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SCATTERING DIAGRAMS FROM HOLOMORPHIC DISCS IN LOG

CALABI-YAU SURFACES

SAM BARDWELL-EVANS, MAN-WAI MANDY CHEUNG, HANSOL HONG, AND YU-SHEN LIN

Abstract. We construct special Lagrangian fibrations for log Calabi-Yau surfaces, and
scattering diagrams from Lagrangian Floer theory of the fibres. Then we prove that the
scattering diagrams recover the scattering diagrams of Gross-Pandharipande-Siebert [25]
and the canonical scattering diagrams of Gross-Hacking-Keel [21]. With an additional as-
sumption on the non-negativity of boundary divisors, we compute the disc potentials of the
Lagrangian torus fibres via a holomorphic/tropical correspondence. As an application, we
provide a version of mirror symmetry for rank two cluster varieties.
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1. Introduction

A Looijenga pair (Y,D) is a projective rational surface Y with an anticanonical cycle D.
Gross-Hacking-Keel [21] following the SYZ heuristic provided a pure algebraic method to
construct the mirror family for (Y,D). First, a certain affine manifold B with a singularity
was constructed from (Y,D) as an alternative to the base of an SYZ fibration, capturing the
expected asymptotic behavior of a putative SYZ fibration near D.1 One can intuitively view
it as the limiting affine structure obtained by squeezing all the singular SYZ fibres together.
Then Gross-Hacking-Keel used the relative Gromov-Witten invariants counting A1-curves,
rational curves in Y intersecting D exactly at a single point, to serve as substitutes for quan-
tum correction from holomorphic discs of Maslov index zero in X := Y \D with boundaries on
the SYZ fibres. The enumeration of the A1-curves decodes the so-called canonical scattering
diagram on B. The canonical scattering diagram intuitively tells how the local charts glue
together to form a subset of the mirror family, which can be viewed as the mirror family for
X, a non-compact Calabi-Yau surface.

The symplectic counterpart of the canonical scattering diagram has not been fully under-
stood previously. The major difficulty lies in analyzing the moduli spaces of holomorphic
discs, which can be highly obstructed, especially when their Maslov indices are zero, due

1In the case of a rational elliptic surface, this is indeed verified in [6].
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to possible contributions of multiple covers. In [39], the fourth author established a general
scheme for constructing a scattering diagram out of an SYZ fibration in dimension 2 using
Fukaya’s trick [13], which will be summarized in Theorem 2.16 (see [55] for a comprehensive
exposition). The scattering diagram sits in the base of the SYZ fibration, and the rays (or
walls) consist of torus fibres on which boundaries of Maslov zero discs lie. Throughout, it
will be denoted by DLF where the superscript “LF” highlights the role of Lagrangian Floer
theory (of SYZ fibres) in its construction.

Following the SYZ spirit, we construct a special Lagrangian fibration on X := Y \D (see
Lemma 4.3), but this does not immediately reproduce the canonical scattering diagram in
[21]. The main obstacle here is that the moduli space of Maslov index zero stable discs may
lose its compactness after removing D. A priori, it is possible that the limiting configurations
involve negative Chern number spheres lying in D. Note that X itself is neither geometrically
bounded nor complete. Understanding such contributions is already a challenging task that
usually requires intricate virtual techniques. To remedy the situation, we make use of the
fact that (Y,D) admits a toric model (Ȳ , D̄), i.e. that there exists a non-toric blowup Y → Ȳ
up to a birational modification of the boundary divisor D. Let us call SYZ fibres in Y \D
pulled-back from toric fibres (and sitting away from small neighborhoods of singular fibres)
admissible SYZ fibres. Their Floer theory is somewhat easier to deal with, as Maslov index
zero discs with boundaries on an admissible fibre correspond injectively to holomorphic discs
with boundary on a toric fibre in Ȳ . The latter are essentially determined by their intersection
profile with the toric divisor D̄, which is prescribed by the singular fibres that the Maslov
index zero discs pass through. Then we argue that the limiting configuration of such discs
with a given intersection profile cannot have a sphere bubble, as otherwise we would have a
disc with components of higher genus. See Section 4.2.1 for more details.

Having demonstrated compactness, we can now implement the argument in [39] to produce
a scattering diagram on the portion of the SYZ base parametrizing admissible fibres. The
source of initial rays are singular fibres associated with each point in the blowup center for
Y → Ȳ . This can be seen from the local model of a non-toric blowup in [2], which we
incorporate into our construction of the SYZ fibration on Y \ D. One can easily see that
these initial rays coincide with the initial data of the scattering diagram of [21], but another
subtlety arises at this point. While ideally one would expect that the initial rays described
above are the only rays coming out from a neighborhood of a singular fibre, as is the case in
[21], this is not automatically true in our geometric situation, since we do not have control
over the holomorphic discs with boundaries on non-admissible SYZ fibres. In other words,
there might be a Maslov index zero disc with boundary on an admissible fibre that crosses
a neighborhood of a singular fibre, in which case one would find an additional ray seemingly
sourced from this region. The resolution of this subtlety comes from the ideas of tropical
geometry. Having in mind the one-to-one correspondence between discs with boundary on
admissible fibres in Y and those with boundary on toric fibres in Ȳ , we assign a tropical
disc to each holomorphic disc in Ȳ that has precisely the same intersection profile with D̄.
The existence of such a tropical disc, in turn, provides a strong obstruction to the existence
of holomorphic discs with boundaries on admissible SYZ fibres. With the help of a tropical
analogue of Gromov compactness (see Section 5.1), we have the following theorem.

Theorem 1.1 (see Theorem 5.4 and discussion in Section 2.4). One can recover the Gross-
Hacking-Keel canonical scattering diagram from the Lagrangian Floer theory of the admissible
SYZ fibres in Y \D.
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Finally, following the construction of the canonical scattering diagram from DGPS (see
[21, Section 3.4 ]), we obtain an algorithm entirely based on Lagrangian Floer theory that
derives the canonical scattering diagram of Gross-Hacking-Keel. An immediate corollary of
the above theorem is to establish the equivalence between open Gromov-Witten invariants
and log Gromov-Witten invariants via tropical geometry.

Corollary 1.2 (Corollary 5.5). For a Looijenga pair (Y,D) and the SYZ fibration on Y \D in
Theorem 1.1, the sum of open Gromov-Witten invariants of a fixed relative class for admissible
SYZ fibres is the log Gromov-Witten invariant for a corresponding curve class.

Notice that the former invariants are defined via symplectic geometry, whereas the latter is
purely algebro-geometric. The novelty of our approach of establishing a tropical/holomorphic
correspondence is that we can bypass the direct comparison of virtual fundamental cycles for
moduli spaces in symplectic geometry and algebraic geometry, which would cause a huge
amount of technicalities.

The mirror of Y is a Landau-Ginzburg superpotential W , which is a holomorphic function
on some complex manifold2, expected to capture the geometry of Y . For instance, in the
case Y is a toric Fano manifold, then W is simply the generating functions of Maslov index
two discs with boundaries on the moment fibres [8]. For the mirror of the compactification
Y , [21] introduced the notion of broken lines, which are expected to be the tropicalization of
Maslov index two discs with boundaries on SYZ fibres. Enumeration of broken lines results
in the theta functions, which are well-defined global functions on the mirror of Y \D, due to
their compatibility with the wall-crossing behavior with respect to the canonical scattering
diagram. Moreover, the spectrum of the algebra generated by the theta functions provide a
partial compactification of the mirror family of X, which gives the mirror family of (Y,D).
On the mirror side, Pascaleff [45] constructed a non-canonical correspondence between theta
functions and certain generators of SH0(X) assuming X is an affine surface (or an exact
4-dimensional symplectic manifold). Later, Ganatra-Pomerleano [24] generalized the result
to higher dimensional cases.

We will prove thatW can be calculated tropically, again by establishing tropical/holomorphic
correspondence for the Maslov index two discs. Namely, the tropical counterpart of the
Maslov index two discs is shown to be exactly the broken lines in [21], which confirms the
general expectation mentioned at the beginning. For instance, wall-crossing in the holomor-
phic setting is caused by the bubbling of a Maslov index two disc into a union of Maslov
index two and zero discs, and bending of a broken line precisely reflects this phenomenon.
Hence, our method provides an explicit (algorithmic) count of Maslov index two discs, which
would be very difficult if directly looking at holomorphic discs themselves. The following is
a consequence of Theorem 5.8 and Lemma 5.11:

Theorem 1.3. Let (Y,D) be a Looijenga pair such that D contains no negative Chern number
spheres and L is an admissible SYZ fibre. Then the number of Maslov index two discs with
boundaries on L in class β ∈ H2(Y,Z) equals to the weighted count of broken lines with stop
at u in class β and suitable infinity directions.

Theorem 1.3 implies that the theta functions associated with Di in [21], an irreducible
component of D, agree with the generating functions of Maslov index two discs that intersect
Di. We remark that the computation of the mirror of toric semi-Fano surfaces will be
significantly used as a stepping stone in the proof of Theorem 1.3. It has been already

2In symplectic setting, a function on the rigid analytic variety over Λ
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done by [7], but we will examine in Section 3.2 a tropical interpretation of their calculation
which is of its own interest. It is worthwhile to mention that for the symplectic form chosen
here, Y is not a monotone symplectic manifold nor we impose the monotone assumption on
the SYZ fibres. Therefore, the wall-crossing results of Seidel [49] or Pascaleff-Tonkonog [47]
does not directly apply here. As an application, we compute the LG mirror of the degree 5
del Pezzo surface, and verify the closed-string mirror symmetry (Theorem 7.1).

Additionally, we explore a few more examples that exactly fit into the setting of Theorem
1.3, including a non-Fano surface. More specifically, we find a tropical (and hence holomor-
phic, through our correspondence) argument that can cover classic examples of Auroux [1,2]
and cubic surfaces [23]. Mirror symmetry can further extend to non-Fano manifolds with sim-
ilar pictures. The superpotential is much harder to compute in the non-Fano cases due to the
possible bubbling phenomena. Nevertheless, we expect the method here provide an algorithm
to generalize our method beyond the semi-Fano case by understanding the degeneration of
Looijenga pairs.

Last but not least, Theorem 1.1 has a nice application to cluster varieties of rank 2. There
are two types of cluster varieties, namely the A and the X cases. Fock-Goncharov [11]
conjectured that the A cluster varieties are mirror to the Langland dual of the X varieties,
and vice versa. On the A side, there is a natural torus action of TK◦ on the A cluster variety
while there is a fibration of the X to a torus TK∗ on the X side. By understanding the
toric models of the rank 2 cases, we employ the scattering diagram construction in Gross-
Pandharipande-Siebert [25]. Then we identify the GPS scattering diagrams with the fibers
of X cluster scattering diagrams. Hence we obtain the following theorem, and refer readers
to Theorem 6.2 for the precise statement.

Theorem 1.4. Consider the rank 2 cluster varieties. The quotient of the A cluster varieties
are mirror to the the Langland dual LXe cluster varieties, where LXe is fibre of the Langland
dual X family at e.

The organization of the paper is as follows. After reviewing preliminary materials in
Section 2, we revisit Floer theory of Lagrangian fibres in toric surfaces in Section 3, where we
mostly focus on tropicalization of holomorphic discs in a sense that will be clarified therein.
Section 4 is devoted to constructing an SYZ fibration on a non-toric blowup of a toric surface
and analyzing the moduli of Maslov index zero discs, which leads to the scattering diagram
DLF . We then prove our main theorem in Section 5, stating that DLF coincides with DGPS .
Section 6 provides a cluster duality interpretation of the mirror symmetry studied in this
paper. Finally, as an application, we compute the LG mirror and show the closed string
mirror symmetry for the del Pezzo surface of degree 5 in Section 7.

Acknowledgements. We thank Mark Gross, Yoosik Kim, Siu-Cheong Lau, Travis Mandel,
Grigory Mikahlkin, Johannes Rau, Tony Yue Yu for their valuable comments.x The second
named author is partially supported by NSF grant DMS-1854512. The third named author
is supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2020R1C1C1A01008261). The last named author is partly
supported by a Simons Collaboration Grant for Mathematician.

Notation.

• Let N ∼= Z2 be a lattice and M := Hom(N,Z) be the dual lattice. Let NR := N ⊗ R
and MR := M ⊗R. Let Σ ⊆MR be the toric fan and Ȳ := YΣ be the associated toric
surface. We will denote D̄ be the toric boundary divisor and D̄i for its irreducible
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component. We will write mi for the primitive generator of the 1-cone corresponding
to D̄i in Σ.
• Let p : Ȳ → P be the moment map fibration, and let P denote the moment polytope.

For simplicity, we will abuse the same notation p to denote its Legendre transform
p : Ȳ \D̄ ∼= (C∗)2 → R2, (X,Y ) 7→ (log |X|, log |Y |). For each u ∈ IntP , we denote Lu
the moment fibre over u.
• Fixing a Lagrangian L, we denote by Mk+1,l(L, β, J) be the moduli space of stable

bordered J-holomorphic discs representing the class β inH2(X,L) with k+1 boundary
marked points and l interior marked points with respect to the standard toric complex
structure J on X in [28].
• Λ0 denotes the Novikov ring over the real numbers R,

Λ0 :=

{ ∞∑
i=1

aiT
λi | λi ≥ 0, lim

i→∞
λi =∞ and ai ∈ C

}
.

There is a non-Archimedean valuation val : Λ0 → R,

val

(∑
i

aiT
λi

)
= inf{λi | ai 6= 0} and val(0) =∞.

The maximal ideal of Λ0 is denoted by Λ+ := val−1((0,∞)).

2. Preliminaries

2.1. Tropical Geometry. The modified SYZ conjecture [37] suggests that a Calabi-Yau
manifold collapses to an integral affine manifold (possibly with singularities) toward the
large complex structure limit. It has been folklore that holomorphic curves in Calabi-Yau
manifolds should converge to 1-skeletons in the integral affine manifolds satisfying a certain
balancing condition. These 1-skeletons are referred to as tropical curves. The pioneering
work of Mikhalkin [41] shows that the enumeration of holomorphic curves in toric surfaces
equals the weighted count of tropical curves. Since tropical curves are purely combinatorial
objects, establishing a correspondence between tropical and holomorphic curves provides a
powerful tool for enumerative geometry.

In this section, we recall some knowledge of tropical geometry that we will use later. Let
us first give the definition of tropical discs.

Definition 2.1. A parametrized tropical disc with end at u in MR is a triple (h, T, w) satis-
fying the following properties:

(i) T is a rooted tree that possibly contains unbounded edges. If x is the root, then T has

only trivalent vertices besides x. The set of vertices is denoted by T [0], and the set of
edges is denoted by T [1].

(ii) h : T →MR is a map such that h(x) = u, and h(e) is an embedding of an affine line

segment (resp. an affine ray) if e ∈ T [1] is bounded (resp. unbounded).

(iii) The map w : T [1] → Z>0 assigns a weight to each edge with the following balancing
condition. For any vertex besides x, the three adjacent edges e1, e2 and e3 satisfy

w(e1)v(e1) + w(e2)v(e2) + w(e3)v(e3) = 0,

where v(ei) is the primitive vector tangent to h(ei) that is pointed away from v.

Furthermore, the triple (h, T, w) is called a parametrized tropical disc of Ȳ if every unbounded
edge is of the form m′ + R≥0m where m′ ∈MR and m ∈M is the primitive generator of an
1-cone in Σ. A tropical curve/disc is the image of a parametrized tropical curve/disc.
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Remark 2.2. Notice that the balancing conditions of tropical curves/discs follow directly
from that of the parametrized tropical curves/discs.

Motivated by [1, Lemma 3.1], the Maslov index of a tropical disc is defined as follows.

Definition 2.3. Given a tropical disc (h, T, w), its Maslov index MI(h) is defined to be the
twice the sum of weights of unbounded edges.

We next recall the Mikhalkin weight [41] for the trivalent tropical discs.

Definition 2.4. Given a tropical disc (h, T, w) with end at u ∈ MR. Let v ∈ T [0] be a
trivalent vertex with adjacent edges e1, e2, e3. Then the (Mikhalkin) weight at v denoted as
Multv is given by

Multv := |w(e1)v(e1) ∧ w(e2)v(e2)| ∈ ∧2M2 ∼= Z.

Then the weight Mult(h) of the tropical disc (h, T, w) is defined as

Mult(h) =
∏

v∈T [0],v 6=x

Multv.

We will mainly consider tropical discs appearing naturally on the toric setting (or its slight
variants). In this case, they are drawn on the Legendre transform R2 of the moment polytope,
and their unbounded edges are required to be parallel to normal directions to the toric divisor
(or 1-cones in the fan). One can intuitively think of each unbounded edge intersecting the
toric divisor normal to it, as the divisors are sitting at infinity (keeping their directions)
after taking Legendre transform. More generally, any affine line segment in the base of a
SYZ fibration with a rational slope can be completed to a cylinder in the total space with
help of a complex structure (to be canonically chosen in our geometric setting below), whose
symplectic area obviously makes sense.

On the other hand, the intersection patterns of a holomorphic disc with toric divisors
completely determine its topological type, and in particular its symplectic area and Maslov
index. Thus it is natural to define the relative class of a given tropical disc to be that of
the holomorphic disc which intersects the toric divisors in accordance with unbounded edges
of the tropical disc. Throughout, we will frequently use the terms such as relative classes,
symplectic areas, Maslov indices, etc., for tropical discs in this spirit.

We will sometimes need to impose further constraints to tropical discs. Namely, we fix a
set of generic points in R2, and consider the counting invariant concerning tropical discs that
pass through these points. Obviously, the constraints make discs more rigid, i.e., they behave
like discs with lower Maslov indices. For this reason, we define generalized Maslov index of a
constrained tropical disc by

(2.1) MI ′(h, T, w) := |unbounded edges of T | − 2 |point-constraints|.
This is of course consistent with the generalized Maslov index of a holomorphic disc defined
in [32] (see Section 2.5.1, also). Note that if there is no constraint, then MI ′ agrees with the
Maslov index of the tropical disc above.

2.2. Scattering diagrams. Fix R be an Artin local C-algebra or a complete local C algebra
and mR be the unique maximal ideal of R. For our purpose, we will take R to be the Novikov
ring, C[[t]] or C[[NE(Y )]]3, where NE(Y ) is the effective curve cone of a surface Y . We now
define a dimension 2 scattering diagram.

3This is the completion of C[NE(Y )] with respect to some filtration.
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Definition 2.5. A scattering diagram D is a collection of walls {(d, fd)} where

• d ⊆MR is either a ray of the form d = m′d+R≥0md or a line of the form d = m′d+Rmd,
for some m′d ∈ MR and md ∈ M \ {0}. The set d is called the support of the line or
ray.
• fd ∈ C[[zm0 ]]⊗̂CR ⊆ C[M ]⊗̂CR, called wall functions, satisfy fd ≡ 1 mod zmdmR.

such that for every power k > 0, there are only a finite number of (d, fd) with fd 6≡ 1 mod mk
R.

If D is a scattering diagram, we write

Sing(D) =
⋃
d∈D
{m′d} ∪

⋃
d1,d2 dim d1∩d2=0

d1 ∩ d2,

Now consider a smooth immersion φ : [0, 1]→MR \Sing(D) such that endpoints avoid the
support of the scattering diagram D and all intersection of φ with the walls are transverse.
We then define the path-ordered product as follows: For each power k > 0, φ will cross only
a finite number sk of walls with fd 6≡ 1 mod mk

R. We label them by di, where i = 1, . . . sk
with respect to the order of the path intersecting the walls. Each wall d determines an
automorphism

θφ,di(z
m) = zmf

〈n0,m〉
di

,

where n0 ∈ N is primitive normal to di, and 〈n0, φ
′(ti)〉 > 0, where ti is the moment γ crosses

the wall di. Then we define θkφ,D = θdsk ◦ · · · ◦ θd1 . Then we define θφ,D = limk→∞ θ
k
φ,D.

Theorem 2.6. [27,36] Let D′ be a scattering diagram. Then there exists a scattering diagram
D containing D′ such that D\D′ consists only of rays, and such that θφ,D = Id for any closed
loop γ for which θφ,D is defined. We will call such a scattering diagram consistent. After
combining (d, fd), (d

′, fd′) into (d, fdfd′) if d = d′, the resulting D is unique.

Example 2.7. Figure 1 illustrated the first example of scattering diagrams. It corresponds
to the cluster algebra of type A2. From the geometry perspective, the diagrams is given by the
del Pezzo of degree 5 with a cycle of five (−1)-curves.

1 + x

1 + y 1 + xy

Figure 1. A2 scattering diagram

Broken lines. We recall the notion of the broken line, which will be important in studying
the mirror of the compactification Y of a Looijenga pair (Y,D) in Section 5.2. Recall that
there is a natural short exact sequence from toric geometry

0→ KΣ → TΣ :=
n⊕
i=1

Zti
r−→M → 0,(2.2)
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where r(ti) = mi and KΣ = Ker(r).

Definition 2.8. Let D be a consistent scattering diagram on MR. A broken line with stop
at u ∈MR is a continuous map

b : (−∞, 0]→MR

such that b(0) = u and with the below properties: there exist

−∞ = t0 < t1 < · · · < tn = 0

such that b|[ti−1,ti] is affine. For each i = 1, · · · , n, there is ciz
mb
i (t) ∈ TΣ such that

(1) For each i, r(mb
i ) is positively proportional to β′(t).

(2) mb
1 = mj for some j ∈ {1, · · · , n} and c1 = 1.

(3) b(ti) ∈ Supp(D)\Sing(D).

(4) If b(ti) ∈ ∩idi (hence in a 1-dimensional intersection of walls), then ci+1z
mb
i+1(ti+1)

is a term in (∏
i

(θb,di)
εi
)
(ciz

mb
i (ti)),(2.3)

where εi = sgn〈mb
i (ti), γdi〉.

The short exact sequence (2.2) naturally identified with

0→ H2(Ȳ ,Z)→ H2(Ȳ , Lu)→ H1(Lu,Z)→ 0,

for any u ∈ Int(P ) ∼= MR since the moment fibration has no monodromy.

