstrøm, and Emily Reinhold. Gaining Insights in
a Simulated Marketplace with Machine Learning at Uber. https://eng.uber.com/
simulated-marketplace/, June 2019.

[18] Le Chen, Alan Mislove, and Christo Wilson. Peeking Beneath the Hood of Uber.
In Proceedings of the 2015 Internet Measurement Conference, IMC ’15, pages
495–508, New York, USA, 2015. Association for Computing Machinery. ISBN
9781450338486. doi: 10.1145/2815675.2815681. URL https://doi.org/10.1145/
2815675.2815681.

[19] M. Keith Chen. Dynamic Pricing in a Labor Market: Surge Pricing and Flexi-
ble Work on the Uber Platform. In Proceedings of the 2016 ACM Conference
on Economics and Computation, EC ’16, page 455, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450339360. doi: 10.1145/
2940716.2940798. URL https://doi.org/10.1145/2940716.2940798.

[20] Joseph Y.J. Chow and Hamid R. Sayarshad. Symbiotic network design strate-
gies in the presence of coexisting transportation networks. Transportation Re-
search Part B: Methodological, 62:13–34, 2014. ISSN 0191-2615. doi: 10.1016/
j.trb.2014.01.008. URL https://doi.org/10.1016/j.trb.2014.01.008.

[21] Mauro Dell’Amico, Eleni Hadjicostantinou, Manuel Iori, and Stefano Novellani. The
bike sharing rebalancing problem: Mathematical formulations and benchmark in-
stances. Omega, 45:7–19, 2014. ISSN 0305-0483. doi: 10.1016/j.omega.2013.12.001.
URL https://doi.org/10.1016/j.omega.2013.12.001.

[22] Dóra Erdös, Vatche Ishakian, Azer Bestavros, and Evimaria Terzi. A Divide-and-
Conquer Algorithm for Betweenness Centrality. In Proceedings of the 2015 SIAM
International Conference on Data Mining, pages 433–441, 2015. doi: 10.1137/
1.9781611974010.49. URL https://doi.org/10.1137/1.9781611974010.49.

[23] Gne Erdoğan, Gilbert Laporte, and Roberto Wolfler Calvo. The static bicycle relo-
cation problem with demand intervals. European Journal of Operational Research,
238(2):451–457, 2014. ISSN 0377-2217. doi: 10.1016/j.ejor.2014.04.013. URL
https://doi.org/10.1016/j.ejor.2014.04.013.

[24] Iris A. Forma, Tal Raviv, and Michal Tzur. A 3-step math heuristic for the static
repositioning problem in bike-sharing systems. Transportation Research Part B:
Methodological, 71:230–247, 2015. ISSN 0191-2615. doi: 10.1016/j.trb.2014.10.003.
URL https://doi.org/10.1016/j.trb.2014.10.003.

[25] Christine Fricker and Nicolas Gast. Incentives and redistribution in homogeneous
bike-sharing systems with stations of finite capacity. EURO Journal on Trans-
portation and Logistics, 5(3):261–291, 2016. ISSN 2192-4376. doi: 10.1007/
s13676-014-0053-5. URL https://doi.org/10.1007/s13676-014-0053-5.

https://eng.uber.com/simulated-marketplace/
https://eng.uber.com/simulated-marketplace/
https://doi.org/10.1145/2815675.2815681
https://doi.org/10.1145/2815675.2815681
https://doi.org/10.1145/2940716.2940798
https://doi.org/10.1016/j.trb.2014.01.008
https://doi.org/10.1016/j.omega.2013.12.001
https://doi.org/10.1137/1.9781611974010.49
https://doi.org/10.1016/j.ejor.2014.04.013
https://doi.org/10.1016/j.trb.2014.10.003
https://doi.org/10.1007/s13676-014-0053-5

119

[26] Sainyam Galhotra, Akhil Arora, Srinivas Virinchi, and Shourya Roy. ASIM: A
Scalable Algorithm for Influence Maximization under the Independent Cascade
Model. In Proceedings of the 24th International Conference on World Wide Web,
WWW ’15 Companion, pages 35–36, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450334730. doi: 10.1145/2740908.2742725.
URL https://doi.org/10.1145/2740908.2742725.

[27] Robert G Gallager. Discrete Stochastic Processes, volume 321. Springer Science &
Business Media, 2012. doi: 10.1007/978-1-4615-2329-1. URL https://doi.org/
10.1007/978-1-4615-2329-1.

