
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2022

Two studies in resource-efficient
inference: structural testing of
networks, and selective
classification

https://hdl.handle.net/2144/43708
Boston University



BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

TWO STUDIES IN RESOURCE-EFFICIENT INFERENCE:

STRUCTURAL TESTING OF NETWORKS,

AND

SELECTIVE CLASSIFICATION

by

ADITYA GANGRADE

B.Tech., Indian Institute of Technology Bombay, 2014

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2022



© 2022 by

ADITYA GANGRADE

All rights reserved



Approved by

First Reader

Bobak Nazer, PhD
Associate Professor of Electrical and Computer Engineering

Second Reader

Venkatesh Saligrama, PhD
Professor of Electrical and Computer Engineering
Professor of Systems Engineering
Professor of Computer Science

Third Reader

Daniel Sussman, PhD
Assistant Professor of Mathematics and Statistics

Fourth Reader

Ery Arias-Castro, PhD
Professor of Mathematics
Professor of Data Science
University of California, San Diego



To the memory of my grandmother.

iv



Acknowledgments

It is meant to be a lucky thing to find a doctoral adviser that you get along with

intellectually and personally. I am then at least quadratically as lucky to have found

two such people in Bobak and Venkatesh, both of whom have contributed immensely,

not only to my understanding of research, but also to my understanding of life. I want

to thank them both for being so generous with their time and ideas, for always being

encouraging, and for exposing me to lines of thought that I never would have gotten

to on my own. I especially want to thank Bobak for always lending an ear, and for

guiding with a light touch; and Venkatesh for sharing his wisdom, and for being an

unending font of interesting questions.

I am fortunate to have had Ery Arias-Castro and Daniel Sussman on my thesis

committee, and am thankful to them for their free sharing of ideas, and for the vast

amounts of encouragement they gave me.

A number of the faculty in the broad IDS group at BU have enriched my experience

here over the years, through their contributions to various reading groups, through

conversations, and through advice. I want to especially thank David Castañón, Ashok

Cutkosky, Prakash Ishwar, Brian Kulis, Alex Olshevsky, and Yannis Paschalidis. I

would also like to thank the administrators of the Systems Engineering department

for the leniency shown to me over the years, and especially Elizabeth Flagg for her

infinite patience, and for what I like to call ‘the great auditing of 2019.’

Since this dissertation represents a culmination of my academic study, I want to

thank my teachers over the years that have been crucial to me getting here. Special

thanks are due to Ankur Kulkarni at IITB, Vinod Prabhakaran at TIFR, and Rajesh

Sundaresan at IISc, who very kindly hosted me in 2014 and 2015, and were my

first introduction to concrete research; to B.G. Fernandes, H. Narayanan, Punit

Parmananda, and Sibi Raj Pillai at IITB, without whose encouragement and advice

v



I never would have set down this path; and to Vashali Basu and Vipul Mehra at

Cathedral, and Deepak Mala Sawhney at DPS, who made learning so enjoyable.

My time at BU has been greatly enriched by the many talented and generous

students I have met here (and beyond), and the myriad conversations, academic and

otherwise, that I have had with them. I want to especially thank the people I have

collaborated closely with over the years, namely Alp Acar, Tianrui Chen, Anil Kag,

Feng Nan, Ali Siahkamari, and Praveen Venkatesh. It has been a great privilege to

learn from such a varied and brilliant group of people.

Stepping outside work, I would like to thank my mates, and especially the Windsor

street crew of Shibani, Rushina, and Ishita, and Bo and PPP, who have contributed

more to my general sanity than I would ever have the grace to properly let on or

appreciate them for.

My parents, Smita and Vivek Gangrade, are ultimately responsible for this work

by engendering an interest in science so long ago, and giving me the room to explore

it in my way. I am very grateful, for this, and for so much more. I further want to

thank the extended clan, and to remember my grandmother, Usha Gangrade, who I

miss dearly, and to whom this work is dedicated.

vi



TWO STUDIES IN RESOURCE-EFFICIENT INFERENCE:

STRUCTURAL TESTING OF NETWORKS,

AND

SELECTIVE CLASSIFICATION

ADITYA GANGRADE

Boston University, College of Engineering, 2022

Major Professors: Bobak Nazer, PhD

Associate Professor of Electrical and Computer

Engineering

Venkatesh Saligrama, PhD

Professor of Electrical and Computer Engineering

Professor of Systems Engineering

Professor of Computer Science

ABSTRACT

Inference systems suffer costs arising from information acquisition, and from com-

munication and computational costs of executing complex models. This dissertation

proposes, in two distinct themes, systems-level methods to reduce these costs without

affecting the accuracy of inference by using ancillary low-cost methods to cheaply

address most queries, while only using resource-heavy methods on ’difficult’ instances.

The first theme concerns testing methods in structural inference of networks and

graphical models, the proposal being that one first cheaply tests whether the structure

underlying a dataset differs from a reference structure, and only estimates the new

structure if this difference is large. This study focuses on theoretically establishing
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separations between the costs of testing and learning to determine when a strategy

such as the above has benefits. For two canonical modelsÐthe Ising model, and the

stochastic block modelÐfundamental limits are derived on the costs of one- and two-

sample goodness-of-fit tests by determining information-theoretic lower bounds, and

developing matching tests. A biphasic behaviour in the costs of testing is demonstrated:

there is a critical size scale such that detection of differences smaller than this size is

nearly as expensive as recovering the structure, while detection of larger differences

has vanishing costs relative to recovery.

The second theme concerns using Selective classification (SC), or classification

with an option to abstain, to control inference-time costs in the machine learning

framework. The proposal is to learn a low-complexity selective classifier that only

abstains on hard instances, and to execute more expensive methods upon abstention.

Herein, a novel SC formulation with a focus on high-accuracy is developed, and used to

obtain both theoretical characterisations, and a scheme for learning selective classifiers

based on optimising a collection of class-wise decoupled one-sided risks. This scheme

attains strong empirical performance, and admits efficient implementation, leading

to an effective SC methodology. Finally, SC is studied in the online learning setting

with feedback only provided upon abstention, modelling the practical lack of reliable

labels without expensive feature collection, and a Pareto-optimal low-error scheme is

described.
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1

Chapter 1

Systems-Level Approaches to

Resource-Efficient Inference

The design of practical inference systems must account for a variety of costs associated

with making accurate inferences. Such costs arise from a two main sources.

First are the statistical costs associated with the quality and amount of data

required for reliable inference to be possible. The nature of this expense can differ

depending on the setting - for instance, accurately fitting a parametric model to a

source of data usually requires a certain minimum number of samples from the same,

or to accurately classify an object might require us to collect enough features about it.

These requirements are fundamental, and are often referred to as Information-theoretic

requirements in the computer science literature.

The second major set of costs is those associated with running the inference system

itself. For instance, a very data efficient but computationally inefficient method for

fitting parameters is completely infeasible. Less drastically, but no less importantly,

large models such as deep neural networks used in modern classification systems are

accurate, but suffer from huge practical computational costs in deployment to the

extent that they cannot be implemented on typical ‘edge’ devices such as mobile

phones or embedded Internet of Things (IoT) devices. Of course, these costs need not

be purely computational - for instance, one common strategy for handling queries at

edge devices is to communicate these to a ‘cloud’ server that implements a complex

model. The costs associated with such a deployment include the energy costs and
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latency of communicating with the server, as well as the (amortised over queries)

monetary cost of implementing the infrastructure associated with the server.

Of course, these two types of costs are not present in isolation, but interact to

inform the design of inference systems. Indeed, one might choose to implement a

data-inefficient method simply because it is computationally feasible, while known data-

efficient methods are not. Conversely, despite the high costs of communication, the

cloud-edge design described previously is implemented, since this is usually required

to deliver accurate results. Balancing these costs while delivering accurate inference

has been a rich vein of research over the past century, and strongly informs the study

of methods for inference.1

This dissertation is focused on systems-level approaches to controlling the costs

incurred by a system at the time of inference. The basic model adopted is that an

accurate but expensive core method is available as a black-box, which the system can

call upon at will. Given this, we will design ancillary methods that quickly process

either cheaply available or small amounts of data to decide whether the expensive

method needs to be executed in order to get an accurate answer. If the core method is

not executed, these ancillary methods must produce an answer of their own, and avoid

the expense of running this core method. Otherwise, the core method is executed, and

the answer is assured to be accurate. The basic goal of these ancillary systems thus is

to minimise the usage of the expensive core method, but without any significant loss

of accuracy in the process. This directly ameliorates the average cost of inference in

(common) settings where most queried instances can be handled easily, but a minority

requires the increased precision of the expensive methods. The overall system can be

represented as the block diagram in Figure 1·1.

1Of course, along with all of these inference-time costs, the statistical and computational costs
of finding good methods and models for data are also important - for instance, a machine learner
needs to collect data and fit a model, which incurs both statistical and computational costs. This
dissertation does not focus on these.
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Core Method

Ancillary

Modulation

Input

Output

Method

Figure 1·1: A representation of the basic structure of the methods -
the ancillary method cheaply processes the input, and decides whether
the expensive core method should be executed, and modulates the
corresponding access to the input. It should be noted that the core
method may draw more or richer input data, or employ greater amounts
of resources such as computation or energy, which is not represented in
the figure.

The following studies this broad approach in two quite distinct themes, both in

setting and the nature of the primitives explored. The first of these is the use of testing

methods to modulate structure recovery methods in networks and graphical models,

and the second is the use of low-cost selective classifiers to modulate the use of complex

methods in the machine learning setup. In my view the primary difference between

these settings is that the former studies concrete parametric distributions, while the

latter domain is primarily discriminative and relatively unstructured. This distinction

strongly colours the type of study in either domain - in the first structured setting, the

bulk of the study regards theoretically establishing for what scenarios these testing

methods have a significant advantage over always running the expensive methods; in

contrast, in the second unstructured setting, we describe novel methodologies along

with theoretical results of the effectiveness of such methods, and further characterise

the advantage of these methods in terms of approximation theoretic properties.
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It should be noted that while each of these primitives have strong relevance to

resource-efficient inference, they have significance beyond these considerations as

well. Subsequent chapters will embrace this breadth in their contextualisation, but

nevertheless the study remains informed by the needs of resource-efficient inference,

and this determines the types of questions we ask, and the solution concepts we adopt.

The remainder of this chapter gives a more detailed overview of these investigations,

along with a short survey of the results obtained, and highlights the relevance to

resource-efficient inference.

1.1 Structural Testing of Networks and Graphical Models

Network-structured data is ubiquitous in scientific domains, whether ‘hard’ or social,

where the large scale features of a system derive from the interaction of smaller objects

or agents within it. Common examples include the relationships between people in

a sociologial context, which naturally form networks that inform the behaviour of

individuals [OR02]; protein-protein or gene interactions in molecular biology, whose in

situ dynamics inform the overall behaviour, and are typically represented as a network

[Cos+10; PF95]; and in neuroscience, where the dynamics of neuran populations is

driven by the ‘connectome’ - the network of connections between individual neurons

[Orl+15]. Recent advances in each of these areas has lead to the proliferation of large

scale data collection - the rise of social media in sociology, or high throughput gene and

protein interaction techniques in molecular biology [Cos+10; PF95], and of calcium

ŕuorescence imaging in neuroscience [YY17] each allows observation of thousands of

agents at the same time, with the goal of identifying both fine and crude underlying

structures in these domains. For instance, geneticists attempt to reason about groups

of genes that together encode some gross behaviour[Cli+07], and neuroscientists try

to establish the broad structures of connectomes in various scenarios [Orl+15].
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This motivates the study of network structured or network driven probabilistic

models, and that of basic inference tasks on the same. Indeed, there has been a ŕurry

of activity in the past decade on the mathematical aspects of the recovery of these

underlying structures, with new algorithms, and information theoretic characterisation

of the sample costs in various settings - for example [DM17; SW12; Abb18; ABH16;

MNS15; CRV15; Bre15; VMLC16; KM17] and many others. However, due to the

intrinsic variability of the underlying data, such methods are typically expensive in

the sense that a lot of high-quality data is required to reliable recover these latent

structures.

This dissertation explores the use of hypothesis testing as a precursor to such

estimation methods in order to mollify the high cost of recovery. The following

illustrates the premise - suppose a biologist is interested in determining how the

interactions between proteins in certain cell systems differ in diseased populations as

opposed to healthy ones [IK12]. Typical formulations identify plausible sub-systems

that might exhibit a difference in structure, but many of these in fact would not

be significantly different - indeed, this constitutes one of the major challenges of

discovering effects in such domains. Further, for most of these sub-systems, well

characterised information about the baseline stuctures in the commonplace healthy

populations is available, simply because this constitutes the bulk of data. With this

background, the idea of testing is natural - we can first try to determine if the latent

structure of a sub-system is significantly different from the baseline structure or not - if

not, then this baseline structure itself can be taken as the estimate, and we need only

undergo the intensive data collection process for recovering the structure if it is indeed

significantly different. This problem corresponds to ‘one-sample’ Goodness-of-fit (GoF)

testing. This type of problem is commonplace, and applies also to marketers trying to

determine if the state of a social network has changed compared to historical data, or to
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neuroscientists studying how if learning a task manifests as changes in the connectome

[Moh+16]. Of course, such tests are also more broadly relevant, in particular to

validating recovered models, and to detecting the presence of structural effects in

response to changes in external conditions (such as changes in protein-interaction

networks in the presence of a drug [IK12]).

The potential for benefit of the above testing-based strategy lies mainly in a

potential reduction in statistical costs, in that since testing is trying to recover much

simpler information than the structure itself, it should be much cheaper than structure

learning. In fact, this is pretty much a requirement for the strategy to be meaningful

- if the costs of testing are instead comparable to those of structure recovery, then

there is no benefit, and in fact an extra cost to testing. An additional desideratum is

that the tests themselves should be computationally simple, which is a second benefit

when the procedure exits at the testing phase.

Concretely, we study two families of models, that represent different forms of

observations that are encountered in such network settings.

• The Stochastic Block Model (SBM), which is a random graph with a latent clus-

tering structure, captures settings where the underlying network of interactions

is directly observable, and the latent structure represents groups of agents such

that the level of interactions between agents depends on the groups they belong

to. Such scenarios are relevant to, e.g. , gene interaction networks, where the

goal is typically to reason about functional groups of genes that tend to interact

more with than outside the group [Abb18].

• The Ising Model, which is a pairwise binary graphical model, captures settings

where behaviour of the individual agents can be directly observed, but the

links between them cannot. The latent structure here is the underlying Markov

network (see Ch.3) that governs the interactions of these agents. This is relevant
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to, e.g. , neuron studies via calcium ŕuorescence, where the activity of individual

neurons can be observed, but the connections between neurons cannot, but the

overall behaviour is driven by these connections.

The following describes the above problem more concretely, and gives a brief survey

of the results.

Generic Problem Description We will work with a parametric family of X -valued

distributions {P λ
θ }, where θ ∈ Θ denotes a set of parameters, and λ ∈ R denotes

a notion of statistical quality - for our purposes, this can be a signal-to-noise ratio

(SNR) in the SBM, or the number of independent and identically distributed (i.i.d.)

samples we can draw from Pθ in the Ising model. In addition, we will assume a given

pseudo-metric ρ on Θ, which encodes the structure we are interested in reasoning

about2. Finally, we will assume a given distortion parameter s, which controls how

precisely we want to recover the underlying parameters.

With this preamble, we can define the basic inference problems of interest as

follows

Structure learning (SL; also known as estimation or recovery) over {P λ
θ }θ∈Θ with

distortion s:

Design a procedure θ̂ : X → Θ such that given X ∼ P λ
θ , for an unknown

θ, such that ρ(θ, θ̂(X)) < s with high probability.

Goodness-of-fit testing (GoF; also known as identity testing) over {P λ
θ }θ∈Θ with

distortion s:
2A pseudo-metric is just a metric but relaxed so that the ‘distance’ between two distinct points

can also be zero. This is important in capturing relevant parts of the latent structure - for instance,
if we are working with weighted graphs but are interested in the corresponding unweighted structure,
then d can equate graphs with the same edges even if they have distinct weights
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Design a procedure φ : X × Θ → {0, 1} such that given X ∼ P λ
θ , for an

unknown θ, and a baseline parameter θ0, φ has the following behaviour

with high probability

• If θ = θ0, then φ(X, θ0) = 0.

• If ρ(θ, θ0) ≥ s, then φ(X, θ0) = 1.

Note that depending on how good the data is (i.e., how large λ is), the above

problems may not be solvable - for instance it is impossible to recover anything if we

observe no data. The principal objects of study are the statistical complexity of the

tasks, which capture the quality needed for the above tasks to be reliably performed.

We will symbolically denote these as follows - these definitions are informal, and details

are left to the specific chapters.

ΛSL(s) := inf{λ : SL over {P λ
θ }θ∈Θ is solvable},

ΛGoF(s) := inf{λ : GoF over {P λ
θ }θ∈Θ is solvable}.

It should be noted that one can always solve GoF via SL with a small cost in

distortion - indeed, if θ̂ solves SL with distortion s/2, then we can produce an estimate θ̂

such that if θ ̸= θ0, then ρ(θ̂, θ0) ≥ s/2, while if θ = θ0, then ρ(θ̂, θ0) < s/2. Importantly,

the costs Λ are not very sensitive to constant factors in the situtaion we study. Thus,

we can bound

ΛGoF(s) ≤ ΛSL(s/2) ≈ ΛSL(s).

Now, for the test-then-recover strategy of the previous section to be effective, we

require that ΛGoF(s) ≪ ΛSL(s) - indeed, otherwise we do not gain anything when

we avoid executing the expensive recovery method. As it turns out, the question of

whether this indeed holds depends both on the family P, and on s. Characterising

this dependence, as encapsulated below, forms the main subject of investigation in

Chapters 2 and 3.
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For the SBM and Ising Models, characterise ΛGoF(s), and in particular

determine for what values of s this is much smaller than ΛSL(s).

A Brief Summary of Results The main result of our study is that the statistical

complexity of testing exhibits a biphasic behaviour as the distortion s varies. More

concretely, we observe that there are critical size scales3s(P) that vary mainly with

the dimensionality of the parameter space such that

• If s≪ s, then ΛGoF(s) is comparable to ΛSL(s).

• If s≫ s, then ΛGoF(s)≪ ΛSL(s).

More concretely, for SBMs on p nodes, this s is
√
p. For Ising models, the story

is more complex (see Ch. 3), but for the subclass of Ising models on p nodes with

tree-structured networks, again s =
√
p. These results sharply characterise when the

test-then-learn approach has a strong advantage - namely if the distortion to which

one wishes to learn the structures is exceeds s.

It should be noted that biphasic behaviour in ΛGoF is relatively common in

structured settings - for instance, this occurs in the testing of linear models with

a fixed design.4 However, typically in such simple settings, the costs of GoF are

uniformly much smaller than those of recovery, which is in sharp contrast with the

above observations, where too small a tolerance s makes testing as hard as recovery.

A further point of comparison is the testing of completely unstructured distributions

(such as arbitrary law on a finite alphabet), which do not suffer phase transitions5,
3To be absolutely clear - we do not show a generic result demonstrating such a phase transition.

Instead, we observe similar effects by explicitly controlling ΛGoF and ΛSL for the models we study.
4This is mainly folklore. Roughly speaking, under a known Gaussian design G, testing problems

can be reduced to the distinguishability problem of differentiating data Y = Gx+W for a s-sparse
p-dimensional x and standard noise w from the pure noise model Y = W . By simply running sparse
recovery, or by considering the energy of the observed signal, it is possible to detect these differences
with Θ̃(min(s, p/s)) samples, again encountering a phase transition at s =

√
p. Importantly, this is

always smaller than the Θ(p) samples needed for recovery if s≪ p. In fact, very small changes are
also easy to detect here! Please write to me if you’d like a concrete proof.

5at least for the simple null as above
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and testing costs are always much lower than those of recovery [DKW18; Gol17].

The approach taken to showing the above results is two-fold. Firstly, we use

information theoretic methods to establish minimax lower bounds and thus derive

impossibility results. These all utilise the approach of designing appropriate alternates

and analysing the χ2-divergence between a mixture over these and a generic null, as

developed, e.g., by Ingster [IS12].

We complement the above lower bounds by designing simple test statistics that

match these bounds for large changes, thus yielding upper bounds on the complexity.

Concretely, we show sharp bounds for the SBM and tree-structured Ising models, as

well as sharp bounds for the restricted problem of testing for deletions in ferromagnetic

Ising models. These test statistics are efficient to compute, in a practical sense, and

further are ‘global’ in the sense that a single statistic that accounts for all possible

alternatives is developed, rather than more local scan-based methods like generalised

likelihood ratios that involve an M-estimation to find the ‘closest’ alternate. This

non-local property is crucial - the scan based methods instead suffer a huge blow-up

in statistical complexity due to the need to ensure a small size of the in the face of

combinatorially many close-by alternates that must all be protected against. Indeed,

this aspect of needing to test combinatorially many possibilities intrinstically present in

these high-dimensional setting is the key statistical challenge in testing these network

structures in a data efficient manner, and the global strategies represent an interesting

strategy to address this that should be more broadly relevant.

In addition to the above, we also develop lower bounds on approximate recovery

and for property testing of Ising model structures, and develop a tight two-sample test

for the SBM. We will leave the discussion of these results to the appropriate chapters.
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1.2 Selective Classification For Resource-Efficient Inference

Modern machine learning (ML) models are remarkably accurate, and as remarkably

complex. For instance, the best models can obtain a staggering 90% accuracy on

complex tasks such as ImageNet [Den+09] but even ‘efficient’ models that achieve this

requires deep neural network (DNN) of nearly half a billion parameters [PDXL21].

Out of necessity, then, such models are typically implemented on powerful machines

running graphics processing units.

Conversely, the queries to these ML models often arise at so-called ‘edge’ devices

- mobile phones, internet-of-things (IoT) sensor et c. Such devices are severely

battery and processing power limited. This imposes severe constraints on the methods

implementable in such settings - for instance, the typical CPU-based structure of

such devices precludes the use of many convolutional layers in vision tasks due to

computational latency [ZWTD19], imposing architectural constraints. In particular,

modern high accuracy methods like deep neural networks are seldom implementable in

these settings. At the same time, edge devices are required to give fast and accurate

decisions. Enabling such mechanisms is an important technical challenge.

There are two main strategies for this - pure edge solutions, and cloud based

solutions. The former consists of learning weak models using methods like resouce aware

training or distillation that can be implemented on the edge directly (e.g. [Wu+19;

KGV17; HVD15]). However, such approaches inevitably results in a large drop in

accuracy - for instance, edge-implementable models like MCUNETs only have accuracy

of about 50% [Lin+20]. The cloud approach instead provides the edge devices

with a communication link to a server that implements one of the aforementioned

complex models, thus gaining accuracy, but at the cost of increased latency and energy

consumption due to communication. These costs are very significant - for instance, the

battery drain of typical edge devices is dominated by the energy cost of communication
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[Zhu+19; Hol17; Nor19].

The above sets the stage for trying to efficiently utilise the expensive-but-accurate

cloud models. The principal observation underlying this is that many queries to such a

system are relatively simple to process. The ideal of operation of such a system should

handle such ‘easy’ queries at the edge, and only use the cloud server for more subtle

cases that require its extra complexity. Such an operation would retain the overall

high accuracy of a solution that always uses the cloud model, but with a reduced

resource cost due to all the instances processed at the edge.

Situations like the above are common in inference systems. For example, when

deciding if a mammary mass is benign or malignant, a physician may predict based

on ultrasound imaging tests, and, in more subtle cases, abstain and refer the patient

to a specialist, or recommend specialised imaging such as CT scans; or an automated

content moderating system can either verify whether a post satisfies guidelines, or fall

back to an expensive but accurate human moderator. There are two main sources of

the extra resource costs of the expensive option, as discussed previously - it could be

the case that the expensive method is much more complex to execute, as above, or

it could be the case that the expensive method uses extra information, such as the

features collected by a CT scan in the medical example. Figure 1·2 illustrates these

models. The noisy left image describes a situation in which the available features

are not enough to separate the two classes, and so a central region where one should

abstain emerges. In contrast, the features are enough to separate the data in the right

image, but only in a complex way. When the decision boundaries are required to

be simple (for instance, straight lines), this boundary cannot be represented, again

leading to a central region where one should abstain. Of course, these aspects can

arise together.

Selective classification (SC) [Cho57; Cho70] is a classical paradigm of relevance
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Figure 1·2: Two modes by which the need for SC may emerge. Left
represents situations where cheap features are unable to separate classes.
Right represents situations where the features are enough, but the
decision boundary is complex, and thus cannot be cheaply computed.

to such settings. The setup allows a predictor to abstain (also called reject) from

classifying some instances (without incurring a mistake). This abstention models

adaptive decisions to invoke more resource-intensive methods on subtle cases, like

in the above examples. Our concrete proposal is to learn a low-complexity selective

classifier to serve as the ‘ancillary method’ in the situation of Figure 1·1. If this

classifier abstains on an instance, the expensive core method can be executed, and

otherwise the selective classifier produces an appropriate answer.

The primary desiderata for such a selective classifier is that accuracy is high,

while coverageÐthe fraction of points that the selective classification does not abstain

uponÐis as high as possible. The former means that whenever the classifier does

answer, it is very accurate, so that the overall error rate of the system can be controlled,

while the coverage is a direct measure of efficiency of the system. This is a subtle

problem, mainly because there is no direct supervision for whether a point is easy or

not, and this must be inferred with standard class labels. Further, implementing such

a solution requires a reasonable methodology to practically train such classifiers.
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The most common prior SC formulation, and the resulting methods, use a ‘gating-

structure,’ wherein abstention is explicitly modelled by a binary-valued function γ,

and classification is handled by a function π. An instance, x, is predicted as π(x) if

γ(x) = 1, and otherwise rejected. Within this formulation, recent work has proposed

a number of methods, ranging from alternating minimisation based joint training, to

the design of new surrogate losses, and of new model classes to accommodate rejection.

Despite this increased complexity, these methods lack power, as shown by the fact

that their performance is essentially matched by naïve schemes that rely on abstaining

on the basis of post-hoc uncertainty estimates for a trained standard classifier. This

represents a significant gap in the practical effectiveness of selective classification.

A Brief Summary of Results Selective Classification In Chapter 4, we describe

a novel formulation for the SC problem, that comprises of directly learning disjoint

classification regions {Sk}k∈Y , each of which corresponds to labelling the instance as

k respectively. Rejection is implicitly defined as the gap, i.e., the set R = X \⋃Sk.
We show that this formulation is equivalent to earlier approaches, thus retaining

expressivity.

The principal benefit of our formulation is that it admits a natural relaxation,

via dropping the disjointness constraints, into decoupled ‘one-sided prediction’ (OSP)

problems. We show that at design error ε, this relaxation has the coverage optimality

gap bounded by ε itself, and so the relaxation is statistically efficient in the practically

relevant high target accuracy regime. In addition, we provide parametric learnability

results for both the OSP and the SC problems.

We pose OSP as a standard constrained learning problem, and due to the decoupling

property, they can be approached by standard techniques. We design a method that

efficiently adjusts to inter-class heterogeneity by solving a minimax program, controlled

by one parameter that limits overall error rates. This yields a powerful SC training
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method that does not require designing of special losses or model classes, instead

allowing use of standard discriminative tools.

To validate these claims, we implement the resulting SC methods on benchmark

vision datasets. We empirically find that the OSP-based scheme has a consistent

advantage over SOTA methods in the regime of low target error. In particular, we

show a clear advantage over the naïve scheme described above, which in our opinion

is a significant first milestone in the practice of selective classification.

Budget Learning Next, in Chapter 5 we explicitly study the situation of the first

example above, wherein black-box access to a very accurate but complex classifier

is available, and we wish to learn simple selective classifiers, which we term budget

learning. By reinterpreting the the prior SC formulation, we draw a connection

between budget learning and the approximation theoretic notion of brackets - in the

regime where a simple selective classifier attempts to match the performance of a

given high complexity model, the problem is equivalent to learning a good bracketing

of this high complexity model.

This interpretation also identifies the key budget learning problem as an approxi-

mation theoretic question - which complex classes have ‘good’ bracketings by simple

classes? We characterise this for a binary version of Hölder smooth classes, and also

provide partial results for generic classes with bounded VC dimension.

Finally, we describe empirical results that concretely construct low-complexity

selective classifiers to match high complexity model on benchmark vision tasks. Even

with a strong disparity in the cloud and edge models (ğ5.5), we obtain usages of

20 − 40% at accuracies higher than 98% with respect to the cloud. Further, we

outperform existing methods in usage by factors of 1.2− 1.4 at these high accuracies.

Online Selective Classification Finally, in Chapter 6, we study selective clas-

sification in the online learning setting. This setting is significantly different from
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the above batch setting, mainly since queries arrive in a streaming way, and the

model must decide whether each should be abstained upon or not. Notice that in this

streaming setting, for the model to get reliable labels, it actually needs to run the

expensive method. This sets up the critical difference that in this online setting, we

impose the restriction that feedback is provided to the learner only when it abstains.

This sets up the problem of online selective classification with limited feedback,

we study in both the harsh adversarial setting, as well as the more benign stochastic

setting. Concretely, an adversary sequentially produces contexts and labels (Xt, Yt),

and the learner uses the Xts to produce a decision Ŷt that may either be one of K

classes, or an abstention, which we represent as ⊥. Feedback in the form of Yt is

provided if and only if Ŷt = ⊥, and the learner incurs a mistake if Ŷt was non-abstaining

and did not equal Yt.

Throughout, the emphasis is on ensuring very few mistakes, to account for the need

for very accurate decisions. With this motivation, we study regrets achievable when

compared to the behaviour of the best-in-hindsight error-free selective classifier from a

given class - that is, one that makes no mistakes, while abstaining the fewest number

of times. Notice that our situation is non-realisable, and therefore this competitor

may abstain in the long-run. The two metrics of importance here are the number

of mistakes the learner makes, and its excess abstention over this competitor. An

effective learner must control both abstention and mistakes, and it is not enough to

make one small, e.g. a learner that makes a lot of mistakes but incurs a very negative

excess abstention is no good. This simultaneous control of two regrets raises particular

challenges.

We construct a simple scheme that, when competing against finite classes, simulta-

neously guarantees O(T µ) mistakes and O(T 1−µ) excess abstentions against adaptive

adversaries (for any µ ∈ [0, 1]), and show that these rates are Pareto-tight [OR94]. We
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further show that against stochastic adversaries, the same rates can be attained with

improved dependence of the regret bounds on the size of the class, and we also describe

schemes that enjoy similar improvements against adaptive adversaries, but at the cost

of the T -dependence of the regret bounds. The main schemes randomly abstain at

a given rate in order to gain information, and otherwise play Ŷt consistent with the

‘version space’ of classifiers that have not been observed to make mistakes. For the

adversarial case, the analysis of the scheme relies on a new ‘adversarial uniform law of

large numbers’(ALLN) to argue that such methods cannot incur too many mistakes.

This ALLN uses a self-normalised martingale concentration bound, and further yields

an adaptive continuous approximation guarantee for the Bernoulli-sampling sketch in

the sense of Ben-Eliezer & Yogev [BY20; Alo+21]. The theoretical exploration is com-

plemented by illustrative experiments that implement our scheme on two benchmark

datasets.

1.3 Format

We will separately discuss the two themes in two separate ‘parts’, which can be read

independently, with separate chapters devoted to each of the directions of exploration

we described above. These chapters are essentially lightly edited reproductions of the

papers wherein this research was originally represented. Nearly all of these publications

are in machine learning conferences wherein, due to length constraints, the usual style

is to present the main results and intuitions in the main text, and relegate technical

details and proof to an appendix. I have come to appreciate this style (after non-trivial

teething pains), and accordingly, we shall commit to the same here - so, the chapter

provide exposition, and describe and interpret the main results, while the concrete

details of proofs are left to the (copious) appendices of this dissertation. Each chapter

is roughly self-contained (perhaps with the exception of Chapter 5, which frequently
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refers to Chapter 4), and may be read in any order desired, although I prefer the order

given within the parts. Each chapter also discusses some open problems at the end.



Part I

Structural Testing of Networks and

Graphical Models

19
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Chapter 2

Testing Community Structures of Stochastic

Block Models

While community detection and recovery for the stochastic block model (SBM)

[Abb18] and, more generally, inference of community structures underlying large-scale

network data [GN02; New06; For10] has received significant interest across the machine

learning, statistics and information theory literature, there has been limited work

on the important problem of testing changes in community structures. The general

problem of testing changes in networks naturally arises in a number of applications

such as discovering statistically significant topological changes in gene regulatory

networks [Zha+08] or differences in brain networks between healthy and diseased

individuals [Bas+08]. Building upon this perspective, we propose testing of differences

in the underlying community structure of a network, which can encompass scenarios

such as detecting structural changes over time in social networks [AG05; For10],

determining whether a set of genes belong to different communities in disease and

normal states [JTZ04], and deciding whether there are changes in functional modules,

which represent communities, in protein-protein networks [CY06].

Testing structural changes in networks is statistically challenging due to the fact

that we may have relatively few independent samples to evaluate combinatorially-many

This chapter is a lightly edited reproduction of [GVNS19], which was written in collaboration
with Bobak Nazer, Praveen Venkatesh, and Venkatesh Saligrama.
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potential changes. In this chapter, we propose methods for goodness-of-fit (GoF)

testing and two-sample testing (TST) for detecting changes in community memberships

under the SBM. The SBM naturally captures the community structures commonly

observed in large-scale networks, and serves as a baseline model for more complex

networks. Specifically, there are n nodes partitioned into two equal-sized communities,

and the network is observed as a random n × n adjacency matrix, representing

the instantaneous pairwise interactions among individuals in the population. Both

intra- and inter-community interactions are allowed. Members within the same

community interact with uniform probability a/n, while members belonging to different

communities with a smaller probability b/n. We restrict attention to the commonly-

considered and practically-relevant setting of a/b = Θ(1).

For our testing problems, we assume that the network samples are aligned on

n≫ 1 vertices, and that the latent communities are either the same, or they differ in

at least some s≪ n nodes. We pose the GoF problem as: Decide whether or not the

observed random graph is an instantiation of a given community structure. For the

TST problem, we ask: Given two random graphs, decide whether or not their latent

community structure is identical.

Sparse vs. Dense Graphs. We focus on scenarios where the observed random

incidence matrices are sparse with average degree-per-node bounded by a constant

independent of the network size. Ours is the first work to develop minimax optimal

methods for GoF and TST in this context. We are motivated by both practical and

theoretical concerns.

Practically, as observed in [Chu10], realistic graphs such as social networks are

sparse (friendships do not grow with network size); in temporal settings, at any given

time, only a small subset of interactions are observed; and in other cases ascertaining

the presence or absence of each edge in the network being observed is an expensive



22

process, and it makes sense to understand the fundamental limits for when testing is

even possible.

From a theoretical standpoint, the sparse setting is challenging due to signal-to-

noise ratio (SNR) constraints that do not arise in the dense case. Recovery of the

latent community with up to s errors is possible iff Λ ≳ log(n/s) [CRV15; ZZ16; FC19],

where Λ is a SNR parameter that, in the setting a/b = Θ(1), scales linearly with the

mean degree. In particular, for Λ of constant order, recovery with sublinear distortion

fails. The question of whether testing is possible when recovery fails is mathematically

intriguing. Further, this is the only theoretically interesting setting. Indeed, if testing

for s changes requires a graph dense enough to allow recovery with ∼ s errors, then

one might as well recover these communities and compare them.

Contributions. We show that optimal tests exhibit a biphasic behaviour:

1. For s≫ √n, or ‘large changes,’ we propose computationally-efficient schema for

GoF and TST that succeed with Λ = O(1) - far below the SNR threshold for

recovery. For GoF, this requirement is even weaker - we only need Λ ≳ n/s2,

which vanishes with n since s ≫ √n. Further, we match these bounds up to

constants with information-theoretic lower bounds.

2. In contrast, we show via an information-theoretic lower bound that for s≪ √n,

or ‘small changes,’ both testing problems require Λ = Ω(log(n)) for reliable

testing. This means that the naïve strategy of recovering communities and

comparing them is tight up to constants in this regime.

We complement the above theoretical study by three experiments: the first im-

plements the above tests on synthetic SBMs, and the second on the political blogs

dataset - a popular real world dataset for community detection [AG05]. Both of

these experiments show excellent agreement with the theoretical predictions. The
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third experiment casts a wider net, and instead studies the related problem of testing

the underlying community structure of a Gaussian Markov Random Field that has

precision matrix I+γG for G drawn from an SBM. This experiment explores the more

realistic setting where instead of receiving a graph, we obtain observations at each node

of a hidden graph, and wish to reason about the underlying structure. Remarkably, a

simple adaptation of our procedure for SBMs shows excellent performance for this

problem. This indicates that our observations are not restricted to raw SBMs, but

may signal a more general phenomenon that merits exploration.

Related Work. For work on recovery communities we refer to the excellent survey

by Abbe [Abb18]. However, we explicitly point out the papers [CRV15; ZZ16; FC19],

which provide various schemes and necessary conditions that show that the partial

recovery problem with distortion s can be solved with vanishing error probability if and

only if Λ ≳ log(n/s). We further point out the lower bound of [DAM17], which assert

that if Λ < 2, then asymptotically, the best possible distortion for partial recovery (or

weak recovery, as it is referred to in this constant SNR regime) is n/2−o(n). Note that

reporting a uniformly random community achieves distortion of s = n/2−O(√n).
Ours is the first work to study GoF and TST where both hypothesized models

are SBMs. Nevertheless, both GoF and TST in the context of network data as well

as SBMs have been studied. Below we highlight the key differences in modeling

assumptions and the ensuing technical implications, which renders much of the prior

work inapplicable to our setting.

With regards to GoF, [AV14; VA15] study the problem of detecting if a graph is an

unstructured Erdős-Rényi (ER) graph, or if it has a planted dense subgraph, providing

detailed characterizations of the feasiblity regions and statistical phase transitions in

this setting. While this work is aligned with ours in the techniques used, the modeled

setting and problem there are different (ER vs. planted dense subgraph), and TST is



24

not explored. Particularly, the dense subgraph model and the SBM are qualitatively

different, and conclusions from one cannot be transferred to the other directly.

A number of papers, including [Lei16; BS16; BMNN16; GL17] study various

techniques and regimes of determining if a graph is a SBM or an unstructured ER

graph, and if the former, the number of communities in the model. Of these, [GL17]

approach the problem by counting small motifs in the graphs, [BMNN16] propose a

simple scan and [Lei16; BS16] propose testing of the number of communities on the

basis of the top singular values of the graph.

[Tan+17] study TST of the model parameters in random dot product graphs, and

propose the distance between aligned spectral embeddings of the two graphs as a

statistic to do so. They use this to test equality against various transformations of the

underlying models, and in particular for SBMs, test if the connectivity probabilities

(a/n, b/n) are identical or not for two graphs with latent communities that are randomly

drawn. [LL18] adapt these tests by considering the same distance, but weighted by the

corresponding singular values of one of the graphs, and use this to study two-sample

testing of equality of the latent communities in the graphs - as in this chapter.

In contrast to the low-rank structure assumptions in the above work, Ghoshdastidar,

von Luxburg, and collaborators study two-sample testing of inhomogeneous ER graphs

(i.e., ER graphs where each edge may have a distinct probability of existing) [GGCV20;

GGCvL17; GvL18]. Within this setting, they provide a number of statistics based both

on estimates of the Frobenius and operator norms of the differences of the expected

graph adjacency matrices, as well as those based on motifs such as triangles, and

explore the limits of these tests.

A fundamental drawback of these approaches, in our context, is their reliance

on singular values, spectral norms and Frobenius norms. Singular embeddings are

particularly sensitive to noise, and stable embeddings require significant edge density
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(particularly when a sublinear number of alterations to the communities are to be

tested). Indeed, in this context, we note that, in contrast to our low SNR, sparse

setting, [LL18] require both a degree of n1/2−ε and an SNR of log(n) corresponding to

a high SNR, high edge-density regime, where full community recovery is possible.

Similarly, Frobenius and Spectral norms based tests of [GvL18; GGCV20] are not

stable enough to test a sublinear number of changes in a low SNR regime. Functionally,

this can be seen by the fact that the square-Frobenius norm of the difference of two

graphs is equal to the number of edges that appear in one graph but not the other,

and for sparse graphs, most edges appear in only one of the two graphs. Similarly,

arguments about spectral norms rely on concentration of the same for ER graphs,

but the best known concentration radius [LLV17] is far too large to allow testing of

small differences in sparse graphs. Indeed, for any of the statistics of [GvL18] to have

power in our setting, the results of the paper require that the expected degree diverges

with n, and that Λ ≳ n/s, which is exponentially above the SNR required to recover

communities up to distortion s/2.

2.1 Definitions

The Stochastic Block Model. A vector x ∈ {±1}n is said to be a balanced

community vector (or partition) if
∑
xi = 0. The stochastic block model is defined

as a random, simple, undirected graph G on n nodes such that all edges are drawn

mutually independently given x, and

P ({i, j} ∈ G|x) = a+ b

2n
+
a− b
2n

xixj.

Note that we treat x as a deterministic but unknown quantity, and thus, P (·|x) is a

slight abuse of notation. The parameters (a, b) may vary with n, and we focus on the

setting a, b = O(log n), and a/b = Θ(1). For technical convenience, we require that
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a+ b < n/4.

The signal-to-noise ratio (SNR) of an SBM is the quantity

Λ :=
(a− b)2
a+ b

,

which characterises the recovery problem, as described in earlier discussions.

Note that the partitions x and −x induce the same distribution. Accordingly, the

distortion between partitions x and y is

d(x, y) := min(dH(x, y), dH(x,−y)),

where dH is the Hamming distance.

Minimax Testing Problems. We formally define two minimax hypothesis testing

problems.

Goodness-of-Fit. We are given a balanced partition x0 and a parameter s. We

receive a graph G ∼ P (G|x), where x is an unknown balanced partition that is either

exactly equal to x0 or differs in at least s places. Our goal is to solve the hypothesis

test:

H0 : d(x, x0) = 0 vs. H1 : d(x, x0) ≥ s.

We measure the minimax risk of this problem by

RGoF(n, s, a, b) := inf
φ

sup
x0

{
P (FA) + sup

x
P (MD(x))

}
(2.1)
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where φ(G) outputs either 0 or 1,

P (FA) := P (φ(G) = 1 | x0),

P (MD(x)) := P (φ(G) = 0 | x),

and the second supremum is over all x such that d(x, x0) ≥ s.

Two-Sample Testing. We are given a parameter s and two independent graphs

G ∼ P (G|x), H ∼ P (H|y), where x and y are unknown balanced communities

satisfying d(x, y) ∈ {0} ∪ [s : n/2]. The goal is to solve the following (composite null)

testing problem:

H0 : d(x, y) = 0 vs. H1 : d(x, y) ≥ s,

with the measure of risk

RTST(n, s, a, b) := inf
φ

sup
x,y

P
(
φ(G,H) ̸= 1{x = y} | x, y

)
, (2.2)

where φ(G,H) outputs either 0 or 1 and the supremum is over balanced x, y such

that d(x, y) ≥ s.

As we vary n and (s, a, b) with n as some functions (sn, an, bn), the above define a

sequence of hypothesis tests. We say that the GoF problem can be solved reliably for

such a sequence if RGoF(n, sn, an, bn)→ 0 as n↗∞, and similarly for TST. Below,

we will target O(1/n) bounds. For conciseness, we will suppress the dependence of

risks on (n, s, a, b), writing just RGoF/RTST.

On constants: We use C and c, and their modifications, as unspecified constants

that may change from line to line. While these can be explicitly bounded, we do not

expect them to be tight.
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2.2 Community Goodness-of-Fit

We begin by stating our main results regarding the community goodness-of-fit problem.

Theorem 2.2.1. Community goodness-of-fit testing is possible with risk RGoF ≤ δ if

sΛ ≥ C log(2/δ) and Λ ≥ C
n

s2
log(2/δ) for some constant C > 0.

Conversely, in order to attain RGoF ≤ δ ≤ 0.25, we must have that sΛ ≥ C ′ log(1/δ)

and Λ ≥ C ′ log
(
1 +

n

s2

)
for some constant C ′ > 0.

These bounds reveal the following behavior in terms of large and small changes:

• For large changes (s ≥ n1/2+c for some c > 0), since n/s2 ≤ 1 and log(1+x) ≥ x/2

for x ≤ 1, the second converse bound behaves as Λ ≥ Cn/s2, matching the

sufficient condition up to a constant.

• For small changes (s ≤ n1/2−c for some c > 0), since n/s2 ∼ n2c, the second

converse bound instead behaves as Λ ≳ log n. In this regime, community recovery

up to s/2 errors requires Λ ≥ C log 2n/s = C̃ log n. Thus, estimating x from G

and comparing it to x0 is optimal up to constants.

• The above indicate a phase transition in the GoF testing problem at σ :=

logn(s) = 1/2. Consider the thermodynamic limit of n ↗ ∞. For σ < 1/2,

the problem is ‘hard’ in that the SNR Λ is required to diverge to ∞, while for

σ > 1/2, the SNR can tend to zero.

Proof Sketch for the Achievability. Let us begin with an intuitive development of the
test. Since we start with a partition x0 in hand to test, it is natural to look at the
edges across and within the cut defined by x0. We thus define the number of edgess
across and within this cut:

Nx0
a (G) := |{(i, j) ∈ G : x0,i ̸= x0,j}| =

1

4
x⊤0 (D(G)−G)x0

Nx0
w (G) := |{(i, j) ∈ G : x0,i = x0,j}| =

1

4
x⊤0 (D(G) +G)x0

(2.3)

where the expressions treat G as an adjacency matrix and D(G) = diag(degree(i))

collects the degress of each node in a diagnoal matrix. Note that D(G) − G is the
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Laplacian of the graph, which commonly features in spectral clustering methods. In
the null case, the above statistics are respectively Bin(n2/4, b/n) and Bin(n2/4, a/n)

random variables, while in the alternate case some s/2 · (n− s)/2 of each behave like
edges of the opposite polarity (i.e. as b/n instead of a/n and vice versa), leading to
a excess/deficit of edges of this type. Note that while the ‘average signal strength’,
i.e., the amount by which edges are over- or underrepresented is the same in both
cases (∼ s|a− b|), the group with the larger null parameter suffers greater ŕuctuations.
Thus, we base our test only on edges of smaller bias. This reduces the SNR by at
most a factor of 4.

We now define the test. C1 below is the constant implicit in Lemma A.1.1 in
Appendix A.1.1.

• If a > b, we use the test Nx0
a (G)

H1

≷
H0

bn

4
+ C1 max

(√
nb log(1/δ), log(1/δ)

)
.

• If b > a, we use the test Nx0
w (G)

H1

≷
H0

an

4
− a

2
+C1 max

(√
na log(1/δ), log(1/δ)

)
.

The risks of these tests can be controlled by separating the null and alternate
ranges using Bernstein’s inequality. Indeed, the threshold above is just the the
expectation plus the concentration radius of the statistic under the null distribution.
Let us brieŕy develop the statistic’s behaviour in the alternate - considering only
the case a > b, we find that under the alternate,

(
n−s
2

)
+
(
s
2

)
of the edges in Nx0

a

continue to behave like Bern(b/n) bits, while the remaining s(n− s)/2 edges behave
as Bern(a/n) bit. Thus, the expectation of Nx0

a is increased by an amount greater
than s(n− s)a−b

2n
≥ s(a− b)/4. Next, Bernstein’s inequality controls the ŕuctuations

at scale
√

max(nb, s(a− b)) log(2/δ). The conclusion is straightforward to draw from
here, and the proof is carried out in Appendix A.1.1.

Proof Sketch for the Converse. The proof is relegated to Appendix A.1.2, and we
discuss the strategy here. The converse proof follows Le Cam’s method, which lower
bounds the minimax risk by the Bayes risk for conveniently chosen priors - which can
be expressed using the TV distance.

To show Λ ≳ log(1 + n/s2), we pick the null x0 to be any balanced community,
and choose the uniform prior on communities that are exactly s-far from x0 (in fact,
we only use a subset of these in order to facilitate easier computations). This is an
obvious choice for this setting - we are interested in balanced communities that are
at least s far, and choosing a large number of them allows for a greater ‘confusion’
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in the testing problem due to a richer alternate hypothesis. The bound follows by
invoking inequalities between TV and χ2 divergences and a lengthy calculation due to
the combinatorial objects involved.

To show sΛ ≳ − log(δ), we again pick the null to be any balanced community, and
pick the alternate to be an s-far singleton. It then proceeds to control dTV by the
Hellinger divergence.

2.3 Two-Sample Testing

We again begin with the main results on community two-sample testing problem.

Theorem 2.3.1. Assume, for some γ > 0, s ≥ n
1
2
+γ. There exist constants C,C ′ such

that if C ′ ≤ a, b ≤ (n/2)1/3, then two-sample testing of s changes with RTST ≤ 4/n is

possible if the SNR satisfies Λ ≥ C.

Conversely, for n ≥ 200, there exist constants c, c′ such that if s < (1
2
− c′)n, then

two-sample testing of s changes cannot be carried out with RTST ≤ 1/4 unless Λ ≥ c.

Large Changes. The above theorem makes an achievability claim for the setting of

large changes. Notice that in this regime the stated upper and lower bounds match up

to constants. Specifically, if n
1
2
+γ < s < (1

2
− c′)n, two-sample testing can be solved

iff Λ ≳ 1. Further, the condition a, b ≳ 1 is also tight, as it follows from a/b = Θ(1),

and the necessary condition Λ ≳ 1, since Λ ≤ a+ b.

This leaves the condition max(a, b) ≤ (n/2)1/3, which we suspect is an artifact of

the proof technique and conjecture that, even for our proposed test, it can be removed.

In any case, observe that this condition is irrelevant in the setting a, b = O(log n)

considered in this chapter. Further, if a/b is bounded away from 1, then TST is

directly possible when a, b = Ω(log n) by recovering the communities and comparing

them, demonstrating that this condition is not present in general.

Small Changes. We claim that for small changes - s < n
1
2
−γ for some γ > 0 - the

naïve scheme of recovering the communities and comparing them is minimax. To see
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this, note that that GoF testing is reducible to TST - given a TST scheme of a known

risk, one may construct a GoF tester of that risk by feeding the TST algorithm the

observed graph and a graph drawn from P (·|x0). Thus, the lower bounds of Theorem

2.2.1 apply to TST, and for a/b = Θ(1), we find that it is necessary that sΛ = ω(1)

and that Λ ≳ log(1 + n/s2) to attain vanishing RTST. For small s, the latter lower

bound is Ω(log n), the claim follows since recovery with up to s errors is possible if

Λ ≳ log n.

Efficiency. Finally, we point out that the above bounds can be attained with

computationally efficient tests. Further, for large changes, the test can be made

agnostic to knowledge of (a, b). Instead, it only requires one to be able to estimate

n(a+ b) to within an additive error of Õ(
√
n(a+ b)), which can be done by simply

counting the number of edges in the graphs.

Proof Sketch of the Achievability. We describe the proposed test, and sketch its risk
analysis below, completing the same in Appendix A.2.1. Recall the definition of
N z

w, N
z
a from (2.3) in ğ2.2, and let

T x̂(G) := N x̂
w(G)−N x̂

a (G). (2.4)

We show that the routine ‘TwoSampleTester’ below attains a risk smaller than 4/n. In
words, the test computes a partition x̂ for the graph G by using about half the edges in
the graph. This is represented in the ‘PartialRecovery’ step below, for which any such
method may be used - concretely, that of [CRV15]. Next, we compute the statistic T x̂

above for both the remaining part of the first graph, and for the second graph. Notice
that unlike the GoF statistic, which was only Na, T

x̂ takes the difference of Na and
Nw. This is necessary because the partition x̂ derived from partial recovery cannot be
very well correlated with the true partition x. This means the reduced ŕuctuations
from only considering one part does not apply, and we instead use the whole cut.
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Algorithm 1 TwoSampleTester(G,H, δ)

1: G1 ← subsampling of edges of G at rate 1/2 uniformly at random.
2: G̃← G−G1.
3: x̂← PartialRecovery(G1).
4: Compute T x̂(G̃), T x̂(H).

5: T ← 2T x̂(G̃)− T x̂(H).

6: Return T
H1

≷
H0

√
Cn(a+ b) log(6n).

Since the edges within communities, and across communities in the graph are
(separately) exchangable, the errors made in x̂ distribute uniformly over the two
communities1. This allows us to explicitly control the behaviour of T as defined in the
test provided x̂ is non-trivially correlatd with x - i.e., given that it makes < (1/2− c)n
errors for some c > 0. The condition Λ ≳ 1 in the theorem arises from this.

A complication in this strategy is that the remaining graph G̃ in the scheme is
not independent of the recovered community x̂. This is handled in the analysis by
introducing an independent copy of G, called G′, and arguing that T x̂(G̃) ≈ 1/2T x̂(G′).

This step is the origin of the nuisance condition max(a, b) ≲ n1/3 in the theorem.2

Proof Sketch of the Converse. The argument uses Le Cam’s method, but with the
twist that the null model is chosen to be a two-step procedure - one that draws a
balanced community uniformly at random, and then generates a graph according to it,
while the alternate models are drawn uniformly from the balanced communities that
are at least s-far from the chosen null. This allows a comparison to the unstructured
Erdős-Rényi graph on n vertices with mean degree (a+b)/2. Bounds can then be drawn
in from the study of the so-called distinguishability problem, and we invoke results
from [WX18] to show that total variation distance between the null and alternate
distributions is small when Λ is a small enough constant, allowing us to conclude
using Neyman-Pearson. See Appendix A.2.2 for a detailed argument.

1For a proof: since x,−x induce the same law, and since the communities are balanced, for
every realization of G such that x̂ makes e+, e− errors in the community +,− respectively, there
is a realization of equal probability where it makes e−, e+ errors. Further, within community
exchangability implies that errors distribute uniformly.

2This is something of a cliché by now, but I’d like to know that someone has read this whole
bloody thing. So, I’ll send fifty bucks to the first four people to email me claiming to have done so -
attach a screenshot of Algorithm 1 for proof.
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2.4 Experiments

We perform three different sets of numerical experiments. We first run our tests on

SBMs with 1000 nodes. Next, we demonstrate that our tests perform similarly for

a real dataset, specifically the Political Blogs dataset [AG05]. Finally, we examine

SBM-supported Gaussian Markov Random Fields (GMRFs) as an example of a “node

observationž model, where the SBM-generated edges form the precision matrix for

the Gaussian vector consisting of the random variables assigned to each node. In

particular, we need to determine if the underlying community of the graph has changed

without explicitly observing (or recovering) the edges of the graph. For the sake of

brevity, precise details of the experiments are moved to Appendix A.3.

2.4.1 SBM Experiments

We perform experiments implementing our GoF and TST strategies as well as the

naïve scheme of reconstructing communities and comparing. Recovery is performed by

regularised spectral clustering, for which a detailed description is given in Appendix

A.3.1. The graphs are drawn on n = 1000 nodes for a range of (s,Λ) pairs and the

high and low risk regimes are plotted in Figure 2·1. First, note that for ‘large changes,’

s ≥
√
n log(10) ≈ 50, our GoF and TST tests can succeed for lower SNR values. In

contrast, for ‘small changes,’ s <
√
n ≈ 30, the naïve test is more powerful in the high

SNR regime. Additionally, both tests fail for TST unless the SNR is larger than a

constant, as predicted by our lower bound in Theorem 2.3.1.
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Figure 2·1: Risks of the proposed tests from sections 2.2 and 2.3 for
GoF and TST respectively, and the performance of the naïve scheme,
on synthetic SBMs with n = 1000, a/b = 3. Both schemes attain high
risk (> 1 − δ) in the grey region, intermediate risk in the white, and
the colours indicate which of the schema attain low risk (< δ), where
δ = 0.01 for GoF and δ = 0.1 for TST.

2.4.2 Political Blogs Dataset [AG05]

The political blogs dataset [AG05] is canonical in the study of community detection,

and consists of n = 1222 nodes. Here, we vary the effective SNR by randomly

subsampling the edges of the graphs at rate ρ. See Appendix A.3.2 for further details.

In this dataset, the ground truth partition xTrue is available, which in turn yields

accurate estimates of the connectivity probabilities (a, b). For this graph a/b ≈ 10.

Further, spectral clustering alone incurs ≈ 50 errors in this graph, which is larger than
√
1222 ≈ 35. As a consequence, the behaviour in the ‘small changes’ regime where

the test relies on recovery - is not well illustrated in the following.
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Figure 2·2: Risks of the tests applied to the Political Blogs graphs
- colour scheme is retained from Fig. 2·1. The X-axis plots the spar-
sification factor, which serves as a proxy for SNR. Features similar to
Fig. 2·1 can be seen. The GoF plot improves since a/b is bigger, while
the TST plot suffers since the political blogs graph is not completely
described as a 2-community SBM [Lei16].