Definition 2.9. Given a broken line b, we say that n is the length of the broken line b and it
has homology [b] := mb

n(u) ∈ H2(Ȳ , Lu) using the above identification of short exact sequence
and weight Mono(b) := cn.

The following is the simplest example of the broken line.

Example 2.10. For any u ∈ MR and mi, there exists a broken line b : (−∞, 0] → B0 with
image of the form u+R≤0mi. In this case, one has n = 1 with the zβi, where βi is the unique
disc class of Maslov index in a tubular neighborhood of D̄i. The weight of this broken line is
1.

2.3. The scattering diagrams of Gross-Pandharipande-Siebert. The most relevant
example of a scattering diagram to the purpose of this paper is the one constructed in [25] (a
combination of Theorem 2.8, Theorem 3.4, Theorem 4.4 and Proposition 5.2 therein), which
we will denote by DGPS . We give a detailed review on it, as one of our goals is to retrieve
DGPS from holomorphic disc counting in the realm of Lagrangian Floer theory.

2.3.1. Scattering Diagrams from Simple Blowups. Let π : Ỹ → Ȳ be the blowup of Ȳ at
distinct generic4 non-toric points qij , i = 1, · · · , N, j = 1, · · · , li, for some li ∈ Z≥0. Denote

by Eij the exceptional divisor corresponding to qij , and by D̃ the proper transform of D̄,

which is anticanonical in Ỹ . Then there is a natural consistent scattering diagram DGPS

associated to the above geometry constructed as follows.
Let DGPS

in be the scattering diagram consists of lines {(dij , fdij} where dij = m′ij+Rmi and

m′ij is chosen such that the closure of the preimage of dij under the moment map contains

4This is only to avoid the situation a ray from scattering falls in the support of an initial ray.
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qij . For simplicity, we will often use the expression the wall determined by qij ’ to indicate
such a wall dij .

The associated wall function is given by fdij = 1+ t−[Eij ]zmi , where t is the formal variable

in R is the completion of C[NE(Ỹ )] with respect to some filtration. From Theorem 2.6,
DGPS
in uniquely determines a consistent scattering diagram DGPS . Below we will explain

the geometric interpretation of its wall functions. If (d, fd) ∈ DGPS \ DGPS
in , then d must

be a ray, i.e. d = m′d + R≥0md, and the wall function fd is given as the generating series
of certain algebraic curves counts. Let Ȳd be the toric blowup obtained by adding a new
ray in the direction −md to the fan of Ȳ . The exceptional divisor in Ȳd appears as a toric
boundary component that we denote by D̄d. (The toric blowup given in Definition 2.12

slightly generalizes this.) Let Ỹd be the fibre product

Ỹd
πd //

��

Ỹ

π
��

Ȳd // Ȳ

and D̃d = π−1
d (D̃) the corresponding boundary divisor. Then the wall function is given as

fd =
∑
β

kβNβt
(πd)∗βzkβmd ,(2.4)

where β runs over the classes in H2(Ỹd,Z) supporting A1-curves. kβ is the intersection of β

with the component D̃d, the proper transform of D̄d.
The coefficient Nβ computes the associated log Gromov-Witten invariant. Intuitively, Nβ

counts the number of rational curves C in Ỹ of the class βP ∈ H2(Ỹ ,Z) (P = {pij}) such
that

(1) π(C) is tangent to D̄i at qij with tangency multiplicity pij .

(2) C intersects D̃ at exactly one point.
(3)

∑
i,j pijmi = kβmd for some kβ ∈ Z>0.

(4) β = π∗βP −
∑

i,j pij [Eij ].

We will refer readers to [25, Section 4] (or [21, Definition 3.1]) for the precise definition of
Nβ.

2.3.2. Scattering Diagrams from Orbifold Blowups. Gross-Pandharipande-Siebert further con-
sidered the orbifold blowup π : Ỹ → Y at non-toric point qij with multiplicity rij and studied
the enumerative meaning of the wall-functions in the associate scattering diagram. We will
discuss the heuristic picture in Lagrangian Floer theory in Section 4.3 and use this to explain
the mirror symmetry of cluster varieties of rank two in Section 6.

In this case, Ỹ has an Arij−1-singularity for each point qij and admits a unique structure
as a non-singular Deligne-Mumford stack. The exceptional divisor Eij over qij contains the
orbifold point due to higher multiplicity given at the blowup point qij . Denote by DGPS

in
the scattering diagram consisting of {(dij , fdij )}, where dij is the wall determined by qij and

fdij = 1 + t[Eij ]zrijmi . We will refer the readers to Section 4.3 for the heuristic symplectic

analogue. Again we write DGPS for the unique consistent scattering diagram constructed from
DGPS
in . For each ray (d, fd) ∈ DGPS \DGPS

in , one can similarly define Ȳd and Ỹd = Ȳd ×Ȳ Ỹ .
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Then the wall function fd is given by similar formula as (2.4) with Nβ the orbifold Gromov-

Witten invariant counting the number of rational curves C in Ỹ of the class βP ∈ H2(Ỹ ,Z)
(P = {pij}) such that

(1) π(C) passes through qij exactly once with tangency multiplicity pij .

(2) C intersects D̃ at exactly one point.
(3)

∑
i,j pijmi = kβmd for some kβ ∈ Z>0.

(4) β = π∗βP −
∑

i,j pij [Eij ].

2.4. Canonical Scattering Diagram of Gross-Hacking-Keel. We begin with the same
geometric setup in [21] and then summarize the construction of the canonical scattering
diagram.

Definition 2.11. A Looijenga pair (Y,D) is a smooth projective rational surface Y with
D ∈ | −KY | a reduced rational curve which has at least one singular point.

If D is irreducible, then it is a genus one curve with a single nodal point. Otherwise, it is a
cycle of smooth rational curves. The following is a useful observation from the classification
of surfaces.

Proposition 2.12. [21, Proposition 1.3] For any Looijenga pair (Y,D), there exist two other

Looijenga pairs (Ỹ , D̃) and (Ȳ , D̄) such that

(1) π′ : Ỹ → Y is a blowup of nodal point(s) of D, called the toric blowup, and D̃ = π′∗D;

(2) (Ȳ , D̄) is a toric pair and, π : Ỹ → Ȳ is a blowup at smooth points of D̄, called a

non-toric blowup, with D̃ being the proper transform of D̄.

We write X := Y \ D, and similarly X̃ := Ỹ \ D̃ and X̄ := Ȳ \ D̄. There exists a
meromorphic form Ω on Y restricts to a holomorphic volume form on X, unique up to C∗-
scaling. We will denote the corresponding holomorphic volume forms by Ω̃ and Ω̄, respectively.
A straightforward calculation shows that Ω̃ = π′∗Ω = π∗Ω̄, where we abuse notations by
putting π′ : X̃ → X and π : X̃ → X̄.

Given a Looijenga pair (Y,D), Gross-Hacking-Keel [21] associated an integral affine mani-
fold BGHK with a singularity. Topologically, it is R2 with a unique singularity at the origin.
There is a cone decomposition BGHK = ∪ni=1σi/ ∼, where σi is a cone bounded by two rays
R≥0vi and R≥0vi+1, and each ray R≥0vi corresponds to a component Di of the boundary
divisor D. Here the relation ∼ glues R≥0v1 with R≥0vn+1. The canonical scattering dia-
gram Dcan is then a collection {(d, fd)} satisfying the followings. If d is a ray generated by
avi + bvi+1 for a, b ∈ Z≥0, then

log fd =
∑
k≥1

kckX
−ak
i X−bki+1 ∈ R[[X−ai X−bi+1]],

where NE(Y ) is the monoid generated by effective curve classes in Y . The coefficient ck is
the generating function of the log Gromov-Witten invariants

ck =
∑
β

Nβz
β,

where the summation is over all possible classes β ∈ H2(Y,Z) with incidence relation β.Di =
ak, β.Di+1 = bk and β.Dj = 0, for j 6= i, i + 1. The coefficient Nβ is the algebraic count of
A1-curves in class β as in Section 2.3.

The integral affine manifold with singularity BGHK and the canonical scattering diagram
Dcan are independent under deformation of the Looijenga pair (Y,D) as stated in [21, Lemma
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3.9], thanks to the deformation invariance of log Gromov-Witten invariants. If (Ỹ , D̃) →
(Y,D) is a toric blowup, then their corresponding integral affine manifolds with singularities
are naturally isomorphic, and so are their associate canonical scattering diagrams by [21,
Lemma 1.6].

If (Y,D)→ (Ȳ , D̄) is a non-toric blowup, from the deformation invariance of the canonical
scattering diagram, we may assume that Y is the simple blowup of Ȳ at mutually distinct
points qij ∈ D̄i. Recall that these data determine the scattering diagram DGPS . The relation
between the canonical scattering diagram Dcan of (Y,D) and the scattering diagram DGPS

is as follows: for any avi + bvi+1, a, b ∈ Z≥0 and (a, b) 6= (1, 0), (0, 1), we have a ray d =
R≥0(avi + bvi+1) in Dcan with the wall function

fd =
∏

(d′,fd′ )∈DGPS
fd′ ,

here (d′, fd′) runs through all possible rays in DGPS with corresponding curve class β ∈
H2(Ỹd′ ,Z) such that (πd′)∗β ·Di = a, (πd′)∗β ·Di+1 = b. If (a, b) = (1, 0), then wall function
fd attached to the ray d = R≥0vi is given by

fd =

j=li∏
j=1

(1 + t[Eij ]z−mi)
∏

(d′,fd′ )

fd′ .

Here dij are the rays in DGPS
in and (d′, fd′) runs through all possible rays in DGPS with the

corresponding curve class β ∈ H2(Ỹd′ ,Z) such that (πd′)∗β ·Di = 1, (πd′)∗β ·Dj = 0 for j 6= i
but β is not a multiple of Eij for any j = 1 · · · , lj . To sum up, given any Looijenga pair
(Y,D), one can construct the asscociate canonical scattering diagram Dcan of (Y,D) from

the scattering diagram DGPS of (Ỹ , D̃) → (Ȳ , D̄)5. We refer readers to [21, Section 3.4] for
further information.

Remark 2.13. It is expected that the orbifold analogue of the work of Gross-Hacking-Keel
mirror construction also hold. However, the author is not aware of that in the literature.

2.5. Lagrangian Floer theory. We briefly review Lagrangian Floer theory of a compact
Lagrangian and its bulk deformation following [15]. We begin by fixing a generic almost
complex structure J . For a compact Lagrangian L in a symplectic manifold Y , one can assign
a possibly curved A∞-algebra structure on H∗(L; Λ) as follows. If we writeMk+1(Y,L, β; J)
for the moduli space of J-homomorphic discs in class β ∈ π2(Y,L) with k + 1 boundary
marked points z0, · · · , zk then one has

(2.5) mk,β(h1, · · · , hk) := (ev0)!(ev1, · · · , evk)∗(h1 × · · · × hk), mk =
∑

β∈π2(X,L)

mk,β T
ω(β)

for k ≥ 0 and hi ∈ H∗(L; Λ) where evi is the evaluation at zi. We additionally put m1,0(h) =

(−1)n+deg x+1ddRh. The degree of mk,β is given by 2 − k − µ(β) where µ(β) is the Maslov
index of the class β ∈ π2(X,L), which directly follows from

(2.6) dimMk+1(Y,L, β; J) = n+ µ(β) + k − 2.

The family {mk}k≥0 of multilinear operations satisfies the quadratic relations∑
k1+k2=k+1

(−1)?mk2(h1, · · · ,mk1(hi, · · · , hi+k1−1), · · · , hk) = 0

5Here we identify mi with −φi(vi) in [21].
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called the A∞-relations, where ? = |h1|′ + · · · + |hi−1|′. When m2
1 = 0, then the resulting

homology is referred to as the Lagrangian Floer cohomology of L.
The formula (2.5) includes the case where the term m0(1) := m0 ∈ H∗(L; Λ+) is nontrivial,

which gives an obstruction for m1 to become a differential. In order to derive any meaningful
homological invariants, one should deform the A∞-structure by so called a weak bounding
cochain b ∈ H1(L; Λ+), which satisfies

(2.7) m0(1) +m1(b) +m2(b, b) + · · · = W (b) · 1L
where W (b) is a Novikov constant depending on b, known as the superpotential of L. If (2.7)
has a solution, then L is said to be weakly unobstructed. One can easily see from (2.6) that
W (b) is contributed by the Maslov index 2 discs.

When L is a Lagrangian in Y \ D for a log Calabi-Yau pair (Y,D = ∪iDi) with Di

irreducible and c1(Di) positive, those discs are precisely the ones that hit D exactly once. If
some of Di is not positive, then one should additionally take into account the higher Maslov
discs attached with negative or zero Chern number sphere bubbles. Typical examples are
toric manifolds with L being a toric fibre, see for e.g., [16]. It is conventional that one uses
the exponential coordinate to write W (b) in such a case. That is, we set

(2.8) zi := expxi i = 1, · · ·n

where we take b =
∑
xidθi where {dθi : i = 1, · · ·n} is a basis of H1(L). Throughout, we

will use the notation

z∂γ := z
(∂γ,dθ1)
1 · · · z(∂γ,dθn)

n ,

for ∂γ ∈ H1(L,Z), where ( , ) is the natural pairing between homology and cohomology.6

It is worthwhile to mention that z∂γ is independent of the choice of the basis {dθi} and the
notation is thus intrinsic.

The exponential coordinate also helps us to include holonomy variables for flat C∗-connections
on L more naturally, which enables us to expand the set of solutions b of (2.7) over Λ0. We
remark that the coordinate change (2.8) makes sense, provided the divisor axiom [13]:

(2.9)
∑

∑
ni=n

mk+n,β(b⊗n0 , h1, b
⊗n2 , · · · , b⊗nk−1 , hk, b

⊗nk) =
1

n!

(
∂β, b

)n
mk(h1, · · · , hk)

for β ∈ π2(Y,L), which tells us that the variable xi in W (b) always appears as the exponential.
Let us denote by nβ(L) = nYβ (L) the number of the holomorphic discs in class β with

µ(β) = 2 whose boundary passes through a generic point in L, or in other words, nβ(L) is
the degree of the map ev0 : M1(Y,L;β) → L provided the weakly unobstructedness (2.7)
(and all necessary transversality). It is easy to see that the coefficient of z∂β in W is given

by nβ(L)Tω(β). Alternatively, one can define W as a function on the ‘moduli space’ of the
pair (L,∇) where L varies over torus fibres and ∇ is a flat U(1)-connection on the trivial line
bundle L× C by

(2.10) W (L,∇) =
∑

β,µ(β)=2

nβ(L)Tω(β)hol∂β∇,

which fits more into the SYZ setup (see [1] for more details). The superpotential presented
here can be thought of as a local restriction of (2.10).

6We use ∂γ to denote a general element in H1(L,Z), as we will frequently look at classes in H1(L,Z)
appearing as the boundary class of a holomorphic disc.
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2.5.1. Bulk-Deformed A∞ Structures and Bulk-Deformed Superpotentials. One can further
deform the A∞-structure on H∗(L; Λ) along the direction of H∗(X) by inserting interior
marked points to holomorphic discs and requiring them to pass through (Poincare duals of)
given ambient cocycles in H∗(X). It is called the bulk-deformation of the Floer theory of L.

Suppose an ambient cocycle b ∈ Heven(X; Λ+) is given. We first consider for each β ∈
π2(X,L)Mk+1,l(L, β, J), the moduli space of stable J-holomorphic discs with k+1 boundary
marked points and l interior marked points representing the class β . Its dimension is given
by n+µ(β) +k−2 + 2l where the additional 2l compared with (2.6) comes from the freedom
of locations of interior markings. We then impose the incidence condition to the interior
markings by taking fibre product to obtain

(2.11) Mk+1,l(L, β, J ; b⊗l) :=Mk+1,l(L, β, J)evint ×Xl

l∏
i=1

PD[b].

where evint is the evaluation map associated with interior marked points. Finally, the bulk-
deformed A∞-operations are defined by

mb
β,k(h1, · · · , hk) =

∑
l

1

l!
(ev0)!(ev1, · · · , evk)∗(h1 ∧ · · · ∧ hk), mb

k =
∑
β

mb
β,kT

ω(β)

Notice that mb
β,k is contributed by Mk+1,l(L, β, J ; b) with l varying over Z≥0.7

The superpotential W (b) also deforms accordingly now by solving the analogue equation
for mb

k:

mb
0(1) +mb

1(b) +mb
2(b, b) + · · · = W b(b) · 1L

and the resulting W b is called the bulk-deformed potential. In [32], the second and third
authors considered a special type of a bulk-deformation of the Floer theory of toric fibres in
a Fano surface, for which b is taken to be a linear combination

∑
tiqi of generic points with

t2i = 0. One needs to impose l-many point-constraints to discs of Maslov index µ = 2l+ 2 in
order for them to contribute to W b. The dimension formula of the disc moduli (see Section
2.5.1) tells us that these constrained discs behave like Maslov 2 discs, and more generally, the
generalized Maslov index µ′ of a holomorphic disc was introduced in [32] as twice the number
of point-constraints subtracted from the ordinary Maslov index µ (i.e., µ′ = µ− 2l). Notice
that (2.1) is precisely its tropical analogue. W b shows certain discontinuity when L varies
over toric fibres due to the existence of generalized Maslov zero discs. Such a phenomenon is
generally called a wall-crossing, which we recall below in more general context.

2.5.2. Pseudo-isotopies and wall-crossing. Consider two Lagrangian submanifold L and L′

in (X,ω) which are related by smooth isotopy φt. Namely, φt is a diffeomorphism on X
such that φ0 = id and φ1(L) = L′. We further assume that for each t, the almost complex
structure Jt = (φt)

∗J is tame with respect to ω. We can relate the superpotentials for L and
L′ in the following way.

Notice that J0(= J)-holomorphic discs bounding L′ isotope to J1-holomorphic discs bound-
ing L thorough φ. The Floer theory of L does not depend on the choice of almost complex

7Strictly speaking, (2.11) makes sense when b is a single geometric cycle, not a linear combination of such.
In the latter case, however, we can simply defined mb

β,k by expanding it linearly in accordance with the linear

combination forming b.
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structures in the following sense: the isotopy results in an A∞-algebra isomorphismfk =
∑
β

fk,βT
ω(β)


k≥0

: H∗(L; Λ)→ H∗(L′; Λ),

where fk,β is obtained by counting discs in

∪t∈[0,1]Mk+1(L, β; Jt)

whose boundary marked points are subject to suitable incidence conditions. The degree of
fk,β is given by 1− k − µ(β).

The A∞-homomorphism {fk}k≥0 induces a map between associated sets of weak bounding
cochains

(2.12) f∗ : b 7→ f0(1) + f1(b) + f2(b, b) + · · · .
This construction is now broadly referred to as Fukaya’s trick since it has first appeared in
[13]. See [55] for more recent development.

Lemma 2.14. [13] Let L and L′ be two Lagrangians that can be interpolated by an isotopy
φ.

(1) the superpotential W and W ′ of L and L′ satisfy

W ′(f∗(b)) = W (b)

after rescaling the term by suitable powers of the Novikov parameter.8

(2) The map f∗ only depends on the homotopy type of the isotopy φt. Namely, if there is
an isotopy Φs,t over [0, 1]2 between two isotopies (φ1)t = Φ1,t and (φ2)t = Φ1,2 from
L and L′, then φ1 and φ2 induced the same map f∗ on the weak Maurer-Cartan space
of L and L′.

The contributions to (2.12) are from discs with µ(β) = 0, and by dimension reason, a
generic Lagrangian torus fibre does not bound such discs. Collecting Lagrangians bounding
Maslov zero discs forms a structure called the wall in the base B of the torus fibration, which
is conjecturally of real codimension 1 in B for generic almost complex structures.

Let us now focus on the situation where X admits a special Lagrangian torus fibration
π : X → B with respect to a holomorphic volume for Ω, and L,L′ are two different fibres
of π. Given a reference point u0 ∈ B0 and a choice of the basis ě1, ě2 ∈ H1(Lu0 ,Z), we will
define the local affine coordinates around u0. For any u ∈ B0 in a small neighborhood of u0,
one choose a path φ contained in B0 connecting u, u0. Let Ck to be the S1-fibration over the
image of φ such that the fibres are in the homology class of parallel transport of ěk along φ.
Then the local complex symplectic affine coordinates are defined by

xěk(u) =

∫
Ck

ImΩ.(2.13)

It is straight-forward to check that the transition functions fall in GL(2,Z) o R2, and thus
the above coordinates give an integral affine structure on B0. We will say that the affine line
xk = const is an affine line defined by ěk.

One can show that the loci of torus fibres bounding Maslov zero discs form an affine line in
B with respect to these affine coordinates (see, for e.g., [39, Proposition 5.6]). Such a line is
called the wall, and the above discussion tells us that f∗ is nontrivial only if the isotopy goes

8We refer readers to [51, Lemma 4.2] for details on the rescaling factors. This will not be needed for our
purpose, since L and L′ in the application are infinitesimally close to each other.
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across some wall, in which case we call f∗ a wall-crossing transformation. Strictly speaking,
the wall should be defined as the loci of fibres Lu which admit nontrivial open Gromov-
Witten invariants Ω̃(γ;u) for some relative class γ ∈ H2(X,Lu). See [38, Definition 4.12] for
the precise definition of the invariants. If the underlying isotopy goes across the wall at the
point u, one can roughly think of f∗ as the generating series of Ω̃(γ;u).

Theorem 2.15. [39, Theorem 6.15] Let π : X → B be a special Lagrangian fibration on a
symplectic manifold M with dimRM = 4. Suppose there exists a wall in B contributed by a
disc class γ ∈ π2(X,L) of Maslov index zero. Then the wall is an affine line (ray) along the
direction corresponding to ∂γ ∈ H1(L), and the associated wall-crossing transformation is of
the form

(2.14) z∂γ
′ 7→ z∂γ

′
f 〈γ

′,γ〉
γ .

where fγ ∈ 1 + Λ[[Tω(γ)z∂γ ]].

