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Exponentiated exponential (EE) model has been used effectively in reliability, engineering, biomedical, social sciences, and other
applications. In this study, we introduce a new bivariate mixture EE model with two parameters assuming two cases, independent
and dependent random variables. We develop a bivariate mixture starting from two EE models assuming two cases, two in-
dependent and two dependent EE models. We study some useful statistical properties of this distribution, such as marginals and
conditional distributions and product moments and conditional moments. In addition, we study a dependent case, a new mixture
of the bivariate model based on EE distribution marginal with two parameters and with a bivariate Gaussian copula. Different
methods of estimation for the model parameters are used both under the classical and under the Bayesian paradigm. Some
simulation studies are presented to verify the performance of the estimation methods of the proposed model. To illustrate the
flexibility of the proposed model, a real dataset is reanalyzed.

recent times, there is a growing trend to study and explore
the application of finite mixture models; for more details, see
the work of Al-Hussaini and Sultan [6].

1. Introduction

In the last two decades or so, a major point of interest for

statisticians and practitioners was to study populations that
exhibit similar behaviors with respect to some pre-
determined criteria. The earliest evidence regarding the
study of heterogeneous populations was mostly due to
Newcomb [1] and Pearson [2] who utilized/developed an
approach, commonly known as finite mixture distributions.
With modern days’ stellar advancement on long data-related
computation facilities, studies focusing on heterogeneous
populations became more popular in the modern era; for
some useful references, see the work of Titterington et al. [3],
Everitt and Hand [4], McLachlan and Basford [5], and AL-
Hussaini and Sultan [6] and the references cited therein. In

In several studies concerning heterogeneous population,
the EE probability model appears to be really useful. Two-
parameter EE distribution is a right skewed unimodal dis-
tribution. The behaviors of the probability density function
and the hazard function of the EE distribution is quite close
to the behavior of the pdf and the hazard function of the
gamma or Weibull model. The two-parameter EE distri-
bution has received an increasing amount of interest in
recent times. The efficacy of the EE distribution in modeling
lifetime data can be found in the works of Gupta and Kundu
[7-12]. Several studies have demonstrated that, in specific
real-life scenarios, the EE distribution provides a better fit
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(based on several well-known goodness-of-fit measures) as
compared to the gamma or the Weibull model. Kundu and
Gupta [13] introduced a bivariate generalized exponential
(BGE) distribution and constructed BGE distribution which
has three parameters. Some studies obtained a mixture of
bivariate inverse Weibull and gamma models; for more
details, see the work of Jones et al [14], Sarhan and
Balakrishnan [15], Chen and Tan [16], Khosravi [17], and
AL-Moisheer et al. [18] and the references cited therein.

The main objective of this paper is to develop and study
the mixture of a new bivariate absolutely continuous dis-
tribution via a mixture of two independent two-parameter
EE distributions. We call this new bivariate distribution as
the bivariate mixture of exponentiated exponential distri-
bution (henceforth, in short, the BMEE). The proposed
model is constructed under two mechanisms. In the first
case, let X and Y be two random variables where each
variable is independent and distributed as EE distribution
with parameters (A, 6,) and (A,, 0,), respectively. In the
second case, we construct the BMEE distribution via copula
approach using the well-known bivariate Gaussian copula
(see, for details, the work of Nelson [19]). Several useful
mathematical properties of the proposed model are derived.
Classical and Bayesian estimation methods are discussed. In
addition, the performance of the suggested BMEE model is
examined using simulation in estimating the model pa-
rameters and a real dataset. The rest of the paper is organized
as follows. In Section 2, we introduce the BMEE (type I)
distribution, discuss its construction via two mechanisms,
and provide some contour plots. In Section 3, we provide
some useful mathematical properties and obtain expressions
for the bivariate survival function, hazard rate function,
bivariate moment generating functions, conditional mo-
ments, joint moments, stochastic ordering, etc., for the
BMEE distribution constructed starting from two inde-
pendent EE distributions. In Section 4, we discuss the es-
timation strategy of the model parameters via EM algorithm.
In Section 5, we discuss the estimation strategy for the BMEE
(type II) distribution constructed via the bivariate Gaussian
copula. In Section 6, we study and explore the estimation of
the model parameters under the Bayesian paradigm. Sim-
ulation results are presented in Section 7. In Section 8, a well-
known motor dataset has been reanalyzed to exhibit the
efficacy of the proposed BMEE-type models. Finally, we
conclude the paper by providing some final remarks in
Section 9.

2. Mixture Bivariate Independent EE Model

Here, we begin our discussion with two independent uni-
variate EE distributions with parameters (A,, 6;) and
(A,, 6,), respectively. The central idea of compounding is to
consider that 6, and 6, are indeed random variables not
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constant, and the observed (marginal) distribution of X,
and Y;, can be obtained from the joint distribution of
0, and 0, which is as follows:

hx“,,yin (Xin> Yin) = ”h(xin’}’inx 6,, 6,) do, do,. (1)

Next, we construct a bivariate of EE mixture distribution
by assuming two cases. In the first case, Xj, and Y;, are
independent EE distributions with the scale parameters
having a generalized bivariate Bernoulli distribution. In the
second case, X; and Y, are dependent. A random variable
with an EE distribution has a cumulative distribution
function (cdf) and a probability density function (pdf) for
X, >0, given by
6.1)= (1-e™), x

F(x; >0, (2)

n?>

0-1
> X

f (X 0,1) = Ohe (1)
where 0> 0 and A >0 are the shape and scale parameters.

In the bivariate case, let X;, and Y;, be two random
variables with parameters 6, and 6,, respectively. For given
fixed values of 6, and 6,, X;, and Y;, are independent. The
pdf of BMEE distribution is defined as

f (%, 6,) = ZP:‘ fi ((xi)s 6)), (4)

where p; are the mixing proportions which must satisfy
Ziz=1 p; = 1 and p; >0, and all parameters are unknowns. The
pdf of the first component of EE is given by (2), with fixed
shape parameter >0, and a random scale parameter A >0
that takes two distinct values A; and A,. Likewise, for fixed
shape parameter 0,, let Y have an EE mixture density, and
the pdf of second component (EE) is given by

9 (Vi $:B) = ¢B; e_ﬂiyi"(l - e_ﬂiyi")¢_l> Yin>0, (5)

where f3 is a random scale parameter (f > 0) that takes two
distinct values f3; and f3,. For given values of (A, f3), we
assume that X;, and Y;, are independent, but A and f3 are
correlated through their generalized bivariate distribution
with the following probability matrix:

Bi B2

_h [Pm Pwsz] (6)
/\2 PAzﬁl P/\zﬁz

where P is the mixture components and Py 3 + Py g + Py g

+P)yp =1 Let hxin’ym (Xin> ¥in) be the joint pdf of (Xiy, Yin);

then,

hxm,ym (xin’ yin) = f(xinle’ll)g (yinykb’ [31)P/\1[31 + f(xin|9’/\l)g (yinl(p’ﬁZ)P)Llﬁz
+ f (%10, 1) g (J’in|‘/>:/31)P)t2ﬂ1 + f(xil0,4,) g (Vinl 6 ﬂz)PA2ﬁ2~
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For simplicity in the independent case, we use x;, =
xand y;, = y as follows:

h(x,y) = Glle_l‘x(l - e"“x)871¢[3’1e_ﬁ‘y(1 - e“ﬁly)¢71Pllﬂl + GAIe_A‘x(l - e_)“x)eilgbﬁze_ﬂ”(l - e_‘gzy)(pflphﬁ2

(8)

+ 9/\2['\2"(1 - eiAZx)Gil(b[J’le*ﬁly(l - eiﬁly)wlPM;l + Glzef)tzx(l - eiAlx)eil(b/J’ze*ﬁzy(l - ef‘gzy)(pilPAzﬁz.

