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FUNCTIONAL GAUSSIAN APPROXIMATIONS IN HILBERT SPACES:

THE NON-DIFFUSIVE CASE

SOLESNE BOURGUIN1, SIMON CAMPESE2, AND THANH DANG1

Abstract. We develop a functional Stein-Malliavin method in a non-diffusive Poissonian set-
ting, thus obtaining a) quantitative central limit theorems for approximation of arbitrary non-
degenerate Gaussian random elements taking values in a separable Hilbert space and b) fourth
moment bounds for approximating sequences with finite chaos expansion. Our results rely
on an infinite-dimensional version of Stein’s method of exchangeable pairs combined with the
so-called Gamma calculus. Two applications are included: Brownian approximation of Poisson
processes in Besov-Liouville spaces and a functional limit theorem for an edge-counting statistic
of a random geometric graph.

1. Introduction

The now classical Stein-Malliavin method, a combination of Stein’s method with Malliavin
calculus, has been very sucessful in deriving quantitative central limit theorems for non-linear
approximation. Since its inception by Nourdin and Peccati in 2013 (see [NP09]), it has formed
a vivid community which developed the theory further and applied it to numerous situations.
An excellent exposition of the basic method is available in the monograph [NP12] , while I.
Nourdin keeps a rather exhaustive and continuously updated list of references on the webpage
https://sites.google.com/site/malliavinstein. From a theoretical point of view, one
of the main remaining challenges is an adaptation of the method to the infinite-dimensional
setting, with quantitative approximation of Gaussian processes as main application. For random
elements taking values in a Hilbert space, and in a diffusive context, this has recently been
achieved by [BC20]. In this work, we provide the natural analogue in the non-diffusive context
of Poisson spaces. More specifically, let X be a square-integrable measurable transformation of
a Poisson process and Z be a Gaussian process, both taking values in some separable Hilbert
space K. Informally, our main results (Theorems 3 and 4 on page 9) provide bounds on a
probabilistic distance between X and Z (metrizing convergence in law) in terms of the first four
strong moments of X or alternatively in terms of so called contractions. From these bounds, one
can directly deduce quantitative and functional central limit theorems for convergence towards
a Gaussian process, as well as an infinite-dimensional version of the Fourth Moment Theorem,
which says that for a sequence of K-valued multiple Poisson-integrals, convergence of the second
and fourth moments implies convergence towards a Gaussian process.
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2 FUNCTIONAL GAUSSIAN APPROXIMATIONS IN HILBERT SPACES: THE NON-DIFFUSIVE CASE

It is noteworthy to observe that while the analogous diffusive statements in [BC20] look sim-
ilar to our non-diffusive ones, their proofs are rather different, for the same reason as in the
finite-dimensional case: No chain rule is available in the non-diffusive case, which renders the
usual integration by parts argument unfeasible. Instead, one can construct an appropriate ex-
changeable pair and then apply a Taylor argument in order to control the term resulting from
an application of Stein’s method. Compared to the finite-dimensional setting, several techni-
cal issues arise which require the use of Hilbert-space techniques. A commonality with the
diffusive statements is, however, that our main results subsume all known finite-dimensional
Malliavin-Stein bounds in a Poissonian context as special cases (see Remark 2 on page 9 for
details).
In order to illustrate our results, we provide two applications: The first one concerns the classical
approximation of a Brownian motion by a normalized Poisson process with growing intensity
λ. A natural class of Hilbert spaces accommodating the sample paths of both processes are the
so-called Besov-Liouville spaces. In [CD13], the authors showed that convergence takes place

at rate λ−1/2 (as in the classical one-dimensional case). To prove this, they first transferred
both processes isometrically ℓ2(N) and then had to go through rather tedious calculations.
In contrast to this, our bounds yield the same result in just a few lines, and no isometry is
necessary. As a second application we illustrate, using an edge counting statistic of a random
graph, how known one-dimensional central limit theorem can be made functional with very
little additional effort.
Besides the already mentioned reference [BC20], the work [CD13] is concerned with quantitative
functional approximation in a Malliavin-Stein context as well. As already mentioned, the
authors use a different approach which crucially depends on isometrically mapping all random
elements to ℓ2(N). In applications, the need to explicitly evaluate such an isometry can be seen
as a drawback. Also, our setting seems to be more general and does not rely on ad-hoc arguments
depending on the Gaussian process at hand. Other related references proving functional central
limit theorems using Malliavin-Stein techniques are [Kas17, Kas20, DK21, DKP19].
The rest of this paper is organized as follows. In Section 2 we introduce the necessary prelim-
inaries, followed by the main results in Section 3. The proofs are given in Section 4 which is
followed by the two aforementioned applications in Section 5. An appendix contains several
technical lemmas required for the proofs.

2. Preliminaries

2.1. Probability on Hilbert spaces.

Let K be a real separable Hilbert space, B(K) the Borel σ-algebra of K and (Ω,F , P ) a
complete probability space. A K-valued random variable X is a measurable map from (Ω,F)
to (K,B(K)). Such random variables are characterized by the property that for any continuous
linear functional φ ∈ K∗, the function φ(X) : Ω → R is a real-valued random variable. As usual,
the distribution or law of X is the push-forward probability measure P ◦X−1 on (K,B(K)).
The set of all K-valued random variables is a a vector space over the field of real numbers. If
the Lebesgue integral E[‖X‖K ] =

∫
Ω ‖X‖K dP exists and is finite, then the Bochner integral∫

ΩXdP exists in K and is called the expectation of X. Slightly abusing notation, we denote
this integral by E[X] as well, and it can always inferred from the context whether E[·] refers to
Lebesgue or Bochner integration with respect to P . For p ≥ 1, Lp(Ω, P ) denotes the Banach
space of all equivalence classes (under almost sure equality) of K-valued random variables X
with finite p-th moment, i.e., such that

‖X‖Lp(Ω,P ) = E
[
‖X‖pK

]1/p
<∞.
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Note that for all X ∈ Lp(Ω, P ), the Bochner integral E[X] exists. In the case X ∈ L2(Ω, P ),
the covariance operator S : K → K of X is defined by

Su = E[〈X,u〉K X].

S is a positive, self-adjoint trace-class operator that verifies the identity

TrS = E

[
‖X‖2K

]
.

We denote by S1(K) the Banach space of all trace-class operators on K, equipped with

norm ‖T‖S1(K) = Tr |T |, where |T | =
√
TT ∗ and T ∗ denotes the adjoint of T . The sub-

space of Hilbert-Schmidt operators on K is denoted by HS(K), its inner product and norm by
〈·, ·〉HS(K) , ‖·‖HS(K) respectively. Recall that

‖·‖op ≤ ‖·‖HS(K) ≤ ‖·‖S1(K) ,

where ‖·‖op denotes the operator norm.

2.2. Gaussian measures and Stein’s method.

In this section, we introduce Gaussian measures, the associated abstract Wiener spaces and
Stein characterization of Gaussian measures. The theory will be presented within a general
Banach space setting. Standard references for Gaussian measures and abstract Wiener spaces
are the monographs [Bog98, Kuo75], while Stein’s method for Gaussian measures has been
developed by Shih in [Shi11] (see also Barbour’s earlier work [Bar90] for the special case of
Brownian motion).

2.2.1. Abstract Wiener spaces. Let H be a real separable Hilbert space equipped with inner
product 〈·, ·〉H and ‖·‖ be a norm on H weaker than ‖·‖H . Denote B the Banach space obtained
via completion of H with respect to ‖·‖ and i the canonical embedding of H into B. The triple
(i,H,B) defines an abstract Wiener space and has first been introduced by Gross in [Gro67a].
We identify B∗ as a dense subspace of H∗ under the adjoint i∗ of i, so that we have the
continuous embeddings B∗ ⊆ H ⊆ B, where, as usual, H is identified with its dual H∗. All of
this can be summarized via the diagram

B∗ i∗−→ H∗ = H
i−→ B.

The abstract Wiener measure p on B is characterized as the Borel measure on B satisfying

∫

B
exp
(
i 〈x, η〉B,B∗

)
p(dx) = exp

(
−‖η‖2H

2

)
,

for any η ∈ B∗.

2.2.2. Gaussian measures. Let B be a separable Banach space, with B(B) its Borel σ-algebra. A
Gaussian measure µ is a probability measure on (B,B(B)) such that every linear functional x ∈
B∗, considered as a (real-valued) random variable on (B,B(B), µ), has a Gaussian distribution
on (R,B(R)). Such a Gaussian measure is called centered and/or non-degenerate, if these
properties hold for the distributions of every x ∈ B∗.
We can see that every abstract Wiener measure is a Gaussian measure, and conversely, for
every Gaussian measure µ on B, there exists a Hilbert space H such that (i,H,B) forms an
abstract Wiener space. The space H is known as the Cameron Martin space.
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2.2.3. Stein characterization of Gaussian measures. Let B be a real separable Banach space
with norm ‖·‖. Let Z be a B-valued random variable which induces a centered Gaussian
measure µZ on B and let (i,H,B) be the associated abstract Wiener space. By {Pt : t ≥ 0} we
denote the Ornstein-Uhlenbeck semi-group of Z. It has the Mehler representation

Ptf(x) =

∫

B
f
(
e−tx+

√
1− e−2ty

)
µZ(dy),

provided such an integral exists. In [Shi11, Theorem 3.1], Shih proved the following Stein lemma
for abstract Wiener measures.

Theorem 1. Let X be a B-valued random variable with distribution µX .

i) If B is finite-dimensional, then µX = µZ if and only if

E

[
〈X,∇f(X)〉B,B∗ −∆Gf(X)

]
= 0 (1)

for any twice-differentiable function f on B such that E
[∥∥∇2f(Z)

∥∥
S1(H)

]
<∞.

ii) If B is infinite-dimensional, then µX = µZ if and only if (1) holds for every twice
H-differentiable function f on B such that ∇f(x) ∈ B∗ for every x ∈ B,

E

[∥∥∇2f(Z)
∥∥
S1(H)

]
<∞ and E

[
‖∇f(Z)‖2B∗

]
<∞.

The notion of H-derivative which is also known as Fréchet derivative along H and appears in
Theorem 1 was introduced by Gross in [Gro67b], and we briefly recall it here for the sake of
self-containedness. A function f : U → W from an open set U of B into a Banach space W is
said to be H-differentiable at x ∈ U if the map φ(h) = f(x+ h), h ∈ H, regarded as a function
defined in a neighborhood of the origin of H is Fréchet-differentiable at 0. The H-derivative of
f at x in the direction h ∈ H is denoted by 〈∇f(x), h〉H . The k-th order H-derivatives of f

at x can then be constructed inductively and are denoted by ∇kf(x), provided they exist. If
f is scalar-valued, ∇f(x) ∈ H∗ ≃ H and ∇2f(x) is a bounded linear operator from H to H∗

for every x ∈ U . The notation
〈
∇2f(x)h, k

〉
H

or ∇2f(x)(h, k) will stand for the action of the

linear form ∇2f(x)(h, ·) on k.
If ∇2f(x) is a trace-class operator on H, the Gross Laplacian ∆Gf(x) of f at x is defined as
∆Gf(x) = TrH(∇2f(x)).

2.2.4. Stein’s equation. In view of Theorem 1, the associated Stein equation is given by

〈x,∇g(x)〉B,B∗ −∆Gg(x) = h(x)− E[h(Z)]

for x ∈ B, where h belongs to a suitable class of test functions. In this paper, we will assume
our test functions belong to C3

b (K), the class of real-valued functions on K that have bounded
Fréchet derivatives up to order three. This space is equipped with the norm

‖h‖C3
b
(K) = sup

j=1,2,3
sup
x∈K

∥∥Djh(x)
∥∥
K⊗j .

Using standard semigroup techniques, the first two authors of this work showed in [BC20] that
there is a solution gh(x) for every test function h(x) and that gh ∈ C3

b (K) when h ∈ C3
b (K).

Specifically, [BC20, Lemma 2.4] provides the estimates

sup
x∈K

∥∥Djgh(x)
∥∥
K⊗j ≤

1

j
‖h‖

Cj
b
(K)

and

‖gh‖C3
b
(K) ≤ ‖h‖C3

b
(K) .
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Thus, using the probability distance

d3(X1,X2) = sup
h∈C3

b
(K)

‖h‖
C3
b
(K)

≤1

|E[h(X1)− h(X2)]| ,

Stein’s equation implies that

d3(X,Z) = sup
h∈C3

b
(K)

‖h‖
C3
b
(K)

≤1

|E[∆Ggh(X) − 〈X,Dgh(X)〉K ]| .

2.3. Dirichlet structure.

This section contains an overview of Dirichlet structures, which is the framework we will be
working within alongside Stein’s method. We start by recalling the definition and properties
of a Dirichlet structure on L2(Ω;R) (full details can be found in the monographs [BGL14,
BH91]) before focusing on an extension to L2(Ω;K). Given a probability space (Ω,F , P ), a
Dirichlet structure (D, E) on L2(Ω;R) with the associated carré du champ operator Γ consists
of a Dirichlet domain D, which is a dense subset of L2(Ω;R) and a carré du champ operator
Γ : D× D → L1(Ω,R) characterized by the following properties.