The last author has shown that these walls attached with fγ (as wall functions) all to-
gether form a scattering diagram defined in Section 2.2. Its construction is purely based on
Lagrangian Floer theory, as was speculated in [14,36]. Notice that the wall-crossing transfor-

mations in (2.14) preserve dz1
z1
∧ dz2

z2
. When a new wall produced by the collision of walls, the

new walls and wall functions can thus be captured by (2) of Lemma 2.14 together with the
so-called Kontesvich-Soibelman lemma (see e.g. [36, Theorem 6]). See [39] for more details.
The precise statement is given as follows.

Theorem 2.16. Let (X,ω) be a symplectic manifold of dimension 4 and let J be a tamed
almost complex structure. Assume that X ′ ⊆ X with X ′ → B be a Lagrangian fibration such
that

(1) there are no singular fibres over B;
(2) there exists an affine structure on B such that the loci of fibres bounding holomorphic

discs in a fixed class (up to parallel transport) are constrained in an affine line;
(3) the moduli spaceM(X,L, γ; J) of stable discs is compact for a fibre L of X ′ → B and

γ ∈ H2(X,L);
(4) no fibres bound J-holomorphic discs of negative Maslov index.

Then there exists a consistent scattering diagram DLF on B constructed from pseudo-isotopies
between fibres.

The consistency of DLF is a direct consequence of (2) of Lemma 2.14 provided the absence
of negative Maslov discs. In fact, the path-ordered product in this context is nothing but the
composition of f∗ (2.12) for each wall that the loop goes across. The condition (1) tells us
that the isotopy along the loop can be contracted to a trivial loop, and (4) ensures that the
contraction gives rise to a trivial homotopy between the composition of f∗’s and the identity
map.

3. Floer theory on toric surfaces

In this section, we prove some useful facts about holomorphic discs whose boundaries
lie on the moment fibre Lu = p−1(u), which will be the crucial ingredient for the proof
of our main theorem in Section 5. We remark that holomorphic discs bounding Lu are
completely classified by the work of Cho-Oh [8], and they admit very concrete coordinate-
wise descriptions from which we can read off much of topological information of discs. Our
task here is to assign a tropical disc to each of these holomorphic discs, whose end lies at u,
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and whose intersection pattern with the boundary divisors precisely match with the original
holomorphic disc.

In the second half, we compute the superpotentials for semi-Fano toric surfaces by means
of tropical counting. While they have already been computed in the previous work of Chan-
Lau [7], the method we use here is completely different, and is of independent interest. These
toric potentials serve as a stepping stone to compute potentials for general log Calabi-Yau
surfaces thorough blowup and blowdown process (under some non-negativity assumption).

3.1. Construction of tropical discs from holomorphic discs in toric surfaces. We
will establish a weak correspondence between holomorphic and tropical discs for toric surfaces
in this subsection. More precisely, to a holomorphic disc with a fixed set of point-constraints
(on the toric boundary), we assign a tropical disc whose unbounded edges have directions and
locations determined by the point-constraints. This will impose an obstruction for existence
of certain holomorphic discs to exist, which will be crucial in proving Theorem 5.4.

Let us begin with the following useful fact about holomorphic discs in toric manifolds.
Given a moment torus fibre L in a toric manifold Ȳ , up to (C∗)n-action, we may assume that L
is the fibre over the origin in Rn which is identified with IntP via the Legendre transformation.
Then L is the fixed locus of the anti-holomorphic involution σ : (z1, · · · , zn) 7→ ( 1

z1
, · · · , 1

zn
) on

(C∗)n. Any holomorphic disc with boundary on L restricted to (C∗)n(⊂ Ȳ ) can be doubled,
and then extend to a rational curve in Ȳ . This gives the following lemma.

Lemma 3.1. Let Ȳ be a toric manifold, and L a moment fibre. Given a holomorphic disc
f : (D2, ∂D2) → (Ȳ , L), there exists a unique rational curve Cf in Ȳ such that it contains
the image of f , and that Cf ∩ (C∗)n is invariant under σ.

We now restrict to the case n = 2. Suppose that a curve C in (C∗)2 is defined to be the
zero loci of a Laurent polynomial F = F (z1, z2). Consider the amoeba A of C, the image of
C under the log map

(3.1)
Log : (C∗)2 → R2

(z1, z2) 7→ (log |z1|, log |z2|).

We recall the Ronkin function NF (u) [46, 48] defined on R2. It is given as the push-forward
of log |F |, i.e.

NF (u) =
1

(2πi)2

∫
Lu

log |F |dz1

z1
∧ dz2

z2

for u ∈ R2. Notice that NF is well-defined even for u lying in A. It is also known that
NF : R2 → R is a convex function, strictly convex on A and is linear (up to translation) on
each connected component of the complement of A. For E a component of R2 \ A, we write
NE
F := NF |E for this (restricted) linear function, and finally set N∞F := maxEN

E
F .

The spine S of A (or of C) is now defined as the corner locus of N∞F , i.e. the locus
where N∞F is not locally linear. On a component E of R2 \ A, NE

F can be written as NE
F =

νE1 u1 +νE2 u
E
2 +aE , and in this case, νE := (νE1 , ν

E
2 ) ∈ Z2 is called the index of the component

E9. Then S can be also described as the zero loci of the tropical polynomial
∑

νE
taEz

νE1
1 z

νE2
2

and hence, S is a tropical curve by definition.
Now we are ready to prove that every holomorphic disc with boundary on the moment

map fibre has a (not necessarily unique) corresponding tropical disc. The idea is to use the

9From the Jensen’s formula [3], the index νE can be determined by the intersection number of Cf with
certain holomorphic discs.
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spine S of the doubling Cf of a holomorphic disc, but the tricky part here is that in general,
the genus of the spine can be strictly larger than that of the original curve (see Remark 2.3
[44] for such an example). For this reason, we will make a further modification of S in the
proof.

Lemma 3.2. Let Ȳ be a toric surface and consider a moment fibre Lu over u ∈ R2. For
each holomorphic disc f : (D2, ∂D2) → (Ȳ , Lu), there exists a tropical disc with stop at u
that satisfies the following:

• if the holomorphic disc f intersects a component of the toric boundary divisor at a
point of multiplicity m, then the corresponding tropical disc has an unbounded edge
defined by the vanishing cycle of the toric boundary and of weight m.
• the edge adjacent to u is defined by ∂[Im(f)].

Proof. Lemma 3.1 states that there exists a unique rational curve Cf ⊆ Ȳ containing Imf .
Let S be the corresponding spine. The Z2-symmetry on the rational curve Cf implies that

(1) A is symmetric under u 7→ −u,
(2) the defining equation F of Cf satisfies F (z−1

1 , z−1
2 ) = za1z

b
2F (z1, z2) for some a, b ∈ Z.

Then straightforward calculation using the definition of NF shows that NF (u) = NF (−u)
if u /∈ A. Thus, the tropical polynomial of S is also Z2-invariant. As mentioned, we will
modify S into another tropical curve S ′ in order to ensure that the resulting tropical curve
is of genus 0.

Let ∆′ be the Newton polytope of the tropical polynomials of S, that is, the convex hull
of the set {νE}, where E varies over all the components of R2 \A. Then we take S ′ to be the

tropical curve defined by the tropical polynomial
∑

νE∈∂∆′ t
aEz

νE1
1 z

νE2
2 . From [41, Proposition

3.11], the tropical curve S ′ is dual to a subdivision of ∆′. Since the coefficient corresponding
to any interior lattice point of ∆′ is zero, we see that S ′ is a tree (it has genus 0). On the
other hand, the coefficients of S and S ′ over the lattice points on ∂∆′ still remain the same.
Hence, the sets of affine lines obtained by extending the unbounded edges of S and S ′ agree
with each other, which are determined by the intersection of Cf with the toric boundary of
Ȳ . Lastly, it is obvious that S ′ is Z2-invariant.

Figure 2. Z2-symmetry of a tropical curve

We claim that u is contained in S ′. Let v be a vertex in S ′, and v′ its reflection image,
v = σv′, which also lies in S ′. We may assume v 6= v′. There exists a path in S ′ connecting
v and v′. If u /∈ S, then the image of the path under σ provides another path between v and
v′, which contradicts the fact that S ′ is a tree (see Figure 2). Since S ′ is a tropical curve of
genus zero which is symmetric to u, one can halve it to gain a tropical disc with stop at u.
The last part of the lemma is a consequence of balancing condition at all vertices. �
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We emphasize again that the lemma provides a strict obstruction of existence of holomor-
phic discs.

3.2. Tropical interpretation of the potentials for toric semi-Fano surfaces. We end
this section with finding out the relationship between the bulk-deformed superpotential of a
toric Fano surface and the superpotential of a toric semi-Fano surface obtained from the Fano
surface by toric blowup. Any toric semi-Fano surface can be obtained in this way, with the
exception of the Hirzebruch surface F2 = P(OP1 ⊕ OP1(−2)). This process provides a means
for calculating the superpotential on any toric semi-Fano surface (except F2) using a tropical
calculation on a toric Fano surface.

Let Y be a semi-Fano toric surface with Ỹ a semi-Fano toric blowup of Y (at a single

point). Note that Y and Ỹ are necessarily smooth. Let w̃ be the primitive vector in the

1-cone of the fan for Ỹ not appearing in the fan for Y . We have that w̃ = w1 + w2, where
w1 and w2 are primitive vectors in adjacent 1-cones of the toric fan for Y . Let p be a point
in MR and consider the scattering diagram Dt associated with the point p− tw̃. That is, Dt

is the scattering diagram with one ray (dv, fd) = (p− tw̃+ vR≥0, 1 + z−vt) for each primitive
vector v in a 1-cone of the fan for Y .

As t approaches infinity, one chamber of Dt exhausts MR. This is the open cone spanned
by w1 and w2 based at p − tw̃, and we will let U denote it. Letting p1, . . . , pn be generic
points in U , we will study the generalized Maslov index 2 tropical discs (with respect to the
points p, p1, . . . , pn) with stop in U .

We establish some facts about the toric fan of Y . Since Y is assumed to be smooth, w1

and w2 form an integral basis of M .

Lemma 3.3. Let Y , Ỹ , w1 and w2 be as above. That is, let Y be a toric semi-Fano surface
with Ỹ a semi-Fano toric blowup of Y (at a single point). Let w̃ be the primitive vector in

the 1-cone of the fan for Ỹ not appearing in the fan for Y , and let w1 and w2 be the primitive
vectors in the adjacent 1-cones with w1 + w2 = w̃. Given any primitive vector w lying in a
1-cone of the toric fan of Y , we have that w = bw1 + cw2, where b, c < 2.

Given the exhaustive description of semi-Fano toric surfaces given by Chan-Lau [7], this
could be checked directly. We present an elementary inductive proof here.

Proof. By the smoothness of Y , we can write w = bw1 + cw2 for some integers b, c. By
assumption, the 1-cones corresponding to w1, w2 are adjacent in the fan of Y , in the sense
that they bound a 2-cone of the fan, so b and c cannot both be positive. Without loss of
generality, we will assume c > 0 and show c = 1. We will also assume that det(w1, w2) = 1,
i.e. that w2 is counterclockwise from w1 (this allows us to fix a choice of signs).

Let w3 = b3w1 + c3w2 be the primitive vector in the next 1-cone after that of w2, pro-
ceeding counterclockwise. We assume that c3 > 0 and hence that b3 < 0. Since Ỹ is
semi-Fano, the self intersection number in Ỹ of the divisor corresponding to the 1-cone
containing w2 is at least −2. It is known that this self intersection number is equal to
−det(w1 + w2, w3) = −c3 + b3 ≤ −2, with equality only when b3 = −1 and c3 = 1.
Hence, w3 = −w1 + w2. We induct, assuming wn = −(n − 2)w1 + w2. Let wn+1 =
bn+1w1 + cn+1w2 be the primitive vector in the next 1-cone counterclockwise from that of
wn, and assume that cn+1 > 0. Because wn+1 is counterclockwise from wn, we get that that
bn+1 < −(n − 2). From the semi-Fano condition on Ỹ , it follows that the self intersection

number of the divisor in Ỹ corresponding to the 1-cone containing wn is greater than or

equal to −2, so −det(wn−1, wn+1) = −det

(
−(n− 3) bn+1

1 cn+1

)
= bn+1 + (n − 3)cn+1 ≥ −2.
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Since wn+1 is counterclockwise from wn−1, we have that 0 < det

(
−(n− 3) bn+1

1 cn+1

)
, so

−1 ≥ bn+1+(n−3)cn+1 ≥ −2. Since bn ≤ −(n−1) and cn ≥ 1, it follows that bn+1 = −(n−1)
and cn = 1.

Returning to our original w = bv1 + cv2, since we assumed c > 0, we see that w must
eventually appear in this way, and hence that c = 1, as desired.

Note that the divisor corresponding to wn in Ỹ must have self intersection −2 for n greater
than 1 and less than the maximum attained value. In the maximum case, i.e. when wn −w1

does not lie in a 1-cone of Ỹ , we see that the self intersection of the divisor corresponding to wn

is strictly greater than −2, since our smoothness condition gives det

(
−(n− 2) b

1 c

)
= −c(n−

2)− b = 1, and the self intersection will equal −det

(
−(n− 3) b

1 c

)
= c(n− 3) + b = −1− c,

and c ≤ 0. �

The proof of this lemma immediately gives the following lemma.

Lemma 3.4. Let Y , Ỹ , w1 and w2 be as in Lemma 3.3, and let w = bw1 +cw2 be a primitive
vector lying in a 1-cone of the toric fan of Y . If c > 0, then w1 + w is a primitive vector
lying in a 1-cone of the toric fan of Ỹ . Likewise, if b > 0, then w2 + w is a primitive vector
lying in a 1-cone of the toric fan of Ỹ .

Proof. In the notation of the proof of Lemma 3.3, our first statement amounts to observing,
for n ≥ 3, that w1 + wn = wn−1. �

Let h : T → MR be a generalized Maslov index 2 disc (with respect to the points
p, p1, . . . , pn) with stop in the chamber U of Dt described above. This is the open (affine) cone
based at p determined by w1 and w2. We establish the following lemma regarding tropical
discs with multiple unbounded edges entirely outside of a closed half plane (which will, in
our uses, contain the chamber U).

Lemma 3.5. Consider generic points p, p1, . . . , pn, all lying outside an open half plane H,
and h a generalized Maslov index 2 tropical disc with stop outside H. Then each connected
component of h−1(H) can contain at most one unbounded edge of T .

Intuitively, this says that, to get from one unbounded edge contained in H to any other,
our path must leave H.

Proof. Since our points p, p1, . . . , pn are generic, our moduli space of generalized Maslov
index 2 tropical discs with a given stop must be finite. It thus suffices to show that, given
any generalized Maslov index 2 disc h, if a connected component of h−1(H) has multiple
unbounded edges with image contained entirely in H, then h lies in a positive dimensional
family of tropical discs with the same stop and marked point constraints.

Choose a connected component of h−1(H). We obtain a new object h′ : T ′ → MR by
removing every edge and vertex of h that does not intersect our chosen component of h−1(H)
and modifying the map so that it maps the newly unbounded edges onto rays. By our
connectedness assumption, T ′ a tree. This new object h′ is like a tropical curve with all
vertices contained in H, except its unbounded edges that are not contained in H may be in
non-toric directions, since their directions may have been inherited from bounded edges of h.
This can be understood as a tropical curve of degree ∆ in some toric blowup of Y . We let
q1, . . . , qm be points in the complement of H lying on unbounded edges of h′. Let M be the
moduli space of these tropical curves of degree ∆ with image covering all points q1, . . . , qm.
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Note that each such tropical curve has m + ` unbounded edges. By a standard argument,
we find that the dimension of each connected component of M is ` − 1. This then gives us
an `− 1 dimensional family of generalized Maslov index 2 discs relative to the original point
constraints. Since ` in the case of h′ is precisely the number of unbounded edges with image
entirely contained in H, we have the desired result. �

Assume h has some edge e with p lying on h(e), and let v(e) be the primitive vector tangent
to h(e) pointing away from the vertex that comes “before” e as one moves outward from the
stop. We consider two cases, depending on whether or not v(e) is in the closed cone generated
by w1 and w2.

If v(e) lies outside this closed cone, we will see that e must be an unbounded edge. Writing
v(e) = bw1 + cw2, we have that either b < 0 or c < 0, and we will assume without loss of
generality that c < 0. We then assume that e is bounded, so v(e) is pointing toward another
vertex, which lies inside the open half plane H of points p + a1w1 + a2w2 with a2 < 0. We
will derive a contradiction, and conclude that e must be unbounded.

Since we have this vertex lying in H, we must have at least one unbounded edge lying
entirely in H. Noting that the complement of H contains all of our marked points, by
Lemma 3.5 we get that any path along the disc from one unbounded edge lying entirely in H
to another must leave H. Let e′ be the unbounded edge contained in H that can be connected
to e by a path in the disc lying entirely in H, and let e1, . . . , em be all of the edges leaving H,
starting at e′. Next, let v(ei) be the primitive vector tangent to h(ei) pointing into H, and let
v(e′) be the primitive vector in the unbounded h(e′) direction. Letting w(ei) be the weight
of the edge ei, the vertex balancing condition gives that v(e′) =

∑m
i=1w(ei)v(ei). Here we

are using that e′ will have weight 1. Since each v(ei) has negative w2 coordinate, and m ≥ 2,
it follows that v(e′) has w2 coordinate less than or equal to −2. By Lemma 3.3, we have a
contradiction. Thus, e must be unbounded.

If instead v(e) lies inside the closed cone generated by w1 and w2, then we apply the
above reasoning to −v(e). This would show that e is unbounded, with −v(e) pointing in the
unbounded direction, which contradicts our definition of v(e). Thus, we can conclude that
v(e) cannot lie inside this closed cone, and we have only the previous case.

To recap, we have shown that e is unbounded, and that the vector v(e) pointing in the
unbounded direction does not lie in the closed cone generated by w1 and w2. Now, if v(e) is
not equal to either −w1 or −w2, we have v(e) = bw1 + cw2 with (without loss of generality)
b < 0 and c > 0. This uses the fact that the 1-cones corresponding to w1 and w2 are
adjacent. We can then apply the above reasoning again with −v(e) and the open half plane
with negative w2 coordinate to derive a contradiction. Thus, we have that v(e) equals either
−w1 or −w2.

Next, considering the unique vertex adjacent to e, we see that the image of the vertex lies
on the ray in the wi direction (for some i) starting at p. One of the two other edges adjacent
to this vertex must have image lying out of the open cone based at p and spanned by w1, w2.
Applying the above argument again gives that this edge must be unbounded. Combining all
of these observations with Lemma 3.4 gives the following lemma.

Lemma 3.6. Let Y , w1, and w2 be as above. Let p, p1, . . . , pn be point constraints positioned
as above, so that p1, . . . , pn all lie in the exhausting chamber of the scattering diagram deter-
mined by the point p− t(w1 + w2) for large t. Let h be a tropical disc in Y with generalized
Maslov index 2 with respect to the point constraints p, p1, . . . , pn, and assume there is some
edge e of h with h(e) containing p. Then e is unbounded, with its outward primitive tangent
vector equal −wi for i equal to 1 or 2, and one of the two edges sharing a vertex with e is
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also unbounded, with outward pointing primitive tangent vector having negative wj component
(j 6= i). The third edge e′ adjacent to this vertex must then have weight 1, and the primitive
vector v(e′) tangent to h(e′) and pointing toward the vertex is either the vector −w1 −w2 or
the negative of a primitive vector belonging to a 1-cone of the toric fan of Y .

This lemma allows us to completely describe the generalized Maslov index 2 discs in Y
with respect to the point constraints p, p1, . . . , pn in terms of the generalized Maslov index
2 discs in Ỹ with respect to the point constraints p1, . . . , pn. Every such tropical disc in Y
through the point p can be “clipped” by removing the (unbounded) edge through p and its
neighboring vertex, and extending the only surviving edge (now unbounded) to infinity.

We now describe a procedure for obtaining the superpotential on Ỹ from the superpotential
on Y using a single point constraint p. Let U be our chamber of interest, as before, and let
WY be the superpotential for Y . Since Y is toric semi-Fano, Chan-Lau [7] tells us that WY

has a term avz
v for each primitive vector v in a toric direction, where av is 1 if the toric

divisor corresponding to v has self intersection not equal to −2, and is otherwise determined
in the following way: Let mv be the (total) number of consecutive −2 toric divisors in the
run of consecutive −2 toric divisors containing the divisor corresponding to v, and let `v be
the position of the divisor corresponding to v within this run (counting from either end).
Then, in the terminology of Chan-Lau, av is equal to the number of admissible sequences
with center `v of length at most mv. Numerically, we have av =

(
mv+1
`v

)
.

Let h be a generalized Maslov index 2 disc in Y with respect to our single point constraint
p with stop in U . We will assign this disc a weight w(h). If h does not go through p, then it
consists of a single ray in a toric direction v of Y . In this case, we let w(h) be the coefficient of
zv in WY . If h does go through p, then by Lemma 3.6, h consists of three edges, one adjacent
to the stop and the other two unbounded. The edge through p has outward pointing primitive
tangent vector −wi. Let −v be the other outward pointing primitive tangent vector to the
other unbounded edge. Then the primitive tangent vector on the compact edge adjacent to
the stop, pointing toward the stop, is wi + v. We let w(h) be the product of the coefficient
of zwi (which is 1) and the coefficient of zv (which may not be 1).

Letting v(h) be the primitive vector tangent to the edge adjacent to the stop, pointing

toward the stop, we claim that WỸ =
∑

hw(h)zv(h). If h has no vertices, then w(h) =(mv(h)+1

`v(h)

)
. If h has a single vertex, then w(h) =

(mv(h)+1

`v(h)+1

)
, where here we choose `v(h) so

that the divisor adjacent to wi is in position 1. Here we are using Lemma 3.4 and the last
observation in the proof of Lemma 3.3 to find w(h). The coefficient of zv(h) is then precisely(mv(h)+2

`v(h)+1

)
, as desired.