For simplification, let a = p, g, b = p, g, c = p, 4, and
d= p LB

From Figures 1 and 2, it is evident that the joint pdf in
equation (4) can produce various shapes corresponding to
several parameter choices. The joint pdf mixture of four
univariate EE mixture distributions involves a total of 9
parameters for its specification. In application to real-life
datasets, as one can imagine, not all four components might
be necessary. Consequently, one may put some restrictions,
such as b=c=0,a=d=0, or a=b=c=0. These restrictions
result in correlation values (among scale parameters) of +1,
-1, and 0, respectively.

F(x,y) = Jz J:h(t, s)dt ds

y _ _ _ _
= JO J [a@lleﬂ"x(l - eik‘x)g lgbﬁle*ﬁ‘y(l - eiﬁly)(p g bexllef)“‘x(l - eiA‘x)e lgbﬁze*ﬁzy(l - ef‘gzy)q5

X
0

The marginal densities of X and Y, respectively, are given
as follows:

he(x) =m0 f1 G0 + (1= m1) £ (%) ©)
where 7, =a +b.
hy, (Y) = myg, (Y) + (1 - m,)g, (Y), (10)

where 7, =a +c.
The joint cdf will be

1

+ c@Aze_)‘zx(l - e_Azx)G_ld)ﬁle_ﬁly(l - e_ﬁ‘y)q)_1 +d6 Aze_’bx(l - e_Azx)g_lgbﬁze_ﬁzy(l - e_ﬁzy)q)_l]dt ds

—a(1-e ) (1= P 4 b(1-e ) (1= ) (1= ) (1= P) 4 d(1-e ) (1= Y.

The associated survival function of BMEE distribution
will be

R(x,9) =P(X>xY>y)=1-P(X<x)-P(Y<y)+P(X<x,Y<y)
=1-Fx(x)-Fy (y) + Fxy (x, ),

where Fy (x) and Fy (y) are the marginal density functions
of X and Y, respectively. The hazard rate function (hrf) is
given as follows:
A
hef (x, y) = =, 13

rf (x, ) 3 (13)
where A is given in (8) and B is given in (12). The conditional
pdf of X, given Y, for each fixed Y=y will be
h(x,y)
h, ()

h(xly) = . (14)

The conditional pdf of Y, given X, will be

(1
(12)
h(ylx) = hh(x(’ xy)) (15)

3. Structural Properties

Here, we derive some properties of the BMEE distribution
which are as follows.

Proposition 1. Let (X,Y) ~ BMEE(a,b,c,d, A, A, By, Bas
0,¢). Then, (X, Y) has a total positivity of order 2 positive
association (TP, property).
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a;=081;=17a,=251,=150=05 ;=081 =17a,=251,=150=-0.5

a =181 =37a,=21,=380=-05 a;=181=370,=2),=3860=05

F1GURE 1: The plot of the BMEE pdf model for varying parameter choices in equation (4).

a=0.2,b=0.3,c¢=0.3,d=0.2 a=0.4,b=0,c=0,d=0.6 a=0,b=0.4,c=0.6,d=0

a=0,b=0.2,c=0.5,d=0.3 a=0.5,b=0.2,c=0,d=0.3 a=0.4,b=0.3,c=0.3,d=0

FIGURE 2: The contour plots of BMEE distribution for varying parameter choices in equation (4).
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Proof. Observe that an absolute continuous bivariate  for any u,, Uy, Uy, Uy, Whenever u;, <u;, and u,; > u,,,
random vector, say (U,, U,), has TP, propertyifand onlyif, = we have

fu,u, (115 u21)fU1,U2 (115 upp) = fu,u, (t12 uZI)fU,,UZ (11> upy) 20, (16)

where f; . (,) is the joint PDF of (U;, U,). Observe that, ~ survival, conditional cdf of X, given Y, and Y, given X,

by taking different ordered u,,, u;,, Uy, Uy, such that  including this result: g; () and g, (),

Uy, <uy,, and u,; > u,,, our result immediately follows. Cov(g,(X),g,(Y))=0. O
As a consequence, the positive quadrant dependence

property (alternatively, the TP, property) will indicate  Proposition 2 (moments). The product moments, ‘u;)y,

several other nonincreasing properties related to conditional ~ about zero is

1

bxy =J J xyh(x,y)dx dy =J J xy[af?/\lﬂ‘x(l —e ) g P (1- P
0 0 0 0

+ b@lle_)“x(l - e_A‘X)971¢ﬁze_ﬁ2y(l - e_ﬁ”)‘pfl + cexlze_)‘zx(l - e'A2X)671¢ﬁ1e_ﬁ1y(l - e_ﬁ‘y)W1

(17)
+do /\zefllx(l - eilzx)e_l(pﬁze*ﬂly(l - eiﬁ”)q)_l]dx dy
= Harmonic number[f]Harmonic number[¢] [L +—+ < + i]
| DORPNADW AP 3 |
where Harmonic number(.] is the sum of the reciprocals of The expected value of X and Y are, respectively, given by
the first # natural numbers.
0 A - bA -
E(X) = J. x h, (x)dx = Harmonic number[(p]G{ [%e)”x(l - ef’\'x)g 1] + [ﬁ_ze/‘zx(l _ e*lzx)e 1]
0 1 1
(18)
Al -Ax -Ax 9’lj| |:dA2 -Ayx —Axel]}
+|>e " (l1-e ™ +|—=e T (1-e 7 ,
[ﬁz ( ) B, ( )
E(Y)= J y h, (y)dy = Harmonic number[@](p{ [%ﬁle‘lﬂy(l _ e—ﬂly)‘/"l] + [%E—ﬁﬁ(l _ e—ﬂ;y)‘ﬁ—l]
0 1 1
(19)

+ [Ci‘le_ﬁl)’(l _ e‘ﬁl}’)(pl] + [%e‘ﬁﬂ(l _ e‘ﬁzy)¢1:| }

2 2

A Mathematica 11.2 is used to obtain the integral in  Proposition 3. The joint moment generating function of
(17)-(Q19). BMEE will be
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Mx,y(t,s) :J J etx+sy h(x,y)dx dy:J I
o Jo 0

. etx+sy|:a6/lle—)tlx(1 _ e”\lx)67 1¢/J71€7ﬂ1y(1 _ e,ﬁly)(l’*l

+ b@klef)“x(l - eiAlx)(ad(/)ﬁze*ﬁzy(l - eiﬂzy)gb_l + c@lzef’\lx(l - eiAzx)0_1¢ﬂlefﬁ‘y(l - eiﬁ‘y)(p_l

+do Aze%x(l - ef’\lx)g_lgbﬂzefﬁzy(l - eiﬂzy)w_l]dx dy

(20)
al' (1-s/B)r(1-t/A) N b (1=s/B)L(1-t/h,)
T(1+0-t/IA)T(1+9—-s/B) T(1+0-tIA)I(1+¢—s/B,)
= 0pI'l'p )
el (1=s/B)r(1-t/Ay) . dr(1-s/B,)r(1-t/1,)
F(1+0-t/A)T(1+¢—s/B;) T(1+0-t/A)I(1+¢-s/B,)
provided |1+ 0 —t/A,| <1 and |1+ ¢ —s/B,| < 1. (1) A real-life dataset(s) can have several different shapes.
Using the joint pdf of X and Y and/or using the MGF The flexibility of any proposed model can be well
expression given above, the different product moments of determined from such a study.

the order X' X", (m,n) =1, can be obtained from the above. (2) In dealing with bivariate distributions, quite often, it

is imperative to study the tails of the joint pdf as well
as the point of inflection. Knowledge on critical
point(s) will help to better understand these properties.

