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Alternative splicing occurs in over 95% of protein-coding genes and contributes to the
diversity of the human proteome. Apolipoprotein E receptor 2 (apoER2) is a critical
modulator of neuronal development and synaptic plasticity in the brain and is enriched
in cassette exon splicing events, in which functional exons are excluded from the
final transcript. These alternative splicing events affect apoER2 function, as individual
apoER2 exons tend to encode distinct protein functional domains. Although several
apoER2 splice variants have been characterized, much work remains to understand
how apoER2 splicing events modulate distinct apoER2 activities, including ligand
binding specificity, synapse formation and plasticity. Additionally, little is known about
how apoER2 splicing events are regulated. Often, alternative splicing events are
regulated through the combinatorial action of RNA-binding proteins and other epigenetic
mechanisms, however, the regulatory pathways corresponding to each specific exon
are unknown in most cases. In this mini-review, we describe the structure of apoER2,
highlight the unique functions of known isoforms, discuss what is currently known about
the regulation of apoER2 splicing by RNA-binding proteins and pose new questions that
will further our understanding of apoER2 splicing complexity.
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INTRODUCTION

RNA splicing is the process by which the spliceosome, a large ribonucleoprotein complex, catalyzes
the excision of introns (non-coding regions) and the ligation of exons (coding regions) to form
precursor-mRNAs (pre-mRNAs). After splicing and 5′- and 3′-end processing, pre-mRNAs become
mature mRNAs that can be translated into functional proteins. Alternative splicing diversifies
pre-mRNAs by varying which splice sites are used, resulting in events such as cassette exon
skipping and intron retention. Alternative splicing generates unique transcripts from the same
gene, creating isoforms with altered stability, localization, translation competency or coding
sequence (Hughes, 2006; Li et al., 2007). RNA-binding proteins (RBPs) modulate alternative
splicing by interacting with the spliceosome and binding to cis RNA elements to regulate splice
site usage (Jurica and Moore, 2003; Matlin et al., 2005). The tissue specific expression and
dynamic post-translational modification of RBPs (Grabowski, 1998; Grabowski and Black, 2001;
Iijima et al., 2011) work together with epigenetic modifications to regulate alternative splicing
patterns throughout development and in response to extracellular cues (Vallano et al., 1999;
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Iijima et al., 2011; Allen et al., 2017). In the brain, alternative
splicing of neurotransmitter receptors and synaptic strength
modulators is often regulated by activity, or neurotransmitter
stimulation of synapses (Li et al., 2007). However, little is
known about the regulation and function of individual alternative
splicing events.

Apolipoprotein E receptor 2 (apoER2), gene name lrp8, is
a type I transmembrane protein of the low density lipoprotein
receptor (LDLR) family. ApoER2 regulates cortical lamination
during development (Trommsdorff et al., 1999), interneuron
precursor migration in the rostral migratory stream (Andrade
et al., 2007) and learning and memory in the adult brain
(Beffert et al., 2005; Chen et al., 2005). Compared to other
LDLR family members, apoER2 is enriched in the brain and
displays an unusually high number of alternative splicing events
(Kim et al., 1996; Clatworthy et al., 1999), particularly within
neurons (Zhang et al., 2014). ApoER2 alternative splicing is
enriched in cassette exon splicing events, in which entire exons
are included or excluded from pre-mRNAs. To date, alternative
splicing of apoER2 exons has been shown to modify ligand
binding properties (Brandes et al., 2001), receptor glycosylation
and processing (Wasser et al., 2014) and downstream signaling
(Beffert et al., 2006). Additionally, altered apoER2 alternative
splicing has been implicated in sporadic Alzheimer’s disease
(sAD) (Hinrich et al., 2016), the most common form of dementia.
ApoER2 binds the secreted lipid carrier apolipoprotein E (apoE)
(Kim et al., 1996), of which the ε4 allele is the strongest genetic
risk factor for sAD (Corder et al., 1993; Farrer et al., 1997).
However, how apoER2 alternative splicing becomes altered in
sAD and whether altered apoER2 alternative splicing impacts its
binding to apoE is unknown.

