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ESSAYS ON THE ECONOMETRIC ANALYSIS OF

TREATMENT ASSIGNMENT RULES AND ALTRUISTIC
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UNDRAL BYAMBADALAI
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Major Professor: Hiroaki Kaido, PhD
Associate Professor of Economics

ABSTRACT

This dissertation has two main themes: treatment assignment rules and altru-

istic preferences. The first two chapters are about comparing different treatment

assignment rules using observational data. The third chapter studies how altruistic

preferences are affected by markets and incentives.

In Chapter 1, I develop a theoretical framework to compare different treatment

assignment rules. A treatment assignment rule is a mapping from observed character-

istics to binary treatment status. The welfare difference between two given treatment

assignment rules is not point identified in general when data are obtained from an

observational study or a randomized experiment with imperfect compliance. I char-

acterize the sharp identified region of the welfare difference and obtain bounds under

various assumptions on the unobservables with and without instrumental variables.

I conduct estimation and inference of the bounds using orthogonalized moment con-

ditions to deal with the presence of infinite-dimensional nuisance parameters.

In Chapter 2, I apply the method I proposed in Chapter 1 to examine two ap-

plications in economics. First, I study the problem of assigning individuals to job
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training programs. I calculate the welfare differences between different hypotheti-

cal policies using experimental data from the National Job Training Partnership Act

Study. Second, I apply the method to study public health insurance policies. Specifi-

cally, I calculate the welfare impact of Medicaid expansion using data from the Oregon

Health Insurance Experiment.

Chapter 3 (joint with Ching-to Albert Ma and Daniel Wiesen) studies how al-

truistic preferences are changed by markets and incentives using a laboratory exper-

iment. Subjects are asked to choose health care qualities for hypothetical patients in

monopoly, duopoly, and quadropoly. Prices, costs, and patient benefits are experi-

mental incentive parameters. We combine a theoretical model of strategic interaction

with a nonparametric estimation method and find that markets tend to reduce altru-

ism.
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1

Chapter 1

Identification and Inference for Welfare

Gains without Unconfoundedness

1.1 Introduction

The problem of choosing among alternative treatment assignment rules based on data

is pervasive in economics and many other fields, including marketing and medicine.

A treatment assignment rule is a mapping from individual characteristics to a treat-

ment assignment. For instance, it can be a job training program eligibility criterion

based on the applicants’ years of education and annual earnings. Throughout the

chapter, I call the treatment assignment rule a policy, and the subject who decides

the treatment assignment rule a policymaker. The policymaker can be an algorithm

assigning targeted ads, a doctor deciding medical treatment, or a school principal de-

ciding which students take classes in person during a pandemic. As individuals with

different characteristics might respond differently to a given policy, policymakers aim

to choose a policy that generates the highest overall outcome or welfare.

Most previous work on treatment assignment in econometrics focused on estimat-

ing the optimal policy using data from a randomized experiment. I contribute to this

literature by focusing on the identification and inference of the welfare gain using

data from an observational study or a randomized experiment with imperfect compli-

ance. The assumption called unconfoundedness might fail to hold for such datasets.1

1 The assumption of unconfoundedness is also known as selection on observables and assumes
that treatment is independent of potential outcomes conditional on observable characteristics.
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By relaxing the unconfoundedness assumption, my framework accommodates many

interesting and empirically relevant cases, including the use of instrumental variables

to identify the effect of a treatment. The advantage of focusing on welfare gain is to

provide policymakers with the ability to be more transparent when choosing among

alternative policies. Policymakers may want to know how much the welfare gain or

loss is in addition to the welfare ranking of competing policies when they make their

decisions. They might also need to report the welfare gain.

When the unconfoundedness assumption does not hold, identification of the con-

ditional average treatment effect (CATE) and hence identification of the welfare gain

becomes a delicate matter. Without further assumptions on selection, one cannot

uniquely identify the welfare gain. I take a partial identification approach whereby

one obtains bounds on the parameter of interest with a minimal amount of assump-

tions on the unobservables and, later on, tighten these bounds by imposing additional

assumptions with and without instrumental variables. The bounds, or sharp iden-

tified region, of the welfare gain can be characterized using tools from random set

theory.2 The framework I use allows me to consider various assumptions that involve

instrumental variables and shape restrictions on the unobservables.

I show that the lower and upper bounds of the welfare gain can, in general, be writ-

ten as functions of the conditional mean treatment responses and a propensity score.

Hence, estimation and inference of these bounds can be thought of as a semipara-

metric estimation problem in which the conditional mean treatment responses and

the propensity score are infinite-dimensional nuisance parameters. Bounds that do

not rely on instruments admit regular and asymptotically normal estimators. I con-

struct orthogonalized, or locally robust, moment condition by adding an adjustment

term that accounts for the first step estimation to the original moment condition,

2 The terms identified region, identified set, and bounds are used interchangeably throughout the
chapter.
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following Chernozhukov, Escanciano, Ichimura, Newey, and Robins (2020) (CEINR,

henceforth). This method leads to estimators that are first-order insensitive to esti-

mation errors of the nuisance parameters. I calculate the adjustment term using an

approach proposed by Ichimura and Newey (2017). The locally robust estimation is

possible even with instrumental variables under an additional monotonicity assump-

tion of instruments. The estimation strategy has at least two advantages. First, it

allows for flexible estimation of nuisance parameters, including the possibility of using

high-dimensional machine learning methods. Second, the calculation of confidence in-

tervals for the bounds is straightforward because the asymptotic variance doesn’t rely

on the estimation of nuisance parameters. The results from a Monte Carlo simulation

suggest that the method works well in a finite sample.

Related Literature This work is related to the literature on treatment assignment,

sometimes also referred to as treatment choice, which has been growing in economet-

rics since the seminal work by Manski (2004). Earlier work in this literature include

Dehejia (2005), Hirano and Porter (2009), Stoye (2009a, 2012), Chamberlain (2011),

Bhattacharya and Dupas (2012), Tetenov (2012), Kasy (2014), and Armstrong and

Shen (2015).

In a recent work, Kitagawa and Tetenov (2018) propose what they call an empirical

welfare maximization method. This method selects a treatment rule that maximizes

the sample analog of the average social welfare over a class of candidate treatment

rules. Their method has been further studied and extended in different directions.

Kitagawa and Tetenov (2019) study an alternative welfare criterion that concerns

equality. Mbakop and Tabord-Meehan (2016) propose what they call a penalized

welfare maximization, an alternative method to estimate optimal treatment rules.

While Andrews, Kitagawa, and McCloskey (2019) consider inference for the estimated

optimal rule, Rai (2018) considers inference for the optimal rule itself. These papers
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and most of the earlier papers only apply to a setting in which the assumption of

unconfoundedness holds.

In a dynamic setting, treatment assignment is studied by Kock and Thyrsgaard

(2017), Kock, Preinerstorfer, and Veliyev (2018), Adusumilli, Geiecke, and Schilter

(2020), Sakaguchi (2019), and Han (2019), among others.

This work contributes to the less explored case of using observational data to infer

policy choice where the unconfoundedness assumption does not hold. Earlier work

in the treatment choice literature with partial identification include Stoye (2007)

and Stoye (2009b). This work is closely related to Kasy (2016), but their main

object of interest is the welfare ranking of policies rather than the magnitude of

welfare gain that results from switching from one policy to another policy. It is

also closely related to Athey and Wager (2020) as they are concerned with choosing

treatment assignment policies using observational data. However, their approach

is about estimating the optimal treatment rule by point identifying the causal effect

using various assumptions. Another recent work by Sasaki and Ura (2020) studies the

problem using the point identification of marginal treatment effects. In a related work

in statistics, Cui and Tchetgen Tchetgen (2020) propose a method to estimate optimal

treatment rules using instrumental variables. More recently, Assunção, McMillan,

Murphy, and Souza-Rodrigues (2019) work with a partially identified welfare criterion

that also takes spillover effects into account to analyze deforestation regulations in

Brazil.

The rest of the chapter is structured as follows. In Section 1.2, I set up the

problem. Section 1.3 presents the identification results of the welfare gain. Section

1.4 discusses the estimation and inference of the bounds. Section 1.5 summarizes the

results from a Monte Carlo simulation. Finally, Section 1.6 concludes. All proofs,

some useful definitions and theorems from random set theory, and more details on
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the simulation study are collected in the Appendix.

Notation Throughout this chapter, for d ∈ N, let Rd denote the Euclidean space

and ‖·‖ denote the Euclidean norm. Let 〈·, ·〉 denote the inner product in Rd and E[·]

denote the expectation operator. The notation
p−→ and

d−→ denote convergence in

probability and convergence in distribution, respectively. For a sequence of numbers

xn and yn, xn = o(yn) and xn = O(yn) mean, respectively, that xn/yn → 0 and

xn ≤ Cyn for some constant C as n→∞. For a sequence of random variables Xn and

Yn, the notation Xn = op(Yn) and Xn = Op(Yn) mean, respectively, that Xn/Yn
p−→ 0

and Xn/Yn is bounded in probability. N (µ,Ω) denotes a normal distribution with

mean µ and variance Ω. Φ(·) denotes the cumulative distribution function of the

standard normal distribution.

1.2 Setup

Let (Ω,A) be a measurable space. Let Y : Ω → R denote an outcome variable, D :

Ω → {0, 1} denote a binary treatment, and X : Ω → X ⊂ Rdx denote pretreatment

covariates. For d ∈ {0, 1}, let Yd : Ω → R denote a potential outcome that would

have been observed if the treatment status were D = d. For each individual, the

researcher only observes either Y1 or Y0 depending on what treatment the individual

received. Hence, the relationship between observed and potential outcomes is given

by

Y = Y1 ·D + Y0 · (1−D). (1.1)

Policy I consider is a treatment assignment rule based on observed characteristics of

individuals. In other words, the policymaker assigns an individual with covariate X

to a binary treatment according to a treatment rule δ : X → {0, 1}.3 The welfare

3I consider deterministic treatment rules in my framework. See Appendix 1.7.3 for discussions
on randomized treatment rules.
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criterion considered is population mean welfare. If the policymaker chooses policy δ,

the welfare is given by

u(δ) ≡ E
[
Y1 · δ(X) + Y0 · (1− δ(X))

]
= E

[
E[Y1|X] · δ(X) + E[Y0|X] · (1− δ(X))

]
.

(1.2)

The object of my interest is welfare gain that results from switching from policy δ∗

to another policy δ which is

u(δ)− u(δ∗) = E
[
∆(X) · (δ(X)− δ∗(X))

]
, ∆(X) ≡ E[Y1 − Y0|X]. (1.3)

Remark 1.2.1. I assume that individuals comply with the assignment. This can

serve as a natural baseline for choosing between policies.

The observable variables in my model are (Y,D,X) and I assume that the re-

searcher knows the joint distribution of (Y,D,X) when I study identification. Later,

in Section 1.4, I assume availability of data – size n random sample from (Y,D,X) –

to conduct inference on objects that depend on this joint distribution. The unobserv-

ables in my model are potential outcomes (Y1, Y0). The conditional average treatment

effect ∆(X) = E[Y1 − Y0|X] and hence my object of interest welfare gain cannot be

point identified in the absence of strong assumptions. One instance in which it can

be point identified is when potential outcomes (Y1, Y0) are independent of treatment

D conditional on X, i.e.,

(Y1, Y0) ⊥ D|X. (1.4)

This assumption is called unconfoundedness and is a widely-used identifying assump-

tion in causal inference. See Imbens and Rubin (2015) Chapter 12 and 21 for more

discussions on this assumption. Under unconfoundedness, the conditional average
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treatment effect can be identified as

E[Y1 − Y0|X] = E[Y |D = 1, X]− E[Y |D = 0, X]. (1.5)

Note that the right-hand side of (1.5) is identified since the researcher knows the

joint distribution of (Y,D,X). If data are obtained from a randomized experiment,

the assumption holds since the treatment is randomly assigned. However, if data

are obtained from an observational study, the assumption is not testable and often

controversial. In the next section, I relax the assumption of unconfoundedness and

explore what can be learned about my parameter of interest when different assump-

tions are imposed on the unobservables and when there are additional instrumental

variables Z ∈ Z ⊂ Rdz to help identify the conditional average treatment effect.

The welfare gain is related to Manski (2004)’s regret which has been used by

Kitagawa and Tetenov (2018), Athey and Wager (2020), and many others in the

literature to evaluate the performance of the estimated treatment rules. When D is

the class of treatment rules to be considered, the regret from choosing treatment rule

δ is u(δ∗)− u(δ) where

δ∗ = arg max
d∈D

E
[
E[Y1|X] · d+ E[Y0|X] · (1− d)

]
. (1.6)

It is an expected loss in welfare that results from not reaching the maximum fea-

sible welfare as δ∗ is the policy that maximizes population welfare. In Kitagawa

and Tetenov (2018) and others, under the assumption of unconfoundedness, the wel-

fare criterion u(δ) in (1.2) is point-identified. Therefore, the optimal “oracle” treat-

ment rule in (1.6) is well defined when the researcher knows the joint distribution of

(Y,D,X). However, when the welfare criterion in (1.2) is set-identified, one needs to

specify their notion of optimality. For instance, the optimal rule could be a rule that

maximizes the guaranteed or minimum welfare.
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1.3 Identification

1.3.1 Sharp identified region

Partial identification approach has been proven to be a useful alternative or com-

plement to point identification analysis with strong assumptions. See Manski (2003),

Tamer (2010), and Molinari (2019) for an overview. The theory of random sets, which

I use to conduct my identification analysis, is one of the tools that have been used

fruitfully to address identification and inference in partially identified models. Exam-

ples include Beresteanu and Molinari (2008), Beresteanu, Molchanov, and Molinari

(2011, 2012), Galichon and Henry (2011), Epstein, Kaido, and Seo (2016), Chesher

and Rosen (2017), and Kaido and Zhang (2019). See Molchanov and Molinari (2018)

for a textbook treatment of its use in econometrics.

My goal in this section is to characterize the sharp identified region of the wel-

fare gain when different assumptions are imposed on the unobservables. The sharp

identified region of the welfare gain is the tightest possible set that collects the val-

ues of welfare gain that results from all possible (Y1, Y0) that are consistent with the

maintained assumptions. Toward this end, I define a random set and its selections

whose formal definitions can be found in Appendix 1.7.1. The random set is useful for

incorporating weak assumptions in a unified framework rather than deriving bounds

on a case-by-case basis.

Let (Y1 × Y0) : Ω → F be a random set where F is the family of closed subsets

of R2. Assumptions on potential outcomes can be imposed through this random

set. Then, the collection of all random vectors (Y1, Y0) that are consistent with those

assumptions equals the family of all selections of (Y1 × Y0) denoted by S(Y1 × Y0).

Specific examples of a random set with more discussions on selections, namely, in

the context of worst-case bounds of Manski (1990) and monotone treatment response

analysis of Manski (1997), are given in Section 1.3.3. Using the random set notations
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I just introduced, the sharp identified region of the welfare gain is given by

BI(δ, δ
∗) ≡ {β ∈ R : β = E

[
E[Y1 − Y0|X] · (δ(X)− δ∗(X))

]
, (Y1, Y0) ∈ S(Y1 × Y0)}.

(1.7)

The set BI(δ, δ
∗) is a collection of all β’s where (Y1, Y0) is a selection of the random

set (Y1×Y0). Note that, from this definition, it is not yet clear how we can estimate

this object when we have data on (Y,D,X). In the next subsection, I characterize

the identified set so that we can estimate the bounds when we have data.

1.3.2 Lower and upper bound

One way to achieve characterization of the sharp identified region is through a selec-

tion expectation and its support function. Their definitions can be found in Appendix

1.7.1. Let the support function of a convex set K ⊂ Rd be denoted by

s(v,K) = sup
x∈K
〈v, x〉, v ∈ Rd. (1.8)

The support function appears in Beresteanu and Molinari (2008), Beresteanu, Molchanov,

and Molinari (2011), Bontemps, Magnac, and Maurin (2012), Kaido and Santos

(2014), Kaido (2016), and Kaido (2017), among others.

I first state a lemma that will be useful to prove my main result. It shows how

expectation of a functional of potential outcomes can be bounded from below and

above by expected support function of the random set (Y1 × Y0). The proof of the

following lemma and all other proofs in this chapter are collected in the Appendix.

Lemma 1.3.1. Let (Y1 × Y0) : Ω → F be an integrable random set that is almost

surely convex and let (Y1, Y0) ∈ S(Y1 × Y0). For any v ∈ R2, we have

− E[s(−v,Y1 × Y0)|X] ≤ v′E[(Y1, Y0)′|X] ≤ E[s(v,Y1 × Y0)|X] a.s. (1.9)

I introduce a notation that appears in the following theorem and throughout the
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chapter. Let θ10(X) ≡ 1{δ(X) = 1, δ∗(X) = 0} be an indicator function for the

sub population that are newly treated under the new policy. Similary, let θ01(X) ≡

1{δ(X) = 0, δ∗(X) = 1} be an indicator function for the sub population that are no

longer being treated because of the new policy.

Theorem 1.3.1 (General case). Suppose (Y1×Y0) : Ω→ F is an integrable random

set that is almost surely convex. Let δ : X → {0, 1} and δ∗ : X → {0, 1} be treatment

rules. Also, let v∗ = (1,−1)′. Then, BI(δ, δ
∗) in (1.7) is an interval [βl, βu] where

βl = E[∆(X) · θ10(X)− ∆̄(X) · θ01(X)], (1.10)

and

βu = E[∆̄(X) · θ10(X)−∆(X) · θ01(X)], (1.11)

where ∆(X) ≡ −E[s(−v∗,Y1 × Y0)|X] and ∆̄(X) ≡ E[s(v∗,Y1 × Y0)|X].

The lower (upper) bound on the welfare gain is achieved when the newly treated

people are the ones who benefit the least (most) from the treatment and the people

who are no longer being treated are the ones who benefit the most (least) from

the treatment. Therefore, the lower and upper bounds of the welfare gain involve

both ∆(X) = −E[s(−v∗,Y1 × Y0)|X] and ∆̄(X) = E[s(v∗,Y1 × Y0)|X], expected

support functions of the random set at directions −v∗ = (−1, 1)′ and v∗ = (1,−1)′.

Oftentimes, these can be estimated by its sample analog estimators. I give closed form

expressions of the expected support functions in Section 1.3.3 and 1.3.4 – they depend

on objects such as E[Y |D = 1, X = x], E[Y |D = 0, X = x], and P (D = 1|X = x).

To ease notation, let η(d, x) ≡ E[Y |D = d,X = x] for d ∈ {0, 1} be the conditional

mean treatment responses and p(x) ≡ P (D = 1|X = x) be the propensity score.

While I characterize the identified region of the welfare gain directly given as-

sumptions on the selections (Y1, Y0), Kasy (2016)’s analysis is based on the identified

set for CATE and their main results apply to any approach that leads to partial iden-

tification of treatment effects. The characterization I give above is related to their
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characterization when no restrictions across covariate values are imposed on treat-

ment effects (e.g., no restrictions such as ∆(x) is monotone in x) and ∆(x) and ∆̄(x)

are respectively lower and upper bound on the CATE ∆(x). As examples of such

bounds, Kasy (2016) considers bounds that arise under instrument exogeneity as in

Manski (2003) and under marginal stationarity of unobserved heterogeneity in panel

data models as in Chernozhukov, Fernández-Val, Hahn, and Newey (2013). I con-

sider bounds when there are instrumental variables that satisfy mean independence

or mean monotonicity conditions as in Manski (2003) in Section 1.3.4.

In the following subsection, Section 1.3.3, I illustrate the form of the random set

and show how Theorem 1.3.1 can be used to derive closed form bounds under different

sets of assumptions.

1.3.3 Identification without Instruments

D = 1

Y1

Y0

Y

y

ȳ

D = 0

Y1

Y0

Y

y ȳ

Figure 1·1: Random set (Y1 × Y0) under worst-case

Manski (1990) derived worst-case bounds on Y1 and Y0 when the outcome variable

is bounded, i.e., Y ∈ [y, ȳ] ⊂ R where −∞ < y ≤ ȳ < ∞. It is called worst-case

bounds because no additional assumptions are imposed on their distributions. Then,
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as shown in Figure 1·1, the random set (Y1 × Y0) is such that

Y1 × Y0 =


{Y } × [y, ȳ] if D = 1,

[y, ȳ]× {Y } if D = 0.

(1.12)

The random set in (1.12) switches its value between two sets depending on the

value of D. If D = 1, Y1 is given by a singleton {Y } whereas Y0 is given by the

entire support [y, ȳ]. Similarly, if D = 0, Y0 is given by a singleton {Y } whereas Y1

is given by the entire support [y, ȳ]. I plot Yd and its selection Yd for d ∈ {0, 1} as

a function of ω ∈ Ω in Figure 1·2. If D = d, the random set Yd is a singleton {Y }

and the family of selections consists of single random variable {Y } as well. On the

other hand, if D = 1− d, the random set Yd is an interval [y, ȳ] and the family of all

selections consists of all A-measurable random variables that has support on [y, ȳ].

Note that each selection (Y1, Y0) of (Y1×Y0) can be represented in the following way.

D = d

Ω

Y

Yd(ω)

Yd(ω)

D = 1− d

y

ȳ

Sd

Yd(ω)

Yd(ω)

Ω

Figure 1·2: Random set Yd and its selection Yd for d ∈ {0, 1} as a
function of ω ∈ Ω under worst-case

Take random variables S1 : Ω → R and S0 : Ω → R whose distributions conditional

on Y and D are not specified and can be any probability distributions on [y, ȳ]. Then
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(Y1, Y0) that satisfies the following is a selection of Y1 × Y0:

Y1 = Y ·D + S1 · (1−D),

Y0 = Y · (1−D) + S0 ·D.
(1.13)

This representation makes it even clearer how I am not imposing any structure on

the counterfactuals that I do not observe. S1 and S0 correspond to the selection

mechanisms that appear in Ponomareva and Tamer (2011) and Tamer (2010).

Now, for the random set in (1.12), I can calculate its expected support function

at directions v∗ = (1,−1) and −v∗ = (−1, 1) to obtain the bounds of the welfare gain

in closed form. As shown in Figure 1·3, the support function of random set (Y1×Y0)

in (1.12) at direction v∗ = (1,−1) is the (signed) distance (rescaled by the norm of

v∗) between the origin and the hyperplane tangent to the random set in direction

v∗ = (1,−1). Then, the bounds are given in the following Corollary to Theorem

1.3.1.

D = 1

Y1

Y0

v∗ = (1,−1)

Y

y

ȳ

D = 0

Y1

Y0

v∗ = (1,−1)

Y

y ȳ

Figure 1·3: Support function of (Y1 × Y0) at direction v∗ = (1,−1)
under worst-case

Corollary 1.3.1 (Worst-case). Let (Y1×Y0) be a random set in (1.12). Let δ : X →
{0, 1} and δ∗ : X → {0, 1} be treatment rules. Then, BI(δ, δ

∗) in (1.7) is an interval
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[βl, βu] where

βl = E
[(

(η(1, X)− ȳ) · p(X) + (y − η(0, X)) · (1− p(X))
)
· θ10(X)

−
(
(η(1, X)− y) · p(X) + (ȳ − η(0, X)) · (1− p(X))

)
· θ01(X)

]
,

(1.14)

and

βu = E
[(

(η(1, X)− y) · p(X) + (ȳ − η(0, X)) · (1− p(X))
)
· θ10(X)

−
(
(η(1, X)− ȳ) · p(X) + (y − η(0, X)) · (1− p(X))

)
· θ01(X)

]
.

(1.15)

Worst-case analysis is a great starting point as no additional assumptions are imposed

on the unobservables. However, the bounds could be too wide to be informative

in some cases. In fact, the worst-case bound cover 0 all the time as βl ≤ 0 and

βu ≥ 0. One could impose additional assumptions on the relationship between the

unobservables and obtain tighter bounds. Towards that end, I analyze the monotone

treatment response (MTR) assumption of Manski (1997).

Assumption 1.3.1 (MTR Assumption).

Y1 ≥ Y0 a.s. (1.16)

Assumption 1.3.1 states that everyone benefits from the treatment. Suppose As-

sumption 1.3.1 holds. Then, the random set is such that

Y1 × Y0 =


{Y } × [y, Y ] if D = 1,

[Y, ȳ]× {Y } if D = 0.

(1.17)

As shown in Figure 1·4, depending on the value of D, the random set in (1.17)

switches its value between two sets, that are smaller than those in (1.12). The bounds

of the welfare gain when the random set is given by (1.17) are given in the following

Corollary to Theorem 1.3.1. Notice that the lower bound on conditional average

treatment effect ∆(X) = −E[s(−v∗,Y1 × Y0)|X] equals 0 when the random set is
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D = 1

Y1

Y0

Y

y
Y

D = 0

Y1

Y0

Y

Y ȳ

Figure 1·4: Random set (Y1 × Y0) under MTR Assumption

given by (1.17). It is shown geometrically in Figure 1·5. The expected support

function of the random set in (1.17) at direction −v∗ = (−1, 1)′ is always 0 as the

hyperplane tangent to the random set at direction −v∗ = (−1, 1)′ goes through the

origin regardless of the value of D.

D = 1

Y1

Y0

Y

y
Y

−v∗ = (−1, 1)

D = 0

Y1

Y0

Y

Y ȳ

−v∗ = (−1, 1)

Figure 1·5: Support function of (Y1×Y0) at direction −v∗ = (−1, 1)′

under MTR Assumption

Corollary 1.3.2 (MTR). Suppose Assumption 1.3.1 holds. Let δ : X → {0, 1} and

δ∗ : X → {0, 1} be treatment rules. Then, BI(δ, δ
∗) in (1.7) is an interval [βl, βu]

where

βl = E
[
−
(
(η(1, X)− y) · p(X) + (ȳ − η(0, X)) · (1− p(X))

)
· θ01(X)

]
, (1.18)
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and

βu = E
[(

(η(1, X)− y) · p(X) + (ȳ − η(0, X)) · (1− p(X))
)
· θ10(X)

]
. (1.19)

1.3.4 Identification with Instruments

Availability of additional variables, called instrumental variables, could help us tighten

the bounds on CATE and hence the bounds on the welfare gain. In this subsection, I

consider two types of assumptions: (1) mean independence (IV Assumption) and (2)

mean monotonicity (MIV Assumption).

Mean independence

Assumption 1.3.2 (IV Assumption). There exists an instrumental variable Z ∈
Z ⊂ Rdz such that, for d ∈ {0, 1}, the following mean independence holds:

E[Yd|X,Z = z] = E[Yd|X,Z = z′], (1.20)

for each value of X and all z, z′ ∈ Z.

This assumption requires that there exists a conditionally exogeneous instrumental

variable Z for our treatment D. Specifically, the assumption means the following.

Each value of (X,Z) defines an observable subpopulation. Then, the assumption

says that, for each value of X, the mean value of each potential outcome is the same

across all of the subpopulations (X,Z = z), z ∈ Z.

When data are obtained from a randomized experiment with imperfect compli-

ance, the random assignment can be used as an instrumental variable to identify the

effect of the treatment. When Z ∈ {0, 1} is random offer, for each x ∈ X , we can

define subpopulations (x, 0), people who are described by x and are in the control

group, and (x, 1), people who are described by x and are in the treatment group.