[28] Yong Gao, Dan Jiang, and Yan Xu. Optimize taxi driving strategies based on
reinforcement learning. International Journal of Geographical Information Science,
32(8):1677–1696, 2018. doi: 10.1080/13658816.2018.1458984. URL https://

doi.org/10.1080/13658816.2018.1458984.

[29] Nandani Garg and Sayan Ranu. Route Recommendations for Idle Taxi Drivers:
Find Me the Shortest Route to a Customer! In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
’18, pages 1425–1434, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3220055. URL https:

//doi.org/10.1145/3219819.3220055.

[30] Nikhil Garg and Hamid Nazerzadeh. Driver Surge Pricing. In Proceedings of the 21st
ACM Conference on Economics and Computation, EC ’20, page 501, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379755.
doi: 10.1145/3391403.3399476. URL https://doi.org/10.1145/3391403.3399476.

[31] David K. George and Cathy H. Xia. Fleet-sizing and service availability for a vehicle
rental system via closed queueing networks. European Journal of Operational
Research, 211(1):198–207, 2011. ISSN 0377-2217. doi: 10.1016/j.ejor.2010.12.015.
URL https://doi.org/10.1016/j.ejor.2010.12.015.

[32] Aristides Gionis, Evimaria Terzi, and Panayiotis Tsaparas. Opinion Maximization
in Social Networks. In Proceeding of the 2013 SIAM International Conference
on Data Mining (SDM), pages 387–395, 2013. doi: 10.1137/1.9781611972832.43.
URL https://doi.org/10.1137/1.9781611972832.43.

[33] Aristides Gionis, Michael Mathioudakis, and Antti Ukkonen. Bump Hunting in the
Dark: Local Discrepancy Maximization on Graphs. IEEE Transactions on Knowl-
edge and Data Engineering, 29(3):529–542, 2017. doi: 10.1109/TKDE.2016.2571693.
URL https://doi.org/10.1109/TKDE.2016.2571693.

[34] GitHub Repository. Learn to Earn. https://chdhr-harshal.github.io/learn-
to-earn/, 2020.

https://doi.org/10.1145/2740908.2742725
https://doi.org/10.1007/978-1-4615-2329-1
https://doi.org/10.1007/978-1-4615-2329-1
https://doi.org/10.1080/13658816.2018.1458984
https://doi.org/10.1080/13658816.2018.1458984
https://doi.org/10.1145/3219819.3220055
https://doi.org/10.1145/3219819.3220055
https://doi.org/10.1145/3391403.3399476
https://doi.org/10.1016/j.ejor.2010.12.015
https://doi.org/10.1137/1.9781611972832.43
https://doi.org/10.1109/TKDE.2016.2571693
https://chdhr-harshal.github.io/learn-to-earn/
https://chdhr-harshal.github.io/learn-to-earn/

120

[35] Amit Goyal, Wei Lu, and Laks V.S. Lakshmanan. SIMPATH: An Efficient Algorithm
for Influence Maximization under the Linear Threshold Model. In 2011 IEEE 11th
International Conference on Data Mining, pages 211–220, 2011. doi: 10.1109/
ICDM.2011.132. URL https://doi.org/10.1109/ICDM.2011.132.

[36] The Rideshare Guy. Advice For New Uber Drivers- Don’t Chase The Surge! http:

//maximumridesharingprofits.com/advice-new-uber-drivers-dont-chase-
surge/, 2016.

[37] Jonathan V. Hall and Alan B. Krueger. An Analysis of the Labor Market for
Uber’s Driver-Partners in the United States. Technical Report No. w22843, Na-
tional Bureau of Economic Research, 2016. URL https://doi.org/10.1177/
0019793917717222.

[38] Waster Hudson. Chasing the Surge: 3 Tips for Maximizing Uber Earnings, 2016.
URL https://www.pjmedia.com/lifestyle/2016/07/19/chasing-the-surge-
3-tips-for-maximizing-uber-earnings-n164052.

[39] Mimi Hwang, James Kemp, Eva Lerner-Lam, Nancy Neuerburg, Paula E Okunieff,
et al. Advanced Public Transportation Systems: the State of the Art. United
States. Department of Transportation. Federal Transit Administration, 2006. URL
https://rosap.ntl.bts.gov/view/dot/16448.

[40] Vatche Ishakian, Dóra Erdös, Evimaria Terzi, and Azer Bestavros. A Framework
for the Evaluation and Management of Network Centrality. In Proceedings of
the 2012 SIAM International Conference on Data Mining (SDM), pages 427–
438, 2012. doi: 10.1137/1.9781611972825.37. URL https://doi.org/10.1137/
1.9781611972825.37.