- Γ is bilinear, symmetric (Γ(F,G) = Γ(G,F )) and positive (Γ(F,F ) ≥ 0).
- the induced positive linear form F → E(F,F ), where E(F,G) = 1

2E[Γ(F,G)], is closed

in L2(Ω;R), i.e., D is complete when equipped with the norm

‖·‖2
D
= ‖·‖2L2(Ω;R) + E(·).

Remark 1. We do not assume that Γ satisfies the so-called diffusion property – see [BGL14,
Definition 3.1.3] – as opposed to what is being done in [BC20].

Here and in the following, E[·] denotes the expectation on (Ω,F) with respect to P . The linear
form E is known as a Dirichlet form and for brevity we write E(F ) for E(F,F ). Every Dirichlet
form gives rise to a strongly continuous semigroup {Pt}t≥0 on L2(Ω;R) and an associated

symmetric Markov generator −L, defined on a dense subset dom(−L) ⊆ D. There are two
important relations between Γ and L, the first being the integration by part formula

E[Γ(F,G)] = −E[FLG] = −E[GLF ],

which is valid for F,G ∈ D. The second relation is

Γ(F,G) =
1

2
(L(FG) −GLF − FLG),

which holds for all F,G ∈ dom(L) such that FG ∈ dom(L). If −L is diagonalizable with
spectrum N0 (the set of natural numbers plus 0) and Fq is an eigenfunction corresponding to
the eigenvalue q, then −LFq = qFq. We can define a pseudo-inverse −L−1 by −L−1Fq = 1

qFq

when q 6= 0 and 0 otherwise. The definition of −L and −L−1 for a general F =
∑

q∈N0
Fq

follows naturally via linearity. Alternatively, L can be defined as the generator of the heat
semigroup {Pt}t≥0 (on dom(L)) which satisfies

∂tPt = LPt = PtL.

Next we present what is meant by a Dirichlet structure on L2(Ω;K). Let us adopt the notations

D̃, Γ̃, L̃, P̃t for the Dirichlet domain, Dirichlet form, carré du champ operator, generator and
semigroup associated with elements in L2(Ω;R). Meanwhile, D,Γ, L, Pt are reserved for the
counterpart objects associated with elements in L2(Ω;K). Given a separable Hilbert space K,
one has that L2(Ω;K) is isomorphic to L2(Ω;R)⊗K. The Dirichlet structure on L2(Ω;R) can
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therefore be extended to L2(Ω;K) via a tensorization procedure. Let N0 be the spectrum of

−L̃ and {ki}i∈N an orthonormal basis of K. A will be the set of all functions X taking the form

X =
∑

q,i∈I
Fq,i ⊗ ki

such that I ⊆ N
2 is a finite set and Fq,i ∈ ker

(
−L̃+ qI

)
. Assuming another element Y =∑

p,j∈J Gp,j ⊗ kj in A, we can define L,Γ, Pt, E for t ≥ 0 via




LX = L
∑

q,i∈I
Fq,i ⊗ ki =

∑

q,i∈I

(
L̃Fq,i

)
⊗ ki

PtX = Pt

∑

q,i∈I
Fq,i ⊗ ki =

∑

q,i∈I

(
P̃tFq,i

)
⊗ ki

Γ(X,Y ) =
1

2

∑

q,i∈I

∑

p,j∈J
Γ̃(Fq,i, Fp,j)⊗ (ki ⊗ kj + kj ⊗ ki)

and

E(X,Y ) = E[Tr Γ(X,Y )].

In the last line, we identify Γ(X,Y ) as an element of L2(Ω;R)⊗K ⊗K ≃ L2(Ω,L(K,K)) via
the action

Γ(X,Y )u =
1

2

∑

q,i∈I

∑

p,j∈J
Γ̃(Fq,i, Fp,j)⊗

(
〈ki, u〉K ⊗ kj + 〈kj, u〉K ⊗ ki

)
.

Since A is clearly dense in L2(Ω;K), these operators can be extended to appropriate domains
in L2(Ω;K). This has been verified in [BC20, Proposition 2.5 and Theorem 2.6] (excluding the
diffusion identity), which we restate below for the reader’s convenience.

Proposition 1 (Proposition 2.5 in [BC20]). The operators L L−1, E and Γ can be extended to
dom(L), dom(L−1) and dom(Γ) = dom(E) = D× D, respectively, given by

dom(L) =
{
X ∈ L2(Ω;K) :

∑

q∈N0

q2J̃q

(
‖X‖2K

)
<∞

}
,

dom(L−1) = L2(Ω;K) and

D =
{
X ∈ L2(Ω;K) :

∑

q∈N0

qJ̃q

(
‖X‖2K

)
<∞

}
,

where J̃q(·) denotes the projection onto ker
(
L̃+ qI

)
⊆ L2(Ω;R). In particular, one has

A ⊆ dom(L) ⊆ D ⊆ dom(L−1) = L2(Ω;K),

and all inclusions are dense.

Theorem 2 (Theorem 2.6 in [BC20]). For a Dirichlet structure (D,Γ) on L2(Ω;K), the fol-
lowing is true.

(i) Γ is bilinear, almost surely positive, symmetric and self-adjoint with respect to 〈·, ·〉K .
(ii) The Dirichlet domain D equipped with the norm

‖X‖2
D
= ‖X‖L2(Ω;K) + ‖Γ(X,X)‖L1(Ω;S1)

is complete, so that Γ is closed.
(iii) The generator −L acting on L2(Ω;K) is positive, symmetric, densely defined and has

the same spectrum as −L̃.
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(iv) There is a compact pseudo-inverse L−1 of L such that

LL−1X = X − E[X]

for all X ∈ L2(Ω;K), where the expression on the right is a Bochner integral.
(v) The integration by parts formula

E[Tr Γ(X,Y )] = −E[〈LX,Y 〉K ] = −E[〈X,LY 〉K ]

is satisfied for all X,Y ∈ dom(−L).
(vi) The generators Γ, L, L̃ are related via

TrΓ(X,Y ) =
1

2

(
L̃ 〈X,Y 〉K − 〈LX,Y 〉K − 〈X,LY 〉K

)
(2)

for all X,Y ∈ dom(−L).
(vii) The identity

〈Γ(X,Y )u, v〉K =
1

2

(
Γ̃(〈X,u〉K , 〈Y, v〉K) + Γ̃(〈Y, u〉K , 〈X, v〉K)

)
,

is valid for all X,Y ∈ D and u, v ∈ K.

2.4. Analysis on Poisson space.

So far we have been working with a general probability space. In this section we will get more
specific and describe the Poisson space on which most of our objects of interest are defined. We
direct the reader to the references [LP18, NN18] for an extensive treatment of this topic. Let
(Z,L , µ) be a measure space such that µ is σ-finite. A Poisson random measure η on (Z,L )
with control measure µ is a family of distributions defined on some probability space (Ω,F , P )
that satisfies

- η(B) is a Poisson distribution on Ω with mean µ(B),
- η(B1), η(B2) are independent when B1 ∩B2 = ∅.

If such a Poisson random measure exists, the associated probability space (Ω,F , P ) is called
a Poisson space. Next, let η̂ be the compensated Poisson random measure, that is η̂(B) =
η(B) − µ(B), whenever µ(B) is finite. Denote L2

s(µ
q) the set of all symmetric functions in

L2(µq). For f ∈ L2
s(µ

q), Iηq (f) denotes a multiple (Wiener-Itô) integral of order q. Unless we
are simultaneously dealing with two different Poisson random measures, Iq(·) will be understood
as an integral with respect to η̂. Multiple integrals have the following isometry property: for
any integers q, p ≥ 1,

E[Iq(f)Ip(g)] = 1{q=p}q!〈f̃ , g̃〉L2(µq),

where f̃ denotes the symmetrization of f , and we recall that Iq(f) = Iq(f̃). The contraction of

two kernels f ∈ L2
s(µ

q) and g ∈ L2
s(µ

p), denoted by f ⋆lr g for 0 ≤ l ≤ r ≤ q ∧ p, is obtained by
identifying r variables and then integrating l of those:

f ⋆lr g(y1, . . . , yr−l, yr−l+1, . . . , yq−l, z1, . . . , zp−r)

=

∫

Zl

f(x1, . . . , xl, y1, . . . , yr−l, yr−l+1, . . . , yq−l)g(x1, . . . , xl, y1, . . . , yr−l, z1, . . . , zp−r)

dµ(x1, . . . , xl)

provided the integral exists in L2(µq+p−r−l). Contractions are central objects for analysis on
Poisson space as they appear in the product formula for multiple integrals. There are two ways
of stating this product formula on Poisson space: [Las16, Proposition 6.1] and [DP18, Lemma
2.4], each having different assumptions. We will state both below.
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Lemma 1 (Proposition 6.1 in [Las16]). Let f ∈ L2
s(µ

q), g ∈ L2
s(µ

p) and assume that f ⋆lr g ∈
L2(µq+p−r−l). Then,

Iq(f)Ip(g) =

q∧p∑

r=0

r!

(
q

r

)(
p

r

) r∑

l=0

(
r

l

)
Iq+p−r−l(f ⋆

l
r g). (3)

Lemma 2 (Lemma 2.4 in [DP18]). Let f ∈ L2
s(µ

q), g ∈ L2
s(µ

p) and assume that F = Iq(f), G =
Ip(g) ∈ L4(P ). Then

FG =

q∧p−1∑

k=1

J̃k(FG) + Iq+p(f⊗̃g).

The collection of all multiple integrals of order q form the so-called Poisson chaos of order q in
L2(Ω;R), which is denoted by Hq. Since E[Iq(f)Ip(g)] = 0 for q 6= p, we have the orthogonal
decomposition

L2(Ω,F , P ) =
∞⊕

q=1

Hq.

Similarly as what we did for Dirichlet structures, we define Hq(K) (K-valued Poisson chaos of
order q) as the closure of Hq ⊗K in L2(Ω,K). Then,

L2(Ω;K) =
∞⊕

q=1

Hq(K).

Consequently, every X ∈ L2(Ω,K) can be decomposed as

X =
∑

q∈N0

Fq =
∑

i∈N,
q∈N0

〈Fq, ki〉K ki =
∑

i∈N,
q∈N0

Fq,iki,

where Fq ∈ Hq(K), Fq,i ∈ Hq with Fq,i = Iq(fq,i) for some fq,i ∈ L2
s(µ

q).

2.5. An exchangeable pair on Poisson space. Another tool that we will make use of
alongside Stein’s method is the method of exchangeable pairs, which we will describe here. Per
[LP18, Corollary 3.7], since η is a Poisson random measure on (Z,L , µ), we can consider η as
a proper Poisson point process written as

η =
κ∑

n=1

δXn ,

such that Xn, κ are random elements in Z,N ∪ {0,∞}, respectively. It is well known that any
F ∈ L2(Ω;R) has the representation F = f(η) for some measurable function f : N → R, which is
uniquely defined up to null sets (see [LPS16]). In [DVZ18, Section 3.1], via continuous thinning
of η, the authors are able to construct a family of new Poisson point processes (ηt)t≥0 and from

there derive a path-wise representation for the semigroup P̃t associated with η. Specifically, the

action of P̃t can be described via the Mehler formula

P̃tf(η) = E
[
f(ηt)|η

]
.

Following up on this result, they made the important observation that for every t ≥ 0, (η, ηt) is
an exchangeable pair (i.e., (η, ηt) and (ηt, η) have the same distribution) and that as a result,

for any kernel g ∈ L2
s(µ

p), the pair
(
Iηp (g), I

ηt
p (g)

)
is also exchangeable.
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3. Statement of main results

In what follows, let K be a separable Hilbert space with orthonormal basis {ki}i∈N, and let X
denote a K-valued centered random variable in L2 (Ω;K) with finite chaos decomposition

X =
N∑

q=1

Fq, (4)

where each Fq belongs to the q-th K-valued Poisson chaos. Furthermore, assume that X has
covariance operator S, which in turn decomposes as

S =
N∑

q=1

Sq,

where, for each 1 ≤ q ≤ N , Sq is the covariance operator of Fq. Finally, we will denote by
fq,i ∈ H⊗q the kernel of Fq,i = 〈Fq, ki〉K = Iq (fq,i).
Our first main result provides a quantitative bound on the distance between the law of X and
a centered K-valued Gaussian random variable Z in terms of the first four moments of X.

Theorem 3. Assume X is a K-valued random variable as described above with finite fourth

moment, i.e., E
[
‖X‖4K

]
< ∞. Then, letting Z be a centered Gaussian random variable on K

with covariance operator S′, the following estimate holds

d3(X,Z) ≤
1

2

∥∥S − S′∥∥
HS

+
∑

1≤q≤N

2q − 1

4q

√
E

[
‖Fq‖4K

]
− E

[
‖Fq‖2K

]2
− 2 ‖Sq‖2HS

+
∑

1≤p 6=q≤N

p+ q − 1

4p

√
E

[
‖Fp‖2K ‖Fq‖2K

]
− E

[
‖Fp‖2K

]
E

[
‖Fq‖2K

]

+

√
NE

[
‖X‖2K

]√√√√
∑

1≤q≤N

23q−1(4q − 3)

(
‖Fq‖4K − E

[
‖Fq‖2K

]2
− 2 ‖Sq‖2HS

)

≤ 1

2

∥∥S − S′∥∥
HS

+

(
N(2N − 1)

4
+

√
23N−1N(4N − 3)E

[
‖X‖2K

])

√
E

[
‖X‖4K

]
− E

[
‖X‖2K

]2
− 2 ‖S‖2HS.