Then, the assumption says that the mean value of each potential outcome is the same

in these two groups. This assumption is plausible since the offer is randomly assigned.
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Suppose Assumption 1.3.2 holds. Since I am imposing an additional restriction

on (Y1, Y0), the sharp identified region of the welfare gain is given by

BI(δ, δ
∗) ≡{β ∈ R : β = E

[
E[Y1 − Y0|X] · (δ(X)− δ∗(X))

]
, (Y1, Y0) ∈ S(Y1 × Y0),

(Y1, Y0) satisfies Assumption 1.3.2}. (1.21)

The following lemma corresponds to the Manski’s sharp bounds for CATE under

IV assumption. Manski (1990) explains it for the more general case of when there

are level-set restrictions on the outcome regression. To ease notation, let q(v, z) ≡

E[s(v,Y1×Y0)|X,Z = z] be the expected support function of the random set (Y1×Y0)

at direction v, conditional on (X,Z) when Z takes value z.

Lemma 1.3.2 (IV). Let (Y1×Y0) : Ω→ F be an integrable random set that is almost

surely convex and let (Y1, Y0) ∈ S(Y1×Y0). Let v1 = (1, 0)′ and v0 = (0, 1)′. Suppose

Assumption 1.3.2 holds. Then, we have

sup
z∈Z

{
− q(−v1, z)

}
− inf

z∈Z
q(v0, z)

≤ E[Y1 − Y0|X] ≤
inf
z∈Z

q(v1, z)− sup
z∈Z

{
− q(−v0, z)

}
a.s.

(1.22)

Bounds for CATE with instrumental variables involve expected support functions

at directions v1 = (1, 0) and v0 = (0, 1). The support function of the random set

(Y1 × Y0) at direction v1 = (1, 0) under worst-case is depicted in Figure 1·6.

Theorem 1.3.2 (IV). Suppose (Y1 × Y0) : Ω → F is an integrable random set that

is almost surely convex. Let δ : X → {0, 1} and δ∗ : X → {0, 1} be treatment rules.

Also, let v1 = (1, 0)′ and v0 = (0, 1)′. Then, BI(δ, δ
∗) in (1.21) is an interval [βl, βu]

where

βl = E
[
∆(X) · θ10(X)− ∆̄(X) · θ01(X)

]
, (1.23)

and

βu = E
[
∆̄(X) · θ10(X)−∆(X) · θ01(X)

]
, (1.24)

where ∆(X) ≡ supz∈Z{−q(−v1, z)} − infz∈Z q(v0, z) and ∆̄(X) ≡ infz∈Z q(v1, z) −
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D = 1

Y1

Y0

v1 = (1, 0) Y

y

ȳ

D = 0

Y1

Y0

v1 = (1, 0)

Y

y ȳ

Figure 1·6: Support function of (Y1 × Y0) at direction v1 = (1, 0)
under worst-case

supz∈Z{−q(−v0, z)
}

.

Identification of the welfare gain with instruments is similar to idenfication without

instruments. The difference lies in the forms of lower and upper bounds on the

CATE. Theorem 1.3.2 can be combined with different maintained assumptions on the

potential outcomes to result in different bounds. The following corollary shows the

IV bounds under worst-case assumption. To ease notation, let η(d, x, z) ≡ E[Y |D =

d,X = x, Z = z] for d ∈ {0, 1} denote the conditional mean treatment responses and

p(x, z) ≡ P (D = 1|X = x, Z = z) denote the propensity score.

Corollary 1.3.3 (IV-worst-case). Let (Y1 × Y0) be a random set in (1.12). Let

δ : X → {0, 1} and δ∗ : X → {0, 1} be treatment rules. Then, BI(δ, δ
∗) in (1.21) is
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an interval [βl, βu] where

βl = E
[(

sup
z∈Z

{
η(1, X, z) · p(X, z) + y · (1− p(X, z))

}
− inf

z∈Z

{
ȳ · p(X, z) + η(0, X, z) · (1− p(X, z))

})
· θ10(X)

−
(

inf
z∈Z

{
η(1, X, z) · p(X, z) + ȳ · (1− p(X, z))

}
− sup

z∈Z

{
y · p(X, z) + η(0, X, z) · (1− p(X, z))

})
· θ01(X)

]
,

(1.25)

and

βu = E
[(

inf
z∈Z

{
η(1, X, z) · p(X, z) + ȳ · (1− p(X, z))

}
− sup

z∈Z

{
y · p(X, z) + η(0, X, z) · (1− p(X, z))

})
· θ10(X)

−
(

sup
z∈Z

{
η(1, X, z) · p(X, z) + y · (1− p(X, z))

}
− inf

z∈Z

{
ȳ · p(X, z) + η(0, X, z) · (1− p(X, z))

})
· θ01(X)

]
.

(1.26)

Next, we derive the IV bounds under MTR assumption in the following corollary.

Corollary 1.3.4 (IV-MTR). Suppose Assumption 1.3.1 holds. Let δ : X → {0, 1}
and δ∗ : X → {0, 1} be treatment rules. Then, BI(δ, δ

∗) in (1.21) is an interval [βl, βu]

where

βl = E
[
−
(

inf
z∈Z

{
η(1, X, z) · p(X, z) + ȳ · (1− p(X, z))

}
− sup

z∈Z

{
y · p(X, z) + η(0, X, z) · (1− p(X, z))

})
· θ01(X)

]
,

(1.27)

and

βu = E
[(

inf
z∈Z

{
η(1, X, z) · p(X, z) + ȳ · (1− p(X, z))

}
− sup

z∈Z

{
y · p(X, z) + η(0, X, z) · (1− p(X, z))

})
· θ10(X)

]
.

(1.28)

Bounds obtained with instruments are functions of η(1, x, z), η(0, x, z) and p(x, z)

and involve taking intersections across values of Z. If Z is continuous, this would
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amount to infinitely many intersections. However, bounds can be simplified in some

empirically relevant cases such as the following.

Assumption 1.3.3 (Binary IV with monotonic first step). Suppose Z ∈ {0, 1} is a

binary instrumental variable that satisfies Assumption 1.3.2. Suppose further that for

all x ∈ X ,

p(x, 1) = P (D = 1|X = x, Z = 1) ≥ P (D = 1|X = x, Z = 0) = p(x, 0). (1.29)

When Z ∈ {0, 1} is random offer and D ∈ {0, 1} is program participation, this

means that someone who received an offer to participate in the program is more likely

to participate in the program than someone who didn’t receive an offer.

Lemma 1.3.3. Suppose Assumption 1.3.3 holds. Then,

1 = arg max
z∈{0,1}

{
η(1, X, z) · p(X, z) + y · (1− p(X, z))

}
, (1.30)

0 = arg min
z∈{0,1}

{
ȳ · p(X, z) + η(0, X, z) · (1− p(X, z))

}
, (1.31)

1 = arg min
z∈{0,1}

{
η(1, X, z) · p(X, z) + ȳ · (1− p(X, z))

}
, (1.32)

0 = arg max
z∈{0,1}

{
y · p(X, z) + η(0, X, z) · (1− p(X, z))

}
. (1.33)

Under Assumption 1.3.3, using Lemma 1.3.3, bounds in (1.25) and (1.26) are simpli-

fied as

βl = E
[(

(η(1, X, 1) · p(X, 1) + y · (1− p(X, 1))

− (ȳ · p(X, 0) + η(0, X, 0) · (1− p(X, 0)))
)
· θ10(X)

−
(
(η(1, X, 1) · p(X, 1) + ȳ · (1− p(X, 1)))

− (y · p(X, 0) + η(0, X, 0) · (1− p(X, 0)))
)
· θ01(X)

]
,

(1.34)
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and

βu = E
[(

(η(1, X, 1) · p(X, 1) + ȳ · (1− p(X, 1)))

− (y · p(X, 0) + η(0, X, 0) · (1− p(X, 0)))
)
· θ10(X)

−
(
(η(1, X, 1) · p(X, 1) + y · (1− p(X, 1)))

− (ȳ · p(X, 0) + η(0, X, 0) · (1− p(X, 0)))
)
· θ01(X)

]
.

(1.35)

Bounds in (1.27) and (1.28) can also be simplified similarly.

Mean monotonicity

Next, I consider monotone instrumental variable (MIV) assumption introduced by

Manski and Pepper (2000) which weakens Assumption 1.3.2 by replacing the equality

in (1.20) by an inequality. An instrumental variable which satisfies this assumption

could also help us obtain tighter bounds.

Assumption 1.3.4 (MIV Assumption). There exists an instrumental variable Z ∈
Z ⊂ Rdz such that, for d ∈ {0, 1}, the following mean monotonicity holds:

E[Yd|X,Z = z] ≥ E[Yd|X,Z = z′], (1.36)

for each value of X and all z, z′ ∈ Z such that z ≥ z′.

In the job training program example, the pre-program earnings can be used as a

monotone instrumental variable when the outcome variable is post-program earnings.

If we were to use the pre-program earnings as an instrumental variable that holds in

mean independent sense, then we would have to assume that people with different

prior earnings have the same mean post-program earnings. That might not be a

reasonable assumption to make. On the other hand, if we use the prior earnings as

a monotone instrumental variable, we assume that people with higher prior earnings

have weakly higher mean post-program earnings compared to those with lower prior

earnings. That is much more reasonable assumption to make in this context.
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Suppose Assumption 1.3.4 holds. Then, the sharp identified region of the welfare

gain is given by

BI(δ, δ
∗) ≡{β ∈ R : β = E

[
E[Y1 − Y0|X] · (δ(X)− δ∗(X))

]
, (Y1, Y0) ∈ S(Y1 × Y0),

(Y1, Y0) satisfies Assumption 1.3.4}. (1.37)

Similarly to the IV analysis, the following lemma illustrates the bounds for CATE

under MIV assumption.

Lemma 1.3.4 (MIV). Let (Y1 × Y0) : Ω → F be an integrable random set that is

almost surely convex and let (Y1, Y0) ∈ S(Y1 × Y0). Let v1 = (1, 0)′ and v0 = (0, 1)′.

Suppose Assumption 1.3.4 holds. Then, we have∑
z∈Z

P (Z = z) ·
(

sup
z1≤z
{−q(−v1, z1)} − inf

z2≥z
q(v0, z2)

)
≤ E[Y1 − Y0|X] ≤∑

z∈Z

P (Z = z) ·
(

inf
z2≥z

q(v1, z2)− sup
z1≤z
{−q(−v0, z1)}

)
a.s.

(1.38)

Recall that under IV assumption, the intersections are taken over all of values of

Z. On the other hand, as for MIV bounds, for each value of Z, the intersections are

taken for values above or below that value. The bounds involve integrating them over

values of Z. Note that when Z is not finite, the summation notation in (1.38) can be

replaced by a Lebesgue integral.

Theorem 1.3.3 (MIV). Suppose (Y1×Y0) : Ω→ F is an integrable random set that

is almost surely convex. Let δ : X → {0, 1} and δ∗ : X → {0, 1} be treatment rules.

Also, let v1 = (1, 0)′ and v0 = (0, 1)′. Then, BI(δ, δ
∗) in (1.37) is an interval [βl, βu]

where

βl = E
[
∆(X) · θ10(X)− ∆̄(X) · θ01(X)

]
, (1.39)

and

βu = E
[
∆̄(X) · θ10(X)−∆(X) · θ01(X)

]
, (1.40)
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where

∆(X) ≡
∑
z∈Z

P (Z = z) ·
(

sup
z1≤z
{−q(−v1, z1)} − inf

z2≥z
q(v0, z2)

)
,

and

∆̄(X) ≡
∑
z∈Z

P (Z = z) ·
(

inf
z2≥z

q(v1, z2)− sup
z1≤z

{
− q(−v0, z1)

})
.

This identification result under MIV assumption is similar to the identification

result under IV assumption. Again, the difference lies in the forms of lower and

upper bounds on the CATE. As before, Theorem 1.3.3 can be combined with different

maintained assumptions on the potential outcomes to result in different bounds. The

following corollary shows the MIV bounds under worst-case assumption.

Corollary 1.3.5 (MIV-worst-case). Let δ : X → {0, 1} and δ∗ : X → {0, 1} be

treatment rules. Then, BI(δ, δ
∗) in (1.37) is an interval [βl, βu] where

βl = E
[∑
z∈Z

P (Z = z) ·
(

sup
z1≤z

{
η(1, X, z1) · p(X, z1) + y · (1− p(X, z1))

}
− inf

z2≥z

{
ȳ · p(X, z2) + η(0, X, z2) · (1− p(X, z2))

})
· θ10(X)

−
∑
z∈Z

P (Z = z) ·
(

inf
z2≥z

{
η(1, X, z2) · p(X, z2) + ȳ · (1− p(X, z2))

}
− sup

z1≤z

{
y · p(X, z1) + η(0, X, z1) · (1− p(X, z1))

})
· θ01(X)

]
,

(1.41)

and

βu = E
[∑
z∈Z

P (Z = z) ·
(

inf
z2≥z

{
η(1, X, z2) · p(X, z2) + ȳ · (1− p(X, z2))

}
− sup

z1≤z

{
y · p(X, z1) + η(0, X, z1) · (1− p(X, z1))

})
· θ10(X)

−
∑
z∈Z

P (Z = z) ·
(

sup
z1≤z

{
η(1, X, z1) · p(X, z1) + y · (1− p(X, z1))

}
− inf

z2≥z

{
ȳ · p(X, z2) + η(0, X, z2) · (1− p(X, z2))

})
· θ01(X)

]
.

(1.42)

Next, we derive the MIV bounds under MTR assumption in the following corollary.
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Corollary 1.3.6 (MIV-MTR). Suppose Assumption 1.3.1 holds. Let δ : X → {0, 1}
and δ∗ : X → {0, 1} be treatment rules. Then, BI(δ, δ

∗) in (1.37) is an interval [βl, βu]

where

βl = E
[∑
z∈Z

P (Z = z) ·
(

sup
z1≤z

{
E[Y |X,Z = z1]

}
− inf

z2≥z

{
E[Y |X,Z = z2]

})
· θ10(X)

−
∑
z∈Z

P (Z = z) ·
(

inf
z2≥z

{
η(1, X, z2) · p(X, z2) + ȳ · (1− p(X, z2))

}
− sup

z1≤z

{
y · p(X, z1) + η(0, X, z1) · (1− p(X, z1))

})
· θ01(X)

]
,

(1.43)

and

βu = E
[∑
z∈Z

P (Z = z) ·
(

inf
z2≥z

{
η(1, X, z2) · p(X, z2) + ȳ · (1− p(X, z2))

}
− sup

z1≤z

{
y · p(X, z1) + η(0, X, z1) · (1− p(X, z1))

})
· θ10(X)

−
∑
z∈Z

P (Z = z) ·
(

sup
z1≤z

{
E[Y |X,Z = z1]

}
− inf

z2≥z

{
E[Y |X,Z = z2]

})
· θ01(X)

]
.

(1.44)

Notice that the MIV-MTR bounds involve E[Y |X = x, Z = z] other than η(d, x, z) =

E[Y |D = d,X = x, Z = z] and p(x, z) = P (D = 1|X = x, Z = z). For ease of expo-

sition, Table 1.1 summarizes the forms of lower and upper bounds on CATE under

different sets of assumptions.

1.4 Estimation and Inference

The bounds developed in Section 1.3 are functions of conditional mean treatment

responses η(1, x) and η(0, x), and propensity score p(x) in the absence of instruments.

The bounds with instruments are functions of conditional mean treatment responses

η(1, x, z) and η(0, x, z), and propensity score p(x, z). Let F be the joint distribution

of W = (Y,D,X,Z) and suppose we have a size n random sample {wi}ni=1 from W .
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Table 1.1: Lower and upper bounds on CATE

Assumptions ∆(X) ∆̄(X)

worst-case (η(1, X)− ȳ) · p(X) (η(1, X)− y) · p(X)
+(y − η(0, X)) · (1− p(X)) +(ȳ − η(0, X)) · (1− p(X))

MTR 0 same as worst-case

IV-worst-case supz∈Z
{
η(1, X, z) · p(X, z) infz∈Z

{
η(1, X, z) · p(X, z)

+y · (1− p(X, z))
}

+ȳ · (1− p(X, z))
}

− infz∈Z
{
ȳ · p(X, z) − supz∈Z

{
y · p(X, z)

+η(0, X, z) · (1− p(X, z))
})

+η(0, X, z) · (1− p(X, z))
})

IV-MTR 0 same as IV-worst-case

MIV-worst-case
∑

z∈Z P (Z = z) ·
(

supz1≤z

{
η(1, X, z1) · p(X, z1)

∑
z∈Z P (Z = z) ·

(
infz2≥z

{
η(1, X, z2) · p(X, z2)

+y · (1− p(X, z1))
}

+ȳ · (1− p(X, z2))
}

− infz2≥z

{
ȳ · p(X, z2) − supz1≤z

{
y · p(X, z1)

+η(0, X, z2) · (1− p(X, z2))
})

+η(0, X, z1) · (1− p(X, z1))
})

MIV-MTR
∑

z∈Z P (Z = z) ·
(

supz1≤z

{
E[Y |X,Z = z1]

}
same as MIV-worst-case

− infz2≥z

{
E[Y |X,Z = z2]

})
This table reports the form of ∆(X) and ∆̄(X) under different assumptions.

If the conditioning variables X and Z are discrete and take finitely many values,

conditional mean treatment responses and propensity scores can be estimated by the

corresponding empirical means. If there is a continuous component, conditional mean

treatment responses and propensity scores can be estimated using nonparametric

regression methods. I start with bounds that do not rely on instruments. Let η̂(1, x),

η̂(0, x), and p̂(x) be those estimated values. A natural sample analog estimator for

the lower bound under the worst-case in (1.14) can be constructed by first plugging

these estimated values into (1.14) and then by taking average over i as follows:

β̂l =
1

n

n∑
i=1

[(
(η̂(1, xi)− ȳ) · p̂(xi) + (y − η̂(0, xi)) · (1− p̂(xi))

)
· θ10(xi)

−
(
(η̂(1, xi)− y) · p̂(xi) + (ȳ − η̂(0, xi)) · (1− p̂(xi))

)
· θ01(xi)

]
.

(1.45)

In this estimation problem, η(1, x), η(0, x), and p(x) are nuisance parameters that

need to be estimated nonparametrically. In what follows, I collect these possibly
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infinite-dimensional nuisance parameters and denote it as follows:4

γ =
(
η(1, ·), η(0, ·), p(·)

)
. (1.46)

Estimation of these parameters can affect the sampling distribution of β̂l in a compli-

cated manner. To mitigate the effect of this first step nonparametric estimation, one

could use an orthogonalized moment condition, which I describe below, to estimate

βl.

Let β∗ denote either the lower bound or the upper bound, i.e., β∗ ∈ {βl, βu}. I

write my estimator as a generalized method of moments (GMM) estimator in which

the true value β∗,0 of β∗ satisfies a single moment restriction

E[m(wi, β∗,0, γ0)] = 0, (1.47)

where

m(w, βl, γ) = ∆(γ) · θ10(x)− ∆̄(γ) · θ01(x)− βl, (1.48)

and

m(w, βu, γ) = ∆̄(γ) · θ10(x)−∆(γ) · θ01(x)− βu. (1.49)

∆(γ) and ∆̄(γ) denote the lower and upper bound on CATE respectively and are

functions of the nuisance parameters γ.

We would like our moment function to have an orthogonality property so that the

estimation of parameter of interest would be first-order insensitive to nonparamet-

ric estimation errors in the nuisance parameter. This allows for the use of various

nonparametric estimators of these parameters including high-dimensional machine

learning estimators. I construct such moment function by adding influence function

adjustment term for first step estimation φ(w, β∗, γ) to the original moment function

4I use η(1, ·), η(0, ·), and p(·) instead of η(1, x), η(0, x), and p(x) to highlight the fact that they
are functions.
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m(w, β∗, γ) as in CEINR. Let the orthogonalized moment function be denoted by

ψ(w, β∗, γ) = m(w, β∗, γ) + φ(w, β∗, γ). (1.50)

Let Fτ = (1 − τ)F0 + τG for τ ∈ [0, 1], where F0 is the true distribution of W and

G is some alternative distribution. Then, we say that the moment condition satisfies

the Neyman orthogonality condition or is locally robust if

d

dτ
E[ψ(wi, β∗,0, γ(Fτ ))]

∣∣∣∣
τ=0

= 0. (1.51)

The orthogonality has been used in semiparametric problems by Newey (1990, 1994),

Andrews (1994), Robins and Rotnitzky (1995), among others. More recently, in

a high-dimensional setting, it has been used by Belloni, Chen, Chernozhukov, and

Hansen (2012), Belloni, Chernozhukov, and Hansen (2014), Farrell (2015), Belloni,

Chernozhukov, Fernández-Val, and Hansen (2017), Athey, Imbens, and Wager (2018),

and Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018),

among others. Recently, Sasaki and Ura (2018) proposed using orthogonalized mo-

ments for the estimation and inference of a parameter called policy relevant treatment

effect whose explanation can be found in Heckman and Vytlacil (2007). Much like our

problem, the estimation of the policy relevant treatment effect involves estimation of

multiple nuisance parameters.

1.4.1 Influence function calculation

In this subsection, I show how I derive the adjustment term φ(w, βl, γ) for the lower

bound under the worst-case assumption. This illustrates how I derive the adjustment

term for the cases in which ∆(γ) and ∆̄(γ) are differentiable with respect to γ, i.e.,

cases in which we do not have instrumental variables. Additional assumptions need

to be imposed for the cases where ∆(γ) and ∆̄(γ) are non-differentiable with respect
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to γ.

Under the worst-case assumption, the original moment function for lower bound

takes the following form:

m(w, βl, γ) =
(
(η(1, x)− ȳ) · p(x) + (y − η(0, x)) · (1− p(x))

)
· θ10(x)

−
(
(η(1, x)− y) · p(x) + (ȳ − η(0, x)) · (1− p(x))

)
· θ01(x)− βl.

(1.52)

Assumption 1.4.1. η(1, x), η(0, x), and p(x) are continuous at every x.

Lemma 1.4.1. If Assumption 1.4.1 is satisfied then the influence function of

E[m(w, βl,0, γ(F ))] is φ(w, βl,0, γ0) which is given by

φ(w, βl,0, γ0) = φ1 + φ2, (1.53)

where

φ1 = (θ10(x)− θ01(x)) · (η0(1, x) + η0(0, x)− (y + ȳ)) · (d− p0(x)),

φ2 = (θ10(x)− θ01(x)) · [y − η0(1, x)]d · [−(y − η0(0, x))]1−d.
(1.54)

Note that we have E[φ(w, βl,0, γ0)] = 0 so that the orthogonalized moment con-

dition ψ(w, βl, γ) still identifies our parameter of interest with E[ψ(w, βl,0, γ0)] = 0.

The adjustment term consists of two terms. While term φ1 represents the effect of

local perturbations of the distribution of D|X on the moment, term φ2 represents the

effect of local perturbations of the distribution of Y |D,X on the moment.

1.4.2 GMM estimator and its asymptotic variance

Following CEINR, I use cross-fitting, a version of sample splitting, in the construction

of sample moments. Cross-fitting works as follows. Let K > 1 be a number of folds.

Partitioning the set of observation indices {1, 2, ..., n} into K groups Ik, k = 1, ..., K,

let γ̂k be the first step estimates constructed from all observations not in Ik. Then,
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β̂∗ can be obtained as a solution to

1

n

K∑
k=1

∑
i∈Ik

ψ(wi, β̂∗, γ̂k) = 0. (1.55)

Following CEINR, I give the conditions under which the estimator is root-n asymp-

totically normal. ‖ · ‖ denotes a mean-square norm, also known as L2-norm in the

following.

Assumption 1.4.2. For each k = 1, ..., K,

(i)
∫
‖ψ(w, β∗,0, γ̂k)− ψ(w, β∗,0, γ0)‖2F0(dw)

p−→ 0,

(ii)‖
∫
ψ(w, β∗,0, γ̂k)F0(dw)‖ ≤ C‖γ̂k − γ0‖2 for C > 0,

(iii)‖γ̂k − γ0‖ = op(n
−1/4)

(iv) there is ζ > 0 and d(wi) with E[d(wi)
2] <∞ such that for ‖β∗−β∗,0‖ and ‖γ−γ0‖

small enough

‖ψ(wi, β∗, γ)− ψ(wi, β∗,0, γ0)‖ ≤ d(wi)(‖β∗ − β∗,0‖ζ + ‖γ − γ0‖ζ).

Assumption 1.4.2 (i) is a mean square consistency condition for γ̂k. It is a much

weaker condition compared to other stochastic equicontinuity results in the literature,

which generally involve boundedness of some derivatives of γ̂k. This is made possible

because of cross-fitting.

Assumption 1.4.2 (ii) holds if
∫
ψ(w, β∗,0, γ)F0(dw) is twice continuously Frechet

differentiable. Assumption 1.4.2 (iii) is the familiar condition from semiparametric

estimation literature which requires that γ̂k converges at n−1/4 rate.

Assumption 1.4.2 (iv) is needed to insure the consistency of a variance estimator

to be introduced below. This condition takes into account the presence of β̂∗ in

the variance estimator. Now, I state the formal asymptotic result in the following

theorem.

Theorem 1.4.1. Suppose that {wi}ni=1 are i.i.d., Assumption 1.4.2 (i), (ii), and (iii)
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are satisfied, β̂∗
p−→ β∗,0, and Ω∗ ≡ E[ψ(wi, β∗,0, γ0)2] <∞. Then

√
n(β̂∗ − β∗,0)

d−→ N (0,Ω∗). (1.56)

Moreover, if Assumption 1.4.2 (iv) is also satisfied, a consistent estimator for the

asymptotic variance can be constructed as

Ω̂∗ =
1

n

K∑
k=1

∑
i∈Ik

ψ(wi, β̂∗, γ̂k)
2. (1.57)

I show the forms of a locally robust estimator of the worst-case lower bound and

a consistent estimator of its asymptotic variance in the following corollary.

Corollary 1.4.1 (Locally robust estimator of the lower bound under the worst-case

and a consistent estimator of its asymptotic variance). A locally robust estimator β̂l

of the lower bound under the worst-case takes the form

β̂l =
1

n

K∑
k=1

∑
i∈Ik

[(
(η̂k(1, xi)− ȳ) · p̂k(xi)

+ (y − η̂k(0, xi)) · (1− p̂k(xi))
)
· θ10(xi)

−
(
(η̂k(1, xi)− y) · p̂k(xi)

+ (ȳ − η̂k(0, xi)) · (1− p̂k(xi))
)
· θ01(xi)

+ (θ10(xi)− θ01(xi)) · (η̂k(1, xi) + η̂k(0, xi)− (y + ȳ)) · (di − p̂k(xi))

+ (θ10(xi)− θ01(xi)) · [yi − η̂k(1, xi)]di · [−(yi − η̂k(0, xi))]1−di
]
.

(1.58)
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Moreover, a consistent estimator of its asymptotic variance takes the form

Ω̂l =
1

n

K∑
k=1

∑
i∈Ik

ψ(wi, β̂l, γ̂k)
2

=
1

n

K∑
k=1

∑
i∈Ik

[(
(η̂k(1, xi)− ȳ) · p̂k(xi)

+ (y − η̂k(0, xi)) · (1− p̂k(xi))
)
· θ10(xi)

−
(
(η̂k(1, xi)− y) · p̂k(xi)

+ (ȳ − η̂k(0, xi)) · (1− p̂k(xi))
)
· θ01(xi)− β̂l

+ (θ10(xi)− θ01(xi)) · (η̂k(1, xi) + η̂k(0, xi)− (y + ȳ)) · (di − p̂k(xi))

+ (θ10(xi)− θ01(xi)) · [yi − η̂k(1, xi)]di · [−(yi − η̂k(0, xi))]1−di
]2

.

