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Abstract 

As strategy research has increasingly recognized the roles of innovation and knowledge 

as drivers of firm- and industry-level outcomes, greater attention has been given to the 

effort to identify relationships among ideas and the distances between knowledge bases. 

In this paper, we develop a methodology that infers the mapping of the knowledge 

landscape based on researchers’ text documents. The approach is based on an unassisted 

machine learning technique, Hierarchical Dirichlet Process (HDP), which flexibly 

identifies patterns in text corpora. The resulting mapping of the knowledge landscape 

enables calculations of distance and movement, measures that are valuable in several 

contexts for research in strategy and innovation. We benchmark demonstrate the benefits 

of our approach in the context of 44 years of USPTO data. 
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I. Introduction  

As strategy research has increasingly recognized the roles of innovation and knowledge as 

drivers of firm- and industry-level outcomes, greater attention has been given to the effort to 

identify relationships among the knowledge sets of economic actors. In this paper, we adapt a 

natural language processing (NLP) technique to develop a novel methodology that infers the 

mapping of the knowledge landscape1 – knowledge areas and the relationships between them – as 

captured in researchers’ text documents of interest. Our goal is to enable strategy scholars to extend 

research topics that benefit from a more comprehensive, flexible, and accessible approach to 

quantifying the relationships between knowledge areas as captured in text documents.   

Strategy scholars have long been using text documents such as patents, academic 

publications, 10k statements and news articles as a paper trail of firms’ knowledge. A method that 

maps the knowledge landscape as captured in such documents enables a more comprehensive 

measurement of distance and movement of the knowledge sets. This benefits numerous research 

topics. How does firms’ knowledge, when compared to that of competitors, influence firms’ 

business and corporate strategy, response to start-up entry, decisions to engage in mergers, 

acquisitions or licensing and the success of those actions (e.g., Tanriverdi and Venkatraman, 2005; 

Makri et al., 2010; Ahuja and Novelli, 2014)? How does the assortment of firms’ knowledge areas 

and the relationships between them influence the evolution of industries (Klepper and Graddy, 

1990; Helfat and Lieberman, 2002; Moeen and Agarwal, 2017)? How do firm characteristics, such 

as size or capabilities, or industry characteristics, such as concentration and evolution stage, 

influence firms’ innovation productivity and the types of innovations produced (e.g., Ahuja et al., 

 
1 We use knowledge and innovations interchangeably. However, the concept of knowledge can be extended to include 

any information an economic actor has. In other words, the method we describe can be applied to map not only 

knowledge directly related to an economic actor’s innovation actions and capabilities, but also any other knowledge 

captured in text documents.   
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2008)? How do characteristics of a market for technologies influence the type of knowledge 

produced (Arora and Gambardella, 2010)? These and similar research questions would benefit 

from empirical measures that are developed from a comprehensive mapping of the knowledge 

landscape.  

To date, research on these topics primarily relies on measures derived either from 

observable indicators of innovation output, such as taxonomies, citations, and keywords, or from 

earlier-stage NLP techniques of pair-wise similarity, namely vector space models such as cosine 

similarity and Jaccard index, and topic modeling such as Latent Dirichlet Allocation (LDA). While 

undoubtedly helpful, these approaches face limitations in their ability to provide a comprehensive 

mapping of the knowledge landscape as captured in documents of interest. For example, curated 

taxonomies face the tradeoff of either being stable and, thus, consistent over time or changing to 

accommodate the evolution of the knowledge space at the cost of classification standardization 

over time. Taxonomies are also socially-constructed, which affects both their accuracy and 

generality (Thompson and Fox-Kean, 2005; Arts et al., 2018; Righi and Simcoe, 2019). Citations 

fare better as markers of knowledge space but they, too, are subject to social processes and 

institutional norms (e.g., Kuhn et al., 2020)2. NLP-based similarity measures address several of 

these limitations (Arts et al., 2018). However, they are most useful in comparing pairs or groups 

of knowledge sets (e.g., Oxley and Sampson, 2004; Sampson, 2007; Furman and Stern, 2011; 

Mindruta et al., 2016; Ranganathan and Rosenkopf, 2018; Vakili and Zhang, 2018; Kelly et al., 

2020).  As a result, they apply best to research questions that do not directly require access to 

observing a flexible mapping of the entire knowledge landscape.  

 
2 For example, Abrams, Akcigit, and Grennan (2018) suggest that a higher volume of citations in patents captures a 

strategic behavior of the filer rather than accurate knowledge flows. 
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In this paper, we extend efforts exploiting NLP techniques to present and share an 

algorithm that analyzes the text of any documents of interest to reveal the structure of relationships 

connecting the knowledge captured in the documents. Specifically, we exploit the ability of 

Hierarchical Dirichlet Processes (HDP) (Teh et al., 2006),3 a topic modeling algorithm, to uncover 

the structure of a collection of text for the specific purpose of constructing a map of the knowledge 

captured in the text. The algorithm can be applied to any corpus of text, including patents, 

academic publications, 10K statements, business press articles, public relations statements, or any 

combination. The output of the algorithm can then be used to develop measures of distance and 

movement in knowledge space as covariates in empirical analysis. The measurement can be done 

at any level of analysis, such as individual, firm, industry or region, and it can trace changes over 

any reference attribute, such as changes over time, geographies or demographic attributes of 

economic actors. For example, capturing changes in diversity of knowledge (i.e., breadth of 

distance) over time is of interest to many studies in strategy and innovation (Cohen and Levinthal, 

1990; Fleming and Sorenson, 2004; Carnabuci and Operti, 2013; Moreira et al., 2018). This 

approach enables researchers to measure changes in knowledge diversity more accurately and 

timely than earlier described techniques because it accounts for distance between all 

contemporaneous knowledge areas at once (Furman and Teodoridis, 2020).  

In developing these techniques, we join others’ efforts to democratize access to frontier 

developments in machine learning (Choudhury et al., 2019; Choudhury et al., 2021) and to data 

that can be applied to the study of several questions of interest in strategy and innovation research 

(Arts et al., 2018; Png, 2019; Kelly et al., 2020; Marx and Fuegi, 2020). To our knowledge, our 

approach is the first open access effort to systematically develop a methodology to map the 

 
3 For a comprehensive review of all topic modeling algorithms, please see Boyd-Graber and coauthors (2017).  
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knowledge space in a flexible manner. Similar efforts, based on similar techniques, have been 

undertaken by two large bibliographic databases: The National Library of Medicine (the PubMed 

Related Articles algorithm) and Microsoft (the Microsoft Academic Graph’s categorization 

schema) (Sinha et al., 2015). In each of those cases, however, the mapping schema is focused on 

a temporal dimension and does not provide access to the data that describes the distance between 

knowledge areas. Further, and most importantly, the two algorithms apply uniquely to the sets of 

documents in their respective databases and hence cannot be applied to other text corpora.  

 

II. How mapping the knowledge landscape can advance strategy research 

Mapping the knowledge landscape enables researchers to develop measures of both 

distance and movement in knowledge space. These measures could be used as either explanatory 

variables for outcomes of interest to management scholars or as the outcome of interest.  

The idea that firms possess different portfolios of knowledge and that doing so has 

implications for firm performance has been central to strategic management since the origins of 

the field (Penrose, 1959). For example, several studies have evaluated the relationship between 

firms’ knowledge overlap and competitive behavior (e.g., Chung and Yeaple, 2008; Ranganathan 

and Rosenkopf, 2014), alliances and acquisitions (e.g., Oxley and Sampson, 2004; Villalonga and 

McGahan, 2005; Cassiman et al., 2005; Mindruta et al., 2016; Ghosh et al., 2016) and innovation 

performance (e.g., Sampson, 2007; Alcacer and Oxley, 2014). Firms’ knowledge and the 

relationship between them have also played key roles in both theoretical models and empirical 

studies of industry life cycles and industry evolution (Klepper and Graddy, 1990; Utterback and 

Suarez, 1993; Klepper, 1996, 1997; Moeen et al, 2020), including employee-firm fit and spin-offs 

(e.g., Agarwal et al., 2016; Kim and Steensma, 2017; Byun et al., 2019). For example, 
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heterogeneity in firm-level knowledge has played particularly important roles in recent analyses 

of industry evolution, including in studies of firm spin-offs (Agarwal et al., 2004) and pre-entry 

experience (Moeen, 2017).  