Remark 2. Note that Theorem 3 is an infinite-dimensional version of the fourth moment
theorems on the Poisson space obtained in [DVZ18, Theorem 1.2, Theorem 1.7] and [DP18,
Theorem 1.3]. In particular, the aforementioned results are special cases of Theorem 3 obtained
by setting K = R

d for a positive integer d.

Remark 3. Observe that Theorem 3 can be viewed as a Poissonian counterpart of [BC20, The-
orem 3.10] in the context of a non-diffusive chaos structure. The fact that we are working with
a non-diffusive structure (where no chain rule is available for the Gamma calculus introduced in
Section 2) forces us to use different techniques in order to obtain the above quantitative bounds
than the ones used in [BC20], making these results comparable in nature, but very different in
their methodologies of proof.
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Whenever X belongs to a single chaos, we can reformulate Theorem 3 in a more compact form:

Corollary 1 (Quantitative Fourth Moment Theorem). Let the notation of Theorem 3 prevail.
When X belongs to a single chaos, i.e., X ∈ Hq(K) for some q ≥ 1, one has

d3(X,Z) ≤
1

2

∥∥S − S′∥∥
HS

+

(
2q − 1

4q
+

√
23q−1(4q − 3)qE

[
‖X‖2K

])√
E

[
‖X‖4K

]
− E

[
‖X‖2K

]2
− 2 ‖S‖2HS.

As d3 metrizes convergence in law, the above corollary in particular shows that within a single
non-diffusive chaos, convergence of the second and fourth strong moments implies convergence
towards a (Hilbert-valued) Gaussian.
A particularly useful formulation of the above moment bounds for applications uses contraction
operators acting on the kernels of the multiple integrals appearing in the chaos decomposition
representation of X given in (4). Contractions, which are the analytic quantities defined in
Section 2, allow for much simpler computation compared to dealing directly with the first four
moments. Some examples of previous works that use contraction norms to obtain quantitative
limit theorem for Poisson random variables include [LRP13a, LRP13b, RS13].
Our second main result is the following contraction bound.

Theorem 4. Let the notation and setup of Theorem 3 prevail. Moreover, let H = L2(Z, µ)
where Z is the σ-fnite measure space described in Subsection 2.4. Then it holds that

d3(X,Z) ≤
(
N(2N − 1)

4
+

√
23N−2N(4N − 3)E

[
‖X‖2K

])√
β +

1

2

∥∥S − S′∥∥
HS
,

where the quantity β is given (in terms of contraction norms) by

β =
∑

1≤p,q≤N
q 6=p

ap,q(p ∧ q)
∥∥fq ⋆q∧pq∧p fp

∥∥2
H⊗|q−p|⊗K⊗2

+
∑

1≤p,q≤N

q∧p−1∑

r=1

bp,q(r) ‖fq ⋆rr fp‖2H⊗(q+p−2r)⊗K⊗2

+
∑

1≤p,q≤N

∑

(r,s,l,m)∈I
cp,q,l,m(r, s)

∥∥∥fq⋆lrfp
∥∥∥
H⊗(q+p−r−l)⊗K⊗2

‖fq⋆ms fp‖H⊗(q+p−r−l)⊗K⊗2 .

Here, the combinatorial coefficients are given by




ap,q(r) = p!q!

(
q

r

)(
p

r

)
+ r!2

(
q

r

)2(p
r

)2

|p− q|!

bp,q(r) = p!q!

(
q

r

)(
p

r

)

cp,q,l,m(r, s) = r!s!

(
q

r

)(
q

s

)(
p

r

)(
p

s

)(
r

l

)(
s

m

)
(p+ q − r − l)!

,

and the index set I is defined by

I = {(r, s, l,m) ∈ N
4 : 0 ≤ r, s ≤ q ∧ p, 0 ≤ l ≤ r, 0 ≤ m ≤ s,

r + l = s+m, (r, s, l,m) /∈ {(0, 0, 0, 0), (q ∧ p, q ∧ p, q ∧ p, q ∧ p)}}.
Example 1. If X is a sum of elements of the first two chaoses, i.e., X = I1(f1)+ I2(f2), Theo-
rem 4 requires the contraction norms

∥∥f1 ⋆11 f2
∥∥
H⊗K⊗2 ,

∥∥f2 ⋆11 f2
∥∥
H⊗2⊗K⊗2 ,

∥∥f1 ⋆01 f2
∥∥
H⊗2⊗K⊗2,
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∥∥f1 ⋆01 f2
∥∥
H⊗2⊗K⊗2 ,

∥∥f2 ⋆02 f2
∥∥
H⊗2⊗K⊗2 ,

∥∥f2 ⋆12 f2
∥∥
H⊗K⊗2 and

∥∥f1 ⋆01 f1
∥∥
H⊗K⊗2 to converge to 0

to get convergence towards a Gaussian law.

Example 2. Let µ be a σ-finite measure on some measure space. By setting K = R,H = L2(µ)
and X = Ip(f) for some p ≥ 2 in Theorem 4, we get a result comparable to [PSTU10, Theorem
5.1] and [PT08, Theorem 2]. For instance, whenever X = I2(f), Theorem 4 and [PSTU10,
Example 5.2] both state that normal convergence happens if

∥∥f ⋆11 f
∥∥
L2(µ2)

, ‖f‖L4(µ2) and∥∥f ⋆12 f
∥∥
L2(µ)

converge to 0, keeping in mind that ‖f‖2L4(µ2) =
∥∥f ⋆02 f

∥∥
L2(µ2)

, and
∥∥f ⋆01 f

∥∥
L2(µ3)

=∥∥f ⋆12 f
∥∥
L2(µ)

.

Another example is [PSTU10, Example 5.3], which states that X = I3(g) converges to a Gauss-

ian distribution if ‖g‖2L4(µ3),
∥∥g ⋆11 g

∥∥
L2(µ4)

,
∥∥g ⋆12 g

∥∥
L2(µ3)

,
∥∥g ⋆13 g

∥∥
L2(µ2)

and
∥∥g ⋆23 g

∥∥
L2(µ)

all

converge to 0, which is the same condition suggested in Theorem 4.
Further, we would like to mention [ET14, LRP13a, LRP13b] which also offer contraction bounds
for normal approximation on the Poisson space.

4. Proof of main results

We begin with the proof of Theorem 3 which uses the method of exchangeable pairs developed
in Section 2.

4.1. Proof of Theorem 3. Let G be a Gaussian random variable on K with the same covari-
ance operator as X, i.e., G has covariance operator S. Similarly to [BC20, Corrolary 3.3], it
holds that

d3(G,Z) ≤
1

2

∥∥S − S ′∥∥
HS
.

Therefore, it suffices to derive the desired moment bound for d3(X,G) which yields the first
item in Theorem 3 as

d3(X,Z) ≤ d3(X,G) + d3(G,Z).

In Subsection 2.5, we constructed an exchangeable pair of the form (Fq, F
t
q ) based on an element

of a fixed K-valued chaos Fq, where q denotes the order of the Poisson chaos. Recall that X
has the chaos decomposition (4). It follows that, for any t ≥ 0, if we define Xt as

Xt =

N∑

q=1

F t
q ,

then the pair (X,Xt) is also exchangeable, and we can apply Taylor’s theorem to get

0 = lim
t→0

1

2t
E
[〈
−L−1(Xt −X),Dg(Xt) +Dg(X)

〉
K

]

= lim
t→0

E

[
1

2t

〈
−L−1(Xt −X),Dg(Xt)−Dg(X)

〉
K
+

1

t

〈
−L−1(Xt −X),Dg(X)

〉
K

]

= lim
t→0

E

[
1

2t

〈
−L−1(Xt −X),D2g(X)(Xt −X) + r

〉
K
+

1

t

〈
−L−1(Xt −X),Dg(X)

〉
K

]
,

where r denotes the remainder term. Let R(t) = E
[
1
2t

〈
−L−1(Xt −X), r

〉
K

]
. Note that

E[∆Gg(X)] =
∑

1≤q≤N E
[
TrK

(
D2g(X)Sq

)]
. Combined with part (a) and (b) of Lemma 6
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and keeping in mind Fq =
∑

i∈N Fq,iki, this leads to

0 =
∑

1≤q≤N

E
[
TrK

(
D2g(X)Γ

(
Fq,−L−1Fq

))]

+
∑

1≤p 6=q≤N

∑

i,j∈N
E

[〈
ki,D

2g(X)Γ̃
(
−L̃−1Fp,i, Fq,j

)
kj

〉
K

]
− E[〈X,Dg(X)〉K ] + lim

t→0
R(t)

= E[∆Gg(X)] − E[〈X,Dg(X)〉K ] +
∑

1≤q≤N

E
[
TrK

(
D2g(X)

(
Γ
(
Fq,−L−1Fq

)
− Sq

))]

+
∑

1≤p 6=q≤N

∑

i,j∈N
E

[〈
ki,D

2g(X)Γ̃
(
−L̃−1Fp,i, Fq,j

)
kj

〉
K

]
+ lim

t→0
R(t).

The above equation and the Stein equation introduced in Section 2 imply

d3(X,G) = sup
h∈C3

b
(K)

|∆Gg(X) − 〈X,Dg(X)〉K |

≤ sup
h∈C3

b
(K)




∑

1≤q≤N

∣∣E
[
TrK

(
D2g(X)

(
Γ
(
Fq,−L−1Fq

)
− Sq

))]∣∣

+
∑

1≤p 6=q≤N

∣∣∣∣∣∣
∑

i,j∈N
E

[〈
ki,D

2g(X)Γ̃
(
−L̃−1Fp,i, Fq,j

)
kj

〉
K

]
∣∣∣∣∣∣
+
∣∣∣lim
t→0

R(t)
∣∣∣



 . (5)

For the first term on the right side of (5), it holds that

∑

1≤q≤N

∣∣E
[
TrK

(
D2g(X)

(
Γ
(
Fq,−L−1Fq

)
− Sq

))]∣∣

≤
∑

1≤q≤N

∥∥D2g(X)
∥∥
L2(Ω;HS(K))

∥∥∥∥
1

q
Γ(Fq, Fq)− Sq

∥∥∥∥
L2(Ω;HS(K))

≤
∑

1≤q≤N

1

2q

√∑

i,j∈N
Var(Γ(Fq,i, Fq,j))

≤
∑

1≤q≤N

2q − 1

4q

√∑

i,j∈N
E

[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E

[
F 2
q,j

]
− 2E[Fq,iFq,j ]

2

=
∑

1≤q≤N

2q − 1

4q

√
E

[
‖Fq‖4K

]
− (E

[
‖Fq‖2K

]
)2 − 2 ‖Sq‖2HS.

In particular, we have used the fact that
∥∥D2g(x)

∥∥
K⊗2 =

∥∥D2g(x)
∥∥
HS(K)

and [BC20, Lemma

2.4] to get the third line above. The fourth line is a consequence of [DVZ18, Lemma 2.2].
Finally, the identity 〈Sf, g〉K = E[〈X, f〉K 〈X, g〉K ] allows us to get the term ‖Sq‖HS in the last
line.
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Now we study the second term on the right side of (5). Application of [BC20, Lemma 2.4] and
[DVZ18, Lemma 2.2] gives

∑

1≤p 6=q≤N

∣∣∣∣∣∣
∑

i,j∈N
E

[〈
ki,D

2g(X)Γ̃
(
−L̃−1Fp,i, Fq,j

)
kj

〉
K

]
∣∣∣∣∣∣

≤
∑

1≤p 6=q≤N

E



√∑

i,j∈N
〈ki,D2g(X)kj〉K

√∑

i,j∈N
Γ̃
(
−L̃−1Fp,i, Fq,j

)2



≤
∑

1≤p 6=q≤N

√∑

i,j∈N
E

[
〈ki,D2g(X)kj〉2K

]√√√√
∑

i,j∈N
E

[
Γ̃
(
−L̃−1Fp,i, Fq,j

)2]

≤
∑

1≤p 6=q≤N

p+ q − 1

2p

∥∥D2g(X)
∥∥
L2(Ω;HS(K))

√∑

i,j∈N
E

[
F 2
p,iF

2
q,j

]
− E

[
F 2
p,i

]
E

[
F 2
q,j

]

≤
∑

1≤p 6=q≤N

p+ q − 1

4p

√
E

[
‖Fp‖2K ‖Fq‖2K

]
− E

[
‖Fp‖2K

]
E

[
‖Fq‖2K

]
.