Whereas many reviews have focused on apoER2 function in
brain development and adult synaptic plasticity (Reddy et al.,
2011; Holtzman et al., 2012; Lane-Donovan and Herz, 2017), this
mini-review will describe apoER2 structure and known function
and regulation of apoER2 splice variants in the brain. We will also
highlight key questions for future studies investigating apoER2
alternative splicing.

APOER2 STRUCTURE

Apolipoprotein E receptor 2 structure (reviewed in Dlugosz
and Nimpf, 2018) is modular, and individual exons tend to
encode discrete functional domains (Figure 1). ApoER2 contains
five functional domains characteristic of the LDLR family. The
N-terminal domain contains two types of binding repeats: LDL
receptor type A (LDLa) and epidermal growth factor (EGF)
precursor-like repeats. While mouse apoER2 contains eight LDLa
repeats, analysis of the human LRP8 gene suggests the exon
encoding the eighth LDLa repeat was lost through exon shuffling
(Kim et al., 1998). Therefore in mice, exon numbering is shifted
compared to humans (Brandes et al., 1997).

The second functional domain is the β-propeller domain
(Rudenko et al., 2002) followed by an O-linked glycosylation
domain (Kim et al., 1996; Wasser et al., 2014) and a hydrophobic
transmembrane region. The fifth domain is a short cytoplasmic

tail consisting of a conserved endocytic motif and a 59 amino acid
insert that is not present in other LDLR family members (Kim
et al., 1996; Novak et al., 1996; Brandes et al., 1997; Myant, 2010).

APOER2 SPLICE VARIANTS: FUNCTION
AND REGULATION

Below we discuss what is known regarding function,
expression and regulation of each apoER2 alternative splicing
event (Table 1).

Human and Murine Exon 5 and Murine
Exon 7
Exon 5 (ex5) encodes LDLa binding repeats 4–6. In the murine
brain, ex5 is constitutively excluded (Brandes et al., 2001). In
humans, ex5 is included approximately 50% of the time in
total brain RNA (Kim et al., 1997), yet is absent in RNA
from fetal brain and adult frontal cortex, hippocampus and
cerebellum (Clatworthy et al., 1999), suggesting ex5 splicing is
under spatiotemporal regulation. Functionally, exclusion of ex5
prevents apoER2 from binding α2-macroglobulin (Brandes et al.,
2001), a secreted protein that inhibits proteases and sequesters
ligands (Cater et al., 2019). Murine variants lacking both exons 5
and 7 have lower affinity for β-VLDL in vitro compared to those
lacking ex5 alone (Brandes et al., 2001), which could regulate
lipid trafficking.

Apolipoprotein E receptor 2 also binds secreted glycoprotein
Reelin (D’Arcangelo et al., 1999), which regulates neuronal
migration (Trommsdorff et al., 1999) and long-term potentiation
(LTP) (Weeber et al., 2002). Reelin-apoER2 binding occurs
primarily between the first apoER2 LDLa repeat encoded by exon
2 (Yasui et al., 2010) and the Reelin central fragment consisting
of reelin repeats 3–6 (Jossin, 2004). This affinity can be tuned
both by alternative splicing of apoER2 and proteolytic cleavage
of Reelin. Exclusion of the eighth LDLa repeat, encoded by
exon 7 (ex7), increases apoER2’s affinity for Reelin fragments in
which Reelin repeats 7–8 are cleaved from the central fragment.
The eighth LDLa repeat sterically hinders binding of the Reelin
central fragment, thereby modulating apoER2-Reelin affinity and
subsequent signaling (Hibi et al., 2009).

Interestingly, murine ex7 expression overlaps with neuronal
migration (Table 1), suggesting the eighth LDLa repeat can
modulate network formation or synaptic plasticity (Hibi et al.,
2009). However, this possibility has yet to be tested. As the eighth
LDLa repeat is not present in human APOER2 (Kim et al.,
1998), how this functionally translates to humans is unclear.
The regulatory mechanisms controlling ex5 and ex7 splicing
are also unknown.