Proposition 4 (shape of the distribution). A critical point of
a function with two variables is a point where the partial
derivatives of first order are equal to zero. The most com- o
pelling two reasons to study the critical points for a bivariate Let us now consider the shape of the BMEE distribution:
distribution are as follows:

f (x,y) _ 0 a2 (- 0)(1 - efz.x)a(l —e )
Ox x (et - l)z(em -1)

(bm (= 0)(1- ) (1= Pr) s - 1)2) +((A§(e"2x —0)(1 =) (B (& = 1) (1= P 4 dpy (7 —1)(1 - e-w)w))/(e-w - 1) - 1))}
(¢ -1) ‘

of (x,y) i —uﬁl)\,(eﬂ'y _ ¢)(1 _ ev\\x)ﬂ(l 7efﬂ.y)w
dy (eﬂ‘y - l)z(e%"c - 1)

B 1) () - p)(1- e P)
s (eﬂ“’)(”””(““’)"/(e“-l>>+(%<l-e“)9( TR )<)(>)
(1) (=P ()

@

(21)

Consequently, for BMEE distribution, there may be  4.I. EM Algorithm. Mclachlan and Krishnan [20] intro-
several critical points. For specific choices of the model = duced expectation-maximization (EM) algorithm which
parameters, a numerical study can be made here. is an iterative method to find the maximum likelihood
estimator of a parameter ® of a parametric probability
distribution. To invoke the idea of EM algorithm, we
augment the data ((x;, y,), k=1,..., n, with the group
In this section, we discuss the estimation of the model membersh%p va1:iab}es s :.(akrbk>ck)> k:.l»- s T
parameters of the BMEE distribution assuming the inde- where d 18 an }ndlcator variable, and one if the vk
pendence of X and Y under the EM algorithm. observation is in f(x, A, B;), and zero otherwise.

4, Estimation (Independence Case Scenario)
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Similarly, for by, ¢, we have four groups Gz]» i,j=1,2,
for which the densities are

fij(6y) = fi(0f;(9) = e M (1

The corresponding mixing proportions are P(G,,) = a,
P(Gy) =b, P(Gy) =¢,and P(G,,) =1-a-b-c.

b= z alyy (X Yt = Z bilyy (X 1) +
k=1

z o (X Yi)
=1

Each iteration of the EM algorithm involves two steps:
step E (expectation) and step M (maximization), defined by
(16). This is linear in the group membership variables @, so
in the E-step, we replace in (9) the associated expected

-~ _ af11 (xk, )’k)

_ e‘)nx)67 1¢ﬁle—ﬁ1y(1 —e

Ay (22)

The corresponding log-likelihood function to the
complete sample, €;; (x, y) = log f;; (x, y), is represented by

n
+ Z (1= a = b = ) (X Y)- (23)
k=1
values, given the current estimates

(6, 3 Ay Ay, Bys Bry@, b,¢) of the parameters are calcu-
lated as

B af (X yi)+ Ele (%1 Yi) +€f 21 (X yi) +(1—a~

and follow the same procedure similarly for b, and c.
Next, in the M-step, we need to maximize (23) over
(6, 9, B1> B> Ay> Ay) for fixed values of @. It is achieved by the

= s (24)
b=2)fr (%15 k)

conditional independence of X and Y, given the group
membership. Differentiating (23), we obtain

o n g &g (@ + e M
o k; (a +by) = Z (@ +by)xi + (0 - U};W’ 29
i_ﬁ n xk (Ck +dk)€ Azxk
a/lz_ /\2 ];1 (Ck + dk) Z Ck + dk)xk + (6 - 1) Z W (26)
o n z - i (agte )e_ﬁlyk
a—ﬁl_ﬁ—lkgl (ak +ck)—k§1(ak+ck)yk+((p— 1);%, (27)
a n i (b +dy)e P
a_ﬁz_ﬁ_zkzl b +d;) - Zbk+dk)’k+(¢_1)ZW ey

n n n _
a0 g g A + b + ¢ +dy) +kz=1 a+o)(1-e 'xk) log( e ) +k;(bk +d)(1 _E_Am)e llog(l e ),

(29)

:; . Z (ag + by + ¢ +dy) + Z (ar + ck)(l —e ﬂ‘y") _llog(l - eiﬁ‘yk) + Zn: (b + dk)(l - eiﬁzyk)(P_llOg(l - eiﬁzyk)'

k=1 k=1 k=1

(30)



Next, the M-step is completed by setting

a.etc. (31)

This algorithm requires an initial value of the model
parameters, designated by @ ). A judicious choice of these
initial values requires special attention on the fact that the
rate of convergence of the assumed EM algorithm may not
become quite slow. Another point of concern is that the
maximum likelihood equation may have multiple solutions
corresponding to local maxima; therefore, the selection of
the starting values is indeed very important. A comparative
study of various strategies in the choice of initial values can
be found in Karlis and Xekalaki [21]. We use the copula R
package to solve these equations numerically. After the
maximum likelihood estimators for
0,11, 815 A0 Bas 6, p115 P12> P21» and p,, are obtained, we
substitute these estimates in (ay, by, c,). We complete the
M-step by setting a = 1/ny;_,a;, etc.

Initial values for the mixing proportions are obtained by
the moment’s method of the marginal univariate EE pa-
rameter separately. Next, we take the resulting estimates of
the BEE parameters as starting values for the EM algorithm.
After that, we merge the moment estimators of the marginal
mixing parameters to obtain initial values for the bivariate
mixing parameters, assuming that the independence be-
tween two variables X and Y. We apply this method in
application as mentioned in Section 8; later on, specifically,
in Tables 1-4, we equate (25)-(30) to zero, to obtain esti-
mates of the parameter of the distribution.

5. BMEE Model (Type II) Distribution Using
Gaussian Copula

The BMEE model proposed in this paper involves EE
marginals, with greatest flexibility with its marginals as well
as in the correlation structure. On the contrary, this pro-
posed distribution has several fields of applicability. Usually,
in the dependence study, copulas play a vital role. Copulas

where pe[-1,1] is a dependence parameter and
f(x,) and f(y,) are the density function of EE distribu-
tions given in (1). Suppose that the marginals are EE

Journal of Mathematics

are a general tool to construct bivariate and multivariate
distributions and to study dependence structure between
random variables. Several bivariate and multivariate lifetime
distributions are suggested using several methods of con-
structing bivariate and multivariate distributions, and
copula functions have been proposed by Nelsen [22], Trivedi
and Zimmer [23], Adham and Walker [24], Kundu et al.
[25], Kundu and Gupta [26], Kundu [27], El-Morshedy et al.
[28], and Alotaibi et al. [29].

5.1. BMEE Distribution Based on Gaussian Copula. The
concept of copula, suggested and derived by Sklar [30], states
that any multivariate distribution can be disintegrated to a
copula and its continuous marginal. In a bivariate setup,
copulas are used to link two marginal distributions with a
joint distribution such that, for every bivariate distribution
function F(x,y) with continuous marginal F(x),F(y),
there exists a unique copula function C given by

F(x,y) = C{F (x), F(»)},

(32)
(x,y) € (—00,00)X (—00, 00).

The associated density function of bivariate distribution
will be

G p) = f ) f (y)e(F(x),F(y), (33)

where ¢ (F(x), F(y)) is the density function of a copula; for
further details, see the work of Nelsen [19, 22]. A plethora of
choices are available to construct BMEE distributions via
copula using EE marginals as given in (1). Here, the Gaussian
copula is utilized to construct BMEE distribution.

The Gaussian copula has the following form:

Cluv) = o397 (w97 W), (34)

where ¢y denotes the distribution function of a bivariate
standard normal random variable and ¢! represents its
inverse. The joint pdf of X, and Y, based on Gaussian
copula becomes

1 P 2, .2
— <exp|:2(1_p2) {p(z1 + zz) - 2zlzz}:|> , (35)

distribution; then, the bivariate exponentiated exponential
(BEE) distribution pdf is

S (5 7 0.1 B.8) = Ohe™™ (1 - exp{-Axy})” " 3B (1 - exp{-Bya})”™"

l-p

- <exp|:2(1_PPz){p(zf+ zg)—Zzlzz}:D , o X Va0 B,8>0.