Goodness-of-Fit. We determine the size of the test by running the GoF procedures

against xTrue. To determine power, we construct a partition y by relabelling a random

set of nodes of size s, and running the GoF procedures against y with the same graph.

Two-Sample Testing. We compare the political blogs graph G against two other

graphs drawn from SBMs. Size is detemined by drawing G′ according to an SBM of

community xTrue and running the TST procedure, and power is determined by drawing

a y as above, generating H according to an SBM of community y, and running the

TST procedure. Note that this experiment is thus semi-synthetic.

2.4.3 Gaussian Markov Random Fields (GMRFs)

Frequently instead of simply receiving a graph, one receives i.i.d. samples from a

graph-structured distribution, and it is of interest to be able to cluster nodes with

respect to the latent graph. For example, in large-scale calcium imaging, it is possible

to simultaneously record the activity pattern of thousands of neurons, but not their

underlying synaptic connectivity [Pne+16]. Here, we explore the behavior of our tests

for GMRFs where the underlying graph structure is randomly drawn from an SBM
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and and we only observe the nodes.

A heuristic reason for why our methods might succeed in such a situation arises

from the local tree-like property of sparse random graphs (see, e.g. [DM10]). For

graphs with mean degree d≪ n, typical nodes do not lie in cycles shorter than ∼ logn
2 log d

.

In MRFs, this tree-like property induces correlation decay: the correlation between

two nodes decays geometrically up to graph-distance ∼ logn
2 log d

. Thus, the covariance

matrix closely approximates σ1G+
∑k

i=2(σ1G)
i + σ011

⊤ for some σ0 ≪ σ1, small k,

and G, the adjacency matrix of the graph. Since the local structure of the graph is

so expressed, both clustering and testing applied directly to the covariance matrix

should be viable.

We report experimentation on the GMRF (see, e.g. [WJ08, Ch. 3]), which comprises

random vectors ζ ∼ N (0,Θ−1), where the non-zero entries of the precision matrix Θ

encode the conditional dependence structure of ζ. Using standard parametrisations

[WWR10], we set Θ = I + γG, where G ∼ P (G|x) is an adjacency matrix from an

SBM with latent parameter x, and γ is a scalar. Below, we fix the SBM parameters

a, b and the level γ, and explore risks against s and sample size t.

Following the above heuristic, we naïvely adapt community recovery and testing

to this setting, by replacing all instances of the graph adjacency matrix in previous

settings with the sample covariance matrix. Figure 2·3 presents our simulations of the

risk of this test when n = 1000, and (a, b) ≈ (12.3 log n, 1.23 log n), at Λ ≈ 9 log(n)

(for details see Appx. A.3.3). This large SNR is chosen so that community recovery

would be easy if the graph was recovered;3 this emphasizes the role of the sample size,

t. Importantly, in this implementation, the threshold for rejecting the null has been fit

using data (unlike in the previous sections). This is since we lack a rigorous theoretical

understanding of this problem, and have not analytically derived expressions for

3Note, however, we expect graph recovery to be impossible at these sample sizes. Lower bounds
from [WWR10] indicate this would require > 3300 samples theoretically.
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the thresholds. As a result, these plots should be treated as speculative research

intended to underscore the presence of interesting testing effects in this scenario, and

to encourage future work along these lines.
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Figure 2·3: Risks for adaptation of our tests to GMRFs - colour
scheme is retained from Fig. 2·1. The plots show structural similarity
to Fig. 2·1, but with two differences - In GoF, we don’t find a high risk
region at the sample sizes considered, and the proposed scheme always
outperforms the Naïve scheme based on spectral clustering.

2.5 Directions For Future Work

Our analysis of the SBM establishes the basic fact that testing of communities is

possible far below the recovery threshold at a comparable granularity if and only if

the changes are large enough. Below, we propose a number of refinements of the

approach in the chapter, to broaden the characterisation to greater parameter regimes

with a richer analysis, and to improve upon the algorithms developed therein. Before

proceeding, we acknowledge that the problem of determining exact constants in the

various SNR bounds has also been left open in the above.

More Communities Most realistic networks are considerably better described as

block models with k > 2 communities as opposed to with only two communities. This

is even the case in networks with two broad categories - indeed, as noted in [Lei16],

this is also the case for the popular political blogs dataset [AG05] even though this
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consists of ground labelling of blogs as Democratic or Republican.

The case of the SBM with many communities is non-trivially different from that

of the two community SBM. The most important difference is due to computational

effects - for k ≥ 4, it is known that the information theoretic threshold for recovery

and the efficient threshold, as described by the achievability region of the message

passing schemes (or the Kesten-Stigum threshold) separates [Abb18].

With this in mind, it is natural to study the GoF and TST problems for k-

community symmetric SBMs as a basic case. There are two main challenges. First,

our lower bounds do not extend to this regime, and it is unclear if the analysis along

the same lines can be run in a simple manner. Second, while our achievability schemes

admit natural extensions to this regime, these extensions are efficient, and so it is

unclear whether they would be powerful up to the information theoretic limit of

testing, or if they would suffer a similar computational separation.

Refined Analyses in various parameter regimes We discuss two natural situ-

tations. The first regards strongly imbalanced community structures. The theory of

ğ2 extends naturally to 2-SBMs where both communities have size linear in n. Does

the same occur for imbalanced settings, where one of the communities is very small

(of size o(n))? One challenge with this setting is that the recovery of imbalanced

communities is poorly understood - to our knowledge, optimal recovery thresholds are

unknwon when the smaller community has size o(n/ log n).

Second, the theory of the above chaper concentrates on the regime a/b = Θ(1). It

is unclear how the testing problems behave in the easier setting where ρ := max(a,b)
min(a,b)

diverges with n. Preliminary work, discussed in A.1.3, shows that for large change

GoF, the testing threshold for SBMs is controlled by µ := (a−b)2

min(a,b)
= (1 + ρ)Λ≫ Λ -

for large changes, reliable GoF is possible if and only if µ ≳ n/s2. For TST, the lower

bound of Theorem 2.3.1 continues to hold even when ρ diverges, and thus the TST
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story for large changes remains the same. However, it is unknown if this is also the

case for small changes, since the lower bound for this setting utilises the lower bound

of Theorem 2.2.1. We propose to study this effect for small changes in an both to

determine the correct notion of SNR for testing, and to investigate if this is different

from the SNR for recovery.

Improved Schemes The TST scheme described in Algorithm 1 uses a partial

recovery step to seed what is effectively a GoF statistic. This is both aesthetically

dissonant, and statistically proŕigate - the former because the study of testing should be

possible independently of any knowledge of partial recovery thresholds, and the latter

because passing through such a recovery step inevitably requires some subsampling of

the graph, thus degrading the SNR available for testing. This motivates the question

of if a TST scheme that does not pass through partial recovery can be constructed.

A promising direction for this is afforded by the statistic maxR⟨1R, G−H⟩, where

1R for a set R ⊂ [1 : n]× [1 : n] is the matrix with entries 1 for coordinates in R, the

inner product is ⟨A,B⟩ = Tr(AB), and the maximisation is carried over combinatorial

rectangles in [1 : n] × [1 : n] of dimension n−s/2× s/2. The intuition behind this lies

in the fact that for G and H with differing communities, E[G−H] develops a block

structure with two (combinatorial) rectangles of the above dimensions taking values

+(a−b)/n and −(a−b)/n. The statistic thus investigates the existence of such a rectangle

with a large weight. The main challenge here is controlling the size of this test, as the

setting requires control of about nO(s) rectangles in the null. A natural tool to exploit

here is that of the generic chaining, since the structure of the objective is precisely

that of a Bernoulli chaos. A more promising initial direction may be to study such

schemes for the spiked Wigner model, which is a Gaussian analogue of the SBM that

typically admits somewhat easier analysis.
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Testing in Richer Models of Random Networks The SBM has a number of

well known shortcomings when it comes to modeling real world networks. The primary

of these shortcomings is that the SBM does not capture heterogeneity in the degrees of

different agents, and that it does not capture homophily effects that tend to increase

the number of small motifs such as triangles in real world social networks compared

to the level obtained by the Erdős-Rényi based structure of the SBM.

A number of models have been proposed to rectify these structural properties,

and have been analysed in the recent literature. These include degree-corrected

SBMs [KN11; GMZZ18], which include node dependent latent variables modulating

the degree of each node, or more geometrically oriented graph models, such as the

Geometric Block Model [GPMS18; GMPS19] or labelled Euclidean Random Graphs

[ABS17; SB17], each of which captures structural features such as over-representation

of triangles by planting an underlying geometric structure in the model generation.

The study of testing in these more realistic models would lead to a more representative

theory for real world community testing applications.

In a similar vein to the above, in the real world community boundaries are often

fuzzy, and a node may belong partially to more than one community. Models capturing

such effects have been proposed and analysed, although considerably less is known

about these settings than about the SBM [NP15; ABFX08; Abb18, ğ3.1]. Further

extensions may be pursued by considering settings where edge labels beyond existence

are given, or where edges are censored. We refer the reader to [Abb18, ğ2.4]. Testing

of such structures is a wide open and interesting question.

Generic Testing in the Graphical Channel Setup Consider the following

view of the SBM: n binary message bits x1, . . . , xn ∈ {0, 1} are passed through an
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asymmetric memoryless binary input binary output channel

pn(g = 1|z = 0) = a/n

pn(g = 1|z = 1) = b/n

via the rate 2/n code zij = xi⊕xj . This clearly demarcates the SBM as an information

theoretic problem, but with three twists - asymptotically in the blocklength, the rate

at which the message is passed is vanishing, the channel code is fixed, and further,

the statistics of the channel depend on the blocklength.

Graphical channels, proposed by Abbe & Montanari [AM13], generalise this view

to consider an arbitrary code that is encapsulated by a hypergraph - the message bits

are associated with the nodes of a hypergraph, and each edge e in the same has an

attached variable ze. The ze form an encoding of the message, which is passed through

a DMC, and the underlying problem is that of inference of the message from this

output. This setup is a considerable generalisation, encapsulating not only does the

SBM and its many variants, but also hypergraphical block models, random constraint

satisfaction problems with planted solutions, and various noise models with planted

signal. Generic results on the the graphical channel are limited, although we refer the

reader to the excellent presentation of the exact recovery problems over the same in

[Kim18] along with the aforementioned paper. The critical features of the graphical

channel relative to standard communication problems are precisely those observed

in the SBM - the code pushed through the channel is fixed (i.e., this is a problem of

communication without coding), the rate of communication is vanishing, and that the

channel’s capacity may decay with the blocklength.

Testing in the graphical channel setup is an unexplored question, and, in our

opinion, the broad question of characterising the distortion to which GoF and TST

can be performed across generic graphical channels is very interesting. The analogous
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problem with coding is that of identification via channels [AD89], and thus, just as

recovery in graphical channels is a ‘communication without coding’ problem, testing

is an identification without coding problem. This was considered for the special

case of the graphical channel with only self loops (i.e., when the message is directly

transmitted) by JaJa [JaJ85] in the 80’s, although not much has developed since4.

We note that the observations of [JaJ85] align with ours - they find that for any

non-zero rate channel, identification is possible. More precisely translated, the results

correspond to saying that for channels that do not depend on the blocklength, one

can do GoF testing of the message at distortion level O(
√
n).

4more accurately, attention shifted to identification with coding, as explored in [AD89], and, to
our knowledge, the connection with GoF testing has not been pursued.
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Chapter 3

Testing Network Structures of Ising Models

3.1 Introduction

The Ising model is a canonical pairwise graphical model, which captures settings where

the behaviour of many agents is governed in a pairwise manner by an underlying

network that typifies which agents interact. This makes it a natural object of study

when considering situations such as inference of a connectome via calcium ŕuorescence

studies of neuron populations. This setting is much harder than the SBM testing

and recovery scenarios described in the previous section. This is because of two

reasons - first, instead of directly observing the edges of the underlying graph, we are

only observing node level information. Secondly, instead of reasoning about a low

dimensional structure like a planted partition, the inference task is focused on the

entire graph itself.

As always, a baseline approach for testing is to estimate the network, and then

compare the differences. However, such observations exhibit significant variability, and

the amount of data available may be too small for this approach to yield meaningful

results. On the other hand, reliably recovering network changes should be easier than

This chapter is a lightly edited reproduction of the paper [GNS20]. Weaker versions of the
results discussed below appeared previously in [GNS17; GNS18]. All of these papers were written in
collaboration with Bobak Nazer and Venkatesh Saligrama. Additionally, I would like to thank Bodhi
Vani and Anil Kag for discussions that helped with the simulations described in §B.3.3, on which
Figure 3·3 is based.
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full reconstruction. While prior works have proposed inference algorithms to explore

this possibility [ZCL14; XCC15; FB16; BVB16; BZN18; Zha+19; CLMX19], we do

not have a good mathematical understanding of when this is indeed easier.

To shed light on this question, we propose to derive information-theoretic limits

for two structural inference problems over degree-bounded Ising models. The first

is goodness-of-fit testing (GoF). Let G(P ) be the network structure (see ğ3.2) of an

Ising model P . GoF is posed as follows.

GoF : Given an Ising model P and i.i.d. samples from another Ising model

Q, determine if P = Q or if G(P ) and G(Q) differ in at least s edges.

The second is a related estimation problem, termed error-of-fit (EoF), that demands

localising differences in G(P ) and G(Q) (if distinct).

EoF: Given an Ising model P and i.i.d. samples from another Ising model

Q that is either equal to P , or has a network structure that differs from

that of P in s edges or more, determine the edges where G(P ) and G(Q)

differ.

Notice that the above problems are restricted to models that are either identical, or

significantly different. ‘Tolerant’ versions (separating small changes from large) are not

the focus for us (although we discuss this setting for a special case in ğ3.4). The main

question of interest is: For what classes of Ising models is the sample complexity of the

above inference problems significantly smaller than that of recovering the underlying

graph directly?

Contribution. We prove the following surprising fact: up to relatively large values

of s, the sample complexities of GoF and EoF are not appreciably separated from

that of structure learning (SL). Our bound is surprising in light of the fact that prior

works [Liu+14; Liu+17; FB16; KLK19; CLMX19] propose algorithms for GoF and
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EoF, and claim recovery of sparse changes is possible with sample complexity much

smaller than SL. Concretely, for models with p nodes, degrees bounded by d, and

non-zero edge weights satisfying α ≤ |θij| ≤ β (see ğ3.2), the sample complexity of SL

is bounded as O(e2βdα−2 log p). We show that if s≪ √p, then the sample complexity

of GoF is at least e2βd−O(log(d))α−2 log p, and that if s≪ p, then the sample complexity

of EoF has the same lower bound. We further show that the same effect occurs in

the restricted setting of detecting edge deletions in forest-structured Ising models,

and, to some extent, in detecting edge deletions in high-temperature ferromagnets. In

the case of forests, we tightly characterise this behaviour of GoF, showing that for

s≪ √p, GoF has sample complexity comparable to SL of forests, while for s≫ √p, it
is vanishingly small relative to SL. For high-temperature ferromagnets, we show that

detecting changes is easier than SL if s≫ √pd, while this does not occur if s≪ √pd.
These are the first structural testing results for edge edits in natural classes of Ising

models that show a clear separation from SL in sample complexity.

Technical Novelty. The lower bounds are shown by constructing explicit and ŕexible

obstructions, utilising Le Cam’s method and χ2-based Fano bounds. The combinatorial

challenges arising in directly showing obstructions on large graphs are avoided by

constructing obstructions with well-controlled χ2-divergence on small graphs, and

then lifting these to p nodes via tensorisation in a process that efficiently deals with

combinatorial terms. The main challenge is obtaining precise control on the χ2-

divergence between graphs based on cliques, which is attained by an elementary but

careful analysis that exploits the symmetries inherent in Ising models on cliques. The

most striking instance of this is the ‘Emmentaler clique’ (Fig. 3·2), which is constructed

by removing Θ(d2) edges from a d-clique in a structured way. Despite this large edit,

we show that it is exponentially hard (in low temperatures) to distinguish this clique

with large holes from a full clique.
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3.1.1 Related Work

Statistical Divergence Based Testing. Related to our problem, but different from

our setup, GoF of Ising models has been studied under various statistical metrics

such as the symmetrised KL divergence [DDK19] and total variation [Bez+19]. More

refined results and extensions have appeared in [GLP18; DDK17; CDKS17; ABDK18].

These are tests that certify whether or not a particular statistical distance between

two distribution is larger than some threshold. In contrast, our focus is on structural

testing and estimation, namely, whether or not the change in the network is a result of

edge-deletions or edge-additions. As such, statistically-based GoF tests do not have a

direct bearing on structural testing. Divergences can be large in structurally irrelevant

ways, e.g., if a few isolated nodes in a large graph become strongly interacting, a

large KL divergence is induced, but this is not a significant change in the network on

the whole (Also see ğB.5.1). In light of applications which demand structure testing

as a means to interpret phenomena, and this misalignment of goals, testing in the

parameter space is compelling, and testing the network is the simplest instance of this.

Sparse-Recovery-Based Structural Testing Methods. More directly related to

our work, are those that are based on direct change estimation (DCE) [FB16; Liu+14;

Liu+17; LFS17; KLK19], which attempt to directly characterize the difference of

parameters δ∗ = θP − θQ by leveraging sparsity of δ∗. These works leverage the ‘KL

Importance Estimation Procedure’ (KLIEP), the key insight of which is that the

log-likelihood ratios can be written in a form that is suggestive of expressions from

sparse-pattern recovery methods, to define the empirical loss function

L(δ) = −⟨δ, ÊQ[XX
T ]⟩+ log ÊP [exp

(
XT δX

)
],

where Ê denotes an empirical mean, and δ is sparse. The second term, which is the

only non-linear term, is reminiscent of normalization factors in graphical models. In
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this context, it is useful to recall the key ideas from high-dimensional sparse estimation

theory (see [NRWY12]), which has served as a powerful generic tool. At a high-level,

these results show that for a loss function L(δ) paired with a decomposable regulariser

(such as an ℓ1 norm on δ), if the loss function satisfies restricted strong convexity,

namely, strong convexity only in a suitable descent error set, as characterised by the

regulariser and the optimal value δ∗, minimising the penalised empirical loss leads to

a non-trivial estimation error bound. Leveraging these concepts of high-dimensional

estimation, and exploiting sparsity, the sparse DCE works show that testing can be

done in O(poly(s) log p) samples (for any P,Q!), which is further much smaller than

the number needed for SL, a result which contradicts bounds we derive in this chapter.

The situation warrants further discussion.

From a technical perspective, the sample complexity gains of these methods arise

from assuming law-dependent quantities to be constants. For example, [Liu+14;

Liu+17] require that for ∥u∥ ≤ ∥δ∗∥,∇2L(δ∗+u) ≼ λ1I, and that for S the support of

δ∗, the submatrix (∇2L(δ∗))S,S ≽ λ2I, where λ1, λ2 are constants independent of P,Q.

[FB16] removes the second condition, and shows that L has the λ2-RSC property,

where λ2 is claimed to be independent of P,Q. In each case, sample costs increase

with λ1 and λ−1
2 . However, the assertion that λ1, λ2 are independent of (P,Q) cannot

hold in general ś the only non-linear part in L is log ÊP [exp
(
XT δX

)
], which clearly

depends on P ! This dependence also occurs if P is known. Thus, the ‘constants’

λ1, λ2 are affected by the properties of P . More generically, the efficacy of sparse

recovery techniques is questionable in this scenario. Since the data is essentially

distinct across samples, and internally dependent, and since the sparse changes, δ∗,

and the underlying distributions interact, it is unclear if meaningful notions of design

matrix that allow testing with sub-recovery sample costs can be developed.

Nevertheless, it is an interesting question to understand what additional assump-
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tions on P,Q or topological restrictions are useful in terms of benefiting from sparsity.

Our results suggest that these conditions are stronger than typical incoherence condi-

tions such as high temperatures, and further that the topological restrictions demand

more than just ‘simplicity’ of the graphs.

Other Methods.[CLMX19] propose a method, whereby the parameters θP and θQ

are only crudely estimated, and then tests using the biggest (normalised) deviations

in the estimates as a statistic. The claims made in this paper are more modest, and

do not show sample complexity below nSL. We point out, however, that d-dependent

terms are treated as constants in this as well.

Much of the structural testing work studies Gaussian GMs instead of Ising (see

the recent survey [Sho20]). We do not discuss these, but encourage the same careful

examination of their assumptions.

Structural Testing Extensions. A number of structural testing problems other

than GoF have been pursued. For instance, [BN18] tests if the model is mean field or

supported on a structured graph (sparse, etc.), [BN19] tests mean-field models against

those on an expander, [CNL18] tests independence against presence of structure in

high temperatures, [NL19] tests combinatorial properties of the underlying graph such

as whether it has cycles, or the largest clique it contains (also see ğB.5.2).

Structure Learning The structure learning literature is by now quite expansive,

with many recent efficient algorithms with close-to-optimal sample complexity [KM17;

HKM17; LVMC18; WSD19], and exploration of refined settings such as learning under

corruptions [GKK19]. Detailed discussion of this literature would take up too much

space, but we highlight [SW12] as the original paper to establish information-theoretic

bounds for the same, and [BK20] for a neat analysis of the Chow-Liu algorithm, which

are the only SL papers directly used in the following. Additionally, our methods offer

improvements to the minimax lower bounds of [SC16] by improving the exponents in



49

their exp (Ω(βd)) bounds.

3.2 Problem Definitions and Notation

The zero external field Ising Model specifies a law on a p-dimensional random vector

X = (X1, . . . , Xp) ∈ {±1}, parametrised by a symmetric matrix θ with 0 diagonal, of

the form

Pθ(X = x) =
exp

(∑
i<j θijxixj

)

Z(θ)
,

where Z(θ) is called the partition function. Notice that given Xj for all j ∈ ∂i := {j :
θij ≠ 0}, Xi is conditionally independent of X[1:p]−{i}−∂i. Thus, the θ determine the

local interactions of the model. With this intuition, one defines a simple, undirected

graph G(Pθ) = ([1 : p], E(Pθ)) with E(Pθ) = {(i, j) : θij ≠ 0}. This graph is called the

Markov network structure of the Ising model, and θ can serves as a weighted adjacency

matrix of G(Pθ). We often describe models by an unweighted graph, keeping weights

implicit until required.

The model above can display very rich behaviour as θ changes, and this strongly

affects all inference problems on Ising models. With this in mind, we make two explicit

parametrisations to help us track how θ affects the sample complexity of various

inference problems. The first of these is degree control - we assume that the degree of

every node is G(P ), G(Q) is at most d. The second is weight control - we assume that

if θij ̸= 0, then α ≤ |θij| ≤ β.

These are natural conditions: small weights are naturally difficult to detect, while

large weights mask the nearby small-weight edges; degree control further sets up a

local sparsity that tempers network effects in the models. The class of laws so obtained

is denoted Id(α, β). We will usually work with a subclass I ⊂ Id which has unique

network structures (i.e., for P,Q ∈ I, G(P ) ̸= G(Q)). Note that we do not restrict

α, β, d to have a particular behaviour - these are instead used as parametrisation to
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study how weights and degree affects sample complexity. In particular, they may vary

with p and each other. We do demand that d ≤ p1−c for some constant c > 0, and

that p is large (≫ 1).

We let G be the set of all graphs on p nodes, and Gd ⊂ G be those with degree at

most d. The symmetric difference of two graphs G,H is denoted G△H, which is a

graph with edge set consisting of those edges that appear in exactly one of G and H.

Lastly, we say that two Ising models are s-separated if their networks differ in

at least s edges. The ‘anti-ball’ As(P ) := {Q ∈ I : |G(Q)△G(P )| ≥ s} is the set of

Q ∈ I s-separated from P .

3.2.1 Problem Definitions

Below we define three structural inference problems: goodness-of-fit testing, error-of-fit

identification, and approximate structure learning.

Goodness-of-Fit Testing Given P and the dataset Xn ∼ Q⊗n where Q ∈ {P} ∪
As(P ), we wish to distinguish between the case where the model is unchanged, Q = P ,

and the case where the network structure of the model differs in at least s edges,

Q ∈ As(P ). A goodness-of-fit test is a map ΨGoF : I × X n → {0, 1}. The n-sample

risk is defined as

RGoF(n, s, I)

:= inf
ΨGoF

sup
P∈I

{
P⊗n(ΨGoF(P,Xn) = 1) + sup

Q∈As(P )

Q⊗n(ΨGoF(P,Xn) = 0)

}
.

Error-of-Fit Recovery Given P and the dataset Xn ∼ Q⊗n where Q ∈ {P}∪As(P )

we wish to identify where the structures of P and Q differ, if they do. The error-of-fit
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learner is a graph-valued map ΨEoF : I × X n → G. The n-sample risk is defined as

REoF(n, s, I)

:= inf
ΨEoF

sup
P∈I

sup
Q∈{P}∪As(P )

Q⊗n
(∣∣ΨEoF(P,Xn)△ (G(P )△G(Q))

∣∣ ≥ (s− 1)/2
)
.

In words, ΨEoF attempts to recover G(P )△G(Q), and the risk penalises answers that

get more than (s− 1)/2 of the edges of this difference wrong. This problem is very

similar to the following.

s-Approximate Structure Learning Given the dataset Xn ∼ Q⊗n we wish to

determine the network structure of Q, with at most s errors in the recovered structure.

A structure learner is a graph-valued map ΨSL : X n → G, and the risk of structure

learning is

RSL(n, s, I) := inf
ΨSL

sup
Q∈I

Q⊗n(|ΨSL(Xn)△G(P )| ≥ s).

The sample complexity of the above problems is defined as the smallest n necessary

for the corresponding risk to be bounded above by 1/4, i.e.

nGoF(s, I) := inf{n : RGoF(n, s, I) ≤ 1/4},

and similarly nEoF and nSL but with the risk lower bound of 1/8.1

The above problems are listed in increasing order of difficulty, in that methods for

SL yield methods for EoF, which in turn solve GoF. This is captured by the following

statement, proved in ğB.1.1.

Proposition 3.2.1. nSL((s− 1)/2, I) ≥ nEoF(s, I) ≥ nGoF(s, I).

Our main point of comparison with the literature on SL is the following result,

which (mildly) extends [SW12, Thm 3a)] due to Santhanam & Wainwright. We leave

11/4 is convenient for bounds for GoF, but any risk smaller than 1 is of interest, and can be
boosted to arbitrary accuracy by repeating trials and majority. For EoF, SL we use 1/8 for ease of
showing Prop. 3.2.1.
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the proof of this to Appx. B.1.2.

Theorem 3.2.2. If I ⊂ Id(α, β) has unique network structures, then for s ≤
pd/2, ∃C ≤ 64 such that

nSL(s, I) ≤ C
de2βd

sinh2(α/4)

(
1 + log

p2

2s
+O(1/s)

)
.

3.3 Lower Bounds for GoF and EoF over Id(α, β)

This section states our results, and discusses our proof strategy, but proofs for all

statements are left to ğB.2. The bound are generally stated in a weaker form to ease

presentation, but the complete results are described in ğB.2. We begin by stating lower

bounds for the case of s = O(p). Throughout 500 > K > 1 is a constant independent

of all parameters.

Theorem 3.3.1. If 20 ≤ d ≤ s ≤ p/K, then there exists a C > 0 independent of

(s, p, d, α, β) such that

nGoF(s, I) ≥ Cmax

{
e2β

tanh2 α
,

e2β(d−3)

d2 min(1, α2d4)

}
log
(
1 + C

p

s2

)

nEoF(s, I) ≥ Cmax

{
e2β

tanh2 α
,

e2β(d−3)

d2 min(1, α2d4)

}
log
(
C
p

s

)

This statement is enough to make our generic point - for small s (i.e., if s ≤ p1/2−c

in GoF and if s ≤ p1−c in EoF), the above bounds are uniformly within a O(poly(d))

factor of the the upper bound on nSL in Theorem 3.2.2. Notice also that the max-terms

are uniformly Ω̃(d2) in the above - if βd ≥ 2 log d, then the second term in the max

is Ω(d2), while if smaller, the first term is Ω((d/log d)2) because α ≤ β. Thus, over

Id, the best possible sample complexity of GoF and EoF scales as Ω̃(d2 log p), and in

particular cannot be generally d-independent.

Of course, graphs in Gd have upto ∼ pd edges, and so many more changes can be

made. Towards this, we provide the following bound for GoF. A similar result for

EoF is discussed in ğB.2.
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Theorem 3.3.2. If for some ζ > 0, s ≤ pd1−ζ/K, and d ≥ 10, then there exists a

constant C > 0 independent of (s, p, d, α, β) such that

1. If αd1−ζ ≤ 1/32 then nGoF ≥ C
1

d2−2ζα2
log
(
1 + C

pd3−3ζ

s2

)
.

2. If βd ≥ 4 log(d− 4) then nGoF ≥ C
e2βd(1−d−ζ)

d2 min(1, α2d4)
log
(
1 + C

pd2−3ζ

s2

)
.

Thm. 3.3.2 leaves a (small) gap, since as ζ → 0, αd1−ζ ≤ 1 and βd ≥ 4 log(d)

do not completely cover all possibilities. Barring this gap, we again notice that for

s≪
√
pd1−ζ , nGoF is separated from nSL by at most a poly(d) factor. The first part

of the above statement is derived using results of [CNL18]. For the limiting case of

ζ = 0, i.e. when s is linear in pd, we recover similar bounds, but with the distinction

that the 2βd in the exponent is replaced by a βd. See ğB.2.

Finally, since often the interest in DCE lies in very sparse changes, we present the

following -

Theorem 3.3.3. If s ≤ d, then there exists a C > 0 independent of (s, p, d, α, β) such

that

nGoF(s, I) ≥ Cmax

{
e2β

tanh2 α
,
e2β(d−1−2

√
s)

d6 sinh2(α
√
s)

}
log
(
1 + C

( p
s2
∧ p
d

))

nEoF(s, I) ≥ Cmax

{
e2β

tanh2 α
,
e2β(d−1−2

√
s)

d6 sinh2(α
√
s)

}
log
(
C
p

d

)

Structure of the Bounds Each of the bounds above can be viewed as of the form

(SNR)−1 log(1 + f(p, s, d)), where we call the premultiplying terms SNR since they

naturally capture how much signal about the network structure of a law relative to

its ŕuctuations is present in the samples. This SNR term in Thms. 3.3.1 and 3.3.3 is

developed as a max of two terms. The first of these is effective in the high temperature

regime (where βd is small), while the second takes over in the low temperature regime

of large βd. Similarly, the first and second parts of Thm. 3.3.2 are high and low

temperature settings, respectively, and have different SNR terms. The SNR in all of
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the above is within a poly(d) factor of the corresponding term in the upper bound for

nSL.

The term f(p, d, s) thus captures the hardness of testing/error localisation. For

EoF, as long as s is small, this term takes the form pc for some c. Thus, generically,

localising sparse changes is nearly as hard as approximate recovery. This is to be

expected from the form of the EoF problem itself. More interestingly, for GoF, these

take the form pdc/s2. When s≪ √pdc, this continues to look polynomial in p, and

thus GoF is as hard as recovery. On the other hand, for s much larger than this,

f becomes o(1) as p grows, and so log(1 + f) ≈ f itself and the resulting bounds

look like (SNR)−1pdc/s2. In the setting of low temperatures with non-trivially large

degree, these can still be super-polynomial in p, but relative to n they are essentially

vanishing.

Notice that in high temperatures (βd ≤ 1), the bounds of Thms. 3.3.1 and 3.3.3

are only O(d) away from nSL for small s, fortifying our claim that GoF and EoF are

not separated from SL in this setting.

Counterpoint to Sparse DCE efforts The above bounds, especially Thm. 3.3.3,

show that for small s GoF and EoF are as hard as recovery of G(Q) itself. A possible

critique of these bounds when considering DCE is that the DCE schemes demand that

the changes are smaller than s, while our formulations only require the changes to have

size at least s. To counter this, we point out that the constructions for Thms. 3.3.1,

3.3.2, and 3.3.3 make at most 2s changes when computing bounds for any s (in

fact, smaller edits lead to stronger bounds). Thus, the above results catergorically

contradict the claim that a generic O(poly(s) log p) bound that is d independent and

much smaller than nSL can hold for DCE methods on Id. Since α, β, d are only

parameters, and are not restricted in any way, this shows that the assumptions made

for DCE cannot be reduced to some conditions on only α, β, d, and further topological
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conditions must be implicit. In particular, these are stronger than typical incoherence

conditions such as Dobrushin/high-temperature (βd < 1;e.g.,[DDK17; GLP18]).

3.3.1 Proof Technique

The above bounds are shown via Le Cam’s method with control on the χ2-divergence of

a mixture of alternatives for GoF, and via a Fano-type inequality for the χ2-divergence,

due to Guntuboyina [Gun11] for EoF. These methods allow us to argue the bounds

above by explicit construction of distributions that are hard to distinguish. We brieŕy

describe the technique used for GoF below.

Definition A s-change ensemble in I is a distribution P and a set of distributions

Q, denoted (P,Q), such that P ∈ I, Q ⊆ I, and for every Q ∈ Q, it holds that

|G(P )△G(Q)| ≥ s.

Each of the testing bounds we show will involve a mixture of n-fold distributions

over a class of distributions. For succinctness, we define the following symbol for a set

of distibutions Q
⟨Q⊗n⟩ := 1

|Q|
∑

Q∈Q
Q⊗n.

Le Cam’s method (see e.g. [Yu97; IS12]) shows that if (P,Q) is a s-change ensemble

in I, then

RGoF(n, s, I) ≥ 1−
√

1

2
log(1 + χ2(⟨Q⊗n⟩∥P⊗n)).

Therefore, if we find a change ensemble and an n such that 1 + χ2(⟨Q⊗n⟩ ∥P⊗n) ≤ 3,

then we would have established that nGoF(s, I) ≥ n. So, our task is set up as

constructing appropriate change ensembles for which the χ2-divergence is controllable.

Directly constructing such ensembles is difficult, essentially due to the combinatorial

athletics involved in controlling the divergence. We instead proceed by constructing a

pair of separated distributions (P0, Q0) on a small number of nodes, and then ‘lifting’

the resulting bounds to the p nodes via tensorisation - P is contructed by collecting
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disconnected copies of P0, while Q is constructed by changing some of the P0 copies

to Q0. The process is summarised as follows.

Lemma 3.3.4. (Lifting) Let P0 and Q0 be Ising models with degree ≤ d on ν ≤ p/2

nodes such that |G(P0)△G(Q0)| = σ, and χ2(Q⊗n
0 ∥P⊗n

0 ) ≤ an. Let m := ⌊p/ν⌋. For

t < m/16e, there exists a tσ-change ensemble (P,Q) over p nodes such that |Q| =
(
m
t

)

and

1 + χ2(⟨Q⊗n⟩∥P⊗n) ≤ exp

(
t2

m
an

)
.

A similar argument is used for the EoF bounds, along with a similar lifting trick,

discussed in ğB.2. Due to the tensorisation of the χ2-divergence, we obtain results of

the form an ≤ (1 + κ)n − 1, where κ depends on (P0, Q0) but not n. Plugging this

into the above with t = ⌈s/σ⌉ yields

nGoF(s, I) ≥
1

log(1 + κ)
log

(
1 +

pσ2

8νs2

)
.

Notice that this κ is an SNR term, while log(1 + pσ2/8νs2) captures combinatorial

effects.

Figure 3·1: Graphs used to construct high-temperature obstructions.
Labels indicate edge-weight, and the red edge is added in Q0.

The procedure thus calls for strong χ2 bounds for various choices of small graphs,

or ‘widgets’. We use two varieties of these - the first, ‘star-type’ widgets, are variations

on a star graph. These allow direct calculations in general, and provide bounds that

extend to the high-temperature regime. The second variety is the ‘clique-type’ widgets,
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that are variations on a clique, and provide low-temperature obstructions. Classical

Curie-Weiss analysis shows that cliques tend to ‘freeze’ - for Ising models on a k-clique

with uniform weight λ, the probability mass concentrates on the set {(1)⊗k, (−1)⊗k}
w.p. roughly 1− e−Θ(λk). The clique-type obstructions implicitly argue that this effect

is very robust.

b
b

b
b b

b
b

b

Figure 3·2: Two views of Emmentaler cliques. Left: the base clique is
the large grey circle, uncoloured circles represent the groups with no
edges within (this is d, ℓ≫ 1, d+1/ℓ+1 = 10); Right: Emmentaler as the
graph Kℓ+1,ℓ+1,...,ℓ+1 (d = 7, ℓ = 1).

The particular graphs used to argue the high temperature bounds in Theorems

3.3.1 and 3.3.3 are a ‘V’ versus a triangle as seen in Fig. 3·1, while in Theorem 3.3.2

the empty graph is compared to a d1−ζ-clique. The low temperature obstructions of

Theorem 3.3.1 and3.3.2 compare a full d+ 1-clique as P0 to an ‘Emmentaler’ clique

(Fig. 3·2). These are constructed by dividing the d+ 1 nodes into groups of size ℓ+ 1,

and removing the ℓ + 1-subclique within each group. The graph can thus be seen

either as a clique with many large ‘holes’ - corresponding to the deleted subcliques

- which inspires the name, or as the complete d+1/ℓ+1-partite graph on d + 1 nodes.

Notice that in the Emmentaler clique we have deleted ≈ dℓ/2 edges. We will show in

ğB.4 that this is still hard to distinguish from the full clique for ℓ ∼ d/10 - a deletion
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of Ω(d2) edges!

On Tightness Prima facie the above bounds suggest that one may find sample efficient

schemes in, say, GoF for s≫ √pd. However, it is our opinion that these bounds are

actually loose. Particularly, while the SNR terms are relatively tight, the behaviour

of f(p, d, s) is not. To justify this opinion, consider the setting of forest-structured

graphs. By the same techniques, we show a similar bound with f = p/s2 for GoF in

forests in ğ3.4.1 - this is the best possible by the methods employed. For s ≫ √p,
the resulting overall lower bound is the trivial n ≥ 1 unless α ≤ (p/s2)1/2. On the

other hand, [DDK19, Thm. 14] can be adapted to show a lower bound for forests of

Ω(α−2∧α−4/p) for the particular case of s = p/2, which is non-trivial for all α ≲ p−1/4.

Our results trivialise for α ≳ p−1/2 for this case, demonstrating looseness.

The reason for this gap lies in the lifting trick used to show these bounds. The

tensorisation step involved in this constricts the set of ‘alternates’ one can consider,

thus diminishing f . More concretely - there are about p2−pd/2 potential ways to add

an edge (and O(pd) to delete an edge), while the lifting process as implemented here

restricts these to at most O(pd). It is important to recognize this lossiness, particularly

since most lower bounds, for both testing and recovery, proceed via a similar trick,

e.g. [SW12; TSRD14; SC16; GNS17; NL19; CNL18]. [DDK19, Thm. 14] is the only

exception we know of. We conjecture that for GoF in Id, f should behave like p2/s2,

while for EoF, it should behave like p2/s. Note that for GoF, since s can be as big as

pd, this indicates that one should look for sample-efficient achievability schema in the

setting of s > pdc.

However, for simpler settings this technique can recover tight bounds. For instance,

ğ3.4.1 presents a matching upper bound for testing of edge-deletion in a forest. Notice

that in this case there are only O(p) possible ways to edit. This raises the further

question of if the same effect extends to Id, i.e., can deletion of edges in Id be tested
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with O(1∨ e2βdα−2(pd/s2)) samples when s≫ √pd? ğ3.4.2 offers initial results in this

direction in the high temperature regime.

3.4 Testing Edge Deletions

Continuing on the theme that concluded our discussion of the tightness of our lower

bounds, we study the testing of edge deletions in two classes of Ising models - forests,

and high-temperature ferromagnets - with the aim demonstrating natural settings in

which the sample complexity of GoF testing of Ising models is provably separated

from that of the corresponding recovery problem.

In the deletion setting, we consider the same problems as in ğ3.2, but with the

additional constraint that if Q ̸= P, then G(Q) ⊂ G(P ), that is, the network structures

of alternates can be obtained by dropping some edges in that of the null. For a class

of Ising models J , we thus define

RGoF,del(n, s,J ) = inf
Ψ

sup
P∈J

P⊗n(Ψ(P,Xn) = 1) + sup
Q∈As(P )∩J
G(Q)⊂G(P )

Q⊗n(Ψ(P,Xn) = 1),

and, analogously define REoF,del(n, s,J ), and the corresponding sample complexities

nGoF,del(s,J ) and nEoF,del(s,J ).
We will look at testing deletions for two choices of J which both have uniform

edge weights

• Forest-Structured Models (F(α)) are Ising models with uniform weight α

such that their network structure is a forest (i.e., has no cycles).

• High-Temperature Ferromagnets (Hη
d(α)) are models with max degree at

most d, uniform positive edge weights α, and further such that there is an η < 1 such

that αd ≤ η.

We note that while our motivation for the study of the above is technical, both of

these subclasses of models have been utilised in practice, and indeed are the subclasses



60

of Id that are best understood.

3.4.1 Testing Deletions in Forests

Forest-structured Ising models are known to be tractable, and have thus long served

as the first setting to explore when trying to establish achievability statements. We

show a tight characterisation of the sample complexity of testing deletions in forests

for large changes, and also demonstrate the separation from the corresponding EoF

(and thus also SL) problem. In addition, we also show that for the restricted subclass

of trees, essentially the same characterisation follows for arbitrary changes (i.e., not

just deletions), and that the methods support some amount of tolerance directly. We

begin with the main result for testing deletions in forests (all proofs are in ğB.3.1).

It is worth noting that degrees are not assumed to be explicitly bounded in this

section - i.e. the results hold even if the max degree is p− 1 (a star graph).

Theorem 3.4.1. There exists a constant C independent of (s, p, α) such that the

sample complexity of GoF testing of forest-structured Ising models against deletions is

bounded as

nGoF,del(s,F(α)) ≤ Cmax

{
1,

1

sinh2(α)

p

s2

}
.

Conversely, for s ≤ p/32e, there exists a constant C ′ independent of (s, p, α), such that

nGoF,del(s,F(α)) ≥ max

{
1,

1

C ′
1

sinh2 α
log
(
1 +

p

C ′s2

)}
,

nEoF,del(s,F(α)) ≥
1

C ′ sinh2 α
log
( p

C ′s

)
.

The upper bound is constructed using the global statistic TP =
∑

(i,j)∈G(P )XiXj,

averaged across the samples. Again, the behaviour of the lower bound shifts as s

crosses
√
p - for larger s, it scales as 1 ∨ sinh−2(α)p/s2, while for much smaller s it

is 1 ∨ sinh−2(α) log p. Further, for large changes, the lower bound is matched, up

to constants, by the achievability statement above. For the smaller case, the same

holds in the restricted setting of α < 1, since exact recovery in F(α) only needs
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tanh−2(α) log p samples (Chow-Liu algorithm, as analysed in [BK20]).2 Finally, the

EoF lower bound (which is also tight for α < 1, show that the sample complexity of

GoF is separated from error of fit (and thus SL) for large changes.

Fig. 3·3 illustrates Thm. 3.4.1 via a simulation for testing deletions in a binary

tree (for p = 127, α = 0.1), showing excellent agreement. In particular, observe the

sharp drop in samples needed at s = 21 ≈ 2
√
p versus at s <

√
p ≈ 11. We note that

SL-based testing fails for all s ≤ 60 for this setting even with 1500 samples (Fig. B·1
in ğB.3.3), which is far beyond the scale of Fig. 3·3. See ğB.3.3 for details.
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Figure 3·3: Testing deletions in binary trees for p = 127, α = 0.1. Entries
are coloured black if risk is > 0.35, white if < 0.15, and orange otherwise.

Testing arbitrary changes in trees The statistic T is good at detecting deletions

in edges, but is insensitive to edge additions, which prevents it from being effective in

general for forests. However, if the forest-models P and Q are restricted to have the

same number of edges, then T should retain power, since any change of s edges must

delete s/2 edges. This, of course, naturally occurs for trees! Let T (α) ⊂ F(α) denote

tree-structured Ising models.

2While the α < 1 regime is certainly more relevant in practice, it is an open question whether for
larger α, and for small s, the correct SNR behaviour is sinh−2 or tanh−2 in testing.
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Theorem 3.4.2. There exists a C independent of (p, s, α) s.t.

nGoF(s, T (α)) ≤ Cmax

(
1,

1

(1− tanh(α))2 sinh2(α)

p

s2

)
.

Conversely, there exists a c independent of (p, s, α) such that

nGoF(s, T (α)) ≥ c
1

tanh2(α)
log
(
1 +

cp

s2

)
.

Tolerant Testing The achievability results of Thm.s 3.4.1,3.4.2 can be made ‘tolerant’

without much effort (see ğB.3.1.3). ‘Tolerance’ here refers to updating the task to

separate models that are εs-close to P from those that are s-far from it.

Concretely, let J be a class of Ising models, s, p, n as before, and let ε ∈ (0, 1) be

a tolerance parameter. We set up the following risks of tolerant testing of s changes

at tolerance ε, and of tolerant testing of deletion at the same levels, as

RGoF
tol (n, s, ε,J ) = inf

Ψ
sup
P∈J

{
sup

P̃∈Aεs(P )c∩J
P̃⊗n(Ψ = 1) + sup

Q∈As(P )∩J
Q⊗n(Ψ = 0)

}
,

RGoF,del
tol (n, s, ε,J ) = inf

Ψ
sup
P∈J





sup
P̃∈Aεs(P )c∩J
G(P̃ )⊂G(P )

P̃⊗n(Ψ = 1) + sup
Q∈As(P )∩J
G(Q)⊂G(P )

Q⊗n(Ψ = 0)




.

Analogously to ğ3.2, the sample complexities ntol
GoF(s, ε,J ) and ntol

GoF,del(s, ε,J ) are

the smallest n required to drive the above risks below 1/4. Our claim in the above

may be summarised as follows.

Theorem 3.4.3. There exists a constant C independent of (s, p, α, ε) such that

ntol
GoF,del(s, ε,F(α)) ≤ Cmax

{
1,

1

sinh2(α)

p

(1− ε)2s2 ,
1

(1− ε)2s

}
.
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Further, if ε < 1−tanh(α)/2, then

ntol
GoF(s, ε, T (α)) ≤ Cmax

{
1,

1

sinh2(α)

p

(1− 2ε− tanh(α))2s2
,

1

(1− 2ε− tanh(α))2s

}
.

The key point for showing the above is that the mean of the statistic T doesn’t

move too much under small changes - for τ = tanh(α), changing εs edges reduces the

mean of TP by at most εsτ in both cases, while changing ≥ s edges reduces it by at

least sτ for forest deletion, and sτ(1−τ)/2 for arbitrary changes in trees. Comparing

this upper bound in the drop in the mean against the lower bound when ≥ s changes

are made (along with the common noise scale of the problem) directly gives the above

blowups in the costs of tolerant testing. This should be contrasted with statistical

distance based formulations of testing, for which tolerant testing is a subtle question,

and, at least in unstructured settings, requires using different divergences to define

closeness and farness in order to show gains beyond learning [DKW18].

3.4.2 Testing Deletions in High-Temperature Ferromagnets

Testing deletions in ferromagnets is amenable due to two technical properties of the

statistic TP =
∑

(i,j)∈G(P )XiXj . The first of these is that due to the ferromagneticity,

deleting an edge can only reduce the correlations between the values that the variables

take. Coupling this fact with a structural result that is derived using [SW12, Lemma 6]

yields that if G(Q) ⊂ G(P ) and |G(P )△G(Q)| ≥ s, then EP [TP ]−EQ[TP ] ≳ sα. The

second technical property is that bilinear functions of the variables, such as TP , exhibit

concentration in high-temperature Ising models. In particular, using the Hoeffding-

type concentration of [AKPS19, Ex. 2.5], TP concentrates at the scale O(
√
pd) around

its mean for all high-temperature ferromagnets. With means separated, and variances

controlled, we can offer the following upper bound on the sample complexity, while

the converse is derived using techniques of previous sections. See ğB.3.2 for proofs.
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Theorem 3.4.4. There exists a constant Cη depending only on η and not otherwise

on (s, p, d, α) such that

nGoF,del(sHη
d(α)) ≤ Cη

(
pd

α2s2
∨ 1

)
.

Conversely, there exists a c < 1 independent of (s, p, d, α) such that if η ≤ 1/16, s ≤ cpd

then

nGoF,del(s,Hη
d(α)) ≥

c

α2d2
log

(
1 +

cpd3

s2

)
,

nEoF,del(s,Hη
d(α)) ≥

c

α2d2
log

(
1 +

cpd

s

)
.

Unlike in Thm. 3.4.1, the lower bounds above are not very clean, and so our

characterisation of the sample complexity is not tight. Nevertheless, we once again

observe a clear separation between sample complexities of GoF and of EoF and a

fortiori that of SL. Concretely, our achievability upper bound and the EoF lower

bound show that for s >
√
pd3, the sample complexity of testing deletions is far

below that of structure learning in this class. Further, our testing lower bound tightly

characterises the sample complexity for s ≥
√
pd3.

As an aside, note that unlike in the forest setting, it is not clear if T is generically

sensitive to edge deletions, since network effects due to cycles in a graph can bump up

correlation even for deleted edges. However, we strongly suspect that a similar effect

does hold in this setting, raising another open question - can testing of changes in the

subclass of Hη
d with a fixed number of edges be performed with O(α−2pd/s2) samples

for large s? A similar open question arises for tolerant testing, which requires us to

show that small changes do not alter the mean of T too much.
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3.5 Discussion

The chapter was concerned with the structural goodness-of-fit testing problem for Ising

models. We first argued that this is instrinsically motivated, and we distinguished this

formulation from GoF testing under statistical measures that has been pursued in the

recent literature. The main problem we studied was that of the sample complexity

of GoF testing, with a refined question asking when this was significantly separated

from that of structure learning. Alternatively, we can view this question as asking

when testing via structure learning is suboptimal in sample costs. In addition, we

considered the EoF estimation problem, which serves as a proxy for approximate

structure recovery, and also aligns with the focus of the sparse DCE literature. We

showed that quite generically, if the number of edge edits being tested are small,

then the GoF testing and EoF testing problems are not separated from structure

learning in sample complexity. This concretely rebuts the approach taken by the

sparse DCE methods, and instead suggests that algorithmic work on structural testing

should concentrate on large changes. In addition, we identified inefficiencies in our

lower bound technique, namely that the number of changes the constructions allow

is too small, which reduces the effectiveness of the lower bounds below the level we

believe them to hold (in that the bounds trivialise for too small an s, in our opinion).

In order to demonstrate that this is the only source of looseness, we demonstrated

upper bounds for GoF testing in the deletion setting. This was helped by the fact

that the deletion problem is much simpler than full testing, because the relevant test

statistic is pretty obvious for this case, while it is unclear what statistic is appropriate

to construct general tests. Along the way we controlled the sample costs of generic

testing in tree structured models, and showed that the same tests easily admit some

level of tolerance around the null model.

A number of questions are left open, and we point out a few here. From the
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perspective of lower bounds, the chief is to remove the inefficiencies in our lower bound

technique. As a beginning towards this, it may be worth exploring if the methods

used to show [DDK19, Thm. 14] can be extended to deal with s < p changes. In

addition, we note that while the SNR terms in the lower bounds are relatively tight,

there are still extraneous factors that need to be addressed. Coming around to upper

bounds, the main open problem is that of constructing tests for degree bounded Ising

models in the setting s = pdc for some c > 0. Further, we ask if our bounds on testing

deletions in high-temperature ferromagnets can be extended to generic ferromagnets

(which would require replacing the concentration argument), or to generic changes in

high-temperature ferromagnets (which would require development of new statistics

that are sensitive to edge additions et c.). In addition, can the deletion result be

extended to testing under the constraint the the null and alternate models have the

same number of edges (analogously to how the forest deletion results extend to changes

in trees), and can the deletion result be made tolerant?

3.5.1 Open Questions Regarding Testing and Recovery of Community

Structure with Node Level Observations

Both of the models discussed in Chapters 2 and 3 capture different critical features of

real world network oriented tasks, but leave out others.

The SBM captures the fact that often instead of some fine grained information about

each pair of interactions, practitioners are interested in underlying low rank structure,

such as communities or collections of fundamental groups. However, the SBM assumes

that individual connections are observable, which is a strong assumption - frequently,

only node level observations are available, and practitioners generate networks from

these via crude correlation based thresholding heuristics (this is especially the case in

neuroscientific contexts). The Ising model captures the latter feature of typical data,

in that it studies node level observations, but suffers from the fact that the behaviour
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of the model, and particularly the inference problems commonly studied are concerned

with the whole graph.

It thus behoves us to attempt to unite these models to produce a node level

graphical model that encodes low rank structure such as communities. Two natural

models have been proposed in the recent literature3 In the rest of this section, I’ll

discuss these two models, and some open directions of inquiry into the same that may

be pursued.

The Ising Block Model

The Ising Block Model (IBM), also called the ‘Block Spin Ising Model’ was proposed

by Berthet et al. [BRS19]. The model is mathematically convenient, but unrealistic.

Due to its convenience, however, this is a natural proving ground for algorithms. The

Ising Block Model is a law on {−1, 1}p-valued random variables parametrised by three

quantities - an partition of the nodes z ∈ {−1,+1}p, and intra- and inter-community

edge weights α, β. The law is that Curie-Weiss model, but with edge weights taking a

block structure (recall that 1 = (1, . . . , 1)⊤).

P (X = x; z, α, β) ∝ exp

(
xTJx

p

)

J =
β + α

2
11⊤ +

β − α
2

zz⊤.

Analysis techniques and intuitions The principle fact underlying the convenience

of this model is that due to the symmetry of the potential, the covariance of the model

develops a block structure, i.e., there exist two constants ∆,Ω, depending on p, α, β

such that

E[XXT ] =
∆ + Ω

2
11T +

∆− Ω

2
zzT + (1−∆)I.

3For consistency of notation, I’ll refer to the intra- and inter- block connection probabilities of a
SBM as cin/n and cout/n respectively. Throughout, edge strengths are encoded as factors of β, α
with the implicit understanding that β > α.
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In addition to the above, notice that sample covariance is a sufficient statistic

for this model - indeed, the law is simply that of an exponential family of the form

exp
(〈
XXT , J

〉)
. Thus, the fundamental analytic characterisation of this model is as

a block covariance model, but with the non-trivial twist that the concentration of this

matrix is driven by the block Curie-Weiss structure underlying it.

The above observations render natural the approach of reasoning about the struc-

ture of the IBM by studying projections of the sample covariance matrix. Indeed, the

results of [BRS16] follow from such considerations, with the determination of exact

recovery thresholds via semi-definite programming, and some partial recovery results

via spectral methods.

Notice, however, the subtlety inherent in the above that ∆ and Ω are themselves non-

trivial to ascertain as functions of the parameters p, α, β. This imposes probabilistic

challenges in determining sample complexities in terms of the natural parameters.

Such issues have drawn probabilistic attention, and various refined characterisations

extending the analysis of [BRS16] are now available [LS18; KLSS20].

Proposed investigation We begin by pointing out that a natural generalisation of

our GoF scheme to consider a sample covariance instead a graph adjacency matrix is

easily analysable, and shows a similar advantage for the IBM as it does in the SBM, in

that large changes can be tested with very few samples. However, the same cannot be

said for our scheme for two sample testing Algorithm 1, because this proceeds critically

via a partial recovery step, the sample costs of which are not as well established in

the IBM as they are in the SBM. This presents two natural directions of extension.

The first is to develop TST schemes for the IBM that do not pass through a partial

recovery step. Indeed, this is a broader question that is already of interest in the SBM

(see the discussion in the following section). For this reason, perhaps the better place

to start when pursuing this thrust is to develop improved TST schemes in the SBM
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itself.

The second line of investigation is that of the partial recovery problem in the

IBM itself. [BRS16] show that exact recovery in the IBM is possible via an SDP

based scheme, and show achievability bounds for the partial recovery problem using

spectral methods. In the analogous SBM, it is known that while SDP based schemes

extend to partial recovery at minimax rates [FC19], the same is not true for naïve

applications of spectral methods, which typically require some mild regularisation of

the obtained graph in order to succeed (for example, see [CRV15]). This raises two

concrete questions - the first is if the SDP based analysis of [FC19] for the partial

recovery problem can be extended to the IBM. The second is to determine what the

appropriate analogue of graph regularisation is for covariance matrices, and to adapt

regularised spectral schemes in the SBM that carry this out to the IBM setting.

The Stochastic Ising Block Model

The Stochastic Ising Block Model (SIBM) is perhaps the more natural integration

of the SBM and the Ising model. The idea is to draw a single graph G from a two

community SBM with connectivities (cin/p, cout/p) and then to place an Ising Model

on this graph, from which observations are drawn. Formally, the model is parametrised

by a community vector z ∈ {±1}p, and a edge weight parameter β, along with the

connectivity parameters, and takes the following form:

1. A graph G is drawn according to an SBM with planted community z and

connection probabilities cin/p and cout/p.

