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Abstract

DYNAMIC PROGRAMMING INSIGHTS FROM PROGRAMMING CONTESTS

Samantha Valentine Lapensée-Rankine
B.S., Appalachian State University

Chairperson: Raghuveer Mohan, Ph.D.

Competitive programming is a sport for solving highly complex algorithmic problems.

These problems range from simple brute-force to advanced algorithms like network flows or

dynamic programming. Many problems require the use of several different techniques at once.

Practicing for these contests helps improve algorithmic problem solving and programming skills,

mathematical reasoning, testing and debugging, and team building skills, and in general, makes

students into well-rounded computer scientists and prepares them for a long term career in

computer science.

This thesis surveys over 70 problems from the Intercollegiate Programming Competition

(ICPC) North American regional contests held during 2019. These problems are fun and

intellectually stimulating, and by solving them we have gained many insights into the technique

of dynamic programming. These insights may be helpful in identifying and formulating dynamic

programming solutions. This thesis can be used as an introductory text or supplemental reading

material in the technique of dynamic programming.

The ICPC contests are annual competitions held since 1977, and problems were archived

at the ICPC Live Archive website. However, due to recent changes in administration, these

contests are no longer archived since 2017. We build a web-based platform to archive problems

after the 2017 ICPC contests. We have successfully archived all of the problems from the

2019 North American regional contests, totaling over 70 problems from 12 regional contests.

While surveying these problems, we have also classified them based on the algorithmic technique

used. A search feature is provided to help search based on technique. We hope that this website

continues to archive all of the ICPC problems from all geographic regions, and helps students

identify problems for practice and training.
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Chapter 1

Introduction

Competitive programming is a sport for solving complex coding problems using algorithms and

data structures. Competing sharpens problem-solving and programming skills. Competition

environments train programmers in solving complicated problems in stressful environments.

These problems range from simple brute-force (try all possible solutions) to advanced algo-

rithms like network flows or dynamic programming. Many problems require the use of several

different techniques at once. Doing well in programming competitions can increase a program-

mer’s expertise and prepare them for a career in computer science. In this thesis, we study

problems from the premier programming contest for university students – the Intercollegiate

Programming Contests (ICPC), specifically the 2019 North American regional competitions.

These problems are fun and intellectually stimulating, and by solving them we have gained

many insights into the technique of dynamic programming. We outline these insights in this

thesis, and hope these help contestants to identify and formulate dynamic programming solu-

tions effectively.

Competitive programming deepens and expands computer science skills in competitors.

Deciphering, solving, and writing solutions to contest problems gives experience in the whole

software pipeline. Classroom environments can often be too structured, may ask trivial ques-

tions to assess fundamental knowledge, and can be based on rote memorization, rather than

creatively applying knowledge and skills learned in class. This is why competitive program-

ming is so exciting – all competitive programming problems can be solved with topics from an

intermediate undergraduate algorithms course, yet they are so challenging that they can give

1
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Ph.D. students and veteran computer scientists a run for their money. Contest problems train

students not only with coming up with fast algorithmic solutions, but also in myriad other skills

including; i) algorithms analysis to determine if their solutions are fast enough to be accepted by

the contest judge, ii) art of abstracting bigger problems based on smaller subproblems that can

be solved efficiently, iii) implementing complex algorithms in code which includes knowledge

of the many pre-existing library algorithms and data structures, and iv) testing and debug-

ging which includes writing programs to generate large test cases. All of these skills promote

creativity and build a strong foundation that promotes a long term career in computer science.

The competitive programming literature contains well over 5000 problems from many

different contests around the world. Many of the problems are lost or not widely known.

The problems from the most popular ACM ICPC contests were archived at the ICPC Live

Archive [7]. However, recent changes in administration mean that problems are no longer

archived here. Our thesis builds a web-based platform to archive problems after the 2017 ICPC

contests. We have successfully archived the problems from the 2019 North American regional

contests, totalling over 70 problems [15]. While surveying these problems, we also classified

these problems based on type of algorithmic technique. The web application allows for easy

addition of new problems. The hope is that this site is filled with all problems from both

the ICPC contests and the biggest contest for high school students – the USA Computing

Olympiad (USACO). Future contestants may find this web application useful as they can find

problems based on a particular algorithmic technique, thereby helping them practice applying

the technique.

The technique of dynamic programming has been widely used in these contests, for

different kinds of problems. We offer some insights and perspectives in applying this technique.

We hope that such insights are helpful in identifying problems with dynamic programming, and

in using that knowledge to solve these types of problem more efficiently in terms of coding and

testing.

The main contributions of this thesis are as follows:

1. Surveys and classifies over 70 problems from the ICPC 2019 North American regional

contests, a total of 12 contests.
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2. Creates a website where these problems are archived and can be easily searched by problem

type.

3. Offers detailed insights into the application of the technique of dynamic programming.

1.1 Popular Programming Contests

In this section, we describe the rules, competition environments, and resources for two popular

programming contests – the Intercollegiate Programming Contest and the USA Computing

Olympiad.

ACM ICPC

Programming competitions are an incredibly popular part of computer programming; over

50,000 students around the world compete in the Association for Computing Machinery’s

(ACM) global and regional International Collegiate Programming Contest (ICPC) competi-

tions [4]. Programming competitions increase interest and enthusiasm in computer science

studies, and prepares students for job opportunities in computer science fields [1].

We chose to use programming competition problems from the ICPC, since it is the

most well-known and reputable international programming competition. The ICPC competitive

programming competition is a global programming competition organized by and for universities

[4]. Global competitions are split up into eight broad international districts [6]. Those eight

international districts are Latin America, Africa and Arabia, Europe, Northern Eurasia, Asia

West, Asia Pacific, Asia East, and North America, as shown in Figure 1.1.
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Figure 1.1: The Different Geographic International Regions of the ICPC [6]

As this is an incredibly large global competition, we focus on problems from the North

American district in the year 2019. This district is further divided into 11 geographic regions

as shown below.

Figure 1.2: The North American Regions of the ICPC [6].

According to the ICPC website [6], those eleven regions, and the states and provinces

in those regions are list in Table 1.



5

Table 1

ICPC North American Regions

Region States and Provinces Within Region

1 Pacific Northwest Washington, Oregon, North California, British

Columbia, North Idaho, Hawaii

2 Rocky Mountain Arizona, Utah, Colorado, Wyoming, Eastern

Nevada, Idaho, Montana, Alberta, Saskatchewan,

New Mexico

3 South California Southern California

4 North Central Minnesota, Wisconsin, Western Ontario, Mani-

toba, Iowa, North Dakota, South Dakota, Ne-

braska, Kansas, the UP of Michigan

5 South Central Louisiana, Oklahoma, Texas

6 East Central Ohio, Michigan, eastern Ontario, western Penn-

sylvania, Indiana

7 Mid Central Missouri, Arkansas, Illinois, Kentucky, Tennessee

8 Northeastern Quebec, New Brunswick, Nova Scotia, Prince Ed-

ward Island, Newfoundland, Labrador, Maine,

New Hampshire, Vermont, Massachusetts, Rhode

Island, Connecticut, New York State excluding

New York City

9 New York The greater New York metropolitan area, includ-

ing areas of New York, New Jersey, Connecticut

10 Mid Atlantic New Jersey, eastern Pennsylvania, Delaware,

Maryland, the District of Columbia, Virginia,

West Virginia, North Carolina

11 Southeast Florida, Alabama, Georgia, South Carolina, Mis-

sissippi

Competitions work the same way throughout all the regions for the ICPC. Each team

consists of three contestants who represent their respective universities[5]. During the competi-

tion, each team is given a single workstation, so only one of the three team members can work
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on a computer and write code at a time. The competitions are usually five hours, in which

the contestants must solve six to twelve algorithmic word problems. Each regional competition

can have hundreds of teams that all compete during the same time period, in one of the many

contest sites. All team members may only speak to members of their own team, without access

to the Internet and other installed software other than the environment in which their programs

are allowed to run. They are not allowed to use imports or similar pre-written code from others

to solve the problems. They are however, allowed to carry a ”hackpack”, any amount of printed

resources that includes pretested code on many data structures and algorithms that they can

use as building blocks to solve their problems. A part of the challenge of these problems is

to abstract the solution and determine the algorithms necessary to solve problems during the

competition. Afterwards, all they have to do is copy them from their prepared hackpack and

piece them together correctly for their solution. Each region’s competition follows the same

ICPC regional rules, and regional contest directors can vary their contest’s rules somewhat

to accommodate different educational systems in their region without superseding the ICPC

Regional Rules [5].

After contestants figure out an algorithmic solution to a problem, they can code the

solutions in any of the following programming languages – Java, Kotlin, Python, C, or C++

to submit to the judge to be ranked. There is an automatic judging system that determines

whether a solution is correct or not. Feedback from the judge is limited – either ‘Accept’ for

a correct solution, or a ‘Reject’ for an incorrect solution. Other common error feedback given

are for compiler syntax error, run-time errors, or errors about exceeding the time or space used

by the program. The judge provides no further information on what is wrong with their coded

solution. Teams are scored based on the time they take to solve each of the problems. For

a small time penalty, they can resubmit their solutions as many times as they like, but this

penalty is only added if the team eventually solves the problem. If the team never submits

a correct answer, that specific problem’s penalties are never added. Teams are ranked first

by total number of problems solved, and ties are broken by time scores, including penalties.

Further ties (which are exceedingly rare) are broken based on time of last solved problem, then

on the time of the second to last solved problem, and so on. The team that solves the most of

problems in the least amount of time wins the competition.
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The USA Computing Olympiad

Although we haven’t classified problems from the USACO, we describe one of the biggest pro-

gramming competitions for high school students. The USACO is a US-based program that

trains students of all levels for the International Olympiad in Informatics (IOI) [20]. The

USACO is a national organization that offers a training site, resources and seasonal program-

ming competitions. While these are geared towards high school students, the problems offer a

substantial challenge for experienced computer scientists and researchers as well.

The USACO’s seasonal contests come in four tiers: Bronze, Silver, Gold, and Platinum.

Bronze tier problems tend to involve simulation, sorting, and searching algorithms, Silver tends

to use problems with data structures and more advanced algorithmic techniques, Gold has more

problems that combine techniques and more advanced concepts like spatial data structures,

and Platinum tier uses very advanced problems that offer an extreme challenge to the most

experienced of competitors [22]. The top twenty five high school students that do well in these

contests are invited to a summer camp at Clemson University. The judges at the summer camp

include past IOI contestants, and students go through a rigorous training program to be one of

the top four students selected to represent the USA at the IOI. The USACO contests are held

online for three to five continuous hours, which start as soon as the competitor logs into the

competition and obtains the problems. Final solutions are submitted through a web interface

[19].

The USACO offers a free online training site for those who are interested in starting their

competitive programming journey. Like the competitions, the problems start out simple, but

quickly escalate in difficulty and introduce increasingly more advanced algorithmic concepts.

The training site has about one hundred problems and hundreds of hours of training materials

to go through. As future work of this thesis, we intent to classify all of the problems from the

USACO training site. We hope our classification and dynamic programming insights are useful

for both becoming better prepared for these contests and using the dynamic programming

technique to solve a wide range of problems.

The International Olympiad in Informatics (IOI) is the most prestigious international

computing contest, considered the Olympics of programming contests. It is an international
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programming competition organized annually in and by one of the countries that participates

in the competitions [8]. In the annual international competition, each participating country

sends four contestants and two accompanying adults to compete in the IOI [8]. Unlike the

ICPC there are no teams; each contestant competes individually.

The competition consists of two five-hour contests, where each competitor must solve

three algorithmic word problems. Each competition follows the same regulations approved by

the general assembly, but each individual competition has slightly different rules set by the

host country for that year [9]. Contestants have five hours to solve the three competition

problems given to them, and must code the solution in C++ or Java. Contestants may submit

at most fifty solutions for each task, with at most one submission per minute [10]. There are

no penalties for multiple submissions, and the final score for contestants is the sum of all the

maximum scores for their problems. Contestants are scored based on the number of solved

problems, and the contestant with the highest score wins.

The rest of the thesis is organized as follows. Chapter 2 is an introduction to dynamic

programming, where we explain dynamic programming and introduce and describe how to

solve the common problems. We also provide some of the insights that can be used to identify

and formulate problems that have a dynamic programming solution. Chapter 3 is dynamic

programming insights, where we introduce less common dynamic programming problems and

give a perspective, and provide editorials to some of the problems from the 2019 ICPC contests

that are solved using dynamic programming. Chapter 4 describes our Web Classifier – how

it is built, how it can be used, and how this is useful for aspiring competitors in practicing

for competitions. We conclude the thesis in Chapter 5 summarizing our contributions and

discussing future work.