(36)
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TaBLE 1: MLE and Bayesian estimation with different sample sizes in the independent case.
0=181=37=380=2p=05

n 0 A B é p
Bias —0.7241 —0.4413 —0.3785 —0.5216 0.4645
MLE MSE 0.8039 0.4955 0.2015 0.6152 0.2158
50 L.CI 2.0737 2.1507 0.9461 2.2974 0.0305
Bias —0.4340 —0.2691 —0.2255 —0.3190 0.4434
Bayes MSE 0.3449 0.2371 0.0988 0.3074 0.1967
L.CI 1.5517 1.5913 0.8587 1.7783 0.0469
Bias —-0.7098 —0.4190 —-0.3405 —-0.5176 0.4565
MLE MSE 0.7900 0.4215 0.1977 0.5552 0.2159
100 L.CI 1.5387 1.6693 0.7195 1.8540 0.0231
Bias —-0.3439 -0.2276 —-0.2151 —-0.3021 0.4251
Bayes MSE 0.2693 0.1321 0.0887 0.2093 0.1920
L.CI 1.0875 1.1111 0.6302 1.2774 0.0265
Bias —0.6857 —-0.4056 —0.3143 -0.5364 0.4264
MLE MSE 0.7283 0.4137 0.1820 0.5035 0.2106
200 L.CI 1.1900 1.2744 0.5133 1.3715 0.0169
Bias —0.3431 —0.2142 —0.2055 —-0.2931 0.4153
Bayes MSE 0.2366 0.0949 0.0789 0.1564 0.1912
L.CI 0.8818 0.8686 0.4612 0.9703 0.0181

TaBLE 2: MLE and Bayesian estimation with different sample sizes in the independent case.
0=281=37,=37,08=15p=05

n 0 A B é p
Bias —0.4552 —0.4981 —0.5148 —0.4116 0.4647
MLE MSE 0.3038 0.5974 0.3828 0.5288 0.2160
50 L.CI 1.2187 2.3179 1.3460 2.3510 0.0295
Bias —0.0552 —-0.0646 —0.0605 —-0.0486 0.3255
Bayes MSE 0.0262 0.0310 0.0275 0.0311 0.1142
L.CI 0.5972 0.6423 0.6050 0.6651 0.3554
Bias —-0.3504 —-0.4569 —0.4568 -0.3750 0.4064
MLE MSE 0.2830 0.4972 0.3485 0.3641 0.1922
100 L.CI 0.8395 1.6351 0.9777 1.7062 0.0224
Bias —-0.0547 -0.0617 —-0.0607 -0.0356 0.3188
Bayes MSE 0.0218 0.0262 0.0231 0.0233 0.1514
L.CI 0.5172 0.5711 0.5190 0.5823 0.1170
Bias -0.3053 -0.4262 -0.4160 -0.3533 0.3846
MLE MSE 0.2306 0.3503 0.3094 0.3927 0.1522
200 L.CI 0.6446 1.3235 0.7225 1.2913 0.0162
Bias —0.0490 —0.0611 —0.0600 -0.0266 0.3041
Bayes MSE 0.0204 0.0218 0.0241 0.0172 0.1723
L.CI 0.4365 0.5190 0.4659 0.5040 0.0492

TaBLE 3: MLE and Bayesian estimation with different sample sizes in dependent case (Case I).
0=28M =25p =231, =1.2,8, = 1.4, § = 1.5,p;; = 0.2,p;, = 0.15, p,, = 0.05, and p,, = 0.1

n 6 4 B A B 8 P11 P12 P2 P2
Bias  —0.5957 —0.0916 —02343 -0.0876 -02470 -0.0543 07093 07731 0.5538  0.7953
MLE MSE 0.5730 0.1729 0.1336 0.0552 0.2841 0.0836 0.5085 0.6064 0.5713 0.6626
50 L.CI 1.8320 1.5909 1.1001 0.8547 1.8526 1.1137 0.2867 0.3659 2.0173 0.6805
Bias 0.0322 0.0108 0.0748 —0.0658 -0.2786 0.0142 0.1108 0.1094 0.0433 0.0975
Bayes MSE 0.0298 0.0350 0.0334 0.0286 0.2324 0.0270 0.0498 0.0479 0.0334 0.0468
L.CI 0.6656 0.7326 0.6537 0.6111 1.3276 0.6425 0.7601 0.7439 0.6966 0.7571
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TasLE 3: Continued.
0=281 =258 =231 =12,p,=14,8=15,p,, =0.2,p,, = 0.15, p,, = 0.05, and p,, = 0.1

n 6 M B Ay B, 0 P11 P12 P21 P22
Bias -0.5762  -0.0823  -0.2263  -0.0867  -0.2029  -0.0499  0.7120  0.7732  0.5603  0.7975
MLE MSE 0.5342 0.1315 0.1006 0.0397 0.2027 0.0599 0.5081 0.6094  0.5719  0.6610
100 L.CI 1.7637 1.3854 0.8717 0.7038 1.5765 0.9399 0.1328  0.3204 1.9921 0.6190
Bias 0.0215 0.0207 0.0349 -0.0399  -0.7671 0.0263 0.0449  0.0466  0.0222  0.0397
Bayes  MSE 0.0279 0.0290 0.0235 0.0168 0.5680 0.0208 0.0326  0.0325  0.0320  0.0333
L.CI 0.6495 0.6631 0.5848 0.4842 1.1856 0.5560 0.6857  0.6834  0.6963  0.6984
Bias  -0.5672 -0.0468 —02164 —0.0944 —0.768 —0.0482 07108 0.7750  0.5295  0.7978
MLE MSE 0.4720 0.1020 0.0814 0.0374 0.1643 0.0395 0.5061 0.6048 0.5534 0.6601
200 L.CI 1.5204 1.2392 0.7294 0.6626 1.4303 0.7566 0.1079 0.2523 2.0494 0.6131
Bias 0.0160 0.0190 -0.0367 -0.0215 —-0.6883 0.0228 0.2514 0.2327 0.0973 0.1968
Bayes MSE 0.0261 0.0255 0.0186 0.0088 0.5463 0.0167 0.0423 0.0462 0.0342 0.0427
L.CI 0.6540 0.6222 0.5145 0.3587 1.0562 0.4984 0.7673 0.8275 0.7702 0.8576

TaBLE 4: MLE and Bayesian estimation with different sample sizes in the dependent case (Case II).
0=28,1, =25,8,=23,1,=12,3,=14, 8§ =1.5,p,, =0.5,p,, = 0.4, p,; =0.2, and p,, = 0.3

n 0 A B Ay B g Pu P12 P21 P2
Bias 04624 00246 -02569 —0.0415 —02156 —0.0937 04020 05533 04352  0.6387
MLE MSE 0.4118 0.1316 0.1287 0.0407 0.2198 0.0720 0.1654 0.3066 0.3893 0.4132
50 L.CI 1.7452 1.4193 0.9823 0.7742 1.6326 0.9860 0.2407 0.0783 1.7538 0.2861
Bias 0.0165 -0.0031 0.0702 —-0.0744 -0.7825 0.0261 0.1596 0.1794 0.0700 0.1406
Bayes MSE 0.0326 0.0372 0.0327 0.0275 0.7174 0.0257 0.0484 0.0661 0.0430 0.0566
L.CI 0.7053 0.7567 0.6533 0.5818 1.2712 0.6205 0.5941 0.7227 0.7655 0.7529
Bias  —04742  —0.0217 -02463 —-0.0580 —02125 -0.0840 0.3971  0.5514  0.4487  0.6365
MLE MSE 0.3738 0.0999 0.1126 0.0314 0.1860 0.0576 0.1605 0.3043 0.3836 0.4105
100 L.CI 1.5137 1.2367 0.8941 0.6571 1.4721 0.8821 0.2097 0.0612 1.6744 0.2871
Bias 0.0005 0.0147 0.0232 —-0.0402 -0.2729 0.0313 0.0857 0.0935 0.0298 0.0569
Bayes MSE 0.0295 0.0294 0.0219 0.0152 0.1619 0.0226 0.0325 0.0420 0.0330 0.0349
L.CI 0.6736 0.6700 0.5729 0.4572 1.1604 0.5763 0.6218 0.7152 0.7026 0.6974
Bias 04674 -0.0309 -0.2227 -0.0681 —0.1844 -0.0643 03963 05512 04006  0.6404
MLE MSE 0.3412 0.0788 0.0860 0.0266 0.1446 0.0430 0.1590 0.3040 0.3639 0.4081
200 L.CI 1.3740 1.0943 0.7488 0.5815 1.3044 0.7731 0.1723  0.0479 1.7688  0.1133
Bias -0.0175 0.0344 -0.0357  -0.0153 -0.5980 0.0324 0.2680 0.3121 0.1397  0.2743
Bayes  MSE 0.0236 0.0229 0.0170 0.0088 0.1422 0.0182 0.0482  0.0612 0.0416 0.0511
L.CI 0.5982 0.5776 0.4924 0.3635 0.9984 0.5130 0.3896  0.5891 0.7677  0.7211