Finally, let Y be a toric Fano surface and consider a sequence Ỹn → · · · → Ỹ1 → Y of toric
blowups, such that each Ỹj is semi-Fano. Using the above procedure, we can relate the su-

perpotential on Ỹn to the bulk-deformed superpotential on Y corresponding to appropriately
chosen marked points.

Let w′i now denote the primitive vector lying in the 1-cone of the toric fan of Ỹi that

does not appear in the fan of Ỹi−1 (this corresponds to the ith blowup of Y ). Let Di be

the scattering diagram associated with the single point pi and Ỹi. This has a ray in the v
direction for each primitive vector v in a 1-cone of the fan of Ỹi. Letting the point pi tend
to infinity in the −w′i direction, we get one chamber Ui exhausting MR. Position the points
p1, . . . , pn such that the chamber Ui contains all points pj with j > i. We claim that the
bulk-deformed superpotential on Y at a point in

⋂n
i=1 Ui is equal to the superpotential on

Ỹn.
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This follows inductively from our above procedure involving single blowups. Since Y is
Fano, the above procedure gives us that the superpotential for Ỹ1 equals the bulk-deformed
superpotential on Y in U1 with the point p1. Considering now the point p2 in the chamber
U1, the above procedure gives us the superpotential on Ỹ2 using the superpotential on Ỹ1

and a weighted count of generalized Maslov index 2 tropical discs with respect to p2. This
weighted count corresponds exactly to the number of ways of modifying such a tropical disc
by “unclipping” (replacing an unbounded edge by a generalized Maslov index 2 tropical disc
with stop on that edge) to get a generalized Maslov index 2 tropical disc with respect to p1

and p2, so the bulk-deformed superpotential on Y with the points p1 and p2 in the region
U1 ∩ U2 agrees with the superpotential on Ỹ2. Inducting gives the desired general result,
repeated here:

Theorem 3.7. Let Y be a toric Fano surface, and let Ỹn → · · · → Ỹ1 → Y be a sequence
of toric blowups, such that each Ỹi is semi-Fano. Let p1, . . . , pn be points in MR arranged
as described above, and let U1, . . . , Un be the open cones with vertex at those points described
above. The bulk-deformed superpotential for Y in the chamber

⋂n
i=1 Ui with respect to these

points is equal to the superpotential for Ỹn.

4. SYZ fibrations on Log Calabi-Yau Surfaces and wall-crossing

In this section, we construct a special Lagrangian torus fibration on Y \D for a log Calabi-
Yau surfaces (Y,D), and prove that the fibration satisfies conditions in Theorem 2.16 away
from singular fibres. Main difficulty lies in the noncompleteness of Y \ D as it may spoil
the compactness of relevant disc moduli spaces. This occurs because on Y \ D, we use the
restricted symplectic form (or the associated metric) from Y . Once we have the compactness
of the moduli spaces, the fibration will automatically produce a scattering diagram well-
defined away from neighborhoods of singular fibres, which is one of the main subject of the
paper. It will be discussed thoroughly in Section 5.

4.1. Construction of a SYZ fibration on non-toric blowup. Let us first look into the
toric surface Ȳ and its non-toric blowup Ỹ → Ȳ . We will equip Ȳ with a Kähler form ω̄
which is invariant under the T 2-action.

In general, for given a T 2-action on Ȳ compatible with the complex structure and a Kähler
class, we can take any Kähler form, say ω̄0, in the class, and average it with respect to the
T 2-action. This leads to the T 2-invariant Kähler form ω̄ on Ȳ that belongs to the Kähler
class we began with. Since the first Betti number of Ȳ vanish, the T 2-action is Hamiltonian.
It is worth mentioning that for the fixed T 2-action on Ȳ , the base of the moment map
fibration (with respect to the Kähler forms in different Kähler classes) with the complex
affine coordinates are canonically isomorphic.

Let {qi ∈ D̄σ(i)}i ⊂ Ȳ be the blowup center for Ỹ → Ȳ . Namely, Ỹ is obtained by taking a

simple blowup at each qi. We denote by Ei := π−1(qi) the exceptional divisor associated with
qi. Notice that we changed the notation from 2.3 for simplicity. qi and Ei were previously
written in the form of qij and Eij indicating they are attached to the toric divisor indexed by

j = σ(i). We will first construct a particular Kähler form ω̃ε on Ỹ from the torus-invariant
Kähler form ω̄ downstairs.

Lemma 4.1. Given ε > 0, there exists a Kähler form ω̃ε on Ỹ and a pair of neighborhoods
Ũi ⊆ Ũ ′i of Ei with Ũ ′i ∩ Ũ ′j = ∅ for i 6= j that satisfy the followings.

(1) ω̃ε = π∗ω outside ∪iŨi;
(2) Symplectic areas of exceptional divisors with respect to ω̃ε sum up to ε.
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(3) For each qi ∈ D̄σ(i), the sub-toric S1-action that fixes D̄σ(i) locally lifts to Ũ ′i ⊆ Ỹ .

(In particular, Ũ ′i is S1-invariant.)

Moreover, we have Ũ ′i ↘ {qi} as ε→ 0.

Proof. Set pi := p(qi) ∈ ∂P where p : Ȳ → P is the moment map. Let Vi ⊆ P be a small
neighborhood of pi such that Vi ∩ Vj = ∅ if pi 6= pj . Consider the subgroup S1 ⊆ T 2 fixing

D̄σ(i). If we write the toric action locally as (eiθ1 , eiθ2) · (x, y) = (eiθ1x, eiθ2y) for some local

coordinates (x, y) near qi with D̄σ(i) = {y = 0}, then the mentioned S1-action is given by

(x, y) 7→ (x, eiθy). Let us choose S1-invariant neighborhoods Ui and U ′i of qi such that Ui (
U ′i ⊆ p−1(Vi). We have U ′i ∩U ′j = ∅ for i 6= j. We finally take Ũi := π−1(Ui) ( Ũ ′i := π−1(U ′i)
as neighborhoods of the exceptional divisor Ei.

Since U ′i ’s are mutually disjoint, the local S1-action lifts to Ũ ′i by the universal property

of blowup, which we denote by aθ : Ũ ′i → Ũ ′i . Observe that the complement of ∪iŨi in Ỹ
admits a T 2-action lifted from the toric action on Ȳ . The local S1-action can be identified
with the corresponding factor of this T 2-action away from Ei, in particular, on Ũ ′i \ Ũi.

It is a standard fact that there exists a Kähler metric ω̃ on Ỹ which coincides with π∗ω̄
outside Ũi (see, for e.g., [20, p. 185]). Since ω̄ is invariant under the toric action, so is ω̃|Ỹ \∪Ũ ′i
under the lifted T 2-action on Ỹ \ ∪Ũ ′i . On the other hand, one can average ω̃|Ũ ′i by the local

S1-action with respect to the Harr measure dµ(θ) on S1. This produces an S1-invariant local

Kähler form ω̃i =
∫
S1 a

∗
θω̃ dµ(θ)∫

S1 dµ(θ)
on Ũ ′i . Notice that the local form ω̃i agrees with the global

form ω̃ on the overlapped region Ũ ′i \ Ũi by T 2-invariance of ω̃.

We conclude that there exists a Kähler form on Ỹ which equals ω̃ = π∗ω on the complement
of ∪iŨi and restricts to ω̃i on Ũ ′i . Repeating the same procedure for all qi’s, we obtain a global

Kähler form, say ω̃ε, on Ỹ which certainly satisfies the conditions (1) and (3) in the statement.
The condition (2) can be easily achieved by adjusting the size of the Kähler potential for ω̃|Ũi .

�

Remark 4.2. We remark that the local S1-action on Ũi above is Hamiltonian, since it is
symplectic (preserving ω̃ε) and the first Betti number of Ũi vanishes. Also, the S1-action can
actually be defined on a larger region away from ∪j 6=iEj, as it is induced from the toric action

on Ȳ which lifts to Ỹ \∪iŨ ′i . In particular, we can find a moment map µS1 : (π◦p)−1(Vi)→ R
for this action.

With a Kähler form ω̃ε on Ỹ constructed in the lemma and the meromorphic volume form
Ω̃ on Ỹ having simple pole along D̃, we adapt the constructions in [2, 19] into our setting in

order to obtain an almost special Lagrangian fibration on X̃ = Ỹ \ D̃.

Lemma 4.3. There exists a Lagrangian fibration X̃ → B with respect to ω̃ε such that

(1) the fibration coincides with the pull-back of toric fibration on X̄ outside (π ◦ p)−1(Vi);

(2) Im Ω̃|L̃ = 0 for any Lagrangian torus fibre L̃ after a suitable normalization of the
phase;

(3) all the singular Lagrangian torus fibres are immersed S2, which are in one-to-one
correspondence with blowup points {qi}.

Proof. As in the proof of Lemma 4.1, let us take local coordinates (x, y) around qi such that
the toric divisor Dσ(i) (that contains qi) is locally given by {y = 0}, and the toric action

trivializes as (x, y) 7→ (eiθ1x, eiθ2y). We normalize the moment map µS1 : (π ◦ p)−1(Vi)→ R
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in Remark 4.2 so that it vanishes on the proper transform of the x-axis, and µS1 = εi < ε at
the isolated S1-fixed point in Ei.

Notice that {|x| = const.} projects to a circle in the S1-reduction which is automatically
a Lagrangian by the dimension reason. Therefore [19, Theorem 1.2] applies to produce a
Lagrangian fibration

(4.1) (π ◦ p)−1(Vi)→ R2 z 7→ (|x(π(z))|, µS1(z))

with respect to ω̃ε on Ũi, where x(π(z)) denotes the x-coordinate of π(z). Since ω̃ε = π∗ω,
the fibration coincides with the pull-back of the moment map fibration from X̄ outside of
(π ◦ p)−1((π ◦ p)(Ũi)). Therefore, the fibration above can be glued with the pull-back of the
moment fibration of X̄ → IntP . Instead of using explicit coordinates as in (4.1), one may
take a splitting of T 2 (giving the toric action on Ȳ ) into the product of the stabilizer of Dσ(i)

and its complementary circle, and replace |x(π(z))| by the pull-back of the moment map for
the latter factor. This way, one can identify the target of the fibration (4.1) coherently with
the Lie algebra of T 2 for every i.

To see the second part of the lemma, we first show that Ω̃ is invariant under the S1-action
in a neighborhood of the proper transform of D̄σ(i). Since Ω̃ = π∗Ω̄ outside of (π ◦ p)−1(Vi)

and Ω̄ is torus-invariant, Ω̃ is S1-invariant outside (π ◦ p)−1(Vi). Together with the fact
that the S1-action is holomorphic (i.e., it preserves the complex structure), this implies that

the holomorphic (2, 0)-form a∗θΩ̃ on (π ◦ p)−1(Vi) can be extended as a nowhere vanishing

holomorphic (2, 0)-form on the entire X̃, which we still denote by a∗θΩ̃. Then the ratio Ω̃/a∗θΩ̃

is a holomorphic function on X̃ which is 1 on an open set, and we conclude that a∗θΩ̃ = Ω̃ by
maximum principle. Then (2) of the lemma again follows from [19, Theorem 1.2].

Finally, the fibre of (4.1) over (r, λ) ∈ R2 is singular if and only (r, λ) = (|ai|, εi) where
εi =

∫
Ei
ω̃ε and ai = x(qi). It has nodal singularities only, and hence the fibre can be at worst

immersed. The singular point of the Lagrangian fibration happens at the isolated fixed point
of the S1-action, and hence is one-to-one corresponding to qi.

�

Away from a neighborhood of the discriminant, the base B of the Lagrangian fibration
constructed in Lemma 4.3 admits the affine structure which can be described as follows. Let
us first identify the interior of the polytope IntP with MRR2 via the Legendre transform so
that the complex affine coordinates from the toric fibration p : X̄ → IntP agrees with the
standard coordinates on R2. Recall that the Lagrangian fibration on X̃ = Ỹ \ D̃ in Lemma
4.3 is the pull-back of the moment fibration of X away from neighborhoods (π◦p)−1(

⋃
i Vi) of

the exceptional divisors. Hence one can consider the pull-back of the complex affine structure
on a subset B′ of B which is diffeomorphic to R2 \

⋃
i Vi, and we may still call it the complex

affine structure.

Lemma 4.4. Let L be a moment fibre in Ȳ , and fix π−1(L) as a reference fibre for the
complex affine structure (so that it sits over the origin). Given any C > 0, there exists ε > 0
such that the affine coordinate x∂γi > C of the singular fibre corresponds to qi, if εi < ε.

Proof. This is because the fibration constructed in Lemma 4.3 coincides with the pull-back
of the moment fibration outside of (π ◦ p)−1(

⋃
i Vi). The holomorphic volume form Ω̄ near

the interior of the boundary divisor component {x = 0} (in some local coordinates) is of
the form f dxx ∧ dy, where f is a non-zero function. On the other hand, recall that the

complex affine coordinates are given by x∂γi =
∫
C∂γi

ImΩ̃ where C∂γi is the 2-chain swept by

the cycle ∂γi ∈ H1(L), starting from L and moving toward the singular fibre corresponding
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to qi. As εi → 0, one of the boundary components of C∂γi approaches x = 0, and hence∫
C∂γi

ImΩ̄→∞. �

In particular, as ε approaches 0, one can take Vi in the construction arbitrarily small so
that B′ ∼= (R2 \

⋃
i Vi)↗ R2 as ε→ 0. When needing to emphasize this dependence of B′ on

ε, we will write Bε instead of B′ in what follows.

4.2. Holomorphic discs in non-toric blowups. We now look into holomorphic discs
bounding a fibre L̃ of the fibration Lemma 4.3, when L̃ is away from (π ◦ p)−1(

⋃
i Vi). Since

we are using the standard (toric) complex structure on Ȳ and the one on Ỹ naturally induced

through the blowup process, π : Ỹ → Ȳ is holomorphic. This enables us to establish the
following one-to-one correspondence between the holomorphic discs bounding by L and L̃. If
f : (D2, ∂D2)→ (Ȳ , L) is a holomorphic map, then its proper transform gives a holomorphic

map f̃ : (D2, ∂D2) → (Ỹ , L̃). On the other hand, if f̃ : (D2, ∂D2) → (Ỹ , L̃) is holomorphic,

then composition with π gives a holomorphic map f = π ◦ f̃ : (D2, ∂D2) → (Ȳ , L). See [53]
for related discussions.

Suppose that the disc f̃ : (D2, ∂D2) → (Ỹ , L̃) has Maslov index zero. This happens if

and only if Im(f̃) ∩ D̃ = ∅. Then its projection f can only intersect D at qi for some i. If

|Im(f̃) ∩ D̃| = l, then Im(f) passes l-many point-constraints in D counted with multiplicity,
and its Maslov index is given by 2l. With these point-constraints being regarded as bulk-
insertions, f has generalized Maslov index 0. More generally, the same argument shows that
the Maslov index of f̃ is the same as the generalized Maslov index of f allowing multiple
insertions of qi. To sum up, we have the following lemma.

Lemma 4.5. There exists a bijective correspondence between the Maslov index µ holomorphic
discs for (X̃, L̃) and the generalized Maslov index µ holomorphic discs for (X,L) viewing qi
as bulk insertions. In particular, Lu bounds a generalized Maslov index zero disc if and only
if L̃u bounds for a Maslov index zero disc.

The following corollary is a direct consequence of (2) of Lemma 4.3, since fibres in X̃ are

special with respect to Ω̃ ((2) of Lemma 4.3). Alternatively, one can use the above lemma
combined with the fact that walls for the bulk-deformed potential limit to straight lines as
point-constraints approach the toric divisor, whose proof is elementary.

Corollary 4.6. If L̃t ⊆ X̃ is a family of torus fibre over B′ bounding holomorphic discs of
Maslov index zero in a fixed relative class, then L̃t sit over an affine line in B′.

Notice that the statement holds only for genuine holomorphic discs, but not for stable
maps having nontrivial bubbled-off components that may appear in the compactification Ỹ ,
especially when there exists holomorphic spheres with negative Chern numbers. We can get
rid of such contributions simply by restricting ourselves to the open part (X̃, ω̃ε), but the
price to pay is that the compactness of the disc moduli is not automatically guaranteed,
which we discuss now.

4.2.1. Compactness of the disc moduli for X̃. In order to make sense of Floer theory for
Lagrangian fibre L̃ in X̃, one needs to separately show the compactness of the corresponding
disc moduli spaces since X̃ is non-compact and the metric is incomplete. Once we have the
compactness, Theorem 2.16 automatically produces a scattering diagram DLF

ε on Bε. We
will see later that it converges to a limiting scattering diagram as ε approaches 0.
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Remark 4.7. One may construct a scattering diagram from the geometry of Ỹ instead, for
which Theorem 2.16 directly applies. However, there can be a lot more Maslov index zero
discs due to negative Chern number spheres in D̃ and, none of existing techniques in Floer
theory seem allowing us to explicitly compute such contributions.

Lemma 4.8. Let L̃ := π−1(L) be a torus fibre in X̃ which is a pre-image of a moment map

fibre in X. Then the moduli space M(X̃, L̃, β̃; J) of holomorphic discs of class β̃ ∈ π2(X̃, L̃)

is compact for any β̃.

Throughout (as well as in the statement), J denotes the standard complex structure unless
specified otherwise, and by abuse of notation, it will also stand for that on X̄. We remark
that the proof heavily relies on the usage of the standard complex structure.

Proof. Recall from Lemma 4.5 that the set of Maslov index zero discs f̃ : (D2, ∂D2) →
(X̃, L̃) is in one-to-one correspondence with that of generalized Maslov index zero discs f̄ :
(D2, ∂D2) → (Ȳ , L̄). We denote by M′′, the subspace of M(Ȳ , L, β; J) consisting of such

discs f̄ . Hence, the moduli space of stable discs M(X̃, L̃, β̃; J) is homeomorphic to M′′.
Notice that M′′ does not contain stable maps with sphere-bubble components.

We show thatM′′ is compact in the following. Let Σ′ be a refinement of Σ by adding R≤0v
for each 1-cone R≥0v of Σ. Let Y ′ be the toric (orbi-)surface associated Σ′, and π′ : Y ′ → Ȳ
the birational modification on the boundary corresponding to the refinement of the fan. Then
the (C∗)2-action on Ȳ lifts to Y ′ by the universal property of blowups. In particular, the
Hamiltonian T 2-action lifts to Y ′, and hence is again Hamiltonian since H1(Y ′) = 0. In other
words, the moment maps of Y ′ and Ȳ are compatible, and one can naturally identifies the
interior of the moment polytopes P ′ and that of P .

Take u ∈ R2 over which the fibre L̄ sits, where we identify both IntP and IntP ′ with R2 via
the Legendre transform. Up to a (C∗)2-action, we may assume that u = (0, 0) ∈ R2 ∼= IntP .
Consider a holomorphic disc f̄ : (D2, ∂D2) → (Ȳ , L̄) which lies in M′′. Recall from the
discussion in Section 3.1 that with help of the anti-holomorphic involution σ on X̄(∼= (C∗)2),
one can double f̄ into a unique rational curve Cf̄ in Y ′ containing Imf̄ . We denote its proper

transform in Y ′ by C ′
f̄
.

Observe that the involution σ acting on (C∗)2 ⊆ Y ′ extends to the whole Y ′ due to its
symmetry. Then C ′

f̄
is a rational curve in Y ′ whose intersection with the toric boundary

divisors can occur only at q′i and σ(q′i), where q′i = π′−1(qi). It is shown in [25, Lemma 4.2]
that the moduli space rational curves in Y ′ of a fixed homology class which can intersect
the toric boundary only at prescribed non-toric points is compact and has no sphere bubble.
This moduli space admits an induced action of σ, and the fixed loci of the action precisely
consists of the proper transform C ′

f̄
for some f̄ . Therefore, M′′ can be identified with the

fixed loci, and hence is compact. �

Corollary 4.9. There exists a consistent scattering diagram DLF
ε on Bε whose walls consist

of Lagrangian fibres that bound Maslov 0 discs (or, more precisely, their corresponding open
Gromov-Witten invariants are nonzero).

4.2.2. Computing wall-crossing transformations. Lemma 4.8 enables us to apply Theorem
2.16 to the Lagrangian fibration X̃ with small neighborhoods of singular fibres being removed.
It results in a scattering diagram, whose “initial rays” are originated from these singular fibres.
Here, the initial rays refer to the ones induced by Maslov 0 discs emanating from these singular
fibres, and we often call these discs initial (Maslov 0) discs for this reason. We warn readers
that a priori there may exist more Maslov 0 discs coming out from neighborhoods of the
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singular fibres since we did not established the compactness of the disc moduli spaces for
fibres near the singular fibres and the Floer theory cannot apply directly. Later we will see
that one can use Lemma 3.2 to exclude such possibility.

Consider a Lagrangian torus fibre L̃ ⊆ (π◦p)−1(Vi) in a neighborhood of the singular fibre.

In terms of local coordinates (x, y) around the blowup point qi = (ai, 0) as in (4.1), L̃ bounds
Maslov 0 discs if and only if it sits over |x◦π| = |ai|. For later use, we write γ for the relative
class of the contributing Maslov 0 disc, which are portions of (the proper transform of) the
parallel to y-axis. We are interested in those lying above the singular fibre (i.e., µS1 > εi),
since we are considering the case when the location of the singular fibre is arbitrarily close
to the divisor y = 0 (i.e., εi → 0). Let us denote the corresponding ray (wall) by li, i.e., in
local coordinates,

(4.2) li = {(r, λ) | r = |x ◦ π| = |ai|, λ > εi}.

Notice that li forms a ray starting from (the image of) qi, whose direction is normal to the
toric divisor that qi. Hence, {li} and the initial rays(walls) in Section 2.3 coincide with each
other, after identifying the interior of the polytope IntP with R2 via the Legendre transform.