As the last step, we evaluate the remainder term in (5).

lim
t→0

R(t) ≤
∥∥D3g

∥∥
∞ lim

t→0

1

t
E

[∥∥Xt −X
∥∥3
K

]

≤
(√

lim
t→0

E

[
1

t
‖Xt −X‖2K

]√
lim
t→0

1

t
E

[
‖Xt −X‖4K

])

≤
√

2NE

[
‖X‖2K

]√√√√
∑

1≤q≤N

23q−2(4q − 3)

(
‖Fq‖4K − E

[
‖Fq‖2K

]2
− 2 ‖Sq‖2HS

)
,

The second line is a consequence of Hölder’s inequality and [BC20, Lemma 2.4]. The third line
uses Lemma 7 (which is stated in the appendix). We can hence deduce from (5) that

d3(X,G) ≤
∑

1≤q≤N

2q − 1

4q

√
E

[
‖Fq‖4K

]
− (E

[
‖Fq‖2K

]
)2 − 2 ‖Sq‖2HS

+
∑

1≤p 6=q≤N

p+ q − 1

4p

√
E

[
‖Fp‖2K ‖Fq‖2K

]
− E

[
‖Fp‖2K

]
E

[
‖Fq‖2K

]

+

√
NE

[
‖X‖2K

]√√√√
∑

1≤q≤N

23q−1(4q − 3)

(
‖Fq‖4K − E

[
‖Fq‖2K

]2
− 2 ‖Sq‖2HS

)
. (6)

In order to obtain the second estimate in Theorem 3, observe that

E

[
‖X‖4K

]
− (E

[
‖X‖2K

]
)2 − 2 ‖S‖2HS =

∑

1≤q≤N

E

[
‖Fq‖4K

]
− (E

[
‖Fq‖2K

]
)2 − 2 ‖Sq‖2HS

+
∑

1≤p 6=q≤N

E

[
‖Fp‖2K ‖Fq‖2K

]
− E

[
‖Fp‖2K

]
E

[
‖Fq‖2K

]
,
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This combined with Lemma 5, the bound at (6) and the fact that

∑

1≤q,p≤N

√
yq,p ≤

√
N2

∑

1≤p,q≤N

yq,p for yq,p ≥ 0,

23q−1q(4q − 3) ≤ 23N−1N(4N − 3) for 1 ≤ p ≤ N,

2q − 1

4q
∨ p+ q − 1

4p
≤ N(2N − 1)

4
for 1 ≤ p, q ≤ N,

, yields

d3(X,G) ≤
(
N(2N − 1)

4
+

√
23N−1N(4N − 3)E

[
‖X‖2K

])√
E

[
‖X‖4K

]
− E

[
‖X‖2K

]2
− 2 ‖S‖2HS.

�
We now turn to the proof of Theorem 4, which makes use of the second estimate in Theorem 3.

4.2. Proof of Theorem 4. The strategy here consists of making use of the product formula (3)

for Poisson multiple integrals in order to represent the quantity E

[
‖X‖4K

]
−E

[
‖X‖2K

]2
−2 ‖S‖2HS

which appears in the second estimate of Theorem 3 in term of contraction norms. We begin by
noting that this quantity can be written as

E

[
‖X‖4K

]
− E

[
‖X‖2K

]2
− 2 ‖S‖2HS =

∑

i,j∈N
1≤p,q≤N

(
E
[
F 2
q,iF

2
p,j

]
− E

[
F 2
q,i

]
E
[
F 2
p,j

]
− 2E[Fq,iFp,j]

2
)

=
∑

i,j∈N
1≤p,q≤N

(
E
[
F 2
q,iF

2
p,j

]
− E

[
F 2
q,i

]
E
[
F 2
p,j

])

− 2
∑

i,j∈N
1≤q≤N

E[Fq,iFp,j]
2.

An application of the product formula (3) for Poisson multiple integrals yields

Fq,iFp,j =

q∧p∑

r=0

r!

(
q

r

)(
p

r

) r∑

l=0

(
r

l

)
Iq+p−r−l

(
fq,i⋆̃

l
rfp,j

)
.

Now by the orthogonality of Poisson chaos of different orders, one has

E
[
F 2
q,iF

2
p,j

]
=

q∧p∑

r,s=0

∑

0≤l≤r
0≤m≤s

r+l=s+m

cp,q,l,m(r, s)
〈
fq,i⋆̃

l
rfp,j, fq,i⋆̃

m
s fp,j

〉
H⊗(q+p−r−l)

, (7)

where the coefficient cp,q,l,m(r, s) is given by

cp,q,l,m(r, s) = r!s!

(
q

r

)(
q

s

)(
p

r

)(
p

s

)(
r

l

)(
s

m

)
(p + q − r − l)!.

Let us define the index set I as

I =
{
(r, s, l,m) ∈ N

4 : 0 ≤ r, s ≤ q ∧ p, 0 ≤ l ≤ r, 0 ≤ m ≤ s,

r + l = s+m, (r, s, l,m) /∈ {(0, 0, 0, 0), (q ∧ p, q ∧ p, q ∧ p, q ∧ p)}
}
.



FUNCTIONAL GAUSSIAN APPROXIMATIONS IN HILBERT SPACES: THE NON-DIFFUSIVE CASE 15

Then, using Lemma 8, Equation (7) can be rewritten as

E
[
F 2
q,iF

2
p,j

]
=q!p! ‖fq,i‖2H⊗q ‖fp,j‖2H⊗q + 2q!2 〈fq,i, fq,j〉2H⊗q

+ ap,q(p ∧ q)
∥∥fq,i ⋆q∧pq∧p fp,j

∥∥2
H⊗|q−p| 1{q 6=p} +

q∧p−1∑

r=1

bp,q(r) ‖fq,i ⋆rr fp,j‖2H⊗(q+p−2r)

+
∑

(r,s,l,m)∈I
cp,q,l,m(r, s)

〈
fq,i⋆̃

l
rfp,j, fq,i⋆̃

m
s fp,j

〉
H⊗(q+p−r−l)

,

where the combinatorial coefficients ap,q(r) and bp,q(r) are given by





ap,q(r) = p!q!

(
q

r

)(
p

r

)
+ r!2

(
q

r

)2(p
r

)2

|p− q|!

bp,q(r) = p!q!

(
q

r

)(
p

r

) .

Consequently, we hence obtain

E

[
‖X‖4K

]
− E

[
‖X‖2K

]2
− 2 ‖S‖2HS =

∑

i,j∈N
1≤p,q≤N

(
E
[
F 2
q,iF

2
p,j

]
− E

[
F 2
q,i

]
E
[
F 2
p,j

]
− 2E[Fq,iFp,j]

2
)

=
∑

i,j∈N
1≤p 6=q≤N

ap,q(p ∧ q)
∥∥fq,i ⋆q∧pq∧p fp,j

∥∥2
H⊗|q−p|

+
∑

i,j∈N
1≤p,q≤N

q∧p−1∑

r=1

bp,q(r) ‖fq,i ⋆rr fp,j‖2H⊗(q+p−2r)

+
∑

i,j∈N
1≤p,q≤N
(r,s,l,m)∈I

cp,q,l,m(r, s)
〈
fq,i⋆̃

l
rfp,j, fq,i⋆̃

m
s fp,j

〉
H⊗(q+p−r−l)

.

Since we have
∥∥∥fq⋆lrfp

∥∥∥
2

H⊗(q+p−r−l)⊗K⊗2
=
∑

i,j∈N

∥∥∥〈fq, ki〉K ⋆lr 〈fp, kj〉K
∥∥∥
2

H⊗(q+p−r−l)
=
∑

i,j∈N

∥∥∥fq,i⋆lrfp,j
∥∥∥
2

H⊗(q+p−r−l)
,

we can sum over i, j ∈ N and apply Holder’s inequality to get

E

[
‖X‖4K

]
− E

[
‖X‖2K

]2
− 2 ‖S‖2HS ≤

∑

i,j∈N
1≤p 6=q≤N

ap,q(p ∧ q)
∥∥fq,i ⋆q∧pq∧p fp,j

∥∥2
H⊗|q−p|

+
∑

i,j∈N
1≤p,q≤N

q∧p−1∑

r=1

bp,q(r) ‖fq,i ⋆rr fp,j‖2H⊗(q+p−2r)

+
∑

i,j∈N
1≤p,q≤N
(r,s,l,m)∈I

cp,q,l,m(r, s)
∥∥∥fq ⋆lr fp

∥∥∥
H⊗(q+p−r−l)

‖fq ⋆ms fp‖H⊗(q+p−r−l) ,

which concludes the proof. �
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5. Applications

5.1. Brownian approximation of a Poisson process in Besov-Liouville spaces.

5.1.1. A brief overview of Besov-Liouville spaces. For an extensive account on the current topic,
we invite readers to view [SKM93]. For f ∈ Lp([0, 1], ds) and β > 0, we define the left and right
fractional integrals respectively as

(
Iβ
0+
f
)
(s) =

1

Γ(β)

∫ s

0
(s − r)β−1f(r)dr

and
(
Iβ
1−
f
)
(s) =

1

Γ(β)

∫ 1

s
(r − s)β−1f(r)dr.

This allows us to define the Besov-Liouville spaces

I+
β,p =

{
Iβ
0+
f̂ , f̂ ∈ Lp([0, 1])

}
,

which are Banach spaces when equipped with the norm ‖f‖I+
β,p

=
∥∥∥f̂
∥∥∥
Lp([0,1])

. The Besov-

Liouville spaces I−
β,p are defined accordingly with the right fractional integrals. When βp < 1,

the spaces I+
β,p and I−

β,p are canonically isomorphic and therefore will both be denoted by Iβ,p.
Remark 4. As pointed out in [CD13], Iβ,2 for β < 1/2 is an appropriate class of Besov-Liouville
spaces for the functional approximation of a Poisson process by a Brownian motion since they
are Hilbert spaces containing both the sample paths of the Poisson process and the Brownian
motion.

Similarly to the left and right fractional integrals, one can define left and right fractional
derivatives as

(
Dβ

0+f
)
(s) =

1

Γ(1− β)

d

ds

∫ s

0
(s− r)−βf(r)dr

(
Dβ

1−
f
)
(s) =

1

Γ(1− β)

d

ds

∫ 1

s
(r − s)−βf(r)dr

As the name suggests, Dβ
0+

is the inverse of Iβ
0+

(see [SKM93, Theorem 2.4]). Two examples
for the action of this operator that will be useful later are

(
Dβ

0+
Id
)
(r) =

r−β+1

(−β + 1)Γ(−β + 1)
and

(
Dβ

0+
1[a,∞)

)
(r) =

(r − a)−β
+

Γ(−β + 1)
, (8)

where Id denotes the identity function. Let us also mention a few important facts about

fractional integrals and derivatives. Given 0 < β < 1 and 1 < p < 1/β, Iβ
0+

is a bounded

operator from Lp([0, 1]) to Lq([0, 1]) with q = p(1 − βp)−1. Moreover, for β > 0 and p ≥ 1,

Iβ
0+

is bounded from Lp([0, 1]) into itself (see for instance [SKM93, Equation (2.72)]). Next,
fractional derivatives are the inverses of fractional integrals, in the sense that

(
Dβ

0+
Iβ
0+
f
)
(s) = f(s)

for f ∈ L1([0, 1]). Furthermore, fractional integrals enjoy the semigroup property (see [SKM93,
Theorem 2.5]), that is

(
Iα0+I

β
0+
f
)
(s) =

(
Iα+β
0+

f
)
(s)

as long as β > 0, α+ β > 0 and f ∈ L1([0, 1]).
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5.1.2. A functional central limit theorem. We consider a Poisson process Nλ(t) with intensity
λ. It is well known (see for instance [NN18, Example 9.1.3]) that it can be represented as

Nλ(t) =
∑

n∈N
1[Tn,∞)(t), (9)

where Tn =
∑n

i=1 αi and {αi : i ∈ N} are independent exponentially distributed random vari-
ables with parameter λ, i.e., αi ∼ Exp(λ) for all i ∈ N. This implies that Tn is Gamma
distributed with shape n and rate λ, i.e., Tn ∼ Gamma(n, λ). As pointed out in [CD13], Nλ(t)
maps into Iβ,2 for β < 1/2.
For any t ∈ [0, 1], define

Xλ(t) =
Nλ(t)− λt√

λ

and let Z be a Brownian motion on Iβ,2, that is a Iβ,2-valued Gaussian random variable with
covariance operator

S′ = Iβ
0+
I1−β
0+

I1−β
1−

Dβ
0+
, (10)

where the expression of the covariance operator was derived in [CD13]. We are now ready
to state the main result of this application, namely the Brownian approximation of a Poisson
process in Iβ,2.

Theorem 5. On a Besov-Liouville space Iβ,2 with β < 1/2, the distributions of Xλ and Z are
asymptotically close as λ→ ∞. Their closeness can be quantified by

d3(Xλ, Z) .
1√
λ
.

Proof. Xλ(t) can be represented as a Poisson multiple integral of order one. Let H = L2(R+, λdx)
be the underlying Hilbert space to the compensated Poisson process Nλ(t)− λt. Furthermore,
let f(t) = 1√

λ
1[0,t] ∈ H. We can hence write

Xλ(t) = I1(f(t)).