The pdf of BMEE distribution is defined as _B, By )01

9(va $.8) = 0B (1= ) yy>0, (39)

f(x4%,6,) Zp, fi ((xa) 6), (37)

where p;, are the mixing proportions, and it must satisfy
Y2 p; = 1and p; >0, and all of them are unknown. The pdf
of first component of EE is given by (1):
o

Flep O1) = Ohe e (1-e ) x50, (39)
with fixed shape parameter >0 and random scale pa-
rameter A >0, which take two distinct values A, and A,,
respectively. Similarly, for fixed shape parameter 0,, let Y,
have an EE mixture density, and the pdf of second com-
ponent EE is given by

with f3 being a random scale parameter taking values f3; and

Pa:

For a given values (A, f3), we assume that X,; and Y, are
dependent, and A and f8 are correlated through their gen-
eralized bivariate distribution with the probability matrix
given by

B B

[Pm Pm]
Prg, Prp,

(40)

Let f (x4 y4) be the joint pdf of (X, Y,); then,
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f(xaya) = f(xd|9>/\1)9(}’d|5>ﬁ1)c(F(xd|9’)‘1)>G(Yd|5>ﬁ1))PA1ﬁ, + f(xd|9)/\1)9(}’d|5:ﬁz)c(F(xd|9’l1)>G(J’dﬁ»ﬁz))l’alfsz

+ f(x416,43)g (vald, By)e (F (x416, ), G (v4l0, B1)) prg, + f (%al0.42)g (416, Br)e (F (x416,1,), G (v4ld, B2)) P g,
(41)

Like the joint pdf in (8), the joint pdf in (41) can assume
several different shapes as well. Let x; =xandy, = y.
Consequently, the associated BMEE distribution pdf will be

F (2, 0,0,8,8) = 0h,e M (1 exp{-A,x})" "898, A (1 - exp{-B,y})""

| { T (oytetets -ei]) }M

+ 9/\1341)( (1- exp{—/llx})e_ l‘sﬁzeiﬁzy (1- exp{_ﬁz)’})s_l

{J—p (eoligytote -] s

+ /\zeiAzx (1- exp{—)tzx})(% 18ﬂ167ﬁ1y (1- exp{—ﬂly})&l

. { e (eofserylontei =22 }M

e (1 - expl-dyx})" 9Bye P (1 - exp{-B,y)"

! P22 2 2
. {\/1_7/)52 (exp[z(l —sz) {P22(21 + Zz) 22122}]) }p/lz,Bz, X%, ¥,60,A,5,6>0,

where p;; € [-1,1] is the dependence parameter. k=1,..., n, where a; with the group membership variables
(ar:brcr), k=1,.. ., n, where a is one if the k™M observation is
5.2. EM Algorithm under Gaussian Copula. The EM algo- fij(%:9,0,41, 51,0, pyy), and zero qthemlse. Slmlla.rly, for
. . S b, and ¢, we have four groups G;;, i, j=1, 2, for which the
rithm is introduced as a method of estimation. To apply the densiti ]
EM algorithm, as before, we augment the data (x;,y;), ensities are
k=1,..., n, with the group membership variables (a;,b.c;),

(42)

f,-j(x, ¥, Q,A,,ﬁj,é,pﬁ) = e ™ (1- exp{ﬂ\ix})gfl 8‘Bje’ﬂly (1 - exp{—ﬁjy})&l

1 —Pij 2. 2 (43)
exp : pii(zi+ 25) - 22,2 . % 1,0,1,8,8>0,
w-p@( iyt )-e]) f
where p;; € [-1,1] is a dependence parameter. ¢ (x,y) =log f;;(x,y,0,4;,p;6,p;); then, the EM algo-
The mixing proportions are given as follows: P (G;;) =a,  rithm as the method of estimation is given by finding the

P(G,)=b,P(G,)=c,and P (G,;)=1—-a—-b—-c. Wedefine  complete log likelihood, ¢, as follows:
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n n n This is linear in the group membership variables
t= Zaken (X% yi) + Zbkelz (X6 yi) + zckeu (%% Yi) (ag> by, ¢i); consequently, in the E step, we enter into (26);

k=1 k=1 k=1 their expected values, given the current estimates
n X ) ; (6,121,245, B1> B3> 8, p11> P1a> Pa1s Par> @5 b, ¢) of the param-
+ Z( = @ = b — )y (X1 i)- eter, are calculated as
k=1
(44)

&, = _ afn(xk» )’k) _ :
a fii (X y) +b fro(xe yi) +€ for (% yi) + (1 =8 =b=0) fr (X5 yi)

(45)

Similarly, for b and c;, we follow the same strategies.  fixed values of (ay, by, ¢;). This is achieved by the conditional
Note that the algebraic simplification of the above might be  dependence of X and Y, given the group membership. We
necessary to avoid numerical problems. For the M-step, we ~ can essentially deal with the univariates and the Gaussian
need to maximize (27) over (6,1, 81,8, p11> P12> P21>P22)> for  copula parameter separately. Differentiating (25) gives

s (ol e o))
+bk{ \/1—;{ (exp[z(l_fiiz){mz(% - Zﬁ)—%zz}]) } ”

(46)
+kzlx((91e_xgxp x —1){i{ {m (exp[z(l‘fii){pn(zf+z§)-zzlzz}D}
+bk{ 1jpf2 <exp[2(l‘fzi){pn(z§+ zg)_zzlzz}DH}:o,

;{;{ {ﬁ <exp[ﬁ{pm(z§+Z;)_zzlzz}D}+(1_ak_bk_ck)
| {ﬁ <exp[2(1‘f42%2){pn(zf L 2) _zlez}D } H .

o x (60 exp{-dx;} 1) | ¢ 1 —Pa1 2, 2
" k; (1-exp{-Ax}) ‘lkzi{ck{ e ) (eXp[Z(l —Pil) {Pz1(z1 + Zz) - 22122}]> ]’
NI ){ﬁ (ool ot + )22 ) } } } o
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ol u 1 —p 2 2
8—[5’1 ﬁl {kz<| {—1 _Pfl <exp|:72(1 _2;%1) {P11(21 + Zz) - 22122}:|> }
—Pa
{ Vi-¢i [2(1 Sy el ) ZZIZZ}D } } }
+ix (0 exp{=pyyid ~ 1) z”: exp[ —p212 {Pn(zf + zg)_ZZIZZ}]
& (-ep[-Bu) | & \/1 e 2(1-p1)
1 —P21 2.2\ _ =
{ﬁ (ool bt e =) }D}H )
(48)
a n|< P
+(1-ap —by— ) <| 5 (exp[ _p22 {P22(21+ 2) - 22122}])”’}
_ 2(1
\/1 P2 (49)
ye(@ exp{-Boyi}-1) | P12 2, 2\
kZ; (1= expl=B, ] {]; bk{ ,__plz eXp[z(l—pfz) {P12(21+ zz) 22122}]>}
I 1 P2 2,2\ _ =
e C"){ s (ool zgyleate + 22 } H )
al z
T {g + kzl log (1 - exp{-A,x;}) }
{’H{ak{ﬁ <exp|:2(17f‘;il){ﬁ’u(zf+Zi)*ZZ,ZZ}jD}Jrhk{ﬁ (EXP[Z(;T;%Z){PH(Z?* zi)’ZZIZZ}]>}}'}+{7+‘;IOg (1 - expf- Azxk})} _
“};{‘k{\/li—pﬁ <exp|i2(1Pz:7“){p”(z +23)- 2z,z2}]>}+(l—ak —hk—ck){ 1ip§2 <exp|:2(1752;§2){p22(zf+zi)—Zz,z*])}}}
(50)
a ol {%+Zlog(l exp{-Buyil) Hk ak{\/l—p“ <exp[ P:“ fu(=+ Zi)’zzlzz}D}”k{\/l_l—p; <3XP[( PZ}:ZI){P“(Z?+ Zi)fzz‘ZZ}DH o
36 00 o 1 o o
+{ +Zlog(l exp{-Boyi}) «‘Zbk{\/_‘ (expzl o) {pulz )—Zz,zz}D}nfak—bk—cplm (exP[z(l pz){Pzz(z + 2)- 2zlz2}DH»
(51)