(1.59)

Given locally robust estimators β̂l and β̂u of the lower and upper bound βl and βu,

and consistent estimators Ω̂l and Ω̂u of their asymptotic variance Ωl and Ωu, we can

construct the 100 · α% confidence interval for the lower bound βl and upper bound

βu as

CIβlα = [β̂l − Cα · (Ω̂l/n)1/2, β̂l + Cα · (Ω̂l/n)1/2], (1.60)

and

CIβuα = [β̂u − Cα · (Ω̂u/n)1/2, β̂u + Cα · (Ω̂u/n)1/2], (1.61)

where Cα satisfies

Φ(Cα)− Φ(−Cα) = α. (1.62)

In other words, Cα is the value that satisfies Φ(Cα) = (α + 1)/2, i.e, the (α + 1)/2

quantile of the standard normal distribution. For example, when α = 0.95, Cα is

1.96.
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1.4.3 Bounds with instruments

When there are additional instrumental variables, ∆(γ) and ∆̄(γ) in (1.48) and (1.49)

are non-differentiable with respect to γ as they involve sup and inf operators. How-

ever, under additional monotonicity assumption, the bounds can be simplified. In

this section, I derive the influence function for the IV-worst-case lower bound under

the monotonicity assumption. Under monotonicity, the moment condition for the

IV-worst-case lower bound is

m(w, βl, γ) =
(
η(1, x, 1) · p(x, 1) + y · (1− p(x, 1))

− ȳ · p(x, 0)− η(0, x, 0) · (1− p(x, 0))
)
· θ10(x)

−
(
η(1, x, 1) · p(x, 1) + ȳ · (1− p(x, 1))

− y · p(x, 0)− η(0, x, 0) · (1− p(x, 0))
)
· θ01(x)− βl.

(1.63)

Lemma 1.4.2. If Assumption 1.4.1 is satisfied then the influence function of

E[m(w, βl,0, γ(F ))] is φ(w, βl,0, γ0) which is given by

φ(w, βl,0, γ0) = φ1 + φ2, (1.64)

where

φ1 = [((η0(1, x, 1)− y) · θ10(x)− (η0(1, x, 1)− ȳ) · θ01(x)) · (d− p0(x, 1))]z

· [((η0(0, x, 0)− ȳ) · θ10(x)− (η0(0, x, 0)− y) · θ01(x)) · (d− p0(x, 0))]1−z

φ2 = (θ10(x)− θ01(x)) · (1{d = 1, z = 1} · (y − η0(1, x, 1))

+ 1{d = 0, z = 0} · (−(y − η0(0, x, 0))))·

(1.65)

Notice again that we have E[φ(w, βl,0, γ0)] = 0 so that the orthogonalized moment

condition ψ(w, βl, γ) still identifies our parameter of interest with E[ψ(w, βl,0, γ0)] = 0.

The adjustment term again consists of two terms. In this case, while term φ1 repre-

sents the effect of local perturbations of the distribution of D|X,Z on the moment,

term φ2 represents the effect of local perturbations of the distribution of Y |D,X,Z
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on the moment.

1.5 Monte Carlo Simulation

Mimicking the JTPA experiment studied in Kitagawa and Tetenov (2018), I consider

the following data generating process. Let X be a discrete random variable whose

probability mass function is given in Figure 1·7.

Figure 1·7: Probability mass function of X

Conditional on X = x, let

Z|X = x ∼ Bernoulli(2/3), (1.66)

U |X = x, Z = z ∼ Unif [0, 1] for z ∈ {0, 1}, (1.67)

D = 1{p(X,Z) ≥ U}, (1.68)

Y1|X = x, Z = z, U = u ∼ Lognormal
(
log

m2
1(x, u)√

σ2
1 +m2

1(x, u)
,

√
log(

σ2
1

m2
1(x, u)

+ 1)
)
,

(1.69)

Y0|X = x, Z = z, U = u ∼ Lognormal
(
log

m2
0(x, u)√

σ2
0 +m2

0(x, u)
,

√
log(

σ2
0

m2
0(x, u)

+ 1)
)
,

(1.70)
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where

p(x, z) =
1

1 + e−(−4.89+0.05·x+5·z) , (1.71)

m1(x, u) = E[Y1|X = x, Z = z, U = u] = 5591 + 1027 · x+ 2000 · u, (1.72)

m0(x, u) = E[Y0|X = x, Z = z, U = u] = −1127 + 1389 · x+ 1000 · u, (1.73)

σ2
1 = V ar[Y1|X = x, Z = z, U = u] = 110002, (1.74)

σ2
0 = V ar[Y0|X = x, Z = z, U = u] = 110002. (1.75)

X corresponds to years of education and takes values from 7 to 18. Z corresponds

to random offer and follows Bernoulli(2/3) to reflect the fact that probability of

being randomly assigned to the treatment group is 2/3 irrespective of applicants’

years of education. D corresponds to program participation and equals 1 whenever

p(x, z) exceeds the value of U which is uniformly distributed on [0, 1]. Y1 and Y0 are

potential outcomes and observed outcome Y = Y1 ·D + Y0 · (1 −D) corresponds to

30-month post-program earnings. For d ∈ {0, 1}, Yd conditional on X, Z, and U

follows a lognormal distribution whose mean is md(x, u) and variance is σ2
d. Under

this structure, we have

E[Yd|X,Z] = E[Yd|X] for d ∈ {0, 1}. (1.76)

Consider the following pair of policies:

δ∗(x) = 1{x ≤ 11} and δ(x) = 1{x ≤ 12}. (1.77)

Policy δ∗ corresponds to treating everyone who has less than or equal to 11 years

of education, and policy δ corresponds to treating everyone who has less than or

equal to 12 years of education. Then, the population welfare gain is 1,236. The

population worst-case bounds are (-31,191, 37,608) and IV-worst-case bounds are (-
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2,380, 21,227). I set y = 0 and ȳ = 160, 000 to calculate the bounds. More details on

the calculation of these population quantities can be found in Appendix 1.7.4.

I focus on worst-case lower bound and report coverage probabilities and average

lengths of 95% confidence intervals, for samples sizes n ∈ {100, 1000, 5000, 10000},

out of 1000 Monte Carlo replications in Table 1.2. I use empirical means in the

first step estimation of conditional mean treatment responses and propensity scores.

I construct the confidence intervals using original and debiased moment conditions

with and without cross-fitting.

Panel A shows the results without cross-fitting. Panel B shows the results with

cross-fitting when the number of fold is 2. There is not much difference between

these two cases and in both cases, confidence intervals constructed using original

moments are invalid, and as expected, show undercoverage. However, confidence

intervals obtained using debiased moment conditions show good coverage even with

small sample size. Lastly, in Panel C, I report the results when true values of nuisance

parameters are used to construct the confidence intervals. In that case, the coverage

probability is around 0.95 for both original and debiased moments, as expected. In all

cases, the average length of the confidence intervals is wider when debiased moments

are used.

1.6 Conclusion

In this chapter, I consider identification and inference of the welfare gain that results

from switching from one policy to another policy. Understanding how much the wel-

fare gain is under different assumptions on the unobservables allows policymakers to

make informed decisions about how to choose between alternative treatment assign-

ment policies. I use tools from theory of random sets to obtain the identified set of

this parameter. I then employ orthogonalized moment conditions for the estimation
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Table 1.2: Monte Carlo results

Original moment Debiased moment

Sample size Coverage Average length Coverage Average length

Panel A: without cross-fitting

100 0.80 13976 0.94 21316

1000 0.79 4454 0.95 6797

5000 0.78 1995 0.94 3045

10000 0.80 1412 0.96 2154

Panel B: with cross-fitting (K=2)

100 0.79 14180 0.94 21316

1000 0.78 4462 0.95 6797

5000 0.78 1996 0.94 3045

10000 0.80 1412 0.96 2154

Panel C: when true values of nuisance parameters are used

100 0.95 14008 0.94 21316

1000 0.94 4449 0.95 6797

5000 0.95 1991 0.94 3045

10000 0.95 1408 0.96 2154

Note: 95% confidence interval for worst-case lower bound. Number of Monte Carlo
replications is 1000.
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and inference of these bounds. I conduct Monte Carlo simulations to assess the finite

sample performance of the estimators.
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1.7 Appendix

1.7.1 Random Set Theory

In this appendix, I introduce some definitions and theorems from random set theory

that are used throughout the chapter. See Molchanov (2017) and Molchanov and

Molinari (2018) for more detailed treatment of random set theory. Let (Ω,A, P ) be

a complete probability space and F be the family of closed subsets of Rd.

Definition 1.7.1 (Random closed set). A map X : Ω→ F is called a random closed

set if, for every compact set K in Rd,

{ω ∈ Ω : X(ω) ∩K 6= ∅} ∈ A. (1.78)

Definition 1.7.2 (Selection). A random vector ξ with values in Rd is called a (mea-

surable) selection of X if ξ(ω) ∈ X(ω) for almost all ω ∈ Ω. The family of all

selections of X is denoted by S(X).

Definition 1.7.3 (Integrable selection). Let L1 = L1(Ω;Rd) denote the space of A-

measurable random vectors with values in Rd such that the L1-norm ‖ξ‖1 = E[‖ξ‖] is

finite. If X is a random closed set in Rd, then the family of all integrable selections

of X is given by

S1(X) = S(X) ∩ L1. (1.79)

Definition 1.7.4 (Integrable random sets). A random closed set X is called integrable

if S1(X) 6= ∅.

Definition 1.7.5 (Selection (or Aumann) expectation). The selection (or Aumann)

expectation of X is the closure of the set of all expectations of integrable selections,

i.e.

E[X] = cl{
∫
Ω

ξdP : ξ ∈ S1(X)}. (1.80)

Note that I use E[·] for the Aumann expectation and reserve E[·] for the expectation

of random variables and random vectors.

Definition 1.7.6 (Support function). Let K ⊂ Rd be a convex set. The support
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function of a set K is given by

s(v,K) = sup
x∈K
〈v, x〉, v ∈ Rd. (1.81)

Theorem 1.7.1 (Theorem 3.11 in Molchanov and Molinari (2018)). If an integrable

random set X is defined on a nonatomic probability space, or if X is almost surely

convex, then

E[s(v,X)] = s(v,E[X]), v ∈ Rd. (1.82)

1.7.2 Proofs and Useful Lemmas

Proof of Lemma 1.3.1

By the definition of selection expectation, we have E[(Y1, Y0)′|X] ∈ E[Y1 × Y0|X].

Then by the definition of support function and Theorem 1.7.1, for any v ∈ R2, we

have

v′E[(Y1, Y0)′|X] ≤ s(v,E[Y1 × Y0|X])

= E[s(v,Y1 × Y0)|X].
(1.83)

For any v ∈ R2, we can write

−v′E[(Y1, Y0)′|X] ≤ s(−v,E[Y1 × Y0|X])

= E[s(−v,Y1 × Y0)|X].
(1.84)

Thus, we also have

v′E[(Y1, Y0)′|X] ≥ −E[s(−v,Y1 × Y0)|X]. (1.85)

�
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Proof of Theorem 1.3.1

We write ∆(X) ≡ E[Y1 − Y0|X] = v∗′E[(Y1, Y0)′|X] for v∗ = (1,−1)′. By Lemma

1.3.1, we have

∆(X) = −E[s(−v∗,Y1 × Y0)|X] ≤ ∆(X) ≤ E[s(v∗,Y1 × Y0)|X] = ∆̄(X) a.s.

(1.86)

Since δ(X) − δ∗(X) can take values in {−1, 0, 1}, we consider two cases: (i) δ(X) −

δ∗(X) = 1 and (ii) δ(X)−δ∗(X) = −1. When (i) δ(X)−δ∗(X) = 1, the upper bound

on ∆(X)·(δ(X)−δ∗(X)) is ∆̄(X). When (ii) δ(X)−δ∗(X) = −1, the upper bound on

∆(X)·(δ(X)−δ∗(X)) is −∆(X). Hence, the upper bound on E[∆(X)·(δ(X)−δ∗(X))]

should be

βu = E[∆̄(X) · θ10(X)−∆(X) · θ01(X)]. (1.87)

Similarly, the lower bound on E[∆(X) · (δ(X)− δ∗(X))] should be

βl = E[∆(X) · θ10(X)− ∆̄(X) · θ01(X)]. (1.88)

�

Lemma 1.7.1. Suppose (Y1 × Y0) : Ω→ F is of the following form:

Y1 × Y0 =

{Y } × [YL,0, YU,0] if D = 1,

[YL,1, YU,1]× {Y } if D = 0,
(1.89)

where Y is a random variable and each of YL,0, YU,0, YL,1, and YU,1 can be a constant



41

or a random variable. Let v∗ = (1,−1)′, v1 = (1, 0)′, and v0 = (0, 1)′. Then, we have

E[s(v1,Y1 × Y0)|X] = E[Y |D = 1, X] · P (D = 1|X)

+ E[YU,1|D = 0, X] · P (D = 0|X),

−E[s(−v1,Y1 × Y0)|X] = E[Y |D = 1, X] · P (D = 1|X)

+ E[YL,1|D = 0, X] · P (D = 0|X),

E[s(v0,Y1 × Y0)|X] = E[YU,0|D = 1, X] · P (D = 1|X)

+ E[Y |D = 0, X] · P (D = 0|X),

−E[s(−v0,Y1 × Y0)|X] = E[YL,0|D = 1, X] · P (D = 1|X)

+ E[Y |D = 0, X] · P (D = 0|X),

E[s(v∗,Y1 × Y0)|X] = (E[Y |D = 1, X]− E[YL,0|D = 1, X]) · P (D = 1|X)

+ (E[YU,1|D = 0, X]− E[Y |D = 0, X]) · P (D = 0|X),

−E[s(−v∗,Y1 × Y0)|X] = (E[Y |D = 1, X]− E[YU,0|D = 1, X]) · P (D = 1|X)

+ (E[YL,1|D = 0, X]− E[Y |D = 0, X]) · P (D = 0|X).

Proof. We have

E[s(v1,Y1 × Y0)|X] = E[ sup
(y1,y0)∈Y1×Y0

y1|X]

= E[Y |D = 1, X] · P (D = 1|X)

+ E[YU,1|D = 0, X] · P (D = 0|X),

−E[s(−v1,Y1 × Y0)|X] = −E[ sup
(y1,y0)∈Y1×Y0

−y1|X]

= E[ inf
(y1,y0)∈Y1×Y0

y1|X]

= E[Y |D = 1, X] · P (D = 1|X)

+ E[YL,1|D = 0, X] · P (D = 0|X),
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E[s(v0,Y1 × Y0)|X] = E[ sup
(y1,y0)∈Y1×Y0

y0|X]

= E[YU,0|D = 1, X] · P (D = 1|X)

+ E[Y |D = 0, X] · P (D = 0|X),

−E[s(−v0,Y1 × Y0)|X] = −E[ sup
(y1,y0)∈Y1×Y0

−y0|X]

= E[ inf
(y1,y0)∈Y1×Y0

y0|X]

= E[YL,0|D = 1, X] · P (D = 1|X)

+ E[Y |D = 0, X] · P (D = 0|X),

E[s(v∗,Y1 × Y0)|X] = E[ sup
(y1,y0)∈Y1×Y0

y1 − y0|X]

= (E[Y |D = 1, X]− E[YL,0|D = 1, X]) · P (D = 1|X)

+ (E[YU,1|D = 0, X]− E[Y |D = 0, X]) · P (D = 0|X),

−E[s(−v∗,Y1 × Y0)|X] = −E[ sup
(y1,y0)∈Y1×Y0

−y1 + y0|X]

= E[ inf
(y1,y0)∈Y1×Y0

y1 − y0|X]

= (E[Y |D = 1, X]− E[YU,0|D = 1, X]) · P (D = 1|X)

+ (E[YL,1|D = 0, X]− E[Y |D = 0, X]) · P (D = 0|X).�

Proof of Corollary 1.3.1

By setting YL,1 = YL,0 = y and YU,1 = YU,0 = ȳ in Lemma 1.7.1, we have

E[s(v∗,Y1 × Y0)|X] = (η(1, X)− y) · p(X) + (ȳ − η(0, X)) · (1− p(X)), (1.90)

−E[s(−v∗,Y1 × Y0)|X] = (η(1, X)− ȳ) · p(X) + (y − η(0, X)) · (1− p(X)). (1.91)

Plugging these in, the result follows from Theorem 1.3.1. �
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Proof of Corollary 1.3.2

By setting YL,0 = y, YU,0 = YL,1 = Y , and YU,1 = ȳ in Lemma 1.7.1, we have

E[s(v∗,Y1 × Y0)|X] = (η(1, X)− y) · p(X) + (ȳ − η(0, X)) · (1− p(X)), (1.92)

−E[s(−v∗,Y1 × Y0)|X] = 0. (1.93)

Plugging these in, the result follows from Theorem 1.3.1. �

Proof of Lemma 1.3.2

By the definition of selection expectation, we have E[(Y1, Y0)′|X,Z] ∈ E[Y1×Y0|X,Z].

By arguments that appear in Lemma 1.3.1, for any v ∈ R2 and for all z ∈ Z, we have

− q(−v, z) ≤ v′E[(Y1, Y0)′|X,Z = z] ≤ q(v, z). (1.94)

Assumption 1.3.2 implies that

E[Yd|X,Z] = E[Yd|X], d ∈ {0, 1}. (1.95)

Hence, for all z ∈ Z, the following holds:

− q(−v, z) ≤ v′E[(Y1, Y0)′|X] ≤ q(v, z). (1.96)

By replacing v with v1 = (1, 0)′ and v0 = (0, 1)′, we obtain the following:

E[Y1|X] ≥ sup
z∈Z
{−q(−v1, z)}, (1.97)

E[Y1|X] ≤ inf
z∈Z

q(v1, z), (1.98)

E[Y0|X] ≥ sup
z∈Z
{−q(−v0, z)}, (1.99)

E[Y0|X] ≤ inf
z∈Z

q(v0, z). (1.100)
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Then, the upper bound in (1.22) can be obtained by subtracting the lower bound on

E[Y0|X] (1.99) from the upper bound on E[Y1|X] (1.98). Similarly, the lower bound

in (1.22) can be obtained by subtracting the upper bound on E[Y0|X] (1.100) from

the lower bound on E[Y1|X] (1.97). �

Proof of Theorem 1.3.2

Bounds on ∆(X) is derived in Lemma 1.3.2. The remaining part of the proof is the

same as that of Theorem 1.3.1. �

Proof of Corollary 1.3.3

The statements in Lemma 1.7.1 still hold when we condition on an additional variable

Z. Hence, by setting YL,1 = YL,0 = y and YU,1 = YU,0 = ȳ in Lemma 1.7.1, we have

q(v1, z) = η(1, X, z) · p(X, z) + ȳ · (1− p(X, z)), (1.101)

−q(−v1, z) = η(1, X, z) · p(X, z) + y · (1− p(X, z)), (1.102)

q(v0, z) = ȳ · p(X, z) + η(0, X, z) · (1− p(X, z)), (1.103)

−q(−v0, z) = y · p(X, z) + η(0, X, z) · (1− p(X, z)). (1.104)

for all z ∈ Z. Plugging these in, the result follows from Theorem 1.3.2. �

Proof of Corollary 1.3.4

The statements in Lemma 1.7.1 still hold when we condition on an additional variable

Z. Hence, by setting YL,0 = y, YU,0 = YL,1 = Y , and YU,1 = ȳ in Lemma 1.7.1, we
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have

q(v1, z) = η(1, X, z) · p(X, z) + ȳ · (1− p(X, z)), (1.105)

−q(−v1, z) = E[Y |X,Z = z], (1.106)

q(v0, z) = E[Y |X,Z = z], (1.107)

−q(−v0, z) = y · p(X, z) + η(0, X, z) · (1− p(X, z)), (1.108)

for all z ∈ Z. Plugging these in, the result follows from Theorem 1.3.2. �

Proof of Lemma 1.3.4

By the definition of selection expectation, we have E[(Y1, Y0)′|X,Z] ∈ E[Y1×Y0|X,Z].

By arguments that appear in Lemma 1.3.1, for any v ∈ R2
+ and for all z ∈ Z, we have

−q(−v, z) ≤ v′E[(Y1, Y0)′|X,Z = z] ≤ q(v, z). (1.109)

By Assumption 1.3.4, the following holds for all z ∈ Z:

sup
z1≤z
{−q(−v, z1)} ≤ v′E[(Y1, Y0)′|X,Z = z] ≤ inf

z2≥z
q(v, z2). (1.110)

By replacing v with v1 = (1, 0)′ and v0 = (0, 1)′ and integrating everything with

respect to Z, we obtain the following:

E[Y1|X] ≥
∑
z∈Z

P (Z = z) ·
(

sup
z1≤z
{−q(−v1, z1)}

)
, (1.111)

E[Y1|X] ≤
∑
z∈Z

P (Z = z) ·
(

inf
z2≥z

q(v1, z2)
)
, (1.112)

E[Y0|X] ≥
∑
z∈Z

P (Z = z) ·
(

sup
z1≤z
{−q(−v0, z1)}

)
, (1.113)

E[Y0|X] ≤
∑
z∈Z

P (Z = z) ·
(

inf
z2≥z

q(v0, z2)
)
. (1.114)
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Then, the upper bound in (1.38) can be obtained by subtracting the lower bound

on E[Y0|X] (1.113) from the upper bound on E[Y1|X] (1.112). Similarly, the lower

bound in (1.38) can be obtained by subtracting the upper bound on E[Y0|X] (1.114)

from the lower bound on E[Y1|X] (1.111). �

Proof of Theorem 1.3.3

Bounds on ∆(X) is derived in Lemma 1.3.4. The remaining part of the proof is the

same as that of Theorem 1.3.1. �

Proof of Corollary 1.3.5

The statements in Lemma 1.7.1 still hold when we condition on an additional variable

Z. Hence, by setting YL,1 = YL,0 = y and YU,1 = YU,0 = ȳ in Lemma 1.7.1, for all

z ∈ Z, we have

q(v1, z) = η(1, X, z) · p(X, z) + ȳ · (1− p(X, z)), (1.115)

−q(−v1, z) = η(1, X, z) · p(X, z) + y · (1− p(X, z)), (1.116)

q(v0, z) = ȳ · p(X, z) + η(0, X, z) · (1− p(X, z)), (1.117)

−q(−v0, z) = y · p(X, z) + η(0, X, z) · (1− p(X, z)). (1.118)

Plugging these in, the result follows from Theorem 1.3.3. �

Proof of Corollary 1.3.6

The statements in Lemma 1.7.1 still hold when we condition on an additional variable

Z. Hence, by setting YL,0 = y, YU,0 = YL,1 = Y , and YU,1 = ȳ in Lemma 1.7.1, for all
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z ∈ Z, we also have

q(v1, z) = η(1, X, z) · p(X, z) + ȳ · (1− p(X, z)), (1.119)

−q(−v1, z) = E[Y |X,Z = z], (1.120)

q(v0, z) = E[Y |X,Z = z], (1.121)

−q(−v0, z) = y · p(X, z) + η(0, X, z) · (1− p(X, z)), (1.122)

Plugging these in, the result follows from Theorem 1.3.3. �

Proof of Lemma 1.4.1

For 0 ≤ τ ≤ 1, let

Fτ = (1− τ)F0 + τGj
w, (1.123)

where F0 is the true distribution of F and Gj
w is a family of distributions approaching

the CDF of a constant w as j →∞. Let F0 be absolutely continuous with pdf f0(w) =

f0(y, d, x). Let the marginal, conditional, and joint distributions and densities under

F0 be denoted by F0(x), F0(d|x), F0(y|d, x), F0(d, x) and f0(x), f0(d|x), f0(y|d, x), f0(d, x),

etc. and the expectations under F0 be denoted by E0. As in Ichimura and Newey

(2017), let

Gj
w(w̃) = E[1{wi ≤ w̃}ϕ(wi)], (1.124)

where ϕ(wi) is a bounded function with E[ϕ(wi)] = 1. This Gj
w(w̃) will approach the

cdf of the constant w̃ as ϕ(w)f0(w) approaches a spike at w̃. For small enough τ , Fτ

will be a cdf with pdf fτ that is given by

fτ (w̃) = f0(w̃)[1− τ + τϕ(w)] = f0(w̃)(1 + τS(w)), S(w) = ϕ(w)− 1. (1.125)
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Let the marginal, conditional, and joint distributions and densities under Fτ be simi-

larly denoted by Fτ (x), Fτ (d|x), Fτ (y|d, x), Fτ (d, x) and fτ (x), fτ (d|x), fτ (y|d, x), fτ (d, x),

etc. and the expectations under Fτ be denoted by Eτ . By Ichimura and Newey

(2017)’s Lemma A1, we have

d

dτ
Eτ [Y |D = d,X = x] = E0[{Y − E0[Y |D = d,X = x]}ϕ(W )|D = d,X = x]

(1.126)

and

d

dτ
Eτ [1{D = d}|X = x] = E0[{1{D = d} − E0[1{D = d}|X = x]}ϕ(W )|X = x].

(1.127)

The influence function can be calculated as

φ(w, β, γ) = lim
j→∞

[ d
dτ
Eτ [m(wi, β, γ(Fτ ))]

∣∣∣∣
τ=0

]
. (1.128)

We first denote the conditional mean treatment response and the propensity score

under Fτ by

ητ (d, x) ≡
∫
ydFτ (y|d, x), (1.129)

and

pτ (x) ≡
∫

1{d = 1}dFτ (d|x). (1.130)
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Then, by the chain rule, we have

d

dτ
Eτ [m(wi, β, γ(Fτ ))]

=
d

dτ
Eτ [m(wi, β, γ(F0))] +

d

dτ
E0[m(wi, β, γ(Fτ ))]

=
d

dτ

[∫ (
((η0(1, x)− ȳ)p0(x) + (y − η0(0, x))(1− p0(x)))θ10(x)

− ((η0(1, x)− y)p0(x) + (ȳ − η0(0, x))(1− p0(x)))θ01(x))− β
)
dFτ (x)

]

+
d

dτ

[∫ (
((η0(1, x)− ȳ)pτ (x) + (y − η0(0, x))(1− pτ (x)))θ10(x)

− ((η0(1, x)− y)pτ (x) + (ȳ − η0(0, x))(1− pτ (x)))θ01(x))− β
)
dF0(x)

]

+
d

dτ

[∫ (
((ητ (1, x)− ȳ)p0(x) + (y − ητ (0, x))(1− p0(x)))θ10(x)

− ((ητ (1, x)− y)p0(x) + (ȳ − ητ (0, x))(1− p0(x)))θ01(x))− β
)
dF0(x)

]
.