Theorem 4 then provides us with the estimate

d3(Xλ, Z) .
∥∥f ⋆01 f

∥∥2
H⊗K⊗2 +

∥∥Sλ − S′∥∥
HS(K)

, (11)

where Sλ denotes the covariance operator of Xλ and where K = Iβ,2. We begin by computing
the contraction norm appearing above. We have

(f ⋆01 f)(x) =
1

λ
1[0,t](x)1[0,s](x) = 1[x,∞)(t)1[x,∞)(s),

so that

∥∥f ⋆01 f
∥∥2
H⊗K⊗2 =

1

λ2

∫ 1

0

∫ 1

0

∫ 1

0

((
Dβ

0+
1[x,∞)

)
(t)
(
Dβ

0+
1[x,∞)

)
(s)
)2
λdxdsdt

=
1

λΓ(−β + 1)4

∫ 1

0

∫ 1

0
(t− x)−2β

+ (s− x)−2β
+ dsdt .

1

λ
,

where the last inequality simply comes from the fact that
∫ 1
0

∫ 1
0 (t− x)−2β

+ (s− x)−2β
+ dsdt is

finite.
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In order to estimate the remaining term, namely ‖Sλ − S′‖HS(K), we apply Lemma 9 and Lemma

10. This yields

∥∥Sλ − S′∥∥2
HS(K)

=
∥∥∥E
[(
Dβ

0+
Xλ

)
(r)
(
Dβ

0+
Xλ

)
(s)
]
− E

[(
Dβ

0+
Z
)
(r)
(
Dβ

0+
Z
)
(s)
]∥∥∥

2

L2([0,1]⊗2)

=

∥∥∥∥−
λ

Γ(−β + 1)2(−β + 1)2
(r − r ∧ s)−β+1(s− r ∧ s)−β+1

∥∥∥∥
2

L2([0,1]⊗2)

= 0,

which concludes the proof. �

5.2. Edge counting in random graphs. In [LRP13a], the authors studied Gaussian fluctua-
tions of real-valued U -statistics related to graphs generated by Poisson point processes. We will
apply Theorem 4 to obtain a functional version of their results in all three regimes mentioned
in [LRP13a, Example 4.13]. Recall from Subsection 2.5 the definition of a proper Poisson point
process

ηλ =

Po(λ)∑

i=1

δYi
,

where Po(λ) is a Poisson distribution on R, while {Yi}i∈N is an i.i.d. sequence of Rd-valued
random variables distributed as ℓ and independent from Po(λ). For simplicity and illustration
purposes, let us assume ℓ is the Lebesgue measure on R

d. The control measure of ηλ is therefore

µλ(·) = λℓ(·).

Let G be a graph generated by ηλ, so that G has the vertex set {Y1, . . . , YPo(λ)}. In addition,

let W ⊆ R
d be a symmetric set which will serve as our original window in which we monitor

the edges of G, and let Hλ ⊆ R
2d be a symmetric set which will serve as our original edge set.

For 0 ≤ t ≤ 1, define




Wt = t
1
2dW

Hλ,t = t
1
2dHλ

Ŵt = {x− y : x, y ∈Wt}
Hλ,t = {x− y : x, y ∈ Hλ,t}

.

We will assume that any edge, written in pairs (x, y), belongs to Hλ,t if and only if x−y ∈ Hλ,t.

For example, this property holds for a disk graph with base edge set Hλ = B(0, rλ), an open
ball of radius rλ at the origin. We note that compared to the setup in [LRP13a], our window
and edge set are not static but evolve with time.
We are interested in a Poissonized U -statistics of the form

Fλ(t) =
∑

(x,y)∈η2
λ

x 6=y

1Hλ,t∩W 2
t
(x, y) =

Po(λ)∑

1=i1<i2

1Hλ,t∩W 2
t
(Yi1 , Yi2)

which counts edges of G that belong to the set Hλ,t and lie inside the window Wt at time t.
It is clear from the hypothesis that {Fλ(t)}t∈[0,1] as a process belongs to K = L2([0, 1]). As
proved in [RS13], our U -statistic has a finite chaos expansion given by

Fλ(t) = E[Fλ(t)] + I1(f1(t)) + I2(f2(t)),
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where the (functional) kernels f1(t) and f2(t) are given by



f1(t) = 2

∫

Rd

1Hλ,t∩W 2
t
(x, y)λdy

f2(t) = 1Hλ,t∩W 2
t
(x, y)

.

Let F̄λ(t) denote the centered and normalized version of Fλ(t) given by

F̄λ(t) =
Fλ(t)− E[Fλ(t)]

σ
= I1 (g1(t)) + I2 (g2(t)) ,

where σ2 = Var(Fλ(1)), g1(t) =
f1(t)
σ and g2(t) =

f2(t)
σ . For convenience, we will also write ℓt

for ℓ(Wt) and ψλ,t for ℓ
(
Hλ,t ∩ Ŵt

)
. Using the scaling properties of the Lebesgue measure, we

can write

ℓt =
√
tℓ1 and ψλ,t =

√
tψλ,1.

We can actually compute σ2 explicitly, using the orthogonality of Wiener chaos of different
orders and the isometry property of Poisson multiple integrals. This yields

σ2 = ‖f1(1)‖2L2(µλ)
+ ‖f2(1)‖2L2(µ2

λ)

=4λ3
∫

Rd

(∫

Rd

1W1(x)1Hλ,1∩Ŵ1
(y − x)d(y − x)

)2

dx+

∫

R2d

1Hλ,1∩W 2
1
(x, y)λ2dxdy

=4ℓ1λ
3ψ2

λ,1 + ℓ1λ
2ψλ,1.

Based on the above expression for σ2, we can consider three different regimes (similarly to what
was done in [LRP13a]), namely

- Regime 1: λψλ,1 → ∞ as λ→ ∞;
- Regime 2: λψλ,1 → 1 for c > 0 as λ→ ∞;

- Regime 3: λψλ,1 → 0 and λ
√
ψλ,1 → ∞ as λ→ ∞.

Within Regime 1, σ2 is dominated by ‖f1(1)‖2L2(µλ)
for large values of λ, which implies

σ2 ≍ 4ℓ1λ
3ψ2

λ,1,

whereas in Regime 2, we get

σ2 ≍ 4ℓ1λ
3ψ2

λ,1 ≍ ℓ1λ
2ψλ,1,

and finally in Regime 3, it holds that

σ2 ≍ ℓ1λ
2ψλ,1.

We are now ready to present the application of our results to edge counting in random graphs.

Theorem 6. As λ → ∞, F̄λ(t) converges in K = L2([0, 1]) to a K-valued Gaussian random
variable Z with covariance function φ(s, t) = E[Z(s)Z(t)]. More specifically,

- In Regime 1, φ(t, s) =
√
ts(t ∧ s) and

d3
(
F̄λ, Z

)
. λ−

1
2 +

1

λψλ,1
;

- In Regime 2, φ(t, s) =
4
√

ts(t∧s)+t∧s
5 and

d3
(
F̄λ, Z

)
. λ−

1
2 + |λψλ,1 − 1| ;

- In Regime 3, φ(t, s) = t ∧ s which implies that Z is a Brownian motion, and

d3
(
F̄λ, Z

)
. λ−1ψ

−1/2
λ,1 + λψλ,1.
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Proof. In order to make use of Theorem 4, we will need to evaluate contraction norms, but also
the Hilbert-Schmidt norm of the difference between the covariance operators, i.e., ‖S − S′‖HS.
Let us start with this term before we turn to the contraction norms themselves. As before, Sλ
and S′ denotes the covariance operator of F̄λ and Z respectively. Based on [HE15, Theorem
7.4.3] and how Hilbert-Schmidt norms are defined for integral operators, we can use

∥∥Sλ − S′∥∥
HS(K)

=
∥∥E
[
F̄λ(t)F̄λ(s)

]
− E[Z(t)Z(s)]

∥∥
L2([0,1]⊗2)

≤
∥∥E
[
F̄λ(t)F̄λ(s)

]
− E[Z(t)Z(s)]

∥∥
∞ .

Our task is hence to compute E
[
F̄λ(t)F̄λ(s)

]
. We have

〈f1(t), f1(s)〉L2(µλ)
= 4λ3ψλ,tψλ,sℓt∧s =

√
ts(t ∧ s)4ℓ1λ3ψ2

λ,1

and
〈f2(t), f2(s)〉L2(µ2

λ
) = λ2ψλ,t∧sℓt∧s = (t ∧ s)ℓ1λ2ψλ,1,

so that

E
[
F̄λ(t)F̄λ(s)

]
=
〈f1(t), f1(s)〉L2(µλ)

+ 〈f2(t), f2(s)〉L2(µ2
λ
)

σ2

=

√
ts(t ∧ s)4λψλ,1 + t ∧ s

4λψλ,1 + 1
.

At this step, we need to differentiate our analysis depending on what regime we are in.

Regime 1: We assume here that λψλ,1 → ∞. The limiting covariance operator S′ then

has covariance function φ(t, s) =
√
ts(t ∧ s). We can use the fact that for a≪ A, b≪ B,
∣∣∣∣
A+ a

B + b
− A

B

∣∣∣∣ .
∣∣∣ a
B

∣∣∣+
∣∣∣∣
b

B

∣∣∣∣
in order to deduce that

∥∥Sλ − S′∥∥
HS(K)

≤ sup
1≤s,t≤M

∣∣E
[
F̄λ(t)F̄λ(s)

]
− φ(t, s)

∣∣ . 1

λψλ,1
. (12)

Regime 2: Here, λψλ,1 → 1, so that the limiting covariance function is given by φ(t, s) =
4
√

ts(t∧s)+t∧s
5 . Moreover,

∥∥Sλ − S′∥∥
HS(K)

≤ sup
1≤s,t≤M

∣∣E
[
F̄λ(t)F̄λ(s)

]
− φ(t, s)

∣∣

= sup
1≤s,t≤M

∣∣∣∣∣
4
√
ts(t ∧ s)λψλ,1 + t ∧ s

4λψλ,1 + 1
− 4

√
ts(t ∧ s) + t ∧ s

5

∣∣∣∣∣ . |λψλ,1 − 1| .

(13)

Regime 3: The fact that λψλ,1 → 0 implies in this case that the limiting covariance function
is given by φ(t, s) = t ∧ s, and we hence have

∥∥Sλ − S′∥∥
HS(K)

.
λ3ψ2

λ,1

λ2ψλ,1
≍ λψλ,1. (14)

We now turn to the second part of the bound appearing in Theorem 4, namely the contraction
norms. We need to evaluate the norms of g1(t)⋆

0
1 g1(t), g1(t)⋆

0
1 g2(t), g1(t)⋆

1
1 g2(t), g2(t)⋆

0
1 g2(t),

g2(t) ⋆
0
2 g2(t) and g2(t) ⋆

1
1 g2(t). The calculations we need to perform are very similar to the

ones appearing in the proof of [LRP13a, Theorem 4.7], hence we will not provide full details
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and proceed straight to the result. Let us still include two examples of these calculations (the
cases of the contractions g1(t)⋆

0
1 g1(t) and g2(t)⋆

1
1 g2(t)) for the reader’s convenience and for the

sake of staying self-contained. Recall that Wt, Hλ,t are symmetric sets, Wt (respectively Hλ,t)

is contained in Wt′ (respectively Hλ,t′) for t ≤ t′, and that ψλ,t =
√
tψλ,1, while ℓt =

√
tℓ1 <∞.

We can then write
∥∥f1(t) ⋆01 f1(s)

∥∥2
L2(µλ)⊗K⊗2

=

∥∥∥∥∥

∫

Rd

(
4

∫

Z2

1Hλ,t∩W 2
t
(x, y)1Hλ,s∩W 2

s
(x, u)λdyλdu

)2

λdx

∥∥∥∥∥
K⊗2

≤ 16λ5

∥∥∥∥∥

∫

Rd

(∫

R2d

1Hλ,s∨t∩W 2
s∨t

(x, y)1Hλ,s∨t∩W 2
s∨t

(x, u)dydu

)2

dx

∥∥∥∥∥
K⊗2

≍ λ5

∥∥∥∥∥

∫

Rd

(∫

R2d

1Ws∨t(x)1Hλ,s∨t∩Ŵs∨t
(y − x)1

Hλ,s∨t∩Ŵs∨t
(u− x)d(y − x)d(u− x)

)2

dx

∥∥∥∥∥
K⊗2

≍ λ5
∥∥ℓs∨tψ4

λ,s∨t
∥∥
K⊗2 ≍ λ5ψ4

λ,1

and
∥∥f2(t) ⋆11 f2(s)

∥∥2
L2(µ2

λ
)⊗K⊗2

≤
∥∥∥∥∥

∫

R2d

(∫

Rd

1Hλ,s∨t∩W 2
s∨t

(x, y)1Hλ,s∨t∩W 2
s∨t

(x, u)λdx

)2

λ2dydu

∥∥∥∥∥
K⊗2

= λ4
∥∥∥∥
∫

R4d

1Hλ,s∨t∩W 2
s∨t

(x, y)1Hλ,s∨t∩W 2
s∨t

(x, u)1Hλ,s∨t∩W 2
s∨t

(v, y)1Hλ,s∨t∩W 2
s∨t

(v, u)dxdydudv

∥∥∥∥
K⊗2

≤ λ4
∥∥∥∥
∫

R4d

1Ws∨t(x)1Hλ,s∨t∩Ŵs∨t
(y − x)1

Hλ,s∨t∩Ŵs∨t
(u− x)1Ws∨t(x)1Hλ,s∨t∩Ŵs∨t

(y − v)

dxd(y − x)d(u− v)d(v − y)

∥∥∥∥
K⊗2

≍ λ4
∥∥ℓs∨tψ3

λ,s∨t
∥∥
K⊗2 ≍ λ4ψ3

λ,1.