2. n samples X(1), . . . , X(n) are drawn independently from the Ising model on G

with weight β, i.e. the law

P (X = x;G, β) ∝ exp


β

∑

{i,j}∈G
XiXj


 .



70

Notice that the samples of the Ising model are drawn from the same graph - this is an

important feature, since in real world inference tasks we expect the underlying network

of relationships between agents to be constant at the time scale of experimentation.

The analogous setting for continuously valued data is the Stochastic Gaussian Block

Model (SGBM), in which samples are drawn from a Gaussian with precision matrix

Θ = Σ−1 = I − γG for a small enough γ. The recent work of Ye [Ye21] studies

exact recovery in a variant of the SIBM in which negative biases are introduced in

between variables that are not connected according to the underlying graph in order

to facilitate recovery.

While our concrete intuition for this question is limited, the main heuristic reasoning

behind why testing of the above models was presented in ğ2.4.3, which carried out

experiments on the SGBM as defined above - roughly, this posits that due to the local

tree-like structure of large sparse graphs, the empirical covariance matrix approximates

the local graph structure well, at least up to some (graph) distance. This suggests

a natural two-step line of attack - firstly, to demonstrate that this heuristic actually

bears out, and secondly to argue that statistics such as the one designed in ğ2.4.3 are

actually effective given the extent to which the graph structure is expressed in such

data.
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Chapter 4

Selective Classification in the Batch Setting

4.1 Introduction

Selective Classification is a classical problem that goes back to the work of Chow

[Cho57; Cho70]. The setup allows a learner to classify a query into a class, or to

abstain from doing so (we also call this ‘rejecting’ the query). This abstention models

real-world decisions to gather further data/features, or engage experts, all of which

may be costly. Such considerations commonly arise in diverse settings, including

healthcare1, security, web search, and the internet of things ([Xu+14; Zhu+19]), all

of which require very low error rates (lower even than the Bayes risk of standard

classification). The challenge of SC is to attain such low errors while keeping coverage

(i.e., the probability of not rejecting a point) high. This is a difficult problem because

any choice of what points to reject is intimately coupled with the classifiers chosen for

the remaining points.

The most common SC method is via ‘gating,’ in which rejection is explicitly

modelled by a binary-valued function γ, and classification is handled by a function π.

An instance, x, is predicted as π(x) if γ(x) = 1, and otherwise rejected. Within this

This chapter is a lightly edited version of the paper [GKS21], which was written in collaboration
with Anil Kag and Venkatesh Saligrama.

1For example, when deciding if a mammary mass is benign or malignant, a physician may predict
based on ultrasound imaging tests, and, in more subtle cases, abstain and refer the patient to a
specialist, or recommend specialised imaging such as CT scans.
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formulation, recent work has proposed a number of methods, ranging from alternating

minimisation based joint training, to the design of new surrogate losses, and of new

model classes to accommodate rejection. Despite this increased complexity, these

methods lack power, as shown by the fact that they do not significantly outperform

naïve schemes that rely on abstaining on the basis of post-hoc uncertainty estimates

for a trained standard classifier. This represents a significant gap in the practical

effectiveness of selective classification.

Our Contributions. We describe a new formulation for the SC problem, that

comprises of directly learning disjoint classification regions {Sk}k∈Y , each of which

corresponds to labelling the instance as k respectively. Rejection is implicitly defined

as the gap, i.e., the set R = X \⋃Sk. We show that this formulation is equivalent to

earlier approaches, thus retaining expressivity.

The principal benefit of our formulation is that it admits a natural relaxation,

via dropping the disjointness constraints, into decoupled ‘one-sided prediction’ (OSP)

problems. We show that at design error ε, this relaxation has the coverage optimality

gap bounded by ε itself, and so the relaxation is statistically efficient in the practically

relevant high target accuracy regime.

We pose OSP as a standard constrained learning problem, and due to the decoupling

property, they can be approached by standard techniques. We design a method that

efficiently adjusts to inter-class heterogeneity by solving a minimax program, controlled

by one parameter that limits overall error rates. This yields a powerful SC training

method that does not require designing of special losses or model classes, instead

allowing use of standard discriminative tools.

To validate these claims, we implement the resulting SC methods on benchmark

vision datasets - CIFAR-10, SVHN, and Cats & Dogs. We empirically find that the

OSP-based scheme has a consistent advantage over SOTA methods in the regime
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of low target error. In particular, we show a clear advantage over the naïve scheme

described above, which in our opinion is a significant first milestone in the practice of

selective classification.

4.1.1 Related Work

State of the Art (SOTA) methods: The SOTA, in terms of performance, for SC

is encapsulated by three methods. The Naïve method, i.e., rejecting when the output

of a soft classifier is non-informative (e.g. classifier margin is too small), and this

is surprisingly effective when implemented for modern model classes such as DNNs

([GE17]). The only other methods that can (marginally) beat this are due to Liu et

al., who design a loss function for DNNs [Liu+19], and to Geifman & El-Yaniv, who

design a new architecture for DNNs that incorporates gating [GE19].

The methods of [Liu+19; GE19] are both based on the Gating formulation, men-

tioned earlier. This formulation was popularised by Cortes et al. [CDM16], although

similar proposals appeared previously [EW10; WE11]. A number of papers have since

extended this approach, e.g. designing training algorithms via alternating minimisa-

tion [NS17a; NS17b], designing loss functions [Liu+19; NCHS19; RTA18], and model

classes, such as an architecturally augmented deep neural network (DNN) [GE19]. In

contrast, our work develops an alternate formulation that directly solves SC without

use of specialised losses or model classes.

The naïve method has its roots in the Direct SC formulation, which is based on

learning a function f : X → {1, . . . , K, ?} (where ? denotes rejection), and is pursued

by Wegkamp and coauthors [HW06; BW08; Weg07; WY11; YW10]. The main

disadvantage of this formulation is that the methods emerging from it consider very

restricted forms of rejection decisions, e.g. {|φ − 1/2| < δ}, where φ is a softmax

output of a binary classifier.

Rather than including an explicit gate, our formulation and method for learning
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abstaining classifiers uses an implicit abstention criterion, by modelling regions of

high confidence directly. Such an approach was theoretically considered by Kalai et

al. [KKM12] for the binary setting, although an implementable methodology was not

developed from the same. This paper also suggests a decoupled approach to learning.

Independently and concurrently of our work, Charoenphakdee et al. [CCZS21] also

propose an implicitly gated method by observing that in the situation where abstention

has a fixed cost, the Bayes optimal classifier can be derived using a cost-sensitive

objective. They develop this into a methodology for learning selective classifiers that

bears significant commonalities to ours in the structure of the losses constructed and

approach taken, although their exploration is focused on the situation with a fixed

cost for abstention (the so-called Chow loss). Together these papers suggest that the

approach we design can be motivated in multiple ways.

An alternate Confidence Set formulation (which also features an implicit abstention

criterion) has been pursued in the statistics literature [Lei14; DH19] (for the binary

case), and involves learning sets {Ck}k∈[1:K] such that
⋃ Ck = X , and each Ck covers

class k in the sense P(Ck|Y = k) is large.2Points which lie in two or more of the

Cks are rejected, and otherwise points are labelled according to which Ck they lie in.

While this has subsequently been extended to the multiclass setting [SLW19; DH17;

CDH19], these papers study ‘least ambiguous set-valued classification’, which is a

different problem from selective classification and does not express it well (see the

appendix of [GKS21]). A limitation of existing work in this framework is their reliance

on estimating the regression function η(x) := P(Y = k|X = x) to ensure efficiency.

Proposals typically go via using non-parametric estimates of η, which are then filtered.

On a practical level, this reliance on estimation reduces statistical efficiency, and on

2More accurately, this precise formulation has not appeared for the multiclass setting, and only
appears for the binary problem in [Lei14; DH19]. Here we are expressing the natural multiclass
extension of this, that turns out to be equivalent to selective classification (§4.2.3). The existing
literature instead pursues the multiclass extension to LASV classification, as mentioned above.
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a principled level, this violates Vapnik’s maxim of avoiding solving a more general

problem as an intermediate step to solving a given problem ([Vap00, ğ1.9]).

While our formulation is most closely related to the confidence set formulation,

and is equivalent to a change of variables of this (ğ4.2.3), it is directly motivated.

Furthermore, our framework naturally leads to relaxations to OSP that let us study

discriminative methods on high-dimensional datasets and large model classes, which

are unexplored in these works.

In passing, we mention the uncertainty estimation (UE), and budget learning (BL)

problems. UE involves estimating model uncertainty at any point [GG16; LPB17],

which can plug into both naïve classifiers, and the other methods. As such, UE

is a vast generalisation of SC. BL is a restricted form of SC that aims at reaching

the accuracy of a complex model using simple functions, and is relevant for efficient

inference constraints.

We highlight a recent decoupling-based method for BL that involves the first and

last authors [AGS20]. The present work can be seen as considerable extension of

this paper to full SC. While the broad strategies of decoupling schemes are similar,

significant differences arise since much of the structure developed in the prior work

does not generalise to SC, and development of new forms is necessary. Additionally,

our experiments study large multiclass models going beyond best achievable standard

accuracy, while the previous work only studies small binary models getting to standard

accuracy achievable by larger models.

4.2 Formulation and Methods

Notation. Probabilities are denoted as P, random variables are capitalised letters,

while their realisations are lowercase (X and x). Sets are denoted as calligraphic

letters, and classes of sets as formal script (S ∈ S ). Parameters are denoted as greek
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letters. For a set S ⊂ X , P(S) is shorthand for P(X ∈ S).
We adopt the supervised learning setup - data is distributed according to an

unknown joint law P on X × Y, and we observe n i.i.d. points (Xi, Yi) ∼ P. For K

classes, we set Y = [1 : K], where K is a constant independent of |X |. We use S to

denote the class of sets from which we learn classifiers.

4.2.1 Formulation of SC

We set up the SC problem (Fig. 4·1(top) illustrates binary case) as that of directly

recovering disjoint classification regions, {Sk}k∈[1:K] from a class of sets S , under the

constraint that the error rate is smaller than a given level ε, which we call the target

error. Each such K-tuple of sets induces two events of interest - the rejection event,

and the error event.

R{Sk} :=
{
X ∈

(⋃
Sk
)c}

E{Sk} :=
⋃
{X ∈ Sk, Y ̸= k}.

We will usually suppress the dependence of R, E on {Sk}. Notice further that E
decomposes naturally into events that depend only on one of the Sks. We will call

these ‘one-sided’ error events

EkSk
= {X ∈ Sk, Y ̸= k}.
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With the above notation, we pose the problem as a maximisation program. The value

of this is said to be the coverage at target error level ε, denoted C(ε;S ).

C(ε;S ) = max
{Sk}k∈[1:K]∈S

K∑

k=1

P(Sk) (SC)

s.t. P(E{Sk}) ≤ ε,

P(
⋃

k,k′ ̸=k

Sk ∩ Sk′) = 0,

where the final constraint is expressing the fact that the Sks must be pairwise disjoint.

Note that if ε equals the Bayes risk of standard classification with S , then (SC)

recovers the standard solution and coverage 1.

Example. Consider the case of K = 2 where PX is uniform on [0, 1], P(Y = 1|X =

x) = x, and S consists of single threshold sets {x > t}, {x ≤ t} for t ∈ [0, 1]. The

Bayes risk of standard classification is 1/4. For any ε < 1/4, the coverage at level ε is

C(ε;S ) = 2
√
ε, which is attained by S1 = {x > 1−√ε},S2 = {x ≤

√
ε}.

4.2.1.1 Design choices

We outline alternate ways to set up the SC problem that we don’t pursue in this

dissertation.

Form of constraints. In (SC), we maximise coverage, while controlling error, which

is error-constrained SC. Alternately one can pursue the equivalent coverage constrained

SC problem - minimising P(E) subject to P(R) ≤ ϱ.

As illustrated in the starting example, our interest in SC is driven by the desire

to attain very small error rates. We thus find the error constrained form of SC more

natural, and since we needed to select one of the two for the sake of brevity, we

adopt it in the rest of the paper.3 We note that our method is also effective for

3This is not to imply that the coverage constrained form cannot be more appropriate for some
settings. Which one to use in practice is ultimately a problem specific choice.
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coverage-constrained SC, as shown empirically in ğ4.4.

Error criterion. In (SC), we constrain the raw error P(E). This has the benefit of

being both natural, since it directly controls the standard error metric, and further,

simple. Alternate forms of the error metric have been studied in the literature -

e.g. conditioning on acceptance (P (E|Rc)) [GE19]; and separately constrained class

conditionals (P (E|Y = k) ≤ εk) [Lei14]. Most of the development below can be

adapted to these settings with minimal changes, and we restrict attention to P(E) for

concreteness.

4.2.2 Relaxation and One-sided Prediction

(SC) couples the Sks via the P-a.s. disjointness constraint. We now develop a

decoupling relaxation.

To begin, note that we may decouple the error constraint by introducing variables

that trades off the one-sided error rates as below. This program is equivalent to (SC)

in the sense that they have the same optimal value, and the same {Sk} achieve this

value.

max
{Sk}∈S ,{αk}∈[0,1]

K∑

k=1

P(Sk) (SC-expanded)

s.t. ∀k : P(EkSk
) ≤ αkε,

∑
αk ≤ 1,

P(
⋃

k,k′ ̸=k

Sk ∩ Sk′) = 0.

Our proposed relaxation is to simply drop the final constraint. The resulting

program may be decoupled, via a search over the variables αk into K one-sided

prediction (OSP) problems:

Lk(εk;S ) = max
Sk∈S

P(Sk) s.t. P(EkSk
) ≤ εk (OSP-k)
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Notice that the above OSPk problem demands finding the largest set Sk that has a

low false alarm probability for the null hypothesis Y ̸= k. Structurally this is the

opposite to the more common Anomaly Detection problem, which demands finding

the smallest set with a low missed detection probability.

We note that while we decouple the SC problem completely above, the main benefit

is the removal of the intersection constraint, which is the principal difficulty in SC.

The sum error constraint is benign, and for reasons of efficiency we will reintroduce it

in ğ4.3.

Continuing, observe that the sets recovered from the above problems may overlap,

which introduces an ambiguous region. This overlap region is necessarily of small

mass (Prop. 4.2.1), and so may be dealt with in any convenient way. Theoretically we

break ambiguities in the favour of the smallest label. These sets need not belong to

S anymore, and so this is an (weakly) improper classification scheme.

Overall this gives the following infinite sample scheme:

• For each feasible α ∈ [0, 1]K , solve for {Lk(αkε)} for each k ∈ [1 : K]. Let {T α
k } be

the recovered sets.

• Let Sα
k = T α

k \
(⋃

k′<k T α
k′

)
.

• Return the {Sα
k } that maximises

∑
k P(Sα

k ) over α.

At small target error levels, which is our intended regime of study, the resulting

sets are guaranteed to not be too lossy, as in the following statement. The above is

shown (in ğC.1.1) by arguing that the mass of the overlap between the OSP solutions

(the Tk) is at most 2ε. Empirically this is even lower, see Table 4.4.

Proposition 4.2.1. If {Sk} are the sets recovered by the procedure above, then these

are feasible for (SC). Further, their optimality gap is at most 2ε, i.e.

∑

k∈[1:K]

P(Sk) ≥ C(ε;S )− 2ε.
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4.2.3 Equivalence of SC formulations

We show that the prior gating and confidence frameworks are equivalent to ours, based

on transforming feasible solutions of one framework into an other.

Gating : Denote the acceptance set of gating as Γ = {γ = 1}, and let the predictions

be Πk = {π = k}. Taking Sk = Πk ∩ Γ yields disjoint sets that can serve for SC

under our formulation that have the same decision regions for each class, and the

same rejection region, since (
⋃Sk)c = Γc. Conversely, for disjoint decision sets Sk,

the gate Γ =
⋃Sk, and the predictor Πk = Sk form the corresponding gating solution.

Confidence set : Take confidence sets {Ck} which cover X , and have the rejection

set B =
⋃

k ̸=k′ Ck ∩ Ck′ . Then we produce the disjoint sets Sk = Ck \ (
⋃

k′ ̸=k Ck′), which

retain the same decision regions. These also have the same rejection region because

we may express Sk = Ck ∩ Bc, and thus
⋂Sc

k = (
⋂

k Cck) ∪ B, and
⋂ Cck = ∅ since the

Ck cover the space. Conversely, for disjoint {Sk}, the sets Ck = (
⋃

k′ ̸=k Sk′)c = Sk ∪R
cover the space, and have the rejection region R since Ck ∩Ck′ = R for any pair k ̸= k′.

Figure 4·1 illustrates these equivalences. Notice that due to the simplicity of the

reductions, these equivalences are fine-grained in that the joint complexity of the family

of sets used is preserved in going from one to the other. Given these equivalences, we

again distinguish our approach from the existing ones.

First, the structure of solutions is markedly different. The gating formulation takes

both the rejection and the classification decisions explicitly via the two different sets.

The confidence set formulation takes neither explicitly, and instead produces a ‘list

decoding’ type solution. In contrast, we make the classification decisions explicit, and

produce the rejection decision implicitly.

Consequently, the salient differences lies in the method. The gating based methods

have concentrated on the design of surrogate losses and models, while for the confidence

set, methods either go through estimating the regression function, or via a reduction
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Figure 4·1: An illustration of the equivalence between the three
formulations for binary classification. Left: our formulation; Si denotes
disjoint sets; Middle: gating with Γ representing gated set; Right:
Ci represents confidence sets, and their intersection representing the
rejected set. In each case, the coloured curves represent the boundary
of the set labelled with the corresponding colour, and the dashed line is
the Bayes boundary.

to anomaly detection type problems [SLW19; DH17]In strong contrast, we develop

a new relaxation that allows decoupled learning via ‘one-sided prediction’ problems.

These OSP problems are almost opposite to anomaly detection - instead of finding

small sets for each class that do not leave too much of its mass missing, we instead

learn large sets that do not admit too much of the complementary class’ mass.

4.2.4 Finite Sample Properties of OSP

Thus far we have spoken of the full information setting. This section gives basic

generalisation analyses for an empirical risk minimisation (ERM) based finite sample

approach. Since the one-sided problems are entirely symmetric, we concentrate only

on OSP-1, that is (OSP-k) with k = 1, below. Note that the SC problem can directly

be analysed in a similar way, as discussed in the following section.

We show asymptotic feasibility of solutions, that is, we show that we can, with high

probability, recover a set S for OSP such that P(S) ≥ L1(ε)−o(1) and P(E1S) ≤ ε+o(1),

where the o are as the sample size diverges. This is in contrast to exact feasibility,

i.e., insisting on S ′ such that P(E1S′) ≤ ε with high probability. Exactly satisfying
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constraints via ERM whilst maintaining that the objective is also approaching the

optimum is a subtle problem, and has been shown to be impossible in certain cases

[RT11]. On the other hand, plug-in methods along with an ‘identifiability’ condition

which imposes that the law of η(X) is not varying too fast at any point can be

employed to give exact constraint satisfaction along with a small excess risk - the

technique was developed by Tong [Ton13], and has been used previously in SC contexts

[e.g., SGJ19]. However, since the applicability of plug-in methods to large datasets in

high dimensions is limited, we do not pursue this avenue here.

One-Sided Learnability

Definition We say that a class S is one-sided learnable if for every ε ≥ 0 and

(δ, σ, ν) ∈ (0, 1)3, there exists a finite m(δ, σ, ν) and an algorithm A : (X × [1 : K])m →
S such that for any law P, given m i.i.d. samples from P, A produces a set S1 ∈ S

such that with probability at least 1− δ over the data,

P(S1) ≥ L1(ε;S )− σ, and P(E1S1
) ≤ ε+ ν.

The characterisation we offer is

Proposition 4.2.2. A class S is one-sided learnable iff it has finite VC dimension.

In particular, given n samples, we can obtain a set S1 that, with probability at least

1− δ, satisfies

P(S1) ≥ L1(ε;S )−
√
CK

(vc(S ) log n+ log(CK/δ))

n

P(E1S1
) ≤ ε +

√
CK

(vc(S ) log n+ log(CK/δ))

n
,

where CK is a constant that depends only on the number of classes K. Equivalently,

the label complexity of OSP is bounded as

m(δ, σ, ν) = Õ(poly(K)max(ν−2, σ−2)vc(S ))

The proof of the necessity of finite VC dimension is via a reduction to standard
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learning, while the upper bounds on rates above follow from uniform convergence due

finite VC dimension. See ğC.1.2. The scheme attaining these is a direct ERM that

replaces all Ps in (OSP-k) by empirical distributions.

On the whole, applying the above result for each of the K OSP problems tells us

that if we can solve the empirical OSP problems for the indicator losses and constraints,

then we can recover a SC scheme that, with high probability, incurs error of at most

ε+O(1/
√
n) and has coverage of at least C(ε;S )− 2ε−O(1/√n).

4.2.5 Finite Sample Analysis for SC

In parallel to the OSP problems, one can directly give finite sample analyses for the

SC problem. We begin by defining the solution concept here.

Definition We say that a class S is learnable with abstention if for every (δ, ζ, σ, ν) ∈
(0, 1)4, there exists a finite m(δ, σ, ν, ζ) and an algorithm A : (X × {+,−})m → S K

such that for any law P, and ε > 0, given n i.i.d. samples drawn from P, the algorithm

produces sets {Sk} from S such that with probability at least 1− δ over the data,

∑

k

P(Sk) ≥ C(ε;S )− σ

P(E{Sk}) ≤ ε+ ν

P(
⋃

k,k′ ̸=k

Sk ∩ Sk′) ≤ ζ.

Notice that the recovered sets need not be disjoint, which may be amended by by

eliminating the overlap from one of the sets as in ğ4.2.2. The resulting (improper) sets

attain coverage of at least C − ζ − ν with high probability.

The main point characterisation here is similar,

Proposition 4.2.3. A class S is learnable with abstention if and only if it has finite

VC dimension, and further,

m(δ, σ, ν, ζ) = Õ(poly(K)max(σ−2, ν−2, ζ−1)vc(S )).
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The proof of the necessity of finite VC dimension follows from observing that if

the data is realisable, i.e., corresponds to Y = 21{X ∈ S} − 1 for some S ∈ S then

at least one of the recovered sets is a good classifier, at which point standard lower

bounds for realisable PAC learning apply. The sufficiency follows from utilising the

finite VC property to uniformly bound errors incurred by empirical means. The proof

is presented in ğC.1.2.

Comment on Semi-Supervised Settings One simple but important observation

in this context is that the objective of the SC problem does not depend on the label

distribution, and so

4.3 Method

In this section, we derive an efficient scheme, first by replacing indicator losses with two

differentiable surrogate variants, and then propose OSP relaxations. A summary of the

method expressed as pseudo-code is included in Appx. C.2. Throughout, S is set to

be level sets of the soft output of a deep neural network (DNN), i.e., S = {f(·; θ) > t},
where f(·; θ) : X → [0, 1] is a DNN parametrised by θ. The bulk of the exposition

concerns learning θs. In this and the following section, {(xi, yi)}ni=1 refers to a training

dataset with n labelled data points.

Relaxed losses. To solve the OSP problem, we follow the standard approach of

replacing indicator losses by differentiable ones. This sets up the relaxed problem

min
θk

∑
i ℓ(f(xi; θk))

n
s.t.

∑
i:yi ̸=k ℓ

′(f(xi; θk))

n ̸=k

≤ φk

where θk parametrises the DNN, φk denote relaxed values of the constraints, and

ℓ, ℓ′ are surrogate losses that are small for large values of their argument, and n ̸=k =

|{i : yi ̸= k}|. In the experiments we use ℓ(z) = − log(z) and ℓ′(z) = − log(1 − z),
essentially giving a weighted cross entropy loss. We refer to the objective of the above
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problem as L̃k(θk), and the constraint as C̃k(θk).

A more stable loss. Practically, the loss L̃k suffers from instability due to the fact

that the first term sums over all instances. This can seen clearly when ℓ = − log,

for which the objective includes the sum
∑

i:yi ̸=k− log(f(xi; θk)). Since for negative

examples we expect f(x; θk) to be small, this sum is very sensitive to perturbations

in these values, which reduces the quality of the solutions. To ameliorate this, we

formulate the following ‘restricted’ loss, where the objective instead sums over only

the positively labelled samples

min
θk

∑
i:yi=k ℓ(f(xi; θk))

nk

s.t. C̃k(θk) ≤ φk. (4.1)

Notice that the constraint C̃k is the same as before. We refer to the restricted objective

above as L̃res.
k (θk). This loss underlies all further methods, and §4.4.

Note that the above program remains sound w.r.t. the OSP task, since it is a

surrogate for the following

max
Sk∈S

P(X ∈ Sk, Y = k) s.t. P(X ∈ Sk, Y ̸= k) ≤ ε.

Comparing (OSP-k) and the above, the constraints are the same, and the objectives

differ by P(Sk)−P(Sk, Y = k) = P(Sk, Y ̸= k), which, due to the constraint, is at most

ε. Thus, the programs are equivalent up to a small gap (that is, optimal solutions

for the above attain a value for (OSP-k) that is ε-close to the optimal value for it).

For the same reason, we can use the solutions of the above one-sided problem in

the scheme of ğ4.2.2 to yield solutions feasible for (SC) that satisfy an analogue of

Prop. 4.2.1 with an optimality gap of 3ε instead of 2ε.

Joint Optimisation and normalisation. A naïve approach with the above relax-

ations in hand is to optimise the k OSP problems separately. However, this leads to

an exponential in K rise in complexity in the model selection process, since different
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values of (φ1, . . . , φK) need to be selected - if Φ such values are searched over for each

φk, then this amounts to a prohibitive grid search over ΦK values. In addition, due

to class-wise heterogeneity, the values of φks need not be calibrated across programs,

and thus simple solutions like pinning all the φks to the same value are not viable. A

final issue is that a naïve implementation of this setup results in training K separate

DNNs, which leads to a K-fold increase in model complexity.

We make two modifications to handle this situation. First, we normalise function

outputs by adopting the following architecture: we consider DNNs with K output

nodes, each representing one of the fk. The backbone layers of the network are shared

across all OSP problems. Further, we take

f(x) = (f1(x), . . . , fK(x)) = softmax(⟨wk, ξθ(x)⟩),

where ξθ denotes the backbone’s output, and recall that

(softmax(v))k = exp(vk)/
∑

exp(vk).

This normalisation and restricted model handles both the class-wise heterogeneity,

and the blowup in model complexity.

For the sake of succinctness, we define w = (w1, w2, . . . , wK), ϕ = (φ1, . . . , φK).

Next, in order to ameliorate the search, we propose jointly optimising the various

OSP problems, by enforcing a joint constraint on the sum of the various constraint

values via a single value φ. This mimics the structure of (SC), where the constraint

limits the sum of the one-sided errors. The relaxation thus amounts to dropping the

disjointness constraint, and softening the indicators in (SC). The resulting problem is

min
θ,w,ϕ

∑

k

L̃res.
k (θ,w) (4.2)

s.t. ∀k : C̃k(θ,w) ≤ φk,
∑

φk ≤ φ,
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where recall L̃res., C̃k from above, which are functions of (θ,w) since the backbone θ is

shared, and since all fk depend on all wks due to the softmax normalisation.

Finally, we propose optimising (4.2) via stochastic gradient ascent-descent. We

note that one tunable parameter - µ - remains in the problem, corresponding to the

sum constraint on the φks, while λks are multipliers for the C̃k constraints. We again

denote λ = (λ1, . . . , λK). The resulting Lagrangian is

M̃ res.(θ,w,ϕ,λ, µ) (4.3)

=
∑

k

L̃res.
k (θ,w) + λk(C̃k(θ,w)− φk) + µφk,

and we solve the problem

min
(θ,w,ϕ)

max
λ:∀k,λk≥0

M̃ res.(θ,w,ϕ,λ, µ), (4.4)

treating µ as the single tunable parameter.

We note that the Lagrangian above bears strong resemblance to a one-versus-all

(OVA) multiclass classification objective. The principal difference arises from the fact

that the losses are weighted by the λk terms, and the optimisation trades these off,

which are typically not seen in one-versus-all approaches (of course, we also use the

resulting functions very differently).

Thresholding and resulting SC solution. The outputs of the classifiers learned

with any given µ yield soft signals for the various OSP problems. To harden these

into a decision, we threshold the outputs of the soft classifier at a common level

t ∈ [0, 1]. This crucially relies on the earlier normalisation of the soft scores to make

them comparable. Finally, to deal with ambiguous regions, we use the soft signals fk,

and assign the label to the one with the largest score. Overall, this leads to the SC
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solution

Sk(θ,w, t) ={x : fk(x; θ,w) ≥ t} ∩ {x : k = argmax
k′

fk′(x; θ,w)}. (4.5)

Model Selection. The above setup has two scalar hyperparameters - µ from (4.4),

and threshold t at which hard decisions are produced in (4.5), and each choice of

these yields a different solution. Our final model is one that performs the best on the

validation dataset among all hyperparameter tuples (µ, t). Concretely, let P̂V denote

the empirical law on a validation dataset. Denote the solutions from (4.4) with a

choice of µ as (θ(µ),w(µ)). Let M,T respectively be discrete sets of µ’s and t’s. The

procedure is

• For each (µ, t) ∈M ×T, and each k, compute Sk(µ, t) = Sk(θ(µ),w(µ), t) as

defined in (4.5).

• For each (µ, t) ∈M×T, evaluate ĈV (µ, t) =
∑

k P̂V (Sk(µ, t)) and ÊV (µ, t) =
∑

k P̂V (EkSk
).

• Let (µ∗, t∗) = argmaxM×T ĈV (µ, t) subject to ÊV (µ, t) ≤ ε.

• Return (θ(µ∗), {wk(µ
∗)}, t∗).

4.4 Experiments

4.4.1 Experimental Setup and Baselines

Datasets and Model Class We evaluate all methods on three benchmark vision

tasks: CIFAR-10 [Kri09], SVHN-10 [Net+11] (10 classes), and Cats & Dogs4 (binary).

All models implemented below are DNNs with the RESNET-32 architecture [HZRS16],

which is a standard model class in vision tasks. 20% of the training data is reserved for

validation in each dataset. All models are implemented in the tensorŕow framework.

The samples sizes and the best standard classification performance is presented in

4https://www.kaggle.com/c/dogs-vs-cats

https://www.kaggle.com/c/dogs-vs-cats
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Table 4.1.

Dataset Num. of Samples Std. ErrorTrain. Test Val.
CIFAR-10 45K 10K 5K 9.58%

SVHN-10 65.9K 26K 7.3K 3.86%

Cats & Dogs 18K 5K 2K 5.72%

Table 4.1: Dataset sizes and standard classification error

Baselines: We benchmark against three state of the art methods. The ‘selective net’

and ‘deep gamblers’ methods also require hyperparameter and threshold tuning as in

our setup, and we do this in a brute force way on validation data, as in ours.

Softmax Response Thresholding (SR) involves training a neural network for standard

classification, and then thresholding its soft output to decide to reject. More formally,

the decision is to reject if {softmax(f1, . . . , fK) < t}, where f is the soft output,

and t is tuned on validation data. This simple scheme is known to have near-SOTA

performance [GE17; GE19].

Selective Net (SN) is a DNN meta-architecture for SC [GE19]. The network provides

three soft outputs - (f, γ, π), where f is an auxiliary classifier used to aid featurisation

during training, and γ, π is a gate-predictor pair. Selective net prescribes a loss

function that trades off coverage and error via a multiplier c, and by fine-tuning a

threshold on γ to reject. We use the publicly available code5 to implement this, and a

comprehensive sweep over the coverage and threshold hyper-parameters. We use 40

valued grid for the parameter c (with 10 equally spaced values in the range [0.0, 0.65)

and remaining 30 values in the range [0.65, 1.0]). For the gating threshold γ, we use

100 thresholds equally spaced in the range [0, 1], the same as for our scheme.

Deep Gamblers (DG) is a method based on a novel loss function for SC within the

gating framework [Liu+19]. The NNs have K + 1 outputs - f1, . . . , fK , f?. The

5https://github.com/geifmany/selectivenet

https://github.com/geifmany/selectivenet
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cross-entropy loss is modified to
∑

log ((fyi(xi) + O−1f?(xi)) , where O ∈ [1, K) is a

hyperparameter that trades-off coverage and accuracy. Hard decisions are obtained by

tuning the threshold of f? on a validation set. We adapt the public torch code6 for

this method to the Tensorŕow framework. We used 40 values of O spaced equally in

the range [1, 2)7, and 100 values of thresholds in [0, 1].

4.4.2 Training One-Sided Classifiers

Loss Function We use the loss function M̃ res. developed in ğ4.3. In particular for

L̃res.
k , we use ℓ(z) = − log(z), and for C̃k, ℓ

′(z) = − log(1− z).
Training of Backbones As previously discussed, our models share a common

backbone and have a separate output node for each OSC problem. We intialise this

backbone with a base network trained using the cross-entropy loss (i.e. a ‘warm start’).

Note that this typically yields a strong featurisation for the data, and exploiting this

structure requires us to not move too far away from the same. At the same time, due

to the changed objective, it is necessary to at least adapt the final layer significantly.

We attain this via a two-timescale procedure: the loss is set to the OSP Lagrangian,

and the backbone is trained at a slower rate than the last layer. Concretely, the last

layer is updated at every epoch, while the backbone is updated every 20 epochs. This

stabilises the backbone, while still adapting it to the particular OSP problem that the

network is now trying to solve.

Hyper-parameters. All of the methods were trained using the train split and the

model selection was performed on the validation set. The results are reported on the

separate test data (which is standard for all three of the models considered). The

6https://github.com/Z-T-WANG/NIPS2019DeepGamblers/
7We initially made a mistake and scanned O in [1, 2) instead of [1, 10). We then redid the

experiment. with 40 values in [1, 10), and found that performance deteriorated. This is because the
optimal O for these datasets lies in [1, 2), and the wider grid leads to a less refined search in this
domain. Thus, values from the original experiment are reported. See Tables C.2, C.3 in §C.3 for the
values with a scan over [1, 10).

https://github.com/Z-T-WANG/NIPS2019DeepGamblers/


92

minimax program on the Lagrangian was optimised using a two-timescale stochastic

gradient descent-ascent, following the recent literature on nonconvex-concave minimax

problems [LJJ19]. In particular, we used Adam optimizer for training with initial

learning rates of (10−3, 10−5) for the min and the max problems respectively for

CIFAR-10 and SVHN-10, and of (10−3, 10−4) for Cats & Dogs.8 These initial rates

were reduced by a factor of 10 after 50 epochs, and training was run for 200 epochs.

The batch size was set to 128.

We searched over 30 values of µ for each of our experiments - 10 values equally

spaced in [0.01, 1], and remaining 20 equally spaced in [1, 16]. We further used 100

values of thresholds equally spaced in [0, 1].

4.4.3 Results

The key takeaway of our empirical results is the significant increase in performance of

our SC scheme when compared to the baselines. We also include some observations

about the structure of the solutions obtained.

4.4.3.1 Performance

Tables cited below all appear after the exposition.

Performance at Low Target Error is presented in Table 4.2, which reports coverage

at three (small) targeted values of error - 1/2, 1, and 2 percent - that are in line with

the low target error regime that is the main focus of our design. Notice that these

target error values are far below the best error obtained for standard classification

(Table 4.1). We observe that the performance of our SC methods is significantly higher

8These rates were selected as follows: the standard classifier was trained with the rate 10−4, which
is a typical value in vision tasks. We then picked one value of µ, and trained models using rates in
(10−k, 10−j) for (j, k) ∈ [2 : 6]× [2 : 6], tuned thresholds for models at 0.5% target accuracy using
validation data, and chose the pair that yielded the best validation coverage. Performance tended to
be similar as long as j ̸= k, and curiously, we found it slightly better to use a smaller rate for the
max problem, which goes against the suggestions of Lin et al. [LJJ19].
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than the SOTA methods, especially in the case of CIFAR-10 and Cats & Dogs, where

we gain over 4% in coverage at the 0.5% design error. The effect is weaker in SVHN,

which we suspect is due to saturation of performance in this simpler dataset.

Performance at High Target Coverage is presented in Table 4.3. This refers to

the coverage constrained SC formulation discussed in ğ4.2.1.1. For these experiments,

we use the same µ values (to avoid retraining), but choose thresholds such that the

coverage of the resulting model exceeds the stated target, and the models with the

lowest error at this threshold are chosen. We observe that at target coverage 100%, the

SR solution outperfoms all others. This is expected, since 100% coverage corresponds

to standard classification, and the SR objective is tuned to this, while the others

are not. Surprisingly, for coverage below 100%, our OSP-based relaxations deliver

stronger performance than the benchmarks. Note that this is not due to the low target

error performance, because (besides SVHN), the errors attained at these coverage are

signficantly above the low target errors investigated in Table 4.2. This shows that our

formulation is also effective in the high-coverage regime.

Coverage-Error Curves for the CIFAR-10 dataset are shown in Fig. 4·2. These

curves plot the best coverage obtained by training at a given target error level using

each of the methods discussed.9 We find that the coverage obtained by our method

uniformly outperform DG and SN, and also outperform SR for the bulk of target

errors, except those very close to the best standard error attainable. This illustrates

that our scheme is effective across target error levels. We find this rather surprising

since we designed our method with explicit focus on the low target error regime.

Tables 4.2 and 4.3 can be seen as detailed looks at the left (error < 2) and the upper

(coverage > 90) ends of these curves.

Observations regarding baselines. Tables 4.2,4.3, and Figure 4·2 all show that
9In particular, we train models at target errors εi = (i/2)% for i ∈ [1 : 20]. We then obtain the

achieved test error rates ε̂i and coverages ci for these models. The curves linearly interpolate between
(ε̂i, ci) and (ε̂i+1, ci+1).
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Figure 4·2: Coverage vs Error Curves for the CIFAR-10 dataset.
Higher values of coverage are better. Notice the curious behaviour of
SR in that the curve’s slope sharply changes close to the best standard
error rate.

across regimes, DG and SN perform similarly to SR, and are frequently beaten by it.

This observation is essentially consistent with the results presented in previous work

[GE19; Liu+19], and supports our earlier claims that the prior SOTA methods for

selective classification do not meaningfully improve on naïve methods. To alleviate

concerns about implementation, we emphasise that we performed a comprehensive

hyperparameter search for both SN and DG, and the only change is to use RESNETs

instead of VGG.

4.4.3.2 Structure of the Solutions

Overlap of OSP solutions is small. Table 4.4 shows the probability mass of the

ambiguous regions for our raw OSP solutions (i.e., the raw sets {x : fk > t} without

the max-assignment Sk = {x : fk > t} ∩ {x : k = argmax fk}) for the models of

Table 4.2. We find that this overlap is very small - much smaller than the 2ε bound

in Prop. 4.2.1. Empirically, these sets are essentially disjoint, and so the training

process is close to tight for the SC problem. We believe that this effect is mainly due

to the simple tuning enabled by the softmax normalisation of OSP problem outputs
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described in ğ4.3.

Consistency of rejection regions We say that a sequence of models trained at error

levels εi have consistent rejection regions if for every εi < εj , if Ri,Rj are the rejection

regions for models trained at these errors, then P(Ri ∩Rc
j) is very small. This means

that points that are rejected when designing at a higher error level continue to be

rejected for stricter error control. Such consistency may be useful for building cascades

of models, or for using the error level at which a point is rejected as a measure of

uncertainty.

We found that the models obtained by our procedure are remarkably consistent in

the high-accuracy regime. Concretely, for εi = (i/2)% for ∈ [1 : 5], for both CIFAR-10

and Cats & Dogs test sets, the models were entirely consistent, i.e. Rj ⊂ Ri for

j > i10, while for SVHN, the only violation was that |R2.5% ∩Rc
2%| = 2. Since the test

dataset for SVHN has size > 7000, this is a tiny empirical probability of inconsistency

of < 0.03%.

Dataset Target OSP-based SR SN DG
Error Cov. Error Cov. Error Cov. Error Cov. Error

CIFAR-10
2% 80.6 1.91 75.1 2.09 73.0 2.31 74.2 1.98
1% 74.0 1.02 67.2 1.09 64.5 1.02 66.4 1.01

0.5% 64.1 0.51 59.3 0.53 57.6 0.48 57.8 0.51

SVHN-10
2% 95.8 1.99 95.7 2.06 93.5 2.03 94.8 1.99
1% 90.1 1.03 88.4 0.99 86.5 1.04 89.5 1.01

0.5% 82.4 0.51 77.3 0.51 79.2 0.51 81.6 0.49

Cats & Dogs
2% 90.5 1.98 88.2 2.03 84.3 1.94 87.4 1.94
1% 85.4 0.98 80.2 0.97 78.0 0.98 81.7 0.98

0.5% 78.7 0.49 73.2 0.49 70.5 0.46 74.5 0.48

Table 4.2: Performance at Low Target Error. The OSP-based scheme
is our proposal. SR, SN, DG correspond to softmax-response, selective
net, deep gamblers. Errors are rounded to two decimals, and coverage
to one.

10Due to time constraints we only checked for higher values of i in the CIFAR-10 case, in which the
trend continued until i = 20, that is, until full coverage. A curious observation in this case was that
in all 20 models for the CIFAR-10 dataset, the same value of µ was best, and the models differed only
in the thresholds (this did not occur for SVHN and Cats v/s Dogs). While this obviously implies
consistency of the rejection regions, it is unexpected, and suggests that there may be room to improve
in our training methodology.
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Dataset Target OSP-based SR SN DG
Cov. Cov. Error Cov. Error Cov. Error Cov. Error

CIFAR-10
100% 100 9.74 99.99 9.58 100 11.07 100 10.81
95% 95.1 6.98 95.2 8.74 94.7 8.34 95.1 8.21
90% 90.0 4.67 90.5 6.52 89.6 6.45 90.1 6.14

SVHN-10
100% 100 4.27 99.97 3.86 100 4.27 100 4.03
95% 95.1 1.83 95.1 1.86 95.1 2.53 95.0 2.05
90% 90.1 1.01 90.0 1.04 90.1 1.31 90.0 1.06

Cats & Dogs
100% 100 5.93 100 5.72 100 7.36 100 6.16
95% 95.1 2.97 95.0 3.46 95.2 5.1 95.1 4.28
90% 90.0 1.74 90.0 2.28 90.2 3.3 90.0 2.50

Table 4.3: Performance at High Target Coverage. Same notation as
Table 4.2.

Dataset Target Error Overlap

CIFAR-10
2% 0.09%
1% 0.01%

0.5% 0.00%

SVHN-10
2% 0.05%
1% 0.01%

0.5% 0.00%

Cats & Dogs
2% 0.07%
1% 0.01%

0.5% 0.00%
Table 4.4: Size of overlap between OSP sets in Table 4.2

4.5 Discussion

We have proposed a new formulation for selective classification, which leads to a

novel one-sided prediction method. The formulation is naturally motivated, and is

equivalent to other formulations appearing in the literature. It is also amenable to

standard statistical analyses. The resulting method is ŕexible, efficiently trainable via

standard techniques, and further outperforms state of the art methods across target

error regimes. Further, it is the first method to non-trivially outperform naïve post-

hoc solutions, and thus, in our opinion, represents a significant step in the practical

approaches to selective classification.
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Chapter 5

Budget Learning - Selective Classification In

the Low Error Limit

5.1 Introduction

This chapter specialises the study of Chapter 4 to the concrete domain where the

task is to match the predictions of a given high complexity model that is available

as a black box, specifically in the very low error regime. Since the OSP relaxation

of 4 is tight when ε = 0, this allows us to study the selective classfication problem

in this limit exactly, and offers new characterisations of the problem by developing a

connective with brackets, a popular tool in empirical process theory.

In the following, we will explicitly adopt the edge-cloud metaphor discussed

in Chapter 1. Rather than expressing the SC problem as learning sets, we will

describe it in terms of learning functions (although this is entirely equivalent), and

work in the regime of directly approximating the cloud model, which implicitly

gives us a noiseless, but complex, feedback, much as the setting of the right half of

Figure 1·2, reproduced below. To keep the chapter self-contained, both introductory

exposition and basic learnability results are given, although these are essentially a

repetition of the discussion of the previous chapter. The main extensions beyond it

This chapter is an edited version of the paper [AGS20], that was written with Alp Acar and
Venkatesh Saligrama. Thanks are also due to Pengkai Zhu for discussion regarding the implementation
of the empirical experiments.
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Figure 5·1: The setting of Budget Learning - data labelled by a
complex classifier g is available to the learner. This data is ostensibly
separable, but only by a complex boundary, while the learner must
implement a sufficiently simple model, as encoded by a given hypothesis
class H.

are the approximation theoretic definitions of budget learnability and corresponding

investigation into budget learnability of simple classes of model. Another important

deviation is that rather than coverage, the exposition is in terms of usage, which is

simply one minus the coverage.

5.1.1 Context for Budget Learning

Edge devices in mobile and IoT applications are battery and processing power limited.

This imposes severe constraints on the methods implementable in such settings - for

instance, the typical CPU-based structure of such devices precludes the use of many

convolutional layers in vision tasks due to computational latency [ZWTD19], imposing

architectural constraints. In particular, modern high accuracy methods like deep

neural networks are seldom implementable in these settings. At the same time, edge

devices are required to give fast and accurate decisions. Enabling such mechanisms is

an important technical challenge.
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Typically, practitioners either learn weak models that can be implemented on

the edge (e.g. [Wu+19; KGV17; HVD15]), which suffer more errors, or they learn a

complex model, which is implemented in a cloud1. The latter solution is also not ideal

- cloud access must be purchased, the prediction pipeline suffers from communication

latency, and, since communication consumes the majority of the battery power of

such a device [Zhu+19], such solutions limit the device’s operational lifetime (see also

industry articles, e.g. [Nor19; Hol17]). A third option, largely unexplored in practice,

is a hybrid of these strategies - we may learn mechanisms to filter out ‘easy’ instances,

which may be classified at the edge, and send ‘difficult’ instances to the cloud. The

reduction in cloud usage provides direct benefits in, e.g., battery life, yet accuracy

may be retained. Similar concerns apply in many contexts, e.g. in medicine, security,

and web-search [Xu+14; NS17a].

The key challenge in these applications is to maintain a high accuracy while keeping

the usage of the complex classifier, i.e. the budget, low. To keep accuracy high, we

enforce that on the locally predicted instances, the prediction nearly always agrees

with the cloud. This is thus a problem of ‘bottom-up’ budget learning (BL).

The natural approach to BL is via the ‘gating formulation’: one learns a gating

function γ, and a local predictor π, such that if γ = 1 then π is queried, and otherwise

the cloud is queried. Unfortunately, this setup is computationally difficult, since the

overall classifier involves the product π ·γ, and optimising over the induced non-covexity

is hard. Previous efforts try to meet this head on, but either yield inefficient methods,

or require difficult to justify relaxations.

1or, more realistically, purchase access to a cloud-based model owned by a company that has
sufficient data and computational power (e.g. [ML 19; Cor19]).
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Our Contributions

Our main contribution is a novel formulation of the BL problem, via the notion

of brackets, that sidesteps this issue. For functions h− ≤ h+, the bracket [h−, h+]

:= {f : h− ≤ f ≤ h+}. Brackets provide accurate pointwise control on a binary

function - for f ∈ [h−, h+], if h+(x) = h−(x), then f(x) takes the same value. We

propose to learn a bracketing of the cloud, predicting locally when this condition

holds.

The key advantage of this method arises from the surprising property that we may

learn optimal brackets via two decoupled learning problems - separately approximating

the function from above and from below. These one-sided problems are tractable

under convex surrogates, with minimal statistical compromises. Further, this comes

at negligible loss of expressivity compared to gating - the existence of good gates and

predictors implies the existence of equally good brackets.

Since expressivity is retained, bracketings lead naturally to definitions of learnability

that are theoretically analysable. We define a PAC-style approach to one-sided

prediction, and provide a VC-theoretic characterisation of the same. We also identify

the key budget learning problem as an approximation theoretic question - which

complex classes have ‘good’ bracketings by simple classes? We characterise this for a

binary version of Hölder smooth classes, and also provide partial results for generic

classes with bounded VC dimension.

Finally, to validate the formulation, we implement the bracketing framework on a

binary versions of MNIST and CIFAR classification tasks. With a strong disparity in

the cloud and edge models (ğ5.5), we obtain usages of 20− 40% at accuracies higher

than 98% with respect to the cloud. Further, we outperform existing methods in usage

by factors of 1.2− 1.4 at these high accuracies.
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Related Work

A common approach is to simply learn local classifiers with no cloud usage. If the cloud

model is available, one can use methods such as distillation [HVD15], and in general

one can train classifiers in a resource aware way (e.g. [KGV17; Gup+17; Wu+19]).

The main limitation of this approach is that if the setting is complex enough for a

cloud to be needed, then in general such methods cannot attain a similar accuracy

level.

Top-Down and Sequential Approaches are based on successively learning classifiers

of increasing complexity, incorporating the previously learned classifiers (see [Xu+14;

TS13; WTS15; NWS16; BWDS17]). This approach suffers a combinatorial explosion in

the complexity of the learning problems. Recent efforts utilise reinforcement learning

methods to rectify this (e.g. [JPL19b; JPL19a; PTLC18]).

The BL problem is an instance of selective classification, with two specialasions

- we assume that a noiseless ground truth, i.e., the ‘cloud classifier’ exists, and the

class of locally implementable models is much weaker than the class known to contain

the cloud model, while the LwA literature is generally not concerned with ‘simple’

classifiers. We refer to the discussion of selective classification in the previous chapter

for greater context.

Plug-in methods utilise a pre-trained low complexity model, and learn a gate by

estimating its low-confidence regions. This includes the entropy-thresholding method

discussed in the previous chapter, that serves as a very strong baseline [GE17; GE19].

A number of methods aim at jointly learning gating and prediction functions. Some

of these belong to the SC literature - [GE19] proposes to ignore the non-convexity, and

use SGD to optimise a loss of the form µ̂(π ≠ g|γ = 1) subject to a budget constraint,

while [CDM16] instead proposes the relaxation πγ ≤ (π + γ)/2, and optimise this

upper bound via convex relaxations. In the BL literature, [NS17a; NS17b] propose
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to relax the problem by introducing an auxiliary variable to decouple π and γ, and

then perform alternating minimisation with a KL penalty between the gate and the

auxiliary. Note that while each of these papers further specifies algorithms to train

classifiers, their main conceptual contribution is the method they take to ameliorate

the essential non-convexity of the gating setup. In contrast, our new formulation

sidesteps this issue entirely.

Our approach to one-sided prediction is related to Neyman-Pearson classification

[CHHS02; SN05], with the difference that instead of studying the conditional risks, we

are concerned with restricting the total risk subject to one-sided constraints. This

leads to the generalisation errors of one-sided prediction scaling with the total sample

size, as opposed to the per-class sample sizes (see ğ5.3.1).

Bracketings are important in empirical process theory - for instance, ‘bracketable’

classes characterise the universal Glivenko-Cantelli property [vHan13]. While there

are generic estimates of the bracketing entropies of various function classes (e.g. Ch2

of [vdVW96]), these typically do not constrain for complexity of the resulting brackets,

and thus their application in our setting is limited. Instead, we explicitly aim to

bracket functions by simple function classes (see ğ5.4.2). We note, however, that our

results towards this are preliminary.

5.2 Definitions and Formulations

We will restrict discussion to binary functions on the domain X , which is assumed

to be compact2. H denotes the class of local classifiers, and G the class of cloud

classifiers. We use g ∈ G to denote the high-complexity ‘cloud’ classifier. The training

set is taken to be {(Xi, g(Xi)}, where the Xi are assumed to have been sampled

2Issues of measurability, and of existence of minimisers of optimisation problems posed as infima
are suppressed, as is common in learning theory.
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independently and identically from an unknown probability measure µ on X .3 For

feasibility of various programs (particularly Def. 2), we assume that {0, 1} ⊂ H, and

that h ∈ H ⇐⇒ 1− h ∈ H.
The main problem is to learn approximations to g in H, with the option to ‘fall

back’ to g. We aim at retaining high accuracy w.r.t. g while minimising usage of g

itself.

5.2.1 Bracketing for Budget Learning

Definition Given a measure µ and functions, h1 ≤ h2, the bracket [h1, h2] is the set

of all {0, 1}-valued functions f such that h1 ≤ f ≤ h2 µ-a.s. The µ-size of such a

bracket is |[h1, h2]|µ := µ(h1 ̸= h2).

As an example, on [0, 1], the functions 0(x) and 1x > 1/2 induce the bracket

containing all functions that are 0 on [0, 1/2]. This bracket has size µ(X > 1/2).

Notice that if h1 ̸= h2 in the above, it is forced that h1 = 0, h2 = 1. We will be

concerned with the brackets that can be built using hs from the local class H.

Definition The set of brackets generated by a class H is {[h1, h2] : h1 ≤ h2, h1, h2 ∈
H}. We also say that these are H-brackets.

Suppose we can find a bracket [h−, h+] in H that contains g. Since h− = h+ forces

g to take the same value, we offer the classifier

c[h−,h+](x) =





h+(x) if h+(x) = h−(x)

g(x) if h+(x) ̸= h−(x)

.

The above has the usage |[h−, h+]|µ. The budget needed by a class H to bracket (g, µ)

is the smallest such usage,

B(g, µ,H) := inf
H−brackets

{|[h−, h+]|µ : g ∈ [h−, h+]}.

3If instead we have a raw dataset and no g, we assume that g is obtained by training a function
in G over this set.
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This extends naturally to bracketing of sets.

Definition 1 A set of function-measure pairs S = {(gi, µi)} is bracket-approximable

by a class H if for every (g, µ), there exists a H-bracket containing g. The budget

required for bracket approximation of S by H is

B(S,H) := sup
(g,µ)∈S

B(g, µ,H).

This is a very weak notion of approximation - all it demands is that for every g,

we can find some H-bracket. Typical study of bracketings concentrates on real valued

functions, and studies how many brackets, or how large an H, we need to make the

loss B smaller than some given value. We defer such explorations to ğ5.3.2, where we

define a notion of budget learning.

For the following discussion, it is useful to define a relaxed version of brackets.

Definition Let α ∈ [0, 1], and h1, h2 be {0, 1}-valued functions such that µ(h1 ≤ h2) ≥
1− α/2. The α-approximate bracket [h1, h2] with respect to µ is the set of functions f

such that µ(h1 ≤ f ≤ h2) ≥ 1− α. We call 1− α the accuracy of the bracketing.

The above brackets are approximate in two ways: the order of h1 and h2 may be

reversed, and the functions in the [h1, h2] may leak out from within them.

5.2.2 One-sided Approximation and Decoupled Optimisation of Brackets

In order to discuss the decoupled optimisation of brackets, we introduce the notion of

one-sided approximation.

Definition 2 For a function-measure pair (g, µ), an approximation from below to g

in a class H is any minimiser of the following optimisation problem

L(g, µ,H) := inf{µ(h ̸= g) : h ∈ H, h ≤ g}.

We refer to L as the inefficiency of approximation from below of (g, µ) by H. We

analogously define approximation from above as 1− h, where h is an approximation

of 1− g from below.
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We use ‘one-sided approximation’ to refer to both approximation from above and

below.

If we let h− be an approximation of a function g from below, and h+ an approxi-

mation from above, then it follows that h− ≤ g ≤ h+. Thus, the bracket [h−, h+] is

well-defined. Further, for any bracket containing g,

µ(h+ ̸= h−) = µ(h+ ̸= h−, g = 1) + µ(h+ ̸= h−, g = 0)

= µ(h− = 0, g = 1) + µ(h+ = 1, g = 0)

= µ(h− ̸= g) + µ(h+ ̸= g).

Thus, if h+ and h− are respectively the minimisers of the right hand side, they must

also be minimisers of the left hand side. Immediately, we have

B(g, µ,H) = L(g, µ,H) + L(1− g, µ,H),

and the respective minimisers of the Ls form a µ-optimal H-bracketing of g!

This means that in order to bracket g optimally, it suffices to separately learn

approximations to g from above and below. This decouples the optimisation problems

inherent in learning these, and allows easy convex relaxations of both the above

problems.

Note that the reverse direction trivially holds - the optimal bracket containing g

provides two functions which upper and lower approximate g. These functions are

optimal for the respective OSP problems.

Comment The above one-sided prediction structure is of course, the same as that

of Chapter 4. In the same vein, the methodology described therein applies unchanged

to budget learning, and we will omit explicity description of the same.



106

5.3 Learnability

As mentioned in the previous paragraph, we define notions of one-sided and budget

learnability.

5.3.1 One-sided Learnability

The following parallels ğ4.2.4, and essentially presents the same results, adapted to

the functional presentation in this chapter.

With only finite data, it is impossible to certify that h ≤ f for most h, rendering

the one-sided constraint tricky. We take the PAC approach, and relax this condition

by introducing a ‘leakage parameter’ λ.