First, we have

d

dτ
Eτ [m(wi, β, γ(F0))]

=

∫ (
(η0(1, x)− ȳ)p0(x) + (y − η0(0, x))(1− p0(x)))θ10(x)

− ((η0(1, x)− y)p0(x) + (ȳ − η0(0, x))(1− p0(x)))θ01(x)
)
dG(x)− β.
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Next, we want to find d
dτ
E0[m(wi, β, γ(Fτ ))]. In order to do that, first note that we

have

d

dτ

∫
θ(x)ητ (d, x)f0(d|x)f0(x)dx

=

∫
θ(x)

d

dτ

[
ητ (d, x)

]
f0(d|x)f0(x)dx

=

∫
θ(x)E0[{Y − η0(d, x)}ϕ(W )|D = d,X = x]f0(d|x)f0(x)dx

=

∫
θ(x)[

∫
{y − η0(d, x)} g(y, d, x)

f0(y, d, x)
f0(y|d, x)dy]f0(d|x)f0(x)dx

=

∫
θ(x)[

∫
{y − η0(d, x)} g(y, d, x)

f0(y, d, x)

f0(y, d, x)

f0(d, x)
dy]

f0(d, x)

f0(x)
f0(x)dx

=

∫
θ(x)[

∫
{y − η0(d, x)}g(y, d, x)dy]dx

=

∫
θ(x){y − η0(d, x)}g(y, d, x)dydx.

The second equality follows from equation (1.126). The third equality follows from

choosing ϕ(w) to be a ratio of a sharply peaked pdf to the true density:

ϕ(w̃) =
g(w̃)1(f0(w̃) ≥ 1/j)

f0(w̃)
, (1.131)

where as in Ichimura and Newey (2017), g(w) is specified as follows. Letting K(u)

be a pdf that is symmertic around zero, has bounded support, and is continuously

differentiable of all orders with bounded derivatives, we let

g(w̃) =
r∏
l=1

κjl (w̃l), κ
j
l (w̃l) =

jK((wl − w̃l)j)
j
∫
K((wl − w̃l)j)dµl(w̃l)

. (1.132)
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Hence, we obtain

d

dτ

[∫ (
((ητ (1, x)− ȳ)p0(x) + (y − ητ (0, x))(1− p0(x)))θ10(x)

− ((ητ (1, x)− y)p0(x) + (ȳ − ητ (0, x))(1− p0(x)))θ01(x))− β
)
dF0(x)

]
=

∫
(θ10(x)− θ01(x)){y − η0(1, x)}g(y, 1, x)dydx

−
∫

(θ10(x)− θ01(x)){y − η0(0, x)}g(y, 0, x)dydx.

With the similar argument, but using equation (1.127), we also have

d

dτ

∫
θ(x)pτ (x)f0(x)dx

=

∫
θ(x)

d

dτ

[
pτ (x)

]
f0(x)dx

=

∫
θ(x)E0[{1{D = 1} − p0(x)}ϕ(W )|X = x]f0(x)dx

=

∫
θ(x)

[ ∫
{1{d = 1} − p0(x)} g(y, d, x)

f0(y, d, x)
f0(y, d|x)dydd

]
f0(x)dx

=

∫
θ(x)

[ ∫
{1{d = 1} − p0(x)} g(y, d, x)

f0(y, d, x)

f0(y, d, x)

f0(x)
dydd

]
f0(x)dx

=

∫
θ(x){1{d = 1} − p0(x)}g(y, d, x)dydddx.

Hence,

d

dτ

[∫ (
((η0(1, x)− ȳ)pτ (x) + (y − η0(0, x))(1− pτ (x)))θ10(x)

− ((η0(1, x)− y)pτ (x) + (ȳ − η0(0, x))(1− pτ (x)))θ01(x))− β
)
dF0(x)

]
=

∫
(θ10(x)− θ01(x))(η0(1, x) + η0(0, x)− (y + ȳ)){1{d = 1} − p0(x)}g(y, d, x)dydddx
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Therefore, as j →∞, since η(1, x), η(0, x), and p(x) are continuous at x, we obtain

φ(w, β, γ) =
(

(η0(1, x)− ȳ)p0(x) + (y − η0(0, x))(1− p0(x)))θ10(x)

− ((η0(1, x)− y)p0(x) + (ȳ − η0(0, x))(1− p0(x)))θ01(x)
)
− β

+ (θ10(x)− θ01(x))(η0(1, x) + η0(0, x)− (y + ȳ)){1{d = 1} − p0(x)}

+ (θ10(x)− θ01(x)){y − η0(1, x)}d{−(y − η0(0, x))}1−d. �

Proof of Theorem 1.4.1

Let

ψ̂(βl) =
1

n

L∑
k=1

∑
i∈Ik

ψ(wi, βl, γ̂k). (1.133)

First we show that

√
nψ̂(β0) =

1√
n

n∑
i=1

ψ(wi, β0, γ0) + op(1) (1.134)

holds. Under Assumption 1.4.2 (i), (ii), and (iii), the result follows. Following

CEINR, we provide a sketch of the argument. Let

∆̂ik ≡ ψ(wi, β0, γ̂k)− ψ̄(γ̂k)− ψ(wi, β0, γ0), (1.135)

and

∆̄k ≡
1

n

∑
i∈Ik

∆̄ik. (1.136)

Let nk be the number of observations with i ∈ Ik and Wk denote a vector of all

observations wi for i /∈ Ik. Note that for any i, j ∈ Ik, i 6= j, we have E[∆̂ik∆̂jk|Wk] =

E[∆̂ik|Wk]E[∆̂jk|Wk] = 0 since by construction E[∆̂ik|Wk] = 0. By Assumption 1.4.2
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(i),

E[∆̄2
k|Wk] =

1

n2

∑
i∈Ik

E[∆̂2
ik|Wk] ≤

nk
n2

∫
{ψ(w, β0, γ̂k)−ψ(w, β0, γ0)}2F0(dw) = op(nk/n

2).

(1.137)

This implies that, for each k, we have ∆̄k = op(
√
nk/n). Then it follows that

√
n
[
ψ̂(β0)− 1

n

n∑
i=1

ψ(wi, β0, γ0)− 1

n

L∑
k=1

nkψ̄(γ̂k)
]

=
√
n

L∑
k=1

∆̄k = op(
√
nk/n)

p−→ 0.

(1.138)

By Assumption 1.4.2 (ii) and (iii), we have

√
n|ψ̄(γ̂k)| ≤

√
nC‖γ̂k − γ0‖2 p−→ 0. (1.139)

Then (1.134) follows by the triangle inequality. Since (1.134) holds and {wi}ni=1 are

i.i.d., by central limit theorem

√
nψ̂(β0)

d−→ N(0,Ω), (1.140)

where Ω = E[ψ(wi, β0, γ0)2]. The rest of the proof is standard as in Newey and

McFadden (1994) and we provide a sketch of the argument. LetM = E[∂ψ(w,β,γ0)
∂β

|β=β0 ]

and M̂ = ∂ψ̂(β̂)
∂β

. The first order condition is

0 = M̂ψ̂(β̂). (1.141)

We expand ψ̂(β̂) around β0 to obtain

ψ̂(β̂) = ψ̂(β0) + M̄(β̂ − β0), (1.142)

where M̄ = ∂ψ̂(βu)
∂β

and β̄ is the mean value. Substituting this back into the first order

condition, we get

0 = M̂ψ̂(β0) + M̂M̄(β̂ − β0). (1.143)
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Solving this for β̂ − β0 and multiplying by
√
n, we obtain

√
n(β̂ − β0) = −(M̂M̄)−1M̂

√
nψ̂(β0). (1.144)

We also have M̂
p−→M and M̄

p−→M and by the continuous mapping theorem,

− (M̂M̄)−1M̂
p−→ −M−1. (1.145)

Then, by the Slutzky theorem,

√
n(β̂ − β0)

d−→ −M−1N(0,Ω) = N(0,M−2Ω). (1.146)

In our case, M = E[∂ψ(w,β,γ0)
∂β

|β=β0 ] = 1 and so the asymptotic variance is Ω. Finally,

CEINR showed that Assumption 1.4.2 (iii) insures that V̂
p−→ V . �
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Proof of Lemma 1.4.2

The proof is similar to that of Lemma 1.4.1. Since we have an additional variable

Z ∈ {0, 1}, we make slight adjustments. By the chain rule, we have

d

dτ
Eτ [m(wi, β, γ(Fτ ))]

=
d

dτ
Eτ [m(wi, β, γ(F0))] +

d

dτ
E0[m(wi, β, γ(Fτ ))]

=
d

dτ

[∫ ((
η0(1, x, 1) · p0(x, 1) + y · (1− p0(x, 1))

− ȳ · p0(x, 0)− η0(0, x, 0) · (1− p0(x, 0))
)
· θ10(x)

−
(
η0(1, x, 1) · p0(x, 1) + ȳ · (1− p0(x, 1))

− y · p0(x, 0)− η0(0, x, 0) · (1− p0(x, 0))
)
· θ01(x)− β

)
dFτ (x)

]

+
d

dτ

[∫ ((
η0(1, x, 1) · pτ (x, 1) + y · (1− pτ (x, 1))

− ȳ · pτ (x, 0)− η0(0, x, 0) · (1− pτ (x, 0))
)
· θ10(x)

−
(
η0(1, x, 1) · pτ (x, 1) + ȳ · (1− pτ (x, 1))

− y · pτ (x, 0)− η0(0, x, 0) · (1− pτ (x, 0))
)
· θ01(x)− β

)
dF0(x)

]

+
d

dτ

[∫ ((
ητ (1, x, 1) · p0(x, 1) + y · (1− p0(x, 1))

− ȳ · p0(x, 0)− ητ (0, x, 0) · (1− p0(x, 0))
)
· θ10(x)

−
(
ητ (1, x, 1) · p0(x, 1) + ȳ · (1− p0(x, 1))

− y · p0(x, 0)− ητ (0, x, 0) · (1− p0(x, 0))
)
· θ01(x)− β

)
dF0(x)

]
.

By the arguments in the proof of Lemma 1.4.1, we have

d

dτ

∫
θ(x)ητ (d, x, z)f0(x)dx =

∫
θ(x){y − η0(d, x, z)}g(y, d, x)dydx. (1.147)
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and

d

dτ

∫
θ(x)pτ (x, z)f0(x)dx =

∫
θ(x){1{d = 1} − p0(x, z)}g(y, d, x)dydddx. (1.148)

Hence, we obtain

d

dτ

[∫ ((
η0(1, x, 1) · pτ (x, 1) + y · (1− pτ (x, 1))

− ȳ · pτ (x, 0)− η0(0, x, 0) · (1− pτ (x, 0))
)
· θ10(x)

−
(
η0(1, x, 1) · pτ (x, 1) + ȳ · (1− pτ (x, 1))

− y · pτ (x, 0)− η0(0, x, 0) · (1− pτ (x, 0))
)
· θ01(x)− β

)
dF0(x)

]
=

∫
((η0(1, x, 1)− y) · θ10(x)

− (η0(1, x, 1)− ȳ) · θ01(x)) · (d− p0(x, 1))

+ ((η0(0, x, 0)− ȳ) · θ10(x)

− (η0(0, x, 0)− y) · θ01(x)) · (d− p0(x, 0))g(y, d, z, x)dydddzdx

Also,

d

dτ

[∫ ((
ητ (1, x, 1) · p0(x, 1) + y · (1− p0(x, 1))

− ȳ · p0(x, 0)− ητ (0, x, 0) · (1− p0(x, 0))
)
· θ10(x)

−
(
ητ (1, x, 1) · p0(x, 1) + ȳ · (1− p0(x, 1))

− y · p0(x, 0)− ητ (0, x, 0) · (1− p0(x, 0))
)
· θ01(x)− β

)
dF0(x)

]
=

∫
(θ10(x)− θ01(x)) · p0(x, 1) · (y − η0(1, x, 1))g(y, d, z, x)dydddzdx

−
∫

(θ10(x)− θ01(x)) · (1− p0(x, 0)) · (y − η0(0, x, 0))g(y, d, z, x)dydddzdx

�
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1.7.3 More General Case

I show how my result can be extended to a more general setting. Let δ : X → [0, 1] so

that the treatment rules can be randomized treatment rules. Also, let w : X → R+

be some weighting function so that the policymaker cares about the weighted average

welfare E[w(X) ·(E[Y1|X] ·δ(X)+E[Y0|X] ·(1−δ(X)))] rather than the mean welfare.

Then, by letting ψ(X) ≡ w(X) · (δ(X)− δ∗(X)), my object of interest becomes

E[∆(X) · w(X) · (δ(X)− δ∗(X))] = E[∆(X) · ψ(X)]. (1.149)

I derive the identification of this parameter in the following theorem.

Theorem 1.7.2 (More general case). Suppose (Y1 × Y0) : Ω → F is an integrable

random set. Let δ : X → [0, 1] and δ∗ : X → [0, 1] be treatment rules and w : X → R+

be a weighting function. Also, let ψ(X) ≡ w(X) · (δ(X) − δ∗(X)) and p = (1,−1)′.

Then, BI(δ, δ
∗) in (1.7) is an interval [βl, βu] where

βl = E[∆(X) · |ψ(X)| · 1{ψ(X) ≥ 0} − ∆̄(X) · |ψ(X)| · 1{ψ(X) < 0}], (1.150)

and

βu = E[∆̄(X) · |ψ(X)| · 1{ψ(X) ≥ 0} −∆(X) · |ψ(X)| · 1{ψ(X) < 0}], (1.151)

where ∆̄(X) ≡ E[s(v∗,Y1 × Y0)|X] and ∆(X) ≡ −E[s(−v∗,Y1 × Y0)|X].

Proof. The proof is similar to that of Theorem 1.3.1. I still have (1.86) to bound

∆(X). Since ψ(X) ∈ R, I consider two cases: (i) ψ(X) ≥ 0 and (ii) ψ(X) < 0.

When (i) ψ(X) ≥ 0, the upper bound on ∆(X) · ψ(X) is ∆̄(X) · |ψ(X)|. When (ii)

ψ(X) < 0, the upper bound on ∆(X) · ψ(X) is −∆(X) · |ψ(X)|. Hence, the lower

bound should be

βl = E[∆(X) · |ψ(X)| · 1{ψ(X) ≥ 0} − ∆̄(X) · |ψ(X)| · 1{ψ(X) < 0}]. (1.152)
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Similarly, the upper bound on E[∆(X) · ψ(X)] should be

βu = E[∆̄(X) · |ψ(X)| · 1{ψ(X) ≥ 0} −∆(X) · |ψ(X)| · 1{ψ(X) < 0}]. (1.153)

�

1.7.4 More Details on the Simulation Study

The population welfare gain that results from switching from δ∗(x) = 1{x ≤ 11} to

δ(x) = 1{x ≤ 12} is

β = E
[
E[Y1 − Y0|X] · (δ(X)− δ∗(X))

]
= P (X = 12) · E[Y1 − Y0|X = 12]

= 0.43 ·
1∫

0

{m1(12, u)−m0(12, u)}du

= 1236.

(1.154)

The integration is done using integrate() function on R. Given the structure in Section

1.5, we have

E[Y |D = 0, X, Z] = E[Y0|U > p(X,Z), X, Z]

=
1

1− p(X,Z)

1∫
p(X,Z)

m0(X, u)du,
(1.155)

E[Y |D = 1, X, Z] = E[Y1|U ≤ p(X,Z), X, Z]

=
1

p(X,Z)

p(X,Z)∫
0

m1(X, u)du,
(1.156)

P (D = 1|X) = 2/3 · p(X, 1) + 1/3 · p(X, 0), (1.157)
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P (Z = 1|D = 0, X) =
P (D = 0|Z = 1, X)P (Z = 1|X)

P (D = 0|X)

=
2/3 · (1− p(X, 1))

1− 2/3 · p(X, 1)− 1/3 · p(X, 0)
,

(1.158)

P (Z = 0|D = 0, X) =
1/3 · (1− p(X, 0))

1− 2/3 · p(X, 1)− 1/3 · p(X, 0)
, (1.159)

P (Z = 1|D = 1, X) =
P (D = 1|Z = 1, X)P (Z = 1|X)

P (D = 1|X)

=
2/3 · p(X, 1)

2/3 · p(X, 1) + 1/3 · p(X, 0)
,

(1.160)

P (Z = 0|D = 1, X) =
1/3 · p(X, 0)

2/3 · p(X, 1) + 1/3 · p(X, 0)
, (1.161)

E[Y |D = 0, X] = E[Y |D = 0, X, Z = 1] · P (Z = 1|D = 0, X)

+ E[Y |D = 0, X, Z = 0] · P (Z = 0|D = 0, X),
(1.162)

E[Y |D = 1, X] = E[Y |D = 1, X, Z = 1] · P (Z = 1|D = 1, X)

+ E[Y |D = 1, X, Z = 0] · P (Z = 0|D = 1, X).
(1.163)

Given these quantities, worst-case and IV-worst-case bounds can be calculated simi-

larly.
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Chapter 2

Two Applications of Treatment

Assignment Rules

2.1 Introduction

In this chapter, I apply the method I proposed in the previous chapter to examine two

applications in economics. First, I study the problem of assigning individuals to job

training programs. I calculate the welfare differences between different hypothetical

policies using experimental data from the National Job Training Partnership Act

(JTPA) Study. Second, I apply the method to study public health insurance policies.

Specifically, I calculate the welfare impact of Medicaid expansion using data from the

Oregon Health Insurance Experiment.

2.2 National Job Training Partnership Act Study

In this section, I use experimental data from the National JTPA Study which was

commissioned by the United States Department of Labor in 1986. The goal of this

randomized experiment was to measure the benefits and costs of training programs

funded under the JTPA of 1982. Applicants who were randomly assigned to a treat-

ment group were allowed access to the program for 18 months while the ones assigned

to a control group were excluded from receiving JTPA services in that period. The

original evaluation of the program is based on data of 15,981 applicants. More de-

tailed information about the experiment and program impact estimates can be found
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in Bloom, Orr, Bell, Cave, Doolittle, Lin, and Bos (1997).

2.2.1 Data

I follow Kitagawa and Tetenov (2018) and focus on adult applicants with available

data on 30-month earnings after the random assignment, years of education, and

pre-program earnings. I downloaded the dataset that Kitagawa and Tetenov (2018)

used in their analysis from Econometrica’s supplementary material repository and

supplemented this dataset with that of Abadie, Angrist, and Imbens (2002) to obtain

a variable that indicates program participation.1 Table 2.1 shows the summary statis-

tics of this sample. The sample consists of 9223 observations, of which 6133 (roughly

2/3) were assigned to the treatment group, and 3090 (roughly 1/3) were assigned

to the control group. The means and standard deviations of program participation,

30-month earnings, years of education, and pre-program earnings are given for the

entire sample, the treatment group subsample, and the control group subsample.

Treatment variable is the job training program participation and equals 1 for

individuals who actually participated in the program. Only 65% of those who got

assigned to the treatment group actually participated in the training program. I

look at the joint distribution of assigned and realized treatment status in Table 2.2

to further investigate the compliance issue. Outcome variable is 30-month earnings

and is on average $16,093 and ranges from $0 to $155,760 with median earnings

$11,187. Note that this is 30-month earnings and is not annual earnings. In the

analysis below, based on this range, I set y = $0 and ȳ = $160, 000. Treatment group

assignees earned $16,487 on average while control group assignees earned $15,311.

The $1,176 difference between these two group averages is an estimate of the JTPA

impact on 30-month earnings from an intention-to-treat perspective. Pretreatment

1The links to download the datasets are: https://www.econometricsociety.org/content/supplement-
who-should-be-treated-empirical-welfare-maximization-methods-treatment-choice and
https://economics.mit.edu/faculty/angrist/data1/data/abangim02.

https://www.econometricsociety.org/content/supplement-who-should-be-treated-empirical-welfare-maximization-methods-treatment-choice
https://www.econometricsociety.org/content/supplement-who-should-be-treated-empirical-welfare-maximization-methods-treatment-choice
https://economics.mit.edu/faculty/angrist/data1/data/abangim02
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covariates I consider are years of education and pre-program annual earnings. Years

of education are on average 11.61 years and range from 7 to 18 years with median

12 years. Pre-program annual earnings are on average $3,232 and range from $0

to $63,000 with median earnings $1,600.2 Both variables are roughly balanced by

assignment status due to random assignment and large samples involved.

Table 2.1: Summary statistics

Entire sample Assigned to Assigned to
treatment control

Treatment

Job training 0.44 0.65 0.01
(0.50) (0.48) (0.12)

Outcome variable

30-month earnings 16,093 16,487 15,311
(17,071) (17,391) (16,392)

Pretreatment covariates

Years of education 11.61 11.63 11.58
(1.87) (1.87) (1.88)

Pre-program earnings 3,232 3,205 3,287
(4,264) (4,279) (4,234)

Number of observations 9223 6133 3090

This table reports the means and standard deviations (in brackets) of variables in
our sample. Treatment variable is job training program participation and equals 1
for individuals who actually participated in the program. The outcome variable is
30-month earnings after the random assignment. Pretreatment covariates are years
of education and pre-program annual earnings. The earnings are in US Dollars.

Compliance Although the offer of treatment was randomly assigned, the compli-

ance was not perfect. Table 2.2 shows the joint distribution of assigned and realized

2For reference, median earnings in the US in 1986 was $25,260 for men and $16,230
for women. This information is based on the March 1987 Current Population Survey con-
ducted by the Bureau of the Census. The report can be found at the following link:
https://www.census.gov/library/publications/1987/demo/p60-157.html.

https://www.census.gov/library/publications/1987/demo/p60-157.html
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treatment. Assigned treatment equals 1 for individuals who got offered the training

program and realized treatment equals 1 for individuals who actually participated in

the training. As can be seen from this table, the realized treatment is not equal to

assigned treatment for roughly 23% of the applicants. Therefore, the program par-

ticipation is self-selected and likely to be correlated with potential outcomes. Since

the assumption of unconfoundedness fails to hold in this case, the conditional treat-

ment effects are not point identified. Although the random offer can be used as

a treatment variable to point identify the intention-to-treat effect as in Kitagawa

and Tetenov (2018), the actual program participation should be used to identify the

treatment effect itself.

Table 2.2: The joint distribution of assigned and realized treatment

Assigned treatment

Realized treatment 1 0 Total

1 4015 43 4058

0 2118 3047 5165

Total 6133 3090 9223

This table reports the joint distribution of assigned and realized
treatment in our sample. Assigned treatment equals 1 for individu-
als who got offered job training and realized treatment equals 1 for
individuals who actually participated in the training. It shows the
compliance issue in our sample.

2.2.2 Example 1

Applicants were eligible for training if they faced a certain barriers to employment.

This included being a high school dropout. Suppose the benchmark policy is to treat

everyone with less than high school education, i.e., people who have less than or

equal to 11 years of education. Now, consider implementing a new policy in which
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we include people with high school degree. In other words, let

δ∗ = 1{education ≤ 11}, (2.1)

δ = 1{education ≤ 12}. (2.2)

These are the policies I considered in the Monte Carlo experiment in Chapter

1. The estimates of lower and upper bounds on the welfare gain from this new

policy under various assumptions and different instrumental variables are summarized

in Table 2.4. In this example, a random offer is used as an instrumental variable

and pre-program earnings is used as a monotone instrumental variable. Since the

eligibility was randomly assigned, the IV assumption (1.20) holds. As for the MIV

assumption (1.36), it requires that conditional on years of education, the average

potential earnings that would have been observed in each state (participating versus

not participating in the training program) is higher for those who were earning more

compared to those who were earning less.

For the first step estimation, I use cross-fitting with K = 2 and estimate η̂(1, x),

η̂(0, x) and p̂(x) by empirical means. Those empirical means out of whole sample are

depicted in Figure 2·1, 2·2 and 2·3. Empirical means and distributions when years of

education is used as X and random offer is used as Z are summarized in Table 2.3.
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Table 2.3: Empirical means and distributions when X is years of
education

X 7 8 9 10 11 12 13 14 15 16 17 18

sample size 34 616 642 984 1167 3940 660 602 197 260 111 10

P (X) 0.004 0.067 0.07 0.107 0.127 0.427 0.072 0.065 0.021 0.028 0.012 0.001

E[Y |X] 7998 12252 12509 14095 13492 16982 18210 20204 20837 20875 20032 11606

E[Y |D = 1, X] 7747 14916 14860 14706 15622 18391 18713 21093 21369 20678 22082 9207

E[Y |D = 0, X] 8102 10469 10908 13662 12014 15786 17745 19520 20322 21033 18411 14005

P (D = 1|X) 0.294 0.401 0.405 0.415 0.41 0.459 0.48 0.435 0.492 0.446 0.441 0.5

E[Y |D = 1, Z = 1, X] 7747 14932 14860 14687 15639 18448 18833 21272 21369 20678 22082 9207

E[Y |D = 1, Z = 0, X] 0 11011 14886 17263 14000 13530 6089 13449 0 0 0 0

E[Y |D = 0, Z = 1, X] 6194 9778 10114 13944 11752 15345 16299 18776 21010 16767 16904 12636

E[Y |D = 0, Z = 0, X] 8888 10980 11546 13451 12196 16084 18661 20028 19781 23669 19429 14918

P (D = 1|Z = 1, X) 0.588 0.61 0.601 0.622 0.626 0.676 0.702 0.65 0.688 0.678 0.662 0.714

P (D = 1|Z = 0, X) 0 0.005 0.019 0.009 0.012 0.016 0.014 0.029 0 0 0 0

This table reports the empirical means and distributions when X is years of education. Y denotes the outcome variable which
is 30-month earnings in US Dollars. D denotes the program participation and equals 1 for individuals who participated in the
program. Z denotes the random assignment to treatment and equals 1 for individuals who got offered job training.
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Figure 2·1: Estimated mean outcome for the treated group
when X is years of education
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Figure 2·2: Estimated mean outcome for the untreated group
when X is years of education
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Figure 2·3: Estimated propensity score
when X is years of education

0.00

0.25

0.50

0.75

1.00

7 8 9 10 11 12 13 14 15 16 17 18
Years of education

P
ro

gr
am

 p
ar

tic
ip

at
io

n



67

As can be seen from Table 2.4, the worst-case bounds cover 0, as I explained ear-

lier. Although we cannot rank which policy is better, we quantify the no-assumption

scenario as a welfare loss of $31, 423 and a welfare gain of $36, 928. Under the MTR

assumption, the lower bound is 0. That is because the MTR assumption states that

everyone benefits from the treatment, and under the new policy, we are expanding the

treated population. The upper bound under MTR is the same as the upper bound

under the worst-case. When we use a random offer as an instrumental variable, the

bounds are tighter than the worst-case bounds and still cover 0. However, when we

use pre-program earnings as a monotone instrumental variable, the bounds do not

cover 0, and it is even tighter if we impose an additional MTR assumption. There-

fore, if the researcher is comfortable with the validity of the MIV assumption, she

can conclude that implementing the new policy is guaranteed to improve welfare and

that improvement is between $3, 569 and $36, 616.

Table 2.4: Welfare gains in Example 1

Assumptions lower bound upper bound

worst-case -31,423 36,928
(-32,564, -30,282) (35,699, 38,158)

MTR 0 same as worst-case

IV-worst-case -2,486 20,787
(-2,774, -2,198) (19,881, 21694)

IV-MTR 0 same as IV-worst-case

MIV-worst-case 3,569 36,616

MIV-MTR 7,167 same as MIV-worst-case

This table reports the estimated welfare gains and their 95% confidence in-
tervals (in brackets) in Example 1 under various assumptions. The welfare is
in terms of 30-month earnings in US Dollars.
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2.2.3 Example 2

One class of treatment rules that Kitagawa and Tetenov (2018) considered is a class

of quadrant treatment rules:

G = {{x :s1(education− t1) > 0 and s2(pre-program earnings− t2) > 0},

s1, s2 ∈ {−1, 1}, t1, t2 ∈ R}}.
(2.3)

One’s education level and pre-program earnings have to be above or below some

specific thresholds to be assigned to treatment according to this treatment rule.