Chapter 2

Introduction to Dynamic

Programming

This chapter introduces the technique of dynamic programming, and discusses some classical

problems that use this technique. We provide a well-rounded exposition of these problems, and

provide intuition into the technique by developing ideas incrementally. This chapter can be

used as a quick refresher or as an introductory text in dynamic programming. We note that

dynamic programming is commonly used in solving discrete optimization problems, where we

are minimizing or maximizing an objective function. But they are also quite efficient in solving

several counting problems.

We assume that the input is a list stored as arrays (either single or multi-dimensional).

As this text is intended to be read primarily by computer scientists and professionals, we use the

well-known array notation using square brackets to indicate an element in the array. We will be

expressing algorithms in pseudocode. Each algorithm describes the set of inputs and outputs,

and the steps are described using keywords commonly found in programming languages.

Dynamic programming is a technique that solves solutions to larger sub-problems from

smaller ones. Therefore, to express each dynamic program, we start with defining the state

space, then provide base cases, inductive cases, and finally describe the optimal solution. We

may use math notation to describe the transitions from smaller sub-problems to larger ones in

the inductive step, or in expressing the optimal solution.

9
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2.1 Fibonacci Numbers

The infinite sequence of numbers 0, 1, 1, 2, 3, 5, 8, 13, . . . is the famous Fibonacci sequence. It

is one of the simplest and earliest known sequences, and is found everywhere in nature and

mathematics, like for example, the number of petals on a flower is usually a Fibonacci number,

and Fibonacci spirals can be found in sunflowers, pinecones, pineapples, and artichokes. The

Fibonacci sequence is also strongly related to the golden ratio, which approximates the ratio of

two adjacent numbers in the sequence.

The Fibonacci sequence starts with the zeroth term 0, first term 1, and every other

term in the sequence is the sum of the previous two terms. We can compute the nth term in

the sequence, denoted F [n], using the following recursive algorithm.

input : Positive integer n

output: The nth Fibonacci number

1 Fibonacci(n):

2 if n = 0 or n = 1 then

3 return n

4 end

5 else

6 return Fibonacci (n-1) + Fibonacci (n-2)

7 end

Algorithm 1: Naive Fibonacci

The algorithm makes the tree of recursive calls shown in Figure 2.1 below.
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Figure 2.1: Tree of Recursive Calls for Computing Nth Fibonacci Number

It can be seen that this algorithm runs in exponential time. In each step of the recur-

sion, the number of sub-problems doubles, and the height of this tree is n. In this problem, it

is easy to see overlapping sub-problems: in order to calculate the nth Fibonacci number F [n],

we must first calculate F [n− 1] and F [n− 2]. But to compute F [n− 1], we need F [n− 2] and

F [n−3], and so on. So each sub-problem F [i] is computed several times. An easy way to speed

this up is to “remember” solutions to sub-problems. We can use a table, in this case, an array

of solutions to each of the sub-problems named fib, and whenever we compute a solution to a

new sub-problem we store its value in this table.

input : Positive integer n

output: The nth Fibonacci number

1 Fibonacci(n):

2 if n = 0 or n = 1 then

3 return n

4 end

5 if fib[n] is not stored then

6 fib[n] = Fibonacci (n-1) + Fibonacci (n-2)

7 end

8 return fib[n]

Algorithm 2: Fibonacci with Memoization
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As can be seen by the recursive tree in Figure 2.2, each recursive call finishes when the

algorithm comes across a sub-problem that has already been computed. All the sub-problems

along the left path of the recursion tree are computed, while any other sub-problem is returned

from the lookup table. Therefore, the algorithm takes only O(n) time, as each sub-problem is

only computed once.

Figure 2.2: Tree of Recursive Calls for Computing Nth Fibonacci Number Using Memoization

The above technique of using a table of solutions to store solutions to smaller sub-

problems is known as memoization. Memoization stores the results of expensive function calls

in arrays or objects so that we can extend from these solutions later instead of repeating the

same calculations. Using memoization and recursion together so that larger sub-problems can be

solved quickly is dynamic programming. This technique was popularized by Bellman and Ford

in their shortest path algorithm, and was used in sequential planning problems in engineering.

Insight #1: Dynamic Programming = Recursion + Memoization

In other words, dynamic programming can be used to speed up some exponential algo-

rithms by using memoization.
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2.2 Minimum Coin Change

Another classical problem for which we can apply dynamic programming is the coin change

problem. Consider the USA coin denomination system with 1, 5, 10, and 25 cent coins, and

we would like to make change for 72 cents. The minimum number of coins to make 72 cents is

by using two 25 cent coins, two 10 cent coins, and two 1 cent coins for a total of 6 coins. This

can be found using a greedy algorithm; keep picking the largest coin you can until you get the

solution. However, if we have a different set of coin denominations, for example, 1, 6, and 10

cents coins, a greedy solution does not work. To make 12 cents in change, a greedy solution

uses a 10 cent coin and two 1 cent coins for a total of three coins, while the optimal solution is

to use two 6 cent coins.

To generalize the coin change problem, we are given a list of n coin denominations

c[1], . . . c[n], where we can use as many of each coin type as possible, and we would like to

determine the minimum number of coins needed to make exactly C cents in change. Like most

problems, there is a simple exhaustive search algorithm that assures the optimal solution. Try

all possible coin denominations c[i], and for each of them, recursively compute C − c[i]. The

optimal solution to make C cents in change is therefore to use one coin c[i], and the minimum

of completing sub-problem C − c[i].
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input : An array c of all coin denominations, and a non-negative integer C

output: The minimum number of coins to make C

1 Change(c,C):

2 if C = 0 then

3 return 0

4 end

5 if C < 0 then

6 return ∞

7 end

8 mincoins =∞

9 foreach element c[i] in c do

10 mincoins = min{Change(c, C − c[i])+1, mincoins}

11 end

12 return mincoins

Algorithm 3: Naive Coin Change

The tree for this algorithm with the USA coin denominations is shown in Figure 2.3

below.

Figure 2.3: Coin Change Using Exhaustive Search

It can be seen that this algorithm recomputes the same sub-problems, and we can use

memoization to speed it up. Simply store the solution to each sub-problem in a table, in this
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case an array of integers named coins, where coins[x] stores the minimum number of coins

it takes to make x cents in change.

input : An array c of all coin denominations, and a non-negative integer C

output: The minimum number of coins to make C

1 Change(c,C):

2 if C = 0 then

3 return 0

4 end

5 if C < 0 then

6 return ∞

7 end

8 if coins[C] is stored then

9 return coins[C]

10 end

11 mincoins =∞

12 foreach element c[i] in c do

13 mincoins = min{Change(c, C − c[i])+1, mincoins}

14 end

15 coins[C] = mincoins

16 return mincoins

Algorithm 4: DP Coin Change

This then gives us our second insight into dynamic programming.

Insight #2: Dynamic Programming = Recursive Exhaustive Search +

Memoization

The correctness of this algorithm follows from induction. As a base case, when C = 0,

it is trivial that there are 0 coins. For the inductive case, we assume that the algorithm is

correct for sub-problems smaller than C due to the inductive hypothesis. Therefore, taking a

minimum of all sub-problems C − c[i] and adding 1 is the best way to make C cents in change.
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The above inductive proof is a good template to express dynamic programming solu-

tions. We start with defining a state space and clearly describe what individual elements in the

state space store. Then we define the set of base cases followed by the set of inductive cases

that can be expressed in terms of smaller sub-problems. We finally describe how the optimal

solution can be computed after filling the entire state space. For the coin change problem, the

dynamic programming formulation will look like:

Input: An array of coin denominations c, and a non-negative integer

C, which is the amount of change to make

State Space: An array coins where coins[i] is the minimum number

of coins required to create i cents in change

Base Case: coins[0] = 0,

coins[i] = ∞, ∀i < 0

Inductive Case: coins[i] =
n

min
j=1
{coins[i− c[j]]} + 1

Optimal Solution: coins[C]

From now on, we will use the above dynamic programming formulation to succinctly

represent a dynamic program. We will continue to use pseudocode to represent naive solutions

that are not dynamic programming. Interested readers are encouraged to take the dynamic

program formulation and turn them into implementable programs.

The runtime of this algorithm is O(nC) as there are O(C) sub-problems to compute,

and each one takes O(n) time to take a minimum of O(n) smaller sub-problems. This therefore

gives us a convenient way to analyze dynamic programming algorithms.

Insight #3: The runtime of dynamic programming algorithm = total

number of sub-problems × total time for each sub-problem

Note that the runtime O(nC) is not a polynomial runtime due to the dependence on C.

In fact this will be considered an exponential1 algorithm as it is exponential in the number of

bits to represent an integer x.

1For algorithms on integer inputs, a polynomial time algorithm is one that runs polynomial in log C, which is
the number of bits needed to represent C. So a running time of O(C) is considered to be exponential. Sometimes
these are also called pseudo-polynomial running times.



17

We can also think of dynamic programming in a bottom-up way. Since a sub-problem

of size n only depends on smaller sub-problems, we can compute all of the solutions iteratively

instead of recursively, from the smallest to the largest sub-problem.

The above dynamic programming algorithm can the thought of as an incremental con-

struction algorithm, where in each step we solve a successively larger sub-problem. Using

memoization to store the results allows us to compute solutions to larger sub-problems quickly.

Therefore, we have the following insight.

Insight #4: Dynamic Programming = Incremental Construction + Mem-

oization

2.3 Maximum Sum Sub-array

The technique of dynamic programming is naturally applicable for sequential problems on ar-

rays. Consider the classic problem of computing the maximum sum of a sub-array. Given an

array of integers of size n, find the largest contiguous sum of a sub-array, where a sub-array

spans contiguous elements from index i to index j. A naive solution to this problem is to use an

exhaustive search; for every possible starting index i, calculate the sum from i to every possible

ending index j.
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input : Array of integers arr

output: The max sum of a sub-array in arr

1 MaxSum(arr):

2 max = −∞

3 for i← 0 to n do

4 for j ← 0 to i do

5 sum = 0

6 for k ← j to i do

7 sum += arr[k]

8 end

9 if max < sum then

10 max = sum

11 end

12 end

13 end

14 return max

Algorithm 5: Naive Max Sum

This solution takes O(n3) time, as there are
(
n
2

)
= O(n2) sub-problems, and computing

the sum of each subarray takes O(n) time. To speed this runtime, we can use dynamic pro-

gramming again, using an array prefix to store prefix sums, i.e., prefix[i] stores the sum

of the first i elements in arr. Note that this can be pre-computed in only O(n) time. The sum

of a subarray arr[i]..arr[j] is then prefix[j]-prefix[i-1], which takes only O(1)

time. Using this, the above algorithm to compute the maximum sum subarray takes O(n2)

time.

We note that there is a divide and conquer algorithm that can solve this problem in

O(n log n) time. We leave this as an exercise for the interested reader.

We now show how we can use dynamic programming to solve this in only O(n) time.

Let the array sums be the table of solutions, where sums[i] is the largest sum of a sub-array
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ending at index i. As a base case, sums[0] = arr[0]. For the inductive case, we can see

that each solution i either extends from the previous solution i − 1 by adding arr[i] to it,

or is a subarray containing only one element arr[i]. More formally, we have sums[i] =

max{sums[i-1] + arr[i], arr[i]}. Since the array can contain negative numbers, the

optimal solution may not be in sums[n]. Therefore we need to search the array of solutions

and return the largest one.

Input: An array of integers arr

State Space: An array sums where sums[i] is the largest sum of a sub-

array ending at index i

Base Case: sums[0] = arr[0]

Inductive Case: sums[i] = max{sums[i-1] + arr[i], arr[i]}

Optimal Solution: max{sums[i]}, ∀i ∈ {0, . . . , n− 1}

2.4 Longest Increasing Sub-sequence

Another common problem on sequences that uses dynamic programming is the longest increas-

ing sub-sequence problem. A sub-sequence is a sequence of elements in the original array,

retaining their order, that need not be contiguous. Given an array of integers named arr, find

the length of the arrays longest increasing sub-sequence. For example, if the original sequence

is [14, 15, 12, 11, 4, 8, 7, 9], the length of the longest increasing sub-sequence is three. One of the

subsequences with this length is [4, 8, 9].

Figure 2.4: Longest Increasing Subsequence Example

This problem can be solved using a similar state space to the maximum value sub-

array problem. Let the array length be the table of solutions, where length[i] is the

length of the longest increasing sub-sequence that ends at index i. As a base case, length[0]

is 1, as any sequence of size 1 counts as increasing. Unlike the maximum value sub-array
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problem though, this problem doesn’t require a contiguous sub-sequence so a solution can

extend from any previous solution, not just the previous one. So we check all solutions

length[j], for 0 ≤ j < i, that we can extend from, meaning if arr[j] ≤ arr[i], then add

one to length[j]. The largest such solution is then stored in length[i]. More formally,

length[i] = max{length[j] + 1}, ∀j ∈ {0, . . . , i − 1} : arr[j] ≤ arr[i]. The optimal solution

could end at any index, therefore, we have longest = max{length[i]}, ∀i ∈ {0, . . . , n− 1}.