Strategy and innovation scholars have also investigated firm knowledge production as an 

outcome of interest in its own right. For example, by recognizing the essential tradeoff between 

exploration and exploitation (March, 1991), studies have examined the antecedents of search, 

determinants of the nature of search, and the outputs associated with heterogeneous search 

behaviors (e.g., Tripsas and Gavetti, 2000; Rosenkopf and Nerkar, 2001; Hoang and Rothaermel, 

2010; Caner et al., 2017). Scholars have also evaluated the role of inter-firm connections, including 

both formalized (e.g., mergers and alliances) and informal connections (e.g., ecosystems (e.g., 

Adner and Kupoor, 2010; Gawer et al, 2018; Tandon and Toh, 2021)), in order to understand firms’ 

innovation investments and outputs (e.g., Ahuja, 2000; Makri et al., 2010; Jiang et al., 2011; 

Kneeland et al., 2020).   

By and large, research on these and similar topics has relied on codified, observable 

attributes of knowledge, such as patent technology classes and citations. While these approaches 

enable useful insights, strategy scholars acknowledge their multiple limitations and call for a more 

flexible and accurate mapping of the knowledge space. For example, Makri et al. (2010) note that 

“patent classification schemas […] were developed for another purpose” and that “broad data on 

science knowledge relatedness is difficult to obtain.” Kneeland et al. (2020) note that “research 

that has used prior art citation measures […] suffers from issues of sequential interdependence 

(i.e., you can only cite what has come before you) and biases from patent examiners adding cites 

to patents (Alcacer and Gittelman 2006).” Ghosh et al. (2016) note that developing measures based 

on taxonomies suffers from an “implicit assumption that all classes are equidistant even though 
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distance between classes likely varies both between and within industry,” a sentiment echoed by 

several others (e.g., Sampson, 2007; Caner et al., 2017). Kornish and Ulrich (2011) note that 

studies that envision innovation as search, either in terms of exploration and exploitation (March, 

1991) or NK models (Kauffman, 1993; Levinthal, 1997; Koput, 1997; Rivkin and Siggelkow 2003, 

2007; Knudsen and Levinthal, 2007), struggle with empirical approaches to characterize the 

knowledge landscape.  

We heed these calls by exploiting advancements in NLP techniques to develop an approach 

for mapping the knowledge landscape as captured in researchers’ text documents. In doing so, we 

build on and extend earlier NLP-based developments. These earlier efforts exploited a specific 

attribute of NLP methods, that of enabling measures of pair-wise knowledge similarity. The 

earliest such approach was based on vector space models (Salton et al., 1975), namely algorithms 

that represent text as a vector of its words. Under this representation, pair-wise knowledge 

similarity, as captured in the text, can be computed using standard vector measures such as cosine 

similarity or Jaccard index. Scholars have applied vector space models to compute the similarity 

between various documents such as research papers, patents, and firms' 10-K statements (Hoberg 

and Phillips, 2016; Younge and Kuhn, 2019; Magerman et al., 2015; Arts et al., 2018). For example, 

Krieger, Li and Papanikolaou (2019) calculate Jaccard indexes to compare the similarity of firms’ 

drug development projects. Most notably, Arts et al. (2018) apply this method to calculate a 

Jaccard index of similarity between any two USPTO patents or patent portfolios. However, despite 

its popularity and simplicity, the vector space approach suffers from several drawbacks4 that 

 
4 For example, topic modeling solves the curse-of-dimensionality problem of vector space models (Deerwester et al., 

1990; Lei et al., 2019; Blei et al., 2003; Shahmirzadi et al., 2019) – longer text translates into difficult to 

operationalize high dimension vectors – by projecting the high dimensional terms into a probability distribution of 

topics (Blei et al., 2003; Teh et al., 2006). In other words, instead of attempting to compare bodies of text among 

themselves, topic modeling operates on the premise that there exists a latent structure that describes the text and 

attempts to uncover that structure. 
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prompted scholars to explore a more advanced NLP technique – topic modeling – for calculating 

pair-wise knowledge similarity (e.g., Giorgi and Weber, 2015; Kaplan and Vakili, 2015; Huang et 

al., 2018; Hansen et al., 2018; Iaria et al., 2018).  

We extend the use of topic modeling for capturing pair-wise similarity to mapping the 

knowledge landscape. Specifically, our approach is targeted at exploiting the ability of topic 

modeling algorithms to uncover the latent topic structure of a corpus of text. A few other studies 

have engaged with this feature of topic modeling (e.g., Kaplan and Vakili, 2015; Hansen et al., 

2018; Ghose et al., 2019; Furman and Teodoridis, 2020). Our approach extends and generalizes 

these efforts to a flexible implementation of topic modeling that can be employed to map the 

knowledge landscape as captured in any text documents. This enables developing measures of 

distance and movement – a richer set of attributes than pair-wise similarity. We describe our 

approach in the next section.  

The method has the potential to advance research on frontier topics in strategy and 

innovation, such as the role of heterogeneous firm knowledge in achieving competitive advantage, 

the impact of knowledge distance and knowledge complementarity on the ex-ante probability of 

alliances or acquisitions, as well as their ex-post performance. For example, a more accurate 

measure of knowledge distance could lead to a better understanding of how the knowledge of firms 

relative to that of competitors influences decisions to engage in mergers, acquisitions, or licensing 

events. It can also shed light on how the type of knowledge firms have relative to other incumbents 

influences their competitive strategy and hence facilitates market power or industry fragmentation. 

Related to this, knowledge distance and movement could be used to track the innovation 

trajectories of competitor firms and to ask whether firms that compete closely in particular markets 

benefit more or less by pursuing similar or divergent innovation trajectories or by pursuing a mixed 
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strategy of overlap and distance. The same measures could be used to capture the heterogeneous 

innovation responses to competitive events, such as firm failure, firm entry, or the arrival of a 

breakthrough technology.  

Our method could also help make progress in research on markets for technologies (Arora 

and Gambardella, 2010). A main focus of this literature involves understanding how firms’ 

knowledge sets influence the development of technologies to be traded in the market and the 

success or failure of those transactions. For example, determinants of demand and supply in a 

market for technologies would depend on firms’ knowledge and hence firms’ ability to develop 

the technology internally or successfully integrate it through market transactions, like licensing. 

Thus, being able to measure distance and movement in knowledge space would benefit studies 

preoccupied with understanding the conditions under which markets for technologies exist or not, 

or function well or not.  

Our approach could also be useful in a series of questions associated with strategic human 

capital. Measures of distance and movement in the knowledge landscape can be used to capture 

the distance between and movement among individuals’ and firms’ knowledge bases. These can 

be applied to predict knowledge workers’ mobility patterns, the benefits firms might receive by 

locating near particular knowledge bases, and workers’ exit to entrepreneurship. 

 

III. A topic modeling approach for mapping the knowledge landscape  

III.1. A topic modeling primer  

Topic modeling algorithms are unassisted machine learning techniques that focus on 

uncovering the structure underlying an otherwise unstructured collection of documents. Kaplan 

and Vakili (2015) were the first to introduce topic modeling to management scholars. Because 
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their paper provides a primer on topic modeling, we assume the basics are known to this audience 

and focus on topic modeling characteristics that are directly relevant for our purposes.  