Within this class of treatment rules, the empirical welfare maximizing treatment rule

that Kitagawa and Tetenov (2018) calculates is 1{education ≤ 15, prior earnings ≤

$19, 670}. Let this policy be the benchmark policy and consider implementing an-

other policy that lowers the education threshold to be 12. In fact, that policy is

another empirical welfare maximizing policy that takes into account the treatment

assignment cost which is $774 per assignee. I calculate the welfare difference between

these two policies. In other words, let

δ∗ = 1{education ≤ 15, pre-program earnings ≤ $19, 670}, (2.4)

δ = 1{education ≤ 12, pre-program earnings ≤ $19, 670}. (2.5)

I illustrate the policies in Figure 2·4. The estimation results are summarized in

Table 2.5. In this example, a random offer is used as an instrumental variable. For the

first step estimation, I use cross-fitting with K = 2 and estimate η̂(1, x) and η̂(0, x)

by polynomial regression of degree 2 and p̂(x) by logistic regression with polynomial

of degree 2. Those estimated conditional mean treatment responses and propensity

score out of whole sample are depicted in Figures 2·5, 2·6 and 2·7.
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Figure 2·4: Hypothetical policies in Example 2
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Policy 1 is 1{education ≤ 15, pre-program earnings ≤ $19, 670},
and Policy 2 is 1{education ≤ 12, pre-program earnings ≤ $19, 670}.
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Figure 2·5: Estimated mean outcome for the treated group
when X is years of education and pre-program annual earnings
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Figure 2·6: Estimated mean outcome for the untreated group
when X is years of education and pre-program annual earnings
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Figure 2·7: Estimated propensity score
when X is years of education and pre-program annual earnings

0.00

0.25

0.50

0.75

1.00

0 20000 40000 60000
Pre−program annual earnings

P
ro

gr
am

 p
ar

tic
ip

at
io

n

Education

7
8
9
10
11
12
13
14
15
16
17
18



71

As can be seen from Table 2.5, again, the worst-case bounds cover 0. However, we

quantify the no-assumption scenario as a welfare loss of $13, 435 and a welfare gain

of $11, 633. Under the MTR assumption, the upper bound is 0. That is because the

MTR assumption states that everyone benefits from the treatment, and under the

new policy, we are shrinking the treated population. The lower bound under MTR

is the same as the lower bound under the worst-case. When we use a random offer

as an instrumental variable, the bounds are tighter and still cover 0 as well. Using

IV assumption alone, which is a credible assumption since the offer was randomly

assigned in the experiment, we quantify the difference as a welfare loss of $7, 336

and a welfare gain of $1, 035. In this case, the researcher cannot be sure whether

implementing the new policy is guaranteed to worsen or improve welfare. However,

if she decides that the welfare gain being at most $1, 035 is not high enough, she can

go ahead with the first policy.

Table 2.5: Welfare gains in Example 2

Assumptions lower bound upper bound

worst-case -13,435 11,633
(-14,361, -12,510) (10,871, 12,394)

MTR same as worst-case 0

IV-worst-case -7,336 1,035
(-7,911, -6,763) (862, 1,208)

IV-MTR same as IV-worst-case 0

This table reports the estimated welfare gains and their 95% confi-
dence intervals (in brackets) in Example 2 under various assumptions.
The welfare is in terms of 30-month earnings in US Dollars.
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2.3 Oregon Health Insurance Experiment

In this section, I use experimental data from the Oregon Health Insurance Experiment

(OHIE) to study the impact of different health insurance policies. Medicaid is a

public insurance program that provides health coverage to low-income families and

individuals in the United States. In 2008, the state of Oregon randomly selected a

group of uninsured adults by lottery, out of a waiting list of approximately 90,000

people, and provided them with an opportunity to apply for Medicaid. This lottery

allowed researchers to help understand the causal impact of having access to health

insurance and having actual insurance coverage on various outcomes. See Finkelstein,

Taubman, Wright, Bernstein, Gruber, Newhouse, Allen, Baicker, and Group (2012)

for more detailed information about the experiment and survey findings in the year

after random assignment.3

2.3.1 Data

I use publicly available data that consist of both administrative and survey data.4

The original full sample consists of 74,922 individuals (some individuals, out of the

initial approximately 90,000 individuals, were excluded from the analysis for various

reasons). I use a subsample of this dataset, with 26,423 individuals, who responded

to the initial survey.

Table 2.6 summarizes the summary statistics of the variables I use in the analysis.

It reports the means and the standard deviations for the entire sample, the treatment

group subsample, and the control group subsample. The treatment group consists of

those who were randomly selected to apply for Medicaid. The control group consists

of those who were not given that opportunity. After dropping observations with a

3More details about the OHIE and further study results can be found at
http://www.nber.org/oregon.

4Data are available at http://www.nber.org/oregon/data.html.

http://www.nber.org/oregon
http://www.nber.org/oregon/data.html
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missing value in any of the variables I consider, the final sample consists of 21,743

observations.

The treatment variable (D) is a binary variable that equals 1 for individuals who

actually enrolled in Medicaid and equals 0 otherwise. Discussion on the compliance

issue to follow later. I use household income as a percent of the federal poverty line

as a pretreatment covariate (X). I consider two distinct outcome variables (Y ): one

for health outcome and one for health care utilization. For health outcome, following

Finkelstein, Taubman, Wright, Bernstein, Gruber, Newhouse, Allen, Baicker, and

Group (2012), I use a binary variable that equals 1 if the self-reported health is “ex-

cellent”/“very good”/“good” and equals 0 if the self-reported health is “fair”/“poor.”

For health care utilization, I use a variable that indicates whether the respondent had

any primary care visits in the last six months.

Table 2.6: Summary statistics

Entire sample Assigned to Assigned to
treatment control

Treatment

Ever on Medicaid 0.29 0.44 0.13
(0.45) (0.50) (0.34)

Pretreatment covariate

Income (percent of federal poverty line) 71.65 72.97 70.30
(65.13) (65.20) (65.04)

Outcome variables

Self-reported health 0.60 0.62 0.59
(0.49) (0.49) (0.49)

Primary care visits 0.57 0.58 0.57
(0.49) (0.49) (0.49)

Number of observations 21743 10968 10775

This table reports the means and standard deviations (in brackets) of variables in our sample.
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Compliance Although the lottery winners were randomly chosen, the compliance

was not perfect. Similar to the JTPA analysis, I look at the joint distribution of

assigned and realized treatment for this sample in Table 2.7. Assigned treatment

equals 1 for those who won the lottery to apply for Medicaid and equals 0 for those

who did not win. Realized treatment equals 1 for those who actually enrolled in

Medicaid and equals 0 for those who did not enroll. As shown in the table, the

realized treatment is not equal to the assigned treatment for roughly 35% of the

applicants. Therefore, the enrollment is likely to be self-selected and to be correlated

with potential outcomes.

Table 2.7: The joint distribution of assigned and realized treatment

Assigned treatment

Realized treatment 1 0 Total

1 0.22 0.07 0.29

0 0.28 0.43 0.71

Total 0.50 0.50 1

This table reports the joint distribution of assigned and realized
treatment in our sample. Assigned treatment equals 1 for individu-
als who won the lottery for Medicaid and realized treatment equals
1 for individuals who actually enrolled in Medicaid. It shows the
compliance issue in our sample.

2.3.2 Medicaid expansion

The 2011 Affordable Care Act called for the expansion of Medicaid to cover people

with incomes below 133% of the federal poverty level starting from 2014, compared to

the 100% that was previously in place. While some states have adopted the Medicaid

expansion, some states have yet to adopt the expansion. This allowed researchers to

use difference-in-differences type of methods to evaluate the impact of the expansion

in various contexts.
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I take a different approach and use the method I proposed in Chapter 1 to quantify

the impact of this expansion in terms of two welfare measures. In other words, I

calculate the welfare difference between the following two policies:

δ∗ = 1{income ≤ 100%}, (2.6)

δ = 1{income ≤ 133%}. (2.7)

The first policy is to target people whose income level is up to 100% of the federal

poverty level. The second policy is to target people whose income is up to 133% of

the federal poverty level.

Health outcome Table 2.8 reports the estimated welfare gains in terms of health

outcome. The random assignment is used as a treatment variable to compute the

welfare gain from an intent-to-treat perspective. In other cases, the random assign-

ment is used as an IV. Since the health outcome is a binary variable, I set y = 0 and

ȳ = 1.

Table 2.8: Welfare gains in terms of overall health

Assumptions lower bound upper bound

intent-to-treat 0.003

worst-case -0.089 0.057
(-0.093, -0.086) (0.054, 0.061)

MTR 0 same as worst-case

IV-worst-case -0.070 0.046
(-0.073, -0.067) (0.044, 0.049)

IV-MTR 0 same as IV-worst-case

This table reports the estimated welfare gains under various assump-
tions. The welfare is in terms of self-reported overall health.

From an intent-to-treat perspective, the welfare gain of Medicaid expansion in
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terms of self-reported health is 0.003. In other words, it is an increase in the proba-

bility of reporting one’s health as “good”, “very good”, or “excellent.” However, the

welfare gain of enrolling in Medicaid is not point-identified. The worst-case bounds

are (-0.089, 0.057). When we use the random assignment as an IV, we get tighter

bounds of (-0.070, 0.046). As discussed before, the worst-case bounds always cover 0.

In this example, even with IV, the bounds cover 0 as well. However, if we are willing

to assume that MTR holds, i.e., the self-reported health is always improved by having

an insurance, the lower bound is 0 as we are expanding the treated population under

this policy.

Finkelstein, Taubman, Wright, Bernstein, Gruber, Newhouse, Allen, Baicker, and

Group (2012) find that insurance is associated with statistically significant improve-

ments in self-reported health. They compute it from the intent-to-treat perspective

and also compute the local average treatment effect (LATE) using enrollment as a

treatment variable. Although not perfect, this finding favors the MTR assumption.

Health care utilization Table 2.9 reports the estimated welfare gains in terms of

health care utilization. Again, the random assignment is used as a treatment variable

to compute the welfare gain from an intent-to-treat perspective. In other cases, the

random assignment is used as an IV. Since the health care utilization is a binary

variable, I again set y = 0 and ȳ = 1.

From an intent-to-treat perspective, the calculated welfare gain in terms of health

care utilization is -0.0004. However, the welfare gain of enrolling in Medicaid is not

point-identified. The worst-case bounds are (-0.079, 0.068). When we use the random

assignment as an IV, we get tighter bounds of (-0.063, 0.053). Again, even with IV,

we get bounds that cover 0 in this case.

As before, the lower bound is 0 if we are willing to assume that MTR holds, i.e.,

the probability of having a primary care visit is increased by having an insurance.
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Table 2.9: Welfare gains in terms of health care utilization

Assumptions lower bound upper bound

intent-to-treat -0.0004

worst-case -0.079 0.068
(-0.082, -0.075) (0.065, 0.071)

MTR 0 same as worst-case

IV-worst-case -0.063 0.053
(-0.066, -0.060) (0.051, 0.056)

IV-MTR 0 same as IV-worst-case

This table reports the estimated welfare gains under various assump-
tions. The outcome is whether the respondent had any primary care
visits in the last 6 months.

This assumption is even more plausible here since we expect the health insurance

to increase health care utilization by lowering the price of health care. It is also

consistent with the findings in Finkelstein, Taubman, Wright, Bernstein, Gruber,

Newhouse, Allen, Baicker, and Group (2012) – the LATE estimates suggest that

insurance coverage is associated with an increase in the number of outpatient visits.

2.4 Conclusion

In this chapter, I use the method I propose in Chapter 1 and examine two applications

in economics. First, I consider the problem of assigning individuals to a job training

program. Second, I study the welfare impact of Medicaid expansion. In both cases, I

use data from randomized experiments with imperfect compliance and calculate the

welfare differences between various different policies of interest.
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Chapter 3

Changing Preferences: An Experiment

and Estimation of Market-Incentive

Effects on Altruism (with Ching-to Albert

Ma and Daniel Wiesen)
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Experimental Research (CLER) of the University of Cologne.

3.1 Introduction

Recent economic research has questioned the monolithic power of incentives and mar-

kets. Economists now legitimately question if more competition or high-powered in-

centives must result in more outputs or worker efforts. A multifaceted approach has

been advanced. Economic agents’ preferences may include more than utility from

financial reward and disutility from cost or effort. In fact, economic agents may be

fair minded, altruistic, and socially responsible, but may also be spiteful.

Clearly, social and individual preferences determine behaviors and market out-

comes. The usual research methodology says that given multi-dimensional prefer-

ences, economists can write analytical and empirical models to study incentives and

markets. A deeper question, of course, is what determines social preferences. There,

economists often concede that anthropologists, sociologists, psychologists, and neu-

roscientists may have identified plausible factors such as climate, cultural-historical

events, physiology, and genetics to explain preferences. But when these factors remain

exogenous, the usual methodology remains valid.

In this chapter, we assess whether social preferences can be changed by markets

and incentives, the key social institutions that economists study. Our focus is on

altruism, market competition, and incentives.1 This chapter presents experimental

evidence that altruistic preferences can be diminished by competition and altered by

incentives. In other words, economic models that analyze altruism’s effect on market

and incentives must confront the possibility that markets and incentives themselves

1We use the term altruism to mean a decision maker’s enjoyment when his action in a game
benefits others who are outside of the game. This has been called pure altruism in the literature
(see, for example, Andreoni (1989, 1990)). By contrast, a broader notion of altruism would allow a
decision maker also to gain enjoyment from actions performed by his rivals in the same game. This
notion of global altruism, which involves social norm or peer effect, is not our focus.
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may change altruism.

Our research proceeds in three steps. First, we use a structural model to decom-

pose behavioral changes into preference effects and market-incentive effects. This is

the key conceptual step. Behavioral outcomes are interactions between preferences

and market-incentive institutions.2 Must altruistic preferences remain immutable

when markets and incentives change? Our structural model allows altruistic prefer-

ences to be influenced by markets and incentives. Behavioral changes are then results

of markets and incentives changing preferences as well as equilibria.

Second, we use a laboratory experiment in which incentives and market competi-

tion are exogenously varied for subjects. Identifying preference and market-incentive

effects by real data is too daunting a task. A controlled environment offers a better

chance. Our experimental framing is health care provision, and subjects are primed

to be altruistic. They choose health care qualities which affect their own payoffs

and which benefit patients through a transfer to a charity for the treatment of oph-

thalmic patients outside the laboratory. We also have taken care to isolate subjects, so

such confounding factors as fairness, collusion, and spitefulness could be minimized.

Each subject experiences different markets and incentive configurations. Our within-

subject design is appropriate because we claim that preferences change, not just that

preferences are heterogenous (which could be identified by a between-subject design).

Third, we adapt the nonparametric econometric method by Guerre, Perrigne, and

Vuong (2000) to estimate preference distributions. We estimate subjects’ altruism

distributions separately as subjects experience different markets and different incen-

tive configurations. The nonparametric method does not restrict us to prespecified

distribution classes, and is straightforward to implement.

We show that subjects become less altruistic when they have to compete against

2A few recent papers have made claims that markets do erode morality or social responsibility,
but our view is simply that the decomposition is the key. The recent papers fall short of this; more
details are in the literature review subsection.
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others in a duopoly or in a quadropoly, compared to when they are monopolists. The

flip side is that when subjects become monopolists, they become more altruistic. Our

contribution can be likened to the classic Lucas critique in policy evaluations. Given

preferences, equilibrium outcomes result from market-incentive institutions. This

common view is inadequate: preferences are not given. The structure of an economic

model consists of equilibrium decisions based on economic agents’ preferences. When

preferences vary systematically with changes in the market-incentive environment,

rather than remaining exogenous, a change in the market-incentive environment will

systematically alter the structure of the economic model.

For the theoretical model, we specify that a subject’s preferences are given by

a weighted average of patients’ benefits from health care quality, and profits. By

choosing a higher quality, the subject reduces profit, but raises patient benefits. A

more altruistic subject puts a higher weight on patients’ benefits. The tradeoff be-

tween benefits and profits depend on three experimental parameters: a subject’s price

(revenue) per patient, quality cost, and patient benefit.

A subject makes decisions in three markets: monopoly, duopoly, and quadropoly.

Under monopoly a subject chooses the quality for the entire patient population. Un-

der duopoly and quadropoly, subjects move simultaneously and each subject’s market

share depends on the entire profile of subjects’ quality choices, according to a logistic

demand function. A total of 361 subjects participated in experimental sessions in

October 2017 and April 2018 at the University of Cologne. Within each of the three

markets, we systematically vary the incentives using a 2 × 2 × 2 factorial design.

Price, cost, and patient benefit assume binary values for a total of eight incentive

configurations. In total, each subject played 24 games.

Each basic game is one of incomplete information: a player’s altruism is his own

private information, but each is uncertain about another player’s altruism. We assume
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that the uncertainty on altruism is described by a distribution. It is this distribution

that we would estimate, for each market and for each incentive configuration. The

estimation is by means of symmetric Bayes-Nash equilibria.

Nonparametric estimation yield very different altruism distributions for the 24

games. The striking pattern is that for each incentive configuration, estimated altru-

ism distributions exhibit lower means in duopoly relative to monopoly, and yet even

lower means in quadropoly. Subjects have become less altruistic and value profits

more when the market becomes more competitive. What is more striking, however,

is that the observed equilibrium qualities are much higher in duopoly and quadropoly

than monopoly. Although subjects have become less altruistic, the competition dis-

ciplinary force is stronger.

These results offer a deeper interpretation than the usual, reduced-form approach.

If only behavioral results are considered, then markets and incentives are shown to

raise qualities, so one would conclude that there is no crowding out. We reject the sim-

plistic conclusion. In fact, quality changes result from two effects: preference changes,

and market-incentive changes. The effects go in opposite directions. Markets reduce

altruism, but also discipline subjects. In our experiment, the market-incentive effect

is stronger than the preference-change effect. Together they produce the observed

behavioral results. Our structural approach permits counter factual calculations. It

also allows straightforward robustness checks.

It has not escaped our notice that the ultimate questions are: why has compe-

tition, according to our evidence, diminished altruism, and why has the competitive

disciplinary effect turned out to be stronger? These questions, perhaps, strike a coun-

terpoint to the usual exogenous assumptions for analysis of economic models. Recent

advances in neuroscience have adopted a reductionist principle that all behaviors can

be traced to electrochemical activities in the brain. We are neither in any position
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to render an opinion nor did we manage to use brain scans to assess if competition

triggered specific neural activities. However, we can speculate. When subjects play

monopoly, they only have to consider a tradeoff between profits and patient bene-

fits. When subjects play duopoly, they are presented with an additional concern:

the competitor’s quality choice. The tradeoff between profits and patient benefits

now depends on what the rival subject would choose. Complexity has increased, and

perhaps the higher cognitive demand has diluted the concern for patient benefits.

The plan of the chapter is as follows. The next subsection is a literature review.

The model is set up in Section 3.2. The experimental design and sessions are described

in Section 3.3. In Section 3.4, we present quality choice descriptive statistics, the

nonparametric estimator, and then estimation results on altruism. We also perform

nonparametric tests on the equality of the estimated altruism distributions. We

end the section with some counterfactual quality estimations. Section 3.5 presents

the reduced-form analysis. The last section draws some conclusion. Appendix A

contains experiment materials. Appendix B contains robustness checks. We consider

an alternate utility function, and a between-subject subsample.

3.1.1 Literature review

Our work is related to three strands in the literature. First, we relate to the growing

body of work on the impact of markets on moral and prosocial behaviors. Evidence

from laboratory experiments in such framing and contexts as altruistic motives, free-

riding, and social responsibility indicates that competition reduces moral behavior.

Falk and Szech (2013) show that repeated interactions in bilateral and multilateral

free-offer markets reduce morals compared to individual decisions. Subjects are more

willing to accept a negative externality imposed on a third-party (a mouse getting

killed) in markets. Using a consumer and firms in a laboratory experiment, Bartling,

Weber, and Yao (2015) analyze socially responsible behavior in posted-price markets.
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They find evidence for socially responsible behaviors in markets, but such behav-

iors are stronger in non-market contexts. In a follow-up study, Bartling, Valero, and

Weber (2019) report similar patterns for different externalities. Kirchler, Huber, Ste-

fan, and Sutter (2016) analyze how trading anonymity, involvement with the traded

good, and punishment influence moral behavior in a double auction with negative

externalities imposed on third parties (voiding measles vaccine donations). Building

on Kirchler, Huber, Stefan, and Sutter (2016), Sutter, Huber, Kirchler, Stefan, and

Walzl (2020) report that moral behaviors are consistent with lower trading volume in

markets with negative externalities, but externalities do not affect market prices.

The literature aims to show that social preferences may be altered by the mar-

ket structure. Shifts in preferences are typically inferred from observed behaviors.

In single-person decision environments, this seems a natural inference. However, we

consider a multi-person strategic interaction environment. Therefore, behaviors are

equilibrium outcomes, which in turn depend on preferences and the market structure.

Hence, our use of a structural model to identify changes in altruistic preferences is

necessary to decompose behavioral changes into those due to preferences and strate-

gic changes. Bartling, Weber, and Yao (2015) also employ a structural modelling

approach. They estimate consumers’ preferences by a conditional logit choice model.

Whereas they show that the average buyer cares for a third-party’s earnings, pref-

erences are assumed to remain unchanged in different market treatments. However,

in their setup, consumers simply make purchase decisions after firms have chosen

products and prices, so do not engage in a strategic game against firms.

Further, the above studies use a between-subject design. Instead, we use a within-

subject design to identify preferences changes. Also, we examine a (regulated) market

in which economic agents on the supply-side compete for market share by benefiting

third parties. We do not let subjects do harm to third parties.3 Neither do we let

3A prominent example in which social preferences are an important concern for supply side’s
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subjects receive feedbacks about their decisions, so learning, reputation, and peer

effects are well controlled; for further discussion, see Bartling, Weber, and Yao (2015)

and Breyer and Weimann (2015). Furthermore, we change competition and incentives

one at a time, so the confounding effects of multiple changes between manipulations

can be avoided.

Our study relates to the literature on prosocial behavior, incentives, and crowding-

out. Ultimatum, dictator, public good, trust, and gift-exchange game experiments

analyze behavioral changes due to incentives; see Bowles and Polania-Reyes (2012)

for a summary. Economic incentives are often found to reduce pro-social behaviors.

Experimental evidence tends to confirm crowding out; see, for example, Falk and

Kosfeld (2006), Gneezy and Rustichini (2000a,b), and Mellström and Johannesson

(2008). Our work points to the inadequacy of identifying crowding out only in terms

of outcomes. Incentive schemes are disciplinary, even when they may erode social

motives. The missing link is that market-incentive mechanisms and social motives

pull in different directions, and it is an empirical matter which is stronger.

Finally, our nonparametric estimation relates to the literature on structurally esti-

mating preferences. This literature has been on measuring inequity aversion and reci-

procity (e.g., Charness and Rabin (2002); Bellemare, Kröger, and Van Soest (2008)),

and altruism (e.g., Andreoni (1989); Andreoni and Miller (2002); Fisman, Kariv, and

Markovits (2007)); see DellaVigna (2018) for a summary. Using data from field ex-

periments, a few chapters structurally infer social preferences to identify differences

between charitable giving and worker effort; see DellaVigna, List, and Malmendier

(2012) and DellaVigna, List, Malmendier, and Rao (2016). We, however, use a non-

parametric estimator developed by Guerre, Perrigne, and Vuong (2000) that has orig-

inated from estimating Bayes-Nash equilibria in first-price auctions. We have used

behavior is markets for public services (e.g., Besley and Ghatak (2005)) and credence goods (e.g.,
Dulleck and Kerschbamer (2006); Dulleck, Kerschbamer, and Sutter (2011)), and health care (e.g.,
Arrow (1963)).
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the monotonicity of qualities in altruism for identification; this is similar to identi-

fication by the monotonicity of auction bids in valuations in Guerre, Perrigne, and

Vuong (2000).

3.2 A model of altruism and competition

The experiment frames subjects to provide medical services at some quality to a set

of patients.4 We study three market games: monopoly, duopoly, and quadropoly.

The monopoly game is a single-person decision problem, and the simultaneous-move

duopoly and quadropoly games are strategic problems.

3.2.1 Demand

In each market, there are 100 patients. Under monopoly, each subject simply makes

the quality decision, q between 0 and 10, for all the 100 patients. In duopoly and

quadropoly, subjects choose qualities simultaneously. Then the subjects’ quality pro-

file determines each subject’s market share according to a logistic demand system.

For duopoly, let q1 and q2 be qualities chosen by subject 1 and subject 2. The numbers

of patients for subjects 1 and 2 are, respectively,

100 exp(bq1)

exp(bq1) + exp(bq2)
and

100 exp(bq2)

exp(bq1) + exp(bq2)
, (3.1)

where b > 0 is a patient-benefit parameter. For quadropoly, let q1, q2, q3, and q4

denote the four subjects’ quality choices. Subject i who chooses quality qi will have

100 exp(bqi)

exp(bq1) + exp(bq2) + exp(bq3) + exp(bq4)
(3.2)

4There were no real patients in the laboratory, and the subjects were not medical doctors. We
operationalized the quality of medical services by converting it to actual cash payments that benefited
real patients outside of the laboratory. See footnote 5 and the end of Subsection 3.3.1.
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patients. The logistic demand guarantees that each subject gets some patients un-

der any quality profile, and is commonly used for discrete-choice situations when

consumers’ utilities may be subject to Type I Extreme Value disturbances.

3.2.2 Quality choices and preferences

A subject receives a fixed payment p > 0 for each patient that he treats. For the

theoretical model, a subject’s quality choice is a continuous variable between 0 and

10 (although in the experiment we set the possible qualities to be integers between

0 and 10, a total of 11 choices). The subject bears the per-patient quality cost at

cq2 when he provides medical service at quality q, where c > 0 is a cost parameter.

Medical service at quality q gives a benefit bq to a patient. We call the environment

defined by the three parameters, payment p, cost c, and patient benefit b, an incentive

configuration.

Our health care framing primes an experiment subject for an altruistic motive

when qualities are chosen. We assume that a subject’s preferences are represented

by αbq + U(p − cq2), for some parameter α and an increasing and concave function

U , so preferences are linear combinations of the patient benefit bq, and the utility

of his own profit U(p − cq2). We maintain the assumption that a subject earns

altruistic utility from his own patients. (We will discuss “global” altruism, in which

a subject values all patient benefits, in the next Subsection.) Framing and priming

affect subjects differently, so we assume that the preference weight on patient benefit,

α, is a random variable on an interval [α, α] ⊂ R with some distribution.