Input: An array of integers arr

State Space: An array length where length[i] is the length of the

longest increasing sub-sequence that ends at index i

Base Case: length[0] = 1

Inductive Case: length[i] = max{length[j] + 1}, ∀j ∈ {0, . . . , i − 1} :

arr[j] ≤ arr[i]

Optimal Solution: max{length[i]}, ∀i ∈ {0, . . . , n− 1}

This brings the notion of an optimal substructure. Smaller sub-problems need to solve

the same problem as the larger one, and larger sub-problems need to be able to extend from

smaller ones. Note that if we did not include the key detail in the definition of our state space

where we allow each solution to end at an index, it would be difficult to extend from previous

solutions. So, the way we define our state space is key in solving problems using the dynamic

programming technique.

The run time of the above algorithm is O(n2), since there are O(n) sub-problems to

solve, and each one requires iterating over O(n) solutions. This can be sped up to only O(n log n)

time as discussed in the next section.

Note that the solution above only returns the length of the longest increasing subsqe-

quence, not the actual subsequence itself. In order to find the elements of the longest subse-

quence, we can use back pointers. To do this, we only need to make minor adjustments to the

algorithm above. First, we need another array backpointers, where backpointers[i]

is the index of the sequence that length[i] extends from. In order words, if during the

inductive case for i, the maximum value is found in length[j], then j would be stored in
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backpointers[i]. To get the optimal subsequence, use the index c of the optimal length,

include arr[c], and then move to c = backpointers[c], include this into the optimal solution,

and so on. One can print all the elements in the optimal subsequence in reverse, starting from

c and following these backpointers.

As this only adds one more step and therefore only O(1) extra time to the inductive

case, this does not change the runtime of the algorithm. It is possible to add backpointers

similarly to almost every dynamic programming algorithm without changing the runtime of the

algorithm.

Insight #5: The actual set of elements belonging to an optimal solution

can be obtained using backpointers

Speeding the Longest Increasing Subsequence

It is possible to reduce the runtime of the longest increasing subsequence problem from O(n2)

to O(n log n) using two different methods. We describe these below.

The first method, called the table method, requires an array mins, where mins[i] is

the minimum value of the last elements of all subsequences of length i. In other words, for every

subsequence of length i seen so far, min[i] holds the smallest of the last elements of all those

subsequences. Notice that the array mins is sorted. So for the inductive case for element i, we

can binary search on mins to find the index j that is the predecessor of arr[i]. The value in

mins[j] holds the length of the longest increasing subsequence ending at j. We can compute

the length of the longest increasing subsequence ending at i as length[i] = mins[j] + 1. This

may cause an update in the row length[i]. Specifically, if mins[length[i]] > arr[i], the we

set mins[length[i] = arr[i]. As the binary search algorithm runs in O(log n) time, this method

reduces the time of the inductive case from O(n) to O(logn), therefore reducing the runtime of

computing the longest increasing subsequence to only O(n log n).

Figure 2.5 shows the state of the array mins after completing the case for element 8.
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Figure 2.5: Speeding Longest Increasing Subsequence with Table Method

Another possibility is the Binary Search Tree (BST) method, which requires storing

the state space length as a splay tree instead of an array2. A splay tree is a type of BST

where on each insert or find, the current element is “splayed”, or rearranged so that it is made

the new root of the tree. Please refer to the seminal work of Sleator and Tarjan [17] for more

information about splay trees.

Augment the splay tree so that each node also has the maximum solution in its subtree.

That is, at node x in the tree, we maintain a variable max(x) = max
y∈x′ssubtree

{length[y]}. Note

that this information can be kept up to date after regular BST rotations. In this method, we scan

the input array one at a time sequentially and insert arr[i] into the splay tree. So when the

ith element is inserted, the only elements in the splay tree are those to the left of i, the elements

arr[1], . . . , arr[i− 1]. When element arr[i] is inserted into the splay tree, it is splayed to

the root of the tree. Therefore, the only solutions that can extend their increasing subsequences

to arr[i] are contained in the left subtree of arr[i]. To compute the length of the longest

increasing subsequence ending at i, we can take length[i] = max(left subtree of arr[i]) + 1.

We can also update max(arr[i]) easily after finding length[i]. The final optimal solution is

found in max(r) where r is the root of the tree.

At each step, we take only O(log n) amortized time to insert arr[i] into the tree. So

the overall runtime to find the length of the longest increasing subsequences is O(n log n).

Figure 2.6 shows the state of the BST length completing the case for element 8.

2Any BST will work, but we find the exposition to be a lot simpler using splay trees.
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Figure 2.6: Speeding Longest Increasing Subsequence with BST Method

Insight #6: Binary search trees can help in speeding up determining a

maximization (minimization) over a set of solutions.

Longest Increasing Subsequence as Shortest Path

The longest increasing sub-sequence problem can also be viewed as a longest path problem, or

rather, a special shortest path problem. We can turn this into a graph problem by constructing

a graph with nodes corresponding to the array indices. There is an edge from node j to node i

if j < i and arr[j] ≤ arr[i], so that the only edges that exist to a node are from other nodes

that both come before the current node in the list and that have a strictly smaller value. The

significance of being able to view this problem as a shortest path problem will be explained in

Section 2.6.

2.5 Integer Knapsack

The knapsack problem is commonly used in resource allocations, and uses dynamic program-

ming. Given n items, each with with an associated weight and value, maximize the total value

of a set of items that can fit into a capacity C knapsack. As input, we are given an array

wt[1..n] of weights, an array val[1..n] of values, where wt[i] and val[i] represent

the weight and value of item i, respectively, and a capacity C knapsack. All weights are inte-



24

gers, as having real weights makes the problem NP-hard. As output, we would like to find the

maximum value subset of items such that the sum of the weights of the items in the set is at

most C.

There are two common versions of the Knapsack problem, one where multiple copies of

an item are allowed to be included into the knapsack, and another version where only one copy

of an item can be included. We explain both of these versions below.

Knapsack: Multiple Copies Allowed

In this version of the knapsack problem, you are allowed to place multiple instances of the same

item in the knapsack. For example, let val = [100, 150, 300], wt = [10, 20, 30], and C = 50.

The optimal solution gives a maximum of value of 500 either by using five copies of item 1, or

using two copies of item 1 and one copy of item 3. Using dynamic programming, we can the

maximum value of items in an optimal solution. Using backpointers, we can also get the set of

items in an optimal solution.

Let the array sack be our state space, where sack[i] is the maximum value that

we can pack into a knapsack of capacity i. As a base case, we have sack[0] = 0. For the

inductive case, we check whether we can include or exclude item j and take the maximum of the

best value obtained from either choice. When we include item j, then we get its value val[j],

and take the best solution that can fit into a capacity i− wt[j] knapsack, which can be found

in sack[i− wt[j]]. If we exclude item j, then we simply look at the best solution to capacity

sack[i− 1] knapsack. So we have:

sack[i] = max

{
sack[i− 1],

n
max
j=0
{sack[i− wt[j]] + val[j]} : ∀j → wt[j] ≤ i

}

.

The optimal solution for a knapsack of capacity W is stored in sack[W].
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Input: Integers W and n, integer array wt, and array val

State Space: An array sack where sack[i] is the maximum value that

we can pack into knapsack of capacity i

Base Case: sack[0] = 0

Inductive Case: sack[i] = max

{
sack[i− 1],

n
max
j=0
{sack[i− wt[j]] + val[j]}

}
: ∀j → wt[j] ≤ i

Optimal Solution: sack[W]

This algorithm runs is O(nW ) time, as there are W different sub-problems that each

take O(n) time to solve.

0/1 Knapsack

In this version of the knapsack problem, each item i can only be placed once inside the knapsack.

The naive solution to this is a recursive exhaustive search, where you consider all possible

subsets of items where the weight of the subset is at most W . For each item, there are only two

possibilities: the item is included in an optimal subset, or it is not. Therefore, the maximum

value from n items in a capacity W knapsack can be obtained by either excluding the nth item,

in which case, the best solution is one with n− 1 elements and a capacity W knapsack, or we

include the nth item, and add val[n] to the best solution that can be obtained from the first

n− 1 elements in a capacity W-wt[n] knapsack.

Consider the example from before where val = [100, 150, 300], wt = [10, 20, 30], and

C = 50. The optimal solution is to use items 2 and 3 to obtain a value of 450.
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input : Integers W and n, integer array wt, and array val

output: The max value of a subset of items that fit into a capacity W knapsack

1 Knapsack(W,n,wt,val):

2 if W == 0 or n == 0 then

3 return 0

4 end

5 if wt[n] > W then

6 return Knapsack(W,n-1,wt,val)

7 end

8 return max{val[n] + Knapsack(W-wt[n],n-1,wt,val),

Knapsack(W,n-1,wt,val)}
Algorithm 6: Naive 0/1 Knapsack

The runtime of this solution is O(2n), as the recursion depth is n, and there are two

recursive calls in each sub-problem. We can see that this method has the familiar problem of

wasting time solving the same sub-problems over and over again. So, we can use memoization

again to take advantage of dynamic programming and speed this up. However, we cannot use a

one-dimensional solutions table as we have in previous problems. Each state has two separate

values that define it, the current item n and the knapsack capacity W , so we can use a 2D array

to be our state space. Let the 2D array sack be the solution space, where sack[i, j] is the

maximum value we can pack into a knapsack of capacity i, using a subset of items 1 to j. As

a base case, we have sack[0, j] = sack[i, 0] = 0. The inductive case is the same as the naive

solution above, just using the previously stored value instead of recursively calling knapsack:

sack[i, j] = max {val[j] + sack[i− wt[j], j− 1]), sack[i, j− 1]}.
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Input: Integers W and n, integer array wt, and array val

State Space: A 2D array sack where sack[i,j] is the maximum value

we can pack into a knapsack of capacity i, using a subset of

items 1 to j

Base Case: sack[i,0] = 0 ∀i ∈ {0, . . . ,W},

sack[0,j] = 0 ∀j ∈ {0, . . . , n},

Inductive Case: sack[i, j] = max {val[j] + sack[i− wt[j], j− 1], sack[i, j− 1]}

Optimal Solution: sack[W,n]

The runtime of the above algorithm is only O(nW ). Note that it also takes O(nW )

extra space to store the 2D solution array. Since when we fill column j in the memoization

table, we only need to keep track of the previous column, we can reduce the space constraints

by only storing two columns at a time. That is, we only remember column j − 1 when filling

row j, and forget or rewrite row j − 1 when column j is completely filled. In order to compute

the set of items in an optimal solution, we need to use backpointers, which is another 2D array

of size O(nW ). Using advanced divide and conquer techniques, we can further reduce the space

of backpointers to only O(n). We describe this divide and conquer technique below.

Divide and Conquer with Dynamic Programming

In order to reduce the space to store the backpointers, we first argue that we can provide a

dynamic programming formulation in ‘reverse order’, i.e., starting from row n and filling rows

of the state space until we reach row 1. For this we let sack’[i, j] be the maximum value

we can pack into a knapsack of capacity i using a subset of items j through n. As a base case,

we have sack′[i, n + 1] = 0, ∀i ∈ {0, . . . ,W}, and sack′[0, j] = 0, ∀j ∈ {0, . . . , n+ 1}. For the

inductive case, we have sack′[i, j] = max {val[j] + sack′[i− wt[j]], j + 1]), sack′[i, j + 1]}.
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Input: Integers W and n, integer array wt, and array val

State Space: A 2D array sack’ where sack’[i,j] is the maximum

value we can pack into a knapsack of capacity i, using a

subset of items j through n

Base Case: sack′[i, n + 1] = 0, ∀i ∈ {0, . . . ,W},

sack′[0, j] = 0, ∀j ∈ {0, . . . , n+ 1},

Inductive

Case:

sack′[i, j] = max {val[j] + sack′[i− wt[j]], j + 1], sack′[i, j + 1]}

Optimal

Solution:

sack’[W,1]

Note that we only need to store two columns, since when we fill column j we only need

to know column j + 1, and can forget column j + 1 after column j is filled entirely.

Therefore we have two different dynamic programming formulations to solve this prob-

lem. One moving in the forwards direction from column 1 to column n, and the other moving in

the reverse direction from column n down to column 1. Combining the two formulations, we can

fill from column 1 to column n/2 using the ‘forwards’ dynamic programming formulation, while

running the reverse formulation from column n to column n/2. Thus at each capacity i knap-

sack at column n/2, we know sack[i, n/2] which is the best way to fill a capacity i knapsack

with a subset of items 1 through n/2, and sack’[i, n/2 which is the best way to fill a capac-

ity i knapsack with a subset of items n/2 through n. Therefore, the best way to fill a capacity i

knapsack with all of the items 1 through n is sack[i, n/2] +sack′[i, n/2]. Among all knapsacks

i, we get the best crossing point index that maximizes
W

max
i=0

{
sack[i, n/2] + sack′[i, n/2]

}
.