For the remaining contractions, performing similar calculations yields
∥∥f1(t) ⋆01 f2(t)

∥∥2
L2(µ2

λ
)⊗K⊗2

. λ4ψ3
λ,1,

∥∥f2(t) ⋆01 f2(t)
∥∥2
L2(µ3

λ
)⊗K⊗2 . λ3ψ2

λ,1,
∥∥f2(t) ⋆02 f2(t)

∥∥2
L2(µ2

λ
)⊗K⊗2 . λ2ψλ,1, and finally

∥∥f1(t) ⋆11 f2(t)
∥∥2
L2(µλ)⊗K⊗2 . λ5ψ4

λ,1. We split the remainder of the proof into three cases cor-

responding to the three possible regimes.

Regime 1: Here, λψλ,1 → ∞ as λ→ ∞, and since σ2 ≍ λ3ψ2
λ,1, we have

∥∥g1(t) ⋆01 g1(t)
∥∥2
L2(µλ)⊗K⊗2

. λ−1,
∥∥g1(t) ⋆01 g2(t)

∥∥2
L2(µ2

λ
)⊗K⊗2 . λ−2ψ−1

λ,1,
∥∥g2(t) ⋆01 g2(t)

∥∥2
L2(µ3

λ
)⊗K⊗2 . λ−3ψ−2

λ,1,∥∥g2(t) ⋆02 g2(t)
∥∥2
L2(µ2

λ
)⊗K⊗2 . λ−4ψ−3

λ,1,
∥∥g2(t) ⋆11 g2(t)

∥∥2
L2(µ2

λ
)⊗K⊗2 . λ−2ψ−1

λ,1 and lastly
∥∥g1(t) ⋆11 g2(t)

∥∥2
L2(µλ)⊗K⊗2 . λ−1. Note that all the above estimates are asymptotically bounded

from above by λ−1, and using (12), the estimate in Theorem 4 yields

d3
(
F̄λ, Z

)
. λ−

1
2 +

1

λψλ,1
.

Regime 2: As in this case, we have λψλ,1 → 1 as λ → ∞, we get σ2 ≍ λ3ψ2
λ,1 ≍ λ2ψλ,1.
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Therefore, we can reuse the computations from Regime 1 combined with (13) to get

d3
(
F̄λ, Z

)
. λ−

1
2 + |λψλ,1 − 1| .

Regime 3: In this regime, λψλ,1 → 0 and λ
√
ψλ,1 → ∞ as λ→ ∞, so that σ2 ≍ λ2ψλ,1. This

allows us to deduce that
∥∥g1(t) ⋆01 g1(t)

∥∥2
L2(µλ)⊗K⊗2 . λψ2

λ,1,
∥∥g1(t) ⋆01 g2(t)

∥∥2
L2(µ2

λ
)⊗K⊗2 . ψλ,1,∥∥g2(t) ⋆01 g2(t)

∥∥2
L2(µ3

λ
)⊗K⊗2 . λ−1,

∥∥g2(t) ⋆02 g2(t)
∥∥2
L2(µ2

λ
)⊗K⊗2 . λ−2ψ−1

λ,1,
∥∥g2(t) ⋆11 g2(t)

∥∥2
L2(µ2

λ
)⊗K⊗2

. ψλ,1 and
∥∥g1(t) ⋆11 g2(t)

∥∥2
L2(µλ)⊗K⊗2 . λψ2

λ,1. Since λ−2 ≪ ψλ,1 ≪ λ−1, all terms listed are

asymptotically bounded by λ−2ψ−1
λ,1. Combining this fact with (14) yields

d3
(
F̄λ, Z

)
. λ−1ψ

−1/2
λ,1 + λψλ,1,

which concludes the proof. �

Appendix

This section gathers ancillary lemmas used in the proofs of our main results as well as in the
different applications presented in this paper.

5.3. Lemmas related to the proofs of Theorems 3 and 4. Our first lemma is a crucial
result from [DVZ18] which we restate here for convenience.

Lemma 3. Let p, q ≥ 1 be integers, and let Fq = Iηq (fq), Gp = Iηp (gp) and F t
q = Iη

t

q (fq), G
t
p =

Iη
t

p (gp) be real-valued Poisson multiple integrals as constructed in Section 2. Then, the following
limits hold almost surely.

(a) limt→0
1
tE
[
F t
q − Fq|η

]
= −qF

(b) limt→0
1
tE
[
(F t

q − Fq)(G
t
p −Gp)|η

]
= 2Γ̃(Fq, Gp)

(c) limt→0
1
tE
[
F t
q (G

t
p −Gp)|η

]
= 2Γ̃(Fq, Gp)− pFqGp

(d) limt→0
1
tE
[
(F t

q − Fq)
4
]
= −4qE

[
F 4
q

]
+ 12E

[
F 2
q Γ̃(Fq, Fq)

]
.

Proof. The proof of part (a), (b) and (d) are in [DVZ18, Proposition 3.2]. Part (c) is a conse-
quence of (a) and (b). �

Our next lemma states a more general version of Lemma 3, part (d).

Lemma 4. Let (X,Xt) be an exchangeable pair such that X =
∑

q∈N I
η
q (xq) and Xt =

∑
q∈N I

ηt
q (xq). Let the pairs (Y, Y t),(U,U t) and (V, V t) be defined in the same way. Then,

one has

lim
t→∞

1

t
E
[
(Xt −X)(Yt − Y )(U t − U)(V t − V )

]
=4E

[
Γ̃(X,Y )UV + Γ̃(X,V )Y U

+Γ̃(X,U)Y V + L̃XY UV
]
.

Proof. This limit is a consequence of exchangeability and Lemma 3. Indeed, denoting

Mt =
1

t
E
[
(Xt −X)(Yt − Y )(U t − U)(V t − V )

]
,
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we can write

lim
t→∞

Mt =2 lim
t→∞

1

t
E
[
XY UV −XtY UV −XY tUV −XY U tV −XY UV t

]

+ 2 lim
t→∞

1

t
E
[
XtY tUV +XtY U tV +XtY UV t

]

=2 lim
t→∞

1

t
E
[
−
(
Xt −X

)
Y UV −X

(
Y t − Y

)
UV −XY

(
U t − U

)
V −XY U

(
V t − V

)]

+ 2 lim
t→∞

1

t
E
[(
XtY t −XY

)
UV +

(
XtU t −XU

)
Y V +

(
XtV t −XV

)
Y U

]

=2E
[
− L̃XY UV −XL̃Y UV −XY L̃UV −XY UL̃V + L̃(XY )UV + L̃(XU)Y V

+ L̃(XV )Y U
]

=4E
[
Γ̃(X,Y )UV + Γ̃(X,V )Y U + Γ̃(X,U)Y V + L̃XY UV

]
.

�

Lemma 5. Let X =
∑N

q=1 Fq, where Fq ∈ Hq(K) with covariance operator Sq. Furthermore,

letting {ki}i∈N be an orthonormal basis of K, Fq can be written as
∑

i∈N Fq,iki, where Fq,i =
〈Fq, ki〉K . Then, it holds that

E
[
F 2
q,iF

2
p,j

]
− E

[
F 2
q,i

]
E
[
F 2
p,j

]
− 2E[Fq,iFp,j]

2 ≥ 0,

which leads to

E

[
‖Fq‖4K

]
− E

[
‖Fq‖2K

]2
− 2 ‖Sq‖2HS ≥ 0

and

E

[
‖Fq‖2K ‖Fp‖2K

]
− E

[
‖Fq‖2K

]
E

[
‖Fp‖2K

]
≥ 0 when q 6= p.

Proof. By [DVZ18, Section 5], we have that

E
[
Jp+q(Fq,iFp,j)

2
]
≥ E[Fq,iFp,j]

2 + E
[
F 2
q,i

]
E
[
F 2
p,j

]
,

which implies that

E
[
F 2
q,iF

2
p,j

]
− E

[
F 2
q,i

]
E
[
F 2
p,j

]
− 2E[Fq,iFp,j]

2 ≥E
[
F 2
q,iF

2
p,j

]
− E[Fq,iFp,j]

2 − E
[
Jp+q(Fq,iFp,j)

2
]

≥E

[
p+q−1∑

m=1

Jm(Fq,iFp,j)
2

]

≥0.

The second and third inequalities in the statement of our lemma immediately follow, since

E

[
‖Fq‖4K

]
− (E

[
‖Fq‖2K

]
)2 − 2 ‖Sq‖2HS =

∑

i,j∈N
E
[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E
[
F 2
q,j

]
− 2E[Fq,iFq,j]

2

≥0

and when q 6= p,

E

[
‖Fq‖2K ‖Fp‖2K

]
− E

[
‖Fq‖2K

]
E

[
‖Fp‖2K

]
=
∑

i,j∈N
E
[
F 2
q,iF

2
p,j

]
− E

[
F 2
q,i

]
E
[
F 2
p,j

]
≥ 0.

�

The upcoming lemma is a version of Lemma 3 in the setting of Hilbert-valued random variables.

Lemma 6. Let X =
∑N

q=1 Fq, where Fq ∈ Hq(K) with covariance operator Sq. It holds that
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(a) limt→0
1
tE

[〈
F t
q − Fq,Dg(X)

〉
K

]
= −qE

[
〈Fq,Dg(X)〉K

]
.

(b) limt→0
1
tE

[∥∥F t
q − Fq

∥∥2
K

]
= 2qE

[
‖Fq‖2K

]
.

(c) limt→0
1
2tE

[〈
−L−1

(
F t
q − Fq

)
,D2g(X)(F t

p − Fp)
〉
K

]

= 1
q

∑
i,j∈N E

[
Γ̃(Fq,i, Fp,j)

〈
ki,D

2g(X)kj
〉
K

]
.

(d) limt→0
1
tE

[∥∥F t
q − Fq

∥∥4
K

]
= 4

∑
i,j∈NE

[
F 2
q,i

(
Γ̃(Fq,j, Fq,j)− qE[Fq,j ]

)]

+ 8
∑

i,j∈NE

[
Fq,iFq,j

(
Γ̃(Fq,i, Fq,j)− qE[Fq,iFq,j]

)]

− 4q
∑

i,j∈N

(
E

[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E

[
F 2
q,j

]
− 2E[Fq,iFq,j ]

2
)
.

In particular, when q = p then part (c) becomes

lim
t→0

1

2t
E

[〈
−L−1

(
F t
q − Fq

)
,D2g(X)(F t

q − Fq)
〉
K

]
= TrK

(
D2g(X)Γ

(
Fq,−L−1Fq

))
.

Proof. Part (a) follows from

lim
t→0

1

t
E

[〈
F t
q − Fq,Dg(X)

〉
K

]
= lim

t→0

1

t

∑

i∈N
E

[〈(
F t
q,i − Fq,i

)
ki,Dg(X)

〉
K

]

=
∑

i∈N
E

[
lim
t→0

1

t
E
[
F t
q,i − Fq,i|η

]
〈ki,Dg(X)〉K

]

= −q
∑

i∈N
E[Fq,i〈ki,Dg(X)〉K ]

= −qE
[
〈Fq,Dg(X)〉K

]
.

Part (b) is a result of

E

[
lim
t→0

1

t
E

[∥∥F t
q − Fq

∥∥2
K
|η
]]

=E

[∑

i∈N
lim
t→0

1

t
E

[(
F t
q,i − Fq,i

)2|η
]]

=2
∑

i∈N
E

[
Γ̃(Fq,i, Fq,i)

]

=2qE
[
‖Fq‖2K

]
.

For part (c), we can write

lim
t→0

1

2t
E

[〈
−L−1

(
F t
q − Fq

)
,D2g(X)(F t

p − Fp)
〉
K

]

= lim
t→0

1

2t
E



〈∑

i∈N

1

q

(
F t
q,i − Fq,i

)
ki,D

2g(X)
∑

j∈N

(
F t
p,j − Fp,j

)
kj

〉

K




=
1

q

∑

i,j∈N
E

[
lim
t→0

1

2t
E
[(
F t
q,i − Fq,i

)(
F t
p,j − Fp,j

)
|η
] 〈
ki,D

2g(X)kj
〉
K

]

=
1

q

∑

i,j∈N
E

[
Γ̃(Fq,i, Fp,j)

〈
ki,D

2g(X)kj
〉
K

]
.
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Using the above expression in the case q = p, along with the fact that

Γ(Fq, Fq)kj = Γ

(∑

i∈N
Fq,iki,

∑

m∈N
Fq,mkm

)
kj =

∑

i,m∈N
Γ(Fq,iki, Fq,mkm)kj

=
∑

i,m∈N

1

2
Γ̃(Fq,i, Fq,m)(ki ⊗ km + km ⊗ ki)kj

=
∑

i∈N
Γ̃(Fq,i, Fq,j)ki

yields

lim
t→0

1

2t
E

[〈
−L−1

(
F t
q − Fq

)
,D2g(X)(F t

q − Fq)
〉
K

]
= TrK

(
D2g(X)Γ

(
Fq,−L−1Fq

))
.