The approach involves a two-step procedure in estimating
the marginal of X and Y and the copula function indepen-
dently that gives the maximum likelihood estimation of
0,11, 815425 Bas 6, pi1s P12s Pa1» and p,,. The solution of the
nonlinear (46)-(51) gives the MLE of 6,1,,;,1,,5,,andd

and 0,4, 1,42, B25 6, p11> P12s Pa1> and poy.
Then, copula density is estimated as

log Li;(p) = z log C(ﬁi (xk)’ﬁj(yk))’ (52)
k=1

where F; (x;) and , F () denote the maximum likelihood
estimates of the pdf from the first step. The solution of the
nonlinear equation (34) gives the MLE of p,;,p;,, 51> and

P22
The M-step is completed by setting

1
azzg (53)

We use the copula R package to solve these equations
numerically. After the maximum likelihood estimators for
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0,11, B1> A Bas 8, p11s Pras P21> and p,, are obtained, next, we
substitute these estimates in (ay, by, c;). We complete the
M-step by setting a = 1/n) ;_,a;, etc.

Initial values of the parameters for the mixing proportions
are obtained by the method of matching moments that are
obtained from the marginal univariate EEM and the Gaussian
copula parameter separately, Then, we take the resulting esti-
mates of the BEE parameters as starting values for the EM
algorithm. Next, we merge the moment estimators of the
marginal mixing parameters to obtain initial values for the
bivariate mixing parameters, assuming the dependence between
two variables X and Y. We apply this method in application as
mentioned in Section 9, specifically, in Tables 1-4. For more
details, see the work of Kosmidis and Karlis [31].

Next, we provide the estimation procedure of the un-
known parameters for the density in (44). In the copula-
based estimation, we adopt two approaches that are termed
as parametric and semiparametric.

5.3. Maximum Likelihood Estimation (MLE). Here, we
discuss the estimation of the unknown parameters of BEE
distributions by the approach of the maximum likelihood, by
using the two-step estimation. It involves a two-step pro-
cedure by which we estimate the marginal and the copula
function separately.

The log-likelihood function is expressed as

log L = ;[IOg fi(x;) +log f(y:) (54)

+log c(Fy (x;), F> ()]

log L, (x,0,1) = nlog(6) +nlog(A) -

log L, (y,98,p) =nlog(d) +n log(pB) -

So, the maximum likelihood equations are

o _n . in(e exp{-Ax;} - 1)

AL (explin]) O (60)
y:(8 exp{-By;} -1)
B5 Z (—epiprn o OV

{g ilog(l—exp “Ax; })} =0, (62)
ol n <
aaz{a ;1 g (1 - exp| ﬁy,})]’» = (63)

The solution of the system of nonlinear equations
(60)-(63) gives the MLE of 0,1, B, and . Then, copula
density is estimated as follows:

Journal of Mathematics

The log-likelihood function in (35) can be re-expressed
as

logL = ) log f(x;) + . log f,(xx)
i=1 i=1
(55)

3 log ¢(Fy (510, (=)

i=1

The first step involves estimating the parameters of
marginals distribution F, and F, by MLE, separately given
as follows:

log L, = ) log logf (x,),
i=1

. (56)
log L, = ) log f,(y,)-

i=1

Then, estimating copula parameters by maximizing the
copula density, we will obtain

log L = ZIOg c(Fy (%), F5 (3))- (57)
i=1

By considering the first step with EE distributions, the
parameters of each marginal distribution will be estimated
by the MLE. If x;, ..., x,, is a random sample from EE (6, 1)
and y,,..., y,is arandom sample from EE(J, f8), then the
log-likelihood functions are, respectively, given by

Y x; +(0- 1)) log(1 - exp{-Ax, ), (58)
i=1 i=1
Z +(0-1) Zlog 1 - exp{-By;}). (59)
i=1 i=1

log L(y) = ZIOg c(ﬁl (x;), F, (yi)), (64)

i=1

where 151 (x) and Fz (y) denote the ML estimates of the
parameters from the first step.

The solution of the nonlinear equation (64) gives the
MLE of y.

5.4. Semiparametric Methods of Estimation. Two semi-
parametric methods are used to estimate the copula pa-
rameter in the copula models and are compared with the two
methods of moments approaches which are the inversion
Kendall’s 7 and inversion of Spearman’s p, respectively.

5.5. Methods of Moments. From the moment’s method of
inversion of Kendall’s 7 and the inversion of Spearman’s p
mentioned in Kojadinovic and Yan [32], we provide a brief
details which are given as follows. Let ¢ be a bivariate random
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sample from a cdf C, [F, (x), F,(y)], where F, and F, are
continuous cdf’s and C, is an absolutely continuous copula
such that y € O, where O is an open subset of R?. Fur-
thermore, let R;, ..., R, are the vectors of ranks associated
with x;, ..., x, unless otherwise stated. In what follows, all
vectors are row vectors. Moment’s approaches are based on
the inversion of a consistent estimator of a moment of the
copula C,. The two best-known moments, Spearman’s rho
and Kendall’s tau, are, respectively, given by

p(y) =12 J J.[O’I]Zu v dCy (u,v) =3, (65)

T(y) - 4J J[o,uz

Consistent estimators of these two moments can be
expressed as

Cy (u, v)dCy (u,v) — L. (66)

n+1

P g 1)(n_1 ZR,IR,2 — (67)
4 n

" nn-1) Z 1 [xi,l ij,l]l[xil ijl] -L (68)
i=1

If p and 7 are one-to-one, consistent estimators of y will
be y,, = pt(p,) and y,, = 77! (1,), respectively.

It can be called inversion of Kendall’s T and inversion of
Spearman’s p, respectively. For more information, see the
work of Kojadinovic and Yan [32] and the references cited
therein.

As explained above, the moment’s method of 7 and p
estimation for copula may be considered under the umbrella
of semiparametric approach estimation.

5.6. Goodness of Fit Tests for Copula. We want to compare the
empirical copula with the parametric estimator derived
under the null hypothesis; for details, see the work of
Fermanian [33]. Theory suggests a test if C is well-repre-
sented by a specific copula C,:

Hy:C=C, Vs. H;: C#C,. (69)

Several well-known approaches are available in the lit-
erature; for example, see the work of Genest and Rémillard
[34], or the fast multiplier approach, Genest et al. [35], and
Kojadinovic et al. [36]. The goodness of fit tests based on the
empirical process is given as

C,(u,v) = Vn{C, (u,v) - C, (w,v)}, (70)

where C,, (1, v) is the empirical copula of the data of X and Y
C,(w,v)=1ny 1(U,, <u,V,,<v), uvel01],
and U;,,andV;, are pseudoobservations from C calculated

from data as follows.

U, =Ry/n+1,V,, =Ry/n+1, and R}; and Ry are,
respectively, the ranks of X;and Y.