Human Exon 6B (Murine Exon 7B)
Human exon 6B encodes thirteen amino acids in the APOER2
extracellular domain including the furin consensus sequence
RXXR. In the murine brain, exon 7B (ex7B) inclusion is only
observed when ex7 is excluded (Brandes et al., 1997, 2001).
In vitro, murine isoforms containing ex7B are proteolytically
cleaved in a furin-dependent manner releasing a soluble
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FIGURE 1 | ApoER2 Exon Structure and Protein Functional Domains. (A) Murine apoER2 protein structure with corresponding exon boundaries (dashed lines) and
protein domains functionally annotated. The eighth LDLa repeat (highlighted in dark blue) is unique to mice. Open Reading Frame (ORF) window indicates number of
nucleotides at the 3′ end of each exon that require nucleotides from the next exon to encode an amino acid in the correct ORF. (B) Human APOER2 structure.

extracellular product. This furin-cleaved product acts as a
dominant-negative inhibitor of full-length apoER2 by binding
and sequestering Reelin, therefore interfering with Reelin-
apoER2 signaling. Although the soluble fragment has yet to be
identified in vivo, it may be present at low concentrations and
contribute to Reelin pathway modulation. Ex7B also appears to
be developmentally regulated, as it is detectable in the cortex but
not the olfactory bulb or cerebellum in murine E15-16 brains
(Koch et al., 2002).

Splicing factor Rbfox2 has been identified as a possible
regulator of murine ex7B splicing. In Rbfox2−/− mice, brain
apoER2 ex7B inclusion is increased compared to wild-type mice,
suggesting Rbfox2 may serve as a repressor of ex7B inclusion.
Five potential Rbfox2 binding sites near ex7B were identified,
of which three are conserved across species (Gehman et al.,
2012). To confirm Rbfox2 directly modulates ex7B inclusion,
binding of Rbfox2 to apoER2 putative binding sites still needs to
be demonstrated.

Human Exon 18 (Murine Exon 19)
Human exon 18 (ex18) encodes the APOER2 cytoplasmic
insert. In adult mice, exon 19 (ex19) is essential for Reelin-
induced enhancement of hippocampal LTP (Beffert et al., 2005).
The encoded cytoplasmic insert binds postsynaptic density
protein-95 (PSD-95) (Gotthardt et al., 2000), which recruits Src
family kinases to phosphorylate NMDA receptor subunits. This

increases calcium conductance, facilitating LTP (Beffert et al.,
2005; Chen et al., 2005). Accordingly, mice constitutively lacking
ex19 (1ex19) demonstrate deficits in hippocampal-dependent
learning. As 1ex19 mice show no neuroanatomical changes, this
learning deficit is likely due to loss of the functional apoER2-
NMDA receptor complex, not altered neuronal migration
(Beffert et al., 2005).

Murine ex19 alternative splicing is also involved in neural
degeneration and aging, as adult 1ex19 mice have fewer
corticospinal neurons and a thinner primary motor cortex.
Interestingly, in response to brain injury, 1ex19 mice are
protected from neuronal death compared to wild-type and
constitutively expressing ex19 (+ex19) mice. This effect is likely
due to ex19-dependent binding of JNK-interaction proteins 1 and
2 (JIP1, JIP2) (Gotthardt et al., 2000; Stockinger et al., 2000),
which activate Jun N-terminal kinase (JNK) and cellular death
signaling (Beffert et al., 2006). Ex19 also interacts with neuronal
adaptor proteins X11α and X11β, officially APBA1 and 2 (He
et al., 2007). ApoER2-APBA1/2 binding facilitates formation of
a protein complex containing BACE1 and amyloid precursor
protein (APP). ApoE-apoER2 binding promotes APBA1/2-
dependent endocytosis of APP and BACE1 leading to Aβ

production (He et al., 2007), a neuropathological hallmark
of AD. However, whether the apoER2-APBA1/2 interaction
affects Aβ production in vivo remains to be determined.
Interestingly, Reelin decreases apoER2-APBA1/2 interaction in
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TABLE 1 | Summary of apoER2 alternatively spliced exons, including their associated in vitro and in vivo phenotypes, spatiotemporal distribution and known splicing regulators.