[41] Jiarui Jin, Ming Zhou, Weinan Zhang, Minne Li, Zilong Guo, Zhiwei Qin, Yan Jiao,
Xiaocheng Tang, Chenxi Wang, Jun Wang, Guobin Wu, and Jieping Ye. CoRide:
Joint Order Dispatching and Fleet Management for Multi-Scale Ride-Hailing Plat-
forms. In Proceedings of the 28th ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’19, pages 1983–1992, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450369763. doi:
10.1145/3357384.3357978. URL https://doi.org/10.1145/3357384.3357978.

[42] Jaeyoung Jung, R. Jayakrishnan, and Ji Young Park. Design and Modeling of Real-
time Shared-taxi Dispatch Algorithms. In Proceedings of Transportation Research
Board 92nd Annual Meeting, 2013. URL https://trid.trb.org/view/1241180.

[43] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the Spread of Influence
through a Social Network. In Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’03, pages 137–
146, New York, NY, USA, 2003. Association for Computing Machinery. ISBN

https://doi.org/10.1109/ICDM.2011.132
http://maximumridesharingprofits.com/advice-new-uber-drivers-dont-chase-surge/
http://maximumridesharingprofits.com/advice-new-uber-drivers-dont-chase-surge/
http://maximumridesharingprofits.com/advice-new-uber-drivers-dont-chase-surge/
https://doi.org/10.1177/0019793917717222
https://doi.org/10.1177/0019793917717222
https://www.pjmedia.com/lifestyle/2016/07/19/chasing-the-surge-3-tips-for-maximizing-uber-earnings-n164052
https://www.pjmedia.com/lifestyle/2016/07/19/chasing-the-surge-3-tips-for-maximizing-uber-earnings-n164052
https://rosap.ntl.bts.gov/view/dot/16448
https://doi.org/10.1137/1.9781611972825.37
https://doi.org/10.1137/1.9781611972825.37
https://doi.org/10.1145/3357384.3357978
https://trid.trb.org/view/1241180

121

1581137370. doi: 10.1145/956750.956769. URL https://doi.org/10.1145/
956750.956769.

[44] Christian Kloimüllner and Günther R. Raidl. Full-Load Route Planning for Bal-
ancing Bike Sharing Systems by Logic-Based Benders Decomposition. Networks,
69(3):270–289, May 2017. ISSN 0028-3045. doi: 10.1002/net.21736. URL
https://doi.org/10.1002/net.21736.

[45] S. Kullback, M. Kupperman, and H. H. Ku. Tests for Contingency Tables and Markov
Chains. Technometrics, 4(4):573–608, 1962. doi: 10.1080/00401706.1962.10490041.
URL https://doi.org/10.1080/00401706.1962.10490041.

[46] Prem Kumar and Michel Bierlaire. Optimizing locations for a vehicle sharing sys-
tem. In Swiss Transport Research Conference, 2012. URL https://core.ac.uk/
download/pdf/148001815.pdf.

[47] Gilbert Laporte, Frédéric Meunier, and Roberto Wolfler Calvo. Shared mobility
systems: an updated survey. Annals of Operations Research, 271(1):105–126,
2018. doi: 10.1007/s10479-018-3076-8. URL https://doi.org/10.1007/s10479-
018-3076-8.

[48] Der-Horng Lee, Hao Wang, Ruey Long Cheu, and Siew Hoon Teo. Taxi Dispatch
System Based on Current Demands and Real-Time Traffic Conditions. Trans-
portation Research Record, 1882(1):193–200, January 2004. ISSN 0361-1981. doi:
10.3141/1882-23. URL https://doi.org/10.3141/1882-23.

[49] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection, June 2014. URL http://snap.stanford.edu/data.

[50] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-
Briesen, and Natalie Glance. Cost-Effective Outbreak Detection in Networks. In
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’07, pages 420–429, New York, NY, USA, 2007.
Association for Computing Machinery. ISBN 9781595936097. doi: 10.1145/
1281192.1281239. URL https://doi.org/10.1145/1281192.1281239.

[51] Bin Li, Daqing Zhang, Lin Sun, Chao Chen, Shijian Li, Guande Qi, and Qiang
Yang. Hunting or waiting? Discovering passenger-finding strategies from a large-
scale real-world taxi dataset. In 2011 IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOM Workshops), pages 63–68,
2011. doi: 10.1109/PERCOMW.2011.5766967. URL https://doi.org/10.1109/
PERCOMW.2011.5766967.