3.2.3 Monopoly, duopoly and quadropoly

In monopoly, each subject simply chooses a quality for his 100 patients. If a subject’s

altruism parameter is α and he chooses quality q, the subject’s per-patient payoff is

αbq + U(p − cq2). A profit-maximizing subject (whose α is set at 0) chooses q = 0,
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whereas a subject who only cares about patient benefit chooses the maximum quality,

which is 10. Otherwise, a subject’s “interior” optimal quality is given by the first-

order condition:

αb− U ′(p− cq2)× 2cq = 0. (3.3)

In monopoly, altruism is the only reason behind a subject choosing a strictly posi-

tive quality. In fact, the first-order condition (3.3) defines a monotone relationship

between α and the optimal quality:

α =
2cq

b
U ′(p− cq2). (3.4)

A more altruistic subject is willing to forgo more profit for a higher quality for patients.

Given a utility function U , equation (3.4) allows us to infer the value of α from

subjects’ quality choices.

The experiment subjects also play the duopoly and quadropoly games. We will

lay out all the details in duopoly, but we will be rather succinct in quadropoly. In

duopoly, two subjects are randomly paired. They simultaneously choose qualities,

say q1 and q2, which result in market shares in (3.1). The subjects’ payoffs are

[α1bq1 + U(p− cq2
1)]× 100 exp(bq1)

exp(bq1) + exp(bq2)

and

[α2bq2 + U(p− cq2
2)]× 100 exp(bq2)

exp(bq1) + exp(bq2)
,

where α1 and α2 are the subjects’ altruism parameters.

We model duopoly as a Bayesian game. We assume that each subject’ altruism

parameter, α, is drawn independently from a random variable with distribution F and

density f on support [α, α]. Each subject observes his own altruism parameter, but

not an opponent’s altruism parameter. The uncertainty on the altruism parameter
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α is the basis for the Bayesian perspective, and stems from framing having different

effects on different subjects.

A subject’s strategy in the duopoly game is a function that maps the altruism

parameter α to a quality, say, q : [α, α]→ [0, 10]. If subject 1 has altruism parameter

α1 and chooses q1 when the rival subject 2 follows a strategy q′ : [α, α] → [0, 10],

subject 1’s expected utility is

EU(q1; q′) =

α∫
α

{
[α1bq1 + U(p− cq2

1)]

[
100 exp(bq1)

exp(bq1) + exp(bq′(x))

]}
dF (x)

= [α1bq1 + U(p− cq2
1)]×

α∫
α

[
100 exp(bq1)

exp(bq1) + exp(bq′(x))

]
dF (x). (3.5)

We assume that a subject does not earn any utility from patient benefits provided

by a rival subject. The expression in (3.5) only concerns those patients the subject

serves. An alternate form of “global” altruism, which includes patient benefits the ri-

val subject provides is outside our current consideration. A first reason is tractability;

Bayes-Nash equilibria will be more complicated, and the estimation of the equilibria

would become difficult. Second, global altruism will inevitably involve some concern

about free riding, and some notion about peer effect of quality provision, which we

have chosen to suppress. The suppression of concern other than private altruism will

be discussed in the experimental design section.

The market share is defined by

S(q1; q′) ≡ exp(bq1)

exp(bq1) + exp(bq′)
,

so we can rewrite the expected utility in (3.5) as

EU(q1; q′) = [α1bq1 + U(p− cq2
1)]×

α∫
α

100S(q1; q′(x))dF (x). (3.6)
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The market share term is the difference between monopoly and duopoly. A subject

choosing a higher quality earns a higher market share:

dS(q1; q′)

dq1

= bS(q1; q′)[1− S(q1; q′)] > 0

In duopoly, even a purely profit-maximizing subject (α = 0) has an incentive to offer

quality because a higher quality gains market share which generates profits.

For each value of α1 ∈ [α, α], we let

q(α1; q′) = arg maxq1 [α1bq1 + U(p− cq2
1)]×

α∫
α

100S(q1; q′(x))dF (x) (3.7)

be subject 1’s best response against the rival’s strategy q′(α) : [α, α] → [0, 10]. A

subject’s optimal quality choice is still a tradeoff between profit and patient benefit.

However, a subject’s payoff depends on what he believes about his rival subject’s

qualities, which are chosen according to the strategy q′. A symmetric Bayes-Nash

equilibrium strategy specifies a subject’s quality choice for each value of the altruism

parameter that maximizes the subject’s expected utility, given that the rival subject

uses the same strategy.

Definition 3.2.1 (Duopoly Bayes-Nash Equilibrium). The strategy q∗ : [α, α] →
[0, 10] is a symmetric Bayes-Nash equilibrium, if, at each α ∈ [α, α],

q∗(α) = arg max
q

[αbq + U(p− cq2)]×
α∫
α

100S(q; q∗(x))dF (x). (3.8)

The usual characterization of an equilibrium is by means of the first-order con-

dition for the maximization of (3.6) or the best response in (3.7). Given a rival’s

strategy q′, for the maximization of expected utility in (3.6), we obtain the first-order
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derivative with respect to q1:

∂EU(q1; q′)

∂q1

= [α1b− 2cq1U
′(p− cq2

1)]×
α∫
α

100S(q1; q′(x))dF (x)

+[α1bq1 + U(p− cq2
1)]×

α∫
α

100bS(q1; q′(x))[1− S(q1; q′(x))]dF (x). (3.9)

We assume that the expected utility in (3.6) is quasi-concave for the incentive con-

figurations under consideration. Hence, by setting the first-order derivative to zero,

we obtain the implicit function that defines the best response at α.

To characterize the symmetric Bayes-Nash equilibrium q∗ : [α, α] → [0, 10], we

note that at the equilibrium, each subject has the same first-order condition. The

equilibrium q∗ therefore is defined by the equation from setting (3.9) to 0 at each

α ∈ [α, α] with q′ set to q∗:

[αb− 2cq∗(α)U ′(p− cq∗(α)2)]×
α∫
α

100S(q∗(α); q∗(x))dF (x) (3.10)

+[αbq∗(α) + U(p− cq∗(α)2)]×
α∫
α

100bS(q∗(α); q∗(x))[1− S(q∗(α); q∗(x))]dF (x) = 0.

Being the solution of an integral equation, a symmetric Bayes-Nash equilibrium is

difficult to compute, even for simple functional forms of the utility U and distribution

F . Fortunately, we do not have to rely on this computation. In fact, what makes our

model operational is the following.

Lemma 3.2.1. Equilibrium strategy q∗ : [α, α] → [0, 10] is monotone increasing in

α.

Proof of Lemma 3.2.1: Using the first-order derivative of EU with respect to
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q1 in (3.9), we further differentiate this with respect to α1 to obtain

∂2EU(q1; q′)

∂α1∂q1

= b

α∫
α

100S(q1; q′(x))dF (x)

+ bq1

α∫
α

100bS(q1; q′(x))[1− S(q1; q′(x))]dF (x) > 0.

By assumption EU is quasi-concave in q1, so as α1 increases, the optimal quality

increases. This is true for any given strategy q′, so remains valid at the equilibrium

q∗.�

Because α is a random variable, the equilibrium strategy q∗(α) is also a random

variable. An equilibrium duopoly is the pair of qualities specified by the equilibrium

strategy, (q∗(α1), q∗(α2)), for two independent realizations of α, namely α1 for the

first subject, and α2 for the second subject.

Remark 3.2.1 (Duopoly Equilibrium Quality Distribution). The Bayes-Nash equi-

librium q∗ induces a joint distribution of the two subjects’ equilibrium qualities on

[0, 10] × [0, 10]. By symmetry and independence, the marginal density is the one in-

duced by the equilibrium strategy q∗. Denoting this marginal distribution by G∗ :

[0, 10]→ [0, 1], we conclude that for q̃ ∈ [0, 10], G∗(q̃) = F (α̃), where q∗(α̃) = q̃.

The actual play of the duopoly are realizations of G∗. By the monotonicity of

the equilibrium q∗, the distribution F of α and the equilibrium quality distribution

G∗ are isomorphic. Whereas we have no data on F , we do have data on qualities

from equilibrium play. This is the key to the estimation of the altruism distribution

F under duopoly, and Subsection 3.4.2 will present the estimation of G∗ by the

empirical quality distribution.

Next, we discuss quadropoly. There are now four subjects, and the demands are

in (3.2). Otherwise, there is not much conceptual difference between duopoly and

quadropoly. The definition of a symmetric Bayes-Nash equilibrium has exactly the
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same form. If subject i chooses quality qi, his market share now is

S(qi; q−i) =
exp(bqi)∑4
j=1 exp(bqj)

,

where we use q−i to denote the quality vector (q1, q2, q3, q4) with the ith element

omitted. Given strategies qj, j = 1, 2, 3, 4, j 6= i, if subject i chooses quality qi his

expected utility is

[
αibqi + U(p− cq2

i )
]
×
∫ ∫ ∫

100S(qi; q−i(α−i))
4∏

j=1, j 6=i

dK(αj),

where the notation q−i(α−i) is a short hand for (qj(αj), j = 1, 2, 3, 4, j 6= i), and K

is the distribution of α in quadropoly.

Definition 3.2.2 (Quadropoly Bayes-Nash Equilibrium). The strategy q∗∗(α) is a

symmetric Bayes-Nash equilibrium, if, at each α ∈ [α, α],

q∗∗(α) = arg max
q

[
αbq + U(p− cq2)

]
×
∫ ∫ ∫ {

100S(q; q∗∗−i(α−i))
} 4∏
j=1, j 6=i

dK(αj). (3.11)

We can use the first-order condition to characterize the equilibrium strategy q∗∗.

It is straightforward to verify the same monotonicity property.

Lemma 3.2.2. Equilibrium strategy q∗∗ : [α, α] → [0, 10] is monotone increasing in

α.

Remark 3.2.2 (Quadropoly Equilibrium Quality Distribution). The Bayes-Nash

equilibrium q∗∗ induces a joint distribution of the four subjects’ equilibrium quali-

ties on [0, 10]4. By symmetry and independence, the marginal density is the one

induced by the equilibrium strategy q∗∗. We denote this marginal distribution by

L∗∗ : [0, 10]→ [0, 1].

Notice that we have used the notation F to denote the altruism distribution in

duopoly, but we have used a different notation K for that in quadropoly. Although we
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have the same set of subjects in 3 markets and 8 incentive configurations, we do allow

altruism distributions to vary according to markets and incentive configurations. We

now turn to the experiment.

3.3 The experiment

3.3.1 Design

The experimental design implements the theoretical model just described. Role play-

ing as physicians, subjects decide on the quality of health care for a set of hypo-

thetical patients.5 Each subject chooses a medical-service quality q from a finite

set {0, 1, 2, . . . , 10}.6 Three parameters determine payoffs. These are the capitation

payment to the physician p, the quality cost parameter c, and the patient benefit

parameter, b. The subject bears the quality cost, so if he chooses a quality q, his

profit becomes p − cq2, whereas the patient benefit is bq, exactly the same as in the

theoretical model.

We use a 2 × 2 × 2 factorial design to vary each of the p, c, and b parameters

systematically. The capitation payment p may be low or high, set at 10 and 15,

respectively. The cost parameter c can be either 0.075 or 0.1, whereas the benefit

parameter b can be either 0.5 or 1. All monetary amounts were in terms of the

experimental currency, Taler, which was later converted to Euro at the rate of 100:1.

A full set of parameters can be found in Table 3.12 in Appendix B. We call a game

with a profile of price-cost-benefit parameters an incentive configuration. The 2×2×2

variations set up a total of 8 incentive configurations. There are 3 markets: monopoly,

5Hypothetical patient profiles, characterizing patients through different benefits from medical
treatment decisions, have been employed in several behavioral experiments in health with medi-
cal and non-medical students (e.g., Hennig-Schmidt, Selten, and Wiesen (2011); Kesternich, Schu-
macher, and Winter (2015); and Brosig-Koch, Hennig-Schmidt, Kairies-Schwarz, and Wiesen (2017))
and practicing physicians (e.g., Brosig-Koch, Hennig-Schmidt, Kairies-Schwarz, and Wiesen (2016);
Brosig-Koch, Hennig-Schmidt, Kairies-Schwarz, Kokot, and Wiesen (2019)).

6This is the only difference from the continuous quality choice assumption in the theoretical
model.
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duopoly, and quadropoly. Each subject plays 24 games in the entire experiment: 8

incentive configurations by 3 markets.

The experiment uses a within-subject design. Subjects experience different mar-

kets and incentive configurations, and we aim to investigate how subjects’ quality

choices and preferences change according to their experiences. In the actual imple-

mentation, subjects played all 8 incentive-configuration games in one market, and

then moved onto the next market. Subjects were not informed of the market up until

they were to play the 8 incentive-configuration games in that market.7

There are 6 different ways to order the three markets, displayed in Table 3.1.

For example, in “3 (D-Q-M)” a subject plays the duopoly game first, followed by

quadropoly, and finally monopoly. We roughly assigned about 1/6 of the subject

population to each of the 6 orders. The last column in Table 3.1 lists the number

of subjects who participated in each order. We randomize the order in which the

8 incentive configurations are presented to subjects. In each market, each subject

plays the 8 games in the following order: 1st, (p = 10, c = 0.1, b = 1); 2nd, (p = 10,

c = 0.075, b = 1); 3rd, (p = 15, c = 0.1, b = 0.5); 4th, (p = 15, c = 0.1, b = 1); 5th,

(p = 10, c = 0.1, b = 0.5); 6th, (p = 10, c = 0.075, b = 0.5); 7th (p = 15, c = 0.075,

b = 1) and 8th, (p = 15, c = 0.075, b = 0.5).

We used the common “random-choice” payment method to determine profits and

patient benefits. One of the 8 incentive-configuration games in each market would be

chosen randomly for determining the subject’s profit and the patient benefits. The

random-choice payment method was implemented for each subject independently.

A subject never learns others’ decisions for any of the 8 incentive-configuration

games in a market. However, at the end of one market session, each subject is

given a summary information of actual demands, profits, and patient benefits, aggre-

7It was impractical to get subjects to play the 24 games in a random order. Too much back-
and-forth between markets and incentive configurations could be confusing to subjects. Random
rematching for 16 times for each subject also would be too time consuming.
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Table 3.1: Market orders in the experiment

Number
Condition Order of markets of subjects

1 (M-D-Q) Monopoly-Duopoly-Quadropoly 64
2 (M-Q-D) Monopoly-Quadropoly-Duopoly 60
3 (D-Q-M) Duopoly-Quadropoly-Monopoly 63
4 (Q-M-D) Quadropoly-Monopoly-Duopoly 60
5 (Q-D-M) Quadropoly-Duopoly-Monopoly 58
6 (D-M-Q) Duopoly-Monopoly-Quadropoly 56

Total 361

gated over the 8 games. In duopoly and quadropoly, subjects are randomly paired

or grouped. When subjects are done with one market, say duopoly, the match will

be dissolved. Then subjects will be randomly matched for the next market, say

quadropoly. Subjects do play a normal form game against others randomly drawn

from a population.

Our design rules out repeated plays, learning, and reputation. We have thought

about the design tradeoff. On the one hand, we would like to keep altruism as the

main frame, and would like to avoid issues about norms and collusions. On the

other hand, we would have to face the possibility that subjects having to learn to

play a Bayes-Nash equilibrium. In the end, we have come down with a design that

would rely on subjects playing a Bayes-Nash equilibrium with preferences governed by

altruism. This explains our suppressing information of subjects’ play and outcomes.

Our approach also gives supports about the rejection of global altruism. Subjects do

not have information about patient benefits other than those patients he has chosen

benefits for. We have maintained the altruism frame throughout. It is inappropriate

to introduce a control that eliminates the patient benefits, or to make the benefits

independent of subjects’ quality choices.8

8To eliminate patient benefit, we would have to write a new set of instructions, and let subjects
see different screens in the experiments. It is questionable how such a setup could be argued as any



97

We do want to find out if subjects’ preferences change according to markets and

incentive configurations. Randomly assigning subjects to play different market and

incentive-configuration games would identify differences, not changes. However, we

can use a subsample for a between-subject design. We construct this subsample by

taking data from a subject’s experiences in the market he or she first participates.

Given that we have 361 subjects, a between-subject design would put only about 120

subjects in one market, and each subject would then play only 8 games. The between-

subject subsample serves as a comparison with the main within-subject design. The

analysis is in Appendix B. Broadly, the results are consistent with the complete sample

for the within-subject design.

Although there are no real patients, the health benefits accrued in the laboratory

are converted into monetary transfers to a charity dedicated to providing surgeries

for ophthalmic patients. The patient benefit is thus made salient. A subject’s con-

sideration of patients’ benefit from costly quality choices have real empirical and

health-related consequences.

3.3.2 Experimental sessions

Experimental sessions were carried out in October 2017 and in April 2018, at the

Cologne Laboratory for Experimental Research of the University of Cologne. Subjects

in the experiment were mostly students from the University of Cologne, Germany.

Participants were invited via the ORSEE platform (Greiner (2015)). In total, 361

subjects participated in the experiment.9 Subjects on average were about 24 years

old, and 55% of them were female. Among the subjects who were students, 131

control or variant. Besides, we would not be able to control what subjects would think about what
qualities were doing.

9We dropped three subjects who did not complete their last, monopoly sessions due to technical
problems (one subject in condition 3 (D-Q-M), and two in condition 5 (Q-D-M)). However, these
three subjects did interact with other subjects before they played their last monopoly session. We
have kept data of others who played against these three subjects in duopoly and quadropoly.
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were in law and social sciences, 22 in medicine, 42 in arts and humanities, 49 in

mathematics and natural sciences, 35 in theology. There were 21 in other disciplines

or non-students; 61 subjects did not provide their faculty information.

The experiment was programmed in zTree (Fischbacher (2007)). Upon arrival,

subjects were randomly assigned to cubicles. Initial instructions informed subjects

that the experiment consisted of three parts. Detailed instructions of each part would

only be given at the start of that part. Each part corresponded to one of the three

markets (monopoly, duopoly, and quadropoly). Participants had adequate time to

read the instructions. The instructions can be found in Appendix A.1. Participants

were allowed to ask clarifying questions, which were answered in private. For each

market, subjects needed to answer several control questions. Subjects should under-

stand the price, cost, and benefit parameters, and how quality choices might affect

demands. Each subject must answer all control questions correctly to ensure an ad-

equate understanding before the start of each part of the experiment. The control

questions can be found in Appendix A.2.

When making a decision, each subject was informed of the incentive-configuration

parameters, as well as profits and the patient benefits as functions of the quality

that can be one in {0, 1, 2..., 10}. In monopoly, each subject had 100 patients. In

duopoly and quadropoly, a subject had a logistic demand which depended on the

quality profile of matched subjects. The zTree program provided a calculator, which

allowed subjects to practice inputting own and other players’ qualities to calculate the

resultant demands (number of patients), profits, and patient benefits for all players.

A screen shot of the calculator is in Appendix A.3. After subjects played the 8

incentive-configuration games in a market, they were informed of their and their

paired subject’s or subjects’ total demands (number of patients), and total patient

benefits in the 8 games. Data about individual games in each incentive configuration
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were not given. Our design gets each of 361 subjects to play 24 games. We have taken

steps to guard against “experimenter demand effects” (see, for example, Charness,

Gneezy, and Kuhn (2012) by not telling subjects all three markets in advance.

One subject was randomly chosen to be a monitor. After the experiment, the

monitor verified that a money order equal to the total patient benefit was issued by

the Finance Department of the University of Cologne. The money order was payable

to an organization, Christoffel Blindenmission, which supports ophthalmologists per-

forming cataract surgeries in a hospital in Masvingo, Zimbabwe. The money order

was sealed in an envelope, and the monitor and an experiment assistant then de-

posited the envelope in the nearest mailbox. The monitor was paid an additional e5.

Subjects were told in advance that the experimental patient benefits would be for real

patients, but not for those in a developing country to avoid motives of compassion and

rather to remain in a health context. A similar procedure for making patient benefits

meaningful to subjects has been applied by, for example, Hennig-Schmidt, Selten,

and Wiesen (2011), Kesternich, Schumacher, and Winter (2015), and Brosig-Koch,

Hennig-Schmidt, Kairies-Schwarz, and Wiesen (2017).

Sessions lasted, on average, for about 90 minutes, and subjects earned, on average,

about e14.20 (e18.20 including show-up fee). The average benefit per patient was

about e8.10. In total, e2,923.60 were transferred to the Christoffel Blindenmission.

Average costs for a cataract operation for adults are about e30, so our experiment

supported about 100 surgeries.10

10For more on activities of the Christoffel Blindenmission related to cataract, see
www.cbm.de/spendenCBM Spenden Sie fuer Operationen am Grauen Star-494570.html.
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3.4 Estimation of altruism distributions from experimental

data

We first present data of subjects’ quality choices. Then we describe how we esti-

mate structurally the α altruism distribution for each market and in each incentive

configuration.

3.4.1 Descriptive statistics on subjects’ quality choices

Table 3.2 presents some summary statistics of the 361 subjects’ quality choices in

the 8 incentive-configuration games in the 3 markets. Clearly, subjects chose higher

qualities in duopoly and quadropoly than in monopoly, and the standard deviations of

subjects’ quality choices were also much smaller. Raising the intensity of competition

from duopoly to quadropoly increases qualities only slightly more. Within a market,

quality variations between the 8 incentive-configuration games seem quite modest.

Table 3.2: Means and standard deviations of subjects’ quality choices

Incentive configurations Monopoly Duopoly Quadropoly
mean SD mean SD mean SD

(p = 10, c = 0.075, b = 0.5) 4.17 2.99 7.75 1.58 8.26 1.40
(p = 10, c = 0.075, b = 1) 4.15 2.99 7.98 1.59 8.31 1.56
(p = 10, c = 0.1, b = 0.5) 3.79 2.79 6.94 1.35 7.34 1.34
(p = 10, c = 0.1, b = 1) 3.73 2.80 7.09 1.52 7.46 1.34
(p = 15, c = 0.075, b = 0.5) 4.82 3.43 8.82 1.53 9.09 1.32
(p = 15, c = 0.075, b = 1) 4.83 3.41 8.98 1.60 9.15 1.43
(p = 15, c = 0.1, b = 0.5) 4.51 3.27 8.19 1.63 8.55 1.47
(p = 15, c = 0.1, b = 1) 4.44 3.19 8.40 1.62 8.65 1.61

Total 4.31 3.14 8.02 1.70 8.35 1.57

For each of the 24 games, we draw the quality histograms; they are in Figures

3·1 to 3·3, and the actual frequency of each quality between 0 and 10 is written at

the top of each vertical bar. These frequencies will be used for estimating subjects’

altruism parameter.
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Figure 3·1: Quality histograms in monopoly
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Figure 3·2: Quality histograms in duopoly
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Figure 3·3: Quality histograms in quadropoly
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Clearly, the 24 histograms show higher qualities in duopoly and quadropoly than

monopoly. Nevertheless, the difference between duopoly and quadropoly does not

appear to be very significant. Quality frequencies are needed for the estimation of

altruism parameters, to which we now turn.

3.4.2 Nonparametric estimation of altruism distribution by Bayes-Nash

equilibria

We adapt a nonparametric estimation method developed by Guerre, Perrigne, and

Vuong (2000) (abbreviated to GPV) for first-price auctions. We use duopoly to

illustrate the adaptation. First, from the equilibrium strategy q∗ in (3.10), we invert

and obtain α in terms of the equilibrium quality q∗(α), the utility function U , and

incentive parameters:

α =

{
2cq∗(α)U ′(p− cq∗(α)2)

∫ α
α
S(q∗(α); q∗(x))dF (x)

−U(p− cq∗(α)2)×
∫ α
α
bS(q∗(α); q∗(x))[1− S(q∗(α); q∗(x))]dF (x)

}
{

b
∫ α
α
S(q∗(α); q∗(x))dF (x)

+bq∗(α)
∫ α
α
bS(q∗(α); q∗(x))[1− S(q∗(α); q∗(x))]dF (x)

} . (3.12)

Given an equilibrium q∗, the uncertainty concerning a rival subject’s altruism is equiv-

alent to the uncertainty of the rival’s quality choices. From Remark 3.2.1, we can

replace the altruism distribution F by the equilibrium quality distribution G∗. Then,

using q to denote the equilibrium quality chosen by the subject with altruism param-

eter α, we rewrite (3.12) as

α =
(
2cqU ′(p− cq2)

10∫
0

S(q;x)dG∗(x)− U(p− cq2)×
10∫

0

bS(q;x)[1− S(q;x)]dG∗(x)
)
/

(
b

10∫
0

S(q;x)dG∗(x) + bq

10∫
0

bS(q;x)[1− S(q;x)]dG∗(x)
)
. (3.13)

This says that given an equilibrium q∗, we can use the equilibrium quality distri-
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bution G∗ to express a subject’s altruism parameter α in terms of his quality choice

q. We estimate the α distribution by recovering their values from subjects’ qual-

ity choices. The estimated α is a nonlinear map of the chosen quality q, and the

equilibrium quality distribution G∗, given the game’s parameters.

The argument suggests that we adapt the GPV two-step method as follows. In

Step 1, the densities of equilibrium quality distribution G∗ are estimated by the

empirical quality densities in each market-incentive-configuration constellation. Let

ĝ(x) denote the empirical quality densities; it is the fraction of subjects (out of the

total of 361) who have chosen quality x = 0, 1, ..., 10. We use ĝ(x) to estimate the

G∗’s densities. The empirical densities of the 24 games are those in Figures 3·1 to

3·3.

The term
∫ 10

0
S(q;x)dG∗(x) in (3.13) is now estimated by

10∑
x=0

S(q;x)ĝ(x); similarly,

the term
∫ 10

0
bS(q;x)[1 − S(q;x)]dG∗(x) in (3.13) is estimated by

10∑
x=0

bS(q;x)[1 −

S(q;x)]ĝ(x). For each subject i = 1, ..., 361, we use (3.13) to calculate:

α̂i =
(
2cqiU

′(p− cq2
i )

10∑
x=0

S(qi;x)ĝ(x)− U(p− cq2
i )

10∑
x=0

bS(qi;x)[1− S(qi;x)]ĝ(x)
)
/

(
b

10∑
x=0

S(qi;x)ĝ(x) + bqi

10∑
x=0

bS(qi;x)[1− S(qi;x)]ĝ(x)
)
, (3.14)

which is an estimate of subject i’s α. In Step 2, we use the sample of estimated α’s

to estimate nonparametrically the altruism distribution:

F̂ (a) =
1

361

361∑
i=1

I{α̂i ≤ a}. (3.15)

where I is the indicator function that takes the value 1 when the condition inside the

curly brackets is satisfied, and 0 otherwise.

The estimation procedures are similar for monopoly and quadropoly. In monopoly,

we use the first-order condition (3.4) to recover a subject’s α value from his quality
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choice in any given incentive-market configuration. In other words, in the first step,

for each i = 1, ..., 361, we compute

α̂i =
2cqiU

′(p− cq2
i )

b
.

Then these estimated α’s are used to estimate the distribution of altruism in the

second step.

For quadropoly, in the first step, we compute the following

α̂i =
(
2cqiU

′(p− cq2
i )

10∑
x,y,z=0

S(qi;x, y, z)l̂(x)l̂(y)l̂(z)

− U(p− cq2
i )

10∑
x,y,z=0

bS(qi;x, y, z)[1− S(qi;x, y, z)]l̂(x)l̂(y)l̂(z)
)
/

(
b

10∑
x,y,z=0

S(qi;x, y, z)l̂(x)l̂(y)l̂(z)

+ bqi

10∑
x,y,z=0

bS(qi;x, y, z)[1− S(qi;x, y, z)]l̂(x)l̂(y)l̂(z)
)
,

(3.16)

where l̂(x), x = 0, 1, ..., 10 is the empirical density function of quality in quadropoly.