Let c be the knapsack capacity for which we have the best crossing point, i.e., c is the

index i that maximizes the above expression. The very observant reader may note that the

solution with value sack[c, n/2] + sack′[c, n/2] need not be feasible. That is, the sizes of the

items in solution sack[c,n/2] and the sizes in sack’[c,n/2] may end up being more than

capacity c. Therefore the maximization quantity is only taken over all feasible solutions i:

W
max
i=0

{
sack[i, n/2] + sack′[i, n/2]

}
, for only feasible solutions i
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In order to determine if the solution is feasible at an index i, we keep track of the sizes

of items in an optimal solution in addition to the value of the items. This array takes the

same space as our dynamic programming state space, and can be updated while computing

sack[i, j] – add item j if val[j] + sack[i− wt[j], j− 1] > sack[j− 1] (similarly we can

update the size while executing the reverse formulation). If the sizes of the optimal solutions at

sack[i,n/2] and sack’[i,n/2] fit within the capacity i knapsack, then we have a feasible

solution. Checking for feasibility of a single solution takes only O(1) time, and therefore does

not affect the overall time complexity.

Using both the forwards and reverse formulations, we can identify the crossing point

(c, n/2). Item n/2 is present in an optimal solution if val[n/2] + sack′[c− wt[n/2], n/2 + 1] >

sack′[c, n/2 + 1]. Next we need to determine the set of items in an optimal solution of items

1, . . . , n/2 that lead to the crossing point (c, n/2), and the set of items in an optimal solution

of items n/2 + 1, . . . , n from the crossing point (c, n/2). These are two recursive subproblems

that can be solved using divide and conquer.

Figure 2.7: Divide and Conquer Dynamic Programming; Reverse and Forwards Formulations
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Figure 2.8: Divide and Conquer Dynamic Programming; Finding the Set of Items in an Optimal

Solution

It takes O(nW ) time to determine the best crossing point (c, n/2), and we have two

recursive subproblems each of size cn/2 and (W − c)n/2 respectively. Expressing the total

running time as a recurrence, we get

T (nW ) = T (cn/2) + T ((W − c)n/2) +O(nW )

which solves to O(nW ). The entire algorithm takes only O(n) space as we only compute two

columns at a time both in the forwards and reverse formulations. The items in an optimal

solution can also be computed using only O(n) space.

Insight #7: Divide and Conquer can help find the items in an optimal

solution with reduced space.

2.6 Computing Shortest Paths

Directed acyclic graphs, or DAGs, are directed graphs that contain no cycles, and they are

used to model problems that have precedence constraints, as shown in Figure 2.9. A topological
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ordering of a graph gives an ordering of the nodes where all edges point in a consistent direction

(see Figure 2.10). Popular algorithms by both Tarjan and Kosaraju can compute a topological

ordering in only O(n + m) time, where n is the number of nodes and m is the number of

edges. The details of these algorithms can be found in common algorithms textbooks, such as

Algorithms by Robert Sedgewick and Kevin Wayne [16].

Figure 2.9: Basic Directed Acyclic Graph

Figure 2.10: Topological Sorting of a DAG

Computing a shortest path in a DAG can be seen as a dynamic program. Let the array

path be our table of solutions, where path[i] is the length of the shortest path from the source

node, or the first node in the topological ordering, to node i. As a base case, path[source]

is 0. For the inductive case, we take the shortest path to an incoming neighbor i, and add

the cost of the edge (j, i). The shortest path to i is then the minimum over all such paths –

path[i] = min{path[j] + cost(j, i)}, ∀j : (j, i) ∈ E, where E is the edge set of our graph, and

cost : E → R is the cost function on the edges.
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Any dynamic programming problem can be visualized as a problem of computing the

shortest path in a DAG. For example, consider the longest increasing subsequence problem from

Section 2.4. Let each element in the array correspond to a node, and edges are only directed

from smaller elements to larger elements. We let each edge weight be -1. In addition, we add

a dummy source node s with edges of weight 0 that point towards every node, and a dummy

sink node t with edges of weight 0 coming from every node. One can see that the shortest

path in this graph from s to t takes the most number of hops, and therefore corresponds to the

longest increasing subsequence of the corresponding array elements. This is demonstrated on

the sequence [14, 15, 12, 11, 4, 8, 7, 9] in Figure 2.11. The black arrows are edges from smaller

elements to larger elements, with weight -1. The blue arrows are edges from the source node to

all elements, with weight 0, and the purple arrows are edge from all elements to the sink node,

with weight 0. The elements included in the longest increasing subsequence are highlighted in

red.

Figure 2.11: Longest Increasing Subsequence Topological Graph

Insight #8: Dynamic Programming = Shortest Path in a DAG

The drawback of interpreting the longest increasing sub-sequence problem as a shortest

path algorithm is that we can no longer use the advanced speedups from Section 2.4. However,

being able to think about a dynamic programming problem as a shortest path problem is very

useful in many situations, and offers more intuitive guidance into the dynamic programming

formulation.
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Bellman Ford Algorithm

For graphs that are not DAGs, and that have negative edge weights, we can use the famous

Bellman-Ford algorithm to compute the shortest path from a single source to all other nodes.

This algorithm can also detective negative cycles. A negative cycle is a cycle where the overall

sum of the cycle is negative, therefore it is possible to travel the cycle over and over again to

decrease the value of the short path infinitely. So shortest paths are not defined in the presence

of such cycles.

The Bellman-Ford algorithm is as follows. Let the array length be the table of solu-

tions, where length[i] is the length of the shortest path from the source node to node i.

In the beginning, initialize length[0] = 0 and length[i] = ∞, ∀i < n. We note that all

shortest paths follow the triangular inequality, so length[i] + cost(i, j) ≥ length[j]. If this is

not the case, then we can ‘tighten’ the edge (i, j).

input : Array length, where length[i] is the shortest path from some

source node to i, Array backpointers where backpointers[i] is

the previous node on a shortest path from the source to node i, edge

(i, j)

output: Update shortest path cost to node j and its backpointer

1 Tighten(length, backpointer, i, j):

2 if length[i] + cost(i, j) < length[j] then

3 length[j] = length[i] + cost(i, j)

4 backpointer[j] = i

5 end

6 return

Algorithm 7: Tighten

The above blackbox can be used whenever the triangular inequality is violated. So the

shortest path cost (and its backpointer) to node j will be updated using the tighten operation

if a new shortest path is found to j.

In each iteration of the Bellman-Ford algorithm, we iterate over all m edges and tighten
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them. We do this repeatedly for a total of n− 1 iterations.

input : 2D array of edge cost as integers cost, source node s

output: Array length filled with all shortest path costs, and an array

backpointers with the backpointers to reconstruct the shortest path

1 BellmanFord(cost):

2 length [0] = 0, length [i] = ∞, ∀i 6= s, backpointers [i] = null, ∀i

3 for i=0 to n do

4 foreach edge (i, j) do

5 Tighten (length, backpointers, i, j)

6 end

7 end

8 return length, backpointers

Algorithm 8: Bellman-Ford

Note that the Bellman-Ford algorithm can also be interpreted as a dynamic program-

ming algorithm. This is evident when you consider the tightening algorithm. In the first step of

the algorithm, most shortest path costs are infinity. So if length[i] =∞, length[j] =∞,

then the new length[j] after tightening the edge (i, j) will still equal infty. Therefore, the

only values of length that tighten after the first iteration are those that are the neighbors of

the source node s. If some node i has a shortest path that takes only one hop from the source

node, then length[i] is correct after the first iteration. Applying this logic to the second

iteration, we observe that all shortest paths that are two hops from the source are correctly

labeled. At the ith iteration of Bellman-Ford, all shortest paths that use i hops from the source

are labeled correctly. This also means that the Bellman-Ford algorithm either computes cor-

rect shortest paths, or can determine if there are negative cycles in the graph. After the last

iteration, we can go over all the edges in the graph one more time and tighten them. If any

of the shortest path costs are updated (due to violation of the triangular inequality), then we

have a shortest path that takes n hops from the source. So some node on the path must be

visited twice and therefore we have a negative cycle.
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At this point it is easy to see why this is dynamic programming; at each step of the

Bellman-Ford algorithm, the current values being computed rely on the correctness of the val-

ues computed before them.

Input: 2D integer array array cost

State Space: 2D array length where length[k][i] is the length of the

shortest path from the source node to node i using at most

k steps

Base Case: length[k][0] = 0, ∀k < n

length[k][i] = ∞, ∀k < n, ∀i < n

Inductive Case:

length[k][i] = min



min
∀u→(u,i) is an edge

{length[k− 1][u]

+ cost[u, i]},

length[k− 1, i]

Optimal Solution: From source to node j: length[n][j]

The tightening algorithm takes constant time to check and update each cost, and to do

that for all edges takes O(m) time, where m is the number of edges. The tighten algorithm is

run a total of n times to check for negative cycles. Therefore, the runtime of the Bellman-Ford

algorithm is O(mn).

Floyd-Warshall

We can also compute shortest paths from all nodes to every other node using the famous

algorithm of Floyd and Warshall.

Since we want to have available the shortest path length from every node to every other

node, we will need a 2D state space to store the length of each path from node i to node j.

Let the array length be the 2D table of solutions, where length[i][j] is the length of the

shortest path from the node i to node j. In every iteration of the Floyd-Warshall, we compute
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the shortest path from nodes i to j that only step into nodes 1, . . . , k as intermediary nodes. In

the beginning, we initialize length[i][i] = 0, ∀i ∈ {0, . . . , n − 1} and length[i, j] = ∞, ∀i, j ∈

{0, . . . , n− 1} → i 6= j. In the kth iteration, we check if the shortest path from node i to node

j is shorter if it steps into node k. If so, we update this cost. That is we update length[i, j] if

length[i, k] + length[k, j] < length[i, j].

The Floyd-Warshall algorithm is also capable of detecting negative cycles; if at any

point length[i][j] < 0, then there is a negative cycle.

input : 2D array of edge cost cost

output: 2D array of shortest path costs length

1 FloydWarshall(arr):

2 length [i, i] = 0, ∀i ∈ {0, . . . , n− 1}

3 length [i, j] = ∞, ∀i, j ∈ {0, . . . , n− 1} → i 6= j

4 for i← 0 to n do

5 for j ← 0 to n do

6 for k ← 0 to n do

7 if length[i][k] + length[k][j] < length[i][j] then

8 length[i][j] = length[i][k] + length[k][j]

9 end

10 end

11 end

12 end

13 return length

Algorithm 9: Floyd-Warshall

Unsurprisingly, the Floyd-Warshall algorithm can be interpreted as a dynamic program-

ming problem as well.



37

Input: 2D integer array array cost

State Space: 3D array length where length[k][i][j] is the length

of the shortest path from node i to node j that only uses

nodes 1 through k as potential intermediate nodes

Base Case: length[k][i][i] = 0, ∀k, i ∈ {0, . . . , n− 1},

length[k][i][j] =∞, ∀k, i, j ∈ {0, . . . , n− 1} → i 6= j

Inductive Case: length[i][j] = min{length[i][k] + length[k][j],

length[k− 1][i][j]}

Optimal Solution: From node i to node j: length[n][i][j]

2.7 Travelling Salesman

The travelling salesman problem is a famous problem in computer science. Given a set of n

cities and distances dist between some pair of cities, what is the shortest possible route that

visits every city exactly once and returns to the starting city.

An example of a graph of 5 cities and the possible paths is show in Figure 2.12, with the

red edges as those that are part of an optimal tour. Black edges are other edges in the graph.

Figure 2.12: Travelling Salesman Tour on a Graph
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The naive solution for this is to generate all (n−1)! permutations of cities where city 0 is

the starting and ending point, check if the tour is feasible, then measure its cost, while keeping

track of the permutation with the minimum cost. This takes O(nn!) time. Using dynamic

programming, an algorithm of Held and Karp [3], we can speed this up considerably, although

it still takes exponential time and is not practical for even small input sizes. This problem is

known to be NP-hard, and only exponential time algorithms exist.

Without loss of generality, we will assume that the cities are numbered 0 through n−1,

and the starting city is 0. It can be seen that there are overlapping subproblems – the best tour

starting with cities 0, 1, 2, and the rest of the n − 3 cities is similar to the tour starting with

cities 0, 2, 1, and the same set of n− 3 cities. So we can keep track of the last city u, and the

set of cities that still need to be visited S. Initially the set S contains all nodes except city 0.

Consider the problem of finding the best path from city u, visiting a set of nodes in S

and then reaching the starting city 0. From city u, we ask which city to visit next? We can

iterate over all possible cities not yet visited and find the next city v to visit. We are then

in a recursive subproblem of finding the best path from city v and a set of unvisited nodes

S −{v}. Once we find the best path from city u to city 0, we can memoize the result so as not

to compute this path again.