For part (d), the exchangeability of
(
Fq, F

t
q

)
and Lemma 4 imply

lim
t→0

1

t
E

[∥∥F t
q − Fq

∥∥4
K

]
= lim

t→0

1

t
E



∥∥∥∥∥
∑

i∈N

(
F t
q,i − Fq,i

)
ki

∥∥∥∥∥

4

K




= lim
t→0

1

t
E


∑

i,j∈N

(
F t
q,i − Fq,i

)2(
F t
q,j − Fq,j

)2



=4
∑

i,j∈N
E

[
F 2
q,i

(
Γ̃(Fq,j , Fq,j)− qE

[
F 2
q,j

])]

+ 8
∑

i,j∈N
E

[
Fq,iFq,j

(
Γ̃(Fq,i, Fq,j)− qE[Fq,iFq,j]

)]

− 4q
∑

i,j∈N

(
E
[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E
[
F 2
q,j

]
− 2E[Fq,iFq,j]

2
)
.

�

The next result provides upper bounds on the limits appearing in Lemma 6, part (b) and (d).

Lemma 7. Let X =
∑N

q=1 Fq, where Fq ∈ Hq(K) with covariance operator Sq. It holds that

lim
t→0

E

[
1

t

∥∥Xt −X
∥∥2
K

]
≤ 2NE

[
‖X‖2K

]

and

lim
t→0

1

t
E

[∥∥Xt −X
∥∥4
K

]
≤

∑

1≤q≤N

23q−2(4q − 3)

(
‖Fq‖4K − E

[
‖Fq‖2K

]2
− 2 ‖Sq‖2HS

)
.

Proof. The first bound follows from

E

[
lim
t→0

1

t
E

[∥∥Xt −X
∥∥2
K
|η
]]

=2
∑

i∈N
p,q≤N

E

[
Γ̃(Fp,i, Fq,i)

]

=
∑

i∈N
p≤N

2pE
[
F 2
p,i

]

≤2NE

[
‖X‖2K

]
.
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For the second estimate, we start by using the triangle inequality and the cr-inequality (see for
example [Gut13, Thm. 2.2, p.127]) to write

lim
t→0

1

t
E

[∥∥Xt −X
∥∥4
K

]
≤ lim

t→0

1

t
E




 ∑

1≤q≤N

∥∥F t
q − Fq

∥∥
K




4


≤
∑

1≤q≤N

8q−1 lim
t→0

1

t
E

[∥∥F t
q − Fq

∥∥4
K

]
. (15)

Regarding the previous expression, Lemma 6 says

lim
t→0

1

t
E

[∥∥F t
q − Fq

∥∥4
K

]
=4

∑

i,j∈N
E

[
F 2
q,i

(
Γ̃(Fq,j, Fq,j)− qE

[
F 2
q,j

])]

+ 8
∑

i,j∈N
E

[
Fq,iFq,j

(
Γ̃(Fq,i, Fq,j)− qE[Fq,iFq,j]

)]

− 4q
∑

i,j∈N

(
E
[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E
[
F 2
q,j

]
− 2E[Fq,iFq,j]

2
)
. (16)

We will treat each term of (16) separately. For the first term of (16), our proof will use an
argument similar to the proof of [DVZ18, Lemma 2.2] or [DP18, Lemma 3.1]. First, observe
that if k is a fixed positive integer and Jk denotes the projection into the k-th Poisson chaos,
then

E

[
Jk

(
‖Fp‖2K

)2]
=
∑

i,j∈N
E
[
Jk
(
F 2
q,i

)
Jk
(
F 2
q,j

)]
.

In particular, the expansion in [DVZ18, Lemma 5.1] yields

E

[
J2q

(
‖Fq‖⊗2

K

)2]
=
∑

i,j∈N
(2q)!

〈
fq,i⊗̃fq,i, fq,j⊗̃fq,j

〉
H2q

=
∑

i,j∈N

(
2E[Fq,iFq,j]

2 +

q−1∑

r=1

q!2
(
q

r

)2

〈fq,i⋆rrfq,j, fq,j⋆rrfq,i〉H2q−2r

)
.

Thus, the first term of (16) can be bounded via

∑

i,j∈N
E

[
F 2
q,i

(
Γ̃(Fq,j , Fq,j)− qE

[
F 2
q,j

])]
≤1

2

∑

i,j∈N

2q−1∑

k=1

(2p − k)E
[
Jk
(
F 2
q,i

)
Jk
(
F 2
q,j

)]

=
1

2

2q−1∑

k=1

(2p − k)E

[
Jk

(
‖Fq‖2K

)2]

≤2q − 1

2

2q−1∑

k=1

E

[
Jk

(
‖Fq‖2K

)2]

=
2q − 1

2

(
‖Fq‖4K − E

[
‖Fq‖2K

]2
− 2 ‖Sq‖2HS

)

− 2q − 1

2

∑

i,j∈N

q−1∑

r=1

q!2
(
q

r

)2

〈fq,i⋆rrfq,j, fq,j⋆rrfq,i〉H2q−2r .
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The second term of (16) will receive a similar treatment. Based on [DVZ18, Lemma 5.1], we
have

E[J2q(Fq,iFq,j)] =
∑

i,j∈N
(2q)!

∥∥fq,i⊗̃fq,j
∥∥2
H2q

=
∑

i,j∈N

(
E[Fq,iFq,j]

2 + E
[
F 2
q,i

]
E
[
F 2
q,j

]
+

q∑

r=1

q!2
(
q

r

)2

‖fq,i⋆rrfq,j‖2H2q−2r

)
.

Hence,

∑

i,j∈N
E

[
Fq,iFq,j

(
Γ̃(Fq,i, Fq,j)− qE[Fq,iFq,j]

)]
=
1

2

∑

i,j∈N

2q−1∑

k=1

(2q − k)E
[
Jk(Fq,iFq,j)

2
]

≤2q − 1

2

∑

i,j∈N

2q−1∑

k=1

E

[
Jk(Fq,iFq,j)

2
]

=
2q − 1

2

(
E
[
F 2
q,iF

2
q,j

]
− E

[
F 2
q,i

]
E
[
F 2
q,j

]
− 2E[Fq,iFq,j]

2
)

− 2q − 1

2

∑

i,j∈N

q−1∑

r=1

q!2
(
q

r

)2

‖fq,i⋆rrfq,j‖2H2q−2r

≤2q − 1

2

(
‖Fq‖4K − E

[
‖Fq‖2K

]2
− 2 ‖Sq‖2HS

)

− 2q − 1

4

∑

i,j∈N

q−1∑

r=1

q!2
(
q

r

)2

‖fq,i⋆rrfq,j‖2H2q−2r .

In addition, based on that fact that
∑

i,j∈N

(
2 ‖fq,i⋆rrfq,j‖2H2q−2r + 2 〈fq,i⋆rrfq,j, fq,j⋆rrfq,i〉H2q−2r

)

=
∑

i,j∈N

(
‖fq,i⋆rrfq,j‖2H2q−2r + 2 〈fq,i⋆rrfq,j, fq,j⋆rrfq,i〉H2q−2r + ‖fq,j⋆rrfq,i‖2H2q−2r

)

=
∑

i,j∈N

(
‖fq,i⋆rrfq,j + fq,j⋆

r
rfq,i‖2H2q−2r

)

≥ 0,

we get from (16) that

lim
t→0

1

t
E

[∥∥F t
q − Fq

∥∥4
K

]
≤ (8q − 6)

(
‖Fq‖4K − E

[
‖Fq‖2K

]2
− 2 ‖Sq‖2HS

)

and from (15) that

lim
t→0

1

t
E

[∥∥Xt −X
∥∥4
K

]
≤

N∑

q=1

23q−2(4q − 3)

(
‖Fq‖4K − E

[
‖Fq‖2K

]2
− 2 ‖Sq‖2HS

)
.

�

The result below is an adaptation to our setting of a classical combinatorial identity appearing
in [PT11, Proof of Proposition 11.2.2].
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Lemma 8. The quantity
∥∥∥fq,i⋆̃00fp,j

∥∥∥
2

Hq+p
appearing in Equation (7) can be written in terms of

norms of non-symmetrized contractions as

(q + p)!
∥∥∥fq,i⋆̃00fp,j

∥∥∥
2

Hq+p
=

(
q!p! ‖fq,i‖2Hq ‖fp,j‖2Hp + q!2 〈fq,i, fq,j〉2Hq 1{q=p}

+ q!p!

(
q

q ∧ p

)(
p

q ∧ p

)∥∥fq,i ⋆q∧pq∧p fp,j
∥∥2
H⊗|q−p| 1{q 6=p}

+

q∧p−1∑

r=1

q!p!

(
q

r

)(
p

r

)
‖fq,i ⋆rr fp,j‖2Hq+p−2r

)
.

Proof. The procedure in [PT11, Proof of Proposition 11.2.2] will be slightly modified to fit our
situation. Let Sq+p be the sets of all permutations of (q+ p) elements and assume π, ρ ∈ Sq+p.
When the intersection set {π(1), . . . , π(q)} ∩ {ρ(q + 1), . . . , ρ(q + p)} contains r element, this

will be denoted by π
r∼ ρ. Since H = L2(Z, µ), we have that

∥∥∥fq,i⋆̃00fp,j
∥∥∥
2

Hq+p
=
∥∥fq,i⊗̃fp,j

∥∥2
Hq+p

=
1

(q + p)!2

∑

π,ρ∈Sq+p

∫

Zq+p

fq,i
(
zπ(1), . . . , zπ(q)

)
fp,j
(
zπ(q+1), . . . , zπ(q+p)

)

fq,i
(
zρ(1), . . . , zρ(q)

)
fp,j
(
zρ(q+1), . . . , zρ(q+p)

)
µ(dz1 . . . dzq+p)

=
1

(q + p)!2

∑

π∈Sq+p




q∧p−1∑

r=1

∑

π
r∼ρ

A1,r +
∑

π
0∼ρ

A2 +
∑

π
q∧p∼ ρ

A3


. (17)

For the second sum in (17), π
0∼ ρ is equivalent to

{
{π(1), . . . , π(q)} ∩ {ρ(1), . . . , ρ(q)} = {π(1), . . . , π(q)}
{π(q + 1), . . . , π(q + p)} ∩ {ρ(q + 1), . . . , ρ(q + p)} = {π(q + 1), . . . , π(q + p)} ,

which implies that

A2 =

∫

Zq∧p

(∫

Zq∧p

fq,i
(
zπ(1), . . . , zπ(q)

)
fq,i
(
zπ(1), . . . , zπ(q)

))

(
fp,j
(
zπ(q+1), . . . , zπ(q+p)

)
fp,j
(
zπ(q+1), . . . , zπ(q+p)

))
µ(dz1 . . . dzq+p) = ‖fq,i‖2Hq ‖fp,j‖2Hp .

Furthermore, observe that for a fixed element π ∈ Sq+p, there are q! ways to permute {1, . . . , q}
and p! ways to permute {q+1, . . . , q+ p}. Since fq,i and fp,j are symmetric functions, we have

∑

π
0∼ρ

A2 = q!p! ‖fq,i‖2Hq ‖fp,j‖2Hp .

For the third sum in (17), there are two cases to consider. If q = p then π
q∼ ρ means

{
{π(1), . . . , π(q)} ∩ {ρ(q + 1), . . . , ρ(2q)} = {π(1), . . . , π(q)}
{π(q + 1), . . . , π(2q)} ∩ {ρ(1), . . . , ρ(q)} = {π(q + 1), . . . , π(2q)} ,
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which implies that

A3 =

∫

Zq

(∫

Zq

fq,i
(
zπ(1), . . . , zπ(q)

)
fq,j
(
zπ(1), . . . , zπ(q)

))

fq,i
(
zπ(q+1), . . . , zπ(2q)

)
fq,j
(
zπ(q+1), . . . , zπ(2q)

)
µ(dz1 . . . dz2q)

= 〈fq,i, fq,j〉2Hq 1{q=p},

and there are q!2 copies like the one above. On the other hand for q 6= p,

A3 =

∫

Z|q−p|

(∫

Zq∧p

fq,i
(
zπ(1), . . . , zπ(q)

)
fp,j
(
zρ(q+1), . . . , zρ(q+p)

))

(∫

Zq∧p

fq,i
(
zρ(1), . . . , zρ(q)

)
fp,j
(
zπ(q+1), . . . , zπ(q+p)

))
µ(dz1 . . . dzq+p)

=

∫

Z|q−p|

(
fq,i ⋆

q∧p
q∧p fp,j

)2
µ(dz1 . . . dz|q−p|)

=
∥∥fq,i ⋆q∧pq∧p fp,j

∥∥2
H⊗|q−p| .