Topic modeling algorithms are probabilistic models that employ a hierarchical Bayesian 

analysis of text (see e.g., Hofmann, 1999; Blei et al., 2003; Buntine and Jakulin, 2004). Specifically, 

topic modeling algorithms analyze the words of documents to uncover latent topics and organize 

documents into categories. The algorithms are unassisted in the sense that they do not rely on a 

priori human labeling of documents, however sparse, but rather construct topics based on analysis 

of original text. The intuition is that of a generative process, where the data are assumed to be 

characterized by a set of observed variables (words in the document) that developed from a set of 

hidden variables (the topic structure). Thus, the concept of “topic” in topic modeling is a 

mathematical construct, “a multinomial over a set of words” (Kaplan and Vakili, 2015, pg. 1441). 

Topics capture words that appear together in the text corpora with a certain probability;5 they are 

not labeled, and they do not necessarily capture categories in the same way humans would envision 

a categorization structure. In their comprehensive review of topic modeling techniques, Boyd-

Graber and coauthors (2017, pg. 8) explain: “For example, a [human-defined topic] might include 

an earthquake in Haiti, whereas a topic model might represent the same event as a combination of 

topics such as Haiti, natural disasters, and international aid.” Thus, a benefit of topic modeling for 

our purposes is that it captures all patterns in the data, even those that might not be ex-ante on 

researchers’ mind. Stated differently, topic modeling generates a comprehensive mapping of 

relationships between ideas in a text corpus.  

 
5 The algorithms exploit patterns of word co-occurrence to infer the set of "hidden" topics, under the assumption that words that 

frequently occur together are more likely to be semantically correlated (Blei et al., 2003; Hofmann, 1999; Barde and Bainwad, 

2017). This helps address, to a certain extent, issues of synonymity and polysemy.   
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Because the set of words comprising a topic represent a latent characterization of the words 

in the text, the topics are influenced by the words in the text corpus. For example, if the text corpus 

is not cleaned of words, such as “and”, “or”, “in”, then topics including these words would be 

generated. This is not wrong in a technical sense, since indeed documents would have these words 

in common, but it is likely uninformative for management research. There are several such 

vocabulary pre-processing steps that users of topic modeling algorithms typically consider. The 

most common include eliminating conjunctions and prepositions, stemming (reducing words to 

their stem root), lemmatization (reducing words to their dictionary form), n-grams (deciding if the 

meaning of n-group of words should be considered together or as individual words), and 

embeddings (learning the meaning of words and groups of words from a similar context).  

In all cases, the main goal of vocabulary pre-processing steps is to ensure the generated 

topics are informative. This is most important if users are generating topics with the aim of 

interpreting the topics afterwards. This is a secondary concern for this paper as we are principally 

interested in capturing distance and movement in the knowledge landscape. In other words, in our 

case, topics are useful in that they provide a mapping of the knowledge space that can inform on 

distance and movement. The more detailed the map i.e., the more patterns (topics) revealed in the 

data, the more accurate the measurement of distance and movement, even if some topics might be 

deemed less informative than others purely from a categorization perspective. A parallel to 

geographical maps is informative: (1) the more detailed a map, the better suited to accurately 

calculate distance and movement in geographical space, and (2) the choice of map type (i.e., “topic” 

type), such as topological, physical, or a combination, does not affect the accuracy of the measures 

even if some “topics” might be viewed as less informative than others from a categorization 

perspective. For example, distance is measured equally accurately in a topological map, a road 
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map or a physical map, even if some would consider a certain map type more intuitive for 

measuring distance. 

A final important characteristic that is worth attention is the number of topics in topic 

modeling. The number of topics generated by a topic modeling algorithm is not equivalent to the 

number of categories describing the text corpus (i.e., the number of distinct bins of document 

types). Stated somewhat differently, if a topic modeling algorithm classifies a corpus of text in 

twenty topics, this does not mean that each document will belong uniquely to one of the twenty 

topics. Instead, documents can be classified by the topic modeling algorithm as belonging to 

multiple topics with each such membership being characterized by a certain probability. The 

probability can be viewed as the weight of belonging to a topic. Thus, the number of distinct bins 

that characterizes the text corpus is equivalent to all realized combinations of weighted topic 

modeling topics. The theoretical lower bound for this number is N combinations of i, where i 

ranges from 1 to N, and N is the number of topics identified by the topic modeling algorithm 

(∑
𝑁!

𝑖!(𝑁−𝑖)!

𝑁
𝑖=1 ). For example, a topic modeling analysis that generates four topics (T1, T2, T3, T4), 

can have documents categorized not only in T1, T2, T3 and T4, but also in {T1, T2}, {T1, T3}, 

{T1, T4}, {T2, T3}, {T1, T2, T3}, {T1, T2, T4},{T1, T3, T4}, {T2, T3, T4} and {T1, T2, T3, 

T4}, to a total of 13 categories. Moreover, this is a lower theoretical bound because the assignment 

to these categories is weighted and the weights range from 1 to 100 (i.e., probabilities of 0.01 to 

1). The realized number of categories is the subset of bins that have at least one document assigned 

to the bin.  As a result, the total number of categories describing a corpus of text is not the number 

of topics identified by the algorithm, but rather a larger number, since topic membership is 

probabilistic, and documents can belong to any combination of topics. 
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III.2. An approach to mapping the knowledge space 

A number of topic modeling algorithms are available, of which LDA is the most popular 

among social scientists (Blei et al., 2003). We depart from this popular choice and select a different 

topic modeling algorithm as the basis of our approach – HDP – which constitutes an extension of 

the LDA algorithm. We select HDP because of its built-in mechanism to identify the optimal 

number of topics (in a mathematical sense) that describe a corpus of text. LDA groups documents 

into the number of topics chosen by the researcher. Placing the choice of the number of topics into 

the hands of the researcher leads to some significant challenges for our set goal. Choosing a 

number of topics that is too large could result in category definitions that are overly narrow, while 

choosing a number that is too small could result in category definitions that are too broad.6 This is 

a concern even if topic assignment is probabilistic. For example, if the optimal number of topics 

is too small, the weights that would otherwise be split between the optimal number of topics would 

be summed up thus obscuring a more granular categorization. Conversely, if the number of topics 

is too large, weights that would indicate assignment to distinct patterns would be further split 

creating the illusion of a more granular categorization. HDP, which can be viewed as a non-

parametric extension of LDA, relaxes this constraint, as the algorithm identifies the optimal 

number of topics that characterize a corpus of text and then assigns documents probabilistically to 

these topics.  

 
6 In the original paper introducing the HDP algorithm, Teh et al. (2016) benchmark the HDP against the LDA. Nevertheless, before 

settling on our proposed approach, we executed several LDA analyses and compared the output with the HDP analysis. The 

generated categories were qualitatively similar. Furthermore, we compared the number of topics generated by the HDP with the 

output of algorithms that scientists use to guide their choice of optimal number of topics in an LDA analysis and found no 

discrepancies. Last, we recorded the run time between these different approaches and found the HDP to run in a fraction of the 

time when compared to the LDA.    
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We modify the off-the-shelf HDP algorithm to output (1) the top 30 words describing each 

topic7, i.e., those assigned the highest probability of describing each corpus of text, and (2) the set 

of topics describing each input text with a probability greater than 0.01. Because the main goal of 

topic modeling algorithms is prediction, the off-the-shelf version of HDP only considers these 

attributes internally and does not present them to the user. Our modification does not change the 

internal processing of the topic modeling – we rely on computer scientists’ expertise – but rather 

adjusts the output of the algorithm to display information of interest to strategy and innovation 

scholars. The final output of our algorithm includes (1) a list of input text IDs, e.g., patent numbers, 

and the probabilities with which each text belongs to the HDP-generated topics (naturally, the 

probabilities add up to 1, thus fully describing the text), and (2) the list of HDP-generated topics 

and the words that describe each topic, along with their respective assigned weights. 