We show that {li} coupled with wall functions from Floer theory agrees with the initial
scattering diagram DGPS

in in Section 2.3. Let us compute the wall-crossing transformation
associated with the wall li. Our strategy is to first symplectically embed the neighborhood
of the singular fibre (π ◦ p)−1(Vi \ ∂P )) into a simpler local model in [2, Example 3.1.2], the

blowup C̃2 of C2 at a generic point in the x-axis. It is crucial to have a S1-invariant Kähler
from on this region for this purpose. Our actual geometric situation is possibly different from
this local model, in that the divisor containing qi may serve as a nontrivial sphere bubble
in disc counting. However, this does not affect the Fukaya’s trick across the wall li by the
topological reason, as li is located on the opposite side of the divisor with respect to the
singular fibre. Therefore the wall-crossing for li should agree with that for the corresponding
wall in [2, Example 3.1.2].

The advantage of the latter is that one can detect the wall-crossing via the change of
superpotentials whose computation is simpler. A similar idea was used in [55]. One may
regard the local coordinates (x, y) above as coordinates on C2. By abuse of notation, let γ

denote the relative class in π2(C̃2, L̃) of the proper transform of the basic disc intersecting
x-axis once. Similarly, we denote by δ the relative disc class of the one intersecting y-axis
once. Then ∂γ and ∂β form a basis of H1(L̃), and we can take z∂γ and z∂δ as variables for
the superpotential. It is not difficult to see that the wall-crossing transformation going across
li can be written in the form of

(4.3) (z∂γ , z∂δ) 7→ (z∂γ , z∂δ(1 + f(z))).

The first component is the identity map since ∂γ does not intersect the boundary of the
Maslov zero disc at all, and hence contributes trivially to the pseudo-isotopy, and the second
follows from Theorem 2.15. On the other hand, the explicit calculation in [2] shows that the

superpotential for L̃ with |x ◦ π| < ai is given by

Tω(γ)z∂γ + Tω(δ)z∂δ

whereas L̃ with |x ◦ π| > ai has

Tω(γ)z∂γ + Tω(δ)z∂δ + Tω(γ+δ)z∂γz∂δ.
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By (1) of Lemma 2.14, the two should be compatible with the coordinate transition (4.3).
Therefore we have

Tω(γ)z∂γ + Tω(δ)z∂δ(1 + f(z)) = Tω(γ)z∂γ + Tω(δ)z∂δ + Tω(γ+δ)z∂γz∂δ,

which leads to f(z) = Tω(γ)z∂γ . Thus we have shown

Lemma 4.10. Suppose Ỹ is a non-toric blowup of a toric surface Ȳ , and a point qi in the
blowup center lies in the irreducible toric divisor Dσ(i). Let li be the wall associated to qi (see

(4.2)) for the Lagrangian fibration on Ỹ constructed in Lemma 4.3. Then its wall-function

is given by 1 + Tω(γ)z∂γ where γ is the relative class of the proper transformation of the
holomorphic disc in Ȳ intersecting Dσ(j) exactly once.

A direct consequence is that {li} together with the wall functions (of the form 1 + f(z))
calculated above forms the (initial) scattering diagram DGPS

in in Section 2.3.

4.3. Orbifold blowups and Floer theory. Although we will be only concerned with the
case of simple blowups in the later part of the article, we believe that majority of our result
can extend to blowups with higher multiplicities (orbifold blowups) provided Fukaya’s trick
in the orbifold setting. Here, we briefly examine the wall-crossing in Floer theory on some
standard local model for such a blowup.

Recall from 2.3.2 that a non-toric blowup with a higher multiplicity results in the nontrivial
exponents in the wall functions attached to the corresponding wall in DGPS . It creates an
orbifold singularity in the total space, and the Maslov zero disc responsible for the wall-
crossing passes through this singular point. Hence it is natural to consider the orbifold Floer
theory of the Lagrangian torus fibres sitting over the wall. Let us examine this in a local
model which will turn out to be given as the global quotient orbifold.

We begin with C2 with coordinates (x, y) (equipped with the standard toric structure). As
the blowup we are interested in is non-toric, let us take a nonreduced scheme supported at
the point (1, 0), that is, the subscheme corresponding to the ideal generated by (x− 1)r and
y. (r corresponds to rij − 1 in 2.3.2.) The blowup will produce an orbifold projective line
Er with exactly one orbifold singular point of order r. It admits a homogeneous coordinate
[a : b] where [a : b] = [ρa : ρrb] for ρ ∈ C×. Now, the blowup can be identified as a subspace
of C2 × Er given as

Ỹr,loc = {((x, y), [a : b]) ∈ C2 × Er : (x− 1)rb = yar}.

Like in the case of ordinary (non-toric) blowup, Ỹr,loc admits a S1-action. The action has

exactly one isolated fixed point ((1, 0), [0 : 1]). ((1, 0), [0 : 1]), away from which Ỹr,loc is
smooth. It also fixes the proper transform of x-axis, {((x, y), [a : b]) : b = 0}. We denote its

complement in Ỹr,loc by W̃r,loc. This is isomorphic to the affine variety

{(x, y, ã) : xr = ãy} ∼= C2/Zr
via ã = ar

b , under which the point ((1, 0), [0 : 1]) in W̃r,loc maps to the (unique) orbifold
singular point of order r. In fact, there exists a (global) quotient map

W̃1,loc → W̃r,loc ((x, y), [a : b])→ ((x, yr), [a : br])

from the local model for the ordinary non-toric blowup, which is nothing but the quotient
map C2 → C2/Zr by the identification above.

Notice that the quotient map sends a torus fibre L1,u in W̃1,loc to the torus fibre Lr,u.
Restricting to the individual torus fibre, the quotient map gives a r-fold cover, where the
loop |y| = const. in L1,u wraps the loop |y| = const in Lr,u r-times through the covering, yet
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the complementary loop |x| = const. maps isomorphically |x| = const. in Lr,u. On the local

model W̃r,loc, Floer theory of its torus fibres can be completely understood by Zr-invariant

part of Floer theory of their liftings in W̃1,loc, which has already been discussed in Section
4.2 in detail. For our purpose, we fist need to inspect the effect of the group action on the
Maurer-Cartan space of the upstair torus fibre L1,u. Let ex and ey denote the standard

generator of H1(L1,u;Z), i.e.,
∫
|i|=const. ej = δij (i, j ∈ {x, y}).

Since the action rotates the loop |y| = const. by 2π/r, the generator of the first (integral)

cohomology of the torus fibre down stairs can be identified with ex = ex and ey = 1
rey (so

that ey integrates over |y| = const. to give 1). A general element of H1(Lr,u;R) is then a
linear combination x1ex + x2ey = x1ex + (x2/r)ey. Recall that the potential is written in

terms of the exponential coordinates zi = exp(xi), and the above discussion tells us that the
exponential coordinates (z1, z2) for L1,u and (z1, z2) for Lr,u are related by

z1 = z1, z2 = (z2)r.

On the other hand, we have computed in Lemma 4.10 the wall-crossing formula for the unique
wall {|x| = 1} in the standard local model W̃1,loc as

(4.4) (z1
′, z2

′) = (z1, z2(1 + Tω(γ)z1)),

where γ is the class of the Maslov index 0 disc responsible for the wall and where (z1, z2) and
(z1
′, z2

′) are the (exponential) coordinates on the Maurer-Cartan spaces of the torus fibres in

the chambers {|x| < 1} and {|x| > 1}, respectively. In perspective of Floer theory of W̃r,loc

yet without turning on the bulk insertions from twisted sectors, the formula (4.4) is still valid
if we write it in terms of coordinates (z1, z2), which amounts to taking Z/r-invariant part of
Floer operations upstairs. It leads to the following wall-crossing formula

(z′1, z
′
2) = (z1, z2(1 + Tω(γ)zr1)))

that is valid in the local model W̃r,loc whose Floer theory is taken as the Zr-invariant part

of that on W̃1,loc along the same spirit as [5]. The corresponding global statement should
immediately follow, once the orbifold analogue of the Fukaya’s trick is established (i.e., Lemma
2.14 in the orbifold setting). We remark that for our purpose, it does not require a full
package of the orbifold Floer theory in the sense that the bulk-deformation by nontrivial
twisted sectors is not at all involved.

4.4. Toric blowups. Assume that π′ : Ỹ → Y is a toric blowup, i.e. all of qi ∈ Y are located
at corners of D. When Y is a smooth toric surface, then so is Ỹ whose moment polytope is
obtained by chopping off the corresponding corner of the polytope. We set D̃ := π′−1(D),

which represents c1(X̃), and X̃ = Ỹ \ D̃,X = Y \D.

Since X̃ are X are biholomorphic, the holomorphic volume forms Ω and Ω̃ on X and
X̃ are related by Ω̃ = π′∗Ω. Any Kähler form ω̃ on X̃ naturally induces a Kähler form
ω′ = (π′−1)∗ω̃ on X.10 In particular, L ⊆ X is a Lagrangian with respect to ω′ if and only if

π′−1(L) ⊆ X̃ is a Lagrangian with respect to ω̃. However, ω′ does not necessarily extend to
the compactification Y . Nevertheless, we can use the following lemma to link Floer theory
on X and that on Y .

10Later, we will apply this to ω̃ = ω̃ε constructed in the previous subsection.
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Lemma 4.11. Assume that D supports an ample divisor.11 Given any ω′ on X as above,
there exists a sequence of Kähler form ωi on Y such that ωi = ω′ on Ui for some sequence
{Ui}i≥1 of relatively compact open subsets with Ui ↗ X.

Proof. Assume that D′ =
∑

j ajDj is an ample divisor with support on D for some aj ≥ 0.

Then by replacing D′ by lD′ +
∑

j:aj=0Dj , for l � 0, we may assume that aj > 0 for all j.

Then for k � 0,
∑

j kajDj is a very ample divisor and thus X is Stein.

Choose a Hermitial metric e−ψ
′′

of the line bundleOY (D′) such that the associate curvature
is a Kähler form ω′′. In particular, ω′′ is defined globally on Y . Since X is Stein and hence
the ∂∂̄-lemma holds, we have ω′|X = i∂∂̄ψ′ω′′|X = i∂∂̄ψ′′ for some smooth functions ψ′, ψ′′

on X. Take ωi = i∂∂̄ψ, where ψi = m̃ax(ψ′ + Ci, ψ
′′) is the regularized max function (see,

for instance, [10, Theorem 5.21]) and Ci ↗ ∞. One may take a regularized max function
ψi to be ψi = max{ψ′ + Ci, ψ

′′} if |(ψ′ + Ci) − ψ′′| > ε for some ε > 0. Thus, ωi = ω′ on
Ui := {ψ′i + Ci − ψ′′ > ε}. Since ψ′′ ∼ log |w| near D, where D = {w = 0} locally, we have
ψ′′ ↗∞ near D. Thus Ui is relatively compact, and i∂∂̄ψ = ω′′ is globally defined. Therefore
ωi is a globally defined Kähler form which coincides with ω′ on Ui.

�

5. Scattering diagrams and the Landau-Ginzburg mirrors of log Calabi-Yau
surfaces

Continuing the setting in the previous section, let (Y,D) be a Looijenga pair, and consider

its toric blowup (Ỹ , D̃). Recall from Corollary 4.9 that the special Lagrangian fibration on

Ỹ \ D̃ ∼= Y \D (Lemma 4.3) induces a consistent the scattering diagram DLF
ε on Bε, away

from ε-neighborhoods of the singular fibres of the fibration X̃ = Ỹ \ D̃ → R2. Yet, we do
not have a good control of rays emanating from these neighborhood, except that there are
canonical ones li induced by initial Maslov 0 discs from singular fibres. In this section we
show that DLF

ε behaves nicely as ε→ 0, and its limit agrees with DGPS in Section 2.3.
We also give an explicit calculations of the Landau-Ginzburg potential which counts Maslov

2 discs in Ỹ and Y bounding torus fibres under some nonnegativity assumption (the same
assumption of Section 4.4). This will be done by establishing the correspondence between
tropical and holomorphic discs. Interestingly, the same technique can apply to some non-Fano
examples to recover previous computation by Auroux [1] and [2] using tropical geometry.

5.1. DLF and DGPS. We now prove that DLF
ε |Bε′ coincides with DLF

ε′ for ε′ < ε, which

enables us to obtain a well-defined limiting scattering diagram DLF on R2 = limε→0Bε. Our
strategy is to compare DLF

ε with the known one DGPS given in Section 2.3 modulo a certain
energy level depending on ε. Then we proceed inductively as the energies (symplectic areas)
of contributing discs increase.

For later argument, we fix, once and for all, ui ∈ di for each initial ray in DGPS close enough
to infinity, and denote by d′i the part of the ray starting from ui with ω(γd) decreasing from
ui as it moves away to infinity. We also choose an open neighborhood Ki of for each d′i such
that Vi ∩ Vj = ∅ if i 6= j, and set K := ∪Ki. See Figure 3.

Lemma 5.1. In the above setting, choose two arbitrary points xi ∈ Ki and xj ∈ Kj with
i 6= j such that the affine line segment connecting xi and xj has a rational slope (Figure 3).
Then there exists ~ > 0, independent of the choice of xi and xj, such that the symplectic area
of the affine line segment is bounded below by ~.

11Under the same assumption, Gross-Hackiing-Keel proved that the mirror family is algebraic.
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Figure 3. The areas of affine line segments between Ki and Kj are bounded
below.

Here, the symplectic area of the affine line segment means that of the holomorphic cylinder
lying over the segment. Notice that the usage of the terminology is consistent with the way
we define the symplectic area of a tropical disc, see Section 2.1.

Proof. Notice that if the affine line segment connecting xi, xj has a rational slope, there

exists a holomorphic cylinder with boundaries on L̃xi and L̃xj , whose symplectic area equals
that of the line segment by definition. Hence, the lemma is a direct consequence of Gromov
compactness theorem. �

The key step in the induction on energy is the following statement, which roughly tells
us that any disc traveling through the complement of Bε should have a large enough energy
unless it is one of li’s.

Lemma 5.2. Given ε > 0, let DLF
ε denote the scattering diagram constructed from the

admissible Lagrangian fibration over Bε. There exists λ = λ(ε) > 0 and a convex (bounded)
region Bλ,ε ⊆ Bε such that a ray entering Bλ,ε other than li’s (induced by initial Maslov 0
discs) has symplectic area at least λ. Moreover, we have limε→0 λ =∞ and limε→0Bλ,ε = MR.

For the proof, we will use the following sub-lemma, which can be viewed as a tropical
analogue of Gromov compactness theorem.

Lemma 5.3. There exists a sequence {λn} of real numbers with limn→∞ λn = ∞ such that
for each n ∈ Z>0, λn gives a lower bound for the symplectic areas of tropical discs with n
non-root vertices whose unbounded edges are contained in the rays of DGPS

in and whose edge
adjacent to the root is contracted.

Proof. Since there are only finitely many initial rays and hence finitely many intersection
points among the initial rays, every tropical disc with exactly one non-root vertex has a
symplectic area lower bound, say λ1 > 0. Assume that the lemma holds for n ≤ k. Given a
tropical disc (h, T, w) with k+ 1 non-root vertices with symplectic area less than λ. Deleting
the edge adjacent to the root induces sub-tropical discs (hi, Ti, wi) with ki non-root vertices
such that

∑
i ki = k. Then by induction hypothesis, one has λ >

∑
λki , where we set λki = 0

for ki = 0.
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If there are at least two ki which are positive, then one has λ > λbk/2c+λ1. Otherwise, there
exists a sub-tropical disc (h1, T1, w1) with k non-root vertices. Let λ′ denote its symplectic
area. From the previous argument, one has λ′ > λb(k−1)/2c+λ1 when T1 has at least two sub-
tropical discs with positive numbers of non-root vertices. Otherwise, T \ T1 has a bounded
edge e both of whose end points are adjacent to unbounded edges. If both vertices of e lie in
K = ∪Ki (see Figure 3), the symplectic area of e is bounded below by ~ from Lemma 5.1. If
one of the vertices is not in K, then the adjacent unbounded edge of T has a symplectic area
lower bound which is independent of k. The complement of e and this unbounded edge in T
has at least k − 2 non-root vertices, and hence its area is bigger than λk−2. To summarize,
we have

λ > min{λb k−2
2
c + λ1, λk−2 + ~},

and one can take λk+1 to be slightly bigger than the quantity on the right hand side. Fur-
thermore, λn can be chosen so that {λn} is monotone increasing, since every tropical disc
with n non-root vertices contains a sub-tropical disc with n − 1 non-root vertices (possibly
with the edge adjacent to the root contracted). Therefore we have

λ2k > min{λk−1 + λ1, λ2k−2 + ~} > λk−1 + min{λ1, ~}.
In particular, the sequence {λn} is unbounded. �

proof of Lemma 5.2. Assume that there exists a ray d of DLF
ε passing through u ∈ ∂Bε. By

definition of the scattering diagram DLF
ε , there exists a holomorphic disc f̃ : (D2, ∂D2) →

(X̃, L̃u) of Maslov 0. Lemma 3.2 produces a tropical disc with stop at u whose edge adjacent
to u is parallel to d and whose unbounded edges are contained inside rays in DGPS

in (i.e. initial
rays of DGPS , see Section 2.3). We claim that there are only finitely many such tropical discs
(up to elongation of the edge adjacent to the root) if we further require their symplectic areas
to be less than a fixed number λ > 0. Once the claim is shown, one can simply take λ such
Bλ,ε to be a convex region in Bε containing all the vertices of such tropical discs. The last
part of the lemma holds because limε→0Bε = MR.

Lemma 5.3 tells us that for any tropical disc (h, T, w) with symplectic area less than a fixed
constant λ, the number of non-root vertices is bounded above by some N ∈ Z>0. Hence,
the claim will follow if we can prove that for each n ∈ Z>0, there are only finitely many
tropical discs with symplectic areas less than λ which has precisely n non-root vertices. We
use induction on n.

Let us first consider the case n = 1. Since all the unbounded edges are contained in finitely
many initial rays, there are only finitely many intersections among these initial rays. Initial
rays cut out at their common intersection points give tropical discs without non-root vertices
(whose roots lie at the intersection points), and their symplectic areas are bounded below,
say, by λ′ > 0, since there are only finitely many such. Observe that each unbounded edge
of a tropical disc with a single non-root vertex is precisely such a portion of an initial ray.
These unbounded edges may additionally carry nontrivial weights (the edge adjacent to the
root is automatically determined by these data, up to elongation), but the symplectic area
bound λ on the whole disc forces the sum of the weights to be bounded above, since each
unbounded edge contribute at least λ′ to the total area. Therefore, there are only finitely
many possible combinations between weights, as is desired for n = 1.

Suppose we know that there are only finitely many tropical discs with at most k non-root
vertices whose symplectic areas are less than λ, and consider tropical discs with k+1 non-root
vertices. Removing the edge adjacent to the root, one obtains sub-tropical discs (hi, Ti, wi)
with ki non-root vertices such that

∑
i ki = k. If there are at least two (hi, Ti, wi) which do
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not have any non-root vertices, then their intersection can only happen outside the region K
chosen before Lemma 5.1. Hence their symplectic areas are bounded below by some constant
~′. In particular, the weight of those edges are bounded by λ/~′ and thus there are finitely
many of such tropical discs.

Assume now that there is only one (hi, Ti, wi) without non-root vertices among the sub-
tropical discs. Then the other sub-tropical discs have at most k non-root vertices and sym-
plectic areas less than λ. From induction hypothesis, there are only finitely many such tropical
discs. Extending the edge adjacent to the root beyond the root if necessary, (union of) these
tropical discs intersect the initial rays at finitely many points. We see that (hi, Ti, 1) should
reach one of these points to form the original disc with k + 1 non-root vertices. Therefore,
there exists a lower bound ~′′ for the symplectic area of (hi, Ti, 1), independent of k. Again
the weight wi for the edge is bounded and thus there are finitely many tropical discs in this
case as well, which finishes the proof. �

We finally prove the main theorem of the paper, which provides a recipe to retrieve the
scattering diagram of Gross-Pandharipande-Siebert from Lagrangian Floer theory. Recall
that the fibration over B′ = Bε is obtained by removing neighborhoods of singular fibre from
the fibration constructed in Theorem 4.3. Since Bε is simply-connected by construction, the
fibration has no monodromy over Bε, and hence, the relative classes are well-defined up to
parallel transport along Bε.

Theorem 5.4. Given ε > 0, the scattering diagram DLF
ε defined in Corollary 4.9 coincides

with DGPS on Bλ,ε for ε� 1 up to contributions from discs with area> λ. In particular, one

can recover DGPS from Lagrangian Floer theory by

lim
ε→0

DLF
ε (mod T λ)|Bλ,ε = DGPS .

Proof. Let γi be the relative homology class of the disc associated with the blowup point qi in
Lemma 4.10, which can be represented as a holomorphic disc with boundary in a torus fibre
over Bε. It is easy to see that {[Ei]} (and {γi}) forms a linearly independent subset in the

cohomology. From Lemma 4.10 and the identification t−[Ei]zmσ(i) ↔ Tω(γi)z∂γi , each blowup
point qi contributes to the same initial ray to the scattering diagram of DLF

ε and DGPS . From
Lemma 5.2, the above are all the initial rays in the scattering diagrams DLF

ε (mod T λ)|Bλ,ε
and DGPS |Bλ,ε . Thus, we have

DLF
ε (mod T λ)|Bλ,ε = DGPS |Bλ,ε

for every λ, ε > 0 from Theorem 2.6, and this completes the proof since Bλ,ε ↗ R2. �

As a byproduct, we can verify the folklore conjecture

“the open Gromov-Witten invariants = the log Gromov-Witten invariants.”

in our geometric setup, by comparing the coefficients for the wall functions of the two scat-
tering diagrams in Theorem 5.4. Our argument passing to tropical geometry has a great
advantage that we can avoid the difficulty of comparing the virtual fundamental classes in
the algebraic and symplectic version of log Gromov-Witten invariants.