Here, C,(u,v) is a consistent estimator, and 0, is an
estimator of y obtained using the pseudoobservations.
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According to Genest et al. [35], the appropriate test statistics
is the Cramer-von Miss and is defined as

S =

n

-

{Co(UinVin) = Cy (Ui Vi)V (71)

i=1

6. Bayesian Estimation

In this section, the Bayes estimates of the model parameters
of the joint pdf (51) are obtained under the assumption that
the random variables, ® = (6,14, 81, 4,, 35, 6), have an in-
dependent gamma prior distributions with hyperparameter
weandmy, k=1,2,3,4,5,6, given by

wq)“’k‘le‘ m o
)

f(D;w,m) = >0, (72)

Wi
and p;;, P12 P21 and py, have a noninformative prior.
By multiplying (23) or (44) with (72), the joint posterior
density for the vector @, given the data, becomes

7 (@] x) o< L(x]|D) f (©; wy, s.)- (73)

Marginal distributions of ® can be obtained by inte-
grating out the (nuisance) hyperparameters. Thus, the
Bayesian estimators of the parameters ® under square error
loss function can be calculated as follows:

D o Jio O (D x)dD. (74)
O]

The integrals in (74) cannot be obtained in a closed form, so
the Markov chain Monte Carlo (MCMC) technique is used. In
MCMC methods, the posterior distribution and the intractable
integrals using simulated samples from the posterior distri-
bution are obtained. Also, Gibbs sampling and the Metropo-
lis-Hastings (MH) algorithm as a MCMC technique are used.
For more details, see Metropolis et al. [37], Hastings [38], and
Mohsin et al. [39]. The M-H algorithm considers that, to each
iteration of the algorithm, an applicant value can be generated
from a proposed distribution. Thus, the applicant value is
allowed according to a sufficient approval probability. This
technique assurances the convergence of the Markov chain for
the target density. Finally, we can investigate that the advantage
of the MCMC method over the MLE method is that we can
always obtain a reasonable interval estimate of the parameters
by constructing the probability intervals based on empirical
posterior distribution. This is often unavailable in MLE.

6.1. Credible Intervals. In this section, a symmetric 100 (1 — €)%
two-sided Bayes probability interval estimate of @, denoted
by [Lg,Ugl, can be obtained as satisfying the following
expression:

u(t)

pIL(E) <D <U(1)] = j o FEBNIO =15 (79
L(t

Since it is difficult to find the interval Ly, and Uy, an-

alytically, therefore, we apply suitable numerical techniques
to solve this nonlinear equation.
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TaBLE 5: MLE and Bayesian estimation with different sample sizes in dependent case (Case III).
0=181, =15p =131 =228, =25 86=2p, =02p, =0.15, py; = 0.05, and p,, = 0.1

n 6 M B A B g P11 P12 P21 P2
Bias -0.2789 —-0.2044 —-0.4097 —-0.1416 -0.0470 -0.2871 0.6815 0.7838 0.6638 0.8068
MLE MSE 0.1968 0.1373 0.3126 0.2071 0.0898 0.2926 0.5099 0.6165 0.6176 0.6765
50 L.CI 1.3529 1.2123 1.4922 1.6964 1.1610 1.7979 0.8371 0.1837 1.6502 0.6260
Bias 0.0048 0.0282 0.2110 —-0.2575 —-0.4632 0.0392 0.1802 0.2637 0.1278 0.2249
Bayes MSE 0.0304 0.0275 0.0829 0.1301 0.2832 0.0323 0.0831 0.1151 0.0576 0.0965
L.CI 0.6831 0.6410 0.7681 0.9907 1.0279 0.6882 0.8825 0.8369 0.7972 0.8401
Bias —0.2655 -0.1979 —0.4074 —0.1566 —-0.0580 —0.2896 0.6933 0.7816 0.7166 0.8126
MLE MSE 0.1589 0.1101 0.2651 0.1787 0.0615 0.2322 0.5080 0.6114 0.6043 0.6766
100 L.CI 1.1662 1.0443 1.2345 1.5397 0.9454 1.5106 0.6493 0.0901 1.4128 0.5019
Bias 0.0084 0.0387 0.1821 —0.2361 -0.3387 0.0504 0.0882 0.1205 0.0521 0.1102
Bayes MSE 0.0251 0.0263 0.0680 0.1058 0.1540 0.0319 0.0482 0.0528 0.0403 0.0508
L.CI 0.6204 0.6176 0.7321 0.8775 0.7772 0.6721 0.7882 0.7668 0.7598 0.7716
Bias —0.2401 -0.1699 —0.4124 —0.1019 —0.0545 -0.2706 0.6920 0.7819 0.7175 0.8152
MLE MSE 0.1206 0.0708 0.2375 0.1395 0.0405 0.1849 0.4945 0.6012 0.6014 0.6727
200 L.CI 0.9844 0.8035 1.0189 1.4095 0.7602 1.3105 0.4901 0.0842 1.3941 0.3565
Bias —-0.0205 0.0173 0.1272 —0.2147 —-0.2106 0.0545 0.1802 0.2637 0.1278 0.2249
Bayes MSE 0.0203 0.0166 0.0449 0.0844 0.0604 0.0274 0.0374 0.0567 0.0226 0.0359
L.CI 0.5536 0.5010 0.6641 0.7673 0.4963 0.6127 0.0366 0.0371 0.0312 0.0327

TaBLE 6: MLE and Bayesian estimation with different sample sizes in dependent case (Case IV).
0=18A, =158 = 13,1, =22,B, =2.5,8 =2,p,, = 0.5,p;, = 0.4, py; = 0.2, and p,, = 0.3

n 0 A B A B> g Pl P12 P21 P2
Bias -0.2722 —0.2106 -0.3576 -0.1175 -0.0275 —0.2251 0.4088 0.5547 0.5258 0.6412
MLE MSE 0.1722 0.1153 0.2311 0.1548 0.0602 0.1793 0.1705 0.3081 0.4137 0.4138
50 L.CI 1.2287 1.0445 1.2600 1.4728 0.9565 1.4068 0.2289 0.0805 1.4525 0.2035
Bias 0.0091 0.0273 0.2060 —0.2488 -0.2623 0.0337 0.2394 0.3242 0.1440 0.2928
Bayes MSE 0.0266 0.0316 0.0800 0.1152 0.0593 0.0310 0.0714 0.1244 0.0633 0.1180
L.CI 0.6392 0.6885 0.7608 0.9056 0.9579 0.6777 0.4659 0.5448 0.8091 0.7048
Bias —0.2827 -0.2017 -0.3537 —0.1082 -0.0122 —0.2140 0.4068 0.5526 0.5548 0.6393
MLE MSE 0.1422 0.0880 0.2032 0.1193 0.0421 0.1431 0.1678 0.3056 0.4197 0.4115
100 L.CI 0.9789 0.8537 1.0958 1.2863 0.8035 1.2235 0.1903 0.0584 1.3120 0.2063
Bias —0.0005 0.0252 0.1543 —0.2224 —0.3411 0.0487 0.1335 0.1967 0.0710 0.1565
Bayes MSE 0.0221 0.0243 0.0567 0.0915 0.0582 0.0298 0.0443 0.0742 0.0452 0.0664
L.CI 0.5827 0.6037 0.7111 0.8041 0.7456 0.6499 0.6379 0.7396 0.7856 0.8025
Bias  —0.2756 —0.1894 03556 -0.0970 -0.0193 -01949 04045 05524 05770  0.6418
MLE MSE 0.1281 0.0742 0.1840 0.0928 0.0317 0.1230 0.1659 0.3053 0.4360 0.4124
200 L.CI 0.8956 0.7681 0.9407 1.1326 0.6946 1.1433 0.1877 0.0488 1.2592 0.0907
Bias —-0.0140 0.0009 0.0934 —-0.1745 -0.1933 0.0461 0.0572 0.0956 0.0262 0.0594
Bayes MSE 0.0183 0.0169 0.0350 0.0590 0.0535 0.0252 0.0284 0.0447 0.0324 0.0390
L.CI 0.5283 0.5104 0.6359 0.6628 0.4978 0.5952 0.6217 0.7399 0.6980 0.7383
7. Simulation Study are considered based on a data that is generated from a