The algorithm can be used to analyze the entire body of text comprising the dataset of 

interest in one go, or separately for subsets of the dataset, split based on certain attributes of interest. 

More specifically, scholars might be interested in measuring movement and distance in knowledge 

space relative to certain reference attributes, such as changes over time, geographies or 

demographic attributes. However, all topic modeling algorithms treat the input text as a one-time 

group for which the latent categorization needs to be revealed. In other words, current algorithms 

cannot automatically track the evolution of topics over a certain attribute by updating the set of 

keywords in each category over time. Scholars have two options to make this possible.  

One approach is to have the entire dataset evaluated by the topic modeling algorithm in a 

single run and then to have the measures of interest constructed relative to the reference attribute 

 
7 The algorithm can be easily adjusted to output more than the top 30 words. However, in our testing, we found that beyond 30 

words the probability of the words describing the text takes very low values, i.e., the information that such words carry is marginal 

at best. 
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of interest. The advantage rests with the consistency of the resulting mapping of the knowledge 

space. The disadvantage is the tall computational requirement. While there is no conceptual limit 

to the amount of text that can be analyzed, the computational requirements, including the 

processing time, increase exponentially with the amount of data.8  

A second, alternative approach for obtaining a mapping over a desired reference attribute 

is to split the data by the attribute, such as by year, or by state, and execute the algorithm for each 

data subset. This approach requires an additional step to connect the resulting sets of topics into a 

knowledge map. To make this possible, we add to our algorithm an optional step that calculates 

the cosine vector similarity between the topics generated by the HDP algorithm over each attribute 

of interest (e.g., yearly HDP topics). Specifically, we employ a weighted cosine similarity 

algorithm where the weights are the HDP-generated probabilities that capture the relevance of 

each word for each topic. This simple vector-space similarity technique works well because the 

words describing each topic do not suffer, by construction, from any of the issues that limit the 

feasibility of vector-space algorithms to produce an informative similarity measure (e.g., 

Deerwester et al., 1990; Lei et al., 2019; Blei et al., 2003; Arts et al., 2018; Shahmirzadi et al., 

2019).  

III.3. Benefits and limitations 

There are four main benefits to our approach when compared with existing methods for 

capturing distance and movement in knowledge space. First, our technique captures changes in the 

knowledge landscape earlier than most other approaches of mapping the space. The benefit is a 

 
8 For example, the application to 44 years of patent abstracts that we include in this paper took an average of three 

weeks for each run of the algorithm using Cloud services. Considering that one might need to execute several instances 

of the algorithm to tune certain parameters, such as vocabulary settings, the run time to obtain the knowledge map can 

easily extend to months of data processing time. Moreover, we find it difficult to even begin to estimate the 

computational requirements for repeating the same process using the full text of the patents, given that the approach 

would increase the size of our dataset several times fold. 
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direct consequence of the logic underlying topic modeling algorithms, that of revealing all patterns 

characterizing a text corpus, including emergent ones. By contrast, many taxonomies are relatively 

stable over time and hence might not change frequently enough to reflect emerging ideas or 

innovation trajectories that are exhausted. Author-assigned keywords, or any other set of keywords 

not pulled from a defined vocabulary, fare better in terms of capturing new knowledge directions, 

but lack structure, may lack consistency across contributors, and may be more subject to gaming. 

Similarly, citations as a method for tracing knowledge linkages (DeSolla Price, 1970; Griliches, 

1990), is subject to the same concerns since measuring movement via citation maps requires some 

form of categorization. As is the case with author-assigned keywords, the selection of backward 

and forward citations is a result of social processes and is subject to strategic behaviors that 

complicate their interpretation. 

Second, our approach facilitates a more accurate measurement of distance in knowledge 

space. Fundamentally, measuring distance requires (1) understanding the degree of similarity 

between different knowledge areas and (2) the knowledge space positioning of economic actors. 

Existing techniques for developing similarity measures help with the former but are not directly 

suited to capture the latter. Taxonomies are relatively weak in inferring the former, but fare better 

in capturing the latter. The mapping of the knowledge space generated by our algorithm provides 

a method that is conducive to reaping the benefits of both worlds. 

Third, mapping the knowledge landscape allows scholars to capture movement in the space. 

To characterize movement, researchers need access to a (1) detailed mapping of the knowledge 

space that is (2) most current and that (3) retains the evolution of the knowledge space to the most 

current version. First, the level of detail is important because it allows researchers to observe even 

small changes in movement. The coarser the classification of knowledge areas, the lower the ability 
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to observe movement. Second, a map that is current facilitates access to more precise changes. 

Classifications that are updated infrequently would not capture contemporaneous information 

about movement in knowledge space. Third, a classification system that does not retain its history 

of changes loses at least some information about movement in the knowledge space.  It is then 

easy to see how taxonomies, citations, keywords and other similar approaches are less likely to 

meet all these criteria when compared to our technique.  

Lastly, a key advantage of our approach is flexibility. The researcher can choose the type 

and amount of data to analyze, the reference attributes and the unit of analysis. The algorithm can 

be applied to any text dataset the researcher deems informative for their topic of interest, including, 

for example, the abstracts or full text of patents or academic publications, firms’ 10K statements, 

standard setting documents, public relations statements, court opinions, and business press articles. 

Moreover, there is no restriction in combining these datasets. For example, one might want to 

analyze the innovation portfolio of firms, comprised of academic papers and patents, or the 

strategy of firms captured in public relation statements and business press articles, or firms’ 

attempts to secure intellectual property as captured in standard setting documents and patents. 

Other approaches for capturing firms’ knowledge are usually restricted to one type of data. For 

example, taxonomies do not classify patents and academic papers together and citations between 

academic papers and patents are just starting to be systematically documented (e.g., Marx and 

Fuegi, 2020). Moreover, the technique we describe allows to trace changes over any reference 

attribute, such as changes over time, geographies or demographic attributes of economic actors, 

and at any level of analysis, such as individual, firm, industry or region.  

In considering how to engage with our technique, it is also important to keep in mind that 

it is not superior to all other approaches of capturing knowledge attributes in all instances. In some 
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cases, fields are relatively well-defined and taxonomies can form the basis for inquiry about 

distance and movement in knowledge space. For example, the internationally created and maintain 

US patent classification schema, the Cooperative Patent Classification (CPC), provides a detailed 

mapping of the knowledge space as captured in the text data of patents, even if limitations remain 

(e.g., Arts et al., 2018; Righi and Simcoe, 2019). We advise researchers to consider the benefits of 

our method in the context of their research topic. Moreover, the advantages of our technique are 

contingent on the type of available data. The text can reveal information about the knowledge of 

economic actors in so far it reflects that knowledge. For example, scholars have lamented the 

limitations of patents (e.g., Pakes and Griliches, 1980; Griliches, 1990) and academic publications 

(Nelson, 2009) as paper trails of innovation. The amount of available data is also relevant. First, 

like many other NLP techniques including vector space model, topic modeling does not perform 

well with short and sparse text data (Popescul et al., 2001; Cheng et al., 2014; Puniyani et al., 

2010); it is difficult to infer robust patterns when the available information represents the topic of 

interests sparingly. Second, increasing the amount of data is not sufficient. The data needs to be 

relevant. A lot of text that captures relatively redundant information about actors’ knowledge bases 

does not support uncovering information about patterns not captured in the data. 

III.4. A step-by-step guide to implementing our algorithm 

 We provide a step-by-step guide on how to implement our technique. In the next section, 

we follow the steps to benchmark and demonstrate our algorithm using patent data.  