In the second step, these estimated α’s are used to estimate the altruism distribution

K.

Given preferences and a symmetric equilibrium, our Bayesian game with indepen-

dent values is identified by the equilibrium quality being monotone in altruism. The

basic games and identification are the same as in GPV, whose two-step estimator

for bidders’ valuation distribution in first-price auctions is consistent and achieves

optimal convergence rate with a properly chosen bandwidth. These results depend

on the assumption that the unknown valuation distribution is smooth. However,

subjects in our game choose from only 11 possible qualities. We therefore can only

estimate the unknown altruism distribution by histograms with 11 possible values.
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Even with more subjects, we would be unable to approximate a smooth distribution

by histograms with a limited number of values.

3.4.3 Estimates of altruism distributions

We assume that the utility function U is linear: U(x) = x. In this case, α is the

marginal rate of substitution between patient benefit bq and profit p− cq2. Our main

results will be based on this structural assumption. When U is linear, for monopoly

we have

α =
2cq

b
, (3.17)

for duopoly, we have

α =
2cq
∫ 10

0
S(q;x)dG(x)− (p− cq2)×

∫ 10

0
bS(q;x)[1− S(q;x)]dG(x)

b
∫ 10

0
S(q;x)dG(x) + bq

∫ 10

0
bS(q;x)[1− S(q;x)]dG(x)

. (3.18)

For brevity, we do not write down the corresponding expression for α under quadropoly.

We have also used the alternate assumption of the utility function exhibiting a

constant coefficient of absolute risk aversion.11 The estimation results for U(x) ≡

1−exp(−rx) are in Appendix B. There we set the coefficient of absolute risk aversion

r at 0.10. (We have also obtained results for r set at 0.05 and 0.15. Results turn out

to be similar and are available from the authors.) The drawback is that the marginal

rate of substitution between patient benefit and profit varies with the quality level,

so the estimated value of α is not so easy to interpret.

We first present summary statistics of the estimated altruism distributions. Ta-

ble 3.3 lists the means of the estimated α distributions in monopoly. We use these

11CARA is a common functional form for risk preferences in the literature. See, for example,
Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2018). It has been used for estimating risk
preferences from individual-level data in contexts such as property insurance (Cohen and Einav
(2007); Barseghyan, Molinari, and Teitelbaum (2016)), game shows ( Beetsma and Schotman (2001);
Andersen, Harrison, Lau, and Rutström (2008)), and health insurance (Einav, Finkelstein, Ryan,
Schrimpf, and Cullen (2013); Handel and Kolstad (2015)). In experiments, the CARA specification
also has been used for estimating risk preferences (Harrison and Rutström (2008)).



108

Table 3.3: Estimated means of α in monopoly

Incentive configurations mean

(p = 10, c = 0.075, b = 0.5) 1.252
(p = 10, c = 0.075, b = 1) 0.622
(p = 10, c = 0.1, b = 0.5) 1.515
(p = 10, c = 0.1, b = 1) 0.746
(p = 15, c = 0.075, b = 0.5) 1.446
(p = 15, c = 0.075, b = 1) 0.725
(p = 15, c = 0.1, b = 0.5) 1.805
(p = 15, c = 0.1, b = 1) 0.889

estimated monopoly means as normalization. In duopoly and quadropoly, for each

incentive configuration, we subtract the estimated monopoly mean from each esti-

mated α. This normalization uses the estimated monopoly mean as the origin. In

Table 3.4, we present the normalized means and standard deviations of the 24 altru-

ism distributions. Due to the normalization, each reported monopoly α distribution

in Table 3.4 has a zero mean. Across a row in Table 3.4, for example, the magnitude

−1.335 for the duopoly α mean in incentive configuration (p = 10, c = 0.075, b = 0.5)

says that when the market changes from monopoly to duopoly, the average altruism

parameter has decreased by 1.335.

Table 3.4: Normalized means and standard deviations of α distribu-
tions

Incentive configurations Monopoly Duopoly Quadropoly
mean SD mean SD mean SD

(p = 10, c = 0.075, b = 0.5) 0 0.898 -1.335 0.939 -1.579 0.766
(p = 10, c = 0.075, b = 1) 0 0.448 -0.812 0.612 -0.985 0.657
(p = 10, c = 0.1, b = 0.5) 0 1.117 -1.378 0.903 -2.233 1.710
(p = 10, c = 0.1, b = 1) 0 0.559 -0.882 0.725 -1.069 0.822
(p = 15, c = 0.075, b = 0.5) 0 1.028 -1.980 0.928 -2.382 0.980
(p = 15, c = 0.075, b = 1) 0 0.512 -1.244 0.767 -1.471 1.138
(p = 15, c = 0.1, b = 0.5) 0 1.308 -2.001 1.327 -2.428 1.147
(p = 15, c = 0.1, b = 1) 0 0.638 -1.207 0.827 -1.485 1.016
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The striking observation is that across each row, the average altruism has de-

creased from monopoly to duopoly, and then decreased further more from duopoly

to quadropoly! This is clear evidence that competition reduces altruism on average.

Standard deviations also tend to be different, but the pattern is not so uniform.

We now present the estimated α’s and their frequencies. Each of the α estimate

is a nonlinear transformation of the chosen quality and the empirical quality distri-

bution, and market and incentive-configuration parameters. The frequency for each

α estimate is the same as the quality frequency, which are in Figures 3·1 to 3·3, so we

do not write the frequencies again. We maintain the normalization by measuring α

estimates from the means, which are in Table 3.3. In Table 3.5, we list the normalized

estimated α’s corresponding to each quality between 0 and 10.

Table 3.5: Estimated monopoly α values, normalized at mean

q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 q = 10

(p = 10, c = 0.075, b = 0.5)
-1.252 -0.952 -0.652 -0.352 -0.052 0.248 0.548 0.848 1.148 1.448 1.748

(p = 10, c = 0.075, b = 1)
-0.622 -0.472 -0.322 -0.172 -0.022 0.128 0.278 0.428 0.578 0.728 0.878

(p = 10, c = 0.1, b = 0.5)
-1.515 -1.115 -0.715 -0.315 0.085 0.485 0.885 1.285 1.685 2.085 2.485

(p = 10, c = 0.1, b = 1)
-0.746 -0.546 -0.346 -0.146 0.054 0.254 0.454 0.654 0.854 1.054 1.254

(p = 15, c = 0.075, b = 0.5)
-1.446 -1.146 -0.846 -0.546 -0.246 0.054 0.354 0.654 0.954 1.254 1.554

(p = 15, c = 0.075, b = 1)
-0.725 -0.575 -0.425 -0.275 -0.125 0.025 0.175 0.325 0.475 0.625 0.775

(p = 15, c = 0.1, b = 0.5)
-1.805 -1.405 -1.005 -0.605 -0.205 0.195 0.595 0.995 1.395 1.795 2.195

(p = 15, c = 0.1, b = 1)
-0.889 -0.689 -0.489 -0.289 -0.089 0.111 0.311 0.511 0.711 0.911 1.111

The frequencies of these normalized estimated α’s are in the following histograms

in Figure 3·4. In these histograms, and later ones to be presented, we do not use
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identical scales on the horizontal axis. The 8 histograms exhibit various spreads. Due

to the nonlinear transformation from the observed qualities to the estimated α, the

actual values differ considerably across different incentive configurations. However,

these histograms show that altruism distributions are diverse.

Next, we turn to estimated duopoly α (again normalized by the corresponding

monopoly mean) in Table 3.6; we do not report those α when the corresponding

quality was chosen by none of the subjects. The corresponding histograms are in

Figure 3·5. The frequency for each α estimate is the same as the corresponding

quality frequency, which is in Figure 3·2.

Table 3.6: Estimated duopoly α values, normalized at monopoly mean

q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 q = 10

(p = 10, c = 0.075, b = 0.5)
-10.486 - -5.422 -4.272 -3.430 -2.758 -2.186 -1.668 -1.177 -0.689 -0.187

(p = 10, c = 0.075, b = 1)
-8.148 - -3.359 -2.603 -2.079 -1.682 -1.359 -1.071 -0.792 -0.506 -0.187

(p = 10, c = 0.1, b = 0.5)
- -7.4 - -4.289 -3.364 -2.608 -1.942 -1.321 -0.710 -0.088 0.559

(p = 10, c = 0.1, b = 1)
-8.824 -4.912 - -2.613 -2.038 -1.607 -1.244 -0.900 -0.542 -0.141 0.332

(p = 15, c = 0.075, b = 0.5)
- - - -6.430 -5.252 -4.349 -3.613 -2.979 -2.403 -1.851 -1.296

(p = 15, c = 0.075, b = 1)
-11.376 -6.272 -4.496 -3.569 -2.923 -2.443 -2.079 -1.772 -1.489 -1.213 -0.900

(p = 15, c = 0.1, b = 0.5)
-15.714 - - -6.486 -5.255 -4.284 -3.468 -2.744 -2.071 -1.412 -0.741

(p = 15, c = 0.1, b = 1)
-11.589 - - -3.956 -3.156 -2.551 -2.082 -1.688 -1.326 -0.967 -0.568
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Figure 3·4: Histograms of estimated α in each incentive configuration
in monopoly
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The estimated values of α are very different from those in monopoly. The range has

become much wider. From the histograms, we see that the higher values of estimated

α’s have higher densities, but all of these higher values are below the corresponding

monopoly mean. Subjects have become much less altruistic. Besides the stronger

concentration, the α distributions appear to be strongly left-skewed in duopoly.

Table 3.7 presents the (normalized) α estimates for quadropoly, and Figure 3·6

presents the histogram. The frequency for each α estimate is the same as the corre-

sponding quality frequency, which is in Figure 3·3. Similar to duopoly, quadropoly

α distributions show a stronger concentration below the normalized monopoly mean

and are left-skewed, as in duopoly.

Table 3.7: Estimated quadropoly α values, normalized at monopoly
mean

q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 q = 10

(p = 10, c = 0.075, b = 0.5)
-11.194 - - - -3.733 -3.079 -2.540 -2.073 -1.648 -1.245 -0.845

(p = 10, c = 0.075, b = 1)
-10.619 - -3.753 -2.838 -2.258 -1.843 -1.521 -1.253 -1.015 -0.788 -0.550

(p = 10, c = 0.1, b = 0.5)
-21.505 -11.209 -7.642 - -4.539 -3.651 -2.941 -2.322 -1.730 -1.095 -0.331

(p = 10, c = 0.1, b = 1)
-10.742 - - -2.866 -2.258 -1.815 -1.460 -1.154 -0.864 -0.560 -0.197

(p = 15, c = 0.075, b = 0.5)
-16.391 - - - -5.598 -4.707 -3.992 -3.390 -2.860 -2.374 -1.908

(p = 15, c = 0.075, b = 1)
-15.717 - - -4.191 -3.362 -2.783 -2.346 -1.995 -1.698 -1.429 -1.163

(p = 15, c = 0.1, b = 0.5)
-16.729 - - -6.908 -5.671 -4.721 -3.944 -3.277 -2.678 -2.117 -1.566

(p = 15, c = 0.1, b = 1)
-15.883 -8.235 -5.619 -4.259 -3.403 -2.796 -2.329 -1.947 -1.614 -1.305 -0.987
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Figure 3·5: Histograms of estimated α in each incentive configuration
in duopoly
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Estimations show striking differences between monopoly α distributions and the

duopoly and quadropoly α distributions. Whereas preferences tend to exhibit diver-

sity in monopoly, they are less diverse in duopoly, and becoming less so in quadropoly.

Densities of estimated α’s tend to vary quite a lot in monopoly, but a lot less so in

duopoly and quadropoly. Moreover, estimated α distributions tend to be left-skewed

and being more concentrated at the high end of the distribution.

3.4.4 Statistical tests on altruism distributions

We can perform standard two-sample Kolmogorov-Smirnov (KS) tests on the (null)

hypothese that two estimated altruisms are drawn from the same continuous distri-

bution.12 The test statistic, KS distance, is the largest absolute difference between

two empirical distribution functions; see, for example, Conover (1998). For two es-

timated α distributions, say F̂1 and F̂2, their KS distance is defined by KS1,2 ≡

supa |F̂1(a)− F̂2(a)|. We have plotted the 24 estimated α distributions in Figure 3·7.

Note that these are plots of actual estimated α’s, not normalized at the mean of the

monopoly α.

In each of the 8 incentive configurations, we compare 3 α-distribution pairs: i)

monopoly versus duopoly (M-D), ii) monopoly versus quadropoly (M-Q), and iii)

duopoly versus quadropoly (D-Q). Table 3.8 presents the KS distances for all 24 pairs;

all the p-values are very small (reported to be less than 2.2×10−16 by the softwareR, so

omitted in the table). Except in one incentive configuration (p = 10, c = 0.1, b = 0.5),

the KS distances are highest for M-Q, followed by M-D, and then D-Q. For incentive

configuration (p = 10, c = 0.1, b = 0.5), the only difference is that D-Q distance is

higher than M-D distance. The intepretation is that competition has an increasing

effect on the reduction of altruim distribution. Because the p-values are so small, we

12Whereas the KS test is on drawn samples, our α’s are estimates. We did not manage to obtain
the α’s sampling distributions, so our KS tests would not take sampling errors into account. However,
as we show below, the rejections are very strong, so it is unlikely that KS tests performed poorly.
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Figure 3·6: Histograms of estimated α in each incentive configuration
in quadropoly
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Figure 3·7: Distributions of estimated α in each market and in each
incentive configuration
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reject the equality of the estimated α distributions in all comparisons.

Table 3.8: KS distances of α distributions between two markets for
each incentive configuration

pair KS distance

p = 10, c = 0.1, b = 1
M-D 0.587
M-Q 0.781
D-Q 0.399

p = 10, c = 0.075, b = 1
M-D 0.654
M-Q 0.825
D-Q 0.388

p = 15, c = 0.1, b = 0.5
M-D 0.662
M-Q 0.828
D-Q 0.504

p = 15, c = 0.1, b = 1
M-D 0.737
M-Q 1
D-Q 0.532

pair KS distance

p = 10, c = 0.1, b = 0.5
M-D 0.521
M-Q 0.873
D-Q 0.554

p = 10, c = 0.075, b = 0.5
M-D 0.595
M-Q 0.742
D-Q 0.399

p = 15, c = 0.075, b = 1
M-D 1
M-Q 1
D-Q 0.559

p = 15, c = 0.075, b = 0.5
M-D 0.831
M-Q 1
D-Q 0.679

Next, for each of the 3 markets, we consider α distributions from the 8 different

incentive configurations. There are 28 pairs for comparisons in each market. Table

3.9 presents the KS distances for these distributions. There, pairs are labeled by

the order in which they were presented in Section 3.3.1, on page 95; for instance,

the label 1-2 denotes the incentive-configuration pair (p = 10, c = 0.1, b = 1) and

(p = 10, c = 0.075, b = 1). The KS distances vary across different pairs. All p-

values are much smaller than 0.01 (and have been omitted in the table); we reject the

hypothesis that any pair of the estimated α distributions are identical.
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Table 3.9: KS distances of α distributions between two markets for
each incentive configuration

KS distances
pair Monoply Duopoly Quadropoly

1-2
1-3
1-4
1-5
1-6
1-7
1-8
2-3
2-4
2-5
2-6
2-7
2-8
3-4
3-5
3-6
3-7
3-8
4-5
4-6
4-7
4-8
5-6
5-7
5-8
6-7
6-8
7-8

0.227
0.512
0.169
0.432
0.382
0.152
0.449
0.582
0.327
0.540
0.440
0.183
0.507
0.465
0.144
0.365
0.582
0.271
0.379
0.288
0.252
0.404
0.252
0.526
0.155
0.376
0.149
0.471

0.327
0.329
0.183
0.313
0.199
0.715
0.413
0.305
0.199
0.482
0.307
0.648
0.282
0.504
0.177
0.216
0.504
0.504
0.346
0.307
0.532
0.335
0.374
0.681
0.681
0.612
0.307
0.482

0.260
0.382
0.399
0.440
0.244
0.803
0.803
0.343
0.343
0.393
0.285
0.748
0.748
0.343
0.255
0.341
0.557
0.557
0.335
0.463
0.607
0.607
0.335
0.499
0.498
0.739
0.739
0.595

3.4.5 Counterfactual monopoly qualities from estimated duopoly and

quadropoly altruism

Whereas Table 3.2 and Figures 3·1 to 3·3 report the outcomes, our structural estima-

tion of α distributions in 3.4.2 can separately identify the effects (i) due to preferences

change and (ii) due to market-incentive changes. However, results in Subsections

3.4.2 and 3.4.3 are obtained without explicit derivations of Bayes-Nash equilibria.

One could not easily compute duopoly or quadropoly equilibrium quality distribu-

tions under the counterfactual that preference distributions remained unchanged at

the monopoly configuration.
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Instead, we perform counterfactual of the following sort. We use the estimated

altruism distributions in an incentive configuration in duopoly or quadropoly to cal-

culate the optimal qualities under monopoly. That is, we take α values and their

frequencies from Tables 3.6 and 3.7 and feed them into the monopoly first-order

condition (3.4) to calculate optimal qualities. The next two figures show the coun-

terfactual histograms of monopoly qualities when α’s are those identified in duopoly

and quadropoly. In each counterfactual computation, the optimal qualities need not

be integers, and we have limited the optimal qualities to be nonnegative. (Those

estimated α in duopoly and quadropoly that are negative have been replaced by 0 to

ensure a nonnegative optimal monopoly quality.)

Differences between empirical monopoly qualities and counterfactual qualities are

striking. Histograms in Figures 3·8 and 3·9 have no resemblance to those in the

empirical quality distributions in Figure 3·1. This indeed indicates that markets and

incentives do change preferences.

3.5 Reduced-form analysis of experimental data

We now present reduced-form analysis of subjects’ quality choices. Table 3.2 already

describes the 24 quality means and standard deviations for the 3 markets and 8

incentive configurations, and Figures 3·1 to 3·3 show the quality histograms. Here,

we first present some aggregated descriptive statistics, and then regression results.

A subject makes 8 quality choices in each market. Of these 8, four of them are

made with one fixed incentive-configuration parameter. For example, under monopoly

at p = 10, a subject chooses 4 qualities, while cost and patient-benefit parameters

vary between low and high. We record the average of these 4 qualities for each

subject, and then we find the average of all 361 subjects (the average of a total

of 1, 444 quality choices). In Table 3.10, the first entry 3.959 records the mean of
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Figure 3·8: Counterfactual monopoly quality histogram from duopoly
altruism α
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Figure 3·9: Counterfactual monopoly quality histogram from
quadropoly altruism α
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subjects’ average quality choices at p = 10, and 2.900 is the corresponding standard

deviation. Across that row, when the price is set at 15, the higher level, the mean

becomes 4.652, and the standard deviation becomes 3.327. The relative difference,

0.175, equals (4.652−3.959)/3.959. The rest of Table 3.10 presents the quality-choice

averages for each parameter in each market.13

From the first three rows with data entries in Table 3.10, average quality is higher

in each market when the price is set at the higher level, but the relative difference

declines as the market becomes more competitive. From the second set of data entries,

average quality becomes lower when cost is set at the higher level, although the

relative difference remains almost the same across markets. For patient benefits,

quality averages exhibit a different pattern. For monopoly, a higher patient benefit

results in a slightly lower average quality, whereas for duopoly and quadropoly, a high

patient benefit results in slightly higher quality averages. But in all three markets,

the relative difference seems very small.

Table 3.10: Descriptives on the variations in price, costs, and patient
benefit

Low parameter level High parameter level
(N=1,444, per market) (N=1,444, per market) Relative

Parameter Mean st. dev. Mean st. dev. difference

Price (p = 10; p = 15)
Monopoly 3.959 2.900 4.652 3.327 0.175
Duopoly 7.442 1.573 8.595 1.625 0.155
Quadropoly 7.841 1.479 8.862 1.484 0.130

Cost (c = 0.075; c = 0.1)
Monopoly 4.493 3.227 4.118 3.038 -0.083
Duopoly 8.380 1.660 7.657 1.662 -0.086
Quadropoly 8.704 1.489 8.000 1.564 -0.081

Patient benefit (b = 0.5; b = 1)
Monopoly 4.323 3.150 4.287 3.128 -0.008
Duopoly 7.925 1.668 8.112 1.726 0.024
Quadropoly 8.310 1.523 8.393 1.608 0.010

13Table 3.10 aggregates the information in Table 3.2, which contains quality-choice means and
standard deviations in each incentive-configuration-market constellation.
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We next use ordinary least square regressions to study the effect of market com-

petition and incentive-configurations:

qi = β0 + β1D + β2Q+ γ1Price+ γ2Cost+ γ3Benefit+ ψXi + εi (3.19)

where qi, the dependent variable, is subject i’s quality choice, and β0 is the intercept.

Experimental manipulations are defined by a set of dummies. Regarding monopoly as

the reference market, we use the dummy variables D and Q to represent duopoly and

quadropoly, respectively; a dummy is set to 1 when the quality on the left-hand side

has been chosen under the corresponding market condition. The Price, Cost, and

Benefit variables are also dummies. The variable Price takes the value of 1 when

price p is equal to the high level of 15; it takes the value at 0 otherwise. Similarly,

Cost takes the value of 1 when c = 0.1, and Benefit takes the value of 1 when patient

benefit b = 1; otherwise, they are 0. Equation (3.19) includes a vector of additional

control Xi of market orders (see Table 3.1) and session dummies, and finally εi is an

error term. Model (1) in Table 3.11 presents the estimation results. In Model (2), we

add market and incentive-configuration interaction terms.

From Table 3.11, quality is significantly higher in duopoly and quadropoly com-

pared to monopoly, and the magnitudes are similar in both models. Wald tests

indicate a highly significant difference between Duopoly and Quadropoly (p < 0.001).

For incentive configurations with a high price, a low cost, and a high patient benefits,

qualities are significantly higher; see Model (1). With interaction terms in Model

(2), the effects of price and cost remain qualitatively similar but the magnitudes

have declined. The average benefit effect becomes insignificant; this suggests that the

patient-benefit effect may be market specific. Using Wald tests, we find that market

effects are significantly larger than market-configuration effects (at p < 0.001).
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Table 3.11: Quality regressions

Model (1) (2)

Duopoly (D) 3.713*** 3.545***
(0.158) (0.157)

Quadropoly (Q) 4.046*** 3.987***
(0.157) (0.156)

High price (= 1 if p = 15) 0.955*** 0.693***
(0.029) (0.050)

High cost (= 1 if c = 0.1) -0.601*** -0.375***
(0.024) (0.046)

High benefit (= 1 if b = 1) 0.078*** -0.036
(0.024) (0.043)

Duopoly × High price 0.461***
(0.066)

Quadropoly × High price 0.328***
(0.061)

Duopoly × High cost -0.348***
(0.056)

Quadropoly × High cost -0.328***
(0.055)

Duopoly × High benefit 0.224***
(0.056)

Quadropoly × High benefit 0.119**
(0.055)

Market order and session dummies Yes Yes

Constant 3.971*** 4.047***
(0.400) (0.399)

Observations 8,664 8,664
Subjects 361 361
R2 0.445 0.447

Notes: OLS; robust standard errors clustered for subjects in brackets;
*** for p < 0.01; ** for p < 0.05
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From Models (1) and (2) results, more intense market competition has imple-

mented higher equilibrium qualities. An interpretation of an unqualified success of

competition (under regulated prices) on implementing higher qualities, however, is

misguided. Bayes-Nash equilibrium qualities depend on preferences, markets, and

incentive configurations. Our structural estimation supports reduction in altruism,

which generally reduces subjects’ qualities in equilibrium. The scenario is more ap-

propriately described as a tug of war—between altruism reduction and competition-

incentive disciplinary powers. In our setting, competition-incentive powers have won

over altruism reduction.

3.6 Concluding remarks

Using behavioral data from an experiment in a health frame, we show that the altruis-

tic preferences are affected by markets and incentives. We model subjects’ preferences

through a linear utility function whose marginal rate of substitution is interpreted as

the degree of altruism. Subjects play a simultaneous-move incomplete information

game when they compete with each other. Using the experimental data, we estimate

the altruism distribution in each market-incentive environment. The estimation re-

sults show that subjects are less altruistic when they have to compete against each

other.

Although our conclusion is that altruism has changed, we have maintained certain

assumptions, both in the theoretical model and in the experiment. The structural

model does require some consistency in preferences between different markets and

incentive configurations. So to speak, we can estimate changing preferences only

if those changes are not so drastic. We narrow down our study to one altruism

parameter.

The assumption that individuals are interested only in profits and patient benefits



126

is maintained throughout. We would not be in a position to test if subjects would

become spiteful, winning oriented, or fair-minded when they participate in duopoly or

quadropoly. Our design does minimize these contaminations, however. We have only

told subjects very sparse outcome information. Subjects never have learned that they

have been “disadvantaged” by the rival, that their qualities have been higher or lower

than rivals’, or that their choices turn out to be similar or very different from the

population averages. We have limited subjects’ ability to learn about each other by

implementing a simultaneous-move game. Interaction between subjects and learning

about the population are both impossible in our design. Every attempt has been

made to ensure that a subject is playing against another randomly drawn subject,

and only once.

We make the point that economic institutions may affect preferences in nontrivial

ways. Economic institutions may shape preferences just as climate, cultural-historical

events, physiology, and genetics.
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Appendix A Materials for the experiment

A.1 Instructions

You are taking part in an economic decision-making experiment. Please carefully read

the instructions. It is very important that you do not speak with other participants for

the duration of the experiment. If you break these rules, you could be excluded from

the experiment and not receive any payment. If you do not understand something,

please take another look at the instructions. If you still have questions, please raise

your hand. We will come to you at your cubicle and answer your questions in private.

You can earn money in the course of the experiment. The amount of your earnings

depends on your decisions and decisions made by other participants. At no time will

you be told the names of the other participants. They will also not at any time be

informed about your identity.

For showing up you will receive a fee of EUR 2.50.

All monetary amounts in this experiment are expressed in Taler, whereby the

following applies: Taler 100 = EUR 1.

At the end of the experiment, the amount of money you earned will be paid to

you in cash. Your decisions are made on the computer screen present in your cubicle.

All data and answers will be evaluated anonymously. You were asked to draw your

own personal cubicle number in order to maintain anonymity.

The experiment will last around 60 minutes and consists of three parts. Before

each of the three parts you will receive detailed instructions and be asked to answer

control questions pertaining to these instructions. Please note: Neither your decisions

in the first part nor in the second part of the experiment have an influence on the

other parts of the experiment.

We will ask you to answer a few questions at the end of the experiment. You will

receive an additional payment for answering this questionnaire.
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First part of the Experiment. In the first part of experiment, you will take on

the role of a physician and make decisions about the treatment of various patients.

In total, you will determine the quality of care that you would like provide for eight

different types of patients. For each of these patients you can choose quality of 0, 1,

2, 3, 4, 5, 6, 7, 8, 9 or 10.

The demand for medical care by the various patient types is determined only after

you have made your decisions about the quality of care for all eight types.

[Duopoly: You are randomly matched with another participant. This participant

also decides in the role of a physician. Also this physician determines the quality

for the same eight types of patients. The matching with this participants remains

throughout the entire second part of the experiment. You and the other physician

chose the quality simultaneously and independently from each other.]