Definition 3 A class H is one-sided learnable if for all (ε, δ, λ) ∈ (0, 1)3, there exists

a m(ε, δ, λ,H) <∞, and a scheme A : (X ×{0, 1})m → H such that for any function-

measure pair (g, µ), given m samples of (Xi, g(Xi)), with Xi
i.i.d.∼ µ, A produces a

function h ∈ H such that with probability at least 1− δ:

µ(g(X) = 0, h(X) = 1) ≤ λ

µ(g(X) = 1, h(X) = 0) ≤ L(g,H, µ) + ε.

The above definition closely follows that of PAC learning in the agnostic setting,

with the deviations that leakage is explicitly controlled, and that the excess risk

control, ε, is on L, i.e. it is only with respect to entirely non-leaking functions. A key

shared feature is that one-sided learnability is a property only of the class H, and is

agnostic to (g, µ).

If the class H is learnable, then with m(ε, λ, δ,H) samples we may learn a approx-

imate bracketing of any g with usage at most B(g, µ,H) + 2(ε+ λ) and accuracy at

least 1− 2λ

Let us distinguish the above from the Neyman-Pearson classification setting of

[CHHS02; SN05]. The latter can be seen as learning from below, but with explicit
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control on the conditional probability µ(h = 1|g = 0).4 This is too strong for our needs

- we are only interested in emulating the behaviour of g with respect to µ, and so if

µ(g = 0) < λ, then it is fine for us to learn any h. This induces the difference that

the error rates in the cited papers decay with min(n0, n1), while our setting is simpler

and PAC guarantees follow the entire sample size. Nevertheless, our claims on the

sample complexity(ğ5.4.1) are derived similarly to the setting of ‘NP-ERM’ in these

papers, including a testing and an optimisation phase.

5.3.2 Budget Learnability

The bracket-approximation of Def. 1 suffers from two problems in the ML context.

Firstly, approximation by classes that are not one-sided learnable is irrelevant. Sec-

ondly, the definition does not control for effectiveness: a bracket-approximation with

B(S,H) = 1, is not useful - indeed, the trivial class H = {0(x), 1(x)} attains this for

every S. We propose the following to remedy these.

Definition 4 We say that a set of function-measure pairs S = {(g, µ), . . . } is budget-

learnable by a class H if H is one-sided learnable and B(S,H) < 1.

We also, say that H can budget learn S, adding “with budget B” if B(S,H) ≤ B.

Learning theoretic settings usually require measure independent guarantees, leading

to

Definition 5 A function class G on the measurable space (X ,F ) is said to be budget

learnable by a class H if the set S := G ×M is budget learnable by H, where M is

the set of all probability measures on (X ,F ).

Notice that strict inequality is required in Def. 4. This is the weakest notion that

is relevant in an ML context. Also note the trivial but useful regularity property that

if H is one-sided learnable, then B(H×M,H) = 0 - indeed, every h ∈ H is bracketed

by [h, h].

4In addition, the targeted control on this is some level α > 0, not 0, and a relaxation of the form
we use to α+ λ is also utilised. Further, the property of only comparing against the best classifier at
the target level of leakage (α in their case, 0 in ours) is also shared.
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5.4 Theoretical Properties

This section details some useful consequences of the above definitions, which serve to

highlight their utility.

5.4.1 One-sided learnability

Standard PAC-learning is intrinsically linked to the VC-dimension. The same holds

for one-sided learnability.

Theorem 5.4.1. If H has finite VC-dimension d, then it is one-sided learnable with

m(ε, λ, δ,H) = Õ

((
1

λ
+

1

ε2

)
(d+ log(1/δ))

)
.

Conversely, if H is one-sided learnable and has VC-dimension d > 1, then for δ <

1/100,

m(ε, λ, δ,H) > d− 1

32(λ+ ε)
.

Particularly, one-sided learnable classes must have finite VC-dimension.

The proof is left to ğD.1.1. The lower bound is proved via a reduction to realisable

PAC learning, while the upper bound’s proof is similar to that for agnostic PAC

learning, with the modification of adding a test that eliminates functions that leak

too much.

The point of the Theorem 5.4.1 is to illustrate that sample complexity analyses for

our formulation can be derived via standard approaches in learning theory. Alternate

analyses via, e.g., Rademacher complexty or covering numbers are also straightforward

(ğD.1.1.1).

5.4.2 Budget Learnability

The key question of budget learning is one of bias: what classes of functions can be

budget learned by low complexity classes? This section offers some partial results
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towards an answer.

Before we begin, the (big) question of how one measures complexity itself remains.

We take a simple approach - since one-sided learnability itself requires finite VC-

dimension, we call H low complexity if vc(H) is small. Certainly VC dimension is a

crude notion of complexity. Nevertheless this study leads to interesting bounds, and

outlines how one may give theoretical analyses for more realistic settings that may be

pursued in further work.

Importantly, we do not expect any one class to be able to meaningfully budget

learn all classes of a given complexity. This follows since the definition of budget

learnability implies that if sets S1,S2 of function-measure pairs are budget learnable,

then so is S1 ∪ S2. Such unions can lead to arbitrary increase in complexity, which

must weaken the budget attained.5 Thus, at the very least, the classes H must depend

on G, although we would like them to not depend on the measure.

5.4.2.1 Budget Learnability of Regular Classes

The class of Hölder smooth functions is a classical regularity assumption in non-

parametric statistics. In this section, we define a natural analogue for {0, 1}-valued

functions, and discuss its budget learnability by low VC dimension classes. For

simplicity, we restrict the input domain to the compact set X = [0, 1]p. We use Vol to

denote the Lebesgue measure on X .

Definition Let g be a {0, 1}-valued function. A partition P of X is said to be aligned

with g if each set Π ∈P has connected interior, and if g is a constant on each such

set.

We define a notion of regularity for partitions below. Recall that a p-dimensional

rectangle is a p-fold product of 1-D intervals.

5Formally, this finite union property and the lower bound Thm. 5.4.3 part (i) indicate that if H
can budget learn all classes of VC dimension D on all measures with budget 1− c for any c > 0 that
depends only on D or X , but not on H, then ∀k ∈ N,vc (H) ≥ CkD for a constant C.



110

Definition A partition P is said to be V -regular if every part Π ∈ P contains a

rectangle RΠ such that Vol(RΠ) ≥ V and Vol(Π \RΠ) < V .

The above partitions are well aligned with rectangles in the ambient space. The

notion of regularity for function classes we choose to study demands that each function

in the class has an associated ‘nice’ partition.

Definition 6 We say that a class of functions G = {g : [0, 1]p → {0, 1}} is V -regular

if for each g ∈ G, there exists a V -regular partition aligned with g.

Essentially the above demands that the local structure induced by any g can be

neatly expressed. This condition is satisfied by many natural function classes on the

bulk of their support - An important example is the class of g of the form 1{G(x) > 0}
for some Hölder smooth G that admit a margin condition with respect to the Lebesgue

measure (see, e.g. [MT99; Tsy04]). Indeed, if {G} satisfies the margin condition

Vol(|G| < t) ≤ η, and is L-Lipschitz, then {1G > 0} is V -regular on a region of mass

≥ 1− η with V ≥ (2t/L)p.

We offer the obvious class that can budget learn V -regular functions over sufficiently

nice measures - rectangles. For κ ∈ N, we define the class R0,1
κ to consist of functions

h that may be parametrised by k rectangles {Ri} and a label s ∈ {0, 1}, and take the

form

h(x; {Ri}, s) = s1x ∈ ∪Ri + (1− s)1x ̸∈ ∪Ri.

The class R0,1
κ above has VC dimension at most 2p(κ+ 1). The theorem below offers

bounds on the budgets required to learn V -regular classes in p dimensions:

Theorem 5.4.2. Let κ := ⌊d/2p− 1⌋ ≤ 1/V . Suppose µ≪ Vol, and dµ
dVol
≥ ρ, and G

is V -regular. Then vc(R0,1
κ ) = d, and it can budget learn G × {µ} with

B
(
G × {µ},R0,1

κ

)
≤ 1− ρ

⌊
d

2p
− 1

⌋
V/3.

Conversely, for V ≤ 1/2, there exists a V -regular class G ′ such that if vc (H) ≤ d,
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then

B(G ′ × {Vol},H) ≥ 1−
√

3V d log(2e/V ).

For the Lipschitz functions with margin discussed above, V scales as Θ̃((C/L)−p),

where L is the bound on the gradient, and C is some constant. The above shows that

all such classes are learnable with budget 1− Ω(1) and VC-dim. d iff d ≳ L−p+O(log p)

5.4.2.2 Budget Learnability of bounded VC classes

Typically the function classes G that a cloud can implement are not nearly as rich

as the set of all V -regular functions. This merits the investigation of classes with

bounded (but large) complexity. Following the lines of study above, we investigate

the budget learnability of finite VC classes, assuming vc (G) = D for large D.

Unlike covering numbers, bracketing numbers do not, in general, admit control

for VC classes (e.g. constructions of [vHan13] and [Mal12]). This renders the budget

learnability problem for bounded VC classes difficult. This is further complicated by

the fact that we are interested in whether such classes can be meaningfully bracketed

by low-complexity classes. Such questions are non-trivial to answer, and, frankly

speaking, we do not solve the same. However, we offer two lower bounds, illustrating

that if one wishes to non-trivially budget learn such classes with budget 1−Ω(1), and

with VC dim. d, then d must grow as Ω(D). Further, we a present a few simple, natural

cases where one can budget learn, irrespective of measure, with budget ≈ 1− d/D.
We brieŕy discuss an open question that these classes stimulate.

5.4.3 Lower Bounds

For simplicity, we assume that X = [1 : N ] for some N ≫ 1, and that F = 2X . The

classes G,H can then be identified as members of 2F . Our lower bounds are captured

by the following statements

Theorem 5.4.3.
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(i) (Varying measure) Let G be any class with vc(G) = D, and H with vc(H) = d.

Then there exists a measure µ such that

B(G × {µ},H) ≥ 1−
√
3
d

D
log

eD

d
.

(ii) (Uniform measure) Let N ∈ N, be a multiple of D such that D ≤ N/8e. There

exists a class G of VC-dimension D on [1 : N ]such that for any class H, if

B (G × {Unif([1 : N ])},H) ≤ B ∈ (D/N, 1/4e), then

vc (H) ≥ D
log(1/4eB)

log(eN)
.

The above bounds, while not very effective, indicate that to get small budget it is

necessary that d grows linearly with D.

5.4.4 Some natural budget learnable classes

We present three simple examples:

• Sparse VC class: on the space X = [1 : N ], let G =
( X
≤D

)
. Then this G can be

budget learned by the class
( X
≤d

)
of VC dimension d with budget 1− d/D.

• Convex Polygons in the plane: Let X = R
2, and PD be the set of concepts defined

by marking the convex hull of any D points as b ∈ {0, 1}, and its exterior by 1−b.
[Tak07] shows that PD has VC dimension 2D + 2. For d ≥ 4, the class Pd (of

VC dimension 2d+2) can budget learn PD with budget 1−⌈ D
d−2
⌉−1 ≈ 1− (d/D)

for D ≫ d.

• Tensorisation of thresholds: Let X = [1 : N ], and let G be defined as the

following class: Let G0 be the class on [1 : N/D] of the form 1x ≥ k for some

k. We let G =
∑D

i=1 gi where gi : [1 + iN/D, (i + 1)N/D] → {0, 1} are of the

form gi(x) = g′i(x− iN/D) for some g′i ∈ G0. Again, there exists a H ⊂ G of VC

dimension d that can budget learn G with budget 1− d/D.
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Proofs for the above claims are left to Appendix D.1.4. There are two important

features of the above classes, and their budget approximation

1. For each of the classes, there is a subset of these classes that has small VC

dimension and can budget learn at (roughly) the budget 1− d/D. This subclass

can be chosen irrespective of measure.

2. These classes are all extremal in the sense of satisfying the sandwich lemma

with equality. In the first two cases they are maximal, while the third class is

ample (see, e.g. [CCMW18]).

Maximal classes are known to admit unlabelled compression schemes of size equal to

their VC dimension, and have many regularity properties - for instance, subclasses

formed by restricting the class to some subset of the input are also maximal (see

[CCMW18] and references within). It is an interesting open question whether maximal

classes of VC dimension D can be budget learned by subclasses of VC dimension d

with usage 1− cd/D for some constant c.

5.5 Experiments

This section presents empirical work implmenting the BL via bracketing schema on

standard machine learning data. We explore three binary classification tasks

1. A simple synthetic task in R
2 that allows easy visualisation of the models found

by the various strategies, as described in Figure 5·2.

2. The MNIST odd/even task, which requires discrimination between odd and even

MNIST digits.

3. The CIFAR random pair task, which requires discrimination between a pair of
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randomly chosen CIFAR-10 classes.6

The models considered are presented in Table 5.1. Each of the local classes chosen

are far sparser than the corresponding cloud classes, which are taken to be the state

of the art models for these tasks.

Task Cloud
Classifier

Cloud
Accuracy

Local
Classifier

Local
Accuracy

Synthetic 4th order curve 1.00 Axis-aligned Conic Sections
(2nd order curves)

0.840

MNIST
Odd/Even

LeNet
2conv + maxpool layers

43.7K params
0.995 Linear

1.57K params 0.898

CIFAR
Random Pair

RESNET-32
0.46M params 0.984

Narrow LeNet
2conv + maxpool layers

1.63K params
0.909

Table 5.1: Classification tasks studied, and the corresponding cloud and
local classifier classes selected. Cloud accuracy is reported with respect to
true labels, but local accuracy is with respect to cloud labels.

Bracketing is implemented essentially using the method of Chapter 4. See ğD.2 for

detailed descriptions. We compare the bracketing method to four existing approaches.

1. Sum relaxation (Sum Relax.) [CDM16], which relaxes the gating formulation to

a sum as πγ ≤ (π + γ)/2, and then further relaxes this to real valued outputs

and convex surrogate losses.

2. Alternating Minimiation (Alt. Min.) [NS17a], which introduces an auxiliary

function u to serve as proxy for γ during training, replacing γπ by uπ. The

algorithm then optimises a loss over (γ, π, u) via alternating minimisation over

(γ, π) and then u, using a KL penalty D(u∥γ) to promote u ≈ γ.

3. Selective Net (Sel. Net.) [GE19], which is an architectural modification for deep

networks that essentially optimises the raw gating setup without any relaxation

via SGD.
6Note: supervision is provided after this choice. That is, if class a and b are chosen, then the

algorithms are provided the class a and class b data.
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Task Target
Acc.

Bracketing Local Thr. Alt. Min. Sum relax. Sel. Net. GainUsg. ROL Usg. ROL Usg. ROL Usg. ROL Usg. ROL

MNIST
Odd/Even

0.995 0.457 2.19 0.653 1.53 0.830 1.20 0.785 1.27 0.658 1.52 1.431×
0.990 0.387 2.58 0.515 1.94 0.740 1.35 0.651 1.54 0.544 1.84 1.332×
0.980 0.299 3.35 0.358 2.79 0.604 1.66 0.651 1.54 0.423 2.37 1.199×

CIFAR
Random Pair

0.995 0.363 4.01 0.510 2.25 0.854 1.19 0.620 2.07 0.436 3.04 1.280×
0.990 0.294 5.66 0.399 3.41 0.754 1.40 0.488 3.31 0.347 4.30 1.265×
0.980 0.214 9.97 0.276 6.38 0.611 1.87 0.345 5.81 0.257 11.67 1.195×

Table 5.2: Performances on BL tasks studied. Usage (usg.) and relative

operational lifetimes (ROL), a common metric in BL which is the inverse of
usage, are reported. In each case, the models attain the target accuracy (with
respect to cloud) to less than 0.5% error - see Table D.2 in §D.2.6. Gain is the
factor by which the bracketing usages are smaller than the best competitor.
The CIFAR entries are averaged over 10 runs of the random choices. The
results for all runs for the best two methods for are reported in Table D.1
in §D.2.6. Note that these are averages of each entry for each run and so
average ROL is not the same as the inverse of the average usage.

4. Local Thresholding (Local Thresh.). This is a naïve baseline - one learns a local

classifier, and then rejects points if the entropy of its (soft) output at the point

is too high.

It is important to contextualise these usage numbers. In our choice of cloud

and edge models, we are demanding that the edge models punch far above their

weight when we try to budget learn the stated cloud classifiers - indeed, the edge

models do not come even close to the clouds in standard accuracy. However, in Table

5.2, we see usages of 20-40% at high accuracies, and relative operational lifetimes

(inverse of usage, see, e.g. [Zhu+19]) of 2.5-5. For settings like IoT devices, where

communication dominates energy costs, this is a significant gain in operational lifetimes

of the prediction pipeline at near SOTA accuracy.

These results demonstrate that the bracketing methodology is practically im-

plementable and effective, with the resulting budget learners clearly outperforming

existing methods on the studied tasks.
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(a) Cloud boundary, and the
training set.

(b) Bracketing
Acc:0.997
Usg:0.295

(c) Local thresholding
Acc:0.997;
Usg:0.537

(d) Alt. Min.
Acc:0.996;
Usg:0.563

(e) Sum Relax.
Acc:0.948;
Usg:0.819

Figure 5·2: Visualisation of classifiers resulting from the various approaches
on a synthetic dataset. The red curve indicates the decision boundary of the
cloud classifier, and figure (a) indicates this, and also shows the training set
used as coloured dots. Figures (b)-(e) depict the budget learners learnt by
various approaches. In these, the white region is the set of inputs on which
the cloud is queried, while the orange and blue regions describe the decisions
of the local predictor when it is queried. The black lines indicate decision
boundaries of the various classifiers, and in figures (c)-(e), the magenta line
indicates the boundary of the gate. Minimum usage solutions with accuracy
at least 99.5% (when found) are presented.
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5.6 Directions for Future Work

We think that the bracketing formulation of BL described above is rather nice. It

shows practical promise, and gives a clean framework in which to theoretically study

BL. Perhaps the biggest open direction in this vein is to study practically relevant

classes, and explicitly model of the constraints at the edge and the power of the cloud

to determine practical settings of H,G, and then, with these in hand, develop bracket

approximability results that are practically relevant, and, hopefully, more optimistic

even in the worst case than the above.

Another important direction is to break the black-box access to the cloud as-

sumption made in the above study. Practically speaking, the cloud model is likely

available to the learner during training time, and so it’s output can be exploited

in a fine grained way to guide the training, and potentially improve the resulting

budgeted classifiers. Perhaps more prosaically this question can be posed as how

the techniques of distillation and budget learning can be fused. Even beyond this,

in practical situations where neither the cloud nor the edge models are perfect, one

may synthetically generate even greater accuracy than that of a good cloud model

by encouraging the local models to not abstain in regions where the cloud model is

also wrong (even if this incurs a mistake), which again retains accuracy but further

reduces the cloud usage.

Finally, let us mention a couple of technical problems that are insufficiently dealt

with in the above. First, we remind the reader about the intriguing question about

budget learnability of maximal VC classes by their subclasses. Second, our lower

bounds are loose - there’s a square root in them that we don’t think belongs. They

are also not very effective. The square-root comes from the fact that our analysis for

these proceeds via covering numbers. Can bounds on bracketing numbers be given

more directly, at least in simple cases? Can one remove the dependence on N?
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Chapter 6

Online Selective Classification with Limited

Feedback

6.1 Introduction

Consider a low-power or battery-limited edge device, such as a sensor or a smart-

speaker that receives a stream of classification requests. Due to the resource limitations,

such a device cannot implement modern models that are needed for accurate decisions.

Instead the device has access (e.g. via an internet connection) to an accurate but

resource-intensive model implemented on a cloud server, and may send queries to

the cloud server in order to retain accuracy. Of course, this incurs costs such as

latency and battery drain due to communication. The ideal operation of such a device

should thus be to learn a rule that classifies ‘easy’ instances locally, while sending

harder ones to the cloud, thus maintaining accuracy whilst minimising the net resource

consumption [Xu+14; NS17a].

Selective classification [Cho57; Cho70] is a classical paradigm of relevance to such

settings. The setup allows a predictor to abstain from classifying some instances (with-

out incurring a mistake). This abstention models adaptive decisions to invoke more

resource-intensive methods on subtle cases, like in the above example. The solution

This chapter is a reproduction of the paper [GKCS21], written with Anil Kag, Ashok Cutkosky,
and Venkatesh Saligrama. Thanks are due to Tianrui Chen for helpful discussions.
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concept is relevant widely - for instance, it is relevant to adaptively recommending

further (and costly) tests rather than offering a diagnosis in a medical scenario, or

to recommending a human review instead of an alarm-or-not decision in security

contexts. Two aspects of such settings are of particular interest to us. Firstly, the

cheaper methods are typically not sufficient to realise the true labels, due to which

abstention may be a long-term necessity. Secondly, a-priori reliable labels can only be

obtained by invoking the resource intensive option, and thus feedback on whether a

non-abstaining decision was correct is unavailable.

We propose online selective classification, with an emphasis on ensuring very few

mistakes, to account for the need for very accurate decisions. Concretely, an adversary

sequentially produces contexts and labels (Xt, Yt), and the learner uses the Xts to

produce a decision Ŷt that may either be one of K classes, or an abstention, which we

represent as ⊥. Feedback in the form of Yt is provided if and only if Ŷt = ⊥, and the

learner incurs a mistake if Ŷt was non-abstaining and did not equal Yt.

With the emphasis on controlling the total number of mistakes, we study regrets

achievable when compared to the behaviour of the best-in-hindsight error-free selective

classifier from a given class - that is, one that makes no mistakes, while abstaining

the fewest number of times. Notice that our situation is non-realisable, and therefore

this competitor may abstain in the long-run. The two metrics of importance here

are the number of mistakes the learner makes, and its excess abstention over this

competitor. An effective learner must control both abstention and mistakes, and it is

not enough to make one small, e.g. a learner that makes a lot of mistakes but incurs a

very negative excess abstention is no good. This simultaneous control of two regrets

raises particular challenges.

We construct a simple scheme that, when competing against finite classes, simulta-

neously guarantees O(T µ) mistakes and O(T 1−µ) excess abstentions against adaptive
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adversaries (for any µ ∈ [0, 1]), and show that these rates are Pareto-tight [OR94]. We

further show that against stochastic adversaries, the same rates can be attained with

improved dependence of the regret bounds on the size of the class, and we also describe

schemes that enjoy similar improvements against adaptive adversaries, but at the cost

of the T -dependence of the regret bounds. The main schemes randomly abstain at

a given rate in order to gain information, and otherwise play Ŷt consistent with the

‘version space’ of classifiers that have not been observed to make mistakes. For the

adversarial case, the analysis of the scheme relies on a new ‘adversarial uniform law of

large numbers’(ALLN) to argue that such methods cannot incur too many mistakes.

This ALLN uses a self-normalised martingale concentration bound, and further yields

an adaptive continuous approximation guarantee for the Bernoulli-sampling sketch in

the sense of Ben-Eliezer & Yogev [BY20; Alo+21]. The theoretical exploration is com-

plemented by illustrative experiments that implement our scheme on two benchmark

datasets.

6.1.1 Related Work

Selective classification has been well studied in the batch setting, and many theoretical

and methodological results have appeared [e.g. HW06; BW08; EW10; WE11; KKM12;

CDM16; Lei14; GE19; GKS21]. These batch results do not have strong implications

for the online setting.

Cortes et al. have studied selective classification in the online setting [Cor+18],

but with two differences from our setting. Firstly, rather than individually controlling

mistakes and abstentions, the regret is defined according to the Chow loss, which

adds up the number of mistakes and c times the number of abstentions, where c is a

fixed cost parameter. Secondly (and more importantly) it is assumed that feedback is

provided only when the learner does not abstain, rather than only when it does. This

difference arises from the underlying situations being modelled - Cortes et al. view
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the abstention as a decision given to a user in which case no feedback is forthcoming,

while we view it as a decision to invoke further processing. Both of the scenarios are

reasonable, and so both of these explorations are valid, however it is unclear what

implications one set of results have for the other.

A similar decision and feedback model as ours was proposed by Li et al. in the

‘knows what it knows’ (KWIK) framework [LLWS11]. The KWIK model, however,

fundamentally views abstentions as a short term action, typically arguing that only a

finite number of these are made. This is viable since Li et al. study this model in an

essentially realisable setting, wherein the optimal labels are known to be essentially

realised by a given class - notice that in such a case, a single abstention at an instance

x determines what value should be played there in the long run. Our interest however

lies in the situation where this data cannot be represented in such a way, and such

strategies are not viable since the labels may be noisy. Our work thus generalises the

KWIK setting to non-realisable data, and to situations wherein abstention is a valid

long-term action, as motivated in the introduction, by studying behaviour against

competitors that may abstain.1

While Szita and Szepesvári have extended the KWIK formulation to the agnostic

case in a regression setting [SS11], this work also focuses of limiting the number of

abstentions to be finite rather than long-run abstentions. Concretely it is assumed

that Yt = g(Xt) + noise, for some function g, and the learner knows a class H, and

a bound ∆ such some h ∈ H is ∆-close to g (in an appropriate norm). Using the

knowledge of ∆, they describe schemes that have limited abstention, but at the cost

of mistakes, by producing responses Ŷt that are up to (2 + o(1))∆ separated from

Yt. In contrast, in our formulation, contexts Xt for which no function in H can

1The KWIK model also bears other significant differences. It posits an input parameter ε, and
requires that the learner either abstains, or produces an ε-accurate response. A notion of competitor
is not invoked, and rather than studying regret, the number of abstentions needed to achieve this
ε-accuracy is studied.
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represent the ground truth g well would always be abstained upon. In addition to this

work, trade-offs between mistakes and abstentions in a relaxed version of the KWIK

framework have been considered [ZC16; SZB10; DZ13], and in particular the agnostic

case has been explored by Zhang and Chaudhuri [ZC16], but unlike our situation this

relaxed KWIK model requires full-feedback to be available whether or not the learner

abstains. Neu and Zhivotovskiy [NZ20] also work in this relaxed model, and show

that when comparing the standard loss of a non-abstaining classifier against the Chow

loss of an abstaining learner, regrets independent of time can be obtained.

Due to the limited feedback, our setting is related to partial-monitoring [LS20,

Ch. 37]. Viewing actions as choices over functions, our setting has feedback graphs

[MS11] that connect abstaining actions to every other action and themselves. The

novelty with respect to partial-monitoring arises from the fact that we individually

control two notions of losses, rather than a single one. It’s unclear how to apply the

generic partial-monitoring setup to this situation - indeed, naïvely, our game is only

weakly observable in the sense of Alon et al.[ACDK15], and one would expect Ω(T 2/3)

regrets, while we can control both mistakes and excess abstention to Õ(
√
T ). A

limited feedback setting where two ‘losses’ are individually controlled is label-efficient

prediction [CLS05], where a learner must query in order to get feedback. However,

in our setting, abstentions are both a way to gather feedback, and also necessary

to prevent mistakes. That is, our competitor may abstain regularly, but makes few

mistakes, while in this prior work the competitor does not abstain, but may make

many mistakes. The resulting scenario is both qualitatively and quantitatively distinct,

e.g. in label-efficient prediction, the smallest symmetric rate of number of queries and

excess mistakes is again Θ(T 2/3).
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6.2 Setting, and Problem Formulation

Setup Let X be a feature space, Y a finite set of labels, and F a finite class of

selective classifiers, which are Y ∪ {⊥} valued. For simplicity, we assume that F
contains the all abstaining classifier (i.e. the function f⊥ such that ∀x, f⊥(x) = ⊥).

We will denote |F| = N . The setting may be described as a game between a

learner and an adversary (or more prosaically, a data generating mechanism) pro-

ceeding in T rounds. Also for simplicity, we will assume that T is known to both

the learner and the adversary in advance. The objects in this game are the con-

text process, Xt ∈ X , the label process Yt ∈ Y, the action process Ŷt ∈ Y ∪ {⊥}
and the feedback process Zt ∈ Y ∪ {∗}, where ∗ ̸∈ Y is a trivial symbol. The

information sets of the adversary and learner up to the tth round are respectively

H A
t−1 := {(Xs, Ys, Ŷs) : s < t}, and H L

t−1 := {(Xs, Ŷs, Zs) : s < t}.

The Game For each round t ∈ [1 : T ], the adversary produces a context and a label

(Xt, Yt) on the basis its history H A
t−1. The learner observes only the context, Xt, and

on the basis of this and its history H L
t−1, produces an action Ŷt. We will say that this

action is an abstention if Ŷt = ⊥, and that it is a prediction otherwise. If the action

was an abstention, set Zt = Yt, and otherwise to ∗. The learner then observes Zt, and

the round concludes. Notice that since Zt is a deterministic function of Yt and Ŷt, and

since the adversary observes both, H L
t−1 can be determinstically generated from H A

t−1.

Due to the same reason, Ŷt and Yt are conditionally independent given (Xt,H
A
t−1).

Adversaries are characterised by a sequence of conditional laws on (Xt, Yt) given

H A
t−1 (and T,F). In the following we will explicitly consider two classes of such laws:

• Stochastic Adversary: (Xt, Yt) are drawn according to a fixed law, P, unknown

to the learner, independently of H A
t−1.
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• Adaptive Adversary: (Xt, Yt) are arbitrary random variables with a σ(H A
t−1)

measurable joint law.

We will denote a generic class of adversaries as C .

Performance Metrics The two principal quantities of interest are the number of

mistakes made by the learner, and the number of times it has abstained. We will

denote these as

MT :=
∑

t≤T

1{Ŷt ̸∈ {⊥, Yt}}, and AT :=
∑

t≤T

1{Ŷt = ⊥}.

As previously discussed, the performance of a learner is measured in terms of regret

with respect to the best-in-hindsight abstaining classifier from F that makes no

mistakes, that is

f ∗ ∈ argmin
f∈F

∑

t≤T

1{f(Xt) = ⊥} s.t.
∑

t≤T

1{f(Xt) ̸∈ {⊥, Yt}} = 0.

Note that such an f ∗ is always realised, since the class is finite, and since it contains

the all abstaining classifier. Let A∗
T :=

∑
t≤T 1{f ∗(Xt) = ⊥} denote the value of

the minimum above. The principal metrics of interest to us are the abstention regret

AT − A∗
T , and the total mistakes MT .

Solution Concept The two performance metrics naturally involve a tradeoff - for

instance, making some mistakes may allow a learner to drastically reduce its abstention

regret to the point that it is negative. We pursue the trade-off between the worst

possible behaviour of either regret.

Definition (Regret Achievability) For functions φ, ψ : N2 → R, we say that expected

regret bounds of (φ, ψ) are achievable against a class of adversaries C if there exists
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a learner such that for every adversary in C , E[AT − A∗
T ] ≤ φ(T,N) and E[MT ] ≤

ψ(T,N).

As is common, we are interested in the growth rates of achievable bounds with T .

We thus define

Definition (Achievable rates) we say that asymptotic expected-regret rates of (α, µ) ∈
[0, 1]2 are achievable against a class of adversaries C if an expected regret bound of

(φ, ψ) can be achieved against it for functions φ, ψ, said to be witnesses for the rate,

such that

lim sup
T→∞

logφ(T,N)

log T
≤ α and lim sup

T→∞

logψ(T,N)

log T
≤ µ.

Notice that if (α, µ) is an achievable rate, so is (α′, µ′) for α′ ≥ α, µ′ ≥ µ. As a

result, the lower boundary of the set of achievable rates is well defined, and we will refer

to this as the Pareto frontier of achievable rates. This is equivalently characterised by

the function α(µ) := inf{α : (α, µ) is an achievable rate}. This is well defined since

∀µ, (1, µ) is achievable by always abstaining.

6.3 The Adversarial Case

We begin with the adversarial case. The scheme, called the ‘versioned uniform explorer’

(vue) is described below, and we discuss both the motivation of the scheme, and its

analysis.

The main idea underlying vue is that any function f that is observed to make

a mistake on an instance Xt (due to the learner abstaining on this instance) can be

removed from future consideration, since we are only trying to match the behaviour

of the competitor f ∗, and clearly f ̸= f ∗ as it has made a mistake. This motivates

setting up a ‘version space,’

Vt :=
{
f :
∑

s<t

1{Zs ̸= ∗, f(Xs) ̸∈ {⊥, Ys}} = 0

}
,
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the set of functions that are consistent with the observations made up to time t.

Notice that f ∗ ∈ Vt for all t. Given Vt, we can restrict to playing an action in the set

Ŷt := {f(Xt) : f ∈ Vt} - f ∗(Xt) lies in this set, and thus any action outside of it can

be eliminated. Of course, if Ŷt is a singleton, then it contains f ∗(Xt), and we can just

play it.

Algorithm 2 vue

1: Inputs: F , Exploration rate p.
2: Initialise: V1 ← F .
3: for t ∈ [1 : T ] do

4: Ŷt ← {f(Xt) : f ∈ Vt} .
5: if |Ŷt| = 1 then

6: Ŷt ← f(Xt) for any f ∈ Vt.
7: Vt+1 ← Vt.
8: else
9: Sample Ct ∼ Bern(p).

10: if Ct = 1 then
11: Set Ŷt = ⊥, observe Yt.
12: Ut ← {f : f(Xt) ∈ {⊥, Yt}}
13: Vt+1 = Vt ∩ Ut.
14: else
15: Pick Ŷt ∈ Ŷt \ {⊥}.
16: Vt+1 ← Vt.

Next, since we are incentivised to minimise the total number of abstentions, it

behooves us to play non-abstaining actions whenever possible. However, this puts us

in a bind, since feedback is produced only when we play an abstaining action. Taking

inspiration from [CLS05], we abstain at a rate p by tossing a biased ‘exploratory coin’,

Ct, abstaining when Ct = 1, and otherwise playing any non-abstaining action in Ŷt.

Clearly, such a strategy can incur at most pT excess abstention regret in expectation.

Mistakes made by this strategy are controlled via the following ‘adversarial law of

large numbers’ (ALLN).

Lemma 6.3.1. Let {Ft}∞t=1 be any filtration, and {Ut}∞t=1, {Bt}∞t=1 be {Ft}-adapted
binary processes, such that Bt ∼ Bern(p), p < 1/2 is jointly independent of Ft−1, Ut
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for each t. Let Wt =
∑

s≤t Us, and W̃t =
∑

s≤t UsBs. For any δ ∈ (0, 1/√e),

P

(
∃t : W̃t ≤ 1,Wt >

8 log(1/δ)

p

)
≤ δ.

The above is argued in ğE.1 using a self-normalised martingale tail inequality

[HRMS20]. We note that this self-normalisation is critical, and without this techniques

such as Freedman’s inequality yield an extraneous
√
T factor in the bounds that is

untenable for our purposes. The same argument, along with the shaping technique

of Howard et al. [HRMS18] yields a Bernstein-type law of iterated logarithms that

controls |Wt − W̃t/p| at a level Õ(1/p+
√
Wt/p log log t), which should be useful more

broadly. This full version (presented in ğE.1) further shows that the ‘Bernoulli-sampler’

[BY20; Alo+21] offers a continuous approximation in the sense of Ben-Eliezer & Yogev

[BY20], but with the error for sets of low incidence ŕattened as expected due to

Bernstein’s inequality.

For our purposes, the point of Lemma 6.3.1 is to allow us to argue that no matter

what the adversary does, if we uniformly abstain at a rate p, then we will ‘catch’ any

mistake-prone function before it makes O(1/p) mistakes. Exploiting a union bound,

this in turn means that with high probability, any such function will fall out of the

version space Vt before it has incurred much more than logN/p mistakes. Since the

label produced by Algorithm 2 must equal f(Xt) for some f in the version space, we

can infer that the number of mistakes the learner makes is at most the number of

times any function in the version space is wrong. Using the Lemma yields a bound

of Õ(1/p) on the number of mistakes that any functions in the version space can

have ever made, and since there are only N possible functions, in total the number of

mistakes the learner can make is bounded as Õ(N/p). More formally, the argument,

presented in ğE.2, argues this for a single function f ∈ F by instantiating the lemma

with Ft = σ(Ft = σ(H A
t ), Bt = Ct, and U f

t := 1{f(Xt) ̸∈ {⊥, Yt}}. The resulting
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W̃ f
t is the number of mistakes f is observed to have made, and f ∈ Vt if and only

if W̃ f
t = 02. Along with a use of Bernstein’s inequality to control AT this yields the

result below.

Theorem 6.3.2. Algorithm 2 instantiated with p < 1/2, and run against an adaptive

adversary, attains the following with probability at least 1− δ over the randomness of

the learner and the adversary:

MT ≤
9N log(2N/δ)

p

AT − A∗
T ≤ pT +

√
2p(1− p)T log(2/δ) + 2 log(2/δ).

In particular, taking p =
√
N/T yields the symmetric regret bound

max(MT , AT − A∗
T ) ≲

√
NT log(N/δ).

We conclude with a few remarks.

Achievable rates Taking δ = 1/T , and varying p in (log T/T , 1] gives the rates

attainable by vue

Corollary 6.3.3. All rates (α, µ) such that α > 0, α+ µ > 1 are achievable against

adaptive adversaries.

These rates are tight - as expressed in Corollary 6.4.3, rates such that α+ µ < 1

are not achievable even against stochastic adversaries. The Pareto frontier is therefore

the line α + µ = 1.

Dependence on N It should be noted that the dependence on the number of

functions, N , in Thm. 6.3.2 is polynomial, as opposed to the more typical logarithmic

dependence on the same in online classification. The problem of characterising this

2This argument only needs control for the case W̃t = 0. The ≤ 1 in Lemma 6.3.1 is exploited in
§6.5.2.
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dependence appears to be subtle, and we do not resolve the same. In the following

section, we explore schemes that improve this aspect, but at a cost - ğ6.4 yields

logarithmic dependence against stochastic adversaries, while ğ6.5 gives a scheme that

has a logarithmic dependence against adaptive adversaries, but worse dependence

with T .

It is worth stating that the analysis above is tight for Algorithm 2 - consider the

domain X = [1 : N ], and the class F = {ft : t ∈ [0 : N ]} such that ft(x) = ⊥ if

x ≤ t and = 1 if x > t. Now consider an adversary that chooses a t∗ in advance, and

presents the contexts 1 T/N times, 2 T/N times and so on, labelling contexts smaller

than t∗ as 0, and contexts larger than t∗ as 1. Notice that in each case, there is exactly

one function in Vt that does not abstain. The scheme above incurs Ω(pT (1− t∗/N))

excess abstention, and Ω(t∗/p) mistakes, and linearly large t∗ form a tight example.

Of course, this is not a lower bound on this problem, and the question of the optimal

dependence on N remains open.

Hedge-Type Schemes The natural approach of proceeding by weighing the cost

of abstention versus a mistake, and running a hedge-type scheme on an importance-

estimate of the resulting loss does not lead to tight rates - the scheme mixed-loss-

prod of ğ6.5 pursues precisely this strategy, and the worse case symmetric regret

bounds that standard analyses lead to scale as T 2/3 instead of as T 1/2 as for vue

(Cor. 6.5.2). This may be due to the fact certain-error prone classifiers in F may

have very low abstention rates, and thus overall large weight, and it is unclear how to

eliminate this behaviour.
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6.4 The Stochastic Case

Algorithm 3 vue-prod

1: Inputs: F , p, Learning rate η.
2: Initialise: V1 ← F , ∀f, wf

1 ← 1.
3: for t ∈ [1 : T ] do

4: Sample ft ∼ πt =
wf

t 1{f∈Vt}∑
f∈Vt

wf
t

.

5: Toss Ct ∼ Bern(p).

6: Ŷt ←
{
⊥ Ct = 1

ft(Xt) Ct = 0
.

7: Vt+1 ← Vt.
8: if Ct = 1 then
9: Ut ← {f : f(Xt) ∈ {⊥, Yt}}

10: Vt+1 = Vt ∩ Ut.
11: for f ∈ Vt+1 do
12: aft ← 1{f(Xt) = ⊥}
13: wf

t+1 ← wf
t · (1− ηaft ).

This section argues that the regret bounds of Thm. 6.3.2 can be improved to behave

logarithmically in N in the stochastic setting. There are a couple of issues with

Algorithm 2 that impede a better analysis in the stochastic case. The first, and

obvious, one is that how Ŷt is chosen is not specified. More subtly, the fact that the

scheme insists on playing non-abstaining actions whenever possible makes it difficult

to control the number of mistakes without a polynomial dependence on N .

We sidestep these issues in Algorithm 3 by maintaining a law πt on functions in Vt
that only depends on H L

t−1, and predicting by setting Ŷt = f(Xt) for ft ∼ πt. Notice

that playing this way it is possible that we abstain on Xt even if the exploratory

coin comes up tails. We control mistakes by arguing that very error-prone functions

are all quickly eliminated (due to the stochasticity), and using the property that πt

does not depend on Xt to limit the mistakes incurred up to such a time. Abstention

control follows by choosing π according to a strategy that favours fs with small overall

abstention rate over the history. In Algorithm 3, we use a version of the prod scheme
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of [CMS07] to set weights, analysed with shrinking decision sets. The following is

shown along these lines in ğE.3.

Theorem 6.4.1. Algorithm 3, run against stochastic adversaries with η = p, attains

the regret bounds

E[MT ] ≤ 8
log T log(NT )

p
, and E[AT − A∗

T ] ≤ pT +
logN

p
.

We note that vue-prod also enjoys favourable bounds in the adversarial case -

mistakes are bounded as Õ(N/p), and abstention regret as in the above result. This is

in contrast to simpler follow-the-versioned-leader type schemes that also satisfy similar

bounds as Thm. 6.4.1 in the stochastic case. Also note that the above cannot attain

rates such that α ≤ 1/2, an inefficiency introduced due to the conditional independence

of πt and Xt.

Finally, we show a lower bound. The statement equates stochastic adversaries

with their laws.

Theorem 6.4.2. If F contains two functions f1, f2 such that there exists a point

x for which f1(x) = ⊥ ̸= f2(x), then for every γ ∈ [0, 1/2], there exists a pair

of laws P γ
1 , P

γ
2 such that any learner that attains EP γ

1
[AT − A∗

T ] = K must incur

EP γ
2
[MT ] ≥ γ(e−2γKT −K).

Thus, if a (φ, ψ) regret bound with sup φ
T
< 1

2e2
is achievable, then φ · ψ = Ω(T ).

Indeed, using the above with γ = 1/φ(T,N), gives EP1 [AT −A∗
T ] = K ≤ φ(T,N), and

so ψ(T,N) ≥ EP2 [MT ] ≥ T
φ(T,N)

e−2K/φ(T,N) − 1. This proves the following.

Corollary 6.4.3. If (α, µ) ∈ [0, 1]2 is such that α + µ < 1, then an (α, µ) regret

rate is not achievable against stochastic adversaries, and, a fortiori, against adaptive

adversaries.
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6.5 Reducing the dependence of regret bounds on N in the

adversarial case

This section concentrates on improving the N -dependence of regret bounds in the

adversarial case via two avenues. The first improves this dependence to log(N) by

running prod with a weighted loss, but at the cost of increasing T dependence. This

holds greatest relevance when T is bounded as a polynomial of N , which is of interest

because N can be quite large even in reasonable settings - e.g., a discretisation of

d-dimensional hyperplanes induces N = exp (Cd). The second approach considers the

case when the set of possible contexts, i.e. X is not too large. While in this case, N

can be as large as (|Y|+ 1)|X |, we show bounds depending only linearly on |X |.

6.5.1 Weighted prod

Algorithm 4 mixed-loss-prod

1: Inputs: F , Exploration rate p, Learning rate η.
2: Initialise: ∀f ∈ F , wf

1 ← 1.
3: for t ∈ [1 : T ] do
4: Sample ft ∼ πt = wf

t/∑wf
t .

5: Toss Ct ∼ Bern(p).
6: if Ct = 1 then
7: Ŷt ← ⊥

8: else
9: Ŷt ← ft(Xt)

10: ∀f ∈ F , evaluate ℓft
11: wf

t+1 ← wf
t (1− ηℓft ).

We continue the uniform exploration, but play according to the prod method, with

the loss

ℓft := Ct1{f(Xt) ̸∈ {⊥, Yt}}+ λ1{f(Xt) = ⊥},

where λ both trades-off the relative costs of mistakes and abstentions, in the vein of

the fixed cost Chow loss, and accounts for the sub-sampling of the mistake loss.



133

The analysis of this scheme, presented in ğE.4, exploits the quadratic bound of prod

due to [CMS07] to control the sum E[pMT +λ(AT − pT )] by ming logN/η+
∑
η(ℓgt )

2,

where the expectation is only over the coins Ct, and the −pT term is due to the extra

abstentions due to the exploratory coin. The key observation is that since f ∗ makes

no mistakes,
∑

(ℓf
∗

t )2 = λ2A∗
T , and so taking g = f ∗, and exploiting the weight allows

us to separately control the regrets in terms of A∗
T .

Theorem 6.5.1. Algorithm 4, when run against adaptive adversaries with η = 1/2, λ ≤
p, attains

E[MT ] ≤
2 logN

p
+

2λ

p
E[A∗

T ], and E[AT − A∗
T ] ≤ pT +

2 logN

λ
.

6.5.1.1 Rates

Theorems 6.4.1 and 6.5.1 show regret bounds with logarithmic dependence in N . The

following concept separates rates attainable with this advantageous property from

those with worse N -dependence.

Definition (Logarithmically Achievable Rates) We say that rates (α, µ) are logarith-

mically achievable against adversaries from a class C if there exists a learner that

attains a (ψ, φ)-regret against such adversaries for ψ, φ that witness the rate (α, µ),

and satisfy that for every fixed T, max(φ(T,N), ψ(T,N)) = O(polylog(N)).

Since A∗
T ≤ T, choosing p = T−u, λ = T−(u+v) in mixed-loss-prod for any (u, v) ∈

[0, 1]2, u+v ≤ 1 allows us to attain rates of the form (α, µ) = (max(1−u, u+v), 1−v).
Notice that for any fixed v, the smallest α so attainable is 1+v/2. This shows

Corollary 6.5.2. Any rate (α, µ) such that α + µ/2 > 1 is logarithmically achievable

against adaptive adversaries.

The following figure illustrates the worst case achievable rate regions in the three

cases considered.
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Adaptive Rates Observe that if A∗
T ≍ T α∗

for some α∗ < 1, then nominally, the

achievable rates can be improved. Indeed, with the parametrisation p = T−u, λ =

T−u+v, we may attain rates of the form (α, µ) = (max(1− u, u+ v),max(u, α∗ − v)).
Further, a given mistake rate µ can be attained by setting u = µ, and α∗ − v ≤ µ.

With these constraints, the smallest abstention rate attainable is

α̃(µ;α∗) = max (1− µ, (1 + (α∗ − µ)+)/2) ,

achieved by setting v = (α∗ − µ)+, u = min(1 − (α∗ − µ)+, 2µ)/2. Such rates can

in fact be attained adaptively, without prior knowledge of α∗. The main bottleneck

here is that the quantity A∗
T is not observable. However, every function g that is

never observed to make a mistake satisfies
∑

(ℓgt )
2 = λ2

∑
1{g(Xt) = ⊥}, and such

functions are identifiable given H L
t . Let

B∗
t := min

∑

s≤t

1{g(Xs) = ⊥} s.t.
∑

s≤t

Cs1{g(Xs) ̸∈ {⊥, Yt} = 0.

Note that B∗
t grows monotonically, and is always smaller than A∗

t =
∑

s≤t 1{f ∗(Xt) =

⊥}. We show the following in ğE.4.1 via a scheme that adaptively sets p, λ according

to B∗
t .

Theorem 6.5.3. For any α∗, µ, ε ∈ (0, 1], Algorithm 6 attains, without prior knowledge

1

1
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α

µ

Impossible

Achievable
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1
α α

1

1

Impossible
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2

1
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2

Figure 6·1: Left shows rates achievable against adaptive adversaries.
Middle and right show logarithmically achievable rates against stochastic
and adaptive adversaries respectively.
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of α∗, any rate of the form (α̃(µ, α∗) + ε, µ + ε) against adaptive adversaries that

induce A∗
T ≤ T α∗

almost surely.

The rates α̃ essentially interpolate between the second and third panels of Fig. 6·1.

Concretely the region achieved consists of the intersection of the regions {α > 1/2},
{α+µ > 1} and {2α+µ > 1+α∗}, with the last set being active only when α∗ ≥ 1/2.

6.5.2 A |X |-dependent analysis of vue

We give an alternate mistake analyse for vue over finite domains. The analysis is

slightly stronger: let y ∈ ([1 : K] ∪ {⊥})|F| be indexed by elements of F , with the

‘fth’ entry yf reprsents a value that f might take. Consider the resulting partition

of {Xy}y∈([1:K]∪{⊥})F , where each part Xy ⊂ X contains points that have the same

pattern of function values, that is Xy = {x : ∀f ∈ F , f(x) = yf}. The following

argument can be run unchanged by replacing single xs in the following by all xs in

one Xy. That is, we may replace |X | in the following Theorem 6.5.4 with |{Xy}|. For

simplicity, we present the argument for |X | only.

Denote Ŷx
t := {f(x) : f ∈ Vt}. Notice that after the first time t such that

Xt = x, Ŷt = ⊥, we will remove from the version space all classifiers that did not

abstain or output the correct classification at time t. Thus if we define yx ∈ [1 : K]

to be Yt, then for all subsequent times, Ŷx
t ⊂ {⊥, yx}. As a result, if we observe two

mistakes at any given x, then we cannot make any more mistakes at a subsequent

time t′ with Xt′ = x, because the only remaining decision in Ŷx
t′ must be ⊥.

We may now proceed in much the same way as ğ6.3 - instantiate Ux
t = 1{Xt =

x, Ŷt ̸∈ {⊥, Yt}}, Bt = Ct, and union bound over the xs. Then |Ŷx
t | ≥ 2 if and only

if W̃ x
t ≤ 1, and, invoking Lemma 6.3.1, up to such a time at most W x

t = O(log |X |/p)

mistakes may be made on instances such that Xt = x. But then totting up, we make

at most O(|X | log |X |/p) mistakes, as encapsulated below
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Theorem 6.5.4. Algorithm 2 instantiated with p ≤ 1/2 and run against an adaptive

adversary, attains the following with probability at least 1− δ over the randomness of

the learner and the adversary:

MT ≤
9|X | log(2|X |/δ)

p

AT − A∗
T ≤ pT +

√
2p(1− p)T log(2/δ) + 2 log(2/δ).

Along with the bound itself, the above result makes a couple of points regarding

the characterisation of N -dependence of the regrets in online selective classification.

Firstly, it suggests that efficient analyses, and possibly schemes, must incorporate

the structure of X ; and secondly it shows that constructions that attempt to show

superlogarithmic in N lower bounds must have both N and |X | large, and thus typical

strategies placing a very rich class on a small domain will not be effective.

6.6 Experiments

We evaluate the performance of Algorithm 3 on two tasks - CIFAR 10 [Kri09], and GAS

[Ver+12] - see ğE.5 for details of implementation, and here for the relevant code. The

former represents a setting where an expert can be adaptively invoked, which we treat

by providing the true labels of the classes upon abstention. The second case is more

explicitly an adaptive feature selection task - the GAS dataset has features from 16

sensors, and we train one model, g, on all of this data, while the selective classification

task operates on data from the first 8 sensors only, and receives the output of g when

abstaining. The standard accuracies of the model classes we implement are ∼ 90%

on CIFAR-10, and ∼ 77% on GAS. In both cases, a training set is used to learn a

parameterized family of selective classifiers, fµ,t. The hyperparameters (µ, t) provide

control over various levels of accuracy and abstention. For training, we leverage a

recent method [GKS21] that yields such a parameterisation, which is discretised to

get N = 600 of these functions to form our class F . We then sequentially classify the

https://github.com/anilkagak2/Online-Selective-Classification


137

test datasets of each of the tasks.

One subtlety with the setting is that none of the selective classifiers in F actually

make no mistakes. To avoid the trivialities emerging from this, we relax the versioning

condition to only drop classifiers that are seen to make mistakes on at least εNt+
√
2εNt

mistakes at time t, where Nt is the number of times feedback was received up to time

t, and the second term handles noise. Additionally, if it turns out that all functions

in Vt are wrong on a particular observed instance, we ignore this feedback (since

such an error is unavoidable). Such variations of ‘relaxed versioning’ are natural

ideas when extending the present problem to the one where the competitor may

be allowed to make non-zero mistakes, although its analysis is beyond the scope of

this dissertation. The scheme’s viablility in this extended setting with only simple

modifications indicates the practicality of such strategies.

Below, we take the competitor to be the function that makes the fewest mistakes,

denoted as M∗
T . If there is more than one such function, we take the one that makes

the fewest abstention to get A∗
T . We measure excess mistakes MT −M∗

T and excess

abstentions AT − A∗
T with respect to this competitor.

Behaviour of regrets with the length of the game Fig. 6·2 presents the excess

mistakes as a fraction of T for the two datasets, i.e. MT−M∗
T/T , as T , is varied. The

learners are all instantiated with the exploration rate p = 1/
√
T . We observe that the

excess abstentions are negative (or near-zero) over this range (see Fig. E·1 in ğE.5).

Therefore we do not plot these below (the orange line is MMEA, see below). We note

that the relative mistakes stay below
√

2 logN/T , bearing out the theory.
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Achievable Operating Points of Mistakes and Abstentions Fig. 6·3 shows

the mistake and abstention rates attainable by varying p and ε, while holding T fixed

at 500 (which is large enough to show long-run structure, but small enough allow fast

experimentation). Concretely, we vary these linearly for 20 values of p ∈ [0.015, 0.285],

and 10 values of ε ∈ [0.001, 0.046]. The resulting values represent operating points that

can be attained by a choice of p, ε. The same plot includes lines that represent the

operating points when the scheme is run with ε = 0.001, the smallest value we take.

Note that in practice, the best choices of ε, p may be data dependent, and choosing

them in an online way is an interesting open problem (also see ğE.5.6).

The Price of Being Online We characterise this in two ways beyond the excess

mistakes.

• In Fig. 6·2, we also plot the ‘mistake-matched excess abstention’ (MMEA). This

is defined as follows - if the scheme concludes with having made MT mistakes,

we find, in hindsight, the classifier that minimises the number of abstentions,

subject to making at most MT mistakes. The MMEA is the excess abstention of

the learner over those of this relaxed competitor, and represents how many fewer

abstentions a batch learner would make if allowed to make as many mistakes as

the online learner. Notice that this MMEA remains well controlled in Fig. 6·2,

and appears to scale as O(
√
T ).

• In Fig. 6·3, we also plot the post-hoc operating points of the classifiers in F
as black triangles. This amounts to plotting the optimal abstentions amongst

classifiers that make at most m mistakes, varying m.3 We note that the red

operating points of the scheme get close to the black frontier, illustrating that

3Observe that the MMEA corresponds to the horizontal distance between a red-point with m
mistakes, and the left-most black point with y-coordinate under m.
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the inefficiency due to being online is limited. As the time-behaviour of MMEA

in Fig.6·2 illustrates, the inefficiency is expected to grow sublinearly with T , and

to thus vanish under amortisation.

Figure 6·2: MT −M∗
T , and MMEA as fractions of T , as the number of

rounds T is varied for CIFAR-10 (left) and GAS (right). The plots are
averaged over 100 runs, and one-standard-deviation error regions are drawn.

Figure 6·3: Operating points for our scheme as ε and p are varied are
represented as red dots (for CIFAR-10 in the left, and GAS in the right).
The black triangles represent operating points obtained by batch learning
with the benefit of full feedback. The blue lines interpolate points obtained
by varying p for ε = 0.001 Points are averaged over 200 runs. Note that the
values are raw mistakes and abstentions, and not regrets.
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6.7 Discussion

Online selective classification offers a primitive that has relevance to both safety-critical

and resource-limited settings. In this chapter, we highlighted the role of long-term

abstentions in such situations, and studied this problem under the feedback limitation

that labels are only provided when the system abstains, which is the only time high-

complexity evaluation would be invoked in a selective classification system. When

working with a finite class of model, we identified a simple scheme that provides a tight

(in terms of T ) trade-off between mistakes and excess abstentions against adaptive

adversaries. We further discussed two schemes that improve upon the dependence of

the same on the size of the model class - tightly against stochastic adversaries, and

at the cost of some rate performance against adaptive adversaries. Together, these

schemes and analyses provide some basic foundations for the problem when competing

against no-mistake models. Additionally, we carried out empirical studies that validate

the scheme in the stochastic case, and demonstrate that with minor modifications,

the scheme is resilient to the situation where no selective classifier in the model class

is mistake-free. A number of interesting questions remain open, and we discuss a few

of these below.

Perhaps the most basic question left open by the above study is how the minimax

regrets against adaptive adversaries depend on N . Along with being a basic scientific

question, this issue has implications for whether the results can be extended to infinite

classes. Indeed, under assumptions of bounded combinatorial dimensions, the vue-

prod and mixed-loss-prod schemes can be extended to infinite model classes, but

the basic technique to do so yields trivial bounds for vue due to the linear dependence

on N . If this dependence could be improved to logarithmic, the extension to model

classes with finite (multiclass versions of) Littlestone dimension would be immediate.