[52] Minne Li, Zhiwei Qin, Yan Jiao, Yaodong Yang, Jun Wang, Chenxi Wang, Guobin
Wu, and Jieping Ye. Efficient Ridesharing Order Dispatching with Mean Field

https://doi.org/10.1145/956750.956769
https://doi.org/10.1145/956750.956769
https://doi.org/10.1002/net.21736
https://doi.org/10.1080/00401706.1962.10490041
https://core.ac.uk/download/pdf/148001815.pdf
https://core.ac.uk/download/pdf/148001815.pdf
https://doi.org/10.1007/s10479-018-3076-8
https://doi.org/10.1007/s10479-018-3076-8
https://doi.org/10.3141/1882-23
http://snap.stanford.edu/data
https://doi.org/10.1145/1281192.1281239
https://doi.org/10.1109/PERCOMW.2011.5766967
https://doi.org/10.1109/PERCOMW.2011.5766967

122

Multi-Agent Reinforcement Learning. In Proceedings of the 28th International
Conference on World Wide Web, WWW ’19, pages 983–994, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450366748. doi: 10.1145/
3308558.3313433. URL https://doi.org/10.1145/3308558.3313433.

[53] Xiaopeng Li, Jiaqi Ma, Jianxun Cui, Amir Ghiasi, and Fang Zhou. Design framework
of large-scale one-way electric vehicle sharing systems: A continuum approximation
model. Transportation Research Part B: Methodological, 88:21–45, 2016. ISSN
0191-2615. doi: 10.1016/j.trb.2016.01.014. URL https://doi.org/10.1016/
j.trb.2016.01.014.

[54] Yanfeng Li, W.Y. Szeto, Jiancheng Long, and C.S. Shui. A multiple type bike
repositioning problem. Transportation Research Part B: Methodological, 90:263–
278, 2016. ISSN 0191-2615. doi: 10.1016/j.trb.2016.05.010. URL https://

doi.org/10.1016/j.trb.2016.05.010.

[55] Jenn-Rong Lin and Ta-Hui Yang. Strategic design of public bicycle sharing sys-
tems with service level constraints. Transportation research part E: Logistics and
Transportation review, 47(2):284–294, 2011. doi: 10.1016/j.tre.2010.09.004. URL
https://doi.org/10.1016/j.tre.2010.09.004.

[56] Jenn-Rong Lin, Ta-Hui Yang, and Yu-Chung Chang. A hub location inventory
model for bicycle sharing system design: Formulation and solution. Computers &
Industrial Engineering, 65(1):77–86, 2013. doi: /10.1016/j.cie.2011.12.006. URL
https://doi.org/10.1016/j.cie.2011.12.006.

[57] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. Efficient Large-Scale Fleet
Management via Multi-Agent Deep Reinforcement Learning. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’18, pages 1774–1783, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3219993.
URL https://doi.org/10.1145/3219819.3219993.

[58] Hongyao Ma, Fei Fang, and David C. Parkes. Spatio-Temporal Pricing for Rideshar-
ing Platforms. SIGecom Exchange, 18(2):53–57, December 2020. doi: 10.1145/
3440968.3440975. URL https://doi.org/10.1145/3440968.3440975.

[59] Michal Maciejewski and Kai Nagel. Simulation and dynamic optimization of taxi
services in MATSim. Transportation Science, 2013.

[60] Luis M. Martinez, Lus Caetano, Toms Eir, and Francisco Cruz. An Optimisation
Algorithm to Establish the Location of Stations of a Mixed Fleet Biking System: An
Application to the City of Lisbon. In Proceedings of EWGT2012 - 15th Meeting of
the EURO Working Group on Transportation, September 2012, Paris, volume 54,

https://doi.org/10.1145/3308558.3313433
https://doi.org/10.1016/j.trb.2016.01.014
https://doi.org/10.1016/j.trb.2016.01.014
https://doi.org/10.1016/j.trb.2016.05.010
https://doi.org/10.1016/j.trb.2016.05.010
https://doi.org/10.1016/j.tre.2010.09.004
https://doi.org/10.1016/j.cie.2011.12.006
https://doi.org/10.1145/3219819.3219993
https://doi.org/10.1145/3440968.3440975

123

pages 513–524, 2012. doi: 10.1016/j.sbspro.2012.09.769. URL https://doi.org/
10.1016/j.sbspro.2012.09.769.

[61] Michael Mathioudakis, Francesco Bonchi, Carlos Castillo, Aristides Gionis, and Antti
Ukkonen. Sparsification of Influence Networks. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’11, pages 529–537, New York, NY, USA, 2011. Association for Comput-
ing Machinery. ISBN 9781450308137. doi: 10.1145/2020408.2020492. URL
https://doi.org/10.1145/2020408.2020492.