Alternative Exon Functional domain
affected

In vitro phenotype In vivo phenotype Spatiotemporal
distribution

Splicing regulator Associated publications

Murine and Human
exon 5

LDLa ligand binding
repeats 4–6

Required for
α2-macroglobulin binding
(HEK-293 cells)

Unknown Murine:
– solely 1ex5 detected (total

brain RNA)
Human:

– +/1ex5 detected (total
brain RNA)

– solely 1ex5 detected in
adult frontal cortex,
hippocampus and
cerebellum and fetal brain
(RNA)

Unknown Kim et al., 1997; Clatworthy
et al., 1999; Brandes et al.,
2001

Murine exon 7 LDLa ligand binding repeat
8 (lacking in humans)

– Exclusion leads to lower
affinity for β-VLDL particles
(HEK-293 cells)

– Exclusion confers altered
affinity for reelin cleavage
products (COS7 cells)

Unknown – +/1ex7 both detected
(total brain RNA)

– 1ex7 only at E10 (total
brain RNA)

– +/1ex7 at E12 and E15/16
(total brain RNA)

– E15/16: cerebrum contains
+/1ex7 while cerebellum
and olfactory bulbs soley
express +ex7 (RNA)

– Ex7 cerebrum expression
higher at E15-17 than P10
(protein)

– Ex7 cerebellar expression
increases from E17 to P10
(protein)

– Cerebellum contains higher
ex7 levels than cerebrum at
P10 (protein)

– P10 cerebellum: ex7
expression in internal
granule cell layer but not
external granule layer or
Purkinje cells (protein)

– E17 ex7 expression in
cortical plate, but scarce in
Marginal, Intermediate and
Subventricular zones
(protein)

Unknown Brandes et al., 1997, 2001;
Kim et al., 1998; Koch
et al., 2002; Hibi et al.,
2009
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TABLE 1 | Continued

Alternative Exon Functional domain
affected

In vitro phenotype In vivo phenotype Spatiotemporal
distribution

Splicing regulator Associated publications

Murine exon 7B
(Human exon 6B)

Furin cleavage site – Cleaved in furin dependent
manner (HEK-293 cells)

– Extracellular cleavage
product binds reelin

– Cleavage product
suppresses Dab1
phosphorylation (primary
neurons IP)

Cleavage product remains
undetected in brain

Murine:
– low level inclusion of ex7B

(total adult and embryonic
brain RNA)

– mutually exclusive with ex7
(total brain RNA)

– low level inclusion of ex7B
in E15-16 cerebrum but
none in E15-16 cerebellum
or olfactory bulb (RNA)
Human:

– low level inclusion of ex6B
(total brain RNA)

Preliminary evidence for
Rbfox2

Brandes et al., 1997, 2001;
Koch et al., 2002; Gehman
et al., 2012

Murine exon 16
(Human exon 15)

O-linked glycosylation site;
extracellular cleavage site

– Required for extracellular
cleavage by
metalloproteases (HEK-293
cells and primary neurons)

– Required for receptor sugar
glycosylation (CHO cells
and brain lysate)

– Exclusion alters
hippocampal LTP and CA1
synaptic strength in exon
19 dependent manner
(hippocampal slice
electrophysiology)

Murine:
Constitutive exclusion
leads to:

– increased brain apoER2
mRNA and protein levels

– increase in hippocampal
dendritic spines

– impaired fear acquisition
(context and cued fear
conditioning task)

– augmented glutamate
receptor expression

Human:
– +/1ex15 both detected in

adult frontal cortex,
hippocampus and
cerebellum and fetal brain
(RNA)

Unknown Clatworthy et al., 1999;
Wasser et al., 2014
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TABLE 1 | Continued

Alternative Exon Functional domain
affected

In vitro phenotype In vivo phenotype Spatiotemporal
distribution

Splicing regulator Associated publications

Murine exon 19
(Human exon 18)

Cytoplasmic insert – Binds adaptor proteins
JIP1, JIP2, PSD-95,
APBA1, APBA2 (Y2H
screen, IP)