Figure 2.13 shows a recursive subproblem for the example graph shown in Figure 2.12

above. At node 3, the recursion being calculated is the best path from city 3 through all of the

cities that have not yet been visited and back to city 0.
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Figure 2.13: Travelling Salesman Recursion Tree, with Current Subproblem in White and Other

Subproblems Grayed Out
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global : 2D array of distances dist, starting city 0, state space tour

input : city u, a set of unvisited cities S

output: The best path from city u visiting each of the unvisited cities in S and

reaching the starting city 0

1 Best Tour(u, S):

2 if S = φ then

3 return dist [u,0]

4 end

5 if tour [u, S] already computed then

6 return tour [u, S]

7 end

8 mincost = ∞

9 for v ∈ S do

10 cost = dist [u, v] + Best Tour(v, S − {v})

11 mincost = min{mincost, cost }

12 end

13 tour [u, S] = mincost

14 return tour [u, S]

Algorithm 10: Best Cost Path from City u to City 0 Visiting all Nodes in S

There are O(2n−1×n) different subproblems to compute, and each one takes O(n) time

to iterate over the set of unvisited cities. Therefore the total time is O(2n−1 × n2). Even for

small values of n this could take a lot of time, however this gives a significant speed up from

the naive brute force solution of enumerating all possible permutations. Practically, we can

implement the set S as a bit vector and represent as a single integer for n ≤ 64. But the

runtime is only suited for n ≤ 20. The above solution is us another example of Insight #2,

dynamic programming = recursive exhaustive search + memoization.



Chapter 3

Dynamic Programming Problems

and Insights

This chapter will expand on the insights gathered from the last chapter. Dynamic programming

has been quite useful in solving problems involving combinatorial counting, strings and on trees.

We describe dynamic programming solutions to problems in these domains as they provide

insights into the kind of problems dynamic programming is largely useful at solving. We also

explore selected problems from the 2019 North American ICPC contest that can be solved using

dynamic programming.

3.1 Combinatorial Counting Problems

Combinatorial mathematics is the study of counting discrete objects from a large set of objects

that satisfy certain properties. One way to do so is to generate all possible objects and count the

number of them that satisfy the given property. This may be too slow if the solution space comes

from finding all subsets (which take O(2n) time), all permutations (which takes O(n!) time),

or generating all combinations of k objects (which take O(
(
n
k

)
) = O(nk) time). The field of

combinatorial optimization further asks us to minimize or maximize an objective function over

these sets of objects. The use of memoization allows us to solve some combinatorial counting

and optimization problems quickly. Therefore, the technique of dynamic programming lends

itself well to solving these types of problems.

41
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Binomial Coefficients

Consider the problem of computing the total number of ways to choose k items from n items.

Note that we are forming sets of k items, so the order of the items do not matter. We can use

a recursive approach – to choose k items from n items, we can either keep the first item and

choose k−1 items from n−1 items, or exclude the first item and choose k items from n−1 items.

input : Size of the original set n, size of subsets k

output: The number of ways to choose k items from n items

1 Choose(n, k):

2 if n < k then

3 return 0

4 end

5 if k == 0 or k == n then

6 return 1

7 end

8 return Choose(n− 1, k − 1) + Choose(n− 1, k)

Algorithm 11: Naive Recursive Solution to Choosing k Items from n Items

This solution takes O(2n) time, as the recursion depth is n, and each subproblem has

two recursive calls. This solution has the following recursion tree:

Figure 3.1: Recursive Binomial Coefficient Tree.
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This tree shows us a familiar problem of solving the same subproblems multiple times,

so to speed this solution we can take advantage of memoization with a two-dimensional state

space. Let the 2D array choices be the solution space, where choices[i, j] is the total

number of ways to choose j items from i items. As base cases, choices[i, 0] = 1, and

choices[i, i] = 1. The recursive case is the same as the naive solution above, but we use

memoization to lookup solutions to already computed subproblems.

Input: Size of the original set n, size of subsets k

State Space: A 2D array choices where choices[i,j] is the total

number of ways to choose j items from i items

Base Case: choices[i, 0] = 1, ∀i ∈ {0, . . . , n},

choices[i, i] = 1, ∀i ∈ {0, . . . , n}

Inductive Case: choices[i, j] = choices[i− i, j− 1] + choices[i− i, j]

Optimal Solution: choices[n,k]

The runtime of the above algorithm is only O(nk). Note that it also takes O(nk) extra

space to store the 2D solution array. Similar to the 0/1 Knapsack problem, when we fill row i

in the memoization table, we only need to keep track of the previous row, so we can reduce the

space constraints by only storing two rows at a time. We only remember row i− 1 when filling

row i, and forget or rewrite row i− 1 when row i is completely filled.

Counting Derangements

The counting derangements problem, usually called the “hat check problem”, is the following:

given n hats, find the total number of ways in which those hats can be given to n people so

that no hat is returned to its owner. To solve, note that each person pi may receive any of the

hats hj that is not theirs. So if pi receives hj , then hj ’s original owner either receives pi’s hat,

or somebody else’s hat.

Let’s say the yellow hat in Figure 3.2 is person pi’s hat, and the blue hat is person pj ’s

hat.



44

Figure 3.2: Hats i Through n

So, as stated above, person pi receives person pj ’s hat.

Figure 3.3: Person i Receives Hat j

So the problem has two cases: pj receives hat hi, shown in Figure 3.4.

Figure 3.4: Person j Receives Hat i

In this case there are two less hats and people, as both pi and pj have hats, so the

problem reduces to i− 2 people and i− 2 hats.

The second case in which pi does not receive hat hj , so hat hj is still available to be

swapped, shown in darker yellow in Figure 3.5.
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Figure 3.5: Nobody Receives Hat i

In this case, hat hi doesn’t end up with person pj , but we will still ”give” the hat to

person pj . The yellow hat hi is temporarily given to person pj , but they will not end up with

the yellow hat at the end of the problem. For all recursive problems, we consider the yellow hat

hi to be person pj ’s original hat, and they will give away the hat and get a new one in some

future subproblem calculated by the solution. This is shown in Figure 3.5 by graying out the

original yellow hat. Here the problem reduces to i− 1 people and i− 1 hats.

This is multiplied by (i− 1), as you could choose a different pi for each step. Like most

counting problems, the naive solution is a recursive exhaustive search, where at each level i, the

total number of ways to incorrectly return i hats is i−1 times the number of derangements for i−

1 + the number of derangements for i− 2.

input : The number of hats n and people n

output: The number of ways to incorrectly return n hats to n people

1 Derangements(n):

2 if n == 1 or n == 2 then

3 return n - 1

4 end

5 return (n− 1) [Derangements(n - 1) + Derangements(n - 2)]

Algorithm 12: Naive Derangements

The runtime of this algorithm takes O(2n) time, as the recursion depth is n, and each

subproblem has two recursive calls.

At this point, we can tell that this has the common problem most exhaustive recursive

searches have, that of computing the same subproblems over and over again. We can fix this
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using memoization and a one-dimensional solution table. Let the 1D array derangements

be the solution space, where derangements[i] is the total number of ways i hats can be

distributed to i people so that nobody gets their original hat back. Let the base case be

derangements[1] = 0, derangements[2] = 1. The recursive case is the same as the

naive solution above.

Input: The number of hats and people n

State Space: A 1D array derangements where derangements[i] is

the total number of ways i hats can be distributed to i people

so that nobody gets their original hat back.

Base Case: derangements[1] = 0, derangements[2] = 1

Inductive Case: derangements[i] = (i− 1)[derangements[i− 1]

+derangements[i− 2]]

Optimal Solution: derangements[n]

This solution takes O(n) time, as each subproblem takes constant time to compute.

This solution also takes O(n) extra storage space for the solution table derangements, but it

is possible to reduce the storage space to constant extra space. If we do this problem bottom-

up as described before, starting by calculating derangements[0] and working our way up

to derangements[n], for each step i we only need to keep track of the last two steps,

derangements[i - 1] and derangements[i - 2].

Throwing Dice

Given n six sided dice, what is the total number of ways to get x, where x is the sum of values

on each face when all the dice are thrown. For reference, Figure 3.6 below shows all the possible

sides of a six sided die.

Figure 3.6: All Faces on a Six-sided Die
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An example, suppose there are three dice and the sum is 6, then there are 9 different

ways as shown in Figure 3.7 below.

Figure 3.7: All Possible Combinations of Three Dice Whose Faces Sum to 6

The naive, exhaustive search solution is as follows: generate all possible combinations

of values from n dice, count the number of combinations that sum to x. We can think of this

problem as throwing n dice independently. That is, after throwing the first dice, which can

have any of the six numbers as outcomes, we have a sub-problem of throwing n − 1 dice and

getting a sum of x− i, where i is the outcome of the first dice.
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input : Number of dice n, sum to obtain x

output: Number of ways to obtain a sum x with n 6 sided dice

1 Sum(n, x):

2 numberOfWays = 0

3 if x < 1 then

4 return 0

5 end

6 if n == 1 and x < n then

7 return 1

8 end

9 for i← 1 to 6 do

10 numberOfWays + = Sum(n− 1, j − i)

11 end

12 return numberOfWays

Algorithm 13: Naive 6 Sided Dice

This solution runs in O(6n) time, as the recursion depth is n, and each subproblem has

six recursive calls. Using memoization, we can reduce the runtime of this algorithm. Let the

2D array sums be the solution space, where sums[i, j] be the total number of ways sum j

can be made with i dice. Let the base case be sums[1, j] = 1, ∀j ∈ {1, . . . , 6}. The recursive

case is the same as the naive solution above, just using the pre-calculated state space instead

of doing the calculations each time: sums[i, j] =

6∑
k=1

sums[i− 1, j− k].

Input: Number of dice n, sum to obtain x

State Space: A 2D array sums where sums[i, j] is the total

number of ways sum j can be made with i dice

Base Case: sums[1, j] = 1, ∀j ∈ {1, . . . , 6}

Inductive Case: sums[i, j] =

6∑
k=1

sums[i− 1, j− k]

Optimal Solution: sums[n, x]
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The runtime of this solution is O(n ∗ x), and it also requires extra storage space of size

O(nx).

3.2 Dynamic Programming on Strings

Dynamic programming is commonly used for problems on strings. These problems arise in the

field of bioinformatics, where we are given DNA or RNA sequences and are asked to find certain

types of alignments between them. We look at three well-studied problems in this field.

Edit Distance

Given two strings string1 and string2 and three operations that can be performed on

the strings – inserting a character, removing a character, and replacing a character, find the

minimum number of edits required to turn string1 into string2.

For example, let “Friday” be string1 and “Thursday” be string2. The optimal

solution for this problem is four steps; two inserts and two replaces. Figure 3.8 shows the steps

to turn string1 “Friday” into string2 “Thursday”.



50

Figure 3.8: Steps to Turn “Friday” into “Thursday”

To solve, let l1 be the length of string1 and l2 be the length of string2. Start on

the left side, or first character of both strings, and for each character there are two cases. If

the first characters of both strings are the same, we do not need to use an operation, so recurse

on a subproblem of transforming string1 of length l1-1 to string2 of length l2-1, both

strings from index 1. If these characters are not the same, then we can either insert a new char-

acter, specifically the first character of string2 to string1, and recurse on a subproblem

of transforming string1 to the rest of string2, or remove a character, specifically the first

character of string1, and recurse on a subproblem of transforming the rest of string1 to

string2. The last case is that we replace the first character of string1 to the first character

of string2, and recurse on a subproblem of transforming the rest of string1 to string2. If

we insert, remove or replace a character, we spend 1 unit of ‘cost’ to make that transformation,

and spend the rest of the cost in the recursive subproblems. The minimum cost of these three

cases is then returned.
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input : Two strings string1 and string2, their lengths l1 and l2, the

current index of each i1 and i2

output: The minimum number of edits to get from string1 starting at i1 to

string2 starting at i2

1 EditDistance(string1, string2, l1, l2, i1, i2):

2 if i1 == l1 then

3 return l2− i2

4 end

5 if i2 == l2 then

6 return l1− i1

7 end

8 if string1[i1] == string2[i2] then

9 return EditDistance(string1, string2, l1, l2 i1 + 1, i2 +

1)

10 end

11 insert = EditDistance(string1, string2, l1, l2, i1, i2 + 1)

12 remove = EditDistance(string1, string2, l1, l2, i1 + 1, i2)

13 replace = EditDistance(string1, string2, l1, l2, i1 + 1, i2 +

1)

14 distance = min{insert, remove, replace}

15 return 1 + distance

Algorithm 14: Naive Edit Distance

This solution has a time complexity of O(3l1+l2) time, as the recursion depth is l1+l2,

and each subproblem has three recursive calls. As before, we can use memoization to speed

this up. Let the 2D array distance be the solution space, where distance[i, j] is the

minimum edit distance to turn string1[i1..] into string2[i2..]. Let the base cases

be distance[0, j] = l2 − j, ∀j ∈ {0, . . . , l2} and distance[i, 0] = l1 − i, ∀i ∈ {0, . . . , l1}. The

recursive case is the same as the recursive solution above: distance[i, j] = distance[i+1, j+1]
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if string1[i] == string2[j], distance[i, j] = 1+min{distance[i, j + 1], distance[i + 1, j],

distance[i + 1, j + 1]} otherwise.