We can identify homology classes of the curves that the two invariants count in the following
way. To a given relative class γ of a disc in X̃, one can associate a homology class γ̄ ∈ H2(Ỹ ,Z)

as follows. Fix u0 ∈ Bε and choose a representative Cγ of γ ∈ H2(X̃, L̃u0). Let l be
an affine ray starting from u0 parallel to the direction defined by ∂γ (it moves away from
the disc γ). Let Cyc∂γ be a trivial S1-fibration over l with fibres in the class ∂γ. Since
[Cyc∂γ ∩Lu] = [Cγ ∩Lu] ∈ H1(Lu,Z), there exists C ′ in Lu homologous to Cγ ∪Cyc∂γ where
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both are thought of as non-compact 2-chains without boundary in X̃. The explicitly chosen
such a 2-chain has a one-point compactification in Ỹ as a 2-cycle, whose homology class will
be denoted by γ̄.

Corollary 5.5. Given a relative class γ, there exists a proper open set Uγ ⊆ Bε (for any
small enough ε) such that

(1) if Ω̃(γ;u) = 0 for all u ∈ Bε \ Uγ, then Nγ̄ = 0.

(2) if u ∈ Bε \ Uγ and Ω̃(γ;u) 6= 0, then Ω̃(γ;u) = Nγ̄.

Recall from Section 2.5.2 and Section 2.3 that Ω̃(γ;u) and Nγ̄ are the open Gromov-Witten
invariant and the log Gromov-Witten invariant, respectively.

Proof. The first part of the corollary is a direct consequence of Theorem 5.4 combined with
the discussion in Section 2.3.

To see the second part, notice that every ray in the scattering diagram has a correspond-
ing tropical curve. Thus, there are finitely many rays in DGPS with the wall functions in
C[[tγ̄ ]][[M ]] by Lemma 5.3. Projecting down γ by π : Ỹ → Ȳ , the intersection pairing of
π∗(γ) with each boundary component D̄i is determined. All the intersections of π∗(γ) with
D̄ occur at {q1, · · · , qm}, since µ(γ) = 0.

Moreover, the multiplicities and the positions of unbounded edges of the tropical discs
of relative class γ are determined topologically by γ̄. Indeed, the multiplicity pi of the
unbounded edge determined by qi can be calculated via the relation

γ̄ = π∗π∗(γ̄)−
∑
i

piEi.

Fix positions and multiplicities of all the edges of a tropical curve (say, in class γ̄), but
one unbounded edge. By balancing condition, the multiplicity and the direction of the last
unbounded edge is automatically determined. Actually the position of the last unbounded
edge is also determined by [42, Proposition 6.12] (see [34, Theorem 3.3.10], also). 12

Suppose the edge adjacent to the root of a tropical disc of relative class γ lies in some affine
line l. We essentially showed in the proof of Lemma 5.2 that there are finitely many tropical
discs (up to elongation of the edge adjacent to the root) in the class γ. Therefore Ω̃(γ;u′) is
constant long l near infinity towards the direction along which ω(γ) � 0. It suffices to take

Uγ such that Uγ ∩ l is contained the part of l where Ω̃(γ) is constant, then the second part
of the corollary holds from Theorem 5.4. �

Remark 5.6. The unique rational curve in Lemma 3.1 corresponding to relative γ is different
from those A1-curves contributing to Nγ̄ even topologically. We refer the readers to Example
5.3 [32].

Remark 5.7. Although the toric model (Ȳ , D̄) of a Looijenga pair (Y,D) is always a smooth
toric surface, theorems in Section 5.1 generalize to the case when Ȳ only have orbifold sin-
gularity at the corners. This is because X is still a smooth symplectic manifold and the local
model for the non-toric blowup remains the same.

5.2. The Landau-Ginzburg mirror of the compactification Y . For the rest of the
section, we will assume that Ỹ is semi-Fano and, consider an admissible SYZ fibre L̃u in Ỹ
(i.e., a pull-back of a moment map torus Lu in Y ). We will show that the superpotential of

L̃u can be calculated tropically. More specifically, we have the following theorem.

12This is a tropical analogue of [25, Lemma 4.1].
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Theorem 5.8. Assume that D̃ contains no negative Chern number spheres. Then nβ(u) :=

nỸβ (L̃u) coincides with the weighted count of the broken lines in with respect to the scattering

diagram DLF in Theorem 2.16.

Here, nỸβ (L̃u) is the algebraic count of Maslov index 2 discs in class β. See Section 2.5.
We first need a few preliminary lemmas.

Lemma 5.9. Assume that l is an affine ray from u in the direction of ∂β for some β ∈
H2(Ỹ , L̃u) such that ω̃(β) is decreasing along the ray. There exists a constant ~ > 0 such
that if

(1) nβ(u) is non-zero and constant along the ray, or
(2) ω(β) < ~ and nβ(u) 6= 0,

then β = βi + α for some α ∈ H2(Ỹ ,Z) and some i.

Proof. First we assume that nβ is non-zero along l, then there exists a stable holomorphic
disc of relative class β with boundary on Lu for for each u ∈ l. Applying Lemma 3.2 to the
disc component of such a stable disc, we obtain a tropical disc with stop at u whose edge
adjacent to u is parallel to l. From the hypothesis, we may assume that ω̃(β) < λ for some
constant λ > 0. Recall that any broken lines except those without bending (see Example
2.10), the corresponding Maslov index two tropical disc will contain a Maslov index zero
tropical sub-disc, which has area less than ω(β). Since Lemma 5.2 tells us that there are

only finitely many tropical discs on Maslov index zero in Ỹ with symplectic area less than
λ, there are only finitely many intersections of the tropical discs of Maslov index zero with
symplectic area less than ω(β) with l. Therefore, if u ∈ l is close enough to infinity, there
exists no tropical discs with stop on l between u and the infinity while the symplectic area
is less than λ other than the (multiple) of the initial disc. In particular, l is defined by the
vanishing cycle of a toric boundary divisor. Since β is of Maslov index two, the corresponding
tropical disc has the same relative class as the basic disc. The second case follows from the
same line of the argument of the first case.

�

We next show a weak version of tropical/holomorphic correspondence theorem.

Lemma 5.10. If nỸβ (u) 6= 0 for a generic point u, there exists a broken line b with end at u

such that [b] = β.

Proof. For a generic u, nỸβ (u) is well-defined, i.e. u /∈ Supp(DLF )(mod T λ) where λ > 0

is a constant, since there are finitely many rays in Supp(DLF )(mod T λ). We will take λ <∫
βu
ω̃ + λ1, where λ1 is the lower bound of tropical discs of Maslov index zero (see Lemma

5.3). Consider an affine ray l emanating from u in the direction of ∂β such that ω̃(β) is
decreasing along the ray. By genericity of the position of u, we may assume that the affine
ray intersects all the rays in Supp(DLF )(mod T λ) transversally. Travelling along the ray, the
following two scenarios can occur.

(i) nỸβ is constant along the whole affine ray, then the lemma directly follows from Lemma
5.9.

(ii) nỸβ jumps at some point u1 ∈ Supp(DLF )(mod T λ), which means that a certain

bubbling phenomenon occurs at L̃u1 . Notice that by Gromov compactness theorem,
there are only finitely many rays in the scattering diagram DLF (mod T λ). Let u′ on

the affine ray close to u1 such that nỸβ (u′) 6= nỸβ (u) and by the assumption of the
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generic position of u we can assume that exactly one ray ld1 pass through u1 with
ω(γdi) < λ. Apply Lemma 2.14 (1) to the path connecting u′, u along l implies that

W (u) = Kd1W (u′) mod T λ.

Therefore, there exists β′ ∈ H2(Ỹ , Lu′) with nβ′(u
′) 6= 0 such that the coefficient of

zβ in Kd1(zβ
′
) is non-zero.

We then replace (u, β) by (u′, β′), and repeat the above procedure. Notice that
ω̃(βu) − ω̃(β′u′) ≥ λ1, and the process ends in finite process, say at u1, · · · , un and
then it reduces to the first case.

Finally, we define the broken line b : (−∞, 0] → NR with b(0) = u such that
b(ti) = un−i for −∞ = t0 < t1 < · · · < tn = 0 (here we set u = u0). Then (1)
in Definition 2.3 follows from the choice of the affine rays above, (2) follows from
Lemma 5.9, (3) can be achieved by genericity of the position of u, and (4) follows
from Lemma 2.14.

�

Proof of Theorem 5.8. Fix β ∈ H2(Y,Lu). Notice that each bending of the broken line will
increase its corresponding area by at least λ1 > 0 (see the notation in Lemma 5.3). Thus

a broken line b such that [b] = β can bend at most ω̃(β)
λ1

times. Together with Lemma 5.3
implies that there are finitely many places the broken lines can bend. Thus, there are finitely
many broken lines b such that [b] = β by Lemma 3.2. Let n(β;u) be the maximal number
of edges of a broken line that can represent β. We will prove the theorem by induction on
n(β;u). The theorem reduces to Lemma 5.9 when n(β;u) = 1.

Assume that the theorem is true, i.e., nβ(u) = ntropβ (u), for all pairs of (β;u) if n(β;u) ≤ n
where ntropβ (u) is the number of broken lines in class β with end on u. Given a pair (β;u)

such n(β;u) = n + 1. There exists an affine ray emanating from u corresponds to ∂β such
that ω̃(β) is decreasing along the affine ray.

Suppose that nβ jumps at u1. Using the same argument as in the proof of Lemma 5.10,
one can find β1 ∈ H2(Y, Lu1) with n(β1;u1) < n(β;u). By the induction hypothesis, we have

nβ1(u1) = ntropβ1
(u1), and we can derive nβ(u) and ntropβ from their compatibility with the

wall-crossing formula. The two wall-crossing formulas are identified in Theorem 5.4, and this
finishes the proof. �

We now consider the effect of the toric blowup Ỹ → Y on the counting nβ. Note that

Y is at worst semi-Fano, since contracting exceptional divisors in D̃ do not decrease the
self-intersections of the other divisors.

Lemma 5.11. Let π′ : (Ỹ , D̃) → (Y,D) is a simple toric blowup. Let L̃ ⊆ X̃ be an ad-

missible SYZ fibre in the toric model of Ỹ and L = π′(L̃). If the superpotential of L̃ is∑
β∈H2(Ỹ ,L̃):µ(β)=2 n

Ỹ
β T

ω̃(β)z∂β, then the superpotential of L is given by∑
β∈H2(Ỹ ,L̃)

β·E=0, µ(β)=2

nỸβ T
ω(π′∗β)z∂β.

Proof. Let u : (Σ, ∂Σ) → (Y,L) be a stable disc. From the semi-Fano condition of Y , the
Lagrangian L does not bound any holomorphic discs of negative Maslov index. If it is of
Maslov index 0 or 2 of relative class β ∈ H2(Y,L), then its image does not hit the corner

of D. Therefore, its proper transform ũ : (Σ, ∂Σ) → (Ỹ , L̃) is a stable disc of relative
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class β̃ ∈ H2(Ỹ , L̃) avoiding the exceptional divisor E of Ỹ → Y and the corners of D̃. In
particular, the proper transform preserves Maslov indices, in this case.

Conversely, if ũ : (Σ, ∂Σ)→ (Ỹ , L̃) is a stable disc of Maslov index 2. Then the projection
u = π′ ◦ ũ : (Σ, ∂Σ) → (Y,L) is a stable disc. Notice that for every non-exceptional curve

C̃ ⊆ Ỹ , one has

−KỸ · [C̃] = −KY · [π′(C̃)]− [C̃] · [E] ≤ −KY · [π′(C̃)].

Therefore, the Maslov index of projection is bigger than or equal to that of the original
disc ũ, and the equality holds if and only if the image of ũ does not contains a component
intersecting the exceptional divisor.

Consequently, the stable discs of (Y,L) of Maslov index 2 are in one-to-one correspondence

with the stable discs of (Ỹ , L̃) of Maslov index 2 which do not intersect the exceptional

divisor. In other words, all these discs are contained in biholomorphic open subsets of Ỹ and

Y . In particular, the corresponding counts nỸβ and nYπ′∗β are the same.

�

Together with Theorem 5.8, we have Theorem 1.3 in the introduction.

Remark 5.12. With the admissible special Lagrangian fibration in Y \D, Tu [51] constructed
the family Floer mirror of the total space of the admissible special Lagrnagian fibration. The
superpotential for these admissible fibres satisfying the wall-crossing formula and thus is a
well-defined function on the mirror as explained by Yuan [55].

Motivated by Gross-Hacking-Keel [21, Construction 2.27], we may define the theta func-
tions θ[Di](u) by

(5.1) θ[Di](u) =
∑
β

nYβ (u)Tω(β)z∂β,

where β runs over all relative classes in H2(Y,Lu) with µ(β) = 2 and the (unique) disc
components of their holomorphic representatives intersect Di once. Then Theorem 5.8 implies
that (5.1) coincides with the original definition in [21].

The superpotential computed here are expected to be the mirror of Y . In fact, we can
prove that the quantum period theorem holds under the additional assumption that Y is
Fano. LetM0,1(Y,A) be the moduli space of stable maps of genus zero with a marked point
and image have class A for A ∈ H2(Y,Z). Write dA := A · (−KY ). The virtual dimension of
the moduli spaceM0,1(Y,A) is dA, and it has a virtual fundamental class [M0,1(Y,A)]vir. Let
ev :M0,1(Y,A)→ Y be the evaluation map, and ψ the psi-class insertion at the marked point.

Then the regularized quantum period of Y is given by ĜY :=
∑

A∈H2(Y,Z)〈ψdA−2 pt〉AzA,

where 〈ψd−2pt〉A is the descendant Gromov-Witten invariants

〈ψdA−2pt〉A =

∫
[M0,1(Y,A)]vir

ψdA−2ev∗[pt].

We also write 〈ψd−2pt〉d =
∑

A:dA=d〈ψdA−2pt〉dA . The quantum period theorem is a direct

consequence of [43, Theorem 1.12] (see also [52, Theorem 1.13]) combined with Theorem 5.8.

Theorem 5.13. Assume that Y is a Fano surface and

(1) Y is a non-toric blowup of a toric surface or
(2) each component of the boundary divisor is nef and

then the constant term of W (L)d is simply (d)!〈ψd−2pt〉d, where L is any admissible SYZ
fibre in Y .
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5.3. Further examples. Below, we use the new machinery developed in this paper to recover
classical examples in earlier works of Auroux, and provide a tropical explanation of the
calculations.

(i) (P2, D) with D = C ∪L. We first look into the example of Y ∼= P2 with the anticanonical
divisor given by D = C ∪ L, where C is a conic, and L is a line L in Y . The corresponding
mirror potential was first computed in [1, Proposition 5.5, Proposition 5.8]. On the other

hand, (Y,D) viewed as a Looijenga pair, the associated non-toric blowup (Ỹ , D̃) and its toric
model (Ȳ , D̄) are computed in [30, Example 2.9], which we now explain.

Figure 4. Toric model for (a toric blowup of) the pair (P2, D)

Let p be one of the nodes in D, and L′ the tangent of C at p. We take the blowup
Y ′ ∼= F1 → Y of Y at p, and write D′ for the preimage of D. Then Ỹ is obtained as the
blowup of Y ′ at the intersection of the proper transform of L and the exceptional divisor for
Y ′ → Y . We denote the preimage of D′ by D̃. The proper transform of L is now a (−1)-curve

in Ỹ , and its blow down gives rise to the Hirzebruch surface Ȳ ∼= F2. The push-forward D̄ of
D̃ is the toric boundary divisor (see Figure 4). One may choose the fan of Ȳ whose 1-cones
are spanned by v1 = (0,−1) ,v2 = (−1, 2), v3 = (0, 1) and v4 = (1, 0). We will denote by D̄i

the component of the toric boundary divisor normal to vi.
Given a moment fibre L̄ of Ȳ , one has the basic disc class βi ∈ H2(Ȳ , L̄) for each D̄i, which

intersects D̄i exactly once. The superpotential WF2 for F2, however, has more contributions
than those from βi’s. It is well-known by, for e.g., [1, 17,7]

WF2 = tβ1y−1 + tβ2x−1y2 + (1 + t[D̄3])tβ3y + tβ4x

where we set tβ := Tω(β) in order to keep track of the relative classes easily. Notice the sphere

bubble contributions as seen from the term t[D̄3]+β3y.
Applying Theorem 5.4, the blowup introduces a single ray (wall) for the scattering diagram

DLF for (Ỹ , D̃). Let us denote by α the Maslov zero disc class corresponding to the ray. By
Theorem 5.8, the superpotential in each chamber can be computed by counting broken lines
as illustrated in Figure 5. The sphere bubble contributions are omitted in the figure, which

are t[D̄3] multiplies of the broken lines with infinity ends parallel to the negative y-axis.
During the sequence of blowdowns Ỹ → Y ′ → Y , geometry of the complement of the

boundary divisor is unchanged, and hence, the scattering diagram remains the same. Finally,
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Figure 5. Broken line counts on the two chambers.a Dashed are the contribu-
tions that disappear after blowdowns to Y . The broken lines with infinity ends

parallel to the negative y-axis survive until Y ′, and one additionally has t[D̄3]

multiplies of these for Ỹ , which correspond to sphere-bubble configurations.
aWe use βi to denote the proper transform of the relative class for simplicity.

we can derive the superpotentials for (Y ′, D′) and (Y,D) with help of Lemma 5.11. See
Figure 5 for the precise terms in the potential on each chamber.

Observe that the two superpotentials are exactly those for the Clifford torus and the
Chekanov torus in P2 after a suitable coordinate change. The reason that the two chambers
support Clifford and Chekanov tori can be explained as follows. When the blowup point
Ỹ → Ȳ is approaching D̄1 ∩ D̄2, then the unique ray in the scattering diagram is shifting
upward. At the same time, the conic C degenerates into the union of L′ and L′′, where L′′ is
the tangent of C at the node of D other than p. The resulting anticanonical divisor L∪L′∪L′′
is the toric boundary of Y ∼= P2.

Remark 5.14. In the above procedure, we do not need to know the precise contributions of
the sphere bubble configurations in F2. For our purpose, it suffices to start with

WF2 = tβ1y−1 + tβ2x−1y2 + (1 +
∑
k

akt
k[D̄3])tβ3y + tβ4x,

with some unknown ak ∈ Q. Any term involving t[D̄3] eventually vanishes in the superpotential
for (Y,D) since the corresponding discs turn to have higher Maslov indices in Y . Once
we computed the superpotential for (P2, C ∪ L), we can derive the superpotential of (F2, D̄)
reversing the procedures in the previous example. In particular, we see a1 = 1 and all other
ak vanish.

(ii) The third Hirzebruch surface F3 (non-Fano). Auroux [2, 3.2] (see Figure 4 therein) con-
structed special Lagrangian fibrations on Y ′ \ D′ where we continue to use the notation in
the previous example. There are two chambers in the base of the fibration such that fibres
over the points in the same chambers have the same superpotential (with suitable correction
of symplectic flux).

Fibres over one chambers are hamiltonian isotopic to Clifford tori, and the other ones
are hamiltonian isotopic to Chekanov tori. Auroux further showed that on the Chekanov
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side, the superpotential for (Y ′, D′) matches the superpotential for the moment fibres of F3.
Therefore, the latter can be read off from broken lines in (left) Figure 5. The difference from
the previous example of Y is that we need to take into account two more broken lines whose
infinity ends are parallel to the negative y-axis. Hence, in our choice of coordinates, the
potential for F3 is given as

xtβ4 + 2y2tβ4+α + x−1y4tβ4+2α + ytβ3 + x−1y3tβ3+α + y−1tβ1

= ytβ3 + xtβ4(1 + x−1y2tα)2 + (yt−β1)−1(1 + x−1y4tβ3−β1+α).

It is not very difficult to match the above with equation (3.7) of [2] up to some corrections
by flux (powers of t).

(iii) Cubic surface. The mirror superpotentials of del Pezzo surfaces were written down by
Galkin-Usnich [29]. In particular, there are 21 terms in the superpotential for a cubic surface.
Therefore, Sheridan [50] conjectured that there are 21 discs with boundaries on certain La-
grangian in a cubic surface, as the open analogue of the classical result of 21 lines in a cubic
surface. The conjecture was verified by Pascaleff-Tonkonog [47] and Vanugopalan-Woodward
[54]. Here we provide a different method: consider the cubic surface Y as the non-toric
blowup at 6 points on Ȳ = P2. We will choose the blowup loci such that there are two
points on each toric boundary divisors close to a corner and exactly two points in a small
neighborhood of each corner. The corresponding GPS scattering diagram has a chamber in
the middle and the 21 broken lines with ends in the middle chamber are listed in Figure 6.
Then we recover the superpotential of a cubic surface from Theorem 5.8.

Figure 6. The 21 broken lines in cubic surface with ends in the middle chamber.

5.4. Towards the Local Open Gromov-Witten Invariants of Singular Fibre of Type
I∗0 . Let Ȳ ∼= P2, D̄ is the toric boundary and D̄i, i = 1, 2, 3, be the components of D̄. Let
Y → Ȳ be a non-toric blowup of six points, two points on each components of D̄. Then Y is a



SCATTERING DIAGRAMS FROM HOLOMORPHIC DISCS 41

del Pezzo surface of degree three and thus a cubic surface. Denote D (or Di) to be the proper
transform of D̄ (or D̄i respectively), we have D ∈ | − KY |. Denote Eij , i = 1, 2, 3, j = 1, 2
be the exceptional divisor of the blowup on D̄i. For each Di, there are eight lines on the
cubic surface intersection Di and we denote them by Lij , i = 1, 2, 3, j = 1, · · · , 8. Notice
that {Ei1, Ei2} ⊆ {Lij |1 ≤ i ≤ 8}. The affine monodromy of the singularity of BGHKS is

conjugate to

(
−1 0
0 −1

)
. From Theorem 2.5 [23], there is a ray d = R≥0(avi + bvi+1) in the

canonical scattering diagram and the wall function is

fd =

∏8
j=1(1 + zCjX−ai X−bi+1)

(1− zC9X−2a
i X−2b

i+1 )4
,

for some curve class Ci, i = 1, · · · , 9. From the relation between the canonical scattering
diagram Dcan of (Y,D) and the scattering diagram DGPS of (Y,D) → (Ȳ , D̄) discussed in
Section 2.4, we may get the wall function of the generic ray.