– Required for reelin-induced
LTP in hippocampus
(hippocampal slice
electrophysiology)

Murine:
Ex19 inclusion lower in
aging and amyloid mouse
model hippocampus
(semi-qRT-PCR)
Constitutive exclusion
confers:

– deficits in hippocampal
dependent learning (fear
conditioning/associative
learning)

– decreased number of adult
corticospinal neurons

– decreased thickness of
adult primary motor cortex

– protection from
corticospinal neuronal
death following brain injury
Human:

– Ex18 inclusion is lower in
middle temporal region of
the AD brain
(semi-qRT-PCR)

– Ex18 inclusion associated
with global cognition (linear
regression models)

Murine:
– brain stem cells solely

express 1ex19
– approximately equal
+/1ex19 levels found in
primary neurons, total brain
RNA and hippocampal
RNA

– ex19 confirmed at protein
level (total brain lysate)
Human:

– approximately equal
+/1ex18 levels in adult
middle temporal region,
frontal cortex,
hippocampus and
cerebellum and whole fetal
and adult brains (RNA)

– Moderate evidence for
SRSF1

– Activity regulated

Kim et al., 1998; Clatworthy
et al., 1999; Stockinger
et al., 2000; Gotthardt
et al., 2000; Beffert et al.,
2005; Beffert et al., 2006;
He et al., 2007; Hinrich
et al., 2016

LDLa, Low density lipoprotein receptor class A; HEK-293, Human Embryonic Kidney-293; VLDL, Very low density lipoprotein; IP, immunoprecipitation; LTP, Long term potentiation; Y2H, Yeast-2-Hybrid; qRT-PCR,
quantitative real time-polymerase chain reaction.
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neurons (Minami et al., 2010), suggesting that Reelin and
apoE binding to apoER2 modulates intracellular adaptor protein
interaction and functions.

In humans, ex18 inclusion is positively correlated with global
cognition. AD patients demonstrate lower apoER2 ex18 inclusion
in the middle temporal cortex compared to non-cognitively
impaired patients. Murine ex19 inclusion is also decreased
in the hippocampus of AD mouse model TgCRND8 (APP
carrying Swedish and Indiana mutations) and increasing ex19
inclusion with antisense oligonucleotides (ASOs) can partially
rescue hippocampal-dependent spatial learning (Hinrich et al.,
2016). It is therefore reasonable to hypothesize that apoER2
alternative splicing manipulation could be therapeutically useful
for AD, especially considering the success of other ASOs in
neurodegenerative diseases (Wurster and Ludolph, 2018).

Due to apoER2’s role in memory, understanding ex18 splicing
regulation is critical. Lrp8 contains two putative binding sites in
the flanking 3′-intron of ex18 for serine/arginine-rich splicing
factor 1 (SRSF1) that are conserved across humans and mice.
Knockdown of SRSF1 or application of an ASO targeting
SRSF1 binding sites increases ex18 inclusion, suggesting SRSF1
represses ex18 inclusion (Hinrich et al., 2016). However, it is
unclear whether the ASO-induced increase in ex18 inclusion is
dependent on SRSF1. Periods of activity also regulate ex19 in the
murine brain, with higher inclusion during periods of feeding
and lower inclusion during less active periods (Beffert et al.,
2005). Exactly how regulation occurs during periods of activity
and whether it involves SRSF1 is unknown.

Human Exon 15 (Murine Exon 16)
Human exon 15 encodes the O-linked sugar domain of APOER2,
the site of O- and N-linked glycosylation. This region contains an
extracellular cleavage site for matrix metalloproteinases (MMPs),
like ADAM10, as murine exon 16 (ex16) exclusion prevents
apoER2 cleavage (Wasser et al., 2014). Reelin-apoER2 binding
stimulates MMP cleavage of the receptor followed by a second
intramembranous cleavage by γ-secretase. This releases the
intracellular domain (ICD) which translocates to the nucleus
and activates an enhancer profile necessary for transcription of
learning and memory genes (Telese et al., 2015). As ex16 encodes
the MMP cleavage site, ex16 inclusion regulates the apoER2
proteolytic pathway and likely ICD translocation. However, a
conclusive link between ex16 inclusion and ICD translocation has
yet to be established. Of note, the ICD contains the cytoplasmic
insert encoded by ex19, which could affect enhancer activation.