Step 1: Select the text corpora in line with your research goals  

Before employing our technique, it is important to ask if the benefits the approach brings, 

as listed above, are relevant in the context of your topic of interest. The consideration is akin to 

selecting the most appropriate regression model in quantitative studies. Just because several are 
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available, with some based on newer techniques than others, it does not mean the most recent or 

the most novel approach is the most relevant. Moreover, the choice of technique does not need to 

be exclusive. The HDP-based approach can be used in conjunction with other techniques to 

develop several measures of concepts of interest, each with its own advantages and disadvantages, 

but collectively stronger.   

If our technique is deemed appropriate for the research topic, the next step is to select the 

data type. As we discussed in the previous section, our technique could be applied to any text data 

and any combination of text data. However, even if our algorithm accommodates such an approach, 

the choice of data rests with the researcher who has the expertise to judge the fit between various 

dataset options and the research topic of interest. Choices of bin split, such as by year or by state, 

and unit of analysis, such as firm or region, are part of this step.  

For example, in Furman and Teodoridis (2020), we applied our algorithm to 14 years of 

academic publications and conference proceedings in computer science, electrical engineering and 

electronics with the goal of developing measures that capture changes in the diversity and 

trajectory of researchers in response to automation of certain research tasks. Because we were 

interested in researchers’ choices, we decided that the text data of academic publication abstracts 

was appropriate to trace topics of research. We employed the HDP-based technique because other 

approaches available to us, such as taxonomies and citations, each suffered from limitations in 

their ability to capture the diversity and the trajectory of research. Nevertheless, we included 

measures based on these other data in addition to the HDP-based ones and discussed advantages 

and disadvantages of each. Next, we chose to apply the HDP-based algorithm on data split in 

yearly bins because, at that time, taken together, the text corpus was too large to be analyzed all at 

once and because our focus was on tracing changes in diversity and trajectory over time.   
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Step 2: Process the vocabulary 

We suggest following the standard approach in topic modeling for formatting the input text. 

Specifically, we suggest eliminating all stop words and words with only one character, lowercasing 

all text, and lemmatizing the words from their inflected forms. We suggest lemmatization instead 

of stemming because, unlike stemming, lemmatization performs morphological analysis of the 

words and thus brings context to the lemma (Singh and Gupta, 2017).9  

More advanced vocabulary processing steps could be taken, however, as previously 

explained, are not crucial if the focus is on obtaining a mapping of the knowledge space as captured 

in your text document, rather than on interpreting the generated topics. The more advanced steps 

depart from a bag-of-words assumption, where all words are considered equidistant from one 

another in terms of meaning, to account for the linguistic context. There are two such techniques: 

n-grams and embeddings. N-grams allow the algorithm to distinguish between words that have a 

certain meaning when taken together and another when considered separately. It is common to 

focus on bigrams, namely on groups of two words that have a meaning distinct from that of each 

of the words separately. Embeddings take the goal of capturing nuanced meaning one step further 

by considering the meaning of words in context. The topic modeling is trained to learn the context 

from a training dataset of text that uses words in a similar manner as the text to be analyzed. For 

example, a popular approach is to use a Wikipedia embedding if the text to be processed is 

considered to use the English language in a similar manner with the Wikipedia articles. Technically, 

an embedding is thus a special type of word representation where the words that appear frequently 

together are considered to be related or similar in meaning. With rapid advancements in computer 

 
9 Stemming algorithms reduce words to their stems. For example, stemming could reduce each of the words ‘signals,’ ‘signaling,’ 

and ‘signaled,’ to the same stem, ‘signal.’ Lemmatization resolves words to their dictionary form. For example, lemmatization 

could reduce ‘am,’ ‘are,’ and ‘is,’ to ‘to be.’ Stemming is simpler because it typically involves simply cutting off suffixes and 

conjugations, whereas lemmatization requires additional computational linguistics to recognize and resolve parts of speech as well 

as other linguistic nuances.  
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science, embedding such as the Wikipedia one, are available off the shelf. More advanced users 

can also train their own embeddings.  

Step 3: Generate the topics and the document membership data for each HDP bin 

Once the vocabulary pre-process decisions are made and implemented, the modified HDP 

algorithm we describe can be executed. We follow best practices and suggest the 1,000 iterations 

built-in stopping rule (Boyd-Graber et al., 2017; Mimno and Blei, 2011). More advanced users can 

adjust the stopping rule based on their needs. Regardless of the chosen stopping rule, we suggest 

checking the algorithm’s performance by plotting the model likelihood and number of identified 

topics per number of iterations. These are the classic performance metrics used by HDP specialists 

(Boyd-Graber et al., 2017).10 The plots indicate how the likelihood metric and the algorithm-

identified number of topics change with each iteration. A good point to stop iterating is when the 

plots show a relatively flat line, namely no more changes in the likelihood metric and in the 

algorithm-identified number of topics. This convergence of the likelihood metric and that of the 

number of topics indicates that the algorithm performance is optimized, and the optimal number 

of topics is identified (Boyd-Graber et al., 2017). Once completed, the algorithm outputs the list 

of topics and the probabilistic topic membership data for each input text document.   

Step 4: Generate measures 

The ultimate goal of the topic modeling method we describe is to construct measures that 

can be used as covariates in causal or correlational empirical analysis. These measures can be 

constructed at any level of analysis, as needed. For example, the HDP output data can be used to 

calculate measures of industry concentration or firm knowledge diversity, such as the Herfindahl-

 
10 The likelihood estimates how likely the model can describe the data, given the current model parameters.  
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Hirschman index, the Euclidean distance and the Gini index. Researchers can devise any other 

measures as it fits the topic of their inquiry.  

 

IV. Algorithm benchmarking and benefits 

IV.1. HDP on patent data 

To benchmark and demonstrate the algorithm’s benefits, we apply it to 44 years of USPTO 

utility patents, from 1976 to 2019, and share the resulting data. This yields 5,871,621 patent records 

analyzed through our algorithm. We explain the patent application and our rationale for focusing 

on patent data to benchmark and demonstrate the benefits of our algorithm by following the step-

by-step guide above.  

Step 1: Select the text corpora in line with your research goals  

Our main goal is to demonstrate that our algorithm performs as claimed. We focus on 

patents because the data provide two advantages towards this goal. First, patent data are a widely 

used paper trail of knowledge production in studies of innovation, strategy and entrepreneurship 

research, whose value and limitations have been extensively documented. Second, patents are 

categorized using a carefully curated taxonomy, the Cooperative Patent Classification (CPC) 

schema, that is frequently updated to reflect changes in the patent knowledge space;11 following 

each update, the patents are re-categorized as needed. This limits some typical disadvantages of 

taxonomies, namely classification standardization over time at the cost of delayed integration of 

new knowledge trajectories, but not all. Specifically, the limitation of equidistance assumption 

between classes persists in the CPC taxonomy (e.g., Ghosh et al., 2016). We exploit this variation 

in limitations to benchmark our algorithm and to demonstrate its benefits.  

 
11 https://www.cooperativepatentclassification.org/faq “How often is the CPC scheme expected to be revised? 

It is expected that there will be multiple revisions in a year. A multiyear plan will be established beforehand.” 

https://www.cooperativepatentclassification.org/faq


 23 

In the previous section, we listed four benefits of the HDP approach. The patent application 

helps demonstrate the first three; the fourth one is intuitive and follows consequently. Specifically, 

if our approach indeed captures emergent trends, then it should yield a knowledge map that is 

strongly correlated with the CPC-based one, given that the CPC team painstakingly tracks and 

documents emergent trends. At the same time, our approach should capture more accurate 

information about distance and movement in the knowledge space because the CPC considers 

patent classes to be equidistant, whereas our approach captures degrees of similarity. The effect is 

likely not large given the extensive classification effort. Rather, we anticipate observing it in 

situations that mechanically lead to higher measurement noise driven by the equidistance 

assumption. 