[62] Charalampos Mavroforakis, Michael Mathioudakis, and Aristides Gionis. Absorb-
ing random-walk centrality: Theory and algorithms. In 2015 IEEE Interna-
tional Conference on Data Mining, pages 901–906. IEEE, 2015. doi: 10.1109/
ICDM.2015.103. URL https://doi.org/10.1109/ICDM.2015.103.

[63] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement
Learning. December 2013. URL https://arxiv.org/abs/1312.5602v1.

[64] Rahul Nair and Elise Miller-Hooks. Equilibrium network design of shared-vehicle
systems. European Journal of Operational Research, 235(1):47–61, 2014. ISSN
0377-2217. doi: 10.1016/j.ejor.2013.09.019. URL https://doi.org/10.1016/
j.ejor.2013.09.019.

[65] Arnab Nilim and Laurent El Ghaoui. Robustness in Markov Decision Problems with
Uncertain Transition Matrices. In Proceedings of the 16th International Conference
on Neural Information Processing Systems, NIPS’03, pages 839–846, Cambridge,
MA, USA, 2003. MIT Press. doi: 10.5555/2981345.2981450. URL https:

//doi.org/10.5555/2981345.2981450.

[66] Jorge Nunes, Lúıs Matos, and António Trigo. Taxi pick-ups route optimization
using genetic algorithms. In International Conference on Adaptive and Natural
Computing Algorithms, pages 410–419. Springer, 2011. doi: 10.1007/978-3-642-
20282-7 42. URL https://doi.org/10.1007/978-3-642-20282-7 42.

[67] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-Ichi Kawarabayashi. Fast
and Accurate Influence Maximization on Large Networks with Pruned Monte-Carlo
Simulations. In Proceedings of the Twenty-Eighth AAAI Conference on Artifi-
cial Intelligence, AAAI’14, pages 138–144. AAAI Press, 2014. doi: 10.5555/
2893873.2893897. URL https://doi.org/10.5555/2893873.2893897.

[68] Erhun Özkan and Amy R Ward. Dynamic matching for real-time ride sharing.
Stochastic Systems, 10(1):29–70, 2020. doi: 10.1287/stsy.2019.0037. URL https:

//doi.org/10.1287/stsy.2019.0037.

https://doi.org/10.1016/j.sbspro.2012.09.769
https://doi.org/10.1016/j.sbspro.2012.09.769
https://doi.org/10.1145/2020408.2020492
https://doi.org/10.1109/ICDM.2015.103
https://arxiv.org/abs/1312.5602v1
https://doi.org/10.1016/j.ejor.2013.09.019
https://doi.org/10.1016/j.ejor.2013.09.019
https://doi.org/10.5555/2981345.2981450
https://doi.org/10.5555/2981345.2981450
https://doi.org/10.1007/978-3-642-20282-7_42
https://doi.org/10.5555/2893873.2893897
https://doi.org/10.1287/stsy.2019.0037
https://doi.org/10.1287/stsy.2019.0037

124

[69] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Technical Report 1999-66, Stan-
ford InfoLab, November 1999. URL http://ilpubs.stanford.edu:8090/422/.
Previous number = SIDL-WP-1999-0120.

[70] Julius Pfrommer, Joseph Warrington, Georg Schildbach, and Manfred Morari. Dy-
namic Vehicle Redistribution and Online Price Incentives in Shared Mobility Sys-
tems. IEEE Transactions on Intelligent Transportation Systems, 15(4):1567–
1578, 2014. doi: 10.1109/TITS.2014.2303986. URL https://doi.org/10.1109/
TITS.2014.2303986.

[71] Zhiwei Qin, Hongtu Zhu, and Jieping Ye. Reinforcement Learning for Ridesharing:
A Survey. 2021. URL https://arxiv.org/pdf/2105.01099.pdf.

[72] Tal Raviv and Ofer Kolka. Optimal inventory management of a bike-sharing station.
IIE Transactions, 45(10):1077–1093, 2013. doi: 10.1080/0740817X.2013.770186.
URL https://doi.org/10.1080/0740817X.2013.770186.

[73] Matteo Riondato and Evgenios M. Kornaropoulos. Fast approximation of between-
ness centrality through sampling. Data Mining and Knowledge Discovery, 30
(2):438–475, 2016. doi: 10.1007/s10618-015-0423-0. URL https://doi.org/
10.1007/s10618-015-0423-0.