6. Application to Mirror Symmetry for Rank 2 Cluster Varieties

In this section, we will apply Theorem 5.4 to rank 2 cluster varieties. Here ‘rank 2’ refers
to the skew-symmetric form in fixed data (defined in the next section) are of rank 2. In this
section, we are going to show that the quotients of the A cluster varieties are mirror to the
fibers of the Langland dual X cluster varieties.

There have been many works on the mirror symmetry for cluster varieties in the literature.
From the algebro-geometric perspective, Keel-Yu [33] made use of Berkovich non-archimedean
methods to construct mirror and compared their mirror algebra with the cluster algebra in
[22]. Note that Keel-Yu assumed that the skew-symmetric forms are non-degenerate, while
our skew-symmetric forms are of rank 2, i.e. we allow those are degenerate. We further
work on the general skew-symmetrizable case instead of skew-symmetric case. Mandel [40]
showed that theta bases for cluster varieties are determined by descendant log Gromov-
Witten invariants of the symplectic leaves of the Langland dual cluster variety. From the
symplectic perspective, Gammage-Le [18] constructed a symplectic manifold from a given
transacted cluster variety such that the homological mirror symmetry holds. Kim-Lau-Zheng
[35] used Lagrangian Floer theory to prove mirror symmetry for cluster varieties of type A.
The following discussion would be the first to start with the A side and obtain mirrors in the
Langland dual dual of the X side.

6.1. Cluster varieties. Let us begin by defining the fixed data Γ for a pair of cluster varieties
without frozen variables (A,X ), which consists of the following:

• a finite set I with |I| = n;
• a lattice N of rank |I| = n;
• a saturated sublattice Nuf ⊆ N of rank n;
• a skew-symmetric bilinear form {·, ·} : N ×N → Q;
• a sublattice N◦ ⊆ N of finite index satisfying {Nuf, N

◦} ⊂ Z and {N,Nuf ∩N◦} ⊂ Z;
• a tuple of positive integers (di : i ∈ I) with greatest common divisor 1;
• M = Hom(N,Z) and M◦ = Hom(N◦,Z).
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Given this fixed data, a seed data for this fixed data is s := (ei ∈ N | i ∈ I), where {ei} is
a basis for N . The basis for M◦ would then be fi = 1

di
e∗i . Define the map13

p∗ : N →M◦

n 7→ (N◦ 3 n′ 7→ {n, n′}).

We will then define vi = p∗(ei) ∈M◦. One can then associate the seed tori

As = TN◦ = Speck[M◦], Xs = TM = Speck[N ].

We will denote the coordinates as Xi = zei and Ai = zfi and they are called the cluster
variables. Similar to the definition of cluster algebras, there is a procedure, called mutation,
to produce a new seed data µ(s) from a given seed s which is stated in [26, Equation 2.3].
The essence is that we will obtain new seed tori Aµ(s), Xµ(s) from the mutated seed. We will
consider the oriented rooted tree T with n outgoing edges from each vertex, labeled by the
elements of I. Let v be the root of the tree and then attach the seed s to the vertex v. By
associating each path in the tree with a sequence of mutation then we can then attach a seed
to each vertex of T.

Between the tori, there are birational maps, called A-mutation and X -mutation, µX :
Xs 99K Xµ(s), µA : As 99K Aµ(s) which are defined by pull-back of functions

µ∗X ,kz
n = zn(1 + zek)−[n,ek],(6.1)

µ∗A,kz
m = zm(1 + zvk)−〈dkek,m〉,(6.2)

for n ∈ N , m ∈ M◦. Note that those birational maps are basically the mutations of cluster
variables as in Fomin and Zelevinsky [12].

Let A be an union of tori glued by A-mutations. While one can define the cluster varieties
as gluing of tori, however cluster varieties are defined up to certain ambiguity in codimension
2 as follows:

Definition 6.1. [9] A smooth scheme V is a cluster variety of type A if there is a birational
map µ : V 99K A which is an isomorphism outside codimension two subsets of the domain
and range. We define a cluster variety of type X analogously.

By definition, the ring of regular functions of A cluster varieties are upper A cluster
algebras up(A). Similarly the ring of regular functions of the X cluster varieties are the
(upper) X cluster algebras up(X ). Note that by [26, Theorem 3.14], the canonical maps

A → Spec(up(A))

are open immersions.
For the later discussion, we will note the following structure of the cluster A and X cluster

varieties. Let K = ker p∗14. Then the inclusion K ⊆ N gives a map Xs → TK∗ . The map is
compatible with mutation maps so that there is a canonical map

λ : X → TK∗ .(6.3)

Let ` be the rank of the p∗ map. Then λ is a flat family of `-dimensional schemes. The ` = 2
case is indicated in [26, Section 5].

13Note that we do not consider the cases with frozen variables in this article. So there would only be one
p∗ map for each cluster algebra.

14Again as there is no frozen variables, ker p∗2 = ker p∗ if one follows the notation in [26].
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Similarly we consider the inclusion K◦ := K ∩N◦ ↪→ N◦ induces a map of tori TK◦ → As.
This gives a torus action TK◦ on As. The action is compatible with the mutations so that
there is a canonical action of TK◦ on A.

6.1.1. Langland dual. Consider a fixed data Γ. The Langlands dual cluster varieties are
defined with the Langlands dual fixed data LΓ as stated [22, appendix A]. The fixed data LΓ
is defined by having Ldi = d−1

i D, where D = lcm(d1, . . . dn). The Langland dual lattice is
LN = N◦, sublattice (LN)◦ = D·N , and the skew-symmetric form on LN as {·, ·} = D−1{·, ·}.
A seed data Ls = (Lei = diei) gives a basis for LN and so the dual basis for LM = M◦ is

{Le∗i = 1
di
e∗i }. The basis for LM◦ = 1

DM can then be given by Lfi = 1
Ldi

Le∗i = di
D ·

1
di
e∗i = 1

De
∗
i .

One can similarly define the Lp∗ map. Note that now Lvi = Lp∗(Lei) = 1
Dp
∗(diei) = di

D vi.
Repeat the same procedure and associate the tori

LAs = T(LN◦) = Speck[LM◦], LXs = T(LM) = Speck[LN ].

Again there are birational maps between the tori, µLX : LXs 99K LXµ(s), µLA : LAs 99K
LAµ(s) which are defined by pull-back of functions

µ∗LX ,kz
Ln = z

Ln(1 + z
Lek)−

L[Ln,Lek],

µ∗LA,kz
Lm = z

Lm(1 + z
Lvk)−〈

Ldk
Lek,

Lm〉,

for Ln ∈ LN , Lm ∈ LM◦. Let us unfold the mutation maps and express it in terms of the
fixed data Γ:

µ∗LX ,kz
Ln = z

Ln(1 + zdkek)−
L[Ln,dkek],(6.4)

µ∗LA,kz
Lm = z

Lm(1 + z
Lvk)−〈Dek,

Lm〉.(6.5)

One can then define the Langland daul cluster varieties LA and LX by repeating the same
gluing construction.

The mirror conjecture is that A and LX are mirror to each other. We will give a rough
digression here. Recall the A and LX mutation maps as in (6.1) and (6.4):

µ∗A,kz
m = zm(1 + zvk)−〈dkek,m〉,

µ∗(LX ),kz
Ln = z

Ln(1 + zdkek)−
L[Ln,dkek].

While the notation may be confusing, we recall that LXi = zdiei . Let us illustrate the duality
with a more explicit example. Consider a fixed data with a dimension 2 lattice N , skew-form(

0 1
−1 0

)
, and d1 = k, d2 = l, where k and l are coprime. Then the mutation function of µ∗A

are

1 +A−k1 and 1 +Al2.

On the other hand, the mutation functions for the X Langland dual µLX are

(1 + LX1)l and (1 + LX2)k.

Note there are interchanging of exponent vectors. We are going to see the geometric reason
later.
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6.1.2. Cluster scattering diagrams. Gross-Hacking-Keel-Kontsevich [22] constructed bases for
cluster algebras by using ideas in the Gross-Hacking-Keel mirror construction. The gluing
construction of cluster varieties can be seen as gluing tori associated to each chamber of
the scattering diagrams and then the collections of theta functions give the bases for cluster
algebras.

We start by first defining the Aprin cluster scattering diagrams. The fixed data for cluster
algebras with principal coefficients can be obtained by ‘doubling’ the original fixed data, i.e.

considering the lattice Ñ = N ⊕M◦ as described in [26, Construction 2.11] and notation as
in [9]. The initial scattering diagram is of the form

D
Aprin

in,s :=
(

(ei, 0)⊥, 1 + zp̃
∗((ei,0))

)
.

The DAprin scattering diagrams are the consistent scattering diagrams containing D
Aprin

in,s
15.

Theta functions are then defined on the cluster scattering diagrams which are similar to the
one in (5.1). One can refer to [22, Section 3] for the precise definition.

Let can(V ) be the vector spaces generated by the theta functions for V = A,X , and mid(V )
be the algebra generated by those theta functions which are polynomials (see [22, Definition
7.2] for more precise definition). Note that can(V ) are not algebras in general. Then it
is called the full Fock–Goncharov conjecture holds when mid(V ) = up(V ) = can(V ). The
existence of positive polytope [22, Proposition 8.17] give algebra structures to can(V ). With
the enough global monomial condition satisfying, can(V ) are finitely generated k-algebras.
and the Fock-Goncharov conjecture holds.

Note that even though the walls of DAprin rely on a choice of the seed s; however, Gross-
Hacking-Keel-Konsevich [22] showed that the construction is mutation invariance, i.e., the
algebras generated by the collections of theta functions are the same.

The ‘A and X scattering diagrams’ are the diagrams such that we can compute the cor-
responding theta functions. The A scattering diagrams can be obtained by considering the
projection map ρT : LXprin(ZT ) = M◦ × N → LX (ZT ) = M◦, (m,n) 7→ m. On the other
hand, the X theta functions can be obtained by considering broken lines on the slices{

(m,n) ∈ M̃◦R
∣∣∣m = p∗(n)

}
⊆ M̃◦R

in the D
Aprin
s scattering diagram which we will call the diagrams on the slices as the X

scattering diagrams DXs .
On the other hand, the scattering diagrams for the Langland dual cluster algebras are

defined in the same way. We will state the initial walls of the LX scattering diagrams for the
later discussion. The LX scattering diagrams can be obtained by the slicing in the LAprin

scattering diagram. One can also see the initial wall functions by using (6.4):(
d = {(p∗(Ln), Ln) | Lp∗(Ln) ∈ die⊥i }, (1 + zdiei)indvi

)
,(6.6)

where indvi denotes the index for vi in LM = M◦. With a change of variables, we can see
the scattering diagrams lie in LNR = N◦R.

15There is an unfortunate sign switch between the setups in GPS [21] and cluster [22] scattering diagrams.
It would be resulted in the flipping scattered walls but not the inital walls of the diagram. Also the resulting
algebras given by the collection of theta functions would be the same.
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6.1.3. Toric models for cluster varieties. In this section, we are going to describe the relation
between the cluster varieties and the blowups of toric varieties [26]. Let s be a seed and
consider the fans

Σs,A := {0} ∪ {R≥0diei|i ∈ I} ⊆ N◦,(6.7)

Σs,X := {0} ∪ {−R≥0divi|i ∈ I} ⊆M.(6.8)

We can then consider the toric varieties TVs,A, TVs,X associated to the fans respectively.
Let Di, i ∈ I, be the toric divisor corresponding to the one-dimensional ray of the fan. Then
we consider the closed subschemes

ZA,i := Di ∩ V (1 + zvi) ⊆ TVs,A,

ZX ,i := Di ∩ V
(

(1 + zei)inddivi
)
⊆ TVs,X ,

where inddivi denotes the greatest degree of divisibility of divi in M . We will consider

(T̃Vs,A, D) and (T̃Vs,X , D), the blowups of TVs,A and TVs,X along ZA,i and ZX ,i respectively,
where D is the proper transform of the toric boundaries. As the construction for the A and

X are parallel to each other, we will denote A or X as V . Define Us,V = T̃Vs,V \D. We will
further consider U ′s,V ⊂ V , the union of the tori Vs and Vµi(s), for all i ∈ I.

Note that the construction of Us,V may appear to depend on a choice of seed data. Gross-
Hacking-Keel [26, Lemma 3.8 (1)] showed that for a seed sw and a mutated seed µi(s),
then one has Usw,V and Usµ(w),V are isomorphic outside codimension two for V = Aprin, X .
For the A case, they are still isomorphic outside codimension two if the seed sw is coprime
([26, Definition 3.7]).

6.2. Mirror symmetry for rank 2 cluster varieties. Gross-Hacking-Keel [26] indicated
the Looijenga pairs constructed in [21] agree with the cluster X varieties in the rank 2 case.
In this section, we wll investigate the TK◦ action on A in the rank 2 case.

Fix a seed s = (ei). We will assume without lost of generality that p∗(ei) 6= 0, together
with, for i 6= j, p∗(ei) and p∗(ej) are not scalar multiple of each other. Note that this is not
an entirely an extra condition.

Since we will consider the lattice quotient by the kernel of p∗ map. If p∗(ei) = p∗(ej), we
can consider a lower rank lattice and then increase the degree of the blow-up’s. The case
when p∗(ei) = αp∗(ej) for some α 6= 1 are similar but require more subtle combinatorics.

Consider a choice of splitting of N ∼= N/K ⊕ K and this induces a dual splitting M =
K⊥ ⊕ K∗. This gives us M◦ = (K◦)⊥ ⊕ (K◦)∗. Then we define the rank two lattices:
N̄ = N/K, N̄◦ = N◦/K◦, M̄ = M/K∗ = K⊥ and M̄◦ = M◦/(K◦)∗. We further consider
the descended p∗ map

p̄∗ : N̄ → M̄◦.

Let ēk ∈ N̄ , v̄k ∈ M̄◦ be the image of ek, vk respectively in the quotient spaces. By
construction, v̄k = p̄∗(ēk) for all k. Therefore, we still have 〈ēk, v̄k〉 = 0.

Recall the inclusion K◦ ↪→ N◦ give us the TK◦ action on As. Note that the torus action
commutes with the mutation of seed data, i.e. for k ∈ I, the following diagram commutes

TK◦ As

TK◦ Aµk(s)

= µk
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Consider the tori Ak,s = Speck[M̄◦] ∼= As/TK◦ . Since the TK◦ action on As commutes
with mutation, we can define the birational maps

µ̄k : Ak,s 99K Ak,µk(s)(6.9)

via

µ̄∗k(z
m̄) = zm̄

(
1 + zv̄k

)−〈dk ēk,m̄〉 ,
for m̄ ∈ M̄◦. Hence, by [26, Proposition 2.4] we can define the scheme Ak as the scheme by
gluing all Ak,µk(s) via the mutation map µ̄k.

Next we would describe the scheme Ak as blowup of toric surfaces by following [26, Con-
struction 3.4]. Define Σs,Ak as the quotient of the fan Σs,A in (6.7) as

Σs,Ak = {0} ∪ {R≥0diēi} ⊆ N̄◦.
Note that R≥0diēi 6= R≥0diēj for i 6= j from our assumption. Let TVΣs,Ak

be the toric

variety associated to the fan Σs,Ak . We denote D̄i to be the toric boundary divisor of TVΣ

corresponding to the ray generated by diēi ∈ Σ. Let v̄i be the image of vi. Note that v̄i 6= 0
as it is in the image of the p∗ map.

For i = 1, . . . , n, consider the closed subscheme

Z̄i = D̄i ∩ V̄
(

(1 + zv̄i)ind diēi
)
,

where ind diēi denotes the greatest degree of divisibility of diēi in N̄◦. Note that even though
diei are primitive in N◦, however, they may not be primitive in the quotient lattice N̄◦. We

will then consider the blow up T̃VΣs,Ak
at Z̄i’s. Let D̃i be the proper transform of the toric

boundaries D̄i and define Us,Ak := T̃VΣs,Ak
\ ∪iD̃i. We further define U ′s,Ak as the union

of the tori Ak,s and Ak,µk(s) for i ∈ I. Note that the condition p∗(ei) and p∗(ej) not scalar
multiple of each other for i 6= j, so we can apply both [26, Lemma 3.5(i)] and [26, Lemma 3.6].
Hence by [26, Lemma 3.5(i)], Us,Ak and U ′s,Ak are isomorphic outside a codimension two set.

We also have Us,Ak and Uµ(s),Ak isomorphic outside a codimension two set by [26, Lemma
3.6].

6.2.1. The GPS scattering diagrams associated to rank 2 cluster A varieties. We can now run

the machinery discussed in Section 2.3. First we would like to associate T̃VΣs,Ak
with a scat-

tering diagram which the walls carry enumerative interpretation. Given the fan Σ = Σs,Ak .

Let Σ̄′ be a complete fan containing Σ and TVΣ̄′ be the corresponding toric surface. Then
we have TVΣ̄ ↪→ TVΣ̄′ . We denote the Gross-Pandharipande-Siebert scattering diagram for

the blow up T̃VΣ̄′ of TVΣ̄′ at the proper transform of Zi by DGPS
Σ,s

. Note that the additional

divisors associated to Σ̄′ \ Σ̄ do not intersect the Zi’s. Hence the A1-curve countings in the
wall-functions of DGPS

Σ,s
are independent of the choice of Σ̄′ ⊇ Σ̄. We would then switch back

to denote Σ̄ as the complete fan containing Σs,Ak .
We are going to define the initial scattering diagram associated to TVΣs,Ak

. First note

that all the inital walls will pass through the origin. Denote diēi = (ind diēi)qi, where qi
is primitive in N̄◦. The reason is the blow-up points are at the zero locus of the equations
1 + zdiēi . Hence we have zdiēi = −1 which then means |zqi | = 1. If one uses z1, z2 as the toric
coordinates on (C∗)2 ⊆ TVΣ̄s,Ak

, then there exist a, b ∈ Z such that zqi = za1z
b
2. Therefore,

under the Log-map, the wall induced by the non-toric blow up at any point on {|zqi = 1|}∩D̄i

is a line passing through the origin.
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The wall functions from one point blowup is divided into two cases: diei is primitive or
not in N̄◦. If diei is primitive, we can apply the discussion in Section 2.3 to define the
corresponding wall (

R · diēi, 1 + zdiēi
)
.

In Section 2.3, the associated wall functions are of the form 1 + t−[Eij ]zmi . Here we put
t−[Eij ] = 1 in the cluster setting.

If diēi is not primitive, i.e. ind diēi > 1, the corresponding blow-up would be a (ind diēi)-
orbifold blowup of the toric variety along the points D̄i ∩ V (1 + zdiēi). We can apply [25,
Theorem 5.6] to associate the wall(

R · qi, 1 + z(ind diēi)qi
)

=
(
R · diēi, 1 + zdiēi

)
is again in the same form.

Roughly speaking, the construction in Section 2.3 is done by associating each point of
blowing-up with an initial wall. Let us work over C or any algebraically closed characteristic
0 fields. For each i, the subscheme D̄i ∩ V̄ (1 + zv̄i) consists of indv̄i many distinct points.
From the discussion above, to each point in the subscheme D̄i ∩ V̄ (1 + zv̄i), we associate the
wall (

R · diēi, 1 + zdiēi
)
.

Hence the initial walls associated to the blowup loci Zi are(
R · diēi, (1 + zdiēi)indv̄i

)
.

Therefore, the initial scattering diagram associated to T̃VΣs,A
would be

DGPS
in,Σ,s

=
{(

R · diēi, (1 + zdiēi)indv̄i
)
| i = 1 . . . n

}
.(6.10)

Let DGPS
Σ,s

be the consistent scattering diagram containing Din,s. As described in (2.4), the

wall functions of DGPS
Σ,s

would be expressed in terms of log Gromov-Witten invariants.

Matching the cluster scattering diagrams. Now we would like to obtain the scattering dia-
grams (6.10) from the cluster viewpoint.

Recall when the p∗ map is not injective, there is a morphism λ : X → TK∗ as stated in
6.3. In the discussion above, we see that there is a flat family of surface Y → T ∗K obtained by
blowing up toric varieties such that Y \D are isomorphic to U ′X up to codimension two, where
D is the proper transform of the toric boundary under the blowup. Gross-Hacking-Keel [26]
indicated that the family Y → T ∗K is the universal family of Looijenga pair constructed in

[21]. Let φ ∈ T ∗K , we denote Xφ for the fibre over φ ∈ TK∗ . The Xφ scattering diagram D
Xφ
s ,

is defined in [9, Section 2.2.3], can be described as the quotient of the DXs diagram in N̄ ⊗R.
This construction is well-defined as laid out in [9, Section 2.2.3]. Besides, Zhou [56] also gave
a description of quotient scattering diagrams.

We will explicitly write down D
LXe
s , where e is the identity of TLK∗ . Recall LN = N◦.

With a choice of the splitting N◦ = N̄◦ ⊕K◦ as in the earlier section, there is the inclusion

K◦ ↪→ N̄◦ ⊕K◦

k 7→ (0, k).

Hence similar to the A scattering diagrams defined from the Aprin scattering diagrams, we can

consider a projection of the D
LX scattering diagram descended from N◦R → N

◦
R. Note that
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in the two-dimensional lattice N◦, the normal space to (diēi)
⊥ is the simply one-dimensional

ray Rdiēi. Combining with (6.6), the initial LXe scattering diagrams are of the form(
R · diēi, (1 + zdiēi)indv̄i

)
.

The LXe scattering diagrams are the consistent scattering diagrams containing the initial
diagram. Similar to the discussion in cluster scattering diagram, if there exist positive poly-
topes and the enough global monomials conditions are satisfied, the vector space can(LXe)
are finitely generated algebra. Then we have mid(LXe) = can(LXe) = H0(LXe,O).

Note that the initial LXe scattering diagram is exactly the same as the GPS scattering
diagram in (6.10). In other words, we have

DGPS
Σ,s

∼= D
LXe
Ls

,(6.11)

for every seed s. Since D
LXe
Ls

and D
LXe
µ(Ls)

are differed by mutation by [22, Theorem 1.24], we

have DGPS
Σ,s

and DGPS
Σ,µ(s)

are also differed by a mutation.