We run our algorithm on patent abstracts. Although there is no conceptual limit for 

extending to the full patent text, the limitation is computational. Computational requirements 

increase exponentially with the amount of text data. We follow prior research, which indicates that 

patent abstracts carry important information about the knowledge contained in patents, albeit not 

without limitations (e.g., Stuart, 2000; Arts et al., 2018). We apply the algorithm to the entire 

corpus of patent abstracts, from 1976 to 2019. We follow this approach because we want to obtain 

a topic-based mapping of the knowledge space that is conceptually comparable with the CPC 

schema, which also maps the entire corpus of patents.  

Step 2: Process the vocabulary 

First, we follow the standard suggested approach described above for formatting the text 

of the patent abstracts and eliminate all stop words and words with only one character. We also 

lowercase all abstract text, and we lemmatize the words. Second, we move from a bag-of-words 

assumption and implement a bigram approach. We follow the guidance of a large body of work 
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that sets to improve on the patent classification techniques that highlight the benefit of bigrams in 

this particular context (D’hondt et al., 2013). 

Step 3: Generate the topics and the document membership data for each HDP bin 

We apply the HDP algorithm to the resulting collection of processed yearly patent abstracts 

and obtain as output the list of 77 HDP-generated topics and the words that describe each topic, 

along with their respective assigned probabilities. We use the built-in stopping rule of 1,000 

iterations. To ensure the stopping rule is optimal, we plot the likelihood metric and the number of 

algorithm-identified topics per number of iterations (Figures 1a and 1b). The shape of the plotted 

curves suggests convergence at 1,000 iterations.  

While, as discussed, the resulting collections of words comprising topics differ from what 

we might expect from a categorization system, it is good practice to check that the topics are, by 

and large, relatable. We manually check our 77 topics to confirm relatability. To demonstrate, we 

include two examples of patent abstracts and their 3-digit CPC categorization alongside their 

assigned HDP topics. Figures 2a and 2b provide the examples. First, it is important to note that, in 

both cases, the probabilities add up to one, and thus fully describe the patents across the different 

topics that characterize the latent structure of the patent corpus. Second, in both cases, the HDP-

assigned topics intuitively align with the 3-digit CPC classification of the patents.  

Step 4: Generate measures 

The intended goal for the HDP generated data is to develop covariates for empirical 

analysis. We choose to focus on a measure of firm-level diversification given the widespread 

interest in the role of diversification among management scholars. As such, we calculate a yearly 

measure of diversity of knowledge at the assignee level.12 We define diversity as the breadth of a 

 
12 We only focus on assignee type "US Company or Corporation" and "Foreign Company or Corporation", 

excluding individual assignees and governments. 
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knowledge portfolio at each point in time i.e., the set of knowledge topics tackled at a given point 

in time. We calculate the diversification measure as a yearly spread of patent innovations across 

topics, as identified by the HDP algorithm. Specifically, we calculate the Herfindahl-Hirschman 

index (HHI) across the HDP identified topics and subtract it from one. For each assignee, we first 

calculate the weighted number of patents in each HDP identified topic in each year, where the 

weights equal the HDP-generated probability of each patent belonging to the topic. Then, we 

divide the resulting number by the assignee's total number of patents in each year to obtain the 

weighted yearly share of patents across the HDP identified topics. We use these shares to calculate 

the HHI. Last, we subtract the HHI from one to obtain the index of diversification. The approach 

to subtract from one is a mathematical convenience that allows us to interpret the resulting index 

as one that increases with the level of diversification, since higher values of the HHI indicate an 

increase in concentration of knowledge topics. We chose to focus on the Herfindahl-Hirschman 

because is a widely used index in strategy, innovation and entrepreneurship research (Cool and 

Dierickx, 1993; Byun et al., 2018).     

IV.2. Algorithm performance and benefits  

We compare the HDP-based diversification measure with an equivalent one calculated 

using 3-digit CPC patent classes. To obtain the CPC-based diversification index, we use a similar 

approach as above to calculate the HHI across CPC patent classes, at the assignee-year level. 

However, because the CPC assumes classes are equidistant, we also assume equally spread shares 

of patents across classes for patents assigned to more than one CPC 3-digit class.  

We take two main steps to benchmark and demonstrate the benefits of our algorithm. First, 

we show that the HDP- and CPC-based diversification measures are correlated. Table 1, column 

1 shows the correlation. We estimate a linear model with assignee fixed effects and robust standard 
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errors clustered at the assignee level, since we are interested in within-assignee correlations 

between the two diversification measures.  

Second, we show that the strength of the correlation varies were expected. Specifically, the 

equidistance assumption of the CPC taxonomy means that the lower the number of patents of an 

assignee, the higher the likelihood that the diversification index is over or underestimated. This is 

a mathematical consequence of the HHI formula. Thus, if our approach is better equipped to 

capture the distance in knowledge space between patents, then we should see a higher discrepancy 

between the CPC-based diversification index and the HDP-based one for assignees with a lower 

number of patents, when compared with assignees with a relatively higher number of patents. We 

show evidence of these effects in Table 1, columns 2 and 3. Specifically, we focus on assignees 

with a count of patents in the 90th percentile of the distribution (column 2) and in the 99th percentile 

(column 3). We find that the CPC-based diversification measure overestimates the level of 

diversification of assignees with few patents, relative to assignees with a larger number of patents, 

as evidenced by the coefficients of the interaction terms. Specifically, the interaction term is higher 

in column 2 (p-value=0.000) then in column 3 (p-value=0.000), namely when we employ a stricter 

cut-off for assignees with many patents. In other words, the larger the number of patents an 

assignee has, the lower the likelihood that the equidistance assumption of the CPC taxonomy 

mechanically miss-estimates diversification, and hence the closer to 1 the estimated correlation 

between the two diversification measures; a correlation of 1 would denote that the CPC- and HDP-

based indexes are perfect substitutes. The result is robust to any other cut-off points for 

distinguishing between assignees with fewer versus more patents.  

To further demonstrate the benefits of our algorithm, we exploit another source of variation 

where the equidistance assumption might be playing a role in mechanically over- or under-
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estimating diversity. In some industries, patents that are classified in two or more 3-digit CPC 

classes are, in fact, closer or further away in knowledge space than the 50-50 split implied by the 

equidistance assumption of the CPC-taxonomy. It is then possible that the magnitude of the 

correlation between the CPC- and the HDP-based diversification measures might vary across 

industries. To show evidence of these effects, we take advantage of the dataset provided by Kogan 

et al. (2017), which matches the USPTO patent database to the CRSP/Compustat database. We 

merge our dataset with the Kogan et al. (2017) data using the unique patent identifiers to link our 

assignee-level diversity measures with the CRSP/Compustat’s permanent company identifiers. We 

then retrieve the Standard Industry Classification (SIC) code for each assignee from the 

CRSP/Compustat database. We focus on the SIC because the 2-digit SIC codes provide a more 

granular categorization than the 2-digit North America Industry Classification (NAICS) schema, 

which is also available in the CRSP/Compustat data. Our goal is to evaluate the possibility that 

there is heterogeneity in the correlation between the CPC- and HDP-based diversity measures. The 

higher aggregation level of the 2-digit NAIC codes means less of an opportunity to observe the 

presence of such heterogeneity. Nevertheless, because our data includes NAICs codes, we are able 

to confirm similar patterns across industry classification systems, as expected. Certainly, the 

patterns we observe need to be interpreted with care given that the statistical power for across-

industry estimates decreases with increases in the level of granularity of industry classification 

codes (e.g., from 2-digit NAICs to 3-digit NAICs).  

In Table 2, we show evidence of variation in the correlation strength between the two 

diversification measures using 2-digit SIC codes. As before, we estimate a linear model with 

assignee fixed effects and robust standard errors clustered at the assignee level. We restrict the 

estimation to SIC codes with a number of observations above the 25th percentile; as mentioned 
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previously, within-industry estimations with few observations have a high sampling variance and 

hence lack statistical precision. The restriction reduces the number of observations from 53,193 to 

43,360, and the number of 2-digit SIC codes from 67 to 12; clearly our data is not sufficient to 

provide robust estimates for those industry codes with observations below the 25th percentile. 