[74] Huigui Rong, Xun Zhou, Chang Yang, Zubair Shafiq, and Alex Liu. The Rich and
the Poor: A Markov Decision Process Approach to Optimizing Taxi Driver Revenue
Efficiency. In Proceedings of the 25th ACM International on Conference on Infor-
mation and Knowledge Management, CIKM ’16, pages 2329–2334, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450340731. doi:
10.1145/2983323.2983689. URL https://doi.org/10.1145/2983323.2983689.

[75] Gert Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603,
1966. doi: 10.1007/BF02289527. URL https://doi.org/10.1007/BF02289527.

[76] J. Schuijbroek, R.C. Hampshire, and W.-J. van Hoeve. Inventory rebalancing and
vehicle routing in bike sharing systems. European Journal of Operational Research,
257(3):992–1004, 2017. ISSN 0377-2217. doi: 10.1016/j.ejor.2016.08.029. URL
https://doi.org/10.1016/j.ejor.2016.08.029.

[77] K T Seow, N H Dang, and D Lee. A Collaborative Multiagent Taxi-Dispatch System.
IEEE Transactions on Automation Science and Engineering, 7(3):607–616, July
2010. ISSN 1545-5955. doi: 10.1109/TASE.2009.2028577. URL https://

doi.org/10.1109/TASE.2009.2028577.

http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1109/TITS.2014.2303986
https://doi.org/10.1109/TITS.2014.2303986
https://arxiv.org/pdf/2105.01099.pdf
https://doi.org/10.1080/0740817X.2013.770186
https://doi.org/10.1007/s10618-015-0423-0
https://doi.org/10.1007/s10618-015-0423-0
https://doi.org/10.1145/2983323.2983689
https://doi.org/10.1007/BF02289527
https://doi.org/10.1016/j.ejor.2016.08.029
https://doi.org/10.1109/TASE.2009.2028577
https://doi.org/10.1109/TASE.2009.2028577

125

[78] Ying Shi and Zhaotong Lian. Optimization and strategic behavior in a passen-
gertaxi service system. European Journal of Operational Research, 249(3):1024–
1032, 2016. ISSN 0377-2217. doi: 10.1016/j.ejor.2015.07.031. URL https:

//doi.org/10.1016/j.ejor.2015.07.031.

[79] Tom Sühr, Asia J. Biega, Meike Zehlike, Krishna P. Gummadi, and Abhijnan Chak-
raborty. Two-Sided Fairness for Repeated Matchings in Two-Sided Markets: A
Case Study of a Ride-Hailing Platform. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’19, pages
3082–3092, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450362016. doi: 10.1145/3292500.3330793. URL https://doi.org/
10.1145/3292500.3330793.

[80] Richard S Sutton and Andrew G Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 9780262193986. doi:
10.5555/3312046. URL https://doi.org/10.5555/3312046.

[81] Xiaocheng Tang, Zhiwei (Tony) Qin, Fan Zhang, Zhaodong Wang, Zhe Xu, Yintai
Ma, Hongtu Zhu, and Jieping Ye. A Deep Value-Network Based Approach for
Multi-Driver Order Dispatching. In Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, KDD ’19, pages
1780–1790, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450362016. doi: 10.1145/3292500.3330724. URL https://doi.org/
10.1145/3292500.3330724.

[82] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence Maximization: Near-Optimal
Time Complexity Meets Practical Efficiency. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’14, pages
75–86, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450323765. doi: 10.1145/2588555.2593670. URL https://doi.org/10.1145/
2588555.2593670.

[83] The New York Times. An App That Helps Drivers Earn the Most From Their Trips.
https://www.nytimes.com/2015/05/10/technology/a-dashboard-management-
consultant.html, 2015.

[84] The New York Times. How Uber Uses Psychological Tricks to Push Its Drivers’
Buttons, 2017. URL https://www.nytimes.com/interactive/2017/04/02/
technology/uber-drivers-psychological-tricks.html.

[85] Tanvi Verma, Pradeep Varakantham, Sarit Kraus, and Hoong Chuin Lau. Aug-
menting Decisions of Taxi Drivers through Reinforcement Learning for Improving
Revenues. In Proceedings of the Twenty-Seventh International Conference on Au-
tomated Planning and Scheduling, ICAPS 2017, Pittsburgh, Pennsylvania, USA,
June 18-23, 2017, pages 409–418. AAAI Press, 2017.