Let us recall the ideas of the Gross-Hacking-Keel [21] mirror construction. Once the
canonical scattering diagram in Section 2.4 is constructed, the mirrors are constructed as
the spectrums of the algebras generated by the collections of theta functions. Further the
algebras given by the canonical scattering diagrams and the GPS scattering diagrams are
identified in [21]. Now we see that the GPS scattering diagram and the LXe scattering
diagrams are the same. Hence the mirror spaces are LXe.

Now we are ready to combine Floer theory into this story. Theorem 5.4 tells us that
the limiting Langrangian Floer scattering diagrams agree with the GPS scattering diagrams.
Hence we showed that quotients of the A cluster varieties are Floer mirror to the fibers at
e ∈ TK∗ of the X cluster varieties.

Theorem 6.2. Consider a cluster fixed data Γ without frozen direction where the skew-
symmetric form is of rank 2. We further fix a seed data s. Assume either the p∗(ei) are
not scalar multiple of each other. Consider the quotient map N◦ → N◦/K◦ and let ēi be the
image of ei under this quotient map. Define

Σs,Ak = {0} ∪ {R≥diēi} ⊆ N̄◦.
For i = 1, . . . , n, let vi = p∗(ei) and let v̄i be the imagine of vi under the quotient map
M◦ →M◦/(K◦)∗. Define

Z̄i = D̄i ∩ V̄
(

(1 + zv̄i)ind diēi
)
,

where ind diēi denotes the greatest degree of divisibility of diēi in N̄◦.

Let T̃VΣs,Ak
be the surface obtained by blowing up the subschemes Z̄i ⊆ TV(Σs,Ak). Let D̃i

be the proper transform of the toric boundaries D̄i and define Us,Ak := T̃VΣs,A
\ ∪iD̃i. Then

Us,Ak is isomorphic to A/TK◦ outside a set of codimension at least two, where A/TK◦ is the
quotient of the A variety under the TK◦-action.

Then the corresponding GPS scattering diagram of T̃VΣs,Ak
is the LXe,s scattering diagram,

where LXe is the fiber of the Langland dual X family LX → T(LK)∗ at e ∈ T(LK)∗.

Remark 6.3. If can(LXe) are finitely generated algebras, we obtain the mirror algebras of
A/TK◦ are rings of regular functions of LXe.

Remark 6.4. We use the algebraic geometric enumerative invariants (from Gross-Siebert-

Pandharipande) of T̃VΣs,Ak
to recover the X -scattering diagram of LXe,s in Theorem 6.2. If
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we further assume diēi are primitive in N◦/K◦, i.e. excluding the case about orbifold blowup,

we can recover LXe,s from the open Gromov-Witten invariants of T̃VΣs,Ak
by Theorem 5.8.

6.3. Example. Let us consider an example with rank N = 3 and the skew symmetric form
is of the form  0 1 −1

−1 0 1
1 −1 0

 ,

and di = 1 for all i. Note that since di = 1 for all i, the fixed data would be the same for the
Langland dual side. Consider the initial seed s = {ei}, where ei are the standard basis of Z3.
Then we have

Σs,A = {0} ∪ R≥0(1, 0, 0) ∪ R≥0(0, 1, 0) ∪ R≥0(0, 0, 1),

Σs,X = {0} ∪ R≥0(0,−1, 1) ∪ R≥0(1, 0,−1) ∪ R≥0(−1, 1, 0).

Let TVs,A be the toric variety associated to the fan Σs,A. One can see immediately
that TVs,A = A3 \ {codimension 2 toric strata}. In this example, we have K = ker p∗ =
〈e1 + e2 + e3〉 ⊆ N . We then consider K◦ = K ∩N◦ ⊂ N◦. In this example K◦ = K. The
TK◦ action is of the form

α · (A1, A2, A3) = (αA1, αA2, αA3),

where α ∈ C∗. One can see that this is the standard torus action to obtain P2 from A3. In
this case, TVs,A/TK◦ will give us P2 \ {3 points}. Alternately, consider the quotient map
N◦ → N◦/K◦. Then the imagine of the fan Σs,A is of the form

Σs,A = {0} ∪ R≥0ē1 ∪ R≥0ē2 ∪ R≥0 · (−ē1 − ē2).

Hence the toric variety is the projective space P2 up to codimension 2. The space we con-
sidered would be P2 blow up at the 3 points. The corresponding initial scattering diagram
would be

1 + zē2

1 + zē1

1 + z−ē1−ē2

It is easy to see this is the initial walls of the LXe scattering diagram of the dual seed of s.

7. Mirror Symmetry

In this section, we focus on the concrete example of the del Pezzo surface of degree 5, and
show that the Landau-Ginzburg model constructed by disc counting fulfills the closed-string
mirror symmetry. For more general examples beyond this, the calculation of critical points
becomes too complicated to carry out by hands. We speculate that there is a more effective
argument that avoids a direct calculation. The main theorem in this section is the following.

Theorem 7.1. Let Ỹ be a del Pezzo surface of degree 5 represented by the non-toric blowup
of a toric surface Ȳ as in Figure 8 (note that Ỹ with the symplectic form from Lemma 4.1 is

not monotone), and let (Y̌ ,W ) be its LG mirror constructed from the SYZ fibration on Ỹ \ D̃
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(see 4). Then the quantum cohomology ring of Ỹ is isomorphic to the Jacobian ideal ring of
W .

We will give a concrete description of the LG mirror (Y̌ ,W ) in 7.1. The proof of Theorem
7.1 is essentially to show that W only has on Y̌ as many nondegenerate critical points as the
rank of the cohomology of Ỹ , since QH(Ỹ ) is known to be semisimple [4]. This will be done
in 7.7.

Recall from Section 5.2 that once we realize the surface as a non-toric blowup of a toric
surface, we automatically obtain a LG model whose chamber structure is recorded in the
scattering diagram DLF . However, this LG model is not enough to capture the full mirror.
In fact, it is crucial to enlarge it to include nodal fibres, as the mirror potential would miss
a few geometrically meaningful critical points otherwise. Recall that in the local form of the
SYZ fibration on X (4.1), the nodal fibre is given as |x| = |x(qi)| and µS1 = εi where qi is the
blowup point, and εi is the value of µS1 at the isolated S1-fixed point q̃i in the exceptional
divisor Ei. See Figure 7. We remark that even if the loop |x| = |x(qi)| in the reduction is
slightly deformed, it still gives an immersed Lagrangian S2 as long as it passes through x(qi).
This way we have a small freedom in choosing the valuation of this Lagrangian (along the
direction perpendicular to the divisor {x = 0}).

Figure 7. The nodal fibre in the local SYZ fibration on a non-toric blowup

7.1. Degree 5 del Pezzo surface and its LG mirror. We realize the degree 5 del Pezzo
surface Ỹ as the blowup of P2 at two of the torus-fixed points and the other two on the
interior of the toric boundary. The toric blowups correspond to chopping off two corners of
the moment polytope of P2 as shown in Figure 8, and the resulting surface Ȳ is a (toric)
del Pezzo surface of degree 7. We set (a′, 0) and (0, b′) to be the locations of the latter two
blowup points in the moment polytope of P2.

The non-toric blowup in this case produces DLF which coincides with the A2-scattering
diagram. It has five chambers that support different mirror potentials, which agree with each
other after suitable cluster transforms. For instance, the shaded chamber in Figure 8 (that
contains the origin)16 carries the potential given by

(7.1) W = z1 + z2 + (T a + T c±ε1)
1

z1
+ (T b + T c±ε2)

1

z2
+ T a±ε1

z2

z1
+ T b±ε2

z1

z2
+ T c

1

z1z2

16To be more precise, the genuine scattering diagram should be drawn on the log-base.
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For computational simplicity, we will consider the limiting situation in which ε1 = ε2 = 0
from now on. On the adjacent chambers, the potential takes the form of

Wup = z′1 + (1 + T a)z′2 + z′1z
′
2 + (T a + T c)

1

z′1
+ T b

1

z′2
+ T a

z′2
z′1

+ T c
1

z′1z
′
2

,

Wright = (1 + T b)z′′1 + z′′2 + z′′1z
′′
2 + T a

1

z′′1
+ (T b + T c)

1

z′′2
+ T b

z′′1
z′′2

+ T c
1

z1z2
,

where the corresponding coordinate changes are given by

(7.2) z1 = z′1 = z′′1 (1 + z′′2 )−1, z2 = z′2(1 + z′1)−1 = z′′2

These coordinates cover the region

(7.3)
0 < val(z1) < a′, 0 < val(z2) < b′

0 < val(z′1) < a′, b′ < val(z′2) < b
a′ < val(z′′1 ) < a, 0 < val(z′′2 ) < b′

(the same inequalities also describe corresponding chambers drawn in Figure 8). The compu-
tation for the other two chambers can be done similarly, and is omitted. By the consistency
of DLF , the five local charts are glued without ambiguity. In order to glue these local LG
models, one needs to perturb slightly a complex structure to make local patches overlapped,
and use the same coordinate transition as given in (7.2). Notice that (7.2) preserves the
T -adic valuation.

Figure 8. The degree 5 del Pezzo surface as a non-toric blowup

In what follows, we enlarge the above LG model to obtain the full mirror (Y̌ ,W ) by
adding two more charts, each isomorphic to (Λ+)2. Observe that the fibration comes with
two immersed Lagrangians L1 and L2. We denote by Ui the immersed generators of the Floer
complex of Li whose associated smoothing produces the torus fibre sitting in the shaded
chamber in Figure 8. Let Vi denote the immersed generator complementary to Ui. For
ui, vi ∈ Λ1

+, one can take a linear combnination bi = uiUi + viVi for Li, and boundary-deform
Li into a new Lagrangian brane (Li, bi). One should think of (Li, bi) as a family of objects
in the Fukaya category parametrized by the weak Maurer-Cartan space of Li. It is shown
in [31, 3.1] that bi = (ui, vi) solves the weak Maurer-Cartan equation for Li using reflection
symmetry.

Observe that we have a freedom to choose Li by adjusting the size of the base circle drawn
in Figure 7 (since the circle does not have to be concentric about 0). By suitably choosing its
size, one may assume that (Li, bi = (ui, vi)) is quasi-isomorphic to the Lagrangian torus fibre
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represented by z1 = T x1ρ1, z2 = T x2ρ2 (with xi = val(zi) and val(ρi) = 0) where (u1, v1) and
(z1, z2) are related by the coordinate change

(7.4) u1v1 − 1 = ρ1, u1 = T x2−b
′′
ρ2.

Here, b′′ is the symplectic area of the holomorphic disc bounded by L1 whose smoothing at
the U1-corner lies in the same class as the z2-disc. While it can be chosen to be very close
to b′′, a further adjustment may be needed in order to have a genuine torus fibre satisfying
val(u1) = x2− b′′ > 0 (note that we do have such a flexibility in the construction of L1). One
can rewrite (7.4) as

(7.5) u1v1 − 1 = T−val(z1)z1, u1 = T−b
′′
z2.

Analogously defined coordinates (u2, v2) on the weak Maurer-Cartan deformation space of
L2 are related with others by

(7.6) u2v2 − 1 = T−val(z2)z2, u2 = T−a
′′
z1.

Notice that there exists (u1, v1) satisfying (7.5) as long as val(T val(z1) + 1) > val(z2)− b′′
and val(z2) > b′′ regardless of whether or not (z1, z2) corresponds to an actual torus fibre,
and the similar is true for (u2, v2). For instance, (z1, z2) with val(z1) = 0 or val(z2) = 0
can represent a geometric object that is supported over an immersed Lagrangian. Obviously,
torus fibres themselves cannot have this feature. In other words, the chart (Λ+)2 from (ui, vi)
nontrivially enlarges the original region parametrized (z1, z2) that supports torus fibres.

One can argue similarly to find relations between this (Λ+)2-chart with the chambers
adjacent to the shaded one in Figure 8, which are compatible with (7.5) and (7.6) (see
[31, 3.2] for more details). We conclude that Li strictly extends the LG model obtained from
torus fibres, i.e. the LG model constructed by gluing (7.1) with (local) ones from the other
four chambers in Figure 8. In summary, the domain of the mirror LG model Y̌ are glued from
the five open subsets given as in (7.3) (two of them were omitted in the equation) together
with two (Λ+)2-charts parametrized by (u1, v1) and (u2, v2) via the transition maps given in
(7.5) and (7.6), respectively.

Remark 7.2. Suppose that two blowup points are so close, and that L1 and L2 can be made
quasi-isomorphic to each other. Assuming the convergence, we may put T = 1 to work over
C. Then one can derive from (7.5) and (7.6) the following coordinate transition between
complex coordinates (u1, v1) and (u2, v2)

u1v1 − 1 = u2, u2v2 − 1 = u1.

Setting x = u1, y = −v1, z = v2, we have −xy − 1 = u2 = (x+ 1)z−1,

xyz + x+ z + 1 = 0,

which describes the A2 cluster variety as an affine hypersurface.

7.2. Critical points of the mirror potential. Let us now compute the critical points of
the potential

(7.7) W = z1 + z2 + (A+ C)
1

z1
+ (B + C)

1

z2
+A

z2

z1
+B

z1

z2
+ C

1

z1z2
,

where we put A := T a, B := T b and C := T c for simplicity. Elementary computation tells
us that the critical points of W should satisfy

(7.8)
z2

1z2 − (A+ C)z2 −Az2
2 +Bz2

1 − C = 0,
z1z

2
2 − (B + C)z1 −Bz2

1 +Az2
2 − C = 0.
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Subtracting the bottom multiplied by z1 from the above multiplied by z2, we obtain

(z1 + z2 + 1)(z1(C +Bz1)− z2(C +Az2)) = 0.

We then proceed by dividing into two cases depending on which of the two factors vanishes.

Case 1: If z1+z2+1 = 0, then the sum of two equations in (7.8) implies z1z2+Bz1+Az2+C =
0, and hence

z2
1 + (A−B + 1)z1 +A− C = 0.

Thus we obtain two solutions

z1 =
−A+B − 1±

√
1− 2A− 2B − 2AB +A2 +B2 + 4C

2

z2 =
A−B − 1∓

√
1− 2A− 2B − 2AB +A2 +B2 + 4C

2
Using the expansion√

1− 2A− 2B − 2AB +A2 +B2 + 4C = 1−A−B + T higher,

one of the solutions takes the form of

(z1, z2) = (−1 +B + T higher,−B + T higher),

but val(z1) = 0 is not valid if we restrict to torus fibres only. However, transferring to
(u1, v1)-coordinate charts via

u1v1 − 1 = z1, u1 = T−b
′
z2,

we have a legitimate Lagrangian brane supported over the immersed Lagrangian L1, since
val(u1) > 0 and val(v1) > 0. Likewise, the other solution

(z1, z2) = (−A+ T higher,−1 +A+ T higher)

does not make sense in the original coordinates from torus fibres, but making use of

u2v2 − 1 = z2, u2 = T−a
′
z1,

one can replace it by the Lagrangian brane supported over L2.

Case 2: Let us now look into the case of z1(C +Bz1)− z2(C + Az2) = 0. We introduce an
extra variable λ to keep the symmetry of the equation,

(7.9) (Bz1 + C) = λz2, (Az2 + C) = λz1

which makes sense since neither of z1, z2 is zero. From the sum of two equations in (7.8), we
have

(z1z2 + 1− λ)(z1 + z2) = 0.

If z1 + z2 = 0, then (z1, z2) = ( 2C
A−B ,

2C
B−A), whose valuation lives outside the allowed region,

nor can it be replaced by appropriate boundary deformation of Li. Thus this critical point
is not geometric in our SYZ setting. We speculate that there is no nontrivial object in the
Fukaya category which represents this point, as otherwise its Floer cohomology with any of
torus fibres would vanish.

Therefore geometrically meaningful is to examine the case λ = z1z2 + 1. Making use of
(7.9), one can easily find that the critical points are given as

(7.10) (z1, z2) =

(
1

λ2 −AB
(λC +AC),

1

λ2 −AB
(λC +BC)

)
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where λ satisfies the degree-5 polynomial equation

λ5 − λ4 − 2ABλ3 + (2AB − C2)λ2 + (A2B2 − C2(A+B))λ−ABC2 −A2B2 = 0.

Hence, for generic A,B and C, we obtain 5 mutually distinct critical points. Given the
two critical points in the previous case, it only remains to check that the five points are
represented by torus fibres. Observe that even if the valuation of a critical point escapes
the chamber that supports our W (7.7), one can interpret it as the critical point from some
other chamber (and vice versa) by applying the valuation-preserving coordinate change (7.2)
as long as its valuation lies in the moment polytope. Note that the Jacobian ideal ring is not
affected by coordinate changes. Therefore it is enough to work with W after enlarging its
domain to include the other four chambers and two more (Λ+)2-charts.

Taking valuations of both sides of λ = z1z2 + 1,

(7.11) val(z1) + val(z2) = val(λ)

which we will use quite often below. We subdivide the argument into the following four cases.

(i) If val(z1) ≤ val(C)− val(B) and val(z2) ≤ val(C)− val(A), then (7.9) leads to

val(B) + val(z1) = val(λ) + val(z2)

val(A) + val(z2) = val(λ) + val(z1)

so that

val(z1)− val(z2) =
1

2
(val(A)− val(B)).

On the other hand, combining with (7.11) we see that

val(z1) + val(z2) = val(λ) =
1

2
(val(A) + val(B)).

Hence val(z1) = 1
2val(A) and val(z2) = 1

2val(B), which lie inside the allowed region.
(ii) If val(z1) ≤ val(C)− val(B) and val(z2) > val(C)− val(A), we have

val(B) + val(z1) = val(λ) + val(z2)

val(C) = val(λ) + val(z1),

With (7.11), the above implies

val(z1) =
1

2
val(C)− 1

4
val(B), val(z2) =

1

2
val(B).

It is not difficult to see that the corresponding point lie inside the region.
(iii) The case where val(z1) > val(C)−val(B) and val(z2) ≤ val(C)−val(A) is symmetric

to (ii), and we omit.
(iv) Finally, if val(z1) > val(C)− val(B) and val(z2) > val(C)− val(A), then

val(C) = val(λ) + val(z2)

val(C) = val(λ) + val(z1)

Using (7.11), we find that

val(z1) = val(z2) =
1

3
val(C).

Thus all the five critical points given by (7.10) admit Lagrangian torus fibres with suitable ΛU -
holonomies. Note, however, that the above calculation does not tell us exactly the chamber
which contains a given critical torus fibre. In fact, such a chamber can vary if we change the
Kähler parameter A,B and C.
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Nondegeneracy of the critical points of W and the mirror symmetry for the degree 5 del Pezzo.
It is well-known that the quantum cohomology of the degree 5 del Pezzo is semisimple, and
that its rank is 7 (see [4]). Therefore, it suffices to show that all the seven critical points of
the potential W (7.7) are nondegenerate to have Theorem 7.1. The following is an elementary
calculation proving their nondegeneracy, which reflects (and is essentially equivalent to) the
fact that the choice of generic A, B and C in Section 7.2 is to achieve the maximal number
of critical points of W .

Let f := ∂z1W and g := ∂z2W . The nondegeneracy of a critical point of W can be
reformulated as the transversality of the intersection between {f = 0} and {g = 0}. More
concretely, we need to check whether or not dfp and dgp is linearly independent for each
intersection point p (i.e. a critical point of W ). Consider two linear combinations λ1f + λ2g

and η1f+η2g with λi and ηi generic enough in the sense that det

(
λ1 λ2

η1 η2

)
does not vanish

at any p ∈ {f = 0} ∩ {g = 0}. Then it is easy to see that the transversality between {f = 0}
and {g = 0} at p is equivalent to that between {λ1f + λ2g = 0} and {λ1f + λ2g} at p. The
strategy is to find such linear combinations which factor into lower degree polynomials so
that checking transversality becomes a bit simpler.

Going back to our situation, we may begin with

(7.12)
f := z2

1z2 − (A+ C)z2 −Az2
2 +Bz2

1 − C,
g := z1z

2
2 − (B + C)z1 −Bz2

1 +Az2
2 − C

as in (7.8). Recall that

z1f − z2g = (z1 + z2 + 1)(z1(C +Bz1)− z2(C +Az2)).

On the other hand, we have

f + g = (z1 + z2)(z1z2 − C)−Bz1 −Az2 − 2C = 0.

Set α := z1+z2+1, β := z1(C+Bz1)−z2(C+Az2) and γ := (z1+z2)(z1z2−C)−Bz1−Az2−2C.
By the above discussion, a sufficient condition for W being Morse is the transversality between
{α = 0} and {γ = 0} and that between {β = 0} and {γ = 0}. The former can be checked
straightforwardly, whereas the latter involves higher order terms. Similarly to before, let us
introduce new variables λ = Bz1+C

z2
and λ′ = Az2+C

z1
. In these variables, one has

β = (λ− λ′)z1z2

One can freely replace β by λ − λ′, and λ can be taken as a coordinate of {β = 0}.
(λ(z1, z2), λ′(z1, z2)) is singular along some affine plane, which finitely many critical points of
W can easily avoid by choosing generic parameters.

Observe that γ|{β=0} can be rewritten as

(z1 + z2)(z1z2 − C)− λz1 − λ′z2 = γ = (z1 + z2)(z1z2 + 1− λ)

with z1 = C λ+A
λ2−AB and z2 = C λ+B

λ2−AB . Denote the last two factors by γ1 and γ2, respectively.

Finally, the question of W being Morse boils down to ask if 0 is a critical value of γi|{β=0}
for i = 0, 1. From our earlier discussion in Section 7.2, we can actually ignore γ1|{β=0} since
0 is not a critical value for a critical point lying in the domain of definition of W . On the
other hand, (λ2 −AB)2γ2|{β=0} is explicitly given as

−λ5 + λ4 + 2ABλ3 + (C2 − 2AB)λ2 + (C2(A+B)−A2B2)λ+ABC2 +A2B2,

which has five zeroes for generic A, B and C, and hence 0 is not a critical for such A, B and
C.
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