Table 2, column 1 shows results restricted to industry codes with a number of observations above 

the 25th percentile and column 2 shows results restricted to industry codes with a number of 

observations above the 50th percentile. As expected, there are industries where the CPC-based 

diversification index is overestimated, such as SIC 28 “Chemical and Allied Products” and others 

where the index is underestimated, relative to the HDP-based index, such as SIC 35 “Industrial 

and Commercial Machinery and Computer Equipment.” There are also industries where the two 

indexes capture similar levels of diversification, such as SIC 13 “Oil and Gas Extraction”, SIC 20 

“Food and Kindred Products” and SIC 33 “Primary Metal Industries.” Of all, and within the 

bounds of our data sample, SIC 28 seems to exhibit the highest and most persistent discrepancy. 

Figure 3 shows plots of the two diversification indexes for several firms categorized under SIC 28. 

In all cases, the HDP-based index exhibits similar yearly patterns as the CPC-based index, but at 

a lower value. Intuition suggests that the effects might be driven by drug and other chemical 

developments that have practical applications to a wider set of areas. For example, Figure 4 shows 

the CPC and HDP classification of a Pfizer Inc patent that introduces chemical substances that are 

“antibacterial agents and agents for promoting growth in farm animals.” The patent is classified in 

two 3-digit CPC classes - C07D “Heterocyclic Compounds” and A23K “Fodder.” Mechanically, 

the HHI index formula gives equal weights to the two CPC classes. However, the patent is clearly 

more about the chemical substance, i.e., CPC class C07D, then about growth in farm animals i.e., 

A23K. Our method captures this difference as demonstrated by the weights assigned to the two 
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topics describing the patent. The first topic, the one describing the chemical substance, and hence 

the equivalent to the C07D classification, is given a weight of 0.89. The second topic, the one 

describing the farm animal connection, and hence the equivalent to the A23K classification, is 

given a weight of only 0.11.  

It is important to note that, through this exercise, our goal is not to sharply identify all areas 

where the HDP-based diversification index might be different in magnitude from the CPC-based 

one. Nor is our main goal to improve upon the CPC classification system. Rather, we conduct 

comparisons between the HDP- and CPC-based approaches to benchmark and demonstrate the 

benefits of the HDP method. The CPC classification is well documented, and the patent system as 

a paper trail of knowledge is well understood, thus allowing us to observe if our HDP-based 

approach behaves as expected, where expected. The highest return to using the HDP-based method 

comes from applying the algorithm to text corpora that lack a robust classification system, thus 

uncovering knowledge patterns that were otherwise hidden to the researcher.  

 

V. Conclusion 

In this paper, we describe a topic modeling-based algorithm that helps map the knowledge 

space as captured in text documents. This enables researchers to measure distance and movement 

in the knowledge landscape in a more flexible and comprehensive manner. We apply our method 

to 44 years of patent data and compare the HDP approach with the established and carefully curated 

CPC taxonomy, to benchmark our method and to demonstrate its benefits.  

The approach we describe is not the first to leverage text data to map the knowledge space.  

Indeed, curated taxonomies have been useful in this regard for quite some time. Scholars have also 

made use of keywords and citation linkages. Because all these approaches suffer from limitations, 
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more recently, research in strategy and innovation has begun to exploit NLP methods such as 

vector space models (e.g., cosine similarity, Jaccard indexes) to reflect the similarity between ideas 

or sets of ideas. These are particularly good at capturing similarity between two bodies of text i.e., 

the distance between two bodies of text, but face greater challenges in mapping the entirety of a 

relevant knowledge space.  The HDP-based algorithm that we introduce and describe in this paper 

builds on and extends these efforts to a flexible approach that can be applied to any corpus of text. 

Along with LDA, HDP belongs to a family of probabilistic topic models that can uncover the 

structure underlying an otherwise unstructured collection of documents. Whereas LDA requires 

that researchers calibrate its operation by specifying the number of topics into which a corpus of 

text should be categorized, HDP determines the optimal number of categories from the corpus 

itself and probabilistically assigns documents to those categories. Unlike human-generated models, 

it adjusts category boundaries as the corpus of text updates. 

While our work in this paper has focused on a relatively classic level of aggregation – firm-

year –, the approach is sufficiently flexible to be applied to different other levels of analysis. For 

example, the algorithm can be used for both broad sources of text (e.g., the entire patent corpus) 

or narrower sources (e.g., specific time periods, fields, or subfields), and it can be applied to trace 

changes over time (e.g., month, year, seasons), by geographies (e.g., cities, counties, states) or by 

other demographic attributes (e.g., gender, ethnicity, age).  

Once applied to a body of text, our approach can be used to describe distance and 

movement of ideas in knowledge space, measures that benefit several research questions of interest 

to management scholars. For example, in Furman and Teodoridis (2020), we successfully apply 

the same techniques to a large body of academic papers to evaluate the role of automating research 

technologies in influencing the rate and direction of academic research, an important topic of study 
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that has been lagging due to difficulties of measuring changes in the direction of innovation. Also,  

Lu (2020) applies these techniques to evaluate the impact of an innovation policy targeted at 

increasing attention to a certain area of research on alternative research lines, with implications for 

the socially optimal diversity of research (Arrow, 1962; Scotchmer, 1991; Acemoglu, 2012). His 

effort extends frontier papers on this topic that are limited in their ability to capture implications 

for changes in attention to research trajectories.  

More broadly, our paper adds to similar efforts to democratize access to tools and 

techniques that enable more nuanced measures of innovation activity, such as Arts et al. (2018) 

that explore patent similarity using a Jaccard index and share the code that enables users of USPTO 

data (from 1976-2013) to measure the similarity between any two patents or any two groups of 

patents. Our algorithm enhances such efforts from at least two broad perspectives. First, we apply 

HDP, a probabilistic topic model that better addresses the issues of dimensionality, synonymy and 

polysemy, and has a more realistic assumption about the distribution of words. We also include 

lemmatization, a step that helps the algorithm characterize the relationship between documents 

more accurately. Second, while efforts such as Arts et al. (2018) focus on applying NLP techniques 

to measure similarity between text documents, our main objective in this study is to exploit the 

unique advantage of topic modeling algorithms in uncovering the hidden topics that characterize 

a corpus of documents. This unique advantage of topic modeling algorithms allows us to make 

progress in addressing a central yet challenging broad issue in strategy and innovation: measuring 

changes in knowledge trajectories. Finally, because the approach we describe can be applied to 

other information gleaned from texts generated by corporate R&D, published statements, or 

corporate documents, product announcements, trade journals, or other sources of text that 

characterize firms’ knowledge bases, it can help develop a more complete picture of a 
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technological landscape. Available techniques based on taxonomies, keywords, or citations do not 

immediately, or at all, extend to these other data sources. Our technique can generate comparable 

measures across such varied data sources and even based on combinations of such datasets.  
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Figure 1a. HDP patent implementation – likelihood metric  

 
 

Figure 1b. HDP patent implementation – algorithm-identified number of topics  
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Figure 2a. Example of HDP mapping of a patent abstract  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

antenna 0.031 

frequency 0.024 

wave 0.012 

couple 0.009 

conductor 0.007 

resonator  0.007 

transmission 0.006 

filter 0.006 

…  

  

        

   

   

    

 

 

 

 

 

 

        

Width-tunable single-frequency fiber laser light source for coherent 

optical orthogonal frequency division multiplexing system  

A width-tunable single-frequency fiber laser light source for 

coherent optical orthogonal frequency division 

multiplexing system including a chirped fiber grating with 

high reflectivity, a high gain optical fiber, a chirped fiber 

grating with low reflectivity, a single-mode semiconductor 

pump laser, an optical wavelength division multiplexer, an 

optical coupler, an optical circulator, and a tunable optical 

filter module is provided. The chirped fiber grating with low 

reflectivity and the chirped fiber grating with high 

reflectivity together serve as a front cavity mirror and a back 

cavity mirror of a resonant cavity to realize laser oscillation. 