https://doi.org/10.1016/j.ejor.2015.07.031
https://doi.org/10.1016/j.ejor.2015.07.031
https://doi.org/10.1145/3292500.3330793
https://doi.org/10.1145/3292500.3330793
https://doi.org/10.5555/3312046
https://doi.org/10.1145/3292500.3330724
https://doi.org/10.1145/3292500.3330724
https://doi.org/10.1145/2588555.2593670
https://doi.org/10.1145/2588555.2593670
https://www.nytimes.com/2015/05/10/technology/a-dashboard-management-consultant.html
https://www.nytimes.com/2015/05/10/technology/a-dashboard-management-consultant.html
https://www.nytimes.com/interactive/2017/04/02/technology/uber-drivers-psychological-tricks.html
https://www.nytimes.com/interactive/2017/04/02/technology/uber-drivers-psychological-tricks.html

126

[86] James Vincent. AI systems should be accountable, explainable, and unbiased, says
EU. TheVerge, April 2019. URL https://theverge.com/2019/4/8/18300149/
eu-artificial-intelligence-ai-ethical-guidelines-recommendations.

[87] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020. doi: 10.1038/s41592-019-0686-2. URL https://doi.org/
10.1038/s41592-019-0686-2.

[88] Patrick Vogel, Bruno A. Neumann Saavedra, and Dirk C. Mattfeld. A Hybrid Meta-
heuristic to Solve the Resource Allocation Problem in Bike Sharing Systems. In
Hybrid Metaheuristics, pages 16–29, Cham, 2014. Springer International Pub-
lishing. ISBN 978-3-319-07644-7. doi: 10.1007/978-3-319-07644-7 2. URL
https://doi.org/10.1007/978-3-319-07644-7 2.

[89] Z Wang, Z Qin, X Tang, J Ye, and H Zhu. Deep Reinforcement Learning with
Knowledge Transfer for Online Rides Order Dispatching. In 2018 IEEE Interna-
tional Conference on Data Mining (ICDM), pages 617–626, November 2018. doi:
10.1109/ICDM.2018.00077. URL https://doi.org/10.1109/ICDM.2018.00077.

[90] Ariel Waserhole and Vincent Jost. Pricing in vehicle sharing systems: optimization
in queuing networks with product forms. EURO Journal on Transportation and
Logistics, 5(3):293–320, 2016. ISSN 2192-4376. doi: 10.1007/s13676-014-0054-4.
URL https://doi.org/10.1007/s13676-014-0054-4.

[91] Jian Wen, Jinhua Zhao, and Patrick Jaillet. Rebalancing shared mobility-on-demand
systems: A reinforcement learning approach. In 2017 IEEE 20th International
Conference on Intelligent Transportation Systems, pages 220–225, 2017. doi:
10.1109/ITSC.2017.8317908. URL https://doi.org/10.1109/ITSC.2017.8317908.

[92] Wikipedia contributors. Skellam distribution. https://en.wikipedia.org/w/
index.php?title=Skellam distribution, 2017.

[93] Wikipedia contributors. Taxicabs of New York City. https://en.wikipedia.org/
w/index.php?title=Taxicabs of New York City, 2019.

[94] Wikipedia contributors. Bicycle-sharing system. https://en.wikipedia.org/w/
index.php?title=Bicycle-sharing system, 2021.

[95] Zhe Xu, Zhixin Li, Qingwen Guan, Dingshui Zhang, Qiang Li, Junxiao Nan, Chun-
yang Liu, Wei Bian, and Jieping Ye. Large-Scale Order Dispatch in On-Demand
Ride-Hailing Platforms: A Learning and Planning Approach. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

https://theverge.com/2019/4/8/18300149/eu-artificial-intelligence-ai-ethical-guidelines-recommendations
https://theverge.com/2019/4/8/18300149/eu-artificial-intelligence-ai-ethical-guidelines-recommendations
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/978-3-319-07644-7_2
https://doi.org/10.1109/ICDM.2018.00077
https://doi.org/10.1007/s13676-014-0054-4
https://doi.org/10.1109/ITSC.2017.8317908
https://en.wikipedia.org/w/index.php?title =Skellam_distribution
https://en.wikipedia.org/w/index.php?title =Skellam_distribution
https://en.wikipedia.org/w/index.php?title =Taxicabs_of_New_York_City
https://en.wikipedia.org/w/index.php?title =Taxicabs_of_New_York_City
https://en.wikipedia.org/w/index.php?title =Bicycle-sharing_system
https://en.wikipedia.org/w/index.php?title =Bicycle-sharing_system

127

Mining, KDD ’18, pages 905–913, New York, NY, USA, 2018. Association for Com-
puting Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3219824. URL
https://doi.org/10.1145/3219819.3219824.