Input: Two strings string1 and string2, their lengths l1 and

l2

State

Space:

A 2D array distance where distance[i, j] is the

minimum edit distance to turn string1[i1..] into

string2[i2..].

Base

Case:

distance[0, j] = l2− j, ∀j ∈ {0, . . . , l2},

distance[i, 0] = l1− i, ∀i ∈ {0, . . . , l1}

Inductive

Case:

distance[i, j] =



distance[i + 1, j + 1],

if string1[i] == string2[j],

1 + min(distance[i, j + 1], distance[i + 1, j],

distance[i + 1, j + 1]),

otherwise

Optimal

Solution:

distance[l1, l2]

The runtime of this solution is O(l1 × l2), and it also requires extra storage space of

size O(l1 × l2). To know the actual set of operations (insert, remove or replace), we can use

backpointers as discussed in Chapter 2.

Longest Common Subsequence

Given two strings string1 and string2, find the length of the longest subsequence that both

strings have in common. Recall from Chapter 2.4 that a subsequence need not be contiguous.



53

For example, let “mistake” be string1 and “staircase” be string2. The longest

common subsequence between string1 and string2 in this case is “stae” highlighted in red

in Figure 3.9 below.

Figure 3.9: Longest Common Subsequence between Strings “mistake” and “staircase”

To solve, let l1 be the length of string1 and l2 be the length of string2. We can

solve this problem using a two-dimensional state space. Let length be the solution space,

where length[i, j] is the length of the longest common subsequence of string1[1..i]

and string2[1..j]. That is, it is the longest common subsequence between the first

i characters of string1 and the first j characters of string2. As base cases, we have

distance[0, j] = 0, ∀j ∈ {1, . . . , l2} and distance[i, 0] = 0, ∀i ∈ {1, . . . , l1}. For the in-

ductive case, there are two options; if string1[i] and string2[j] match, then we re-

curse on a subproblem of finding the longest common subsequence between the first i − 1

characters of string1 and the first j − 1 characters of string2. We add one to reflect

that the characters matched. Otherwise, we consider substrings that end on different in-

dices that might match with the current indices, namely length[i-1, j] and length[i,

j-1]. This gives us length[i, j] = 1 + length[i− 1, j− 1] if string1[i] == string2[j], and

length[i, j] = max{length[i− 1, j], length[i, j− 1]} otherwise.
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Input: Two strings string1 and string2, their lengths l1 and

l2

State Space: A 2D array length where length[i, j] is the length of

the longest common subsequence of string1[1..i] and

string2[1..j]

Base Case: length[0, j] = 0, ∀j ∈ {1, . . . , l2},

length[i, 0] = 0, ∀i ∈ {1, . . . , l1}

Inductive Case:

length[i, j] =



1 + length[i− 1, j− 1],

if string1[i] == string2[j]

max{length[i− 1, j], length[i, j− 1]},

otherwise

Optimal Solution: length[l1, l2]

This solution has a runtime of O(l1 × l2), and it also requires extra storage space of

size O(l1 × l2). As before, we can reduce the space by storing only two rows at a time. The

actual subsequence can be computed using backpointers. Moreover, using divide and conquer

techniques discussed in Chapter 2.5, we can compute the elements in the longest common

subsequence with reduced space.

String Alignment

Given two strings string1 and string2, a value gapscore, and a similarity function be-

tween characters similarity(x, y), find the maximum alignment score.

For example, make string1 = “GACC”, string2 = “CAC”, gapscore = -20, and

similarity(x, y) =


20, if x == y

−10, otherwise
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In this example, the best alignment value is -10, and the two possible alignments that

give that score are
“GACC”

“CAC-”
and

“GACC”

“CA-C”
.

Let the state space be align, where align[i, j] is the maximum score aligning the

two strings string1[1..i] and string2[1..j]. For the base case, set align[0, 0] = 0.

To compute align[i, j], there are three possibilities. The first is to match string1[i]

to string2[j]; in this case we get the similarity score for string1[i] and string2[j]

and add it to the previous alignment value for string1[i-1] and string2[j-1].

The second possibility is to introduce a gap in string1; in this case we get the pre-

vious alignment value for string1[i] and string2[j-1] and add it to gapscore. The

final possibility is to introduce a gap in string2; in this case we get the previous align-

ment value for string1[i-1] and string2[j] and add it to gapscore. Pick the max-

imum of these three values to get the value for the current subproblem. This is shown as

align[i, j] = max{align[i− 1, j− 1]+similarity(string1[i], string2[j]), align[i, j− 1]+

gapscore, align[i− 1, j] + gapscore}.

Input: Two strings string1 and string2, their lengths l1 and

l2, a similarity function similarity(x, y),

State Space: A 2D array align where align[i, j] is the maxi-

mum score aligning the two strings string1[1..i] and

string2[1..j]

Base Case: align[1, 1] = 0

Inductive Case: align[i,j] = max{align[i− 1, j− 1] +

similarity(string1[i], string2[j]), align[i, j− 1] +

gapscore, align[i− 1, j] + gapscore}

Optimal Solution: align[l1, l2]

This solution has a runtime of O(l1 ∗ l2), and it also requires extra storage space of size

O(l1 ∗ l2). Using similar techniques discussed previously, we can reduce the space complexity.
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3.3 Dynamic Programming on Trees

The technique of dynamic programming can be used on trees as trees are recursive struc-

tures. For this, we can process the nodes in a tree with either a pre or post order traversal,

and construct solutions to the original problem from its recursive subproblems on subtrees.

We explore two popular problems, that of computing the maximum independent set and the

maximum weighted independent set on trees in this section, and solve an interesting dynamic

programming problem on trees from the 2019 ICPC contest in the next section.

Maximum Independent Set

Given a graph, the maximum independent set (MIS) problem asks to find the largest subset

of nodes S such that two nodes x, y ∈ S are not adjacent to each other. The MIS problem is

NP-Hard on general graphs, but the field of graph theory is filled with results, even linear time

algorithms on special graph classes like trees.

To compute a MIS of a tree rooted at a node i, we observe that there are two possible

cases: a MIS includes node i along with some subset of nodes from its subtree, or it excludes node

i and only includes nodes from its subtrees. We can solve this problem using dynamic program-

ming; let the state space be a 2D array of nodes set, where set[i,1] is the size of a MIS of the

subtree rooted at node i that includes node i, and set[i,2] be the size of a MIS of the subtree

rooted at node i that excludes node i. As a base case, we have set[i, 0] = 1, and set[i, 1] = 0 if

node i is a leaf. To compute set[i,1], we cannot include any of the children, so we must ex-

tend from all set[j, 2], where j is a child of i. So we have set[i, 1] = 1+
∑

j is a child of i

set[j, 2].

To compute set[i,2], we pick the larger of set[j, 1] or set[j, 2] for each child of node

i. So we have set[i, 2] =
∑

j is a child of i

max {set[j,1], set[j,2]}.

The final solution is the larger of the two solutions at the root node r, which is

max{set[r, 1], set[r, 2]}. To obtain the elements in the MIS, we can now use a preorder traversal

of the tree starting from the root node. If set[r, 1] ≥ set[r, 2], then include r into the MIS and

recursively find the sets on the grandchildren of r. Otherwise r is not part of the MIS and we

recursively find the sets on the children of r.
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Input: A tree tree of size n

State Space: A 2D array of nodes set, where set[i,1] is the size of a

MIS on node i’s subtree that includes i, and set[i,2] is

the size of a MIS on node i’s subtree that excludes i.

Base Case: set[i, 1] = 1, set[i, 2] = 0 for all leaves i

Inductive Case: set[i, 1] = 1 +
∑

j is a child of i

set[j, 2],

set[i, 2] =
∑

j is a child of i

max {set[j, 0], set[j, 1]}

Optimal Solution: max{set[r, 1], set[r, 2]} for root node r

It can be seen that at each node, we spend time proportional to degree of that node.

So the total time is
∑
i

degree(i). In a tree this is O(n).

Maximum Weighted Independent Set

It is also possible to find a maximum weighted independent set (MWIS), where each node has

a weight attached to it, and we would like to find a largest independent set that maximizes the

sum of the weights of all nodes in the set. We can solve this problem on a tree using dynamic

programming; let the state space be a 2D array of nodes sum, where sum[i,1] is sum of

weight of all nodes in a MWIS on i’s subtree where node i is included, and sum[i,2] be the

sum of weight of all nodes in a MWIS on i’s subtree where node i is excluded from the MWIS.

We let the function w(i) be the weight of node i. As a base case, we have sum[i, 1] = w(i),

and sum[i, 2] = 0 if node i is a leaf. For the inductive case, we have sum[i, 1] = w(i) +∑
j is a child of i

sum[j, 2] and sum[i, 2] =
∑

j is a child of i

max {sum[j,1], sum[j,2]}.

The optimal solution is found in max{sum[r, 1], sum[r, 2]}, where r is the root node of

the tree. We can compute the actual nodes in the MWIS by using a preorder traversal similar

to computing a MIS.
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Input: A tree tree of size n, a weight function w where w(i) is the

weight of node i

State Space: A 2D array of nodes sum, where sum[i,1] is sum of the

weights of a MWIS node i’s subtree, where node i is in-

cluded, and sum[i,2] is the sum of weights of a MWIS of

node i’s subtree, where node i is excluded

Base Case: sum[i, 1] = w(i), and sum[i, 2] = 0, if i is a leaf

Inductive Case: sum[i, 1] = w(i) +
∑

j is a child of i

sum[j, 2],

sum[i, 2] =
∑

j is a child of i

max {sum[j,1], sum[j,2]}

Optimal Solution: max{sum[r, 1], sum[r, 2]} for root r

Similar to computing a MIS, the runtime of this algorithm is O(n).

3.4 Dynamic Programming Problems in the ICPC

In this section, we describe some of the problems from the 2019 ICPC North American Re-

gional competitions. Our experience with programming competitions is that problems that use

dynamic programming are very common. In the past, there have been at least two problems

in every contest that applies this technique. However, in the 2019 ICPC regionals over twelve

contests, we have only identified four problems that use this technique. There may be two rea-

sons for the surprisingly low number of dynamic programming problems in 2019. Firstly, some

of these problems appear in multiple contests, and secondly, we have been able to solve some

problems using other techniques even if a dynamic programming solution exists. We provide

detailed editorials for these problems and describe some of the insights that may be useful in

solving these with dynamic programming.

Just Passing Through

Imagine going eastward along a two dimensional terrain. We are given a 2D array map with

r rows and c columns, where map[i, j] gives an elevation, the height of the terrain at row
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i and column j. Some of these grid cells are “un-passable” and denoted with a -1, while all

other grid cells contain a positive integer height. A grid cell (i, j) is a “pass” if map[i-1,j]

and map[i+1,j] are strictly larger than map[i,j], and map[i,j-1] and map[i,j+1] are

strictly smaller than map[i,j]. We would like to traverse the terrain from West (column 1)

to East (column c), but we would like to traverse through exactly n passes. From each grid cell

(i, j), we can only step into a grid cell East that is adjacent to it, that is to grid cells (i−1, j+1)

or (i, j + 1) or (i + 1, j + 1). If we assume that the effort or cost to pass a grid cell (i, j) is

proportional to the height of the terrain at that grid cell, then we would like to find a minimum

cost path from any point in column 1 to any point in column c. For more information on the

problem, please see [11].

Figure 3.10: Example Elevation Map

Figure 3.10 shows an example of an elevation map. An optimal path where we want to

travel through exactly 2 passes is shown in the figure below. The total cost of this path is 14.
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Figure 3.11: An Optimal Path

As we want to find an optimal path that minimizes its cost, we see that this is a shortest

path problem, and looking at this problem as computing a shortest path in a directed acyclic

graph from Insight #8 will be helpful. Thus we transform the input 2D array into a graph by

creating a dummy start node 0 and a dummy sink node t = rc+ 1. Each grid cell in the map is

a node in the graph. We create r edges from node 0 to all nodes in the first column, and create

r edges from all nodes from column c to node t. We also create edges from (i, j) to (i−1, j+1),

(i, j + 1) and (i + 1, j + 1). In this graph, the weight of a node is its elevation. We can move

the weight of a node to its incoming edges. So the edges from node 0 to (1, i) will contain the

cost of the elevation at (1, i). We set the weight of node t to 0, so all edges going into the sink

node has a cost of 0.