A practically relevant and theoretically interesting direction is online SC but where
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the competitor can make non-zero mistakes. This can be set up in at least two ways

- either an error parameter ε is given to the learner, which must ensure that both

notions of regret are small against competitors that make at most εT mistakes; or, no

explicit error parameter is specified, and the learner is required to compete against

the least mistake-prone model in a given set (similarly to ğ6.6). Both settings raise

new challenges, since one must relax the notion of versioning used in the above work

for related schema to be viable. The latter setting raises a further issue of how one

can adapt to the mistake rate of the competitor. Also of practical relevance is the

case where abstentions are not equally penalised, but have some variable cost. Here

too, one can study variants of signalling regarding whether the cost of abstention is

available before or only after an abstaining decision is made.

Finally, we observe that while tight, the random exploration technique is somewhat

unsatisfying, and practically a context-adapted abstention strategy is likely to offer

meaningful advantages over it. In analogy with the exploration in label-efficient

prediction, one direction towards exploring context-aware methods is to study more

concrete structured situations, such as linear models with noisy feedback that are

popular in the investigation of online selective sampling.
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Appendix A

Appendix to Chapter 2

A.1 Proofs omitted in Section 2.2

A.1.1 Proof of Achievability in Theorem 2.2.1

We will restrict attention to the case a > b below. The b > a case follows identically.
Recall the test in this setting:

Nx0
a (G)

H1

≷
H0

bn

4
+ C1 max(

√
nb log(2/δ), log(2/δ)),

where C1 is the constant implicit in Lemma A.1.1 below.
Under the null distribution, Nx0

a (G) is distributed as Bin(n2/4, b/n), while under
the alternate, it is distributed as Bin((n− s)2/4 + s2/4, b/n) ∗ Bin(s(n− s)/2, a/n).
These distributions can be separated by Bernstein concentration bounds [CL06, Ch.
2], as summarised by the following Lemma, which is proved in subsequent sections.

Lemma A.1.1. There exist constants C0, C1 > 1 such that, if nb + s(a − b) >

C0 log(1/δ), then with probability at least 1− δ/2

(α) Under H0: N
x0
a (G) ≤ bn

4
+ C1 max

(√
nb log(2/δ), log(2/δ)

)
.

(β) Under H1: N
x0
a (G) ≥ bn

4
+
s(a− b)

4
− C1

√
(nb+ s(a− b)) log(2/δ).

As the proof of the above lemma discusses, results of the above type hold in the
more generic situation where both the communities and the changes can be unbalanced,
so long as each community is of at least linear in n size. This allows one to extend
the entirety of this theorem to the setting n+n− = Ω(n2) on replacing bn/4 above
with ENull[N

x0
a (G)], where n+ and n− are the sizes of the two communities, i.e., the

number of i such that xi = +1 and xi = −1 respectively.
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Since s|a− b| ≥ sΛ ≥ C log(2/δ), the lemma above holds in our setting on picking
C large enough. (α) in Lemma A.1.1 indicates that the false alarm error of test is
≤ δ/2. Further, since (nb+ s(a− b)) log(2/δ) > log2(2/δ), part (β) shows that missed
detection error is ≤ δ/2 if

1

4
s(a− b) > 2C1

√
(nb+ s(a− b)) log(2/δ) ⇐⇒ (a− b)2

nb+ s(a− b) > C
log(2/δ)

s2
.

The argument is concluded by some casework:

(i) If nb ≤ s(a − b), then the left hand side of the condition above can be bounded
from below by s(a − b)/2, and thus s(a − b) ≥ 2C1 log(2/δ) is sufficient. But
s(a− b) ≥ s(a− b)2/(a+ b) = sΛ is larger than C log(1/δ), and choosing C large
enough is sufficient.

(ii) On the other hand, if nb > s(a− b), the left hand side is instead lower bounded
by s2(a− b)2/2nb ≥ s2Λ/2n, and thus s2Λ ≳ n log(2/δ) is sufficient to satisfy the
same.

A.1.1.1 Proof of Lemma A.1.1

The proof proceeds by establishing the centres of the statistic Nx0
a under the null and

alternate distributions, and then invoking Bernstein-type bounds [CL06, Ch 2] to

show the claimed statements separately.

(α) For the null, Nx0
a (G) is distributed as Bin(n2/4, b/n). Thus, clearly ENull[N ] = bn/4.

Further, by Bernstein’s inequality for the upper tail,

PNull(N
x0
a (G) > ENull[N

x0
a (G)] + nt) ≤ exp

(
− n2/4× t2/2
n2/4× (b/n) + nt/3

)

≤ exp

(
−3

2

nt2

b+ 4t

)
≤ exp

(
−3

8

nt2

t+ b

)
.

Thus, if
nt2

b+ t
≥ 8

3
log(2/δ),

then this tail has mass at most δ/2. We may now consider the two cases
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(i) If nb ≤ 16/3 log(2/δ), then plugging in t = 16/3 log(2/δ)
n

above yields that the

the condition is satisfied, since then

nt2

b+ t
≥ nt2

2t
=
nt

2
=

8

3
log(2/δ).

(ii) If nb ≥ 16/3 log(2/δ), then setting t =
√
(16/3) b

n
log 2/δ we can bound

nt2

b+ t
=

16/3 log(2/δ)

1 +
√

(16/3) log(2/δ)/nb
≥ 16/3 log(2/δ)

2
.

As a consequence, picking nt = max(
√

(16/3)nb log(2/δ), 16/3 log(2/δ)) implies

that the probability in question is at most δ/2.

We note that this calculation can be made more robust, in that if the communities

are unbalanced but linearly sized with n, then the number of edges crossing is

n+(n − n+) = Ω(n2) in the above, and essentially the same goes through with

n2/4 replaced by n2/C for some constant C.

(β) This proof proceeds in much the same way as the above. With the modification that

the distribution of Nx0
a (G) is now Bin(n2/4−s(n−s)/2, b/n)∗Bin(s(n−s)/2, a/n),

since 2× s(n− s)/4 of the edges are now between nodes of the same communities.

The centre of this is easily seen to be nb
4
+ s(n−s)

2
a−b
n
. Further invoking the Bernstein

lower tail, we find that

PAlt(N
x0
a (G) ≤ EAlt[N

x0
a (G)]− nt) ≤ exp

(
−1

2

n2t2

s(n−s)
2
· a
n
+ n2−2s(n−s)

4
· b
n

)

≤ exp

(
− n2t2

nb+ s(a− b)

)

The required claim now follows directly by setting t =
√

(nb+s(a−b)) log(2/δ)
n

.

Again, the above can also be rendered more robust to imbalance. Suppose that the

communities and the changes are both imbalanced, and let n+, n− be the sizes of
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the communities in x0, and s+, s− be the number of nodes that are moved from +

to − and vice-versa according to the alternate x. Then the number of edges which

behave according to a/n in the alternate is τ = s+(n− − s−) + s−(n+ − s+). But

τ ≤ s(n+ + n− − s+ − s−) = sn, so the concentration results go through with a

weakening of a factor of 2. Further, assume wlog that s+ ≥ s−. since s+ + s− = s,

and n+ + n− = n, we have that

τ = s+(n− s) + (s− 2s+)(n+ − s+).

Minimising the above subject to s+ ∈ [s/2 : s], we find that the minima can

be uniformly lower bounded by min(smin(n+, n−), s(n− s)/2). So long as each

community is of linear size, this is Ω(sn), and thus the centre of the statistic moves

by Ω(s(a− b)) with respect to the null statistic.

Putting the two effects above together, we can write that under the alternate

distribution, with probability ≥ 1− δ/2,

Nx0
a (G) ≥ ENull[N

x0
a (G)] +

1

C1

s(a− b)− C2

√
(nb+ s(a− b)) log(2/δ).

In conjunction with the discussion for unbalanced but linearly sized communities

in case (α), the above allows the claims of the achievability part of Theorem 2.2.1

to hold for the case where both communities are of linear size and changes are

not constrained to be balanced without any change other than a weakening of

the constants implicit in the same. The only modification required for this is to

update the tests to threshold at ENull[N
x0
a (G)] + (ŕuctuation term) instead of at

bn/4 as presented in the main text.
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A.1.2 Proofs of converse bounds from Theorem 2.2.1

This section begins with an exposition of Le Cam’s method, which is the general proof

strategy we employ to show both these converse bounds. This is followed by separate

subsections devoted to each converse bound claimed in Theorem 2.2.1.

A.1.2.1 Le Cam’s method.

The generic lower bound strategy is constructed by noting that the minimax risk of

the goodness-of-fit problem is lower bounded by the risk of the same with any given

prior on the alternate communities, i.e. the risk of the problem

H0 : x = x0 vs H1 : x ∼ π

for a π supported on {x : d(x, x0) ≥ s} (or some restriction of the same, as in the

following sections), and the Bayes risk

Rπ := inf
φ:G→{H0,H1}

P (φ = H1|x0) +
∑

x:d(x,x0)≥s

π(x)P (φ = H0|x).

By classical Neyman-Pearson theory [see, e.g., LR06], the likelihood ratio test is

optimal under the above risk, and

R
π
=1−dTV

(
P (G|x0),

∑
⟨P (G|x)⟩π

)
,

where ⟨P (G|x)⟩π :=
∑

x π(x)P (G|x), and recall the total variation distance

dTV(P,Q) :=
1

2
∥P −Q∥1.

We proceed by bounding dTV by an f -divergence more conducive to tensorisation

in order to exploit the (conditional) independence of the edges in an SBM, and then

by choosing an appropriate π. The f -divergence inequalities we use are
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1. χ2 bound: Recall that

Dχ2(Q∥P ) =
∑

x

P (x)

(
Q(x)− P (x)

P (x)

)2

= EP [L
2(X)]− 1,

where L(x) := Q(x)/P (x) is the likelihood ratio. It holds that

dTV(P,Q) ≤
√

1

2
log(1 +Dχ2(Q∥P )),

which follows from Pinsker’s inequality and the fact that

DKL(Q∥P ) ≤ log(1 +Dχ2(Q∥P )),

which is a consequence of Jensen’s inequality applied to the log (or, equivalently,

the monotonicity of Rényi divergences).

Invoking the above inequality and Le Cam’s method, we find that if for some π,

and for L(G) := ⟨P (G|x)⟩π
P (G|x0)

, then the following is necessary for the minimax risk

of the GOf problem to be bounded by δ :

Ex0 [L
2(G)] ≥ exp

(
2(1− δ)2

)
.

For δ ≤ 1/4, this yields a lower bound of Ex0 [L
2] > 3.08.

2. Hellinger bound: The Bhattacharya coefficient of P,Q is defined as

BC(P,Q) :=
∑

x

√
P (x)Q(x),

and the Hellinger divergence as

dH(P,Q) :=
√

1− BC(P,Q) = 1√
2
∥
√
P −

√
Q∥2.
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We exploit the classical inequality

dTV(P,Q) ≤
√
d2H(P,Q)(2− d2h(P,Q) =

√
1− BC2(P,Q),

which is a consequence of the Cauchy-Schwarz inequality.

Again plugging this in with Q = ⟨P (G|x)⟩π , we find that in order for the risk

to be smaller than δ, we must have that

δ ≥ 1−
√
1− BC2 ≥ BC2

2
=⇒ BC ≤

√
2δ,

where BC = BC(⟨P (G|x)⟩π , P (G|x0)).

We now proceed to show the claimed bounds. Recall that we are required to show

that if RGoF < δ ≤ 1/4, them

Λ ≳ log(1 + n/s2) (A.1)

sΛ ≳ log(1/δ). (A.2)

A.1.2.2 Proof of (A.1)

For convenience, we let

ν := (a− b)2
(

1

a(1− a/n) +
1

b(1− b/n)

)
. (A.3)

Since a, b ≤ n/2, and since a/b = Θ(1), we have Λ ≍ ν, and it suffices to show the

same bound on the latter.

We invoke Le Cam’s method with a χ2-bound. Let m := n/2, t := s/2 and let x0

be the partition ([1 : m], [m+ 1 : 2m]).

The alternate prior is chosen to be the uniform prior on the set of alternate
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partitions constructed as follows. For each T ⊂ [1 : m], we define the partition

yT (+) = [1 : m] ∪ (m+ T ) ∼ T

yT (−) = [m+ 1 : 2m] ∪ T ∼ (m+ T ),

where (m+T ) = {i+m : i ∈ T}. Let Yt := {yT : T ⊂ [1 : m], |T | = t}. For conciseness,

we define the measures on G :

PyT (·) := PT (·) := P (· | yT ),

and set P0 = P (· | x0). Further, for convenience, we set p = a/n and q = b/n.

For a graph G, we find that L(G) := 1
|Yt|
∑

x∈Yt

Px(G)
P0(G)

. To invoke Le Cam’s method

(ğA.1.2.1), we need to upper bound EP0 [L
2(G)].

To this end, we will define for an edge e = (u, v), and a graph G (which is implicit

in the notation)

fe(q, p) := (q/p)e((1− q)/(1− p))1−e. (A.4)

Above, fe(q, p) arises as a ratio of the probabilities of a Bern(q) and a Bern(p) random

variable. Thus, it is the likelihood ratio of an edge being between nodes in the different

and in the same community.

First observe that

PT

P0

=




∏

i∈[1:m]∼T,
j∈m+T

fij(p, q)







∏

i∈[m+1:2m]∼m+T,
j∈T

fij(p, q)


 (A.5)

×




∏

i∈[1:m]∼T,
j∈T

fij(q, p)







∏

i∈[m+1:2m]∼m+T,
j∈m+T

fij(q, p)


 .

An important feature of the setup above is that every term in the above product

is independently distributed, and wherever fij(p, q) appears, the corresponding eij is
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Bern(q), and similarly with fij(q, p) and Bern(p).

Note that

EP0 [L
2(G)] =

∑

T1,T2⊆[1:m] of size t

EP0

[
PT1(G)PT2(G)

P 2
0 (G)

]
,

and so we must control expectations of this form in order to apply Le Cam’s method.

Let us fix T1 and T2 for now, and partition the nodes into groups as described by the

Figure A·11.

1F2F
+

1F2S
+

1S2S
+

1S2F
+

1F2F
−

1F2S
−

1S2S
−
1S2F

−

Figure A·1: A schematic of the nodes, partitioned according to their
labellings in x0, yT1 , yT2 . The two ovals denote the partition induced by
x0 into groups marked + and −. The section 1F2F+ denotes the nodes
in the + group whose labels remain fixed to + in both yT1 , yT2 . The
section marked 1S2F+ denotes the nodes in the + group whose labels
are switched to − in yT1 but remain fixed to + in yT2 . Other labels are
analogously defined.

Note that in the figure, 1F2F+ = [1 : m] ∼ (T1 ∪T2), 1S2S− = (m+T1)∩ (m+ t2)

and so on. Also, importantly, the size of groups with the same number of Ss and F s in
1The argument, while simple, gets a little notationally hairy at this point. We recommend that

the reader consults Figure A·1 frequently, preferably a printed copy that allows one to sketch the
various types of connections on it.
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the above representation is identical (i.e., |1F2S+| = |1F2S−| = |1S2F+| = |1S2F−|
and so on.)

We consider how the terms relating to the edge (u, v) for any u, v ∈ [1 : 2m] appear

in the product PT1
PT2

P 2
0

. Below,

• Clearly, if u and v are both in the same group in both settings, the behaviour

of the edge (u, v) under the alternate distributions and the null distribution is

identical, and these terms will not appear in the product.

• If both (u, v) ∈ 1F2F+ × 1F2F− ∪ 1S2S+ × 1S2S−, then again, the edge (u, v)

has identical distribution under both alternates and the null, and these terms

do not appear in the product.

• If (u, v) ∈ 1F2F+ × 1F2S+, then the (u, v) term does not appear in PT1/P0,

but appears once in PT2/P0. Since likelihoods must average to 1, and since the

distributions of the edges are independent, any term which appears just once is

averaged out when we take expectations with respect to P0. Thus, even though

these terms appear in the product, we may ignore them due to our eventual use of

the expectation operator. A quick check will show that the same effect happens

for (u, v) ∈ Γ1 × Γ2, where Γ1 can be obtained by inverting one instance of an

F to a S or vice versa, and possibly changing the sign (e.g. 1F2S− × 1S2S+.)

Thus, all such pairs can be safely ignored.

• This leaves us with edges of the form {1F2F± × 1S2S±} ∪ {1F2S± × 1S2F±}.
In these cases, if the signs of the two choices match - i.e.

(u, v) ∈ Γ+ × Γ̃+ for (Γ, Γ̃) ∈ {(1F2F, 1S2S), (1S2F, 1F2S)},

then we will obtain a contribution of fuv(q, p)2 to the product. On the other

hand, if they differ, then we will obtain a contribution of fuv(p, q)2
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Accounting for the above, and taking expectation, we have that

E

[
PT1PT2

P 2
0

]
= (Ψ)|1F2F+|·|1S2S+|+|1F2F−|·|1S2S−|+|1S2F+|·|1F1S−|+|1F2S+|·|1S2F−| , (A.6)

where

Ψ := Ee ∼ Bern(p)[fe(q, p)
2]Ee ∼ Bern(q)[fe(p, q)

2] (A.7)

Further, since in our choice of the alternate communities the groups with the same

number of Ss and F s have identical size, and thus we may rewrite (A.6) above as

E

[
PT1PT2

P 2
0

]
= Ψ2(|1F2F+||1S2S+|+|1S2F+|2).

For convenience, let |1S2S+| = |T1 ∩ T2| = k. We then have that |1S2F+| = t− k
and |1F2F+| = m+ k − 2t.

We thus have that

EP0

PT1PT2

P 2
0

= exp
(
(logΨ)(2k(m+ k − 2t) + 2(t− k)2)

)
(A.8)

= exp
(
(logΨ)(2mk + 2k2 − 4kt+ 2k2 + 2t2 − 4kt)

)
(A.9)

= exp
(
(logΨ)(2mk + 4k2 − 8kt+ 2t2)

)
(A.10)

≤ exp
(
(logΨ)((2m− 4t)k + 2t2)

)
, (A.11)

where we have used that k ≤ t.

Now, for (p, q) = (a/n, b/n),

Ψ =

(
q2

p
+

(1− q)2
(1− p)

)(
p2

q
+

(1− p)2
(1− q)

)
(A.12)

=

(
1 +

(p− q)2
p(1− p)

)(
1 +

(p− q)2
q(1− q)

)
(A.13)

=

(
1 +

(a− b)2
na(1− a/n)

)(
1 +

(a− b)2
nb(1− b/n)

)
(A.14)

= 1 +
ν

n
+O(n−2) ≤ 1 + 2

ν

n
. (A.15)
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As a consequence, using 2m = n, and the development above,

EP0

PT1PT2

P 2
0

≤ exp

(
4t2

n
ν

)
exp (2kν(1− 4t/n)) . (A.16)

The above is insular to the precise identities of T1, T2. Further, for a given T1,

the number of partitions T2 such that |T1 ∩ T2| = t is
(
t
k

)(
m−t
t−k

)
. Feeding this into the

expression for E[L2(G)] and some simple manipulations yield that

EP0 [L
2(G)] ≤ e

4t2

n
ν

(
m
t

)
t∑

k=0

(
t

k

)(
m− t
t− k

)
exp (2kν(1− 4t/n)) , (A.17)

where we remind the reader that t = s/2,m = n/2.

Recall from ğA.1.2.1 that if EP0 [L
2] < 3, then the risk exceeds 0.25. Thus, we will

aim to upper bound (A.17) by 3.

We begin by rewriting

EP0 [L
2(G)] ≤ e

4t2

n
ν

(
m
t

)
t∑

k=0

(
t

k

)(
m− t
t− k

)
exp (2kν(1− 4t/n)) , (A.18)

= e
4t2

n
ν
E[ξZ ], (A.19)

where ξ := exp (2ν(1− 4t/n)) > 1 and Z =
∑t

i=1 Zi, where Zi are sampled without

replacement from the collection of t (+1)s and m − t (0)s. Note that z 7→ ξz is

continuous and convex for ξ ≥ 1. By Theorem 4 of [Hoe63],

E[ξZ ] ≤ E[ξZ̃ ],

for Z̃ =
∑t

i=1 Z̃i, where Z̃i are drawn by sampling with replacement from the same

collection. But Z̃ is just a Binomial random variable with parameters (t, t/m). Thus,

we have that
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EP0 [L
2(G)] ≤ e

2t2

m
ν

(
1 +

t

m
(exp (2ν(1− 2t/m))− 1)

)t

(A.20)

≤ exp

(
2
t2

m
ν +

t2

m
(exp (2ν(1− 2t/m))− 1)

)
(A.21)

≤ exp

(
t2

m

(
2ν + e2ν − 1

))
(A.22)

≤ exp

(
2
t2

m

(
e2ν − 1

))
, (A.23)

where the final inequality uses u < eu − 1. Using the above, and noting that

m/2t2 = n/s2, we find that

ν ≤ 1

2
log

(
1 +

log(3)n

s2

)
=⇒ EP0 [L

2(G)] ≤ 3,

finishing the argument. □

A.1.2.3 Proof of the converse bound A.2

Recall that this part of the theorem claims that if RGof ≤ δ ≤ 1/4, then sΛ ≥
C log(1/δ).

We will again use Le Cam’s method (ğA.1.2.1), this time controlling the total

variation distance by a Hellinger bound.

Let x0 = ([1 : n/2], [n/2 + 1 : n]) be the null partition, and Y := {y}, with

y := ([1 : n/2− s/2]∪ [n/2+ 1 : n/2+ s/2], [n/2− s/2+ 1 : n/2]∪ [n/2+ s/2+ 1 : n]).

We let Px0(G) := P (G|x0), and similarly Py. Recall from the section on Le Cam’s

method that the following is a necessary condition for the risk to be smaller than δ

BC(Px0 , Py) ≤
√
2δ.

The Bhattacharya Coefficient can be estimated directly in this setting. (We omit the
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derivation below)

BC(Py, Px0) =

(√
ab

n2
+

√(
1− a

n

)(
1− b

n

))s(n−s)

(A.24)

For u, v < 3/4,

√
(1− u)(1− v) ≥ 1− (u+ v)/2− 2(u− v)2.

Thus

BC(Py, Px0) ≥
(
1− a+ b

2n
+
ab

n
− 2

(a− b)2
n2

)s(n−s)

(A.25)

=

(
1− (

√
a−
√
b)2

2n
− 2

(a− b)2
n2

)s(n−s)

(A.26)

≥
(
1− (

√
a−
√
b)2

n

)s(n−s)

(A.27)

≥ exp
(
−2s(√a−

√
b)2
)
, (A.28)

where the third inequality uses (a+ b) < n/4, and the final uses used 1− u ≥ e−2u

for 0 < u ≤ 0.75Ðwhich applies since 0 < (
√
a −
√
b)2 < max(a, b) < n/4Ðand

n− s ≤ n.

Now note that

(
√
a−
√
b)2 =

(a− b)2
(
√
a+
√
b)2
≤ (a− b)2

a+ b
= Λ,

and thus,

BC(Py, Px0) ≥ exp (−2sΛ) .
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Invoking the condition for RGoF ≤ δ above, we have

exp (−2sΛ) ≤
√
2δ

⇐⇒ sΛ ≥ 1

4
log

1

2δ
.

For δ ≤ 1/4, we may further lower bound the above by (log(1/δ))/8. □

A.1.3 A comment on the role of Λ when a/b ̸= Θ(1)

The main text concentrates on the setting where a/b is a constant. Here, we brieŕy

comment on the setting where the ratio ρ := max(a,b)
min(a,b)

is diverging with n. In the setting

of balanced communities and divergent ρ, the behaviour of the goodness-of-fit problem

is no longer described by the quantity Λ = (a−b)2

a+b
, but instead depends on

µ :=
(a− b)2
min(a, b)

.

Specifically, our proofs can, with minimal changes, be adapted to say that for balanced

GoF, RGoF can be solved with vanishing risk if the following hold:

sΛ = ω(1)

µ = ω(n/s2),

and further, to attain the same, it is necessary to have

sΛ = ω(1)

µ ≳ log(1 + n/s2).

Indeed, for the lower bounds, µ ≤ ν ≤ 4µ uniformly, where ν is the SNR quantity

in the previous section, and the upper bounds naturally feature µ.

Together, the above offer a tight characterisation of the GoF problem in the setting
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of balanced communities and large s. Note that µ/Λ = 1 + ρ diverges with ρ, and

thus the above indicate that GoF testing becomes much easier as this ratio blows up -

something to be expected.

Despite the above developments, we concentrated on the setting ρ = Θ(1) in the

main text. This is largely because the majority of the literature on the SBM focuses

on this regime, as this is the hardest setting for inference about the planted structure.

Thus, in order to compare to existing work, we examined the a ≍ b setting.

As an aside, we note that unlike the above GoF results, the TST results do not

alter in the setting of divergent ρ. Theorem 2.3.1, and in particular the converse bound

Λ ≳ 1, continues to hold for this setting.

On the whole, this line of work is still under investigation, particularly whether

the behaviour of GoF for large ρ continues to be driven by µ in the setting of small

changes. We plan to explore this question in later work.

A.2 Proofs omitted from section 2.3

A.2.1 Proof of Achievability in Theorem 2.3.1

Recall that the scheme in Algorithm 1 utilises a partial recovery routine. For the
purposes of the following argument, we invoke the method of [CRV15], which provides
a procedure that, under the conditions of the theorem, that attains with probability
at least 1− 1/n recovery with at most εmaxn errors, where εmax = min(1/2, 2e−CΛ) for
an explicit constant C. We choose Λ large enough so that εmax is bounded strictly
below 1/2 - for convenience, say by 1/3.

Let G′ ∼ P (·|x) be an independent copy of G, useful in the analysis, and recall
the definition of G̃, G1 from Algorithm 1. We define the following events that we will
condition on in the sequel:

E(G1) = {Number of edges in G1 ≤ an/2} E(x̂) = {d(x̂, x) ≤ εmaxn}

For succinctness, we let E := E(G1) ∩ E(x̂). The analysis proceeds in four steps:

(L1) Lemma A.2.1. P (E) ≥ 1− 4/3n.
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(L2) Lemma A.2.2.
∣∣∣E[2T x̂(G̃)− T x̂(G′) | E ]

∣∣∣ ≤ a2.

(L3) Lemma A.2.3. If d(x, y) ≥ s, then for κ := (1− 2εmax)
2 − 1/(n− 1),

E[T x̂(G′)− T x̂(H) | E ] ≥ κ
(a− b)
n

(n− s)s.

(L4) Lemma A.2.4. Let ξ := a2 + 5
√
2na log(6n). Then

PNull (T ≥ ξ|E) ≤ 2/3n

PAlt. (T ≤ κ(a− b)s/2− ξ|E) ≤ 4/3n

We brieŕy describe the functional roles of the above, and relegate their proofs to the
following sections.

(L1) allows us to make use of the typicality of G1 and the recovery guarantees of x̂.
The former is primarily useful for (L2), while the latter induces (L3).

(L2) lets us avoid the technical issues arising from the fact G̃ and G1, x̂ are correlated,
and allows us to work with the simpler G′. It also shows that under the null,
the mean of T is small. This lemma is likely loose, and introduces the nuisance
condition a ≤ n1/3.

(L3) shows that under the alternate, the centre of T linearly grows with s despite the
weak recovery procedure’s errors.

(L4) serves to control the ŕuctuations in T. The
√
n-level term arises from the random-

ness in G̃,H,G′, and the a2 term from our use of G′ and (L2).

Putting the above together, we find that the risk is bounded by 4/3n+2/3n+4/3n ≤
4/n if

κ(a− b)s ≥ 4(a2 + 5
√
2na log(6n)).

Since a2 = a3/2
√
a ≤ √na, and for Λ a large enough constant, εmax ≤ 1/3 =⇒

κ ≥ (1/3− 1/(n− 1))2 ≥ 1/36 for n ≥ 7, the above condition is equivalent to

(a− b)s ≥ C ′√na log(6n)

for a large enough C ′. Rearranging and squaring, this is equivalent to

(a− b)2
a

≳
n log(6n)

s2
.
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For s ≥ n1/2+c as in the statement, the quantity on the right hand side is decaying
with n. Further, Λ is smaller than the left hand side, so it being bigger than a constant
forces the above to hold.

Note that the threshold in Algorithm 1 alters the ŕuctuation range above from√
na to

√
n(a+ b). The reason for this is that this relaxation allows Algorithm 1 to

be agnostic to the knowledge of (a, b) - generic spectral clustering schemes do not
require this knowledge, and the threshold of our scheme depends only on n(a+ b),

which can be robustly estimated in our setting since the number of edges in the graph
is proportional to this. In addition, invoking the bounds of [CRV15] allows explicit
control on κ above, and thus provides an explicit value of the constant C in Algorithm
1.

A.2.1.1 Proof of Lemma A.2.1

We first note that by the work of [CRV15], or [FC19], under the conditions of the
theorem, E(x̂) holds with probability at least 1− 1/n. By a union bound, it suffices to
show that P (E(G1)) ≥ 1− 1

3n
. Recall that

P ((e, v) ∈ G1|x) =





a
2n

xu = xv
b
2n

xu ̸= xv,
(A.29)

and that edges are independent. Thus the number of edges in G1 is a sum of Bernoulli
random variables of parameter ≤ a/2n. The factor of 2 arises since G1 is sub-sampled
at rate 1/2. Let #G1 be the number of edges in G1. We have

E[#G1] ≤
(
n

2

)
a

2n
≤ na

4
(A.30)

P (#G1 ≥ E[#G1] +
√
na log(3n)) ≤ 1/3n, (A.31)

where the first bound follows from inspection, and the second follows from the
Bernstein upper tail bound of [CL06, Ch. 2] and the condition a ≥ 16 log(6n)/n.

Further invoking this condition we find that
√
na log(3n) ≤ na/4, and thus

P (E(G1)) = P (#G1 ≤ na/2) ≥ 1− 1

3n
.
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A.2.1.2 Proof of Lemma A.2.2

Let
cuv :=

(a+ b) + (a− b)xuxv
2

≤ a.

Recall that cuv/n is the probability under x of the edge (u, v) existing.
Also note that for a graph Γ and a partition z,

T z(Γ) =
∑

1≤u<v≤n

zuzvΓuv,

where Γuv := 1{(u, v) ∈ Γ}.
We’re interested in controlling

T = T x̂(G̃)− T x̂(G′) =
∑

x̂ux̂v(2G̃uv −G′
uv).

Since x̂ is a deterministic function of G1, G̃ is independent of x̂ given G1. Further, G′

is independent of (G1, G̃). Lastly observe that

P ((u, v) ∈ G̃ | G1) =
cuv/2n

1− cuv/2n
(1− (G1)uv).

As a consequence,

E[T | G1] =
∑

x̂ux̂v

(
2 · cuv/2n

1− cuv/2n
(1− (G1)uv)−

cuv
n

)
(A.32)

=
∑

x̂ux̂v
c2uv/2n

2

1− cuv/2n
−
∑

x̂ux̂v
cuv/n

1− cuv/2n
(G1)uv (A.33)

=⇒ |E[T | G1]| ≤
∑

u<v

c2uv/2n
2

1− cuv/2n
+
∑

u<v

cuv/n

1− cuv/2n
(G1)uv (A.34)

≤ a2/2n2

1− a/2n

(
n

2

)
+

a/n

1− a/2n#G1. (A.35)

where recall that #G1 is the number of edges in G1. Note that we may condition
on E , the occurrence of which is a deterministic function of G1. Since under E we have
#G1 ≤ an/2, we find that

|E[T | G1, E ]| ≤
1

1− a/2n

(
a2

2n2

n2

2
+
a

n

an

2

)
≤ a2, (A.36)
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where the final inequality uses that 1/(1 − a/2n) ≤ 4/3, which follows from a ≤
(n/2)1/3, and n ≥ 2.

Finally observe that the right hand side of the equation above does not depend on
G1. Thus, we may integrate over P (G1 | E) to find that

|E[T | E ]| ≤ a2.

Remark : This lemma is likely rather weak. In particular, the upper bound on
|E[T |G1]| completely ignores the relationship between x̂ & G1, and that between G1

& cuv. Indeed, (A.32) may also be rewritten as

E[T | G1] =
∑ cuv/n

1− cuv/2n
x̂ux̂v

(cuv
2n
− (G1)uv

)
.

Since (G1)uv ∼ Bern(cuv/2n), and x̂ is a clustering derived from G1, it may be possible
to control the above to something much smaller than a2. This may require nontrivial use
of the E(x̂) conditioning here, which is unused in the above argument. Unfortunately
it seems that such control would closely depend on the scheme used to obtain x̂, which
tend to be complex - most schemes involve non-trivial regularisation of G1, as well as
some amount of quantisation of the solution to an optimisation problem to produce x̂,
due to which the covariance of G1 and x̂ is difficult to understand. For completeness’
sake we point out that an upper bound on the same of O(a2/n) would remove the
nuisance condition of a ≤ n1/3 present in Theorem 2.3.1.

A.2.1.3 Proof of Lemma A.2.3

We proceed by first developing some intuition behind the proof of Lemma A.2.3
instead of launching straight into the same. Further, we assume throughout that
d(x, y) ≥ s.

Let

Incorrect := {u ∈ [1 : n] : x(u) ̸= x̂(u)}
Unchanged := {u ∈ [1 : n] : x(u) = y(u)}.

and the sets ‘Correct’ and ‘Changed’ be their respective complements. We show in
Appendix A.2.1.4 the following lemma
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Lemma A.2.5.

E[T x̂(G′)− T x̂(H) | x̂] = (a− b)
n

(
n(Unchanged)− 2n(Incorrect, Unchanged)

)

×
(
n(Changed)− 2n(Incorrect, Changed)

)
,

(A.37)

where

n(Unchanged) = |Unchanged|
n(Incorrect, Unchanged) = |Incorrect ∩ Unchanged|,

and the other terms are defined analogously.

Suppose n(Incorrect) = k. Due to the exchangability of the nodes when |{u :

x(u) = +}| = |{u : x(u) = −}|, the incorrectly labelled nodes in x̂ correspond to a
choice of k ∈ [0 : n/2] nodes picked without replacement from [1 : n] uniformly at
random. Further, since the changes made in y are chosen independently of the graphs,
they are independent of x̂. Thus, the number of correct and incorrect nodes changed
forms hypergeometric distribution. The expected number of Incorrect nodes changed
is precisely s

n
· k, where s is the number of changes made, and similarly for Incorrect

nodes unchanged.
Further invoking the results of [FC19], if Λ ≥ C log(1/εmax), then k ≤ εmaxn with

probability at least 1− 1/n. As a consequence, the bound in Lemma A.2.5 remains
large in magnitude even on integrating over the randomness in x̂. This was the subject
of Lemma A.2.3 from the text, reproduced below for convenience.

Lemma A.2.3

E[T x̂(G′)− T x̂(H) | E ] ≥
(
(1− 2εmax)

2 − 1

n− 1

)
(a− b)
n

(n− s)s,

the proof of which is the subject of Appendix A.2.1.5.

A.2.1.4 Proof of Lemma A.2.5

We will require explicit counting of a number of groups of nodes. Let us first define
them:
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Let

S++ := {u ∈ [1 : n] : x̂(u) = +1, x(u) = +1}, n++ := |S++|,
S+− := {u ∈ [1 : n] : x̂(u) = +1, x(u) = −1}, n+− := |S+−|,
S−− := {u ∈ [1 : n] : x̂(u) = −1, x(u) = −1}, n−− := |S−−|,
S−+ := {u ∈ [1 : n] : x̂(u) = −1, x(u) = +1}, n−+ := |S−+|.

The sets above encode the partitions induced by x̂ and x, with the first symbol in
the superscript denoting the label given by x̂. Observe that S+−, S−+ are the sets of
nodes mislabelled in x̂.

Lastly, for (i, j) ∈ {+,−}2, let

C i,j := S i,j ∩ {u ∈ [1 : n] : x(u) ̸= y(u)}
ni,j
C := |C i,j|

These are the nodes that change their labels in y. Note that the values of each of
the above objects is a function of x̂. For now we will fix x̂, and compute expectations
over the randomness in G′, H alone.

We first study Nw: N x̂
w(G) = N x̂

w(G[+]) +N x̂
w(G[−]), where G[+] is the induced

subgraph on the nodes {u ∈ [1 : n] : x̂(u) = +} and similarly G[−].
By simple counting arguments,

E[N x̂
w(G

′[+]) | x̂] =
(
n++ + n+−

2

)
a

n
− (a− b)

n
n++n+−. (A.38)

Under H, the nodes in C++ behave as if they were in S+− and those in C+− as if
they were in S++. Computations analogous to before lead to

E[N x̂
w(G

′[+])−N x̂
w(H[+]) | x̂] = a− b

n

(
(n++ − n++

C )− (n+− − n+−
C )
)
(n++

C − n+−
C )

(A.39)
By symmetry, we can obtain the above for G[−]s by toggling the group labels
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above. Thus, conditioned on a fixed x̂, we have

E[N x̂
w(G

′)−N x̂
w(H) | x̂] =(a− b)

n

( (
(n++ − n++

C )− (n+− − n+−
C )
)
(n++

C − n+−
C )

+
(
(n−− − n−−

C )− (n−+ − n−+
C )
)
(n−−

C − n−+
C )
)
.

(A.40)

Similar calculations can be performed for Na. Since in edges across the true
partitions, the edges in the same group appear with probability a/n and in different
groups with b/n, the roles of a and b will be exchanged in this case, leading to a factor
of +(a− b) instead of −(a− b). We will suppress the tedious computations, and simply
state that

E[N x̂
a (G

′)−N x̂
a (H) | x̂] =(a− b)

n

( (
(n++ − n++

C )− (n+− − n+−
C )
)
(n−−

C − n−+
C )

+
(
(n−− − n−−

C )− (n−+ − n−+
C )
)
(n++

C − n+−
C )
)
.

(A.41)

For convenience, we define

n(Correct, Unchanged) := (n++ + n−−)− (n++
C + n−−

C )

n(Correct, Changed) := (n++
C + n−−

C )

n(Incorrect, Unchanged) := (n+− + n−+)− (n+−
C + n−+

C )

n(Incorrect, Changed) := (n+−
C + n−+

C )

where ‘correctness’ corresponds to the nodes u such that x̂(u) = x(u), while
‘unchangedness’ to u such that x(u) = y(u).

Subtracting (A.41) from (A.40) then yields that for fixed x̂

E[T x̂(G′)− T x̂(H) | x̂] (A.42)

=
(a− b)
n

(
n(Correct, Unchanged)− n(Incorrect, Unchanged)

)

×
(
n(Correct, Changed)− n(Incorrect, Changed)

)
. (A.43)
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The lemma now follows on observing that

n(Unchanged) = n(Correct, Unchanged) + n(Incorrect, Unchanged),

and similarly n(Changed).

A.2.1.5 Proof of Lemma A.2.3

Effectively, we are considering the following process: we have a bag of n balls -
corresponding to the nodes - of two colours (types), Changed and Unchanged, and we
are picking k ≤ n/2 of them uniformly at random without replacement. Let

η1 := n(Unchanged, Incorrect) (A.44)

η2 := n(Changed, Incorrect) (A.45)

and

ζ :=(n(Unchanged)− 2n(Incorrect, Unchanged)) (A.46)

× (n(Changed)− 2n(Incorrect, Changed))

=(n− s− 2η1)(s− 2η2). (A.47)

We now condition on the number of errors being k, which imposes the condition
that η1 + η2 = k. Recall the sampling without replacement distribution, which implies
that

P (η1 = k − j, η2 = j | d(x̂, x) = k) =

(
n−s
k−j

)(
s
j

)
(
n
k

) . (A.48)

Thus,

E[η1|d(x, x̂) = k] =
k

n
(n− s)

E[η2|d(x, x̂) = k] =
k

n
(s)

E[η1η2|d(x, x̂) = k] = (n− s)(s)k(k − 1)

n(n− 1)
= s(n− s)

(
k2

n2
− k(n− k)
n2(n− 1)

)
.
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As a consequence, we obtain that

E[ζ|d(x, x̂) = k] = s(n− s)
(
1− 4

k

n
+ 4

k2

n2
− 4

k(n− k)
n2(n− 1)

)

= s(n− s)
((

1− 2
k

n

)2

− 4
k(n− k)
n2(n− 1)

)
(A.49)

Note that the above is decreasing as k increases for k ≤ n/2.

Note further that the Markov chain ζśd(x̂, x)śG1 holds. Thus the above also holds
for E[ζ | E(G1), d(x, x̂) = k].

We now condition on E(x̂) to find that

E[ζ | E(x̂), E(G1)]

s(n− s) ≥
(
(1− 2εmax)

2 − 4
εmax(1− εmax)

n− 1

)
(A.50)

≥ (1− 2εmax)
2 − 1

n− 1
(A.51)

where we have used εmax ≤ 1/2, and the (unstated but obvious) condition that
n ≥ 2.

Applying the above to the result of Lemma A.2.5, we find that

E[T x̂(G′)− T x̂(H) | E ] ≥
(
(1− 2εmax)

2 − 1

n− 1

)
(a− b)
n

(n− s)s.

A.2.1.6 Proof of Lemma A.2.4

Recall the notation from Appendix A.2.1.2. Under the null H law
= G′. Below, we will

use G′ as a proxy for H in the null distribution, and use H only in the alternate.
To begin with, observe that both G′, H are independent of G1, G̃, x̂, and that G̃ is

independent of x̂ given G1. Now, T x̂ is a signed sum of independent Bernoulli random
variables with parameters smaller than a/n given G1.. Thus, invoking results from
Ch. 2 of [CL06] (and using that for a ≥ C for some large enough C implies that
a ≥ 16 log(6n)/n ⇐⇒ 1/6n ≤ exp (−na/16))), we find that for Γ ∈ {G̃, G′, H},

P
(∣∣T x̂(Γ)− E[T x̂(Γ) | G1, E ]

∣∣ ≥
√

2na log(6n) | G1, E
)
≤ 1

3n
,

where we have used that E is determined given G1 (i.e. E lies in the sigma-algebra
generated by G1.)

We now control the null and alternate ŕuctuations given E .
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Null: By the union bound, we find that

P
(
2T x̂(G̃)− T x̂(G′) ≥ E[2T x̂(G̃)− T x̂(G′) | G1, E ] + 3

√
2na log(6n) | G1, E

)
≤ 2

3n
.

Recall from equation (A.36) from the proof of Lemma A.2.2 that E[2T x̂(G̃)−
T x̂(G′) | G1, E ] ≤ a2. Feeding this in, we find that

P
(
2T x̂(G̃)− T x̂(G′) ≥ a2 + 3

√
2na log(6n) | G1, E

)
≤ 2

3n
.

The right hand side above does no depend on G1, and neither does the ŕuctuation
radius wihtin the probability. Thus integrating over P (G1 | E), we find that

P
(
T ≥ a2 + 3

√
2na log(6n) | E

)
≤ 2

3n
,

where we have used that T = 2T x̂(G̃) − T x̂(H)
law
= T x̂(G̃) − T x̂(G′) under the

null.

Alt: Following the above development again, this time with lower tails, we find that
given G1 with probability at least 1− 2/3n,

2T x̂(G̃)− T x̂(G′) ≥ −(E[2T x̂(G̃)− T x̂(G′) | G1, E ])− 3
√

2na log(6n)

T x̂(G′)− T x̂(H) ≥ +(E[T x̂(G′)− T x̂(H) | G1, E ])− 2
√
2na log(6n)

Further, given (G1, E), by Lemmas A.2.2, A.2.3 we have

2T x̂(G̃)− T x̂(G′) ≥ −a2 − 3
√
2na log(6n)

T x̂(G′)− T x̂(H) ≥ +κ(a− b)s(1− s/n)− 2
√

2na log(6n),

where κ = (1 − 2εmax)
2 − 1/(n − 1). Adding the above, we find by the union

bound that

P

(
2T x̂(G̃)−T x̂(H) ≥ κ(a−b)s(1−s/n)−a2−5

√
2na log(6n) | G1, E

)
≥ 1− 4

3n
.

The claim follows on noting that the right hand side and the ŕuctuation radius
do not depend on G1, and integrating the inequality over G1.
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A.2.2 Proof of the converse bound from Theorem 2.3.1.

We restate the lower bound below as a proposition:

Proposition. There exists a universal constant C, and another c < 1 that depends on

C, such that if Λ ≤ C and s ≤ n
2
(1− c), then reliable two-sample testing of balanced

communities for s changes is impossible for large enough n.

In particular, for a + b < n/4, the statement holds with C = 1/8, c = 1/6 for

n ≥ 136, and in this case, RTST ≥ 0.25.

Proof. The proof proceeds by using a variation of Le Cam’s method, and importing
impossibility results for the so-called distinguishability problem [BMNN16]. In par-
ticular, suppose that in the null distribution, the communities are drawn according
to the uniform prior on balanced communities, denoted by π. Further, assume that
if a s-change is made, then the resulting community is chosen uniformly from all
communities that are at least s far from the null community. We have the hypothesis
test:

H0 : (G,H) ∼
∑

x∈B
πxP (G|x)P (H|x) vs H1 : (G,H) ∼

∑

x,y∈B
πxπy|xP (G|x)P (H|y),

where we use B to denote the set of balanced communities, and πy|x is the uniform
distribution on B ∩ {y : d(x, y) ≥ s}. For succinctness, let us denote the null and
alternate distributions above as pnull and palt respectively.

Once again, by Neyman-Pearson theory,

RTST ≥ Rπ ≥ 1− dTV(pnull, palt) ≥ 1− dTV(pnull, Q)− dTV(Q, palt),

where Q is any distribution, and the last inequality is since dTV is metric.
We choose Q to be the unstructured distribution induced by an Erdős-Rényi graph

of parameter (a+ b)/2n. The primary reason for this is that explicit control on the
total variation distance between pnull and Q is then available - for instance, by [WX18,
ğ3.1.2], we have

Dχ2(pnull∥Q) + 1 ≤ E

[
exp

(
τ

(
4H − n√

n

)2
)]

,
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where H is a Hypergeometric(n, n/2, n/2) random variable, and

τ =
(a− b)2
2n(a+ b)

+
(a− b)2

2n(2− a/n− b/n) .

Notice the extra factor of 2 compared to the expressions in [WX18], which arises since
we sum over two independent graphs G,H and not one. We observe that

τ = Λ
n

2n− a− b,

and explicitly, if a+ b ≤ n/4, then τ ≤ 4
7
Λ.

We now consider the alternate term. As a preliminary, let

γ :=

∑s−1
k=0

(
n/2
k/2

)2
(

n
n/2

) .

Note that γ is the probability that two balanced communities chosen independently and
uniformly, lie within distortion s. Indeed, since communities are formed by identifying
antipodal points in the boolean cube, the probability of picking a community at
distortion < s coincides with that of picking a balanced vector at Hamming distance
< s from a given balanced vector in the cube {0, 1}n. The denominator in γ is clearly
the number of balanced vectors in the cube, while the numerator is the number of
balanced vectors at a distance of < s from any given balanced vector - we choose
k < s, and choose k/2 points marked 1 and k/2 marked 0, and ŕip them all.

As a consequence, we find that for any x, y ∈ B,

πy|x ≤
πy

1− γ .
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Thus, in the χ2 expressions for palt, we have

E(G,H)∼Q⊗2

[(
palt
Q

)2
]

=
∑

x,y,x′,y′

E

[
P (G|x)P (G|x′)

Q2(G)

P (H|y)P (H|y′)
Q2(H)

]
πxπx′πy|xπy′|x′

≤ 1

(1− γ)2
∑

x,y,x′,y′

E

[
P (G|x)P (G|x′)

Q2(G)

P (H|y)P (H|y′)
Q2(H)

]
πxπx′πyπy′

=
1

(1− γ)2

(
1 + χ2(

∑

x∈B
πxP (G|x)∥Q(G))

)2

Since the final quantity is explicitly controlled in the cited section, we also have

1 +Dχ2(palt∥Q) ≤
1

(1− γ)2E
[
exp

(
τ

2

(
4H − n√

n

)2
)]2

≤ 1

(1− γ)2E
[
exp

(
τ

(
4H − n√

n

)2
)]

,

the final relation arising from Jensen’s inequality.
Since the quantity appears often, we let

β := E

[
exp

(
τ

(
4H − n√

n

)2
)]

.

Invoking the inequality dTV ≤
√

log(1 +Dχ2)/2, we find that

RTST ≥ 1−
√

log(β)/2−
√
log(β(1− γ)−2)/2 = 1−

√
log(β/(1− γ)).

Note that the only s-dependent term in the above bounds is γ. We first offer
control on the γ, and claim that for s/n < 1/2, γ → 0. Indeed, since s ≤ n/2, and by
standard refinements of Stirling’s approximation (for instance, we use [Gal68, Exercise
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5.8] below),

γ ≤ s

(
n/2
s/2

)2
(

n
n/2

) ≤ s
1

2π

n/2

s/2(n− s)/22
nh2(s/n)

(√
n

8(n/2)2
2n
)−1

≤
√

2n

π2
2−n(1−h2(s/n)),

where h2 is binary entropy in bits.
At this point the argument in the limit as n → ∞ is complete - since 4(H −

n)/
√
2n

Law→ N (0, 1), β is bounded as n→∞ by
√
1− 2τ if τ < 1/2, and since in this

limit τ → Λ/2 (for a, b = o(n)), we obtain that if lim sup s/n < 1/2, and Λ < 1, then
lim inf RTST > 0.

Non-asymptotic bounds can be recovered by giving up space on the constants,
leading to the statement we have claimed.

Concretely, to attain RTST > 1/4, it suffice to show that β(1− γ)−1 < e9/16. Now,
for s < n/3, we have

(1− γ)e9/16 ≥
(
1−

√
2n/π22−0.08n

)
e9/16 > 1.75

for n ≥ 136.2 Thus, it suffices to control β to below 1.75 in this regime. To this
end, note that u 7→ exp (τ((4u− n)/√n)2) is a continuous, convex map, and thus, by
[Hoe63, Thm. 4],

β ≤ E

[
exp

(
τ

(
4B − n√

n

)2
)]

,

where B ∼ Bin(n/2, 1/2).

2This is calculated using a computer algebra system. Analytically it is still easy to argue something
similar - for, say, n ≥ 10000, the expression is at least

√
e ∗ 0.99 > 1.4, continuing along which leads

to an analytic proof of the conclusion holding for Λ < 1/16 by following the next footnote.
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By Chernoff’s bound, P (|B − n/4| ≥ √nu) ≤ 2e−4u2
, and thus, we have

β ≤
∞∫

0

P

(
exp

(
τ

(
4B − n√

n

)2
)
≥ u

)
du

≤
∞∫

0

min(1, 2u−1/4τ ) dτ

=
24τ

1− 4τ
,

the final equality holding so long as 1/4τ > 1 ⇐⇒ τ < 1/4. The original claim
follows if

24τ

1− 4τ
≤ 7

4
,

which is true for τ < 0.074. Since τ ≤ 4/7Λ,Λ < 1/8 implies that τ < 4/56 <

0.072.3

A couple of quick comments are useful here:

1. Note that the above cannot be applied usefully to GoF. This is because in GoF,

the null is explicitly available, and we do not have the benefit of averaging with

π in the TV expressions. This causes the equivalent term χ2(P (G|x0)∥Q(G)) to

grow exponentially with nΛ.

2. The above characterises the tightness of our claimed bounds for TST of large

changes - the method works if Λ = Ω(1) and s≫ √n log n, and by the above

argument, no test can work if Λ ≪ 1, as long as the change is not extreme

(lim sup s/n < 1/2 ).

3. While the above approach is wasteful in how it utilises s, this is actually a

non-issue, since the bounds require a separate control on dTV(pnull∥Q), which

3The number 0.074 is calculated using a computer algebra system. Purely analytic calculations
are straightforward as well - for example by using 24τ ≤ 1 + 4τ for τ < 1/4, which can be proved by
noting that 1 + 4τ − 24τ is initially increasing, and then strictly decreasing after a point, and that
1/4 is a root of this function. This implies that the conclusion holds so long as τ < 3/44, which hold
if Λ < 21/176 ≈ 0.119.
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can only be controlled if Λ = O(1). In particular, we cannot pull out better

bounds for the small s situation from the above.

A.3 Experimental Details

A.3.1 Experiments on SBMs

The experiemnts simulate an ensemble of GoF and TST test and evaluate the per-

formance of the two schemes using the sum of false alarm and missed detection

probabilities (FA+MD).

While the GoF scheme is implemented precisely as in the main text, the experiments

use a slightly modified version of Algorithm 1 for the TST:

(i) G1 subsamples G at a rate η, and the test statistic T is appropriately modified:

T := 1
1−η

T x̂1(G̃)− T x̂1(H). Intrinsically, the spectral clustering step is the more

singal-sensitive part of the scheme 1. While splitting the graphs equally is

fine for theoretical results, it is better in practice to devote more SNR to the

clustering step, and less to compute the test statistic, which can be done by

increasing η. In the following, we set η = 0.85. Other values of η are explored in

Appendix A.3.1.2.

(ii) The constant factor in the threshold developed in the test is conservative, and

we vary it to adjust for different values of η and to mitigate its suboptimality.

In the experiments, we used the threshold 3
4

√
n(a+ b) log(6n).

As noted in the main text, the experiments are performed for various (s,Λ) for a

fixed value of a/b = 3. Λ is varied between Λ0 and 10Λ0 for Λ0 = 3/4log(n/100) ≈ 1.7.

This is significantly below the theoretical threshold of 2 necessary for non-trivial

recovery. Further, 8Λ0 = 2 log(n), at which point recovery with constant order

distortion becomes viable.
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A.3.1.1 Implementation details

The experiment is setup as follows:

1. We fix a value of Λ0 = 3/4 log(n/100) as above. Then, for some choice of b/a = r,

we choose (a, b) satisfying Λ = αΛ0 and α ∈ [1, 10]. r is set to be 1/3.

2. For a fixed number of nodes, n, and for s ∈ [1 : n/2], we consider the balanced

partition x = [xi]
n
i=1 with

xi =





0, 0 ≤ i ≤ n/2

1, n/2 < i ≤ n

for the null distribution, and the shifted balanced partition y = [yi]
n
i=1 with

yi =





0, s/2 < i ≤ n/2 + s/2

1, i ∈ (n/2, n] ∪ [0, s/2]

for the alternate distribution. This ensures that d(x, y) = s. We take ⌊·⌋
whenever s or n are odd.

3. We sample G,G′ ∼ P (· | x) and H ∼ P (· | y), where P represents drawing from

an SBM with parameters n, a and b, as described in ğ2.1

GoF procedure. Recall that we are given a proposed partition x0. Here we set

x0 = x. The results of running the tests on the graph G then serve to characterise

size, and those on H serve to characterise power.

1. For the naïve scheme, we produce partitions x̂ and ŷ from G and H respectively

via spectral clustering (see below for details), and declare for null in either case

if d(x0, z) < s/2, where z is respectively x̂ and ŷ.
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2. For the alternate scheme, we instead compute the statistic from ğ2.2, and reject

on the basis of the threshold developed there.

TST procedure. Similarly to the above, runs on the pair (G,G′) serve to charac-

terise size, and on (G,H) serve to characterise power of the test. Precisely:

1. For the naïve two-sample test based on recovery and comparison, we estimate

x̂, x̂′ and ŷ from G, G′ and H respectively. The structure is estimated using

spectral clustering (see below for implementation details). We declare that a

change has occurred if d(x̂, x̂′) ≥ s/2, and no change if d(x̂, ŷ) < s/2. We get a

false alarm every time we declare a change on the pair (G,G′), and we miss a

detection whenever we declare no change on the pair (G,H). The false alarm

and missed detection probabilities are estimated as an average over M = 100

samples.

2. For the two-sample test based on Algorithm 1, we follow the algorithm as stated,

making only the modifications previously described. To be precise, we estimate

x̂1 from G1, a subsampling of (the edges of) G at rate η. Then, we compute the

test statistics in the null and alternate distributions:

TNull =
1

1− ηT
x̂1(G̃)− T x̂1(G′)

and

TAlt. =
1

1− ηT
x̂1(G̃)− T x̂1(H),

where G̃ = G−G1.

In both the above cases, the simulations are performed over a range of Λ = αΛ0

and s, where α ∈ [1, 10] and s ∈ (0, 250). Performance is indicated using the sum of

false alarm and missed detection rates.
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Details associated with the implementation of the aforementioned schemes are

given below:

1. All experiments were implemented in the Python language (v3.5+), using the

Numpy (v1.12+) and Scipy (v0.18+) packages [Oli06; JOP01].

2. Structure learning was performed using the Spectral Clustering [vLux07] algo-

rithm, as implemented by the Scikit-learn package (v0.19.1+) [Ped+11].

3. Spectral Clustering was regularized in the manner suggested by [JY16]. Effec-

tively, if G was the adjacency matrix to be submitted to the Scikit-learn spectral

clustering function, we performed pre-addition, and instead passed G+ τ11⊤.

We set τ = 1
10n

, which proved sufficient to run the spectral clustering function

with no errors or warnings.