[Quadropoly: You are randomly matched with three other participants. These par-

ticipants also decide in the role of a physicians. Also these physicians determine the

quality for the same eight types of patients. The matching with these participants re-

mains throughout the entire third part of the experiment. You and the other physicians

chose the quality simultaneously and independently from each other.]

In total, 100 patients of each type demand medical care. It will only be determined

after you have made your decisions about the quality of care for all eight types how

many of the 100 patients of each type wish to seek treatment from you.

[Duopoly: Only after you and the other physician, you are matched with, decided

upon the quality of medical treatment for the eight patients, it is determined how many

of the 100 patients seek treatment from you and the other physician.]

[Quadrupoly: Only after you and the others physicians, you are matched with,

decided upon the quality of medical treatment for the eight patients, it is determined

how many of the 100 patients seek treatment from you and the other physicians.]
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Earnings. For each patient who seeks medical care from you, you receive a lump

sum that is independent of the quality of care you have selected. You incur costs

with your selection of the quality of care. These costs depend on the quality level

you choose and can vary between the different patient types. Your earnings for each

patient type are as follows:

Earnings = (Lumpsum-Costs)×Number of patients who seek medical care from you

(when read: your earnings are equal to the difference between the lump sum and the

costs that arise from the quality of care you have chosen, multiplied by the number

of patients who seek treatment from you.)

With the quality of care you choose, you determine not only your own earnings,

but also the utility enjoyed by the patient. The amount of the lump sum, your costs,

your earnings, and the patient’s utility will be displayed on your screen (as illustrated

in Subsection A.3) for each patient type.

Before you choose the quality of care for each patient type, you have the oppor-

tunity to click on the “calculator” button and thereby calculate patients’ potential

demand for treatment (as illustrated in Subsection A.3). You can enter the quality

you would like to provide as many times as you want. Clicking on the “calculate”

button provides you with information about the number of patients who would seek

care given the quality level you entered. In addition, you receive information about

the resulting earnings and patient utility. You define the quality of care that you

wish to provide by entering that quality in the field “your decision” and confirming

this entry with “OK.”

Payment. After the conclusion of the experiment, one of the 8 decisions will be

randomly chosen to function as the relevant round for determining your payment for

this part of the experiment. The earnings from this randomly-chosen round will be
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converted into Euro at the end of the experiment and paid out to you in cash. There

are no participants present in the lab who take on the role of patients. An actual

patient will benefit from the patient utility resulting from the quality of care you

selected in the randomly-chosen round: A monetary value equaling the patient utility

derived from your decision, multiplied by the number of patients who seek treatment

from you, will be transferred to Christoffel Blindenmission Deutschland e.V., 64625

Bensheim. This organization will use the funds to enable the treatment of patients

suffering from cataracts, a serious eye condition.

Control questions. Before proceeding to the decisions in the experiment, we

would like to ask you to answer several control questions. These control questions

should make it easier for you become acquainted with the decision-making situation. If

you have questions about this, please raise your hand. The first part of the experiment

will begin after all participants have correctly answered the control questions.

Payment Procedure. In order to ensure that payments to the participants and

the transfer of the monetary donation to Christoffel Blindenmission Deutschland e.V.

are carried out correctly, an overseer will be randomly chosen after the third part

of the experiment. The overseer receives a fee of Euro 5 in addition to his or her

regular payment from the experiment. The overseer will affirm that the transfer to

Christoffel Blindenmission is correctly carried out by the financial administration of

the University of Cologne. For the transfer to Christoffel Blindenmission, the overseer

will fill out a payment order to Christoffel Blindenmission with the amount, in Euro,

that corresponds to the patient utility realized in the randomly-selected round. The

financial administration of the University of Cologne will then execute payment of the

donation to Christoffel Blindenmission using funds allocated for this experiment. The

form will be placed in a stamped envelope addressed to the financial administration

of the University of Cologne. The overseer and the experimenter will jointly deposit
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this envelope in the nearest mailbox.

The overseer will confirm by signing a form that he or she properly carried out

the assigned tasks, as described above. A copy of this form, as well as a copy of the

confirmation from Christoffel Blindenmission that the donation was received, can be

requested by all participants from the office of the Seminar of Personnel Economics

and Human Resource Management. The copies will be sent by e-mail.

A.2 Control questions of the experiment

Comprehension questions

[The comprehension questions are presented for the market order Monopoly-

Duopoly-Quadropoly. Question that are the same irrespective of the market setting

are marked with an asterisk (*).]

Monopoly

1. In the first part of the experiment, you decide in the role of a about

the treatment of .(*)

2. For how many different patient types, do you decide on quality of treatment

3. How many patients of each type demand medical services in total?

4. How many physicians decide on the quality of medical services beside you in a

market?

5. Is the following statement true or false? “Your quality choice for a patient does

not only determine your profit but also the patient’s benefit.” (*)

� True
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� False

To answer the following two questions, please consider the examples on

your computer screen.

6. Please consider Example A on your computer screen. Please assume that you

would choose a quality of 1 for patients of this type. For one patient, what is

a. your capitation?

b. your costs?

c. your profit?

d. the patient’s benefit?

7. Again, please consider Example A on your computer screen. Please assume,

that you would choose a quality of 4 for the patients of this type (Hint: To

answer the questions below, please use the calculator on your computer screen.).

a. What is the patient demand for your treatment quality?

b. What is your profit?

c. What is the patient’s benefit?

8. Now, please consider Example B on your computer screen. Please assume,

that you would choose a quality of 7 for patients of this type. For one patient,

what is

a. your capitation?

b. your costs?

c. your profit?
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d. the patient’s benefit?

9. Again, please consider Example B on your computer screen. Please assume,

that you would choose a quality of 5 for the patients of this type (Hint: To

answer the questions below, please use the calculator on your computer screen.).

a. What is the patient demand for your treatment quality?

b. What is your profit?

c. What is the patient’s benefit?

10. Which of the following statements is true? (*)

� Your quality choice for a patient type determines the number of patients

of this type who demand your treatment quality. For those patients, who

demand your treatment, the quality choice determines the patient benefit.

In addition, your quality choice determines your profit for the patient type.

� Your quality choice for a patient type determines the number of patients of

that type who demand your treatment quality. While your quality choice

has no influence on the patient benefit it determines your profit.

� Your quality choice for a patient type does not determine the number of

patients of that type who demand your treatment quality. Your quality

choice has no influence on the patient benefit and only determines your

profit.

� None.

11. Please complete the following sentence!
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After the completion of the experiment, it will be determined , which

of your decisions from this part of the experiment is relevant for determining

your payment and the patient’s benefit. (*)

Duopoly

1. For how many different patient types, do you decide on quality of treatment

2. How many patients of each type demand medical services in total?

3. How many physicians decide on the quality of medical services beside you in a

market?

To answer the following two questions, please consider the examples on your

computer screen.

4. Please consider Example A on your computer screen. Please assume that you

would choose a quality of 1 for patients of this type. For one patient, what is

a. your capitation?

b. your costs?

c. your profit?

d. the patient’s benefit?

5. Again, please consider Example A on your computer screen. Please assume,

that you would choose a quality of 4 for the patients of this type. The other

physician would choose a quality of 3 (Hint: To answer the questions below,

please use the calculator on your computer screen.).

a. What is the patient demand for your treatment quality?
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b. What is the patient demand for the other physician’s treatment quality?

c. What is your profit?

d. What is the other physician’s profit?

e. What is the patient’s benefit resulting from your quality decision?

e. What is the patient’s benefit resulting from the other physician’s quality

decision?

6. Now, please consider Example B on your computer screen. Please assume,

that you would choose a quality of 7 for patients of this type. For one patient,

what is

a. your capitation?

b. your costs?

c. your profit?

d. the patient’s benefit?

7. Again, please consider Example B on your computer screen. Please assume,

that you would choose a quality of 5 for the patients of this type. The other

physician would choose a quality of 6 (Hint: To answer the questions below,

please use the calculator on your computer screen.).

a. What is the patient demand for your treatment quality?

b. What is the patient demand for the other physician’s treatment quality?

c. What is your profit?

d. What is the other physician’s profit?
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e. What is the patient’s benefit resulting from your quality decision?

e. What is the patient’s benefit resulting from the other physician’s quality

decision?

Quadropoly

1. For how many different patient types, do you decide on quality of treatment

2. How many patients of each type demand medical services in total?

3. How many physicians decide on the quality of medical services beside you in a

market?

To answer the following two questions, please consider the examples on your

computer screen.

4. Please consider Example A on your computer screen. Please assume that you

would choose a quality of 1 for patients of this type. For one patient, what is

a. your capitation?

b. your costs?

c. your profit?

d. the patient’s benefit?

5. Again, please consider Example A on your computer screen. Please assume,

that you would choose a quality of 4 for the patients of this type. The other

physicians would choose a quality of 3 (Hint: To answer the questions below,

please use the calculator on your computer screen.).

a. What is the patient demand for your treatment quality?



137

b. What is the patient demand for the second physician’s treatment quality?

c. What is the patient demand for the third physician’s treatment quality?

d. What is the patient demand for the fourth physician’s treatment quality?

e. What is your profit?

f. What is the second physician’s profit?

g. What is the third physician’s profit?

h. What is the fourth physician’s profit?

i. What is the patient’s benefit resulting from your quality decision?

j. What is the patient’s benefit resulting from the second physician’s quality

decision?

k. What is the patient’s benefit resulting from the third physician’s quality

decision?

l. What is the patient’s benefit resulting from the fourth physician’s quality

decision?

6. Now, please consider Example B on your computer screen. Please assume,

that you would choose a quality of 7 for patients of this type. For one patient,

what is

a. your capitation?

b. your costs?

c. your profit?
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d. the patient’s benefit?

7. Again, please consider Example B on your computer screen. Please assume,

that you would choose a quality of 5 for the patients of this type. The second

and the third physician would choose a quality of 6. The fourth physician

would choose a quality of 4. (Hint: To answer the questions below, please use

the calculator on your computer screen.).

a. What is the patient demand for your treatment quality?

b. What is the patient demand for the second physician’s treatment quality?

c. What is the patient demand for the third physician’s treatment quality?

d. What is the patient demand for the fourth physician’s treatment quality?

e. What is your profit?

f. What is the second physician’s profit?

g. What is the third physician’s profit?

h. What is the fourth physician’s profit?

i. What is the patient’s benefit resulting from your quality decision?

j. What is the patient’s benefit resulting from the second physician’s quality

decision?

k. What is the patient’s benefit resulting from the third physician’s quality

decision?

l. What is the patient’s benefit resulting from the fourth physician’s quality

decision?
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A.3 Screen shots and experiment parameters

Figure 3·10: Decision screenshot
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Figure 3·11: Duopoly calculator screenshot
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Figure 3·12: Duopoly calculator screenshot with qualities inputted
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Figure 3·13: Quadropoly calculator screenshot
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Table 3.12: Experiment parameters

Quality, q

0 1 2 3 4 5 6 7 8 9 10

Incentive configuration 1 (p = 10, c = 0.1, b = 1)
Capitation, p 10 10 10 10 10 10 10 10 10 10 10
Cost, c(q) 0 0.1 0.4 0.9 1.6 2.5 3.6 4.9 6.4 8.1 10
Profit, p− c(q) 10 9.9 9.6 9.1 8.4 7.5 6.4 5.1 3.6 1.9 0
Patient benefit, q 0 1 2 3 4 5 6 7 8 9 10

Incentive configuration 2 (p = 10, c = 0.075, b = 1)
Capitation, p 10 10 10 10 10 10 10 10 10 10 10
Cost, c(q) 0 0.075 0.3 0.675 1.2 1.875 2.7 3.675 4.8 6.075 7.5
Profit, p− c(q) 10 9.925 9.7 9.325 8.8 8.125 7.3 6.325 5.2 3.925 2.5
Patient benefit, q 0 1 2 3 4 5 6 7 8 9 10

Incentive configuration 3 (p = 15, c = 0.1, b = 0.5)
Capitation, p 15 15 15 15 15 15 15 15 15 15 15
Cost, c(q) 0 0.1 0.4 0.9 1.6 2.5 3.6 4.9 6.4 8.1 10
Profit, p− c(q) 15 14.9 14.6 14.1 13.4 12.5 11.4 10.1 8.6 6.9 5
Patient benefit, q 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Incentive configuration 4 (p = 15, c = 0.1, b = 1)
Capitation, p 15 15 15 15 15 15 15 15 15 15 15
Cost, c(q) 0 0.1 0.4 0.9 1.6 2.5 3.6 4.9 6.4 8.1 10
Profit, p− c(q) 15 14.9 14.6 14.1 13.4 12.5 11.4 10.1 8.6 6.9 5
Patient benefit, q 0 1 2 3 4 5 6 7 8 9 10

Incentive configuration 5 (p = 10, c = 0.1, b = 0.5)
Capitation, p 10 10 10 10 10 10 10 10 10 10 10
Cost, c(q) 0 0.1 0.4 0.9 1.6 2.5 3.6 4.9 6.4 8.1 10
Profit, p− c(q) 10 9.9 9.6 9.1 8.4 7.5 6.4 5.1 3.6 1.9 0
Patient benefit, q 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Incentive configuration 6 (p = 10, c = 0.075, b = 0.5)
Capitation, p 10 10 10 10 10 10 10 10 10 10 10
Cost, c(q) 0 0.075 0.3 0.675 1.2 1.875 2.7 3.675 4.8 6.075 7.5
Profit, p− c(q) 10 9.925 9.7 9.325 8.8 8.125 7.3 6.325 5.2 3.925 2.5
Patient benefit, q 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Incentive configuration 7 (p = 15, c = 0.075, b = 1)
Capitation, p 15 15 15 15 15 15 15 15 15 15 15
Cost, c(q) 0 0.075 0.3 0.675 1.2 1.875 2.7 3.675 4.8 6.075 7.5
Profit, p− c(q) 15 14.925 14.7 14.325 13.8 13.125 12.3 11.325 10.2 8.925 7.5
Patient benefit, q 0 1 2 3 4 5 6 7 8 9 10

Incentive configuration 8 (p = 15, c = 0.075, b = 0.5)
Capitation, p 15 15 15 15 15 15 15 15 15 15 15
Cost, c(q) 0 0.075 0.3 0.675 1.2 1.875 2.7 3.675 4.8 6.075 7.5
Profit, p− c(q) 15 14.925 14.7 14.325 13.8 13.125 12.3 11.325 10.2 8.925 7.5
Patient benefit, q 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Appendix B Robustness

B.1 Constant absolute risk aversion utility

Instead of the linear utility function, we now assume that utility takes the form

U(x) = 1 − exp(−0.1x), where the coefficient of absolute risk aversion is set at 0.1.

Table 3.13 reports the means of estimated α’s

Table 3.13: Estimated means of α in monopoly under CARA

Incentive configurations mean

(p = 10, c = 0.075, b = 0.5) 0.066
(p = 10, c = 0.075, b = 1) 0.033
(p = 10, c = 0.1, b = 0.5) 0.084
(p = 10, c = 0.1, b = 1) 0.041
(p = 15, c = 0.075, b = 0.5) 0.051
(p = 15, c = 0.075, b = 1) 0.026
(p = 15, c = 0.1, b = 0.5) 0.071
(p = 15, c = 0.1, b = 1) 0.034

The relative magnitudes between these means are quite close to those for the linear

utility function in Table 3.3. For example, the mean α in incentive configuration

(p = 10, c = 0.075, b = 0.5) is two times of that in configuration (p = 10, c = 0.075,

b = 1). The same is true for the linear utility model; see the first two rows in Table

3.3. Using the same normalization (subtracting the monopoly mean), we report the

means and standard deviations of estimated α’s in Duopoly and Quadropoly in Table

3.14.
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Table 3.14: Normalized means and standard deviations of α distribu-
tions under CARA

Incentive configurations Monopoly Duopoly Quadropoly
mean SD mean SD mean SD

(p = 10, c = 0.075, b = 0.5) 0 0.059 -0.083 0.067 -0.098 0.054
(p = 10, c = 0.075, b = 1) 0 0.030 -0.050 0.042 -0.062 0.043
(p = 10, c = 0.1, b = 0.5) 0 0.082 -0.086 0.073 -0.143 0.112
(p = 10, c = 0.1, b = 1) 0 0.040 -0.054 0.052 -0.068 0.054
(p = 15, c = 0.075, b = 0.5) 0 0.045 -0.105 0.050 -0.126 0.051
(p = 15, c = 0.075, b = 1) 0 0.023 -0.065 0.040 -0.078 0.058
(p = 15, c = 0.1, b = 0.5) 0 0.069 -0.104 0.078 -0.127 0.065
(p = 15, c = 0.1, b = 1) 0 0.033 -0.062 0.046 -0.078 0.053

Again, the means have all become lower when the market becomes more com-

petitive. The differences between the normalized duopoly and quadropoly means

also point in the same direction as those in the linear utility model although the

magnitudes have now become smaller (see Table 3.4).

For brevity, we do not present the estimated α values. Figures 3·14, 3·15 and

3·16 are the histograms of estimated normalized altruism distributions for the three

markets. The comparisons between these with those under linear utility (histograms

in Figures 3·4, 3·5, and 3·6) just show the differences in estimated values.

B.2 Between-subject subsample

We use subjects’ first experiences for a between-subject experiment. From Table

3.1, roughly a third of the 361 subjects played each of the three markets in their

first round, so we only can use about 1/3 of the entire data. In the experiments, 124

subjects played the monopoly game first, 119 played the duopoly first, and 118 played

the quadropoly first. The 8 decisions of these first games constitute the subsample.

Table 3.15 presents the first-round summary statistics of the 8 incentive-configuration

games in the 3 markets. There are some small differences in the means and standard
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deviations between the smaller, between-subject subsample and the full sample. Nev-

ertheless, the means and standard deviations follow the same pattern in Table 3.2.

Figures 3·17 to 3·19 present the quality choice distributions by incentive configura-

tions for the three markets.

Table 3.15: Between-subject subsample summary statistics

Incentive configurations Monopoly (n = 124) Duopoly (n = 119) Quadropoly (n = 118)
mean SD mean SD mean SD

(p = 10, c = 0.075, b = 0.5) 4.403 2.659 7.437 1.701 7.958 1.577
(p = 10, c = 0.075, b = 1) 4.460 2.688 7.765 1.598 8.017 1.764
(p = 10, c = 0.1, b = 0.5) 4.065 2.569 6.597 1.463 6.932 1.688
(p = 10, c = 0.1, b = 1) 3.871 2.521 6.622 1.408 6.958 1.538
(p = 15, c = 0.075, b = 0.5) 5.113 3.007 8.420 1.670 8.780 1.675
(p = 15, c = 0.075, b = 1) 5.266 3.021 8.672 1.698 8.898 1.892
(p = 15, c = 0.1, b = 0.5) 4.823 2.891 7.664 1.801 8.102 1.692
(p = 15, c = 0.1, b = 1) 4.734 2.930 8.000 1.616 8.254 1.949
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Figure 3·14: Histograms of estimated α for CARA in each incentive
configuration in monopoly
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Figure 3·15: Histograms of estimated α for CARA in each incentive
configuration in duopoly
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Figure 3·16: Histograms of estimated α for CARA in each incentive
configuration in quadropoly

0

25

50

75

100

−0.6 −0.4 −0.2 0.0
α

 p=10, c=0.075, b=0.5

0

25

50

75

100

−0.6 −0.4 −0.2 0.0
α

 p=10, c=0.075, b=1

0

50

100

−1.0 −0.5 0.0
α

p=10, c=0.1, b=0.5

0

30

60

90

−0.6 −0.4 −0.2 0.0
α

 p=10, c=0.1, b=1

0

50

100

150

200

−0.8 −0.6 −0.4 −0.2
α

 p=15, c=0.075, b=0.5

0

50

100

150

200

−0.8 −0.6 −0.4 −0.2
α

 p=15, c=0.075, b=1

0

40

80

120

−0.75 −0.50 −0.25
α

p=15, c=0.1, b=0.5

0

50

100

150

−0.8 −0.6 −0.4 −0.2
α

 p=15, c=0.1, b=1

co
un

t



150

Table 3.16 presents the means of estimated α’s in Monopoly, and they are similar

to those in the full sample in Table 3.3.

Table 3.16: Estimated means of α in monopoly

Incentive configurations mean

(p = 10, c = 0.075, b = 0.5) 1.321
(p = 10, c = 0.075, b = 1) 0.669
(p = 10, c = 0.1, b = 0.5) 1.626
(p = 10, c = 0.1, b = 1) 0.774
(p = 15, c = 0.075, b = 0.5) 1.534
(p = 15, c = 0.075, b = 1) 0.790
(p = 15, c = 0.1, b = 0.5) 1.929
(p = 15, c = 0.1, b = 1) 0.947

In Table 3.17, we present the means and standard deviations of estimated α’s in

Duopoly and Quadropoly (under the same normalization as before). There are some

differences from Table 3.4. In particular, the means tend to be higher in magnitude

than those in the full sample. The standard deviations are also bigger, but that can

be accounted for by the smaller sample size.

Table 3.17: Normalized means and standard deviations of α distribu-
tions

Incentive configurations Monopoly Duopoly Quadropoly
mean SD mean SD mean SD

(p = 10, c = 0.075, b = 0.5) 0 0.798 -1.532 1.170 -1.789 1.076
(p = 10, c = 0.075, b = 1) 0 0.403 -0.893 0.531 -1.141 1.005
(p = 10, c = 0.1, b = 0.5) 0 1.027 -1.639 1.053 -2.762 2.782
(p = 10, c = 0.1, b = 1) 0 0.504 -1.011 0.588 -1.315 1.322
(p = 15, c = 0.075, b = 0.5) 0 0.902 -2.188 1.045 -2.665 1.511
(p = 15, c = 0.075, b = 1) 0 0.453 -1.345 0.733 -1.743 1.903
(p = 15, c = 0.1, b = 0.5) 0 1.156 -2.377 1.708 -2.832 1.641
(p = 15, c = 0.1, b = 1) 0 0.586 -1.323 0.706 -1.743 1.585

We next present the histograms of the actual qualities in the subsample in Figures

3·17, 3·18, and 3·19, with the frequencies written on top of each quality level. Qual-
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ities in monopoly in the full and between-subject subsample show more variations.

However, the duopoly and quadropoly quality distributions are remarkably similar.

Figures 3·20, 3·21, and 3·22 plot the histograms of estimated α distributions.

(Again for brevity, we have omitted the actual estimated values.) As with the case of

qualities, the estimated α distributions in monopoly show more differences between

the full sample and the between-subject sample, but the estimated α distributions in

duopoly and quadropoly are remarkably similar. Overall, we think that our results

are robust with respect to between-subject and within-subject designs.

B.2.1 Reduced-form analysis for between-subject subsample

Table 3.18 reports descriptive statistics on subjects’ first-experience average qualities

for low and high parameter levels of price, cost, and patient benefits. The entries

are written with the same convention as in Table 3.10. The average qualities in

Table 3.18 exhibit the same pattern as those in Table 3.10. The average quality is

higher in each market at the higher price, but the relative difference declines as the

market becomes more competitive. Average qualities are lower at higher cost, but the

relative difference hardly varies with competition. Patient benefit does not seem to

affect average qualities much. We conclude that the reduced-form analysis is robust

with respect to the between-subject and within-subject designs.

Regression results for the between-subject analysis are reported in Table ??. The

notation here is the same as in Table 3.11, except of course that there are no market-

order dummies. Because of the smaller sample, the R2’s are uniformly smaller than

regressions in Table 3.11. Most estimates happen to be a little smaller in their mag-

nitudes than in Table 3.11, but their significance remains the same.
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Table 3.18: Descriptives on the variations in price, costs, and patient
benefit in the subjects’ first market session

Low parameter level High parameter level Relative N
Parameter Mean SD Mean SD difference

Price (p = 10; p = 15)
Monopoly 4.200 2.614 4.984 2.962 0.187 496
Duopoly 7.105 1.736 8.189 1.623 0.153 476
Quadropoly 7.466 1.720 8.509 1.832 0.140 472

Cost (c = 0.075; c = 0.1)
Monopoly 4.811 2.866 4.373 2.757 -0.091 496
Duopoly 8.074 1.734 7.221 1.693 -0.106 476
Quadropoly 8.413 1.778 7.561 1.826 -0.101 472

Patient benefit (b = 0.5; bH = 1)
Monopoly 4.601 2.807 4.583 2.834 -0.004 496
Duopoly 7.529 1.781 7.765 1.743 0.031 476
Quadropoly 7.943 1.781 8.032 1.919 0.011 472
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Figure 3·17: Between-subject quality histograms in monopoly
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Figure 3·18: Between-subject quality histograms in duopoly
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Figure 3·19: Between-subject quality histograms in quadropoly

1 0 0 0 2 3

11

23

31 29

18

0

10

20

30

40

 0  1  2  3  4  5  6  7  8  9 10

p=10, c=0.075, b=0.5

1 0 1 1 2 4
8

17

34

26 24

0

10

20

30

40

 0  1  2  3  4  5  6  7  8  9 10

p=10, c=0.075, b=1

2 1 1 0
3

10
14

40 38

5 4

0

10

20

30

40

50

 0  1  2  3  4  5  6  7  8  9 10

p=10, c=0.1, b=0.5

2 0 0
3 1

7

17

42
39

5
2

0

10

20

30

40

50

 0  1  2  3  4  5  6  7  8  9 10

p=10, c=0.1, b=1

1 0 0 0 1
6 3 5

27

17

58

0

20

40

60

 0  1  2  3  4  5  6  7  8  9 10

p=15, c=0.075, b=0.5

2 0 0 1 3 0
5 4

18 17

68

0

20

40

60

80

 0  1  2  3  4  5  6  7  8  9 10

p=15, c=0.075, b=1

1 0 0 1 3 3
6

19

34

25 26

0

10

20

30

40

 0  1  2  3  4  5  6  7  8  9 10

p=15, c=0.1, b=0.5

1 1 0 1
4 2

9
13

24 23

40

0

10

20

30

40

50

 0  1  2  3  4  5  6  7  8  9 10

p=15, c=0.1, b=1

quality

co
un

t



156

Figure 3·20: Between-subject histograms of estimated monopoly α
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Figure 3·21: Between-subject histograms of estimated duopoly α
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Figure 3·22: Between-subject histograms of estimated quadropoly α
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Table 3.19: Between-subject quality regressions

Model (1) (2)

Duopoly 3.194*** 3.125***
(0.373) (0.371)

Quadropoly 3.809*** 3.834***
(0.391) (0.387)

High price (= 1 if p = 15) 0.967*** 0.784***
(0.0459) (0.0761)

High cost (= 1 if c = 0.1) -0.710*** -0.437***
(0.0437) (0.0811)

High benefit (= 1 if b = 1) 0.100** -0.0181
(0.0423) (0.0660)

Duopoly × High price 0.300***
(0.107)

Quadropoly × High price 0.258**
(0.114)

Duopoly × High cost -0.415***
(0.111)

Quadropoly × High cost -0.414***
(0.102)

Duopoly × High benefit 0.253**
(0.101)

Quadropoly × High benefit 0.107
(0.101)

Session dummies Yes Yes

Constant 4.051*** 4.066***
(0.334) (0.331)

Observations 2,888 2,888
Subjects 361 361
R2 0.386 0.388

Notes: OLS; robust standard errors clustered for subjects in
brackets; *** for p < 0.01; ** for p < 0.05
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