Constitutive ex16 exclusion (1ex16) confers higher apoER2
levels in the murine brain, both at the protein and mRNA level.
Tandem deletion of ex19 (1ex16/1ex19) in mice exacerbates
this effect (Wasser et al., 2014), suggesting that apoER2 splicing
impacts total apoER2 expression. Precise control of apoER2
expression is critical, as overexpression and knockout lead
to increases and decreases, respectively, in dendritic spines,
suggesting that apoER2 affects synapse formation (Dumanis
et al., 2011). Synaptic apoER2 levels are also post-translationally
regulated by E3 ubiquitin ligase Inducible Degrader of the
LDL receptor (IDOL). Neuronal activity downregulates IDOL,
allowing apoER2 levels to increase and initiate cytoskeletal

remodeling and LTP through induction of the GTPase Rac1.
ApoER2’s binding of JIP1/2 may modulate Rac1 activation as
JIP1/2 also bind Tiam1, the guanine nucleotide exchange factor
that ties NMDAR to Rac1 activation (Gao et al., 2017). While
IDOL ubiquitinates apoER2 within constitutive murine exon 18,
JIP1/2 binds the cytoplasmic insert (Stockinger et al., 2000),
suggesting that alternative splicing may influence this pathway.

Due to elevated apoER2 levels, 1ex16 mice display increased
CA1 hippocampal spine numbers yet weaker synapses.
Tandem exclusion of ex19 exacerbates both phenotypes.
While 1ex16/1ex19 mice show the larger increase in apoER2
expression and spine numbers, it is 1ex16 mice constitutively
expressing ex19 (1ex16/+ex19) that show augmented LTP
compared to wild-type. As this difference can be rescued by
reducing apoER2 expression (Wasser et al., 2014), it is curious
that 1ex16/1ex19 mice do not demonstrate a similar or stronger
LTP response. This is also intriguing given +ex19 mice alone
show no LTP or synaptic strength alterations (Beffert et al., 2005),
suggesting for the first time in vivo that tandem apoER2 splicing
events can have unique synaptic effects. To parse out which
effects depend on ex16 or ex19, a study that compares mice with
individual and double exon manipulations would be beneficial.

Exclusion of ex16 impairs murine fear acquisition, with
the effect again modulated by ex19 inclusion and rescued by
reducing apoER2 levels (Wasser et al., 2014). 1ex16/1ex19 mice
demonstrate increased glutamate receptor subunit expression
of AMPARs and NMDARs as well. This is likely due to the
increased apoER2 protein observed, as apoER2 binds NMDA
subunits extracellularly (Hoe et al., 2006) and increases dendritic
spine numbers (Wasser et al., 2014). The mechanisms regulating
ex16 splicing, and if they co-regulate ex19 splicing, remain
to be determined.

Additional APOER2 Splicing Events
Several additional APOER2 exons are alternatively spliced in
the human brain, such as exon 6 (LDLa repeat 7) and exons
7 and 8 (EGF repeats) (Brandes et al., 1997; Kim et al., 1997;
Clatworthy et al., 1999; Myant, 2010). However, the functional
properties of these mRNAs are unknown. In humans, there is
a 73-nucleotide insertion sometimes included between exons 7
and 8 that introduces a frame-shift and early stop codon and
is observed in the fetal but not adult brain (Brandes et al.,
1997; Clatworthy et al., 1999). These events are also observed
in combination, such as exclusion of both human exons 5 and
6 (Kim et al., 1996) and exclusion of both human exons 5 and
8 (Clatworthy et al., 1999). Despite the identification of these
splicing events over 20 years ago, their effect on apoER2 function
remains to be determined.