Here, a simulation study is conducted to see the efficacy of
the proposed model in two cases, independent case and the
dependent case. Monte Carlo simulation is done for com-
parison between maximum likelihood and Bayesian esti-
mation methods, for estimating parameters of BEEM
distribution using R language such as (bbmle). The MLE
estimation methods are done based on Newton-Raphson
algorithm by using “maxLik” package. The Bayesian esti-
mation by using Markov Chain Monte Carlo (MCMC)
approach and Metropolis—Hastings (MH) algorithm is
carried out by using R-program. Monte Carlo simulations

Gaussian copula by using copula package in R. We generate
10000 random samples of sizes n = 50, 100, and 200, and
different cases of actual values of the parameters are listed
below:

Case T: 0=281 =25p8 =231, =128, =14,
&= 1.5, p;; =0.2,py, = 0.15, p,; = 0.05, and p,, = 0.1
Case IL: 0=28,1 1=258, =231, =128, =14,
8 =1.5, p;; =0.5,p1, = 0.4, p,; =0.2, and p,, = 0.3
Case III: =18, =158, = 1.3,1, =2.2, B, = 2.5,
§=2,p;; =02,p, =0.15, p,; =0.05, and p,, = 0.1
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TaBLE 7: MLE and Bayesian estimation for the BMEE distribution using the dataset.

0 A B 0 p
MLE Coefficient 6.5195 0.0128 8.4580 0.0129 0.9791
S.E 0.0755 0.0042 0.1170 0.0110 0.1975
Bavesian Coeflicient 6.5882 0.0130 8.5762 0.0133 0.9576
Y S.E 0.0650 0.0016 0.0703 0.0015 0.0205
TasLE 8: KS distance and its p value and MLE.
0 I KS-d p value L
11.4721 0.0151
X 5.5806 0.0029 0.2664 0.1553 102.1654
9.8507 0.0138
Y 47174 0.0028 0.1001 0.9853 103.8703
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Figure 3: The fitted pdf, cdf, PP plot, and QQ plot for EE distribution for the first variable.

Case IV: =181, =1.5p, = 1.3,, = 2.2, B, = 2.5,
0=2,p;;=05,p, =04, py,; =0.2, and p,, = 0.3

We claim the best performance as the method which
minimizes the mean squared error (MSE), bias of esti-
mation, and length of confidence interval (L.CI) of the
estimator. The two-sided confidence limit with confi-
dence level y = 0.95 of the parameters is constructed as
well.

From the reported bias, MSE, and L.CJ, in Tables 3-6, it
appears that the efficiency of the estimation under the
Bayesian paradigm is quite evident. In particular, the MSE
values in all parametric combinations tried in this article
support in favor of this statement. We have the following
observation on the simulation study as follows:

(i) As sample size (n) increases and for the same case
(fixed actual parameters), the bias, MSE, and L.CI
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F1GURE 4: The fitted pdf, cdf, PP plot, and QQ plot for EE distribution for the second variable.

associated with the parameter estimates decrease for
both methods of estimation.

(ii) In majority of the situations, for fixed n and for the

correlation matrix parameters p,;, pi,, P21 > and pyy,
the bias, MSE, and L.CI associated with them de-
crease under both the classical approach (MLE
method) as well as under the Bayesian paradigm. As
expected, when the sample size increases, a greater
efficiency is observed in the overall estimation pro-
cedure (i.e., low bias and smaller values of the MSE).

(iii) From the reported bias, MSE, and L.CI, it appears

that the efficiency of the estimation under the
Bayesian paradigm is quite evident for both inde-
pendent and dependent cases. In particular, the
MSE values in all parametric combinations tried in
this article support in favor of this statement. For
reference, see Tables 1-6 in the revised manuscript.

(iv) Credible interval(s) constructed appear to be the

best indicator on the estimation of the model pa-
rameters as expected.

(v) Bias measures whether, over many replications, the

estimator yields result that is correct on an average.

A statistic is positively biased if it tends to over-
estimate the parameter; a statistic is negatively bi-
ased if it tends to underestimate the parameter.
Negative bias means that the estimator is too small
on an average compared to the true value.

8. Real Dataset (Motor Data)

The data represent the failure times of a parallel system
constituted by two identical motors in days. These data are
reported in Relia Soft (2003), where X = (102, 84, 88, 156,
148, 139, 245, 235, 220, 207, 250, 212, 213, 220, 243, 300, 257,
263). Y=(65, 148, 202, 121, 123, 150, 156, 172, 192, 214, 212,
220, 265, 275, 300, 248, 330, 350). We fit at first the marginals
of X and Y separately on the motor data. The MLE and
Bayesian estimation for the BMEE distribution using dataset
are shown in Table 7. The MLE of the parameters Kolmo-
gorov-Smirnov distance (KS-d) and its p value for the
marginals are listed in Table 8.

The empirical cdf, the histogram of the pdf, PP plots, and
QQ plots are displayed for the first variable in Figure 3. The
empirical cdf, the histogram of the pdf, PP plots, and QQ
plots are displayed for the second variable in Figure 4. The
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F1GURE 5: The Markov Chain Monte Carlo (MCMC) plots for motor data using the BMEE model.

EE distribution is fitted to real data using Kolmogor-
ov-Smirnov goodness-of-fit test. The estimated cdf with
empirical cdf, the histogram of the pdf, PP plots, and QQ
plots are displayed for the first variable in Figure 3. The
estimated cdf with empirical cdf, the histogram of the pdf,
PP plots, and QQ plots are displayed for the second variable
in Figure 4. These figures show that the tow variables are
fitted for the marginal EE distribution. Also, Table 8 con-
firmed this conclusion by using Kolmogorov-Smirnov
goodness-of-fit test, where p values are more than 0.05.

In majority of the cases, one may observe that the esti-
mates under the Bayesian method are preferable than the
measures of MLE estimates as the standard error of the es-
timates are smaller in all estimates of the parameters. History
plots, approximate marginal posterior density, and MCMC
convergence of 6, A, §, B, and p are represented in Figure 5.

9. Conclusions

In this paper, we have proposed and studied a new class of BEE
whose marginals are EE distributions. The proposed class of
distribution is constructed via two different types of mixture: (a)
type I: starting with two independent EE distributions and (b)
type II: using a bivariate Gaussian copula. Estimation of the
model parameters for both types of MBEE distribution are
conducted using classical (the method of moments and the
method of maximum likelihood) and under the Bayesian
paradigm using independent gamma priors. Since the joint
distribution function and the joint density function are in closed
forms, consequently, this distribution can be used in practice for
nonnegative and positively correlated random variables. Since
the maximum likelihood estimators of the unknown param-
eters cannot be obtained in the closed form, we consider the EM
algorithm that works quite well, and it can be effectively used to
compute the MLEs. Since the choice of hyperparameters for a

prior in a Bayesian paradigm is of paramount importance, as a
continuation of this work in future, we will be focusing on
(including but not limited to) the following:

(i) Exploring various strategies (for example, matching
conditional moments, or conditional percentiles
information to be provided by our expert with the
corresponding theoretical moments and percentiles
and subsequently assuming, say, Euclidean distance)
to estimate/guess best choice(s) of the hyper-
parameters for the priors.

(ii) In the current work, our prior choices are mostly
conjugate in nature. However, in a real-life scenario,
we might not have such an information on the prior
always. Also, in the presence of more concrete in-
formation, one might consider a more precise prior for
the model parameter(s), possibly a partially informa-
tive improper prior. It would be interesting to see the
effect on the overall efficiency of the MCMC and Gibbs
sampling in such a setting. We are currently working
on it, and it will be reported somewhere else.
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