4. All plots were generated using Matplotlib (v2.1+) [Hun07].

A.3.1.2 Modifications to η

For completeness, we demonstrate how the performance of the modified two-sample

test based on Algorithm 1 varies as η is changed. Figure A·2 compares the naïve

two-sample test against the scheme based on Algorithm 1, for three different values of

η: 0.7, 0.8 and 0.9.

We use the following parameters: n = 500, SNR0 =
3
8
log(n/100) = 3

8
log 5 ≈ 0.5,

b
a
= r = 1/3. For η = 0.7 and η = 0.8, the threshold used is

√
n(a+ b) log(6n), while

for η = 0.9, we used a higher threshold of 3
2

√
n(a+ b) log(6n).

While differences are rather subtle, a careful examination may reveal that as η

increases, the failure region recedes, while the success region advances in the high-s,

low-SNR regime. However, the cost of this is an increased threshold to maintain
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success at δ = 0.1, and a wider transition region, indicating that different η might be

optimal at different n.

A.3.2 Experiments on the Political Blogs dataset

While the original graph has 1490 nodes, we followed standard practice in selecting the

largest (weakly) connected component of the graph, which contains 1222 nodes. We

denote this graph as G.The true partition of the blogs according to political leaning

is available, denoted xTrue here. This also allows accurate estimates of the graph

parameters (a, b) to be made, and we use these estimates for a, b for GoF, and for the

semi-synthetic procedure for TST. We found that â ≈ 49.5, while b̂ ≈ 5.2, giving a

ratio a/b ≈ 10. The communities, according to xTrue are of sizes 636 and 586.

The regime of low Λ is explored via sparsification. Fixing a ρ ∈ (0, 1], sparsification

is performed by independently ŕipping coins for each edge in G, and keeping the edge

with probability ρ. We refer to ρ as the rate of sparsification.

We lastly note that at no sparsification (ρ = 1), spectral clustering produces a

partition x̂1 such that d(xTrue, x̂1) = 56.

GoF Procedure.

1. The graph is sparsified at rate ρ. Let the sparsened graph be Gρ.

2. For the naïve recovery based scheme, spectral clustering is performed on Gρ as

in the previous section to generate x̂ρ.

3. For the proposed test from ğ2.2, the statistic is computed on Gρ.

4. The size of the test is estimated by running the GoF tests with x0 = xTrue. For

the naïve scheme, we reject if d(x̂ρ, x0) ≥ s/2; for the proposed scheme, we use

the test from ğ2.2.
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5. To compute the power at distortion s, we first generate y by randomly inverting

the community labels of s nodes in xTrue. We then run the same procedure as in

the previous line, but with x0 = y. Note that the graphs are not edited in any

way.

6. The precise implementation details are exactly as in Appendix A.3.1.1, with the

minor difference that we use a regularizer of τ = 1 for spectral clustering.

TST Proceudre.

1. Recall that TST requires two graphs as input. The experiment compares the

political blogs graph against SBMs.

2. To compute the size, we require a graph with the same underlying communities

as G. Thus we generate G′, which is drawn as an SBM with the underlying

partition xTrue, and parameters a, b as estimated from the political blogs graph

G.

3. To determine the power of the tests we need a graph with an s-far underlying

community. For this, we first generate a y such that d(xTrue, y) = s, as we did in

the GoF Procedure. Next, we sample H as an SBM with underlying partition y.

4. The graphs G, G′ and H are now all sparsified at rate ρ to get Gρ, G′
ρ and Hρ.

5. The size of each test is estimated using the TST procedures, as described in

Appendix A.3.1.1 on the pair (Gρ, G
′
ρ). Power is similarly estimated using the

TST procedures on the pair (Gρ, Hρ).

A.3.3 Experiments on the GMRFs

Following the heuristic detailed in ğ2.4.3, we naïvely generalise community recovery

and testing to this setting, by replacing all instances of the graph adjacency matrix in
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previous settings with the sample covariance matrix.

The Gaussian Markov Random Field is described by its precision matrix Θ (i.e., the

inverse covariance matrix of the Gaussian random vector on its nodes). We perform a

preliminary examination of the possibility of testing changes in communities for an

SBM-structured GMRF even when learning the structure is hard or impossible. As

described in Section 2.4.3, we set

Θ = I + γG,

where G is the adjacency matrix of an SBM with known parameters. We generate

samples from the GMRF as follows:

1. For a fixed number of nodes n, we fix an SNR for the SBM, Λ, and compute

(a, b) satisfying this Λ so that b/a = r.

2. Here, we consider n = 1000 nodes and take Λ = 30Λ0, where Λ0 =
10
11
log( n

100
) ≈

2.1, as before, and r = 1/10. We find that (a, b) ≈ (12.34 log n, 1.234 log n).

Note that since Λ ≈ 63 ≈ 10 log(n), recovery of the communities for a raw SBM

at this SNR is trivial.

3. We fix a GMRF parameter γ. Here, we take γ = 3/(a+ b) ≈ 0.032.

4. We can now construct the precision matrix Θ after sampling G from the SBM.

We re-sample to ensure that Θ is positive-definite, but in practice, for the value

of γ quoted above, we did not encounter the need to re-sample.

5. To generate i.i.d. samples ζ ∼ N (0,Θ−1) in a stable manner, we use the following

algorithm:

(a) Compute the lower-triangular Cholesky factor R of Θ, so that Θ = RR⊤.
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(b) Sample ξ ∼ N (0, I) from a standard n-dimensional multivariate normal

distribution.

(c) Solve for ζ in R⊤ζ = ξ.

This suffices, since, ζ = (R⊤)−1ξ would then have the covariance matrix

(R⊤)−1R−1 = (RR⊤)−1 = Θ−1.

6. In this manner, we generate samples from the null and alternate distributions:

let ζ, ζ ′ and υ respectively denote samples drawn from a GMRF structured

using G, G′ and H respectively. Here, G, G′ and H exactly are as described in

Section A.3.1.1.

Next, we describe how each of the two schemes is evaluated:

1. Assuming we have t i.i.d. samples of ζ, generated as described above, we estimate

the covariance matrix Σ̂ of ζ using the standard estimator:

Σ̂ =
1

t− 1

t∑

i=1

(ζi − ζ̄)(ζi − ζ̄)⊤,

where ζ̄ = 1
t

∑t
i=1 ζi. We then compute the correlation matrix,

Ĉ : Ĉij =
Σ̂ij√
Σ̂iiΣ̂jj

,

which will be used in place of the adjacency matrix for both two-sample testing

schemes.

2. Similarly, we compute Ĉ, Ĉ ′ and D̂ from ζ, ζ ′ and υ respectively.

3. The naïve two-sample test based on recovery and comparison is evaluated exactly

as described in Section A.3.1.1, except that Ĉ, Ĉ ′ and D̂ are used in place of G,

G′ and H respectively. False alarm and missed detection rates are also computed

in exactly the same way.
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4. The two-sample test based on Algorithm 1 has several important variations:

(a) We use the test statistics

TNull = T x̂(Ĉ)− T x̂(Ĉ ′)

TAlt. = T x̂(Ĉ)− T x̂(D̂),

for the null and alternate distributions respectively. Here, x̂ has been

estimated from Ĉ.

(b) The threshold for the test is estimated from data. That is, we simulate M =

100 samples of TNull and TAlt. each, and fit a classifier to differentiate between

the two distributions. The classifier used is a simplistic 1-dimensional Linear

Discriminant Analysis.

(c) We estimate false alarm and missed detection rates by applying the classifier

to a hold-out dataset. To use the data as efficiently as possible, we use

10-fold repeated, stratified cross-validation, with 10 repetitions.

Remark on subsampling.

1. Note that in the two-sample test for GMRFs based on Algorithm 1, we do not

subsample Ĉ as we did before in the case of SBMs.

2. While previously, we had subsampled G to create two subgraphs G1 and G̃

that shared independence properties for ease of theoretical analysis, it should

be noted that subsampling results in an effective loss of SNR. This is also the

reason why we had to adjust the implementation using a different rate η.

3. However, it emerges empirically that skipping the subsampling entirely, with a

completely dependent x̂ and G, makes for better separation between the null

and alternate distributions, providing a more powerful statistic.
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4. Since we could not analytically derive a threshold for this statistic, we presented

the subsampled test statistic for the first experiment.

5. Since in the case of GMRFs, we are estimating the threshold from data, we use

the more powerful test statistic to show the full extent of possible gains when

using a dedicated algorithm for change detection, instead of naïvely looking for

changes by learning community structures first.
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(a) Naïve two-sample test based on structure
learning
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(b) Two-sample test based on Algorithm 1
for η = 0.7

1 2 3 4 5 6 7 8 9 10
SNR/SNR0

50

100

150

200

250

Di
st
or
tio

n,
 s

TST with T= (1/1− η)T x̂1(G̃)− T x̂1(H): FA+MD

(n=500,M=100, η=0.8, δ=0.1)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Two-sample test based on Algorithm 1
for η = 0.8
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(d) Two-sample test based on Algorithm 1
for η = 0.9

Figure A·2: A comparison between the naïve two-sample test based on
structure learning, and the two-sample test we propose in Algorithm 1,
for η ∈ {0.7, 0.8, 0.9}. Error rates lower than δ = 0.1 have been shaded
blue to represent “successž, while those higher than 1 − δ = 0.9 have
been shaded orange to represent “failurež.



185

Appendix B

Appendix to Chapter 3

B.1 Appendix to §3.2

B.1.1 Proof of Ordering of Sample Complexities

The proposition is argued by direct reductions showing how a solver of a harder

problem can be used to solve a simpler problem. The main feature of the definitions

that allows this is that the risks of SL and EoF are defined in terms of a probability

of error.

Proof of Proposition 3.2.1.

Reducing EoF to SL: Suppose we have a (s− 1/2)-approximate structure learner
with risk δ that uses n samples. Then we can construct the following EoF estimator
with the same sample costs. Take a dataset from Q⊗n, and pass it to the structure
learner. With probability at least 1− δ, this gives a graph Ĝ that is at most ⌊s/2⌋-
separated from G(Q). Now compute G(P )△Ĝ (G(P ) is determined because P is
given to the EoF tester). By the triangle inequality applied to the adjacency matrices
of the graphs under the Hamming metric, this identifies G(P )△G(Q) up to an error
of (s− 1)/2, and so, the EoF risk incurred is also δ. Taking δ = 1/8 concludes the
argument.

Reducing GoF to EoF : Suppose we have a s-EoF solver that uses n samples with
risk δ. Again, take a dataset from Q⊗n, and pass it to the EoF solver, along with P .
With probability at least 1− δ, this yields a graph Ĝ such that |Ĝ△(G(P )△G(Q)| ≤
(s− 1)/2. But then, if G(Q) = G(P ), Ĝ can have at most (s− 1)/2 edges, while if
|G(P )△G(Q)| ≥ s, then Ĝ must have at least (s + 1)/2 edges. Thus, thresholding
on the basis of the number of edges in Ĝ produces a GoF tester with both null and
alternate risk controlled by δ, or total risk 2δ. Taking δ = 1/8 then finishes the
argument.
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B.1.2 Proof of Upper Bound on nSL

This proof is essentially constructed by slightly improving upon the proof of [SW12,

Thm 3a)] due to Santhanam & Wainwright, which analyses the maximum likelihood

scheme. We use notation from that paper below.

Proof of Theorem 3.2.2. [SW12] shows, in Lemmas 3 and 4, that if the data is drawn
from an Ising model P ∈ Id, and Q ∈ Id is such that G(P )△G(Q) = ℓ, then

P⊗n(L (P ) ≤ L (Q)) ≤ exp (−nℓκ/8d) ,

where L (P ) denotes the likelihood of P, i.e. if the samples are denoted {X(k)}k∈[1:n],
then L (P ) =

∏n
k=1 P (X

(k)), and

κ = (3e2βd + 1)−1 sinh2(α/4) ≥ sinh2(α/2)

4e2βd
.

Now, for the max-likelihood scheme to make an error in approximate recovery, it
must make an error of at least s - i.e., an error occurs only if L (Q) ≥ L (P ) for some
Q with G(Q)△G(P ) ≥ s. Union bounding this as Pg. 4129 of [SW12], we may control
this as

P (err) ≤
pd∑

ℓ=s

((p
2

)

ℓ

)
exp (−nℓκ/8d)

≤
pd∑

ℓ=s

exp

(
ℓ

(
log

ep2

2ℓ
− nκ/8d

))

≤
pd∑

ℓ=s

exp

(
ℓ

(
log

ep2

2s
− nκ/8d

))
.

Now, if nκ/8d ≥ 2 log ep2/2s = 2 log p2/s + 2(1− log(2)), and if exp (−nsκ/8d) ≤ 1/2

then the above is bounded as 2 exp (−nsκ/8d), which can be driven lower than any δ
by increasing n by an O(s−1 log(2/δ)) additive factor. It follows that

nSL(s, I) ≤
16d

κ

(
log

p2

s
+ 2 +O(1/s)

)
,

and the claim follows by expanding out the value of κ.
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B.2 Appendix to §3.3

B.2.1 Expanded Proof Technique

This section expands upon ğ3.3.1 in the main text, including a treatment of the

method used for EoF lower bounds, giving an expanded version of Lemma 3.3.4, and

a theorem collating the resulting method to construct bounds. Some of the text from

ğ3.3.1 is repeated for the sake of ŕow of the presentation.

As discussed previously, the proofs proceed by explicitly constructing distributions

with differing network structures that are statistically hard to distinguish. In particular,

we measure hardness by the χ2-divergence. We begin with some notation.

Definition A s-change ensemble in I is a distribution P and a set of distributions

Q, denoted (P,Q), such that P ∈ I, Q ⊆ I, and for every Q ∈ Q, it holds that

|G(P )△G(Q)| ≥ s.

Each of the testing bounds we show will involve a mixture of n-fold distributions

over a class of distributions. For succinctness, we define the following symbol.

Definition For a set of distributions Q and a natural number n, we define the mixture

⟨Q⊗n⟩ := 1

|Q|
∑

Q∈Q
Q⊗n.

Consider the case of GoF testing, with the known distribution P . Suppose we

provide the tester with the additional information that the dataset is drawn either

from P, or from a distribution picked uniformly at random from Q, where (P,Q) for

a s-change ensemble. Clearly, the Bayes risk suffered by any tester with this side

information must be lower than the minimax risk of GoF testing. The advantage

of this formulation is that the risks of these tests with the side information can be

lower bounded by standard techniques - basically the Neyman-Pearson Lemma. The

following generic bound, which is Le Cam’s two point method [Yu97; IS12] captures

this.
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Lemma B.2.1. (Le Cam’s Method)

RGoF(n, s, I) ≥ sup
(P,Q)

1− dTV(⟨Q⊗n⟩, P⊗n) ≥ sup
(P,Q)

1−
√

1

2
log(1 + χ2(⟨Q⊗n⟩∥P⊗n)),

where the supremum is over s-change ensembles in I.

Above, χ2(·∥·) is the χ2-divergence, which is defined for distributions P,Q as

follows

χ2(Q∥P ) :=





EP

[(
dQ

dP

)2
]
− 1 if Q≪ P

∞ if Q ̸≪ P

.

Note that generally the method is only stated as the first bound, and the second is a

generic bound on the total variation divergence which follows from Pinsker’s inequality

and the monotonicity of Rényi divergences. The χ2-divergence is invoked becuase it

yields a twofold advantage in that it both tensorises well, and behaves well under

mixtures such as ⟨Q⊗n⟩ above.

For the EoF bounds, more care is needed. Recall that the EoF problem only

requires errors smaller than s/2. To address this, we introduce the following.

Definition An (s′, s)-packing change ensemble is an s-change ensemble (P,Q) such

that Q is an s′-packing under the Hamming metric on network structures, that is, for

every Q,Q′ ∈ Q, |G(Q)△G(Q′)| ≥ s′.

Clearly, if one can solve the EoF problem, one can exactly recover the structures in

a (s/2, s)-packing change ensemble. Thus, the following lower bound of Guntuboyina

is applicable.

Lemma B.2.2. [Gun11, Example II.5]

REoF(n, s, I) ≥ sup
(P,Q)

1− 1

|Q| −
√∑

Q∈Q χ
2(Q∥P )

|Q|2 ,

where the supremum is taken over (s/2, s)-packing change ensembles in I.
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Note that [Gun11] shows a number of lower bounds of the above form. We use

the χ2-divergence here primarily for parsimony of effort, in that the bounds on χ2-

divergences we construct for the GoF setting can easily extended to the EoF case via

the above.

Our task is now greatly simplified - we merely have to construct change ensembles

such that |Q| is large, and χ2(Q∥P ) is small for every Q ∈ P. Since it is difficult to

directly construct large degree bounded graphs with tractable distributions, we will

instead provide constructions on a small number of nodes, and lift these up to the

whole p nodes by the following lemma.

Lemma B.2.3. (Lifting) Let P0 and Q0 be Ising models with degree ≤ d on ν ≤ p

nodes such that |G(P0)△G(Q0)| = σ, and χ2(Q⊗n
0 ∥P⊗n

0 ) ≤ an. Let m := ⌊p/ν⌋. For

1 ≤ t < m/16e, there exists a tσ-change ensemble (P,Q) over p nodes such that

|Q| =
(
m
t

)
and

χ2(⟨Q⊗n⟩∥P⊗n) ≤ 1(
m
t

)
t∑

k=0

(
t

k

)(
m− t
t− k

)
((1 + an)

k − 1) ≤ exp

(
t2

m
an

)
− 1.

Further, there exists a (tσ/2, tσ)-packing change ensemble (P, Q̃) over p nodes such

that

|Q̃| ≥ 2

t

( m
8et

)t/2

and

∀Q ∈ Q̃, χ2(Q⊗n∥P⊗n) ≤ (1 + an)
t − 1.

We note that the proof of the above lemma constructs explicit change ensembles.

We will abuse terminology and refer to the change ensemble or the packing change

ensemble of Lemma B.2.3.

The above Lemma requires control on n-fold products of two distributions. However,

since the χ2-divergence is conducive to tensorisation, control for n = 1 is usually

sufficient. The statement below captures this fact and gives an end to end lower bound

on this basis. The statement amounts to collating the various facts described in this
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section.

Theorem B.2.4. Let P0 and Q0 be as in Lemma B.2.3, and further such that

χ2(Q0∥P0) ≤ κ. Then for 1 ≤ t < m/16e, where m = ⌊p/ν⌋,

nGoF(tσ, Id) ≥
1

2 log(1 + κ)
log
(
1 +

m

t2

)
,

nEoF(tσ, Id) ≥
1

2 log(1 + κ)
log
( m

4000t

)
.

The 4000 in the above can be improved under mild assumptions, such as if t ≥ 8,

but we do not pursue this further. We conclude this section with proofs of the main

claims above.

B.2.1.1 Proof of Lifting Lemma

Proof of Lemma B.2.3. Let G0, H0 be the network structures underlying P0, Q0, and
A0, B0 be the weight matrices of G0, H0. Recall that these are graphs on ν nodes.
Partition [1 : p] into m+1 pieces (π1, π2, . . . , πm) = ([1 : ν], [ν+1 : 2ν], . . . [(m−1)ν+1 :

mν]) and πm+1 = [mν + 1 : p], the last one being possibly empty. We may place a
copy of G0 on each of the first m parts, and leave the final graph disconnected to
obtain a graph G with the block diagonal weight matrix diag(A0, A0, . . . , A0, 0). We
let P be the Ising model on G. For any vector v ∈ {0, 1}m of weight t, let Qv be the
graph which places a copy of B0 on πi for all i : vi = 1, and A0 as before otherwise.
Note the block independence across parts of π induced by this. Concretely, we have

P (X = x) =
m∏

i=1

P0(Xπi
= xπi

) · 2−|πm+1|,

Qv(X = x) = P (X = x) ·
∏

i:vi=1

Q0(Xπi
= xπi

)

P0(Xπi
= xπi

)
.

Now, let Vt be the t-weighted section of the cube {0, 1}m, and V ′
t be a maximal

t/2 packing of Vt.
We let Q := {Qv,v ∈ Vt} and Q′ := {Qv,v ∈ V ′

t}. Since (P0, Q0) had symmetric
difference σ, and since we introduce t differences of this form in Q, (P,Q) forms a
tσ-change ensemble. Further, Q′ inherits the packing structure of V ′

t, (P,Q′) forms
a (tσ/2, tσ)-packing change ensemble. Next note that |Q| =

(
m
t

)
trivially. Further,
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since |Q|′ = |Vt|, it suffices to lower bound the latter to show that Q is as big as
claimed. Since V ′

t is maximal, its cardinality must exceed the t/2-covering number of
the t-section of the cube. But then, by a volume argument,

|V ′
t| ≥

(
m
t

)
∑t/2

k=0

(
t
k

)(
m−t
k

) ≥
(
m
t

)

(t/2)2t
(
m
t/2

) ≥ 2

t

(m
t

)t
2−t

(
2em

t

)−t/2

=
2

t

( m
8et

)t/2

where we have used t ≤ m/4.

Next, note that for any Qv ∈ Q, and hence any Qv ∈ Q′, we have

1 + χ2(Q⊗n∥P⊗n) = EP⊗n

∏

vi=1

Q⊗n
0

P⊗n
0

(Xn
πi
) =

(
1 + χ2(Q⊗n

0 ∥P⊗n)
)t
.

Finally,

1 + χ2(⟨Q⊗n⟩∥P⊗n) =
1

|Q|2
∑

v,v′∈Vt

EP⊗n

[
Q⊗n

v Q⊗n
v′

(P⊗n)2
(Xn)

]

=
1
(
m
t

)2
∑

v,v′∈Vt

∏

i:vi=v′
i=1

EP⊗n
0

[
(Q⊗n

0 )2

(P⊗n
0 )2

(Xn
πi
)

]

≤ 1
(
m
t

)2
∑

v,v′∈Vt

(1 + an)
|{i:vi=v′

i=1}|

=
1(
m
t

)
t∑

j=0

(
t

j

)(
m− t
t− j

)
(1 + an)

j.

Finally, note that the final expression can be written as E[(1 + an)
H ] where H ∼

Hyp(m, t, t). Since hypergeometric random variables are stochastically dominated by
the corresponding binomial random variables, we may upper bound the above by the
moment generating function of a Bin(t, t/m) random variable at (1 + an) to yield that

1 + χ2(⟨Q⊗n⟩∥P⊗n) ≤ (1 + (t/m)((1 + an)− 1))t ≤ exp

(
t2

m
an

)
.

B.2.1.2 Proof of Theorem B.2.4

Proof. It is a classical fact that the χ2-divergence tensorises as

χ2(Q⊗n
0 ∥P⊗n

0 ) = (1 + χ2(Q0∥P0))
n − 1.
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The reason for this is that due to independence, 1 + χ2(Q⊗n
0 ∥P⊗n

0 ) amounts to a
product of second moments of relative likelihoods (Q/P ) of iid samples.

Thus, since χ2(Q0∥P0) ≤ κ, we may set an = (1 + κ)n − 1 in Lemma B.2.3. Now,
by LeCam’s method (Lemma B.2.1), we know that if RGoF(tσ) < 1/4 for a given n,
then using ensemble from Lemma B.2.3, it must hold that

1

4
≥ 1−

√
1

2
log

(
1 + exp

(
t2

m
an

)
− 1

)

⇐⇒ an ≥ 2(3/4)2
m

t2

=⇒ (1 + κ)n − 1 ≥ m

t2

⇐⇒ n ≥ 1

log(1 + κ)
log
(
1 +

m

t2

)

Thus, the smallest n for which we can test tσ-changes in Id must exceed the above
lower bound, giving the stated claim.

The EoF claim follows similarly. Using the packing change ensemble from Lemma
B.2.3, and the lower bound Lemma B.2.2, if the risk is at most 1/4 for some n, then
we find that

1

4
≥ 1− 1

|Q̃|
−
√

(1 + an)t − 1

|Q̃|

⇐⇒ (1 + an)
t ≥ 1 + |Q̃|

(
3

4
− 1

|Q̃|

)2

⇐⇒ (1 + κ)nt ≥ 1 + |Q̃|
(
3

4
− 1

|Q̃|

)2

⇐⇒ n ≥ 1

t log(1 + κ)
log


|Q̃|

(
3

4
− 1

|Q̃|

)2



Now, since 1 ≤ t ≤ m/16e, we observe that

|Q̃| ≥ 2

t

( m
8et

)t/2
≥ 2

t
· 2t/2 ≥ 2.5.

Thus, (3/4 − 1/|Q̃|)2 ≥ 1/9, and the term in the final log above is at least log |Q̃|/9,
which in turn is lower bounded by Lemma B.2.3. Thus continuing the above chain of
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inequalities, we observe that

n ≥ 1

log(1 + κ)
· 1
t

(
t

2

(
log
( m
8et

)
− (2 log(t/2) + 4 log(3))

t

))

Finally, since log(x)/(x/2) ≤ 1/e, we may −2(log(t/2) + 4 log(3))/t ≥ −5. Folding
this −5 into the log gives 8e6 ≤ 4000 in the denominator. Finally, again, this tells us
that the infimum of the n for which the EoF risk is small is at least the above lower
bound, yielding the claim.

B.2.2 Expanded Lower Bound Theorem Statements and Proofs

We give slightly stronger theorem statements than those in the main text, and give

the proofs of the claimed bounds. In all cases the proofs involve the use of Lemma

B.2.3 - we describe which widgets are used, and what values of σ, t are needed. Then

we simply invoke Theorem B.2.4 repeatedly to derive the results.

B.2.3 The case d ≤ s ≤ cp

Proof of Theorem 3.3.1.

High Temperature Bound This is shown by using the Triangle construction of
ğB.4.1.1. This construction amounts to σ = 1 and m = ⌊p/3⌋. Thus taking t = s,

µ = α, λ = β and invoking both Proposition B.4.1 and Theorem B.2.4, we find that
so long as p/6 ≥ 16es, the bounds

nGoF(s, Id) ≥
1

C tanh2(α)e−2β
log
(
1 +

p

Cs2

)
,

and similarly

nEoF(s, Id) ≥
1

C tanh2(α)e−2β
log
( p

Cs

)
.

Low Temperature Bound Let βd ≥ log d. We show this for even d - odd d follows
by reducing d by one. We use the Emmentaler clique versus the full clique of ğB.4.2.3
with ℓ = 1. This corresponds to σ = d/2 and m = ⌊p/d + 1⌋ ≥ p/2d. Now take
t = ⌈2s/d⌉ ≤ 4s/d. Note that the total number of changes is at least s and at most
d/2⌈2s/d⌉ ≤ 2s. Notice that t ≤ m holds so long as s ≤ p/K for some K ≥ 400.

Invoking Proposition B.6.6 in the case of µ = α, λ = β, and then Theorem B.2.4 with
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the stated m, σ, t, gives us the bound

nGoF ≥
1

Cd2 min(1, µ2d4)e−2β(d−3)
log

(
1 +

1

C

(p/2d)

(4s/d)2

)

≥ e2β(d−3)

C ′d2 min(1, µ2d4)
log

(
1 +

1

C ′
pd

s2

)
,

where the (d− 3) in the exponent arises as (d− 1)− 1− ℓ, and d− 1 occurs since we
may reduce d by 1 to make it even. Similarly

nEoF ≥
e2β(d−3)

C ′d2 min(1, µ2d4)
log

(
1 +

1

C ′
p

s

)
.

Integrating the bounds. We now note that if βd ≤ 3 log d, then

e2β(d−3)

d2 min(1, µ2d4)
≤ e2β

tanh2(α)
.

Indeed, in this case, e2β(d−3) ≤ d6, and so the left hand side is at most max(d4, α−2),
which is dominated by the right hand side.

On the other hand even if βd ≥ 3 log d, we may still use the high temperature
bound since this is shown unconditionally. Thus, at least so long as we replace the
pd/s2 in the low temperature bound by p/s2, we may take the maximum of the
expressions in the above bounds to get a concise lower bound - the low temperature
term itself only becomes active when βd ≤ 3 log d, in which case it is known to be
true. The claim thus follows.

B.2.4 The case cp ≤ s ≤ cpd1−ζ

We first state the commensurate EoF bound -

Theorem B.2.5. In the setting of Theorem 3.3.2, we further have that

1. If αd1−ζ ≤ 1/32 then nEoF ≥ C
1

d2−2ζα2
log
(
1 + C

pd1−ζ

s

)
.

2. If βd ≥ 4 log(d− 4) then nEoF ≥ C
e2βd(1−d−ζ)

d2 min(1, α2d4)
log
(
1 + C

pd1−ζ

s

)
.

Proofs of Thms. 3.3.2 and B.2.5.

High Temperature Bounds Suppose s = pd1−ζ0/K for any ζ0 ∈ (0, 1]. We invoke
the widget of a full d1−ζ0-clique as Q0 versus an empty graph as P0, i.e. the construction
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of ğB.4.1.2. This corresponds to taking σ = d2−2ζ0/2 + O(d), m ≥ pd−(1−ζ0)/2 and
t = ⌊2sd−(2−2ζ0)⌋, with the total edit made being at most 2s. Invoking Proposition
B.4.2 with µ = α, and then Theorem B.2.4 gives the bounds on noting that

m

t2
≥ C

pd−(1−ζ0)

(sd−(2−2ζ0))2
= C

pd3−3ζ0

s2
,

m

t
≥ C

pd−(1−ζ0)

(sd−(2−2ζ0))
= C

pd1−ζ0

s2

and then finally setting ζ0 ≥ ζ to derive the claim.
Low Temperature Bounds Again fix a ζ0. We invoke the Emmentaler clique v/s
full clique widget of B.4.2.3, but this time with ℓ = d1−ζ0 . This gives σ ≈ d2−ζ0/2,
m = ⌊p/d⌋ and t = ⌈2sd−2−ζ0⌉. The bound now follows similarly to the above section
upon invoking Propositions B.6.6 with λ = β, µ = α and then Theorem B.2.4 with
the stated m, t, σ. We only track the terms in the log, which are

m

t2
≥ C

pd−1

(sd−(2−ζ0))2
= C

pd3−2ζ0

s2
,

m

t
≥ C

pd−1

(sd−(2−ζ0))
= C

pd1−ζ0

s2
.

B.2.5 Proofs in the setting s ≤ d

The catch in this section is that the Emmentaler clique construction of the proofs

above can no longer be employed, since setting even ℓ = 1 in these induces Ω(d)

changes. We instead turn to the clique with a large hole construction of ğB.4.2.2.

Proof of Theorem 3.3.3.

High Temperature Bound This is the same as the high temperature bound of
Thm. 3.3.1, and that proof may be repeated.
Low Temperature Bound Suppose βd ≥ 3 log d. We use the clique with a large
hole construction of ğB.4.2.2 with the choice of ℓ = ⌈

√
2s⌉. This amounts to s ≤ σ =

s+O(
√
s) ≤ 2s, and m = ⌊p/d⌋. We then simply set t = 1 in Theorem B.2.4. Now
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invoking Proposition B.4.8, we find that

nGoF ≥
1

C
√
s sinh2(α

√
s)e−2β(d−1−2

√
s)
log
(
1 +

p

Cd

)

≥ e2β(d−1−2
√
s)

Cd6 sinh2(α
√
s)

log
(
1 +

p

Cd

)
,

and the same lower bound for nEoF since in this case m/t2 = m/t = 1 (the d6 is
introduced to make the following easy).
Integrating the bounds Similarly to the proof of Thm. 3.3.1, note that for βd ≤
3 log d, e2βdd−6 ≤ 1, allowing us to rewrite the low-temperature bound as the max

expression in the theorem statement. Giving up space in the logarithm to p/s2 ∧ p/d
then yields the stated claim for GoF. For EoF, we follow the same procedure, but
note that since s ≤ d, (p/s ∧ p/d) = p/d.

B.3 Appendix to §3.4

B.3.1 Testing Deletions in Forests, and Changes in Trees

B.3.1.1 Proofs of Lower Bounds

Proof of Lower bounds from Theorem 3.4.1. First note that n ≥ 1 is necessary, since
testing/estimation with no samples is impossible. To derive the second term in the
converse for GoF and the converse for EoF, we plug in the single-edge widget of
ğB.4.1.4 with µ = α into Theorem B.2.4. The widget corresponds to ν = 2 and σ = 1.
Thus, setting t = s and m = ⌊p/2⌋ ≥ p/3, we obtain both the claimed bounds.

B.3.1.2 Proof of Upper Bound of Theorem 3.4.1, and of Theorem 3.4.2

We give the proof for α > 0. The proof for α < 0 follows identically.

We use u as a short hand for a pair (i, j) with i < j, and set Zu = XiXj. We

exploit two key properties of forest structured graphs

1. For any u = (i, j), if nodes i and j are connected via the graph, then E[Zu] =
∏

v∈path(u) tanh(θv), where for u = (i, j) path(u) is the unique path connecting i

and j. If i and j are not connected, then E[Zu] = 0.
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2. For any u ̸= v, E[ZuZv] = E[Zu]E[Zv], that is, the Zus are pairwise uncorrelated.

The above are standard properties, and are shown by exploiting the fact that

conditioning on any node in the forest breaks it into two uncorrelated forests. See,

e.g. [BK20] for proofs.

Proof of Upper Bound in Theorem 3.4.1. Recall the statistic

T =
n∑

ℓ=1

∑

u∈G(P )

Zℓ
u/n,

where the outer sum is over samples. Suppose G(P ) has k edges. Let τ := tanh(α).
We propose the test

T
Null

≷
Alt

(k − s/2)τ.

Since the sum is over all edges in p, and since all edges have the same weight α,
we note that

EP [T ] = kτ.

Now consider an alternate Q∆ that deletes some ∆ ≥ s of these edges. Since a deletion
of an edge in the forest disconnects the nodes at the end of the edges (the path
connecting two nodes in a forest is unique, if it exists, and we’ve just removed that
unique path by deleting the edge),

EQ∆
[T ] = (k −∆)τ.

Next, we consider the variance of the statistic. Due to uncorrelation of Zus, under
any forest structured Ising model we have in the case of n = 1

Var[T ] =
∑

u∈G(P )

(1− (E[Zu])
2,

where we have used that Z2
u = (±1)2 = 1 always. Using the standard behaviour of
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variances under averaging of independent samples,

VarP⊗n [T ] =
∑

u∈G(P )

1− τ 2
n

=
k(1− τ 2)

n
,

VarQ⊗n
∆
[T ] =

∑

u∈G(P )∩G(Q∆)

1− τ 2
n

+
∑

u∈G(P )\G(Q∆)

1/n =
k(1− τ 2) + ∆τ 2

n
.

Using Tchebycheff’s inequality, we then observe that for a given constant C > 1,
the following hold with probability at least 7/8 :

Under P⊗n: T ≥ kτ − C
√
k(1− τ 2)

n
,

Under any Q⊗n
∆ : T ≤ (k −∆)τ + C

√
k(1− τ 2) + ∆τ 2

n
.

Thus, the test has false alarm and size both at most 1/8, irrespective of P and
Q∆, so long as

(k −∆)τ + C

√
k(1− τ 2) + ∆τ 2

n
< (k − s/2)τ < kτ − C

√
k(1− τ 2)

n
.

Solving out the upper bound on (k − s/2)τ yields

n > 4C2 k

s2
(τ−2 − 1),

while for the lower bound, since ∆ ≥ s, the same must hold if

(k −∆)τ + C

√
k(1− τ 2) + ∆τ 2

n
< (k −∆/2)τ,

which may be rearranged to

n > 4C2

(
1

∆
+

k

∆2
(τ−2 − 1)

)
,

which in turn must hold if

n > 4C2

(
1 +

k

s2
(τ−2 − 1)

)
,
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where the final inequality again utilises ∆ ≥ s.
Thus, forests with k edges can be tested with risk at most 1/4 as long as we have

at least

4C2

(
1 +

k

s2
(τ−2 − 1)

)
+ 1 ≤ C ′ max

(
1,
k

s2
(τ−2 − 1)

)

samples, where C ′ ≤ 8C2+1 is a constant. Since forests on p nodes have at most p− 1

edges, replacing k by p yields an upper bound on the sample complexity of testing
deletions in forests.

Finally, since τ = tanh(α), we note that τ−2 − 1 = sinh−2(α), concluding the
proof.

Some Observations

• While the above proof is for uniform edge weights, this can be relaxed with little

change. However, the above proof does strongly rely on the edge weights all having

the same sign. If this is not the case, then we may encounter edit the same

number of positively and negatively weighted edges, and the statistic T becomes

uninformative.

• The statistic T similarly loses power in the general setting of testing both additions

and deletions in forests. This is because while the variance remains controlled as

k(1− τ 2), the means under the alternates may not move if the only changes being

made are additions.

• On the other hand, if we consider testing only of full trees, i.e. P such that G(P )

has the full (p− 1) edges, and further the altered Q are also trees, then something

interesting emerges - at least in the setting of uniform weights. Since at least s edges

were changed from G(P ) to G(Q), and one cannot add an edge to G(P ) without

introducing a cycle, it must be the case that G(Q) effects at least one edge-deletion

for every edge it adds, and so it must make at least ≥ s/2 deletions. In this case,

the statistic discussed above is powerful. This, of course, was the point of Theorem
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3.4.2 in the main text, which we are now ready to prove

Proof of Upper Bound from Theorem 3.4.2. Assume that α > 0. The proof pro-
ceeds similarly for α < 0. We use the statistic T from the proof of the upper bound
of Thm. 3.4.1 above, and also reuse the notation of τ,∆ and Q∆ from the above.
The claim relies on the above observation that if ∆ edges are changed, then at least
∆/2 ≥ s/2 edges must be deleted.

In this case, the mean and the variance of T under P remain unchanged. On the
other hand, under Q∆, for any edge u ∈ G(P ) that was deleted in G(Q∆), we must
have |EQ∆

[Zu]| ≤ τ 2, since the distance between the end points of these edges is
now at least 2. Further, since G(Q) is a tree, the variance of the statistic under Q∆

(for n = 1) is

VarQ∆
[T ] =

∑

u∈G(P )

(1− EQ∆
[Zu]

2)

≤ (p− 1−∆)(1− τ 2) + ∆

= (p− 1)(1− τ 2) + ∆τ 2.

At this point the argument from the earlier proof of Thm. 3.4.1 can be used. The
test needs to be updated to declaring for the null only when T > (p− 1)τ − sτ (1−
τ)/4.

We conclude by showing the lower bound in Theorem 3.4.2. This requires a mild

departure from the previously discussed lower bounds, in that the lifting trick is not

applicable - this fundamentally constructs disconnected graphs, while trees need to

be connected. However, pretty much the same approach is used.

Proof of the Lower Bound from Theorem 3.4.2. We use Le Cam’s method, as be-
fore. The construction is as follows: Let p be odd, and let m = (p− 1)/2. Take P
to be the Ising model with uniform weights α on the graph with the edge set

G(P ) = {(p, i) : i ∈ [1 : m]} ∪ {(i,m+ i) : i ∈ [1 : m]}.
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This is a ‘two-layer star’ - one node is singled out as central. Half the remaining
nodes are incident on it, and the other half are each incident on one of these ‘inner’
nodes.

Let t = ⌈s/2⌉, assumed smaller than m. For each S ⊂ [1 : m] such that |S| = t, we
define QS to be the Ising model with uniform weights α on the following graph

G(QS) = {(p, i) : i ∈ [1 : m] \ S} ∪ {(p,m+ 1) : i ∈ S} ∪ {(i,m+ i) : i ∈ [1 : m]}.

In words, QS detaches node i from node p and attaches node (m+ i) to node p for
i ∈ S, thus switching some of the inner nodes to being outer and vice versa. Notice
that in total, 2|S| = 2t ∈ {s, s+ 1} edges have been changed.

We directly argue that for P as defined above, and Q = {QS : S ⊂ [1 : m], |S| = t},
it holds that

χ2
(
⟨Q⊗n⟩, P⊗n

)
≤ exp

(
t2

m

(
(1 + 2 tanh2 α)n − 1

))
− 1.

This, along with Le Cam’s method implies the claim upon noting that m/t2 ≥
2(p− 1)/(s+ 1)2 which is in turn larger than p/s2 for s ≥ 4, p ≥ 9.

Let us proceed to show the above claim. By direct computation,

1 + χ2
(
⟨Q⊗n⟩, P⊗n

)
=

1

|Q|∈
∑

S,S̃

(
EP

[
QS(X)QS̃(X)

P (X)2

])n

.

We invoke the following calculation

Lemma B.3.1.

EP

[
QS(X)QS̃(X)

P (X)2

]
≤ (1 + 2 tanh2 α)|S∩S̃|.

Let φ := (1 + 2 tanh2(α))n. Plugging the above result into the expression for the
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χ2-divergence, we find that

1 + χ2
(
⟨Q⊗n⟩, P⊗n

)
≤ 1

|Q|∈
∑

S,S̃

φ|S∩S̃|

=
t∑

k=0

(
t
k

)(
m−t
t−k

)
(
m
t

) φk

= E[φH ]

≤ E[φB]

=

(
1 +

t

m
(φ− 1)

)t

≤ exp

(
t2

m
(φ− 1)

)
,

where we have used the fact that Q is parametrised by all subsets of size t of a
set of size m, and then proceeded similarly to the proof of the first part in Lemma
B.2.3, with H being a (m, t, t)-hypergeometric random variable, and B being a
(t, t/m)-binomial random variable. It remains to show the above Lemma, which is
argued below.

Proof of Lemma B.3.1. Notice that

P (x) =
1

2p coshp−1(α)
exp

(
α

(
xp

m∑

i=1

xi +
m∑

i=1

xixm+i

))

QS(x) =
1

2p coshp−1(α)
exp

(
α

(
xp
∑

i∈Sc

xi + xp
∑

i∈S
xm+i +

m∑

i=1

xixm+i

))
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Where the partition functions are directly calculated. As a consequence,

2p coshp−1(α)EP

[
QS(X)QS̃(X)

P (X)2

]

= 2p coshp−1(α)
∑

x

QS(x)QS̃(x)

P (x)

=
∑

x

exp


α


xp

∑

i∈(S∪S̃)c
xi +

∑

i∈(S∪S̃)c
xixm+i






× exp


α


xp

∑

i∈S△S̃

xm+i +
∑

i∈S△S̃

xixm+i






× exp


α


xp

∑

i∈S∩S̃

(2xm+i − xi) +
∑

i∈S∩S̃

xixm+i




 .

Observe that upon fixing a value of xp, the product above completely decouples
into m groups over (xi, xm+i), which can then be summed separately. Indeed,

2p coshp−1(α)EP

[
QS(X)QS̃(X)

P (X)2

]

=
∑

xp

∏

i∈(S∪S̃)c


 ∑

xi,xm+i

exp (α(xpxi + xixm+i))




×
∏

i∈S△S̃


 ∑

xi,xm+i

exp (α(xpxm+i + xixm+i)




×
∏

i∈S∩S̃


 ∑

xi,xm+i

exp (α(xp(2xm+i − xi) + xixm+i)


 .

There are three types of i - those that lie in neither of S, S̃, those that lie in only
one of these, and those that lie in both, which is how the above has been separated.
We will explicitly compute the sum over (xi, xm+i) for each type separately.
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1. i ∈ (S ∪ S̃)c:
∑

xi,xm+i

exp (α(xpxi + xixm+i))

= eα(xp+1) + eα(xp−1) + eα(−xp−1) + eα(−xp+1)

= 2eα cosh(αxp) + 2e−α cosh(αxp)

= 4 cosh2(α),

where we have utilised the fact that xp ∈ ±1, and that cosh is an even function.

2. i ∈ S△S̃: This case is very similar to the above:

∑

xi,xm+i

exp (α(xpxm+i + xixm+i))

= eα(xp+1) + eα(−xp−1) + eα(xp−1) + eα(−xp+1)

= 4 cosh2(α)

3. Finally, for i ∈ S ∩ S̃,

∑

xi,xm+i

exp (α(xp(2xm+i − xi) + xixm+i)

= eα(xp+1) + eα(−3xp−1) + eα(3xp−1) + eα(−xp+1)

= 2(eα cosh(α) + e−α cosh(3α)),

Plugging the above calculations in, we find that

EP

[
QS(X)QS̃(X)

P (X)2

]

=
∑

xp

(4 cosh2 α)|(S∪S̃
c|+|S△S̃|(2(eα cosh(α) + e−α cosh(3α)))|S∩S̃|

2p coshp−1(α)

= 2 · (2 cosh(α))
2(m−|S∩S̃|(2(eα cosh(α) + e−α cosh(3α)))|S∩S̃|

2p coshp−1(α)

=

(
eα cosh(α) + e−α cosh(3α)

2 cosh2(α)

)|S∩S̃|
,

where we have used the fact that (S ∪ S̃)c, S△S̃, S ∩ S̃ form a partition of [1 : m],

and that 2m = p− 1.
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To finish, we observe that

ex cosh(x) + e−x cosh(3x)− 2 cosh2(x)

=
e2x + e−4x − e−2x − 1

2

= e−x e
(3x) + e−3x − (ex + e−x)

2

= e−x(cosh(3x)− cosh(x))

= e−x(4 cosh3(x)− 3 cosh(x)− cosh(x))

= 4e−x cosh(x)(cosh2(x)− 1)

≤ 4 sinh2(x),

where the final relation uses x ≥ 0.

B.3.1.3 Tolerant Testing of Forest Deletions, and of Trees

Proof of Theorem 3.4.3. We repeatedly reuse the notation from the proof of Theorem
3.4.1 above.

For the forest deletion setting, suppose |G(P )| = k, and let P̃∆0 be such that it’s
network structure is a deletion of most ∆0 ≤ εs edges from G(P ). It follows from the
mean and variance calculations before, that, for any ∆ ≥ s,

EP̃⊗n
∆0

[T ] = (k −∆0)τ ≥ (k − εs)τ,

VarP̃⊗n
∆0

[T ] =
k(1− τ 2) + ∆0τ

2

n
≤ k(1− τ 2) + ∆τ 2

n
.

Consider the test which rejects the null hypothesis when T < (k − 1+ε
2
s)τ . Com-

paring the above to a Q∆ as in the proof of Theorem 3.4.1, and proceeding as in it,
we find that the risk is appropriately controlled so long as the following relations hold
for every ∆0 ≤ εs, and ∆ ≥ s, where C is an absolute constant:

n ≥ C
k(τ−2 − 1) + ∆0(

1+ε
2
s−∆0

)2

n ≥ C
k(τ−2 − 1) + ∆
(
∆− 1+ε

2
s
)2
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The right hand sides of the first and second equations above respectively increase
and decrease with ∆0 and ∆. Thus, setting ∆0 = εs and ∆ = s, and taking the
maximum possible k = p tells us that the conditions will be met so long as

n ≥ 4C
(p− 1) sinh−2(α) + s

(1− ε)2s2

For the tree case, the same argument follows but with a small change - in the null
case, a change of ∆0 edges can reduce the mean of T by ∆0τ, but in the alternate,
there may exist changes of ∆ edges which only drop the mean of T by ∆/2(τ − τ 2).
Thus, we use the test

T
Null

≷
Alt.

(p− 1)τ − 1 + 2ε

4
sτ +

s

4
τ 2.

Continuing similarly, and keeping in mind that the variance of T after ∆ changes
is at most (p− 1)(1− τ 2) + ∆τ 2, we find that risk of the above test is controlled so
long as for every ∆0 ≤ εs, and for every ∆ ≥ s, the following relations hold

n ≥ C

s2
p(τ−2 − 1) + ∆0

(1 + 2ε− τ − 4∆0/s))
2

n ≥ C

s2
p(τ−2 − 1) + ∆

(2∆/s(1− τ)− (1 + 2ε− τ))2

It is a matter of straightforward computation that if ε ≤ 1−τ
2
, then the right hand

sides of the first and second inequality above respectively increase and decrease with
∆0 and ∆. Thus, setting ∆0 = εs and ∆ = s, the above holds if

n ≥ C

(1− 2ε− τ)2
(
p(τ−2 − 1)

s2
+

1

s

)
.

B.3.2 Testing Deletions in High-Temperature Ferromagnets

B.3.2.1 Proof of achievability

Proof of the upper bound of Theorem 3.4.4. We follow the strategy laid out in the
main text. The proposed test statistic is T ({X(i)};P ) := Ê[

∑
(i,j)∈G(P )XiXj], where

the {X(i)} are the samples, and Ê indicates the empirical mean over this data.
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Concretely, the test is to threshold T as

T
Null

≷
Alt.

EP [T ]− Csα,

where C the constant left implicit in Lemma B.3.2.
The analysis relies on two facts:

Lemma B.3.2. Let P,Q ∈ Hη
d(α), and G(Q) ⊂ G(P ), with |G(P )△G(Q)| ≥ s. For

every η < 1, there exists a constant C > 0 that does not depend on (p, s, α) such that

EP [T ]− EQ[T ] ≥ 2Csα.

Lemma B.3.3. For any P,Q ∈ Hη
d(α), which may be equal,

VarQ


 ∑

(i,j)∈G(P )

XiXj


 ≤ Cηpd,

where Cη may depend on η, but not otherwise on (p, d, s, α).

Applying the variance contraction over n independent samples, we find via a use
of Tchebycheff’s inequality that the following event have probability at least 1/8 for
the respective hypotheses:

Null: T ≥ EP [T ]− Cη

√
8pd

n
,

Alt: T ≤ EP [T ]− Csα + Cη

√
8pd

n
.

Thus, taking n so large that Csα > Cη

√
8pd
n
, the false alarm and missed detection

probabilities are both controlled below 1/8, yielding the claimed result.
It of course remains to argue the above lemmata. These are both essentially

utilisations of existing results.

Proof of Lemma B.3.2. We use the fact that in ferromagnetic models, the correlations
between any pair of nodes increases as the weights increase (or contrapositively, if
weights are deleted, then correlations must decrease). This is classically shown via (a
special case of) Griffith’s inequality [Gri69], which claims that for any u, v, i, j, in a
ferromagnetic Ising model, E[XuXvXiXj] ≥ E[XuXv]E[XiXj]. This is relevant here
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due to the fact that

∂θijEPθ
[XuXv]

= ∂θij
1

Zθ

∑

x

xuxv exp

(∑

s<t

θstXsXt

)

a
=

1

Zθ

∑

x

xuxvxixj exp

(∑

s<t

θstXsXt

)

− 1

Z2
θ

(∑

x

xuxv exp

(∑

s<t

θstXsXt

))(∑

x

xuxv exp

(∑

s<t

θstXsXt

))

= E[XuXvXiXj]− E[XuXv]E[XiXj] ≥ 0.

Above, equality (a) is a consequence of the quotient rule, and the fact that
Zθ =

∑
x exp

(∑
s<t θstxsxt

)
.

Next, we utilise the following structural lemma, due to Santhanam and Wainwright.
While we cite it as a variation on their Lemma 6 below, more accurately this arises
via a correction of a subsidiary part of the proof of the same lemma. In particular, we
are utilising a corrected version of the unlabelled inequality on Page 4131 that follows
the inequality (51), with further specialisation to the high-temperature deletion with
a uniform edge weight context.

Lemma B.3.4. (A variation of Lemma 6 of [SW12]) Let P ∈ Hη
d(α), and Q be

obtained by removing the edge (a, b) from P . Then

EP [XaXb]− EQ[XaXb] ≥
α

400
.

With this in hand, we develop our result by arguing over each deleted edge in a
sequence. For a given P and Q, such that Q occurs by deleting ∆ ≥ s edges from
P , take a chain of laws P = Q0, Q1, Q2, . . . , Q∆ = Q, where each Qt+1 is obtained by
deleting one edge from Qt. Let (it+1, jt+1) be the edge deleted in going from Qt to
Qt+1 Since each model is ferromagnetic, and each Qt+1 deletes an edge from Qt, we
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find that

EQt


 ∑

(i,j)∈G(P )

XiXj


− EQt+1


 ∑

(i,j)∈G(P )

XiXj




≥ EQt

[
Xit+1Xjt+1

]
− EQt+1

[
Xit+1Xjt+1

]

≥ α

400
.

Summing up the left hand side over t = 0 to ∆ − 1 leads to a telescoping sum,
while ∆ ≥ s copies of the right hand side get added, directly leading to our conclusion

EP


 ∑

(i,j)∈G(P )

XiXj


− EQ


 ∑

(i,j)∈G(P )

XiXj




= EQ0


 ∑

(i,j)∈G(P )

XiXj


− EQ∆


 ∑

(i,j)∈G(P )

XiXj




=
∆−1∑

t=0

EQt


 ∑

(i,j)∈G(P )

XiXj


− EQt+1


 ∑

(i,j)∈G(P )

XiXj




≥
∆−1∑

t=0

α

400
= ∆

α

400
≥ s

α

400
.

To complete the proof, we prove the key lemma used in the above argument.

Proof of Lemma B.3.4. We note that this proof assumes familiarity with the proof of
Lemma 6 of [SW12]. The main reason is that the proof really consists of fixing an
equation in the proof of this result, and then utilising the ferromagnetic properties a
little. As a result, there is no neat way to make this proof self contained (reproducing
the proof of the aforementioned lemma is out of the question, since this is a long and
technical argument in the original paper). With this warning out of the way, let us
embark.

Let ∂a and ∂b be the neighbours of, respectively, a and b in G(P ) (which, since
G(Q) only deletes (a, b) from G(P ), contain all the neighbours of a and b in G(Q) as
well).

Before proceeding, we must first point out a (small) error in the proof of Lemma 6
in [SW12]. The clearest way to see this error is to note the inequality following equation
(51) in the text, which claims that if (a, b) ∈ G(P )△G(Q), then some quantity (J in
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the paper) known to be positive is upper bounded by

J ≤
∑

u∈∂a\{b}
({EP − EQ}[XuXa])(θ

P
ua − θQua) +

∑

v∈∂b\{a}
({EP − EQ}[XvXb])(θ

P
vb − θQvb).

Note that we have specialised the above to the case where G(Q) ⊂ G(P ). Now,
observe than when the only change made is in the edge (a, b), then the above upper
bound is 0. Indeed, θPua = θQua for every u ∈ ∂a \ {b}, since none of these edges have
been altered, making the first sum 0, and similarly the second, contradicting the claim
that the sum is bigger than J (which is positive). The error actually lies a few lines
up, in the decomposition for the term ∆(θ, θ′), which along with the claimed terms,
should also include the term ({EP − EQ}[XaXb])(θ

P
ab − θQab), which is missing from the

text of [SW12]. This term is present since the Pθ[xC ] and Pθ′[xC ] are, of course, laws on
Xa and Xb, and thus have θPabxaxb and θQabxaxb in the Ising potentials.1 Putting this
term back in, the correct equation is that

κ ≤ ({EP − EQ}[XaXb])(θ
P
ab − θQab) +

∑

u∈∂a\{b}
({EP − EQ}[XuXa])(θ

P
ua − θQua)

+
∑

v∈∂b\{a}
({EP − EQ}[XvXb])(θ

P
vb − θQvb),

where κ is the lower bound on J , that is (specialised to our case of uniform weights),

κ =
sinh2(α/4)

1 + 3 exp (αd)
.

We note that the conclusion of Lemma 6 of [SW12] is not affected by the above
error2.

With this out of the way, we may now argue our point. In our case, we know that
since only the edge (a, b) has been altered, the second and third terms in the updated
sum are 0. Further, we know that θPab = α ≥ 0, and θQab = 0. Thus, we conclude that

EP [XaXb]− EQ[XaXb] ≥
κ

α
≥ sinh2 α/4

α(1 + 3 exp (2αd))
.

1note however that exactly one of θPab and θQab is zero, since (a, b) lies in one but not the other
graph.

2The expression 2αdmaxu∈{a,b},v∈V |µuv − µ′
uv| already accounts for the extra term we add, since

it allows us to take u = a, v = b.
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Finally, we use our high temperature condition. Firstly, note that αd ≤ η < 1, and
thus (1 + 3 exp (2αd)) ≤ 1 + 3e2 ≤ 24. Next, since sinh(x) ≥ x, sinh2(α/4) ≥ α2/16.

Putting these together, we find that

EP [XaXb]− EQ[XaXb] ≥
α2/16

α · 24 =
α

384
≥ α

400

Proof of Lemma B.3.3. We directly utilise the concentration result [AKPS19, Ex. 2.5],
which shows that for bilinear forms f(X) = ⟨A,XX⊤⟩, where the inner product is
the Frobenius dot product, and for a high temperature Ising model P , there exists a
Cη depending only on η such that3

P (|f − E[f ]| ≥ t) ≤ 2 exp

(
− t

Cη∥A∥F

)
.

Via the standard integral representation E[(f − E[f ])2] =
∫∞
0
P (|f − E[f ]|2 ≥ r)dr

and the above upper bound, we directly obtain that the variance of any f such as the
above is bounded by 3∥A∥2FC2

η .
Now, out statistic is a bilinear function of the above form. Indeed,

∑

(i,j)∈G(P )

XiXj = ⟨G(P )/2, XX⊤⟩,

where we treat G(P ) as it’s adjacency matrix, and thus we immediately obtain that
the variance is bounded by 1.5C2

η∥G(P )∥2F . Notice that ∥G(P )∥2F is merely twice the
number of edges in G(P ), and since this has degree at most d, this number is at most
2pd. The claim follows.