[96] Chiwei Yan, Helin Zhu, Nikita Korolko, and Dawn Woodard. Dynamic pricing
and matching in ride-hailing platforms. Naval Research Logistics (NRL), 67(8):
705–724, 2020. doi: 10.2139/ssrn.3258234. URL https://doi.org/10.2139/
ssrn.3258234.

[97] Hai Yang, S.C. Wong, and K.I. Wong. Demandsupply equilibrium of taxi services
in a network under competition and regulation. Transportation Research Part
B: Methodological, 36(9):799–819, 2002. ISSN 0191-2615. doi: 10.1016/S0191-
2615(01)00031-5. URL https://doi.org/10.1016/S0191-2615(01)00031-5.

[98] Jing Yuan, Yu Zheng, Liuhang Zhang, XIng Xie, and Guangzhong Sun. Where
to Find My next Passenger. In Proceedings of the 13th International Conference
on Ubiquitous Computing, UbiComp ’11, pages 109–118, New York, NY, USA,
2011. Association for Computing Machinery. ISBN 9781450306300. doi: 10.1145/
2030112.2030128. URL https://doi.org/10.1145/2030112.2030128.

[99] N J Yuan, Y Zheng, L Zhang, and X Xie. T-Finder: A Recommender System for
Finding Passengers and Vacant Taxis. IEEE Transactions on Knowledge and Data
Engineering, 25(10):2390–2403, October 2013. ISSN 1041-4347. doi: 10.1109/
TKDE.2012.153. URL https://doi.org/10.1109/TKDE.2012.153.

[100] Lingyu Zhang, Tao Hu, Yue Min, Guobin Wu, Junying Zhang, Pengcheng Feng,
Pinghua Gong, and Jieping Ye. A Taxi Order Dispatch Model Based On Com-
binatorial Optimization. In Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, KDD ’17, pages 2151–
2159, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450348874. doi: 10.1145/3097983.3098138. URL https://doi.org/10.1145/
3097983.3098138.

[101] Rick Zhang and Marco Pavone. Control of robotic mobility-on-demand systems: A
queueing-theoretical perspective. The International Journal of Robotics Research,
35(1–3):186–203, 2016. doi: 10.1177/0278364915581863. URL https://doi.org/
10.1177/0278364915581863.

[102] Ming Zhou, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao, Weinan
Zhang, Montgomery Alban, Iman Fadakar, Zheng Chen, et al. Smarts: Scalable
multi-agent reinforcement learning training school for autonomous driving. 2020.
URL https://arxiv.org/abs/2010.09776.

https://doi.org/10.1145/3219819.3219824
https://doi.org/10.2139/ssrn.3258234
https://doi.org/10.2139/ssrn.3258234
https://doi.org/10.1016/S0191-2615(01)00031-5
https://doi.org/10.1145/2030112.2030128
https://doi.org/10.1109/TKDE.2012.153
https://doi.org/10.1145/3097983.3098138
https://doi.org/10.1145/3097983.3098138
https://doi.org/10.1177/0278364915581863
https://doi.org/10.1177/0278364915581863
https://arxiv.org/abs/2010.09776

128

Curriculum Vitae

	Introduction
	Rise of Mobility-on-Demand Systems
	Operational Challenges
	Summary of Contributions
	Fleet Monitoring
	Driver Revenue Maximization
	Fleet Management

	Related Publications

	Literature Review
	Bike-sharing Systems
	Station Location
	Fleet Size and Station Inventory
	Vehicle Rebalancing

	Ride-sharing Systems
	Taxi Fleet Optimization
	Vehicle Repositioning
	Capacity Repositioning
	Platform Studies

	Fleet Monitoring
	Background
	Problem Setup
	Problem Statement

	Greedy Algorithm for Node-Monitoring
	Algorithms for Edge-Monitoring
	The EdgeDP Algorithm
	The EdgeGreedy Algorithm

	Data and Experiments
	Experimental Setup
	Experimental Results

	Driver Revenue Maximization
	Problem Setup
	Modeling the City
	Modeling the Driver
	Computing Driver Earnings
	Problem Statement

	Driver Strategies
	Maximizing Earnings under Uncertainty
	Modeling Uncertainty
	The RobustEarnings Problem

	Robust Dynamic Programming
	Dynamic Program Formulation
	Bisection Algorithm

	Data and Experiments
	Data Pre-processing
	Experimental Results

	Fleet Management
	Problem Setup
	City Attributes
	Model Attributes
	Problem Statement

	Learning Framework
	Model-based Reinforcement Learning Algorithm
	Exploratory Phase
	Exploitative Phase

	Data and Experiments
	Data Pre-processing
	Experimental Results

	Conclusion
	References
	Curriculum Vitae