We can see that a shortest path from the source to the sink node almost solves the

problem. The only catch is that we need to step into exactly n passes. The shortest path from

the source to the sink may contain more than n passes. In order to solve this, we will create

n+ 1 copies of the same graph we created, one each for the number of passes we have travelled

through. So we have graphs map0, . . . , mapn+1. From each grid cell (i, j) that steps into a pass

(x, y) on the kth such graph, we step from mapk[i, j] to mapK+1[x, y] with a weight of the grid

cell (x, y). This means that the only way to step from a level k graph to a level k + 1 graph

is to step into a pass. Passes in the level n + 1 graph will have no outgoing edges. Now if we

compute a shortest path from the source node in the level 0 graph to the sink node in the level
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n+ 1 graph, we find the minimum cost path that steps through exactly n passes. Note that the

graph produced is a DAG, as edges either go from left to right or from one level to the next.

The total space for the graph is O(rcn) – there are O(rcn) nodes and each node has at most

three edges, so the number of edges is also O(rcn). For completeness, we provide a dynamic

programming formulation below, but a shortest path black box that takes the above graph will

suffice.

Figure 3.12: Transforming the 2D Map into a Multi-Level Graph
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Input: A 2D array map with r rows and c columns, n the number

of passes we have to travel through.

State Space: A 3D array path where path[i,j,p] is the minimum cost

path from the start node 0 to grid cell (i, j) that goes through

exactly p passes.

Base Case: path[i,0,0] = map[i, 0], ∀i ∈ r

Inductive Case:

path[i, j, p] =



min{path[i− 1, j − 1, p], path[i, j − 1, p],

path[i+ 1, j − 1, p]}+map[i, j],

if (i, j) is not a pass

min{path[i− 1, j − 1, p− 1], path[i, j, p− 1],

path[i+ 1, j + 1, p− 1]}+map[i, j],

otherwise

Optimal Solution: min
∀i∈c
{path[i, c, n]}

The total runtime for this algorithm is O(rcn) since there are O(rcn) subproblems to

compute, and each one takes O(1) time. If we were to build the level graphs, then this takes

O(rcn) space as well. But notice in the above dynamic programming formulation that each

level only depends on the level before it. So storing only two levels at a time, we can reduce

the space to O(cn). Using divide and conquer techniques discussed in Chapter 2.5, we can also

find the actual grid cells in an optimal solution with only O(rcn) space.

Never Jump Down

We are given a rooted tree with n vertices where each vertex v1 through vn is labeled with a

corresponding non-negative whole number u1 through un. Vertex v1 is the root. A jumping

path is a sequence a1, a2, ..., ak of length k where vertex vai is an ancestor of vaj for all i ≤ j.
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Find the length of the longest non-decreasing jumping path, and the number of paths of that

length. For more information on the problem, see [12].

Figure 3.13: Example of a Rooted Tree with Two Possible Maximum Jumping Paths

The solution to this problem is the longest increasing subsequence in a tree, where each

root to leaf path can be considered as a single dimensional array. We also need to compute

the total number of such paths. We can compute the total number of paths by changing the

max quantity into a sum in the inductive case of computing the LIS (see Chapter 2.4). We will

leave this as an exercise to the reader, and in this section we will only focus on computing the

length of a LIS along any root to leaf path.

As discussed in Chapter 2.4, we can use a splay tree to speed up computing the length

of a LIS in an array in only O(n log n) time. We can use the exact same approach to this

problem on a tree by doing a preorder traversal. At each node x, suppose we also pass in the

splay tree T of all nodes on the path from the root of the tree to node x. Then using the same

approach as the one discussed in Chapter 2.4, we insert x into T and splay it to the root. Its

left tree contains all subsequences that can be extended from. Augmenting each node with the

max LIS in the left subtree, we can compute the length of a LIS ending at node x. We then
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pass the tree T to all of x’s children, which are the recursive subproblems. After coming out

of all recursive calls, we simply delete x from the splay tree and return. This ensures that the

tree passed back to the parent does not contain any node from x’s subtree.

We spend only O(log n) time per node. Therefore the entire algorithm takes only

O(n log n) time. After augmenting each node with the length of a LIS to that node, we can

traverse the entire tree to find the longest one.

Since this problem computes a LIS on a tree treating each root to leaf path as a one

dimensional sequential problem, we have gained the following insight.

Insight #9: Some dynamic programming problems on sequences can also

be solved on trees that represent sequences along its paths

with the same asymptotic complexity.

Watch Later

We are given a list videos of length n that contains k different types of videos to watch. We

want to watch all videos of one type at a time before watching videos of a different type, and

are allowed to watch any type of video first. To watch, we must click a video to play it. When

a video finishes playing, it is automatically deleted from the list. If the video after it is of the

same type as the previously watched video, then it will automatically start playing. Otherwise,

we must click on the next video to start watching it. We would like to find the minimum

number of clicks required to watch all videos in the list. For more information, please see [14].

For example, let n = 5, k = 3, and list = [a,b,b,c,a]. The optimal solution requires 3

clicks, and the steps for those clicks follow below.

1. Click on the second item of list, a video of type b. This video is watched and deleted

from list. Since the next video is also of type b, it is automatically played and then

deleted from list. list now contains [a,c,a].

2. Click on the second item of list, a video of type c. This video is watched and deleted

from list. list now contains [a,a].
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3. Click on the first item of list, a video of type a. This video is watched and deleted from

list. Since the next video is also of type b, it is automatically played and then deleted

from list. list is now empty.

Note that we are not given the order to watch the videos. Therefore, once we determine

an order, we can compute the number of clicks to watch all the videos in the list. However,

part of the challenge is to enumerate all subsets of video types quickly. We can have a dynamic

programming formulation similar to the travelling salesman problem in Chapter 2.7. Let S be

the subset of video types not yet watched. Given a list list of videos which contain only video

types in S, we would like to know what is the minimum number of clicks to watch all videos.

At each step, we can choose any of the video types i ∈ S to watch. If we choose to

watch all videos of type i next, then we first find the number of clicks c to watch all videos

of type i. Then we recurse into a subproblem to find the minimum number of clicks d to

watch all videos where video types come from S − {i}. The total number of clicks to watch all

videos in S is thus c+d. We minimize this quantity over all possible videos i we can watch first.
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global : Array of clicks clicks, where clicks [S] is the minimum number of clicks

to watch all video types in S

input : Array list of videos, a set of unwatched video types S

output: The minimum number of clicks to watch all remaining video type S

1 Watch Later(list, S):

2 if S = φ then

3 return 0

4 end

5 if clicks [S] already computed then

6 return clicks [S]

7 end

8 mincost = ∞

9 for i ∈ S do

10 c = number of clicks to watch video type i

11 d = Watch Later (list, S − {i})

12 cost = c+ d

13 mincost = min{mincost, cost }

14 end

15 clicks [S] = mincost return clicks [S]

Algorithm 15: Best Way to Watch Video Types in S

To solve the above problem, we have used Insight #2. We are doing an exhaustive

search, but memoizing the results allows us to prevent computing the same subproblems over

and over again.

The size of S is at most k. Therefore, in each step, we are iterating over O(k) video

types, and we take O(n) time to determine the number of clicks. With one linear scan we can

compute the number of clicks to watch all videos in S. There are O(2k) subproblems, and in

each step we spend only O(n + k) time. So the total time is O(2k(n + k)). Since the number

of video types can be upper bounded by n, we have a runtime of O(2kn).



Chapter 4

Problem Classifications and Website

The dynamic programming insights in this thesis were developed after solving over seventy

contest problems from the 2019 ICPC North American regional programming contests. In

doing so, we have also classified problems based on the main algorithmic techniques used. This

chapter describes how these problems were classified, the different classification categories, and

a table of all classified ICPC problems. We have implemented a website that allows us to find

problems based on their classification easily. We describe the many features of this website in

this chapter.

4.1 Classification

The ICPC problems were classified based on the data structure, algorithm, or technique that

we used to solve the problem within the problem’s specified time limit. Each problem can have

one or more classifications, depending on what is necessary to solve the problem. For example,

if the problem required simply trying all possible solutions, and there were no tricks to speed up

the solution, then the problem would only be classified as “Brute Force.” If a problem involved

using a sweep line to insert items into a BST in a specific order, then the problem would have

two classifications, “Sweep Line” and “Binary Search Tree.”

Multiple, more specific classifications were added to the problem if that would prove

useful for searching for problem types. For example, problems classified as “Connected Compo-

nents” and “Shortest Path” would both have the additional classification of “Graph Algorithm.”

67
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This makes searching for problem types easier; those who search for the more specific connected

components or shortest path problems will not get any of the other specific classifications re-

turned, but those looking to practice all kinds of graph problems will get every possible graph

problem returned from their search query.

All problem classifications are listed below. The meanings of these categories are well

understood by competitive programmers and students who have taken an intermediate algo-

rithms course at their respective universities.

1. Ad-hoc

2. Algebra

3. All-Pairs Shortest Path

4. Angular Sorting

5. Binary Search

6. Binary Search Tree

7. Bipartite Graph

8. Brute Force

9. Closest Pair

10. Combinatorics

11. Computational Geometry

12. Connected Components

13. Context-Free Grammar

14. Counting

15. Depth First Search

16. Direct Access Table

17. Directed Acyclic Graph

18. Dynamic Programming

19. Dynamic Programming in

Trees

20. Geometry

21. Graph Algorithm

22. Graph Traversal

23. Greedy

24. Hash Table

25. Hashing

26. Linear Programming

27. Linear Search

28. Linear System of Equations

29. Markov Chains

30. Math

31. Number System

32. Number Theory

33. Permutation

34. Polynomial Hashing

35. Priority Queue

36. Probability

37. Projection

38. Queue

39. Recursion

40. Shortest Path

41. Simulation

42. Sliding Window

43. Smallest Enclosing Circle

44. Sorting

45. Steady State

46. String

47. Suffix Tree

48. Sweep Line

49. travelling Salesman

50. Tree Algorithm

The tables below show that there were 131 problems overall in the 2019 North American

regional competitions. However, we note that some of these problems are duplicates with the

same name, and some of these problems are the same underlying problem with a different name.

In total, there were 86 unique problems in the 2019 North American regional competitions.

While we surveyed all 86 problems, some of these problems were so challenging that while we
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could tell what techniques would be necessary to solve them, we could not finish solving them

in time for this thesis. This is why there are more problems classified as dynamic programming

than we explored in Chapter 3. Only 5 problems were not classified as we found them to be

too challenging. This is shown in the tables below by blank classification cells. In the end,

we classified over 80 problems, and solved over 70 problems over the course of this thesis. As

future work, we hope to solve and classify all 86 unique problems.

The list of all the 2019 North American Regional ICPC problems that were classified

during this thesis, and their classifications, are shown in the tables below. For the purposes of

presentation, we divide these tables based on regional contests.