B.3.2.2 Proof of Lower Bounds

The lower bounds are argued using Thm. B.2.4, with the widget(s) that consist of

comparing a full clique to an empty graph, which of course satisfy the constraint that

the alternate models are derived by deleting edges from the null graph. Concretely,

we use the bound of Proposition B.4.3, to show the following result

Proposition B.3.5. Suppose s ≤ pd/K for large enough K and αd ≤ η ≤ 1/32.

3Instead of the Frobenius norm ∥A∥F , the bound of [AKPS19] features the Hilbert-Schmidt norm
of A. These are the same thing for finite dimensional operators.
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Then there exists a C independent of all parameters such that

nGoF,del(s,Hη
d(α)) ≥ max

s/Kp≤k≤d

1

Ck2α2
log

(
1 +

pk3

Cs2

)
,

nGoF,del(s,Hη
d(α)) ≥ max

s/Kp≤k≤d

1

Ck2α2
log

(
1 +

pk

Cs

)
,

where the maximisation is over integers k ≥ 2 in the stated ranges. In particular, the

bounds in the main text correspond to taking k = d.

Proof. The proof relies on the fact that if αd ≤ 1/32, then αk ≤ 1/32 for any k ≤ d

as well, which allows us to utilise Prop. B.4.3 for each k. For each valid choice of k,
we take P0 to be the Ising model on the complete graph on k nodes with uniform edge
weight α, and Q0 to be the Ising model on the empty graph on k nodes. The relevant
quantities are σ =

(
k
2

)
, m = ⌊p/k⌋, and t = ⌈s/

(
k
2

)
⌉, with the total number of changes

lying between s and 2s. Repeated use of Thm.B.2.4 concludes the argument.

B.3.3 Simulation Details

Details about the generation of Figure 3·3 are as follows:

• Sampling from Ising Models Samples from Ising models were generated by

running Glauber dynamics for 1600 steps. This number is chosen to be four times

the ‘autocorrelation time’, which is the time at which the autocorrelation of the

test statistic ⟨XX ′, G⟩/2 drops to near 0, and serves as a proxy for the mixing time

of the dynamics (at least for the relevant statistics). Note that raw samples were

outputted from the dynamics (i.e., we did not take ergodic averages).

• Constructing P s and Qs Throughout, P was the Ising model on a complete

binary tree on 127 nodes. For each value of s and each experiment, s random edges

from this tree were deleted.

• Experiment Structure For each s ∈ {3, 6, . . . , 60} and n ∈ {20, 40, . . . , 480}, we

carried out a simulation of the GoF testing risk of our statistic for s deletions using

n samples. We refer to each of these as an experiment. Each experiment was carried
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out by running 100 independent tests (on independent data), which each consisted

of two parts - first we generated samples from P , and declared a false alarm if T

fell below (p− 1− s/2) tanh(α) for this. Next, we generated a Q by deleting s edges,

and then generated samples from Q, and finally declared a missed detection if T

was above the same threshold. Risks were computed by adding up the total number

of false alarm and missed detection events in these 100 runs, and dividing them by

100.

• Structure of Figure 3·3 Each box in the figure corresponds to a simulation for s

changes and n nodes, where (s, n) are the coordinates of the upper right corner of

the box. The boxes are coloured according to their empirical risk - if this was greater

than 0.35, then the box was coloured black; if smaller than 0.15, then coloured

white, while if it was between these values, the box was coloured orange.

Additionally, we note that structure learning performs very poorly for this setup.

This is best illustrated by the Figure B·1, which shows the number of edge-errors

(i.e. |G(P )△Ĝ|) versus the sample size when the Chow-Liu algorithm was run on

data generated by the null model (i.e., the full binary tree). The Chow-Liu algorithm

was run by computing the covariance matrix, and computing the weighted maximum

spanning tree for it via the library methods in MATLAB. The number of errors is

again averaged over 100 trials. This demonstrates that the naïve scheme of recovering

the graph and testing against it is infeasible for s ≤ 60 if n ≤ 1500, empirically

demonstrating the separation between structure learning and testing.

B.4 Widgets

As discussed in the previous section, we will utilise Lemma 3.3.4, in order to do which

we need to provide specific instances of (P0, Q0) that are close in χ2-divergence. We

will abuse terminology and call this pair an ensemble. This section lists a few such
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Figure B·1: Reconstruction Error of the Chow-Liu Tree for the Ising
model on a complete Binary Tree with p = 127, α = 0.1.

pairs of graphical models, along with the χ2-divergence control we offer for the same,

proofs for which are left to ğB.6. Throughout, we will use λ and µ as weights of edges,

with λ ≥ |µ| > 0. I the proofs of the theorems, we will generally set λ = β and µ = α,

but retaining these labels aids in the proofs of χ2-divergence control offered for these

widgets.

B.4.1 High-Temperature Obstructions

The following graphs are used to construct obstructions in high temperature regimes.

The first is the triangle graph, as described in ğ3.3.1. The second is a full clique in

high temperatures. The latter section is derived from the bounds of [CNL18].

B.4.1.1 The Triangle

We start simple. Let PTriangle be the Ising model on 3 nodes with edges (1, 2) and

(2, 3), each with weight λ, and QTriangle be the same with the edge (1, 3) of weight µ

appended (see Figure B·2). The bound below follows from an explicit calculation,

which is tractable in this small case.
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Figure B·2: Ensemble used for Proposition B.4.1

Proposition B.4.1. For λ ≥ |µ| > 0,

χ2(QTriangle∥PTriangle) ≤ 8e−2λtanh2 µ.

B.4.1.2 Full Clique versus Empty Graph

[CNL18] shows the remarkable fact that high-temperature cliques are difficult to

separate from the empty graph. We present this result below.

Proposition B.4.2. Let P be the Ising model on the empty graph with k nodes, and

let Q be the Ising model on the k-clique, with uniform edge weights µ. If 32µk ≤ 1,

then

χ2(Q∥P ) ≤ 3k2µ2.

In the notation of [CNL18], this is the bound at the bottom of page 22, instantiated

with G = G′ and the R,B,Γ values as determined in the proof of Example 2.7.

We will also utilise the following reversed χ2-divergence bound. This is not formally

shown in [CNL18], and thus, we include a proof of the same, using the techniques of

the cited paper, in ğB.6.2.5.

Proposition B.4.3. Let P be the Ising model on a clique on m nodes with uniform

edge weights µ, and let Q be the Ising model on the empty graph on m nodes. If

32µm ≤ 1, then

χ2(Q∥P ) ≤ 8(µm)2.
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B.4.1.3 Fan Graph

This widget is not required for the main text, although it may serve as a more involved

construction to show the bounds of Thms. 3.3.1 and 3.3.3. Its main use is in Appendix

B.5.2, where it is used to show an obstruction to testing of maximum degree in a

graph.

Generalising the triangle of the previous section, we may hang many triangles from

a single vertex, getting a graph that resembles an axial fan with many blades. Using

such a graph, we may demonstrate high-temperature obstructions to determining the

maximum degree of a graph.

Concretely, for a natural B we define a fan with B blades to be the graph on

2B+1 nodes where, nodes [1 : 2B] are each connected to the central node 2B+1, and

further, for i ∈ [1 : B], nodes 2i and 2i− 1 are connected. We call the edges incident

on the central node (B + 1) axial, and the remaining edges peripheral.

Treating ℓ as a parameter, the Ising models Pℓ,Fan and Qℓ,Fan are determined as

followed:

• Qℓ,Fan places a weight λ on each peripheral edge, and a weight of µ on each axial

edge.

• Pℓ,Fan ‘breaks in half’ ℓ of the blades in the graph - concretely, for i ∈ [1 : ℓ], we

delete the edges {2i− 1, 2B + 1}.

Viewing P as the null graph, note that in Q we have added an excess of ℓ edges,

and increased the degree of the central node from 2B − ℓ to 2B. The fan graph serves

as a high-temperature obstruction to determining the maximum degree of the graph

underlying an Ising model via the following claim.

Proposition B.4.4. For ℓ ≤ B, if λµ ≥ 0, then

χ2(Qℓ,Fan∥Pℓ,Fan) ≤
(
1 + 16e−2λ tanh2 µ

)ℓ − 1.
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Figure B·3: The Fan graphs for Pℓ,Fan (left) and Qℓ,Fan (right) in the
setting B = 4, ℓ = 2.

B.4.1.4 Single Edge

This construction is possibly the simplest, and is used to show the lower bound in

Thm. 3.4.1. We consider the two possible Ising models on two nodes - P is the one

with an edge, of weight µ, while Q has no edges. The characterisation is trivial, and

we omit the proof.

Proposition B.4.5. χ2(Q∥P ) = sinh2(µ).

B.4.2 Low-Temperature Obstructions via Clique-Based Graphs

The computations in this and the subsequent cases are rather more complicated that

in the previous case, and will intimately rely on a ‘low temprature’ assumption. The

basic unit is that of a clique on some d+ 1≫ 1 nodes, in the setting of temperature

λd ≥ log d.

The intuition behind these is rather simple - Ising models on cliques tend to

‘freeze’ in low temprature regimes, i.e. the distribution concentrates to the states

±(1, 1, . . . , 1) with probability 1−exp (−Ω(βd))) for βd≫ 1. This effect is fairly robust,

and dropping or adding even a large number of edges does not alter it significantly.

Thus, one has to collect an exponential in βd number of samples merely to obtain

some diversity in the samples, which will be necessary to distinguish any of these

variations of a clique from the full thing.
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While generic arguments can be offered for each of the settings below on the basis

of the above intuition, these tend to be lossy in how they handle the effect of very low

edge weights. To counteract this, we individually analyse each setting, and while the

arguments have structural similarities, the particulars vary.

It is worth noting that our bounds rely on below diverge from the classical literature

in the low temperature condition we impose. We generally demand conditions like

βd ≥ log d, while most other lower bounds demand that βd ≥ 1. This extra room

allows us to tighten the exponents in the sample complexity bounds as opposed to

previous work, but has the obvious disadvantage of reduced applicability. We note,

however, that in most settings, this only yields a lost factor of d in the resulting bounds,

and frequently not even that. Functionally, thus, there is little to no loss in the use of

this stronger low-temperature condition.4 A similar notion of low temperature has

appeared in e.g. [Bez+19].

B.4.2.1 Clique with a deleted edge

This calculation is the simplest demonstration of our bounding technique, and all

following settings are analysed in a similar way. While it is superseded by the section

immediately following it, the bound is thus important for the reasons of comprehension

if nothing else.

We consider graphs on d + 1 nodes, and let PClique be the Ising model on the

complete graph on d + 1 nodes, with edge (1, 2) of weight µ, and every other edge

of weight λ. QClique is formed by deleting the edge (1, 2) in PClique Note that such

underlying constructions feature in nearly every lower bound on structural inference

on degree bounded Ising models.

With the exposition out of the way, we state the bound below.

4This effect is linked to the concentration of the Ising model on the clique we mentioned before.
Notice that the probability of a uniform state is as 1− exp (−Ω(βd)). For this to be appreciable, i.e.,
at least polynomially close to 1, a condition like βd = Ω(log d) is in fact necessary.
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Figure B·4: The clique with uniform weight λ barring one edge, and
the same edge deleted. Here d = 4.

Proposition B.4.6. Suppose λd > log d. Then

χ2(QClique∥PClique) ≤ 16e−2λ(d−1) sinh2 µ.

B.4.2.2 The clique with a large hole

To allow for a greater number of changes, we modify the previous construction by

removing a large subclique from the Kd+1 used above, instead of just one edge. More

formally, for some ℓ < d/8, let Kℓ be the complete graph on nodes [1 : ℓ]. We set

Pℓ,Clique to the the Ising model on Kd+1 such that the edges in Kℓ have weight µ, and

all other edges have weight λ, while Qℓ,Clique instead deletes the edges in Kℓ. Note

that as a conseuquence, we have effected a deletion of ∼ ℓ2/2 edges from the original

model.

Proposition B.4.7. If ℓ+ 1 ≤ d/8, λ ≥ |µ| and λd > 3 log d, then

χ2(Qℓ,Clique∥Pℓ,Clique) ≤ 32ℓe−2β(d+1−ℓ) sinh2(µ(ℓ− 1)).

Note that the bound of the previous subsection (up to some factors) can be

recovered by setting ℓ = 2 in the above.

Control on the χ2-divergence with P and Q exchanged is also useful.
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Proposition B.4.8. If ℓ+ 1 ≤ d/12, λ ≥ |µ| and λd > 3 log d, then

χ2(Pℓ,Clique∥Qℓ,Clique) ≤ 64ℓe−2β(d+1−ℓ) sinh2(2µ(ℓ− 1)).

B.4.2.3 Emmentaler Clique

As a development of the Clique with a large hole, we may in fact put in many large

holes, leading to a pockmarked clique reminiscent of a Swiss cheese. Concretely, let ℓ

be a number such that B := d/(ℓ+ 1) is an integer. We define a graph on d nodes in

the following way: Divide the nodes into B groups of equal size, V1, . . . , VB. Form the

complete graph on d nodes, and then delete the ℓ+ 1-sublique on Vi for each i. Note

that equivalently, the graph above is the complete symmetric B-partite graph on d

nodes. The graph effects a deletion of ∼ dℓ/2 edges from a clique.

b
b

b
b b

b
b

b

Figure B·5: Two views of the Emmentaler cliques. The left represents
the base clique as the large grey circle, while the uncoloured circles
within represent the groups Vi with no edges within (this should be
viewed as ℓ≫ 1, B = 10). This view is inspiration for the name. On the
right, we represent the Emmentaler as the graph Kℓ+1,ℓ+1,...,ℓ+1 - here
d = 8 and ℓ = 1 is shown.

The key property of the Emmentaler is that it still freezes at a exponential rate, and

it has sufficient ‘space’ in it to accommodate significantly more edges. In particular,

the graph is regular and the degrees of each node are uniformly d− ℓ− 1. We use this

in two ways:
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Emmentaler with one extra node We show that determining the degree of a

node connected to many of the nodes of an Emmentaler is hard. Concretely, we

construct the following two graphs on d+ 1 nodes:

Construct an Emmentaler Clique on the first d nodes. Next, connect the node

d+ 1 to each node in
⋃B−1

i=1 Vi. Notice that node d+ 1 is not connected to one of the

parts of the Emmentaler. We choose Pℓ to be the Ising model with uniform weight λ

on the this graph. For Qℓ, we additionally add edges between node d+ 1 and each

node in VB with weight µ. The following result holds.

Proposition B.4.9. If 2 ≤ ℓ+ 1 ≤ d/4 and λ(d− 4) ≥ 3 log d, and |µ| ≤ λ, then

χ2(Qℓ∥Pℓ) ≤ 32de−2λ(d−1−ℓ).

Notice that the above proposition does not show a µ dependence. This is due to

inefficiencies in our proof technique. We strongly conjecture that a bound of the form

(1 + Cd tanh2(µ(ℓ+ 1))e−2λ(d−ℓ−1))n holds.

Emmentaler v/s Full Clique We show that it is difficult to distinguish between

an Emmentaler and a full clique. Concretely, we let Pℓ be an Emmentaler as above,

and in Qℓ, we add back the deleted subcliques to each Vi, but with weight µ.

Proposition B.4.10. If ℓ+ 1 ≤ d/4 and λ(d− 4) ≥ 3 log d, then

χ2(Qℓ∥Pℓ) ≤ d2 min(1, µ2d4)e−2λ(d−1−ℓ).

B.5 Miscellaneous

B.5.1 Using statistical formulations to test structural changes

The main text makes the case that statistical formulations of GoF do not give us the

whole story when one is interested in structural changes. Concretely, though, this

only directly affects the lower bounds. On the other hand, when we restrict alternate
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hypotheses in the GoF problem to make a lot of changes, then one may expect that

tests under statistical formulations are powerful.

Intuitively, this expectation is rendered plausible by the fact that the notion

of being close to a given model is similar under the statistical and the structural

formulations - equality under one is also equality under the second, at least in the

setting of unique network structures, and mere continuity suggests that, at least locally,

setting some value of s(P, ε) or ε(s, P ) should allow one to translate tests from the

statistical to the structural notions of changes and vice versa.5 However, this strategy

does not work too well, at least with our current understanding of Ising models. More

concretely - utilising statistical tests for structural testing in a sample efficient way

requires a local understanding of the distortion of the edge-Hamming distance of the

graph under the map (θ, θ′) 7→ SKL(θ∥θ′), which is not available as of now. Global

constraints on the same are available, and are unhappily both rather pessimistic,

and essentially tight. This means that using the methods developed for testing for

statistical divergences in the setting of structural identity testing is problematic.

Some details - the best available results that translate edge-differences to sym-

metrised KL divergence is via Lemma 4 of [SW12]. The Bhattacharya coefficient of

two distributions is BC(P,Q) :=
∑

x

√
P (x)Q(x). The cited lemma argues that under

s changes,

BC ≤ exp
(
−Cs sinh2(α)e−2βd/d

)
.

Let −φ denote the exponent in the above, for conciseness. Since −2 log BC ≤ KL,

this induces DSKL ≳ φ, and similarly, since 1 − BC ≤ TV, this tells us also that

TV ≥ 1− exp (−φ) . Since 1− e−z ≤ z, this means that the best lower bound we can

5It should be noted that this analogy is flawed - while the notions of being close are indeed similar,
the notion of being far from a model is significantly different under the two formulations. The main
text mentions an example illustrating this - if a small group of disconnected nodes is bunched into a
clique, a large statistical change is induced due to the marked difference in the marginal law of this
group, but the structural change is tiny. Of course, being close and far are ultimately related concepts,
and some shadow of this effect must be cast on the closeness argument we have just presented.
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possibly derive this way is TV ≥ φ.

Now, the best known upper bounds for statistical testing under SKL is (βpd/ε)2

up to log factors [DDK16], and under TV for ferromagnets this may be improved to

(pd/ε)2 [Bez+19]. Plugging in the values of ε implicit in the above, the first of these

then requires about (
βpd

φ

)2

∼ e4βd

α4

(
βpd2

s

)2

,

which is worse than the testing by first recovering the underlying network. Similarly,

under TV, a similar number is required, but without an extra β-factor, which has

little effect in light of terms like eβd showing up. So, naïvely using this structural

characterisation does not give promising results.

Further, unfortunately, the characterisation of BC, and indeed of KL and TV

divergences offered through this is essentially tight. This essentially follows from our

results providing control on the χ2-divergences in various construction, and the control

this imposes on KL,TV via the monotonicity of Rényi divergences and Pinsker’s

inequality. It may be the case that in some special cases, tight bounds for structural

testing may be derived via the statistical testing approach above. We have not explored

this possibility in detail.

B.5.2 Lower Bounds on Property Testing

In passing, we mention that our constructions improve upon lower bounds for some of

the property tests studied in [NL19]. For instance, the triangle construction provides

an obstruction to cycle testing that does not require explicit control on α as in [NL19].

Similarly, the Clique with a hole, and the Emmentaler clique with an extra node

constructions may serve as obstructions to testing the size of the largest clique, and to

testing the value of the maximum degree of the network structures in low temperatures.

In high temperatures, the Fan graph construction shows that testing maximum degree
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is hard. In each case this either improves upon the lower bounds of [NL19] by either

improving the exponent from βd/4 to 2βd(1 − od(1)), or by removing an explicit

high-temperature condition that is enforced in the lower bound.

B.6 Proofs of Widget Bounds

An Observation For Ising models P,Q,

1 + χ2(Q∥P ) =
∑

x

Q(x)2

P (x)
=
∑

x

ZP

Z2
Q

exp
(
xT2θQx− xT θPx

)
=
ZPZ2Q−P

Z2
Q

,

where Z2Q−P :=
∑

x exp
(
xT (2θQ − θP )x

)
is yet another partition function. We will

repeatedly use this form of the χ2-divergence, without further comment, in the

following.

B.6.1 Star-Based Widgets

B.6.1.1 Triangle

Proof of Proposition B.4.1. Let P = PTriangle, Q = QTriangle. Note that

P (x) =
1

ZP

eλx2(x1+x3)

Q(x) =
1

ZQ(µ)
eλx2(x1+x3)eµx1x3

Where the partition functions may simply be computed to obtain the expressions
below:

ZP = 23 cosh2 λ = 4(cosh 2λ+ 1)

ZQ(µ) = 4(eµ cosh 2λ+ e−µ).

Further, we have that

W := EP [(Q/P )
2] =

(
ZP

ZQ(µ)

)2

· 1

ZP

·
∑

eλx2(x1+x3)e2µx1x3 =
ZPZQ(2µ)

ZQ(µ)2
.
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Inserting the previous computed values of these partition functions, we have

W =
(cosh 2λ+ 1)(e2µ cosh 2λ+ e−2µ)

(eµ cosh 2λ+ e−µ)2

=
e2µ cosh2 2λ+ e−2µ + cosh 2λ(e2µ + e−2µ)

(eµ cosh 2λ+ e−µ)2

= 1 +
cosh 2λ(eµ − e−µ)2

(eµ cosh 2λ+ e−µ)2

≤ 1 +
(eµ − e−µ)2

e2µ cosh 2λ

≤ 1 +
4 sinh2 µ

cosh2 µ cosh 2λ

≤ 1 + 8e−2λ tanh2 µ

where the second and third inequalities both use that ex ≥ cosh x ≥ ex/2, for
x ≥ 0.

B.6.1.2 Fan with deletions

In keeping with the rest of the text, these proofs will set 2B = d. Note that the value

of B does not enter the resulting bounds.

Proof of Proposition B.4.4. Let

Pℓ,η,µ,λ(x) :=
1

Z(ℓ, η, µ, λ)
exp


λxd+1(

d/2∑

i=1

x2i) + µxd+1(

d/2∑

i=ℓ+1

x2i−1)




· exp


ηxd+1(

ℓ∑

i=1

x2i−1) + λ(

d/2∑

i=1

x2ix2i−1)


 .

Then Pℓ,Fan = Pℓ,0,µ,λ, Qℓ,Fan = Pℓ,µ,µ,λ. Further, Z2Q−P = Z(ℓ, 2µ, µ, λ).

Here again the partition function is simple to compute. In essence, the groups
(x2i−1, x2i) across i are independent given xd+1, and the expressions, unsurprisingly,
are invariant to value of xd+1.

Unfortunately the calculations get a little messy. If one is not interested in the
results on property testing in ğB.5.2, then the following may be safely skipped. We do
note that the steps below are elementary, it is just the form of the expressions that is



226

long.

Z(ℓ, η, µ, λ)

=
∑

xd+1

∑

x1:d

exp


λxd+1(

d/2∑

i=1

x2i) + µxd+1(

d/2∑

i=ℓ+1

x2i−1) + ηxd+1(
ℓ∑

i=1

x2i−1) + λ(

d/2∑

i=1

x2ix2i−1)




=
∑

xd+1

ℓ∏

i=1

∑

x2i−1,x2i

exd+1(ηx2i−1+λx2i)+λx2ix2i−1 ·
d/2∏

i=ℓ+1

∑

x2i−1,x2i

exd+1(µx2i−1+λx2i)+λx2ix2i−1

=
∑

xd+1

(
2eλ cosh((λ+ η)xd+1) + 2e−λ cosh((λ− η)xd+1)

)ℓ

·
(
2eλ cosh((λ+ µ)xd+1) + 2e−λ cosh((λ− µ)xd+1)

)d/2−ℓ

= 2d+1
(
eλ cosh(λ+ η) + e−λ cosh(λ− η)

)ℓ (
eλ cosh(λ+ µ) + e−λ cosh(λ− µ)

)d/2−ℓ
.

Thus,

1 + χ2(Q∥P ) = Z(ℓ, 0, µ, λ)Z(ℓ, 2µ, µ, λ)

Z(ℓ, µ, µ, λ)2

=

((
eλ cosh(λ) + e−λ cosh(λ)

) (
eλ cosh(λ+ 2µ) + e−λ cosh(λ− 2µ)

)

(eλ cosh(λ+ µ) + e−λ cosh(λ− µ))2

)ℓ

=: U ℓ.

We proceed to estimate U .

U =

(
eλ cosh(λ) + e−λ cosh(λ)

) (
eλ cosh(λ+ 2µ) + e−λ cosh(λ− 2µ)

)

(eλ cosh(λ+ µ) + e−λ cosh(λ− µ))2

=
e2λ coshλ cosh(λ+ 2µ) + e−2λ coshλ cosh(λ− 2µ)

e2λ cosh2(λ+ µ) + e−2λ cosh2(λ− µ) + 2 cosh(λ+ µ) cosh(λ− µ)

+
cosh(λ) cosh(λ+ 2µ) + cosh(λ) cosh(λ− 2µ)

e2λ cosh2(λ+ µ) + e−2λ cosh2(λ− µ) + 2 cosh(λ+ µ) cosh(λ− µ)

By eliminating one factor of the denominator from the numerator above, we obtain
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the sequence of relations that follows below.

U
(a)
= 1 +

(e2λ + e−2λ) sinh2 µ+ sinh(µ) (sinh(2λ+ µ)− sinh(2λ− µ))
e2λ cosh2(λ+ µ) + e−2λ cosh2(λ− µ) + 2 cosh(λ+ µ) cosh(λ− µ)

(b)
= 1 +

2 cosh(2λ) sinh2 µ+ 2 cosh(2λ) sinh2 µ

(eλ cosh(λ+ µ) + e−λ cosh(λ− µ))2

= 1 +
4 sinh2(µ) cosh(2λ)

e2λ cosh2(λ+ µ) + e−2λ cosh2(λ− µ) + 2 cosh(λ+ µ) cosh(λ− µ)
(c)

≤ 1 + 4
sinh2 µ

cosh2(λ+ µ)
≤ 1 + 4

sinh2 µ

cosh2 λ cosh2 µ

≤ 1 + 16e−2λ tanh2 µ,

where (a) follows by the identities

cosh(u) cosh(u+ 2v)− cosh2(u+ v) = sinh2 v

cosh(u) cosh(u+ 2v)− cosh(u+ v) cosh(u− v) = sinh(v) sinh(2u+ v),

(b) uses
sinh(2u+ v)− sinh(2u− v) = 2 cosh(2u) sinh u,

and (c) follows by dropping all terms but the first in the denominator, and observing
that e2λ ≥ cosh(2λ). Finally, the inequality cosh(λ+ µ) ≥ coshλ coshµ holds because
λ, µ ≥ 0.

B.6.2 Clique-based Widgets

The method for showing the bounds is developed in the case of the Clique with a

single edge deleted. While there are variations in the proofs of the following two cases,

the basic recipe remains the same.

We begin with a technical lemma that is repeatedly used in the following.

Lemma B.6.1. Let τ : [a, b]→ R be a function differentiable on (a, b) such that τ ′ is

strictly concave. If τ(a) < 0 and τ(b) > 0, then τ has exactly one root in (a, b)

Proof. Since τ ′ is concave, it can have at most two roots in (a, b). Indeed, if there
were three roots a < x1 < x2 < x3 < b, then ∃t ∈ (0, 1) : x2 = tx1 + (1 − t)x3, and
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0 = f(x2) = tf(x1) + (1− t)f(x3) violates strict concavity. Further, between its roots,
τ ′ must be positive, again by concavity.

Thus, we can break [a, b] into three intervals (I1, I2, I3), some of them possibly
trivial6, of the from ([a, x1), [x1, x2], (x2, b]), such that τ is monotone decreasing on
the interiors of I1, I3 and monotone increasing on the interior of I2.

Note that τ has at least one root by the intermediate value theorem. We now
argue that it cannot have more than one. Since τ is falling on I1, it follows that
supx∈I1 τ(x) = τ(a) < 0, and there is no root in I1. Similarly, since τ is falling on
I3, τ(b) = infx∈I3 τ(x) > 0, and there is no root in I3. This leaves I2, and since τ is
monotone on I2, it has at most one root on the same.

B.6.2.1 Clique with a single edge deleted

Proof of Proposition B.4.6. Let P = PClique and Q = QClique as defined in the main
text. For given λ, η, let

Pλ,η(x) :=
1

Z(λ, η)
e

λ
2 ((

∑
xi)

2−(d+1))e−ηx1x2

Note that P = Pλ,λ−µ, and Q = Pλ,λ. Further,

W := EP [(Q/P )
2] =

Z(λ, λ− µ)Z(λ, λ+ µ)

Z(λ, λ)2
.

We begin by writing Z in a convenient form, derived by breaking the configurations
into bins depending on the number of xis that take the value −1:

Z(λ, η) =
d−1∑

j=0

(
d− 1

j

){
e−η

(
e

λ
2
(d+1−2j)2−(d+1) + e

λ
2
(d−3−2j)2−(d+1)

)

+2eηe
λ
2
((d−1−2j)2−(d+1))

}
.

Notice above that since (d−3−2(d−1− j))2 = (d+1−2j)2, and
(
d−1
j

)
=
(

d−1
d−1−j

)
,

it follows that the sums over the first two terms above are identical. Thus,

6i.e. of cardinality 0 or 1. More precise characterisation can be obtained by casework on the
number of roots of τ ′.
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Z(λ, η) = 2
∑(

d− 1

j

)
e−ηe

λ
2
(d+1−2j)2−(d+1) + 2

∑
eηe

λ
2
((d−1−2j)2−(d+1))

⇐⇒ Z(λ, η)

2eλ/2(d2−d)︸ ︷︷ ︸
=:Z̃(λ,η)

= eλd−η
∑(

d− 1

j

)
e−2λj(d+1−j)

︸ ︷︷ ︸
=:S1(λ)

+e−(λd−η)
∑(

d− 1

j

)
e−2λj(d−1−j)

︸ ︷︷ ︸
=:S2(λ)

⇐⇒ Z̃(λ, η) = eλd−ηS1(λ) + e−λd+ηS2(λ).

Since the term appears often, we set d′ = d− 1. As a consequence of the above, we
have

W =
Z(λ, λ− µ)Z(λ, λ+ µ)

Z(λ, λ)2
=
Z̃(λ, λ− µ)Z̃(λ, λ+ µ)

Z̃(λ, λ)2

=
(eλd

′+µS1(λ) + e−λd′−µS2(λ))(e
λd′−µS1(λ) + e−λd′+µS2(λ))

(eλd′S1(λ) + e−λd′S2(λ))2

= 1 + 4 sinh2 µ
S1S2

(eλd′S1 + e−λd′S2)2

≤ 1 + 4 sinh2 µ
e−2λd′S2(λ)

S1(λ)
.

The bounds are now forthcoming by controlling S1, S2 as in the following

Lemma B.6.2. If d ≥ 5 and λ(d− 4) ≥ log(d), then

S1(λ) ≥ 1

S2(λ) ≤ 2 + 3de−2λ(d−2) ≤ 2 + 3/d.

The bound follows directly from the control offered above.

This proof describes closely the structure of the forthcoming proofs

• Begin by introducing one free parameter, η varying which yields Ising models

that interpolate between P and Q.

• Express the χ2 divergence as a ratio of partition functions.



230

• Exploit the symetries of the mean field Ising model to more conveniently write

these partition functions.

• Control the terms arising via a ‘ratio trick’ as in the proof of Lemma B.6.2. At

time this is used more than once, or a more direct form of this trick is used

instead.

We conclude by showing Lemma B.6.2.

Proof of Lemma B.6.2. S1 ≥ 1 follows trivially, since all terms in the sum are non-
negative and the first term is

(
d−1
0

)
e0 = 1.

Concentrating on S2, let Tj :=
(
d−1
j

)
e−2λj(d−1−j). Note that S2 =

∑
Tj, and that

Tj = Td−1−j for every j. Further, for j ∈ [0 : d− 2],

Tj+1

Tj
=
d− 1− j
j + 1

e−2λ(d−2−2j).

Treating j as a real number in [0, d− 2], define

τ(j) = log(d− 1− j)− log(j + 1)− 2λ(d− 2− 2j).

We have

τ ′(j) = − 1

d− 1− j −
1

j + 1
+ 4λ

τ ′′(j) = − 1

(d− 1− j)2 +
1

(j + 1)2

τ ′′′(j) = − 2

(d− 1− j)3 −
2

(j + 1)3
< 0.

We may now note that τ ′ is a strictly concave function on the relevant domain.
Further, note that since log(d− 1) ≤ 2λ(d− 2) follows from our conditions, τ(0) < 0,

and similarly, τ(d − 2) > 0. By Lemma B.6.2, τ has exactly one root in [0, d − 2] -
in particular, this lies at j = d/2− 1. But since Tj+1/Tj = eτ(j), we obtain that for
j ≤ d/2− 1, Tj+1 ≤ Tj, and for j ≥ d/2− 1, Tj+1 ≥ Tj.

Since T s are decreasing until d/2− 1 and increasing after d/2, it follows that for
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all j ∈ [2 : d− 3], Tj ≤ max(T2, Td−3) = T2. Now, under the conditions of the theorem,

T2
T1

= exp (τ(1)) = exp (log(d− 2)− log 2− 2λ(d− 4))

≤ exp (log(d− 2)− log 2− 2 log(d)) ≤ 1/d,

where we have used the assumption λ(d− 4) ≥ log d. Thus,

S2 = T0 + T1 +
d−3∑

j=2

Tj + Td−2 + Td−1

≤ 1 + T1 +
d− 4

d
T1 + T1 + 1

≤ 2 + 3d exp (−2λ(d− 2)) ≤ 2 + 3/d.

We call this method of estimating sums such as S2 the ratio trick, since they
control the values of the sums by controlling the ratios of subsequent terms.

B.6.2.2 Clique with Large Hole

The computations of this section are in essence a deepening of the previous section,

and we will frequently make references to the same.

Proof of Proposition B.4.7. Once again condensing notation, let P := Pℓ,Clique, Q :=

Qℓ,Clique.

Further, let

Pℓ,λ,η(x) :=
1

Zℓ(λ, η)
e

λ
2 (

∑
1≤i≤d+1 xi)

2−(d+1)e−
η
2 (

∑
1≤i≤ℓ xi)

2−ℓ

Again, P = Pℓ,λ,λ−µ, Q = Pℓ,λ,λ holds. Zℓ is the central object for this section, and
has the following expression. This is derived by tracking the number of negative xis
in both the bulk of the clique and the single ‘hole’ separately.

Zℓ(λ, η) :=
∑

{±1}d+1

e
λ
2 (

∑
1≤i≤d+1 xi)

2−(d+1)e−
η
2 (

∑
1≤i≤ℓ xi)

2−ℓ

=
∑

i,j

(
ℓ

i

)(
d+ 1− ℓ

j

)
e

λ
2
(d+1−2i−2j)2−(d+1)e

−η
2
(ℓ−2i)2−ℓ
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We normalise Zℓ by eλ/2((d+1)2−(d+1))e−η/2(ℓ2−ℓ), and put a ∼ over the normalised
version7 to get

Z̃ℓ(λ, η) :=
∑

i,j

(
ℓ

i

)(
d+ 1− ℓ

j

)
e−2λj(d+1−2i−j)e2ηi(ℓ−i)e−2λi(d+1−i)

=:
ℓ∑

i=0

(
ℓ

i

)
e2ηi(ℓ−i)e−2λi(d+1−i)Si(λ)

where

Si(λ) :=
∑

j

(
d+ 1− ℓ

j

)
e−2λj(d+1−2i−j).

Notice that Si ≥ 0 for every i.
As before, we are interested in controlling

W :=
Zℓ(λ, λ− µ)Zℓ(λ, λ+ µ)

Zℓ(λ, λ)2
=
Z̃ℓ(λ, λ− µ)Z̃ℓ(λ, λ+ µ)

Z̃ℓ(λ, λ)2
.

To this end, note first that 2λi(ℓ− i)− 2λi(d+ 1− i) = −2λ(d+ 1− ℓ), and so,
for instance,

Z̃ℓ(λ, λ+ µ) =
∑

i

(
ℓ

i

)
e2µi(ℓ−i)e−2λi(d+1−ℓ)Si(λ).

Collecting like terms in expressions of the above form, we obtain that

Z̃ℓ(λ, λ− µ)
Z̃ℓ(λ, λ)

= 1 +

∑ℓ−1
i=1

(
ℓ
i

) (
e−2µi(ℓ−i) − 1

)
e−2λi(d+1−ℓ)Si(λ)

Z̃ℓ(λ, λ)

and

Z̃ℓ(λ, λ+ µ)

Z̃ℓ(λ, λ)
= 1 +

∑ℓ−1
i=1

(
ℓ
i

) (
e2µi(ℓ−i) − 1

)
e−2λi(d+1−ℓ)Si(λ)

Z̃ℓ(λ, λ)
,

where the terms involving i = 0 and i = ℓ in the numerator drop out because

7Unlike in §B.6.2.1, we include the factor due to η in the normalisation. This does not affect
the further calculations since these factors cancel in the expression for W below. More importantly,
the normalisation includes a factor of eλ/2((d+1)2−(d+1)) instead of eλ/2(d

2−d). While the latter lent
the formulae in the ℓ = 2 case of the previous section a pleasant symmetry, the former yields more
convenient expressions when dealing with ℓ abstractly. Due to this, the terms are further reduced by
a common factor of eλd. We highlight this here because of the cosmetic differences arising from these
changes—for instance, the leading term in Z̃ℓ is just S1 instead of eλd−ηS1 as in the §B.6.2.1—which
may irk the careful reader at first glance.



233

e2µi(ℓ−i) = 1 in these cases.
Now, if µ ≥ 0 the second terms in the above two expressions are respectively

negative and positive, while if µ < 0, they are respectively positive and negative. It is
a triviality that for A < 0 < B, (1 + A)(1 +B) ≤ 1 + A+B. We thus have the upper
bound

W ≤ 1 +

∑ℓ−1
i=1

(
ℓ
i

)
2 (cosh 2µi(ℓ− i)− 1) e−2λi(d+1−ℓ)Si(λ)

Z̃ℓ(λ, λ)

= 1 + 4

∑ℓ−1
i=1

(
ℓ
i

)
sinh2(µi(ℓ− i))e−2λi(d+1−ℓ)Si(λ)

Z̃ℓ(λ, λ)
(B.1)

While we will provide full proofs in the sequel, it may help to see where we are
going first. Roughly, we argue via the ratio trick in the proof of Lemma B.6.2 in the
previous section, that Si is bounded by 2(1 + e−2λ(ℓ−2i)(d+1−ℓ)), under conditions such
as λ(d+ 1− 2ℓ) ≥ log d+ 1− 2ℓ. Plugging in this upper bound, and noting that after
multiplication with e−2λi(d+1−ℓ) we have a sum that is completely symmetric under
i 7→ ℓ− i, we can bound W as

W ≤ 1 + 16

∑ℓ−1
i=1

(
ℓ
i

)
sinh2(µi(ℓ− i))e−2λi(d+1−ℓ)

Z̃ℓ(λ, λ)
.

We then show that under the conditions of the proposition, the first term in the above
sum dominates all the remaining terms, in the process utilising the condition |µ| ≤ λ.
Finally, using the trivial bound Z̃ℓ(λ, λ) ≥ 1, we get the claied upper bound.

Let us then proceed. The control on the Sis is offered below.

Lemma B.6.3. If λ(d + 1 − 2ℓ) ≥ log(d + 1 − 2ℓ) and d ≥ 4ℓ, then for every

i ∈ [1 : ℓ− 1],

Si(λ) ≤ 2 + 2e−2λ(ℓ−2i)(d+1−ℓ).
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Incorporating the above lemma into (B.1), we have

W ≤ 1 + 8

∑ℓ−1
i=1

(
ℓ
i

)
sinh2(µi(ℓ− i))e−2λi(d+1−ℓ)

(
1 + e−2λ(ℓ−2i)(d+1−ℓ)

)

Z̃ℓ(λ, λ)

≤ 1 + 8

∑ℓ−1
i=1

(
ℓ
i

)
sinh2(µi(ℓ− i))

(
e−2λi(d+1−ℓ) + e−2λ(ℓ−i)(d+1−ℓ)

)

Z̃ℓ(λ, λ)

(a)
= 1 + 16

∑ℓ−1
i=1

(
ℓ
i

)
sinh2(µi(ℓ− i))e−2λi(d+1−ℓ)

Z̃ℓ(λ, λ)

= 1 +
16

Z̃ℓ(λ, λ)

(
sinh2(µ(ℓ− 1))e−2λ(d+1−ℓ) +

ℓ−1∑

i=2

(
ℓ

i

)
sinh2(µi(ℓ− i))e−2λi(d+1−ℓ)

)

(b)

≤ 1 +
16

Z̃ℓ(λ, λ)

(
sinh2(µ(ℓ− 1))e−2λ(d+1−ℓ) +

ℓ−1∑

i=2

(
ℓ

i

)
e2|µ|iℓ−2λi(d+1−ℓ)

)

(c)

≤ 1 +
16

Z̃ℓ(λ, λ)

(
sinh2(µ(ℓ− 1))e−2λ(d+1−ℓ) +

ℓ−1∑

i=2

(
ℓ

i

)
e−2λi(d+1−2ℓ)

)
(B.2)

where the equality (a) follows since each term in the sum is invariant under the
map i 7→ ℓ− i, (b) follows since sinh x ≤ ex, and (c) used λ ≥ |µ|. .

For i ∈ [2 : ℓ], let Vi denote the term corresponding to i in the summation above,
and let V1 = sinh2(µ(ℓ− 1)e−2λ(d+1−ℓ). We will argue that V1 dominates Vi for every i
by using a weakened ratio trick.

Note that
V1 ≥ e−2λ(d+1−ℓ)−2|µ|(ℓ−1) ≥ e−2λd.

Further,
Vi
V1
≤ exp (i log ℓ+ 2λd− 2λi(d+ 1− 2ℓ)) .

This is smaller than 1/ℓ so long as for every i,

i(2λ(d+ 1− 2ℓ)− log ℓ) > 2λd+ log(ℓ),

which hold if the following conditions are true:

2λ(d+ 1− 2ℓ) > log ℓ

4λ(d+ 1− 2ℓ) > 3 log ℓ+ 2λd.

The above hold if λ(d+ 2− 4ℓ) ≥ 3/2 log ℓ, which is true under the conditions of
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the proposition since ℓ < d/8, and since λ(d+ 2− 4ℓ) ≥ λd/2 ≥ 3/2 log d.

Finally, it remains to show that Z̃ℓ(λ, λ) is non-trivially large. But note that
Z̃ℓ(λ, λ) ≥ S0(λ) ≥ 1.

Thus, we have shown that

W ≤ 1 + 32ℓ sinh2(µ(ℓ− 1))e−2λ(d+1−ℓ).

Proof of Lemma B.6.3. For j ∈ [0 : d+ 1− ℓ], let

Tj :=

(
d+ 1− ℓ

j

)
e−2λj(d+1−2i−j).

Recall that Si =
∑
Tj. We will use the ratio trick again. To this end, observe that

Tj+1

Tj
=
d+ 1− ℓ− j

j + 1
exp (−2λ(d− 2i− 2j) .

Again treating j as a real number in [0 : d− ℓ], let

τ(j) := log(d+ 1− ℓ− j)− log(1 + j)− 2λ(d− 2i− 2j).

By considerations similar to the previous section, τ is strictly concave, and by Lemma
B.6.2, τ has exactly one root so long as τ(0) < 0 and τ(d − ℓ) > 0. In this setting
these conditions translate to

log(d+ 1− ℓ) < 2λ(d− 2i)

log(d+ 1− ℓ) < −2λ(d− 2i− 2(d− ℓ)) = 2λ(d− 2(ℓ− i)).

The above hold for every i so long as log(d+ 1− ℓ) < 2λ(d+ 2− 2ℓ).

Since τ has a single root and is initially negative, we again find that for all
j ∈ [2 : d− 1− ℓ], Tj ≤ max(T2, Td−1−ℓ). Further,

T2
T1

=
d− ℓ
2

exp (−2λ(d− 2− 2i)) ≤ d− ℓ
2

exp (−2λ(d− 2ℓ)) ≤ 1

d− ℓ
Td−ℓ−1

Td−ℓ

=
d− ℓ
2

exp (−2λ(d− 2(ℓ− i)) ≤ 1

d− ℓ.



236

Further,

max

(
T1
T0
,
Td−ℓ

Td+1−ℓ

)
≤ (d+ 1− ℓ)e−2λ(d−2ℓ) ≤ 1/2.

Thus,

S1 ≤ T0 + Td+1−ℓ + (1 + (d− ℓ− 2)/(d− ℓ))max(T1, Td−ℓ)

≤ T0 + Td+1−ℓ + 2max(T1, Td−ℓ)

≤ 2(T0 + Td+1−ℓ).

Now notice that

T0 = 1

Td−ℓ+1 = exp (−2λ(d+ 1− ℓ)(d+ 1− 2i− d− 1 + ℓ))

= exp (−2λ(ℓ− 2i)(d+ 1− ℓ)) ,

and thus the claim follows.

We now prove the reverse direction, i.e. control on χ2(P∥Q). This is essentially a

small variation on the previous setting.

Proof of Proposition B.4.8. Referring to the previous proof, we instead need to control

W ′ =
Z̃ℓ(λ, λ)Z̃ℓ(λ, λ+ 2µ)

Z̃ℓ(λ, λ+ µ)2
.

Proceeding in the same way, we may conntrol

W ′ ≤ 1 +

∑ℓ−1
i=1

(
ℓ
i

)
(cosh(4µi(ℓ− i))− 2 cosh(2µ(i(ℓ− i)) + 1) e−2λi(d+1−ℓ)Si(λ)

Z̃ℓ(λ, λ+ µ)

For succinctness, let f(x) := cosh(4µx)− 2 cosh(2µx) + 1. Note that 1 ≤ f(x) ≤
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e4|µ|x. Since the Si are identical to the previous case, Lemma B.6.3 applies, and

W ′ ≤ 1 + 8

∑ℓ−1
i=1

(
ℓ
i

)
f(i(ℓ− i))e−2λi(d+1−ℓ)

(
1 + e−2λ(ℓ−2i)(d+1−ℓ)

)

Z̃ℓ(λ, λ+ µ)

≤ 1 + 16

∑ℓ−1
i=1

(
ℓ
i

)
f(i(ℓ− i))e−2λi(d+1−ℓ)

Z̃ℓ(λ, λ+ µ)

≤ 1 +
16

Z̃ℓ(λ, λ+ µ)

(
f(ℓ− 1)e−2λ(d+1−ℓ) +

ℓ−1∑

i=2

(
ℓ

i

)
e4|µ|iℓ−2λi(d+1−ℓ)

)

≤1 + 16

Z̃ℓ(λ, λ+ µ)

(
f(ℓ− 1)e−2λ(d+1−ℓ) +

ℓ−1∑

i=2

(
ℓ

i

)
e−2λi(d+1−3ℓ)

)

Notice the distinction that the exponent in the second sum contains a −3ℓ instead
of a −2ℓ. Using f(x) ≥ 1, the same control on the relative values of Si and the
summation holds as long as

4λ(d+ 1− 3ℓ) > 3 log ℓ+ 2λd.

This translates to demanding that 2λ(d − 6ℓ) > 3/2λd, which holds for ℓ ≤ d/12.
Finally, Z̃ℓ(λ, λ+ µ) ≥ 1 as well, and thus,

W ′ ≤ 1 + 32ℓe−2λ(d+1−ℓ) (cosh(4µ(ℓ− 1))− 2 cosh(2µ(ℓ− 1)) + 1) .

Finally, we note that for any x,

cosh(4x)− 2 cosh(2x) + 1 = sinh2(2x) + (cosh(2x)− 1)2

= 4 sinh2 x cosh2 x+ 4 sinh4 x

= 4 sinh2 x cosh2 x(1 + tanh2 x)

≤ 2 sinh2(2x).

B.6.2.3 Emmentaler Cliques

Proof of Proposition B.4.9. Recall the setup - d+1 nodes are divided into B = d/(ℓ+1)

groups of ℓ+1 nodes each, denoted V1, . . . , VB, and the final node d+1 is kept separate.
Recall that for a set S, xS :=

∑
u∈S xu. Define
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Pℓ,λ,η =
1

Zℓ(λ, η)
exp


λ/2

(
B∑

i=1

xVi

)2

− λ/2
B∑

i=1

(x2Vi
) + λxv

B∑

i=2

xVi
+ ηxvxV1


 .

Then P = Pℓ,Emmentaler = Pℓ,λ,0, Q = Qℓ,Emmentaler = Pℓ,λ,µ and Z2Q−P = Zℓ(λ, 2µ)

Marginalising over xv, we get

Zℓ(λ, η)

= 2
∑

x

exp


λ/2

(
B∑

i=1

xVi

)2

− λ/2
B∑

i=1

(x2Vi
)


 cosh

(
λ

B∑

i=2

xVi
+ ηxV1

)

≤ 2 cosh(λ(d− ℓ− 1) + η(ℓ+ 1))
∑

x

exp


λ/2

(
B∑

i=1

xVi

)2

− λ/2
B∑

i=1

(x2Vi
)


 ,

while dropping all terms for which |∑i xVi
| < d, we get

Zℓ(λ, η) ≥ 4 cosh(λ(d− ℓ− 1) + η(ℓ+ 1))eλ/2(B
2−B)(ℓ+1)2

= 4 cosh(λ(d′ − ℓ− 1) + µ(ℓ+ 1))eλ/2(d
2−d(ℓ+1)).

To control Zℓ from above, it is necessary to control the partition function of the
Emmentaler graph on d nodes (i.e., with only the groups V1, . . . VB, and without
the extra node from above. We set this equal to Yℓ(λ). Then, similarly tracking
configurations by the number of negative xis in each part,

Yℓ :=
∑

x

exp


λ/2

(
B∑

i=1

xVi

)2

− λ/2
B∑

i=1

(x2Vi
)


 .

=
∑

j1,...,jB

∏(
ℓ+ 1

ji

)
· exp

(
λ/2

(
(d− 2

∑
ji)

2 −
∑

(ℓ+ 1− 2ji)
2
))

=eλ/2(d
2−d(ℓ+1))

∑

j1,...,jB

∏(
ℓ+ 1

ji

)
· exp

(
−2λ

(
(d− ℓ− 1)(

∑
ji) +

∑
j2i − (

∑
ji)

2
))

.

For succinctness, let d′ := d − ℓ − 1. We establish the following lemma after
concluding this argument
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Lemma B.6.4. If ℓ ≤ d/4 and λ(d− 4) ≥ 3 log(d), then

Yℓ ≤ 2eλ/2(d
2−d(ℓ+1))

(
1 + 2de−2λd′

)

Invoking the above lemma and the previously argued control on Zℓ, we get that

W := EP [(Q/P )
2] =

Zℓ(λ, 0)Zℓ(λ, 2µ)

Zℓ(λ, µ)2

≤ cosh(λd′) cosh(λd′ + 2µ(ℓ+ 1))

cosh2(λd′ + µ(ℓ+ 1))

(
2Yℓ

4eλ/2(d2−d(ℓ+1))

)2

≤
(
1 +

sinh2(µ(ℓ+ 1))

cosh2(λd′ + µ(ℓ+ 1))

)(
1 + 2de−2λd′

)2

≤
(
1 + 4 tanh2(µ(ℓ+ 1))e−2λd′

)(
1 + 2de−2λd′

)2

Under the conditions of the theorem, both 4 tanh2(µ(ℓ+1))e−2λd′ and 2de−2λd′ are
smaller than 1/4. But for x, y, it holds that (1 + x)2 < 1 + 3x and (1 + 3x)(1 + y) <

1 + 4(x + y) ≤ 1 + 8max(x, y). Lastly, 4 tanh2 x ≤ 4 ≤ d, and thus, we have shown
the bound

W ≤ 1 + 32de−2λ(d−ℓ−1).

Proof of Lemma B.6.4. Fix a vector (j1, . . . , jB) and let k :=
∑
ji. We will argue the

claim by controlling the terms in Yℓ with a given value of k.

Lemma B.6.5. If
∑
ji = k ∈ [2 : d− 2], ℓ+ 1 ≤ d/4 and λ(d− 4) ≥ 3 log(d), then

∏(
ℓ+ 1

ji

)
· exp

(
−2λ

(
d′(
∑

ji) +
∑

j2i − (
∑

ji)
2
))
≤ 1

dmin(k,d−k)
e−2λd′ .

Thus, we have the bound

Yℓ
eλ/2(d2−d(ℓ+1))

≤ 2
(
1 + B(ℓ+ 1)e−2λd′

)
+

d−2∑

k=2

Nk

dmin(k,d−k)
e−2λd′ ,

where
Nk =

∣∣∣
{
j ∈ [0 : ℓ+ 1]B :

∑
ji = k

}
.
∣∣∣

Notice that Nk = Nd−k. Further, for k ≤ d/2, by stars and bars,

Nk ≤
(
k +B − 1

k

)
≤ (1 + (B − 1)/k)k−1 ≤ Bk ≤ dk
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Consequently, Nk ≤ dmin(k,d−k), and we have established the upper bound

Yℓ
2eλ/2(d2−d(ℓ+1))

≤ 1 + 2de−2λd′ .

Proof of Lemma B.6.5. Note that
(
n
m

)
≤ nmin(m,n−m). Therefore,

∏(
ℓ+ 1

ji

)
≤ exp (min(k, d− k) log(ℓ+ 1)) .

Next, by Cauchy-Schwarz,

∑
j2i ≥

(
∑
ji)

2

B
= k2

(
1− d′

d

)
.

Let LHS,RHS be the left and right hand sides of the inequality claimed in the
Lemma. Using the above,

log
LHS

RHS
≤ min(k, d− k) log(d(ℓ+ 1))− 2λ

(
d′k + k2d′/d− d′

)

= min(k, d− k) log(d(ℓ+ 1))− 2λ
d′

d
(k(d− k)− d) .

Let f(k) be the upper bound above. Notice that f(k) = f(d− k). Thus, it suffices
to show that f(u) ≤ 0 for every real number u ∈ [2, d/2].

For a real number u ∈ [2, d/2), it holds that f ′′(u) = 4λ > 0. It follows that f
attains its maxima on {2, d/2}. Since ℓ+ 1 < d/4, we have d′/d ≥ 3/4, and thus

f(2) = 2 log(d(ℓ+ 1))− 2λ
d′

d
(d− 4) ≤ 4 log(d)− 3

2
λ(d− 4) < 0

f(d/2) =
d

2

(
log(d(ℓ+ 1)− 2λ

d′

d
· (d− 4)

2

)
=
d

4
f(2) < 0.

B.6.2.4 Emmentaler v/s Full Clique

Proof of Proposition B.4.10. Let

Pℓ,λ,η(x) :=
1

Zℓ(λ, η)
exp


λ/2



(

B∑

i=1

xVi

)2

− d


− (λ− η)/2

B∑

i=1

(x2Vi
− (ℓ+ 1))


 .
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Then Pℓ = Pℓ,λ,0, Qℓ = Pℓ,λ,µ. Let d′ = d− 1− ℓ. Developing this a little, one can
write

Zℓ(λ, η) = Cℓ,λ,η

∑

j1,...,jB

∏(
ℓ+ 1

ji

)
· e−2λ(d′

∑
ji+

∑
j2i −(

∑
ji)

2)−2η((ℓ+1)
∑

ji−
∑

j2i ),

where
Cℓ,λ,η = exp

(
λ/2(d2 − d(ℓ+ 1)) + ηd(ℓ+ 1)/2

)
.

Notice that
Cℓ,λ,0Cℓ,λ,2µ

C2
ℓ,λ,µ

= 1,

and thus

W := EP [(Q/P )
2] =

Zℓ(λ, 0)Zℓ(λ, 2µ)

Zℓ(λ, µ)2
=
Z̃ℓ(λ, 0)Z̃ℓ(λ, 2µ)

Z̃ℓ(λ, µ)2
,

where

Z̃ℓ(λ, η) :=
Zℓ(λ, η)

Cℓλ,η

=
d∑

k=0

e−2λ(d′k−k2)−2η(ℓ+1)k
∑

j1,...,jB∑
ji=k

∏(
ℓ+ 1

ji

)
· e−2(λ−η)

∑
j2i .

Let Tk be the kth term in the above. It holds that Tk = Td−k. Indeed, the original
terms are invariant under the map x 7→ −x, and for j = (j1, . . . , jB), this maps to
(ℓ+ 1)1− j which has the sum d− k.

Further, since ∑
j2i ≤ max

i
(ji)

∑
ji ≤ (ℓ+ 1)

∑
ji,

it holds that each term, which depends on η as e−2η((ℓ+1)
∑

ji−
∑

j2i decreases as η
increases (or equivalently, ∂

∂η
Z̃ℓ(λ, η) ≤ 0)

Due to the above, for µ > 0,

ρ1 :=
Z̃ℓ(λ, 0)− Z̃ℓ(λ, µ)

Z̃ℓ(λ, µ)
≥ 0

ρ2 :=
Z̃ℓ(λ, 2µ)− Z̃ℓ(λ, µ)

Z̃ℓ(λ, µ)
≤ 0,
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yielding,

W =
Z̃ℓ(λ, 0)Z̃ℓ(λ, 2µ)

Z̃ℓ(λ, µ)2
≤ 1 + ρ1 + ρ2.