Given a fixed π such that π
q∧p∼ ρ and q 6= p, there is a total of

( q
q∧p
)( p

q∧p
)
ways of choosing

q ∧ p elements in {π(1), . . . , π(q)} ∩ {ρ(q + 1), . . . , ρ(q + p)} and q ∧ p elements in {π(q +
1), . . . , π(q+ p)}∩{ρ(1), . . . , ρ(q)}. In addition, there are q!p! ways to organize {ρ(1), . . . , ρ(q)}
and {ρ(q + 1), . . . , ρ(q + p)}. Therefore, combining the case q = p and q 6= p gives us

∑

π
q∧p∼ ρ

A3 = q!2 〈fq,i, fq,j〉2Hq 1{q=p} + q!p!

(
q

q ∧ p

)(
p

q ∧ p

)∥∥fq,i ⋆q∧pq∧p fp,j
∥∥2
H⊗|q−p| 1{q 6=p}.

We now turn to the first sum on the right side of (17), that is when π
r∼ ρ for 1 ≤ r ≤ q∧ p− 1.

We can write

A1,r =

∫

Zq+p−2r

(∫

Zr

fq,i
(
zπ(1), . . . , zπ(q)

)
fp,j
(
zρ(q+1), . . . , zρ(q+p)

))

(∫

Zr

fq,i
(
zρ(1), . . . , zρ(q)

)
fp,j
(
zπ(q+1), . . . , zπ(q+p)

))
µ(dz1 . . . dzq+p)

=

∫

Zq+p−2r

(fq,i ⋆
r
r fp,j(z1, . . . , zq+p−2r))

2µ(dz1 . . . dzq+p−2r)

= ‖fq,i ⋆rr fp,j‖2Hq+p−2r .

There are
(q
r

)(p
r

)
ways to choose r elements in {π(1), . . . , π(q)} ∩ {ρ(q + 1), . . . , ρ(q + p)} and

r elements in {π(q + 1), . . . , π(q + p)} ∩ {ρ(1), . . . , ρ(q)}. Furthermore, there are q!p! ways to
organize {ρ(1), . . . , ρ(q)} and {ρ(q + 1), . . . , ρ(q + p)}. This yields

q∧p−1∑

r=1

∑

π
r∼ρ

A1,r =

q∧p−1∑

r=1

q!p!

(
q

r

)(
p

r

)
‖fq,i ⋆rr fp,j‖2Hq+p−2r .
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Thus, we can expand (17) as

∥∥∥fq,i⋆̃00fp,j
∥∥∥
2

Hq+p
=

(q + p)!

(q + p)!2

(
q!p! ‖fq,i‖2Hq ‖fp,j‖2Hp + q!2 〈fq,i, fq,j〉2Hq 1{q=p}

+ q!p!

(
q

q ∧ p

)(
p

q ∧ p

)∥∥fq,i ⋆q∧pq∧p fp,j
∥∥2
H⊗|q−p| 1{q 6=p}

+

q∧p−1∑

r=1

q!p!

(
q

r

)(
p

r

)
‖fq,i ⋆rr fp,j‖2Hq+p−2r

)
,

which is the desired statement. �

5.4. Lemmas related to the proof of Theorem 5. Our first lemma expresses the Hilbert-
Schmidt norm in a Besov-Liouville space as an norm in L2

(
[0, 1]⊗2

)
.

Lemma 9. Let K = Iβ,2 and S be the covariance operator of a random variable X ∈ L2(Ω)⊗K.
Let f ∈ K, then

(
Dβ

0+
Sf
)
(s) =

∫ 1

0
E

[(
Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
](
Dβ

0+
f
)
(r)dr (18)

is in L2([0, 1]). This leads to

‖S‖HS(K) =
∥∥∥E
[(
Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
]∥∥∥

L2([0,1]2)
. (19)

Proof. Let f, g ∈ K. Applying Fubini’s theorem to 〈Sf, g〉K = E[〈f,X〉K 〈g,X〉K ] and rear-
ranging terms yields

∫ 1

0

(
Dβ

0+
Sf
)
(s)
(
Dβ

0+
g
)
(s)ds

=

∫ 1

0

(∫ 1

0
E

[(
Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
](
Dβ

0+
f
)
(r)dr

)(
Dβ

0+
g
)
(s)ds,

which is equivalent to
∫ 1

0

((
Dβ

0+
Sf
)
(s)−

∫ 1

0
E

[(
Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
](
Dβ

0+
f
)
(r)dr

)(
Dβ

0+
g
)
(s)ds = 0. (20)

Let {gn}n∈N be an orthonormal basis of Iβ,2. Due to the isometry between Iβ,2 and L2([0, 1]),

the set
{
Dβ

0+
gn

}
n∈N

is an orthonormal basis of L2([0, 1]). Then, Equation (20) implies (18).

To prove (19), let {en}n∈N be an orthonormal basis of L2([0, 1]). Then, {em ⊗ en}m,n∈N is an

orthonormal basis of L2([0, 1]⊗2). Also,
{
Iβ
0+
en

}
n∈N

is a basis of K. Now observe that, using

(18), we can write

〈
Iβ
0+
em, SI

β
0+
en

〉
K

=

∫ 1

0
em(s)

(
Dβ

0+
SIβ

0+
en

)
(s)ds

=

∫ 1

0
em(s)

(∫ 1

0
E

[(
Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
]
en(r)dr

)
ds

=

∫ 1

0

∫ 1

0
E

[(
Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
]
em(s)en(r)drds,
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which leads to

‖S‖2HS(K) =
∑

m,n∈N

〈
Iβ
0+
em, SI

β
0+
en

〉2
K

=
∥∥∥E
[(
Dβ

0+
X
)
(r)
(
Dβ

0+
X
)
(s)
]∥∥∥

2

L2([0,1]⊗2)
,

where the first equality comes from the identity ‖T‖2HS(K) =
∑

m,n∈N 〈km, Tkn〉2K for an operator

T ∈ HS(K) and an orthonormal basis {kn}n∈N of K. �

Remark 5. Let ζ be a L2([0, 1])-valued random variable with covariance operator T . Note
that the second statement in Lemma 9 is comparable to the identity

‖T‖HS(L2([0,1])) = ‖E[ζ(r)ζ(s)]‖L2([0,1]⊗2)

whenever T ∈ HS
(
L2 ([0, 1])

)
.

The following lemma is helpful to compute the Hilbert-Schmidt norms of the Poisson process
and Brownian motion appearing in Subsection 5.1.

Lemma 10. Let the setting of Subsection 5.1 prevail, where Xλ and Z denoting a Poisson
process and a Brownian motion in Iβ,2, respectively. Then, one has

E

[(
Dβ

0+
Z
)
(r)
(
Dβ

0+
Z
)
(s)
]
=

1

Γ(−β + 1)2

∫ r∧s

0
(r − x)−β(s− x)−βdx

and

E

[(
Dβ

0+
Xλ

)
(r)
(
Dβ

0+
Xλ

)
(s)
]
=

1

Γ(−β + 1)2

∫ r∧s

0
(r − x)−β(s− x)−βdx

− λ

Γ(−β + 1)2(−β + 1)2
(r − r ∧ s)−β+1(s− r ∧ s)−β+1.

Proof. According to [CD13, Section 3.1], the covariance operator of our Brownian motion is

S′ = Iβ
0+
I1−β
0+

I1−β
1−

Dβ
0+

. Substituting this into Equation (18), we get

(
Dβ

0+
Iβ
0+
I1−β
0+

I1−β
1−

Dβ
0+
f
)
(s) =

∫ 1

0
E

[(
Dβ

0+
Z
)
(r)
(
Dβ

0+
Z
)
(s)
](
Dβ

0+
f
)
(r)dr. (21)

For the left-hand side, note that f ∈ Iβ,2 implies thatDβ
0+
f ∈ L2 ⊆ L1, so that I1−β

0+
I1−β
1−

Dβ
0+
f ∈

L1. Thus, Dβ
0+
Iβ
0+

= I by [SKM93, Theorem 2.4]. Continuing with the left-hand side, we first

write out I1−β
0+

using its definition and then perform an integration by part, which yields

(
I1−β
0+

I1−β
1−

Dβ
0+
f
)
(s) =

1

Γ(1− β)

∫ 1

0
1[0,s](r)(s − r)−β

(
I1−β
1−

Dβ
0+
f
)
(r)dr

=
1

Γ(1− β)

∫ 1

0
I1−β
0+

(
1[0,s](·)(s − ·)−β

)
(r)
(
Dβ

0+
f
)
(r)dr

In particular, the integration by part is valid since [SKM93, Equation (2.20)] is satisfied for
p = q = 2 and 0 < β < 1/2. Equation (21) then becomes

∫ 1

0

(
1

Γ(1− β)
I1−β
0+

(
1[0,s](·)(s − ·)−β

)
(r)− E

[(
Dβ

0+
Z
)
(r)
(
Dβ

0+
Z
)
(s)
])(

Dβ
0+
f
)
(r)dr = 0.
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Now, using a basis argument like the one in the proof of Lemma 9 yields

E

[(
Dβ

0+
Z
)
(r)
(
Dβ

0+
Z
)
(s)
]
=

1

Γ(1− β)
I1−β
0+

(
1[0,s](·)(s − ·)−β

)
(r)

=
1

Γ(1− β)2

∫ r

0
(r − x)−β(s− x)−β1[0,s](x)dx

=
1

Γ(1− β)2

∫ r∧s

0
(r − x)−β(s− x)−βdx,

which is the first statement of our lemma.
We now turn to the second statement. Recall the representation of Xλ given at (9). In order to

use this representation in computing E

[(
Dβ

0+
Xλ

)
(r)
(
Dβ

0+
Xλ

)
(s)
]
, we need the joint density of

(Tn, Tm). By definition, Tm∧n and Tm∨n−Tm∧n are independent and distributed as Γ(m ∧ n, λ)
and Γ(|m− n| , λ), respectively. Their joint density is hence given by

fTm∧n,Tm∨n−Tm∧n(x, y) =
λm∨n

Γ(n ∨m)Γ(|m− n|)x
n∧m−1y|m−n|−1e−λ(x+y).

Since Tm∨n = Tm∧n + (Tm∨n − Tm∧n), we can write, using a simple change of variable,

fTm∧n,Tm∨n(x, y) =
λm∨n

Γ(n ∧m)Γ(|m− n|)x
n∧m−1(y − x)|m−n|−1e−λy

1{x<y}. (22)

We are now ready to compute E

[(
Dβ

0+
Xλ

)
(r)
(
Dβ

0+
Xλ

)
(s)
]
. We have

E

[(
Dβ

0+
Xλ

)
(r)
(
Dβ

0+
Xλ

)
(s)
]

=
1

λΓ(−β + 1)2

( ∑

n,m∈N
E

[
(r − Tn)

−β
+ (s− Tm)−β

+

]
− λs−β+1

−β + 1

∑

n∈N
E

[
(r − Tn)

−β
+

]

− λr−β+1

−β + 1

∑

n∈N
E

[
(s− Tm)−β

+

]
+

λ2

(−β + 1)2
s−β+1r−β+1

)

=
1

λΓ(−β + 1)2

(∑

n∈N
E

[
(r − Tn)

−β
+ (s− Tn)

−β
+

]
+
∑

n∈N

∑

m6=n

E

[
(r − Tn)

−β
+ (s− Tm)−β

+

]

− λ

−β + 1
s−β+1

∑

n∈N
E

[
(r − Tn)

−β
+

]
− λ

−β + 1
r−β+1

∑

n∈N
E

[
(s − Tm)−β

+

]

+
λ2

(−β + 1)2
s−β+1r−β+1

)
. (23)
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The first sum on the right side (consisting of all diagonal terms when m = n) simplifies as

1

λΓ(−β + 1)2

∑

n∈N
E

[
(t− Tn)

−β
+ (s− Tn)

−β
+

]

=
1

λΓ(−β + 1)2

∑

n∈N

∫ ∞

0
(r − x)−β

+ (s− x)−β
+

λn

Γ(n)
xn−1e−λxdx

=
1

Γ(−β + 1)2

∫ r∧s

0
(r − x)−β(s− x)−βe−λx

(∑

n∈N

(λx)n−1

(n− 1)!

)
dx

=
1

Γ(−β + 1)2

∫ r∧s

0
(r − x)−β(s− x)−βdx.

Next, we consider the second sum on the right side of (23). The joint density of (Tn, Tm) given
in (22) enables us to write

∑

n∈N

∑

m6=n

E

[
(r − Tn)

−β
+ (s− Tm)−β

+

]
=

λ2

−β + 1

∫ r∧s

0
(r − x)−β(s− x)−β(s+ t− 2x)dx

=
λ2

(−β + 1)2
(s− x)−β+1(r − x)−β+1

∣∣∣
r∧s

0

=
λ2

(−β + 1)2

(
s−β+1r−β+1 − (s− r ∧ s)−β+1(r − r ∧ s)−β+1

)
.

For the remaining sums in (23), observe that

E

[
(s− Tm)−β

+

]
=

λ

−β + 1
s−β+1

and substitute the last three calculations into (23) to obtain the second statement in Lemma
10.

�
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