APOER2 TRANSCRIPT STABILITY

RNA-binding proteins also affect apoER2 transcript stability.
The RBP SRSF11 is downregulated in aged murine and
primate prefrontal cortex and induces age-associated decline,
partly through modulating apoER2 expression. SRSF11 binds
directly to the 3′-UTR of apoER2, enhancing transcript stability.
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Interestingly, SRSF11 binding also regulates apoE mRNA
stability. ApoE and apoER2 levels modulate JNK pathway
activation and age-related neuronal loss, making SRSF11 a key
RBP in the aging brain (Raihan et al., 2019). It remains to be seen
whether apoER2 alternative splicing is involved in the SRSF11-
apoER2-JNK pathway, although it seems likely as apoER2 ex19 is
required for apoER2-JIP1/2 interaction (Beffert et al., 2006). The
mechanism underlying decreased SRSF11 expression in aging is
also unclear. The roles of SRSF11, SRSF1 and Rbfox2 highlight
how multiple RBPs must be regulated to exert a concerted effort
on apoER2 splicing and expression levels, which are also affected
by apoER2 isoforms themselves.

CONCLUSION AND FUTURE
PERSPECTIVES

Overall, it is clear that alternative splicing modulates apoER2
synaptic function in the adult and aging brain. However, the
function of apoER2 alternative splicing in brain development
is less defined. ApoER2 ex7B, for example, is well placed
to modulate neuronal migration due to its expression
profile (Table 1; Koch et al., 2002) and the importance
of implicated regulator Rbfox2 in cerebellar development
(Gehman et al., 2012). Investigating apoER2 alternative splicing
during development will require precise manipulation of exon
inclusion through techniques such as splice site switching
ASOs, RNA-guided dCas9 (Konermann et al., 2018) and
targeted mouse genetics. Our current understanding of apoER2
alternative splicing is limited by the incomplete spatiotemporal
characterization of each isoform. Future studies evaluating
apoER2 variants must be quantitative, robust and include
multiple time points and brain regions.

Advances in single-cell technology and sequencing have
highlighted the importance of alternative splicing in defining
neuronal subtypes. Recent data from ribosome-engaged
transcript profiling in genetically defined murine forebrain
neurons have revealed that apoER2 alternative splicing may be
partially subtype specific. Additional apoER2 alternative splicing
events were identified, including alternative 5′- and 3′-splice
acceptor sites, intron retention and alternative transcriptional
start sites, suggesting multiple levels of alternative splicing
complexity regulate apoER2 (Furlanis et al., 2019). Traditional
approaches like qRT-PCR can be coupled with electrophysiology
to match cell-type specific firing properties with possible cell-
type specific alternative splicing events. Furthermore, recent
technological advances like BaseScope ultra-sensitive in situ
hybridization (Erben et al., 2018) enable isoform localization

in vivo. This level of cell-type specificity must become a pillar in
the splicing field to truly grasp alternative splicing intricacy.

Establishing cell-type alternative splicing patterns will also
help identify RBPs that regulate apoER2 splicing events in
those subtypes. Numerous technologies are available to identify
apoER2 RNA-RBP interactions, often incorporating unbiased
mass spectrometry (Spiniello et al., 2019). Beyond the effect
of RBPs on alternative splicing of individual apoER2 exons,
regulatory pathways and epigenetic factors modulating RBPs
are another layer of complexity that must be understood.
Furthermore, human alternative splicing regulation must be
investigated dynamically, likely in stem cell-derived induced-
neurons (Zhang et al., 2013).

Moving forward, the role of synaptic modulators like apoER2
will only be understood in physiological and disease states
once distribution, function and regulation of all their isoforms
is defined. From there, perhaps targeted manipulation of the
splicing code can provide future therapeutic interventions. ASOs
have shown therapeutic efficacy in correcting pathogenic splicing
deficits, such as Nusinersen 1 in spinal muscular atrophy
(Wurster and Ludolph, 2018). Interfering with the spliceosome or
splicing factors themselves using small molecules offers another
potential intervention point, although less specific. This strategy
is being utilized in cancer research and has helped define splicing
regulatory pathways (Effenberger et al., 2017). Overall, defining
the splicing code for both apoER2 and other synaptic proteins
is the next frontier for understanding how the brain develops,
matures and ages.
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