After a laser with broad spectrum output from the optical 

wavelength division multiplexer is split by the optical 

coupler, a part of the laser passes through the optical 

circulator to enter the tunable optical filter module. A 

wavelength corresponding to any nominal center frequency 

stipulated by the ITU-T is selected by the tunable optical 

filter module, with a 3 dB spectral width of less than 0.1 nm, 

and is then injected back into the resonant cavity via the 

optical circulator and the optical coupler, and the resonant 

cavity is subjected to a self-injection locking. 

 

Patent ID: 10003167 

Jun 19, 2018 

Topic Distribution 

0.83 

0.14 

0.01 

light 0.111 

optical 0.069 

source 0.027 

laser 0.020 

fiber 0.015 

wavelength 0.013 

radiation 0.012 

emit 0.010 

reflect 0.009 

…  

        

   

   

    

 

 

 

 

 

 

        

HDP topics 

value 0.058 

measure 0.021 

rate 0.013 

calculate 0.012 

threshold 0.011 

…  

  

  

  

  

        

   

   

    

 

 

 

 

 

signal 0.151 

circuit 0.030 

digital 0.017 

generate 0.016 

amplifier 0.006 

…  

  

  

  

  

        

   

0.02 

CPC classification: H01S “Devices using the process of light amplification by stimulated 

emission of radiation [laser] to amplify or generate light; devices using stimulated emission of 

electromagnetic radiation in wave ranges other than optical”, H04B “Transmission”, and H04J 

“Multiplex communication” 
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Figure 2b. Example of HDP mapping of a patent abstract  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

composition 0.034 

polymer 0.023 

comprise 0.018 

compound 0.018 

acid 0.007 

catalyst  0.007 

organic 0.007 

mixture 0.007 

…  

  

  

        

   

   

    

 

 

 

 

 

 

        

Conditioning biomass for microbial growth 

The present invention relates to methods for 

improving the yield of microbial processes that use 

lignocellulose biomass as a nutrient source. The 

methods comprise conditioning a composition 

comprising lignocellulose biomass with an enzyme 

composition that comprises a phenol oxidizing 

enzyme. The conditioned composition can support a 

higher rate of growth of microorganisms in a process. 

In one embodiment, a laccase composition is used to 

condition lignocellulose biomass derived from non-

woody plants, such as corn and sugar cane. The 

invention also encompasses methods for culturing 

microorganisms that are sensitive to inhibitory 

compounds in lignocellulose biomass. The invention 

further provides methods of making a product by 

culturing the production microorganisms in 

conditioned lignocellulose biomass.   

Patent ID: 8993267 

Mar 31, 2015 

Topic Distribution 

0.71 

0.27 

plant 0.058 

seed 0.025 

soil 0.013 

tree 0.011 

growth 0.008 

microorganism 0.007 

crop 0.007 

culture 0.010 

leaf 0.005 

…  

        

   

   

    

 

 

 

 

 

 

        

CPC classification: C12N “Microorganisms or enzymes; compositions thereof; propagating, 

preserving, or maintaining microorganisms; mutation or genetic engineering; culture media” 
HDP topics 

system 0.024 

method 0.022 

include 0.016 

base 0.014 

…  
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Figure 3: Examples of CPC- vs. HDP-based diversification index for SIC 28 firms 
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Figure 4. Pfizer Inc. patent example  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

feed 0.115 

scale  0.063 

gauge 0.028 

animal 0.019 

feeder 0.019 

feeding 0.015 

hopper  0.007 

carcass 0.006 

…  

  

  

        

   

   

    

 

 

 

 

 

 

        

1-Alkoxy-1-substituted phenyl-1,3-dehydrofuro[3,4-

b]quinoxaline-4,9-dioxides 

 

1,3-Dihydrofuro[3,4-b]quinoxaline 4,9-dioxides which 

have an alkoxy and a substituted phenyl group in the 1-

position and which are useful as antibacterial agents and 

agents for promoting growth in farm animals. 

Patent ID: 4060523 

Nov 29, 1977 

Topic Distribution 

0.89 

0.11 

CPC classification: C07D “Heterocyclic Compounds” 

A23K “Fodder” 

HDP topics 

group 0.060 

compound 0.045 

alkyl 0.021 

formula 0.014 

substitute 0.013 

derivative 0.012 

hydrogen 0.011 

carbon 

atoms 

0.009 

treatment 0.005 

…  
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Table 1: Correlation between the CPC- and HDP-based indexes of diversification.  

DV= CPC diversification index (1) (2) (3) 

 Overall 
Top patenting assignee 

 (90th percentile) 
Top patenting assignee 

(99th percentile) 

HDP diversification index 0.353 
(0.003/0.000) 

0.212 
(0.003/0.000) 

0.334 
(0.003/0.000) 

HDP diversification index * top patenting assignee  0.567 
(0.005/0.000) 

0.806 
(0.018/0.000) 

Assignee FE Yes Yes Yes 

R-squared 0.031 0.121 0.077 

Observations 843,752 843,752 843,752 
Note: Data is a panel at the assignee-year level, 1976-2019. All models are OLS with assignee fixed effects and robust standard errors. We display the estimated coefficient 

alongside the standard error and the p-value – coefficient (st.error/p-value). 
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Table 2: Correlation between the CPC- and HDP-based indexes of diversification by SIC industry code. 

DV= CPC diversification index (1) (2) 

HDP diversification index 0.647 
(0.030/0.000) 

0.931 
(0.032/0.000) 

HDP diversification index x SIC 13 “Oil and Gas Extraction” -0.015 
(0.049/0.762) 

 

HDP diversification index x SIC 20 “Food and Kindred Products” -0.056 
(0.043/0.197) 

 

HDP diversification index x SIC 28 “Chemical and Allied Products” -0.348 
(0.030/0.000) 

-0.631 
(0.028/0.000) 

HDP diversification index x SIC 30 “Rubber and Miscellaneous Plastics Products” 0.166 
(0.060/0.008) 

 

HDP diversification index x SIC 33 “Primary Metal Industries” 0.019 
(0.059/0.752) 

 

HDP diversification index x SIC 34 “Fabricated metal Products, Except Machinery and Transportation 
Equipment” 

0.241 
(0.055/0.000) 

 

HDP diversification index x SIC 35 “Industrial and Commercial Machinery and Computer Equipment” 0.371 
(0.041/0.000) 

0.087 
(0.041/0.039) 

HDP diversification index x SIC 36 “Electronic and Other Electrical Equipment and Components, Except 
Computer Equipment” 

0.349 
(0.036/0.000) 

0.066 
(0.035/0.064) 

HDP diversification index x SIC 37 “Transportation Equipment” 0.407 
(0.047/0.000) 

 

HDP diversification index x SIC 38 “Measuring, Analyzing, and Controlling Instruments; Photographic, Medical 
and Optical Goods; Watches and Clocks” 

0.284 
(0.037/0.000) 

 

HDP diversification index x SIC 48 “Communications” 0.290 
(0.051/0.000) 

 

HDP diversification index x SIC 49 “Electric, Gas, and Sanitary Services” -0.285 
(0.067/0.000) 

 

Individual covariates for 2-digit SIC (omitted from this table for brevity) Yes Yes 

Assignee FE Yes Yes 

R-squared 0.271 0.256 

Observations 43,360 29,914 
Note: Data is a panel at the assignee-year level, 1976-2019. All models are OLS with assignee fixed effects and robust standard errors. We display the estimated coefficient 

alongside the standard error and the p-value – coefficient (st.error/p-value). 
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