Table 1

Pacific Northwest Region

1 Radio Prize All-Pairs Shortest Path

2 Perfect Flush Hash Tbale, Suffix Tree

3 Coloring Contention Graph Algorithm, Shortest Path

4 Dividing by Two Simulation

5 Rainbow Strings Combinatorics

6 Carny Magician

7 Glow, Little Pixel, Glow Sweep Lines, Binary Search Trees

8 Pivoting Points Angular Sorting

9 Error Correction Hash Table

10 Interstellar Travel Simulation

11 Computer Cache Simulation

12 Carry Cam Failure Algebra, Brute Force

13 Maze Connect Graph Algorithm, Connected Components

Table 2

Mid Atlantic Region

1 Kafkaesque Ad-hoc

2 The Deal of the Day Recursion, Combinatorics

3 This Ain’t Your Grandpa’s Checker-

board

Simulation

4 Pixelated Binary Search Tree, Sweep Line

5 Never Jump Down Dynamic Programming in Trees

6 Weird Flecks, But OK Computational Geometry, Smallest Enclosing Circle

7 On Average They’re Purple Graph Algorithm, Shortest Path

8 Don’t Fence Me In Graph Algorithm, Connected Components
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Table 3

Rocky Mountain Region

1 Piece of Cake Ad-hoc

2 Fantasy Draft Simulation, Queue

3 Folding a Cube Brute Force, Simulation

4 Integer Division Combinatorics, Hash Table, Sorting

5 Hogwarts Graph Algorithm, Graph Traversal

6 Molecules Ad-hoc, Simulation

7 Typo Hashing

8 The Biggest Triangle Brute Force, Geometry

9 Tired Terry String, Sliding Window

10 Watch Later Dynamic Programming, Combinatorics

11 Lost Lineup Ad-hoc, Sorting, Permutation

Table 4

Southern California Region

1 Lychrel Search Simulation

2 Morse Redux Ad-hoc, Context-Free Grammar

3 Stairs Linear Programming

4 Computer Cache Simulation

5 Swap Madness Hash Table

6 Maze Connect Graph Algorithm, Connected Components

7 Flaw Removal Computational Geometry Smallest Enclosing Circle

8 Permits in Kafkatown Ad-hoc

9 Visibility Linear Search, Computational Geometry

10 Pixel Activation Binary Search Tree, Sweep Line

Table 5

North Central Region

1 Weird Flecks, But OK Computational Geometry, Smallest Enclosing Circle

2 Code Names Hash Table

3 New Maths Algebra, Brute Force

4 Some Sum Counting, Combinatorics

5 Early Orders Suffix Tree, Hash Table

6 Pulling Their Weight Tree Algorithm

7 Birthday Paradox Probability, Math

8 On Average They’re Purple Graph Algorithm, Shortest Path

9 Full-Depth Morning Show All-Pairs Shortest Path, Graph Algorithm

10 This Ain’t Your Grandpa’s Checker-

board

Simulation

11 Solar Energy Simulation
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Table 6

South Central Region

1 All is Well Graph Algorithm, Shortest Path

2 Birthday Paradox Probability, Math

3 Code Names Hash Table

4 Flipping Patties Ad-hoc

5 Full Depth Morning Show All-Pairs Shortest Path, Graph Algorithm

6 Don’t Fence Me In Graph Algorithm, Connected Components

7 On Average They’re Purple Graph Algorithm, Shortest Path

8 Pulling Their Weight Tree Algorithm

9 Some Sum Combinatorics, Counting

10 This Ain’t Your Grandpa’s Checker-

board

Simulation

11 Never Jump Down Dynamic Programming in Trees

12 Weird Flecks, But OK Computational Geometry (smallest enclosing circle)

Table 7

East Central Region

1 Retribution Closest Pair, Sweep Lines, Greedy

2 Bio Trip Shortest Path

3 Cheese, If You Please Dynamic Programming, Linear Programming

4 Follow the Bouncing Ball Computational Geometry

5 Just Passing Through Dynamic Programming, Directed Acyclic Graph

6 Musical Chairs Simulation, Binary Search Tree

7 Out of Sorts Simulation

8 Remainder Reminders Algebra

9 Square Rooms Recursion

10 Taxed Editor

11 Where Have You Bin?

Table 8

Northeastern Region

1 Add ‘Em Up Hash Table

2 The Colonization of El-gă-rizm Bipartite Graph

3 Cutting the Necklace Sliding Window, Ad-hoc

4 Fair Divisions Angular Sorting, Brute Force, Hash Table

5 Guess the Digits Linear System of Equations

6 Monument Maker Ad-hoc, Simulation

7 Protecting the Collection Simulation

8 The Sock Pile Probability

9 Stickers Dynamic Programming

10 The Wire Ghost Sorting, Brute Force, Simulation



72

Table 9

Mid Central Region

1 Basketball One-on-One Simulation

2 Commemorative Race Graph Traversal, Depth First Search

3 Convoy Priority Queue, Greedy

4 Crazed Boar Angular Sorting, Projection

5 Dance Circle Linear Programming

6 Dragon Ball I travelling Salesman

7 Dragon Ball II Dynamic Programming, travelling Salesman

8 Farming Mars

9 Soft Passwords Ad-hoc

10 Sum and Product Brute Force

11 True/False Worksheet

12 Umm Code Simulation, Ad-hoc

Table 10

New York Region

1 FYI Ad-hoc

2 Remdoku Recursion

3 Pass The Buck Markov Chains, Steady State

4 Gerrymandering Criterion Simulation, Geometry

5 Circle Garden Geometry

6 Origami Fold Geometry, Binary Search

7 Simple Collatz Sequence Simulation

8 Problematic Public Keys Number Theory

9 Integers in Rational Bases Number System

10 How Many Unicycles in a Wheel? Combinatorics

11 Regional Team Names Ad-hoc

Table 11

Southeast Division 1 Region

1 Carryless Square Root Algebra, Brute Force

2 Computer Cache Simulation

3 Elven Efficiency Direct Access Table

4 Swap Free Hash Table

5 Fixed Point Permutation

6 Interstellar Travel Simulation

7 Jumping Path Dynamic Programming in Trees

8 Levenshtein Distance Sorting, Binary Search Tree

9 Maze Connect Graph Algorithm, Connected Components

10 One of Each Suffix Tree, Hash Table

11 Windmill Pivot Angular Sorting
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Table 12

Southeast Division 2 Region

1 Balanced Animals Tree Algorithm

2 Carryless Square Root Algebra, Brute Force

3 Checkerboard Simulation

4 From A to B Simulation

5 Elven Efficiency Direct Access Table

6 Even or Odd Combinatorics

7 Glow, Pixel, Glow! Binary Search Tree, Sweep Line

8 Jumping Path Dynamic Programming in Trees

9 Levenshtein Distance Binary Search Tree, Sorting

10 Rainbow Strings Combinatorics

11 ReMorse Ad-hoc, Context-Free Grammar

4.2 Website

In the past, the ICPC Live Archive [7] acted as an archive for all past regional and global ICPC

competition problems. However, since 2017, due to recent administrative changes, this archive

has been discontinued. The main motivation for the creation of our website was to create

a new archive of ICPC competition problems starting from the 2018 regional contest. Since

classification of contest problems based on techniques are rarely found, we provide a search

feature that allows to search for problems based on multiple factors, which are

• Problem Name

• Classification (algorithmic technique used)

• Regional Competition

• Year of Contest

The website’s base was created in HTML, starting with a free template from Bryant

Smith [18]. The template was adjusted to create a simple two-page interface with a ‘home

page’ that describes the purpose of the site, and a ‘search problems’ page that allows visitors

to the website to search through the database of problems by name, classification, regional

competition, or competition year.
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Figure 4.1: Home Page of Thesis Website

The underlying database used is a free database hosted by the site Caspio [2]. Each

entry in the database has six fields; “ProblemName,” “Classification,” “Region,” “Year,” “Prob-

lemID,” and “Link.” The “ProblemName” field is text data type, which is required to be unique

– this field is the unique identifier for each problem. “Classification” is a list of strings, and

allows a problem to have zero or more classifications from the classification types listed in Sec-

tion 4.1. The “Region” field is also a list of strings, and allows a problem to have zero or more

regions from those listed in Section 1.1, as problems can appear in multiple regions. The “Year”

field is a simple number that contains the competition year that the problem appeared in. The

field “ProblemID” is an integer that each problem is assigned. When classifying, we found

that some problems, despite having different names, were the same problem. If the problem is

unique, it is a given a new, unique problem ID. If the problem is the same as one previously

inserted with a different name, it is given the same problem ID as the previous problem. For

example, the problems “On Average They’re Purple” and “Coloring Contention” are the same

underlying problem, so they have the same problem ID. The final field, “Link,” is a text field

that holds the URL of the description of each problem, so that users can click on the click and

read the problem for themselves.
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Figure 4.2: Problem Database Inside Caspio

To add a new problem to the database, we simply scroll to the bottom of the entries,

and click in the last, empty spot. From there, we can enter the problem’s name, select all of its

classifications, select its region, enter the year, and enter its problem ID.

Figure 4.3: Adding a New Problem to the Database

This website is hosted at https://cs.appstate.edu/˜mohanr/ICPC_Problem_

Site. We invite competitive programmers and students of algorithms to visit this website,

and hope that the search feature is useful in not only practicing for ICPC contests, but also for

improving algorithmic problem solving and programming skills.



Chapter 5

Conclusion

5.1 Final Results

In this thesis, we surveyed and solved over 70 problems from the premier programming contest

for university students – the Intercollegiate Programming Contests (ICPC). While surveying, we

also classified these problems based on the data structure or algorithmic technique used to solve

them, as explored in Section 4.1. These problems were fun and intellectually stimulating, and by

solving them we have gained many insights into the technique of dynamic programming. These

insights were explained in detail and illustrated with example problems throughout Chapter 2

and Chapter 3. The nine insights gained and explored in this thesis are outlined below.

1. Dynamic Programming = Recursion + Memoization.

2. Dynamic Programming = Recursive Exhaustive Search + Memoization.

3. The runtime of dynamic programming algorithm = total number of sub-problems × total

time for each sub-problem.

4. Dynamic Programming = Incremental Construction + Memoization.

5. The actual set of elements belonging to an optimal solution can be obtained using back-

pointers.

6. Binary search trees can help in speeding up determining a maximization (minimization)

over a set of solutions.
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7. Divide and Conquer can help find the items in an optimal solution with reduced space.

8. Dynamic Programming = Shortest Path in a DAG.

9. Some dynamic programming problems on sequences can also be solved on trees that

represent sequences along its paths with the same asymptotic complexity.

We hope that such insights help in identifying problems with a dynamic programming

solution, and in using them to formulate dynamic programming solutions effectively.

We also built a web-based platform to archive problems after the 2017 ICPC contests,

described in Section 4.2. We have successfully archived the problems from the 2019 North

American regional contests, totaling over 70 problems. The web application allows for easy

addition of new problems, and has a search feature to search for problems by problem name,

regional competition, problem classification, and problem year. The hope is that this site will

be filled with all problems from all contests, both regional and global, from the ICPC contests.

Moreover, we hope to fill this site with problems from the biggest contest for high school students

– the USA Computing Olympiad (USACO). Future contestants may find this web application

useful as they can find problems based on a particular algorithmic technique, thereby helping

them practice applying the technique.

5.2 Future Work

This thesis leads to potential for many different kinds of future work. One avenue that has

been briefly touched on in the previous section, is to continue filling the database with ICPC

and USACO problems.

While we focused on the 12 North American regions to keep the scope of this thesis

reasonable, there are 46 ICPC regions worldwide, listed below.

1. Africa/Middle East - Arab

Contest

2. Africa/Middle East - South

Africa

3. Asia - Amritapuri

4. Asia - Beijing

5. Asia - Chennai

6. Asia - Daejeon

7. Asia - Dhaka

8. Asia - East Continent League

Finals

9. Asia - Gwalior Site

10. Asia - Gwalior Site

11. Asia - Ho-Chi-Minh City Site
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12. Asia - Hong Kong

13. Asia - Hua-Lien

14. Asia - Jakarta

15. Asia - Kabul

16. Asia - Kharagpur

17. Asia - Kolkata-Kanpur Site

18. Asia - Lahore

19. Asia - Manila

20. Asia - Nanning

21. Asia - Nakhon Pathom Site

22. Asia - QingDao

23. Asia - Shenyang

24. Asia - Tehran

25. Asia - Tsukuba

26. Asai - Urumqi

27. Asia - Xian

28. Asia - Yangon

29. Europe - Central

30. Europe - Northeastern-

Eurasia

31. Europe - Northwestern

32. Europe - Southeastern

33. Europe - Southwestern

34. Latin America

35. North America - East Cen-

tral NA

36. North America - Greater NY

37. North America - Mid-

Atlantic USA

38. North America - Mid-Central

USA

39. North America - North Cen-

tral NA

40. North America - Northeast

NA

41. North America - Pacific

Northwest

42. North America - Rocky

Mountain

43. North America - South Cen-

tral USA

44. North America - Southeast

USA

45. North America - Southern

California

46. South Pacific

Note that the ICPC competitions are annual competitions for university students. The

first ICPC contest was held in 1977 [4]. Moreover, the ICPC World Finals, treated as the

olympics of programming competitions, are conducted to find the undisputed winners of all

geographic regions every year. So a complete archive of all problems from the ICPC contest

alone would lead to thousands of problems. In addition, the USACO and the IOI contests for

high school students are also annual competitions, and adding these problems regularly to this

site makes for a lifelong task.

Some of the contest problems are too challenging that beginner students may be over-

whelmed with the scope and difficulty of the problems. Therefore, providing editorials for

contest problems would go a long way towards mastery in algorithmic problem solving. We

call out to the competitive programming community to provide more detailed and accessible

expositions of some of the best problems from these contests.

Another avenue of possible future work is to add more information about each problem

to the database to make our site more useful. One option is to add a perceived difficulty level to
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each problem, so that contestants can filter problems based on their skill level instead of wasting

time on problems either too simple or too difficult for them to solve. Another option is a star

rating to determine the quality of a problem. Here, quality does not mean difficulty, rather it

is how good the problem is presented, and how well algorithmic techniques can be applied to

solve the problems. For example, a problem with a trivial solution, or one that involves difficult

parsing of input and output will be deemed as low quality, while a problem that uses a clever

insight, or uses successive layers of abstraction or the use of multiple techniques will be deemed

as high quality.

The final option for future work is an in-depth research into other algorithm types,

in order to find insights that would allow easier identification and formulation of solutions

with algorithms other than dynamic programming. Many of the problem classifications listed

in Section 4.1 are viable candidates for an in-depth exploration, but based on the type of

problems we found in ICPC competitions during this thesis, we recommend exploring graph

algorithms or string algorithms to be the most useful for contestants.
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