(For µ < 0, the signs of both ρ1 and ρ2 are ŕipped, giving the same bound.)
We now offer control on ρ1 + ρ2, to complete the argument. To this end, note that

1− 2e−2µ((ℓ+1)k−∑
j2i ) + e−4µ((ℓ+1)k−∑

j2i ) =
(
1− e−2µ((ℓ+1)k−∑

j2i )
)2
,

and thus

Z̃ℓ(λ, µ)(ρ1 + ρ2)

=
d−1∑

k=1

∑

j:
∑

ji=k

∏(
ℓ+ 1

ji

)
e−2λ(d′k−k2+

∑
j2i )
(
1− e−2µ((ℓ+1)k−∑

j2i )
)2

≤ 2

⌊d/2⌋∑

k=1

∑

j:
∑

ji=k

∏(
ℓ+ 1

ji

)
e−2λ(d′k−k2+

∑
j2i )
(
1− e−2µ((ℓ+1)k−∑

j2i )
)2
,

where we have used the symmetry of the Tks above.
We argue below that the first term in the above strongly dominates all subsequent

terms.

Lemma B.6.6. If
∑
ji = k ∈ [2 : ⌊d/2⌋], ℓ+ 1 ≤ d/4 and λ(d− 4) ≥ 3 log(d), then

∏(
ℓ+ 1

ji

)
e−2λ(d′k−k2+

∑
j2i ) ≤ 1

dk
e−2λd′ .

Using the above, along with
∑
j2i ≥

∑
ji and the fact that the number of B-tuples

of whole numbers that sum up to k is at most
(
k+B−1

k

)
≤ (eB)k ≤ dk, we immediately

have

Z̃ℓ(λ, µ)(ρ1 + ρ2) ≤ 2de−2λd′
d/2∑

k=1

(
1− e−2µℓk

)2
.

We bound the sum above in two ways - firstly, each term is ≤ 1, and so the sum is
at most d/2. Further, using 1− e−x ≤ x, the sum is at most 4

∑
µ2ℓ2k2 ≤ µ2d5. This

gives ,

Z̃ℓ(λ, µ)(ρ1 + ρ2) ≤ 2d2 min(1, µ2d4)e−2λ(d−1−ℓ)
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The bound on W now follows since Z̃ℓ(λ, µ) ≥ 2 trivially.

Proof of Lemma B.6.6. This is essentially the same as Lemma B.6.4, and may be
proved similarly.

B.6.2.5 The Clique versus the Empty Graph in High Temperatures

Proof of Proposition B.4.3. This proof heavily relies on techniques that we encoun-
tered in [CNL18]. The principal idea is via the following representation of the law of
an Ising model with uniform edge weights, and the subsequent expression (and upper
bound) for its partition function, both of which we encountered in the cited paper.

Let τ = tanh(µ). Then the law of the Ising model on a m-vertex graph G with
uniform weights α is

P (X = x) =

∏
(i,j)∈G(1 + τXiXj)

2mE0[
∏

(i,j)∈G(1 + τXiXj)
,

where E0 denotes expectation with respect to the uniform law on {−1, 1}m. This is
shown by noticing that exp (x) = cosh(x)(1 + tanh(x)), and then observing that for
x = µXiXj, since XiXj = ±1, the same is equal to cosh(µ)(1 + tanh(µ)XiXj). The
cosh(µ) term is fixed for all entries, and thus vanishes under the normalisation. The
denominator is simply a restatement of

∑
{−1,1}m

∏
(i,j)∈G(1 + τXiXj).

Let the denominator of the above be denoted 2mΦ(τ ;G). We further have the
expansion

Φ(τ ;G) =
∑

u≥0

E (u,G)τu,

where E (j, G) denotes the number of ‘Eulerian subgraphs of G’, where we call a graph
Eulerian if each of its connected components is Eulerian (and recall that a connected
graph is Eulerian if and only if each of its nodes has even degree). This arises by
expanding the above product out to get

Φ(τ ;G) =
∑

u≥0

τu ·
∑

choices of u edges (i1, j1), (i2, j2), . . . (iu, ju)

E0[Xi1Xj1 . . . XiuXju ].

Now, due to the independence, if any node of the Xis or the Xjs appears an odd
number of times in the product, the expectation of that term under E0 is zero. If they
all appear an even number of times, the value is of course 1. Thus the inner sum,
after expectation, amounts to the number of groups of u edges such that each node
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occurs an even number of times in this set of edges, which corresponds to the number
of Eulerian subgraphs of G, defined in the above way.

A further subsidiary lemma controls the size of E (u,G) as follows, where we abuse
notation and use G to denote the adjacency matrix of the graph G.

E (u,G) ≤ (2∥G∥F )u.

The idea behind this is to first control the number of length-v closed walks in a
graph, by noticing that the total number of length v walks from i to i is (Gv)i,i,
summing which up gives an upper bound on the number of closed length v walks of
Tr(Gv) ≤ ∥G∥vF . Next, we note that to get an Eulerian subgraph of G with u edges, we
can either take a closed walk of length u in G, or we can add a closed walk of length
v ≤ u − 2 to an Eulerian subgraph with u − v edges. This yields a Grönwall-style
inequality that the authors solve inductively. Please see [CNL18, Lemma A.1].

Now, let P be the Ising model Km with uniform weight α, and let Q be the Ising
model on the empty graph on m nodes. Using the above expression for the law of an
Ising model, we have

1 + χ2(Q∥P ) = EQ[Q/P ] = E0[
∏

i<j

(1 + τXiXj)]E0[
∏

i<j

(1 + τXiXj)
−1],

which, by multiplying and dividing each term in the second expression by 1− τXiXj,

and noting that X2
iX

2
j = 1, may further be written as

1 + χ2(Q∥P ) = E[
∏

i<j

(1 + τXiXj)]E

[∏
i<j(1− τXiXj)

(1− τ 2)−(m2 )

]

= Φ(τ ;Km)Φ(−τ ;Km)(1− τ 2)−(
m
2 ).

Since the above expression is invariant under a sign ŕip of τ, we may assume,
without loss of generality, that τ ≥ 0. Next, notice, due to the expansion in terms of
E of Φ, that Φ(−τ ;Km) ≤ Φ(τ ;Km) for τ ≥ 0. Further, for τ ≥ 0, using the bound
on E (u,G),

Φ(τ ;Km) ≤ E (0;Km) + tE (1;Km) + t2E (2;Km) +
∑

u≥3

(2t∥Km∥F )u.

Now notice that E (0;Km) = 1, and E (1;Km) = E (2;Km) = 0. The first of these
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is because there is only a single empty graph, while the other two follow since Km is a
simple graph. Further, ∥Km∥F =

√
m(m− 1) ≤ m. Thus, we have

Φ(τ ;Km) ≤ 1 +
∑

u≥3

(2tm)u.

Now, since 2 tanh(α)m ≤ 2αm ≤ 1/16 < 1/2, we sum up and bound the geometric
series to conclude that Φ(τ ;Km) ≤ 1 + 16(tm)3 ≤ 1 + (tm)2, and as a consequence,

Φ(τ ;Km)
2 ≤ (1 + (tm)2)2 ≤ 1 + 3(tm)2 ≤ exp

(
3(tm)2

)
.

Further, since τm < 1/32, and m ≥ 1, we have τ < 1/32, which in turn implies
that (1− τ 2)−1 ≤ exp (2τ 2). Thus, we find that

1 + χ2(P∥Q) ≤ exp
(
3(τm)2

)
· (exp

(
2τ 2
)
)m

2/2 ≤ exp
(
4(τm)2

)
≤ 1 + 8(τm)2,

where the final inequality uses the fact that for x < ln(2), ex ≤ 1 + 2x, which applies
since 4(τm)2 ≤ 4/(32)2 < ln(2).

It is worth noting that Proposition B.4.2 is also shown in the above framework by

[CNL18]. The main difference, however, is that in the χ2 computations, the square

of
∏
(1 + τXiXj) appears. The technique the authors use is to extend the notion

of E to multigraphs, and show the same expansion for these, along with the same

upper bound for E (u,G), this time with the entries of G denoting the number of edges

between the corresponding nodes.
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Appendix C

Appendix to Chapter 4

C.1 Appendix to §4.2

C.1.1 Proof of Proposition 4.2.1

Proof. We recall the notation. α ∈ [0, 1]K is such that
∑
αk ≤ 1. The T α

k are the
optimising solutions to the OSP problems at error αkε, i.e.

T α
k ∈ argmax P(T ) s.t. P(X ∈ T , Y ̸= k) ≤ αkε,

while the Sα
k are produced by removing the smaller overlap with smaller labels in T α

k ,

i.e.
Sα
k = T α

k \
⋃

k′<k

T α
k′ .

We first argue that the total overlap of the T s is small.

Lemma C.1.1. Let T α
k be generated as above. Then

∑

k

P(
⋃

k′ ̸=k

T α
k ∩ T α

k′ ) ≤ 2ε.

Since the total overlap is
⋃

k

(
T α
k ∩

⋃
k′ ̸=k T α

k′

)
, this also controls the probability of the

total overlap, that is,

P(
⋃

k,k′ ̸=k

T α
k ∩ T α

k′ ) ≤ 2ε.
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This lemma is sufficient to show the claim, since

∑

k

P(Sk) =
∑

k

P(T α
k \

⋃

k′<k

T α
k′ )

≥
∑

k

P(T α
k )−

∑

k

P(T α
k ∩

⋃

k′<k

T α
k′ )

≥
∑

k

P(T α
k )−

∑

k

P(T α
k ∩

⋃

k′ ̸=k

T α
k′ )

≥ C(ε;S )−
∑

k

P(T α
k ∩

⋃

k′ ̸=k

T α
k′ )

≥ C(ε;S )− 2ε,

where we have used that
∑

k P(T α
k ) ≥ C(ε;S ), which holds because the T α

k optimise
a relaxation of (SC), and the final inequality is due to the above lemma.

We conclude by proving the above lemma

Proof of Lemma C.1.1. Since the labels of Y are mutually, exclusive,

∑

k

P(
⋃

k′ ̸=k

T α
k ∩ T α

k′ ) =
∑

k

∑

j

P(
⋃

k′ ̸=k

T α
k ∩ T α

k′ , Y = j).

Applying Fubini’s theorem, and recalling that the probability of an intersection of
events is smaller than the probability of either of the events, we see that

∑

k

P(
⋃

k′ ̸=k

T α
k ∩ T α

k′ ) =
∑

k

∑

j

P(T α
k ∩ (

⋃

k′ ̸=k

T α
k′ ), Y = j)

≤
∑

k

(∑

j ̸=k

P(T α
k , Y = j)

)
+ P(

⋃

k′ ̸=k

T α
k′ , Y = k),

Now, notice that the sum in the brackets is simply P(T α
k , Y ≠ k). Taking the union
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bound over the second probability, we find the upper bound

∑

k

P(
⋃

k′ ̸=k

T α
k ∩ T α

k′ ) ≤
∑

k

P(T α
k , Y ̸= k) +

∑

k

∑

k′ ̸=k

P(T α
k′ , Y = k)

=
∑

k

P(T α
k , Y ̸= k) +

∑

k′

∑

k ̸=k′

P(T α
k′ , Y = k)

=
∑

k

P(T α
k , Y ̸= k) +

∑

k′

P(T α
k′ , Y ̸= k′)

= 2
∑

k

P(T α
k , Y ̸= k)

≤ 2
∑

αkε = 2ε,

where the first equality is by Fubini’s theorem again, the second equality is by the
disjointness of the values of Y , and the final inequality is due to the constraints of the
OSP problems.

C.1.2 Proofs of Propositions 4.2.2 and 4.2.3

C.1.2.1 Proofs of Necessity of Finite VC dimension

In both cases, we reduce the problems to realisable PAC learning, and invoke standard

bounds for the same, for instance the one of Chapter 3 in the book by Mohri et al.

[MRT18, Ch.3]. To this end, suppose δ ≤ 1/100, and consider the restricted class of

joint laws P such that P(Y = k|X = x) = 1{X ∈ Sk,∗} for some disjoint {Sk,∗} ∈ S

that together cover X .1

Proof for One-Sided Prediction. Notice that S∗
1 is feasible for OSP-1 for any value of

ε. If we can solve OSP-1, then we would have found a set S such that

P(S) ≥ P(S1,∗)− σ
P(X ∈ S ∩ Sc

1,∗) = P(X ∈ S, Y = 2) ≤ ε+ ν.

1Strictly speaking, this requires that S is rich enough to express such a class. This is a very mild
assumption. For the purposes of the lower bound, in fact, this can be weakened still - all we really
need is a binary law, and that if S ∈ S , then Sc ∈ S . Then we can take P(Y = 1|X = x) = 1{X ∈
S},P(Y = 2|X = x) = 1{X ∈ Sc}, and the entirety of the following argument goes through without
change.
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Further,

P(Sc) = P(Sc ∩ S1,∗) + P(Sc ∩ Sc
1,∗)

= P(Sc ∩ S1,∗) + P(Sc
1,∗)− P(S ∩ Sc

1,∗).

But P(Sc) = 1− P(S) ≤ 1− P(S1,∗) + σ ≤ P(Sc
1,∗) + σ.

Thus, we have

P(Sc ∩ S1,∗) + P(Sc
1,∗)− P(S ∩ Sc

1,∗) ≤ P(Sc
1,∗) + σ

=⇒ P(Sc ∩ S1,∗) ≤ σ + P(S ∩ Sc
1,∗) ≤ ε+ σ + ν.

But then, viewed as a standard classifier for the problem separating the class {1}
from [2 : K], S has risk at most 2ε+ σ + ν. Consequently, an algorithm for solving
OSP yields an algorithm for realisable PAC learning for this problem. Thus, invoking
the appropriate standard lower bound, we conclude that

mOSP ≥
vc(S )− 1

32(2ε+ σ + ν)
.

Proof for Learning With Abstention. Notice that {Sk,∗} serve as a feasible solution
for any ε, and have total coverage 1. Thus, if SC is possible, we may recover sets {Sk}
such that

∑
P(Sk) ≥ 1− σ

P(E{Sk}) ≤ ε+ ν

P

(⋃

k

(Sk ∩
⋃

k′ ̸=k

Sk′)
)
≤ ν.

Now notice that S1,∗ and Sc
1,∗ correspond to the realisable classifiers for the binary

classification problem separating {1} from [2 : K].2 But, in the same way, we may
view S1 and Sc

1 as binary classifiers for this problem. Now notice that for this binary
classification problem, S1 incurs small error. Indeed, denoting S ̸=1 =

⋃
k′ ̸=1 Sk′ , we

find that
2Again, this needs that S is rich enough to include Sc1,∗.
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P(X ∈ S1, Y ̸= 1) + P(X ∈ Sc
1, Y = 1) = P(X ∈ S1, Y ̸= 1)

+ P(X ∈ S ̸=1 ∩ Sc
1, Y = 1)

+ P(X ∈ Sc
̸=1 ∩ Sc

1, Y = 1)

≤ P(X ∈ S1, Y ̸= 1)

+ P(X ∈ S ̸=1, Y = 1)

+ P(X ∈ Sc
1 ∩ Sc

̸=1)

≤ P(E{Sk}) + (1− P(S1 ∪ Sc
̸=1)))

≤ ε+Kν + σ + ζ, .

where the second inequality is due to non-negativity of probabilities, and the third
inequality is due the fact that P(E) is controlled, and the following inclusion-exclusion
argument:

First note that

P(S1 ∪ S ̸=1) = P(
⋃
Sk) =

∑

k

P(Sk)−
∑

k

P(Sk ∩
⋃

k′>k

Sk′).

Next, observe that if j > k, Sj ⊂
⋃

k′>k Sk′ , and similarly
⋃

k′>j Sk′ ⊂
⋃

k′>k Sk.
Thus,

P(S1 ∪ S ̸=1) = P(
⋃
Sk) ≥

∑

k

P(Sk)−KP(S1 ∩
⋃

k′>1

Sk′).

Now invoking the SC solution conditions, the first sum is at least 1 − σ, while the
second probability is bounded by the probability of overlap, giving

P(S1 ∪ S ̸=1) ≥ 1− σ −Kν.

Thus, a SC yields a realisable PAC learner for the binary classifier problem
separating {1} from [2 : K], giving the bound

mSC ≥
vc(S )− 1

32(ε+ σ +Kν + ζ)
.

Note that these bounds are likely loose. The problems have plenty of structure

that is not exploited in either of the above statements, and tighter inequalities would
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be of interest. However the point we intend to pursue - that assuming finiteness of

VC dimensions in the upper bound analyses is not lossy, is sufficiently made above.

C.1.2.2 Proofs of the Upper Bounds

We mainly make use of the following uniform generalisation bound on the suprema of

empirical processes due to the finiteness of VC dimension. This is, again, standard

[MRT18].

Lemma C.1.2. Let S have finite VC dimension. Then for any distribution P, if P̂m

denotes the empirical law induced by m i.i.d. samples from P, then with probability at

least 1− δ over these samples,

sup
S∈S ,k∈[1:K]

|P̂m(X ∈ S, Y = k)− P(X ∈ S, Y = k)| ≤ CK

√
vc(S ) logm+ log(C/δ)

m
,

where CK is a constant independent of S , δ,P,m.

Notice that by summing over the values of Y , this also controls the error in the

objects P(X ∈ S) and P(X ∈ S, Y ̸= k), possibly with an error blowup of K, which

can be absorbed into CK .

For the purposes of the following, let ∆m,S (δ) be the value of the upper bound

above.

Proof of Upper Bound for OSP. For α ∈ [0, 1], define Sα ⊂ S to be the subset of Ss
that have P(E1S) ≤ α, and let σ, ν be quantities that we will choose.

We give a two phase scheme - first we collect all sets S such that P̂m(E1S) ≤ ε+ ν/2

into the set Ŝε+ν/2. Notice that as long as ν/2 > ∆m,S (δ/2), we have w.p. at least
1− δ/2 that

Sε ⊂ Ŝε+ν/2 ⊂ Sε+ν .

Due to the upper inclusion, with probability at least 1− δ/2, every set in Ŝε+ν/2

has error level at most ε+ ν.

Next, we choose the S ∈ Ŝε+ν/2 that has the biggest coverage. If Sε ⊂ Ŝε+ν/2,

and σ > ∆m,S (δ/2), we are again assured that the selected answer will be at least
supS∈Sε

P(S)−∆m,S (δ/2) > Lk − σ with probability at least 1− δ/2. By the union



252

bound, these will hold simultaneously with probability at least 1− δ. Since we want
the smallest σ, ν, but for the arguments to follow we need that these are bigger than
2∆m,S (δ/2), we can set

ν = σ = 4∆m,S (δ/2) = 4C

√
vc(S ) logm+ log(2C/δ)

m
,

concluding the proof.

Proof of Upper Bound for SC. This proceeds similarly to the above. For the sake of
convenience, we let R = {S : S =

⋃
k,k′ ̸=k Sk ∩ Sk′ , {Sk} ∈ S } be the class of sets

obtained by taking pairwise intersection of k-tuples in S . Note that VC dimesnsion of
the sets obtained by taking pairwise intersection of sets in S at most doubles the VC
dimesnsion, while taking the

(
K
2

)
unions in turn blows it up by a factor of O(K2 logK

by Lemma 3.2.3 of Blumer et al. [BEHW89]. Thus vc(R) = O(K2vc(S ) logK). Now
we may proceed as above, first by filtering the pairs of sets that satisfy the intersection
constraint with value ζ/2 on the empirical distribution, and then similarly checking
the sum-error constraints and finally optimising the sum of their masses. The bounds
are the same as the above, except with vc(S ) replaced by O(K2vc(S ) logK).

C.1.2.3 Analyses not pursued here

We first point out that there is nothing special about the VC theoretic analysis here -

alternate methods like Rademacher complexity or a covering number analysis may

replace Lemma C.1.2. Similarly, the same analysis could be extended, via Rademacher

complexities, to the setting of indicators relaxed to Lipschitz surrogates by exploiting

Talagrand’s lemma.

We note a few further analyses that we do not pursue here - firstly, using the

technique of Rigollet & Tong [RT11], it should be possible to give analyses for SC

under convex surrogates of the indicator losses and a slight extension of the class S

while directly attaining the constraints (instead of asymptotically) with high prob.

Additionally, a number of papers concentrate on deriving fast rates for the excess risks

under the assumption of realizability (i.e., under the assumption that level sets of
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η can be expressed via S ), and that Tsybakov’s noise condition holds at the level

relevant to the optimal solution.
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C.2 Algorithmic rewriting of Section 4.3

We specify the conclusions of ğ4.3 without any of the justifying development.

Model class and Architecture We use a DNN with the following structure:

• A ‘backbone’, parametrised by θ, which may have any convenient architecture.

• A ‘last layer’ with K outputs, denoted fk, and associated weights wk for each.

We denote w = (w1, . . . , wK).

• Let ξθ(x) denote the backbone’s output on a point x. The DNN’s outputs are

f(x; θ,w) = (f1, . . . , fk)(x; θ,w) = softmax(⟨w1, ξθ(x)⟩, . . . , ⟨wK , ξθ(x)⟩).

Objective function and Training We use the following objective function, where

the {(xi, yi)}ni=1 comprise the training dataset, θ,w are model parameters, {φk}
are autotuned hyperparameters, {λk} are autotuned multipliers, and µ is the single

externally tuned parameter. Similarly to w, we define ϕ := (φ1, . . . , φK) and λ =

(λ1, . . . , λK).

M̃ res.(θ,w,ϕ,λ, µ) =
K∑

k=1

{∑
i:yi=k− log fk(xi; θ,w)

nk

+λk

(∑
i:yi ̸=k− log(1− fk(xi; θ,w)

n ̸=k

− φk

)
+ µφk

}
,

where nk := |{i : yi = k}|, n ̸=k := |{i : yi ̸= k}|.
The minimax problem we propose is

min
θ,w,ϕ

max
λ:∀k,λk≥0

M̃ res.(θ,w,ϕ,λ, µ), (C.1)

which is optimised via SGDA in ğ4.4.

Overall Scheme and Model Selection is presented in Algorithm 5. The subroutine
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involving the minimax solution requires training data, but this is not mentioned in

the same since the focus is on model selection. The training procedure is described in

ğ4.4. P̂V refers to the empirical law on the validation dataset.

Algorithm 5 OSP-Based Selective Classifier: Model Selection

1: Inputs: Validation data {V }, List of µ values M, List of t values T, Target Error
ε.

2: for each µ ∈M, do
3: (θ(µ),w(µ))← minimax solution of the program (C.1) with this value of µ.
4: for each (µ, t) ∈M×T, do
5: Sk(µ, t)← {x : k = argmaxj fj(x; θ(µ),w(µ))} ∩ {x : fk(x; θ(µ),w(µ)) > t}.
6: ÊV (µ, t)← P̂V (E{Sk(µ,t)}).

7: ĈV (µ, t)←
∑

k P̂V (X ∈ Sk(µ, t)).
8: (µ∗, t∗) = argmaxM×T ĈV (µ, t) s.t. ÊV (µ, t) ≤ ε.
9: return {Sk(µ∗, t∗)}.
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C.3 Experimental Details

The table below presents the values of the various hyperparameters used for the entries

of Table 4.2.

Dataset Algorithm Hyper-parameters

CIFAR-10
Softmax Response t = 0.0445

Selective Net λ = 32, c = 0.51, t = 0.24
Deep Gamblers o = 1.179, t = 0.03

OSP-Based µ = 0.49, t = 0.8884

SVHN-10
Softmax Response t = 0.0224

Selective Net λ = 32, c = 0.79, t = 0.86
Deep Gamblers o = 1.13, t = 0.23

OSP-Based µ = 1.67, t = 0.9762

Cats v/s Dogs
Softmax Response t = 0.029

Selective Net λ = 32, c = 0.7, t = 0.73
Deep Gamblers o = 1.34, t = 0.06

OSP-Based µ = 1.67, t = 0.9532

Table C.1: Final hyper-parameters used for all the algorithms (at the
desired 0.5% error level) in Table 4.2.

The following two tables update the numbers for Deep Gamblers to the case where

we scan for 40 values of O in the set [1, 10) (as intended in the specifications) instead

of [1, 2).

Dataset Target OSP-based SR SN DG
Error Cov. Error Cov. Error Cov. Error Cov. Error

CIFAR-10
2% 80.6 1.91 75.1 2.09 73.0 2.31 72.9 1.99
1% 74.0 1.02 67.2 1.09 64.5 1.02 63.5 1.01

0.5% 64.1 0.51 59.3 0.53 57.6 0.48 56.1 0.51

SVHN-10
2% 95.8 1.99 95.7 2.06 93.5 2.03 94.7 2.01
1% 90.1 1.03 88.4 0.99 86.5 1.04 89.7 0.99

0.5% 82.4 0.51 77.3 0.51 79.2 0.51 81.4 0.51

Cats & Dogs
2% 90.5 1.98 88.2 2.03 84.3 1.94 87.4 1.94
1% 85.4 0.98 80.2 0.97 78.0 0.98 81.7 0.98

0.5% 78.7 0.49 73.2 0.49 70.5 0.46 74.5 0.48

Table C.2: Performance at Low Target Error. This repeats Table 4.2,
except that the hyperparameter scan for the DG method is corrected,
and the entries in the DG columns are updated to show the resulting
values. Notice that the performance in the last column is worse than in
Table 4.2.
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Dataset Target OSP-based SR SN DG
Cov. Cov. Error Cov. Error Cov. Error Cov. Error

CIFAR-10
100% 100 9.74 100 9.58 100 11.07 100 10.95
95% 95.1 6.98 95.2 8.74 94.7 8.34 95.0 8.29
90% 90.0 4.67 90.5 6.52 89.6 6.45 90.0 6.28

SVHN-10
100% 100 4.27 100 3.86 100 4.27 100 4.01
95% 95.1 1.83 95.1 1.86 95.1 2.53 95.0 2.07
90% 90.1 1.01 90.0 1.04 90.1 1.31 90.0 1.06

Cats & Dogs
100% 100 5.93 100 5.72 100 7.36 100 6.16
95% 95.1 2.97 95.0 3.46 95.2 5.1 95.1 4.28
90% 90.0 1.74 90.0 2.28 90.2 3.3 90.0 2.5

Table C.3: Performance at High Target Coverage. Similarly to the
previous table, this repeats Table 4.3 but with the scan for the DG
method corrected. Again note the reduced performance in the final
column relative to Table 4.3.
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Appendix D

Appendix to Chapter 5

D.1 Proofs Omitted from the Main Text

D.1.1 Proof of Theorem 5.4.1

Proof of lower bound. Notice that since H is one-sided learnable, it can learn any
h ∈ H from below with L = 0. Thus, given m(ε, δ, λ,H), and samples (Xi, h(Xi)) for
any h ∈ H, the scheme A recovers a function ĥ such that

µ(h = 0, ĥ = 1) ≤ λ

µ(h = 0, ĥ = 1) ≤ ε.

But then µ(ĥ ̸= h) ≤ λ+ ε - i.e. A also serves as a realisable PAC learner with excess
risk bounded by λ+ ε. Thus, standard lower bounds for realisable PAC-learning can
be invoked, for instance, that of ğ3.4 from the book [MRT18].

Proof of Upper Bound. We provide a scheme showing the same. To begin with, sup-
pose that H is a finite class. Fix g, µ, and let Hη := {h ∈ H : µ(g(X) = 0, h(X) =

1) ≤ η}. For finite H, the scheme proceeds in two steps:

1. Testing: using m1 samples (where m1 is to be specified later), compute the
empirical masses ℓ̂(h) := µ̂{h(X) = 1, g(X) = 0} for every h ∈ H. Let
Ĥλ := {h : ℓ(h) < λ/2}.

2. Optimisation: Using m2 samples (where m2 is to be specified later), compute
the empirical masses L̂(h) := µ̂(h(X) = 0, g(X) = 1) for every h ∈ Ĥλ. Return
any ĥ ∈ argminĤλ

L̂(h).

The correctness of the above procedure is demonstrated by the following lemmata:

Lemma D.1.1. If

m1 ≥
24

λ
log(4|H|/δ),
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then with probability at least 1− δ/2,

Hλ/4 ⊂ Ĥλ ⊂ H3λ/4.

The above is proved after the conclusion of this argument.

Lemma D.1.2. If

m2 ≥
2

ε2
log(4|H|/δ),

then with probability at least 1− δ/2,

|L̂(h)− µ(h = 0, g = 1)| ≤ ε

simultaneously for all h ∈ Ĥλ.

Proof. The claim follows by Hoeffding’s inequality and the union bound, noting that
|Ĥ| ≤ |H|.

Thus, for finite classes, the claim follows (with d = log |H|) by an application of
the union bound, and noting that H0 = {h : µ(h = 1, g = 0) = 0} ⊂ {h : µ(h = 1, g =

0) ≤ λ/4} = Hλ/4.

We now appeal to the standard generalisation from finite classes to finite VC-
dimension classes. By the Sauer-Shelah lemma (see, e.g., ğ3.3 of [MRT18]), with m

samples, a class of VC-dimension d breaks into at most (em/d)d equivalence classes of
functions that agree on all data points, and the losses of functions in each equivalence
class can be simultaneously evaluated and share the same generalisation guarantees.
Let H′ be formed by selecting one representative from each such class. We may run
the above procedure for H′, and draw the same conclusions so long as

m ≥ m1 +m2

m1 ≥
24

λ
(d log(em/d) + log(4/δ))

m2 ≥
1

2ε2
(d log(em/d) + log(4/δ))

By crudely upper bounding the right hand sides above, this can be attained if

m

log em
≥ 24

(
1

λ
+

1

ε2

)
(d+ log(4/δ)) ,
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and the conclusion follows on noting that for v ≥ 2, u ≥ 4v log(v) =⇒ u/ log(eu) ≥
v.

It remains to show Lemma D.1.1.

Proof of Lemma D.1.1. Let ℓ(h) := µ(h = 1, g = 0). Note that for each h, m1ℓ̂(h) is
distributed as Binomial(m1, ℓ(h)). Further, for any 0 ≤ p ≤ q ≤ 1, and any natural n,
the Binomial(n, q) distribution stochastically dominates Binomial(n, p).

Thus, for any h : ℓ(h) < λ/4,

µ⊗m1(ℓ̂(h) ≥ λ/2) ≤ PU∼Binomial(m1,λ/4)(U ≥ m1λ/2) ≤ exp (()− 3m1λ/32),

where the final relation is due to Bernstein’s inequality.
Similarly, for any h : ℓ(h) > 3λ/4,

µ⊗m1(ℓ̂(h) ≤ λ/2) ≤ PU∼Binomial(m1,3λ/4)(U ≤ m1λ/2) ≤ exp (()−m1λ/24).

For m1 ≥ 24/λ log(4|H|/δ), each of the above can be further bounded by δ/4|H|.
The claim follows by the union bound.

D.1.1.1 Alternate Generalisation Analyses

Note that the above proof utilises the finite VC property only to assert that on a finite

sample, the hypotheses to be considered can be reduced to a finite number. Instead

of the VC theoretic argument, one can then immediately give analyses via, say, L1

covering numbers of the sets induced by the functions. Similarly, instead of beginning

with finite hypotheses, we may instead directly uniformly control the generalisation

error of the estimates for each function via the Rademacher complexity of the class

H, thus replacing Lemmas D.1.2, D.1.1 by a bound of the form m(ε, λ, δ,H) ≤
inf{m : Rm(H)+

√
2 log(2/δ)/m ≤ min(λ, ε)/2}, and further extensions via empirical

Rademacher complexity. In addition, one can utilise more sophisticated analyses for

more sophisticated algorithms.

The point of all this is to underscore that once one adopts the bracketing and
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OSP setup, generalisation guarantees, and thus sample complexity bounds, follow the

standard approaches in learning theory. This is not to say that these analyses may be

trivial - for instance, in the above we have not shown tight sample complexity bounds

at all.

D.1.2 Proof of Theorem 5.4.2

Proof of Upper Bound. We note that if dµ
dVol
≥ ρ, and we can locally predict in a region

of volume P, then we can immediately locally predict in a region of µ-mass ρP. Thus,
it suffices to argue the claim for the Lebesgue mass on [0, 1]p.

Since we have access to κ cuboids in R0,1
κ , we can capture any κ of the cuboids

induced in the minimal partition aligned with g for any g ∈ G. In particular, when
approximating from below, we will choose h− to be 1 on some κ of the cuboids
contained in {g = 1}, and 0 otherwise, and similarly for approximating from above
(denoted h+). Naturally, we will ‘capture’ the cuboids with the biggest volume (more
generally, biggest µ mass). Notice that this construction trivially yields h− ≤ g ≤ h+.

To finish the argument, fix an arbitrary g ∈ G. Let P be a partition aligned
with g that is V -regular, and further, has the largest total number of parts possible.1

Suppose that there are P1 parts in P on which g is 1, and P0 on which it is 0. By
the maximality, it must be the case that each rectangle contained in each part of P

has volume less than 2V , since otherwise we can split this part while maintaining
V -regularity. Further, since the mass contained outside of the rectangle in each
part is at most V , it follows that 3V (P0 + P1) ≥ 1 by the union bound. Thus,
P0 + P1 ≥ 1/3V ≥ κ/3.

Now, by the above construction, we can capture a volume of at least (min(κ,P0)+

min(κ,P1))V , which exceeds κV/3.

Proof of Lower Bound. Divide [0, 1]p into N = ⌊1/V ⌋ congruent, disjoint rectangles.
Note that since the faces of these rectangles have codimension ≥ 1, they have volume
0. Thus, we need not worry about how they are assigned in the following, and we will
omit these irrelevant details in the interest of clarity.

We set G to be the class of 2N functions obtained by colouring each of the N boxes
as 0 or 1. This class is trivially V -regular.

1such a partition exists because V -regularity implies that the number of parts is uniformly bounded
by 1/V .
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Now, notice that any time a function h is approximating a function g ∈ G from
above, it should either attain the value 0 on a whole box, or attain the value 1 on
a whole box - if g is 1 on a box, then h is forced to be 1. If g is instead 0, and h

dips down to take the value 0 at any point, then rising up to 1 is lossy in that it
increases the loss L(h, g,Vol) while offering no reduction in the expressivity of the
class H. Thus, we may restrict attention to classes H such that all functions contained
in them are constant over the boxes described.

Given the above setup, the entire problem is equivalently described by restricting
the domains of G,H to the centres of the above boxes, and the measure Vol to the
uniform measure over these centres. We henceforth work in this space. The domain of
the functions in G,H is now the abstract set [1 : N ].

Suppose every g ∈ G can be budget learned with budget at most 1−∆/N in this
measure (where ∆ is some integer because the space is discrete and the distribution is
rational). Let (h+g , h

−
g ) be the appropriate bracketing functions that minimise budget

for g, and let Ig be the points where h+g = h−g . The budget constraint forces that
|Ig| ≥ ∆. Notice that outside of Ig, h+g must take the value 1 and h−g must take the
value 0 - indeed, if h+g (i) was 0, then since 0 ≤ h−g (i) ≤ h+g (i), h

−
g (i) = 0, and then

i ∈ Ig.
But, on [1 : N ] ∼ Ig, g must either be predominantly 1 or 0, and then respectively,

must agree with h+g or h−g on at least (N − |Ig|)/2 points. This means that there
exists a h′g ∈ H (which is either h+g or h−g ) such that

|{i : h′g(i) = g(i)} ≥ |Ig|+
N − |Ig|

2
≥ N +∆

2
.

With this setup, we invoke the following statement

Lemma D.1.3. If a class of functions F on [1 : N ] is such for every {0, 1}-valued

function on [1 : N ], there exists a f ∈ F that agrees with it on at least (N + ∆)/2

points, then

vc(F) ≥ 3∆2

2(N +∆) log(eN)
≥ 3∆2

4N log(eN)
.

Notice that since N ≥ ∆, Invoking the above, and the fact that the VC-dimension
of H is at most d, it follows that (for N ≥ 3)

3∆2

8N logN
≤ d ⇐⇒ ∆ ≤

√
3dN logN,
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from which the claim is immediate on recalling that 1/V ≥ N ≥ 1/V − 1.

Proof of Lemma D.1.3. Identify all {0, 1} labellings as above with the cube {0, 1}N ,
and similarly the patterns achieved by F as a subset of the same. The hypothesis
is then equivalent to saying that for every point p ∈ {0, 1}N , there exists a point
f ∈ F such that dH(p, f) ≤ N−∆

2
, were dH is the Hamming distance. But then F is a

(N −∆)/2-cover of the Boolean hypercube.
By a standard volume argument, it then must hold that

|F| ≥ 2N
∑(N−∆)/2

i=0

(
N
i

) ≥ e+
3
2

∆2

N+∆

where the final inequality follows on noting that the right hand side of the first
inequality is 1 divided by a lower tail probability for N independent fair coin ŕips,
and then invoking Bernstein’s inequality.

However, by the Sauer-Shelah Lemma, if d ≤ N is the VC-dimension of F , then
the number of elements in it is at most

d∑

i=0

(
N

i

)
≤
(
eN

d

)d

.

Relating these, we have

e+
3
2

∆2

N+∆ ≤ (eN/d)d ⇐⇒ 3∆2

2(N +∆) log(eN/d)
≤ d.

D.1.3 Proof of Theorem 5.4.3

These lower bounds are proved similarly to the lower bound from the previous section:

principally, they use the fact that any non-trivial budget learner also yields non-trivial

coverings, and construct function classes of limited VC dimension with large covering

numbers.

Proof of the bound (i). Let S := {x1, . . . , xD} be a set of shattered points. The
measure µS is set to the uniform distribution on S. The restriction G|S consists of all
{0, 1}-valued functions on D points. If H can budget learn this with respect to µS

with budget 1−∆/D, then H|S is a (D −∆)/2covering of {0, 1}S. Invoking Lemma
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D.1.3 just as in the proof of the lower bound in the previous section, we get that
∆
D
≥
√
3vc(H)

D
log( eD

vc(H)
).

Proof of the bound (ii). We use a class on [1 : N ], constructed by [Hau95] that is known
to have large packing number. Note that the same class is used as an example of a simple
budget-learnable class in ğ5.4.4. The class is defined as follows: Suppose D divides N .
Let F be the class of single thresholds on [1 : N/D], i.e.F = {fk, k ∈ [0 : N/D + 1]},
where fk(i) := 1k ≤ i. F trivially has a VC-dimension of 1. G is generated as a
tensor product of D copies of F placed on a partition of [1 : N ]. Concretely, we may
say that each g ∈ G can be represented as D functions (fk1 , fk2 , . . . , fkD) ∈ F⊗D for
some k1, . . . kd ∈ [0 : N/D + 1] such that for i ∈ [jN/D + 1 : (j + 1)N/D] for any
j ∈ [0 : D − 1], g(i) = fkj(i).

[Hau95] shows that for this class, under the uniform measure on [1 : N ], the
k-packing number is at least (1+N/D)D

2D(k+D
D )

. Now recall that the k/2-covering number must

exceed the k-packing number for any set and metric. Further, a budget of 1−∆/N

implies a N−∆
2

-covering. The budget requirement imposes the condition N −∆ ≤ BN .
Thus, invoking Sauer-Shelah as in the proof of Lemma D.1.3, we obtain

(
eN

d

)d

≥
(

N +D

2e(N +D −∆)

)D

≥
(

N +D

2e(BN +D)

)D

≥
(

1

4eB

)D

where we have used that BN ≥ D in the final line. The above bound is non-vacuous
only if 4eB < 1.

The case B < D/N is not discussed in the theorem, since it is a vanishingly small
budget, but by the above, in this case we get a lower bound of (N/4eD)D in the above,
giving, for D ≲ N1−ε for some ε > 0, a bound of d = Ω(D) in this setting.

D.1.4 Proofs of budget claims made in §5.4.4

Proof for sparse VC classes. fix any g. We pick the function that is 1 on the d choices
of i ∈ g−1(1) with the largest total µ-mass as the lower approximation, and the
constant 1 as the approximation from above.
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Proof for Tensorised class. The class naturally breaks the domain into D equal parts,
and places a threshold on each. We choose the d− 1 parts with largest µ-mass, and
place a threshold there. Lastly, we collate the remaining parts into one set, and we
place the constant functions 1 and 0 on this. A tensorisation of these function classes
demonstrates the claim.

Proof for Convex Polygons. Instead of approximation from above and from below, we
will adopt the more natural terminology of inner and outer approximation. As the
class is closed under f 7→ 1−f, to show budget learnability with budget B, it suffices to
show that for any polygon P with D vertices and any measure µ, there exist polygons
Pin ⊂ P ⊂ Pout of d vertices such that µ(Pin) ≥ (1−B)µ(P ) and µ(P c

out) ≥ (1−B)µ(P c).
This follows since the cloud query points are precisely those in Pout/Pin), which has
mass µ(Pout)− µ(Pin) ≤ 1− (1− B)(1− µ(P ))− (1− B)µ(P ) = 1− (1− B) = B.

Inner Approximation: We offer a direct proof. Consecutively number the vertices
of P as [1 : D]. Form the d-gon P 1 using the vertices [1 : d]. Remove this polygon
from P and relabel 1 7→ 1, d 7→ 2, . . . , n 7→ n + 2 − d, . . . . Contuining this process
m := ⌈D/d− 2⌉ times partitions P into m d-gons P 1, . . . , Pm. By the union bound,∑
µ(P i) ≥ µ(P ). But then there must exist at least one d-gon Pin ⊂ P such that

µ(Pin) ≥ µ(P ) ≥ 1
⌈D/d−2⌉µ(P ).

Outer Approximation: Recall that d ≥ 4, and D ≥ d. We will show that for any D-gon
P there exists a d-gon Pout containing it such that µ(P c

out) ≥ d−2
D−2

µ(P c).

We induct on D. As a base case, for D = d, the claim holds trivially since P itself
may serve. Let us assume the claim for D-gons, and let P be a D + 1-gon. Note that
since D ≥ 4, D + 1 ≥ 5. Thus, P has at most two pairs of consecutive exterior angles
that are each exactly π/2 (since the sum of all exterior angles is 2π, and P has at least
5 exterior angles). For any side such that the two exterior angles are not both π/2,

the sides preceding and following it (in the cyclic order) may be extended to meet at
some point. This yields a triangle with this side as a base. Since such an extension
can be done for at least D + 1 − 2 = D − 1 sides, this yields D + 1 ≥ J ≥ D − 1

triangles △1,△2, . . . ,△J . Now notice that for each j ≤ J, Qj := P ∪ △j ⊃ P is a
D-gon. Further, by the union bound,

∑
µ(△j) ≤ µ(P c), and thus there exists a

triangle △i∗ such that µ(△i∗) ≤ µ(P c)/J, and thus µ(Qc
i∗) ≥ J−1

J
µ(P c) ≥ D−2

D−1
µ(P c).

Now, by the induction hypothesis, there exists a d-gon Pout containing Qi∗ (and hence
P ) such that µ(P c

out) ≥ d−2
D−2

µ(Qc
i∗) ≥ d−2

D−1
µ(P c). This concludes the argument.
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Thus, we can attain the budget

B = 1−min

(
1

⌈ D
d−2
⌉ ,
d− 2

D − 2

)
= 1−

⌈
D

d− 2

⌉−1

.

D.2 Experiments

D.2.1 Losses and algorithms for methods listed in §5.5

We list the general approach taken for each of the methods we compare to. More

precise details very between datasets, and are described in subsequent sections. Note

that all models are trained on GPUs using stochastic gradient descent for linear models

and ADAM for deep networks. In each case, a multitude of models are trained by

scanning over values for the relevant Lagrange multiplier/regularisation weight. The

collection of models so obtained is tuned, and then a model finally selected for each

target accuracy via procedures detailed in ğD.2.5.

Bracketing The general approach, and a formulation for generic loss functions

follows the design of Chapter 4. The exact loss formulation used in the experiments is

the following,

L̂(θ) =
1

N

N∑

i=1

−1g(xi)=1 log (hθ(xi))− ξ1g(xi)=0 log (1− hθ(xi)) (D.1)

where ξ is a hyper parameter between two components of loss function. The term

multiplying ξ is the constraint, which imposes a high cost in case of a leakage. The

other term in the loss objective pushes the model to increase true positives. For

example, if ξ is 0, local model always predicts 1 and it has maximum leakage and

minimum budget. If ξ is +∞, the local model always predicts 0 and it has minimum

leakage and maximum budget.
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Local Thresholding We first train a local predictor using the cross entropy loss

and freeze it. We rank the examples based on maximum of the prediction probabilities.

We select a threshold and the predictor uses cloud model if its current maximum

probability is lower than threshold. We attain different budget values by changing

this threshold.

Alternating Minimisation [NS17a] we follow the ADAPT-LIN procedure from

this paper, which is an alternative minimisation scheme between an auxiliary q and

local predictors & gating. Since we don’t have feature costs in our setting, we assumed

γ = 0 in our experiments. We stopped the procedure if the q vector converges, or if a

predefined number of iterations - in our case 10 - is exceeded. Different budget values

are obtained by sweeping values of the regularisation parameter - in this paper called

λ.

Sum relaxation [CDM16] utilising the relaxation as developed in this paper, we

use the loss LMH(h, r, x, y) formulated within as a loss function to train a neural

network. This is optimised with several values of the regularisation parameter, c, to

obtain different usage values.

Selective Net [GE19] we follow the architectural augmentations and losses as

prescribed by this paper. We train the network with auxiliary head and ignore this

part during inference time. Again, this is performed for several values of the Lagrange

multiplier, called c here as well.

D.2.2 Synthetic Data

Cloud Classifier A training dataset of 2.5K points was sampled uniformly from the

set [−10, 10]× [−10, 10]. The complex classifier’s decision boundary can be expressed
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as

1x+ 4x2 + 3x3 + 3x4 + y + y2 + y3 + y4 + 5xy2 + 30x2y < 1000

where x, y are the coordinates of the data point.

Local Classifier Weak learners are restricted to axis-aligned conic sections, which

may be implemented as linear classifiers which see input features x, y, x2, y2.

Training Details Each weak learner model has hyper parameters which are adjusted

to observe the power of the methods. As an example, learning rates are chosen in

the range of [10−5, 10−2], ξ value for bracketing model is chosen in the range of [1, 3],

λ values for alternating minimisation are chosen in the range of [0.25, 0.75] and c

values for the sum relaxation method are chosen in the range of [0, .3]. After obtaining

several models, the best models are reported based on the true error rates and true

usages.

D.2.3 MNIST Odd/Even

Cloud Classifier We implement a LeNet architecture with 6 filters in the first

convolution layer, 16 filters in the second convolution layer, 120 neurons in the first

fully connected layer and 84 neurons in the first fully connected layer. Kernel size

for convolution layers is chosen to be 5. Overall, this model has 43.7K parameters.

Learning rate is chosen to be 10−3 and it is halved in every 20 epochs for a total of 60

epochs using 64 as batch size. L2 regularisation of 10−5 is applied. The model attains

99.46% test accuracy.

Local Classifier Linear classifiers are adopted as weak learner architecture - these

have 1.57K parameters, and no convolutional structure. Half of the training set (30K)

is randomly chosen to be weak learner dataset. Within this dataset, 90% (27K) is
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kept as training set for and 10% (3K) as validation. Training and validation sets for

each of the methods are kept the same to ensure a fair comparison. The local model

attains 89.79% test accuracy.

Training Details For each model, learning rate is chosen to be 10−2 and it is halved

in every 25 epochs for a total of 120 epochs. Batch size is chosen to be 64 and L2

regularisation of 10−5 is applied. For bracketing, ξ values are chosen in the range of

[0, 24] for a total of 21 values. For alternating minimisation, λ values are swept in the

range [0, 1] for a total of 25 values and a maximum of 10 alternative minimisation

rounds are allowed. For the sum relaxation, c is chosen in the range [0, .495] for a total

of 25 values. For the selective net, c values are chosen in range [0, 1] for a total of 25

values. We note here that the auxiliary head in the selective net, which serves in deep

networks as a way to improve feature extraction, is ineffective in this linear setting.

D.2.4 CIFAR Random Pair

Cloud Classifier We pick ResNet32 [HZRS16] as the high-powered model and

trained it, with configurations as described by [Ide19], on the full multi-class CIFAR

training data. This model has .46M parameters.

Local Classifiers We pick a narrow LeNet model as weak learner that has 3 filters

in the first and second convolution layers, and 15 neurons in the first fully connected

layer. Kernel size for convolution layers is chosen to be 5. Overall, this weak model

has 1, 628 parameters.

Procedure for training For each run, we choose 2 classes out of 10 CIFAR classes

randomly and extract the subset of the dataset corresponding to this couple. The

cloud classifier is obtained using the pre-trained ResNet32 and only retraining the

prediction layer while keeping the backbone frozen for this binary dataset. Learning
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rate is chosen to be 10−2 and it is halved after 50 epochs for a total of 100 epochs.

Batch size is chosen to be 64 and L2 regularisation of 10−5 is applied. The model

attains on average 98.38% test accuracy.

For the weak learners, 60% (6K points) of the training set is randomly chosen to be

the training dataset. From this, 83.3% (5K) is kept as training set for and 16.7% (1K)

culled for validation. The model attains on average 90.94% test accuracy. Training

and validation set are kept the same across methods to have a fair comparison.

Training Details Learning rate is chosen to be 10−3 and it is halved in every 75

epochs for a total of 300 epochs. Batch size is chosen to be 64 and L2 regularisation

of 10−5 is applied. For bracketing model, values for ξ are chosen in the range of [0, 65]

for a total of 36 values. For alternating minimisation λs are swept in the range [0, 1]

for a total of 40 values and a maximum of 10 alternative minimisation rounds are

allowed. For the sum relaxation method c values are chosen in range [0, .495]. For

each of the above methods, all the networks are warm started using the parameters of

the local model. Note each of the previous methods implement two Narrow LeNets

- for bracketing these are the two one-sided learners, while for the other two, these

are gates and predictors. For the selective net, c values are chosen in range [0, 1] for

a total of 40 values. Warm starting this network leads to lowered performance than

random initialisation, and so the latter values are reported.

The above procedure is performed for 10 trials of random classes of CIFAR. These

classes are listed in Table D.1 below, along with usages attained for the bracketing

and selective net methods in these cases. Only these two methods are reported here

since they are the most competitive of the five.
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D.2.5 Model Selection Process

For each value of the Lagrange multiplier/regularisation constant chosen in the above

training methods, we receive a model (or a pair of models, as appropriate). Let this

collection of models be M. These models have real valued outputs in the range

[0, 1], and a decision needs to be extracted from these. In order to provide sufficient

granularity to the models that they be able to match any required target accuracy,

we vary the threshold of output value at which the models’ decisions go from 0 to 1.

This process differs in details for different methods. The tuning is performed

Local Thresholding In this caseM is a singleton. We compute the cross entropy

of the classifier’s output and abstain if this cross entropy is larger than a threshold τ

that is selected as follows: the values of τ considered are obtained by computing the

cross entropies of the model outputs on each of the training points. On validation

data, usages and accuracy are computed for the models which thresholds at each of

the considered thresholds. At a given target accuracy, the value of τ which yields at

least this accuracy on the validation data with the smallest usage is selected.

Bracketing Note that each m ∈ Mbracketing contains two models (mbelow,mabove)

which are respectively approximations from above and below - these may be trained

with different ξ, thus giving a total of |Ξ|2 models. Suppose the target accuracy is

1−α. Let the training data have size T . Using the training data, for every i ∈ [0 : αT ],

we determine pairs of thresholds τm(i) = (τmbelow(i), τ
m
above(i)) such that the leakages of

(mbelow,mabove) on the training data are exactly i/T each. This then gives us a total

of at most |Ξ|2 × αT possible model-threshold pairs, represented as (m, τm(i)).

Now, each of these tuples is evaluated on the validation data, with usages and

accuracies computed. Again, the pair of models and thresholds with the smallest

usage that exceeds the target accuracy on the validation set is selected.
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Alternating Minimisation and Sum Relaxation and Selective Net Each

m ∈M is a pair (γ, π), where the former is the gate. Again, on the training data, the

value taken by γ on each training point is recorded. This gives all the thresholds that

may be selected for the gating function. Now, each m and corresponding choice of

threshold may be evaluated on the validation set, and we select the ones which match

the accuracy requriement and show the lowest usage.

D.2.6 Tables Omitted from the Main Text

Class Pair Bracketing Sel. Net. Gain
0 - 3 0.304 0.364 1.199×
6 - 4 0.452 0.526 1.164×
5 - 2 0.616 0.631 1.026×
6 - 1 0.095 0.122 1.296×
9 - 3 0.220 0.211 0.961×
8 - 1 0.235 0.381 1.619×
7 - 4 0.615 0.646 1.050×
8 - 7 0.059 0.091 1.538×
4 - 0 0.195 0.315 1.620×
6 - 7 0.152 0.179 1.177×

Table D.1: Usages and relative gain for bracketing and selective net [GE19]
methods at 99% target accuracy for 10 CIFAR random pairs. These two
methods uniformly have the lowest usages, and hence the others are omitted.
All models achieve test accuracy in the range 98.1-99.3% test accuracy. Notice
that the gains have a large variance, but with a skew towards entries greater
than 1.
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Appendix E

Appendix to Chapter 6

E.1 An Adversarial Anytime Uniform Law of Large Numbers

For Probing Binary Sequences

E.1.1 Proofs of Lemma6.3.1

We begin with a simple lemma that underlies the remaining argument. Below, κ is

chosen so that κ′′(0) = 1.

Lemma E.1.1. Let Ft, Ut, Bt,Wt, W̃t be as in Lemma 6.3.1. Let p = 1− p. Then for

any η ∈ R, the process

ξηt := exp
(
η(Wt − W̃t/p)− κ(η)Vt

)

is a non-negative, Ft-adapted martingale, where

Vt =
p

p
Wt,

κ(η) =
p

p
log
(
pe−ηp/p + peη

)
.

Proof. The nonnegativity of ξηt is trivial, and it is Ft-adapted since it is a deterministic
function of the adapted processes Wt, W̃t. We need to argue that ξ is a martingale.
To this end, observe that since Wt =

∑
s<t Us, W̃t =

∑
s<t UsBs,

ξηt = ξηt−1 · exp (ηUt(1− Bt/p− pκ(η)/p)) .
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Due to the independence of Bt from σ(Ut,Ft−1), we have

E[exp (ηUt(1− Bt/p)) |Ft−1, Ut]

=
(
pe−ηUtp/p + peηUt

)

∗
=
(
pe−ηp/p) + peη

)Ut
= exp

(
p

p
Utκ(η)

)
,

where the equality marked ∗ exploits the fact that Ut is {0, 1}-valued. Rearranging,
we have

E

[
exp

(
ηUt(1− Bt/p)−

p

p
Utκ(η)

)∣∣∣∣Ft−1, Ut

]
= 1,

and exploiting the tower rule, we conclude that

E[ξηt |Ft−1] = ξηt−1E

[
E

[
exp

(
ηUt(1− Bt/p)−

p

p
Utκ(η)

)∣∣∣∣Ft−1, Ut

]∣∣∣∣Ft−1

]
= ξηt−1.

The following argument heavily uses the techniques of Howard et al. [HRMS20],

and assumes familiarity with the same. It also exploits the property that only the

upper tail of ∆t is being controlled, although this is extended in the following section.

Proof of Lemma 6.3.1. We define the deviation of Wt from W̃t as

∆t := Wt −
W̃t

p
.

Notice that ∆0 = 1. As a result of the above lemma, ∆t is a 1-sub-κ process with the
associated variance process Vt, in the sense of Definition 1 of Howard et al. [HRMS20].
In particular, since κ is the (normalised) cumulant generating function of a centred
Bernoulli random variable taking values {−p/p, 1}, the process is sub-binary. Further,
since p < 1/2, p/p > 1, and thus the process is sub-gamma, with the scale parameter
c = 0. [HRMS20, ğ3.1, and Prop.2].

We can thus invoke the line-crossing inequality of Corollary 1, part c) of Howard
et al., instantiated with c = 0 to find that for any x,m > 0

P (∃t : ∆t ≥ x+ s(x/m)(Vt −m)) ≤ exp

(
− x2

2m

)
,
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where [HRMS20, Table 2]
s(x/m) =

x

2m
.

Plugging these in, we observe that

P

(
∃t : ∆t ≥

x

2
+

x

2m
Vt

)
≤ exp

(
− x2

2m

)
.

Now notice that if Vt ≥ m, then x/2 + (x/2m)Vt ≤ (x/m)Vt. Therefore, we can
conclude that

P

(
∃t : ∆t ≥

x

m
Vt, Vt ≥ m

)
≤ exp

(
− x2

2m

)
,

and substituting Vt = p
p
Wt,∆t = Wt − W̃t/p,

P

(
∃t : W̃t

p
≤ mp− xp

pm
Wt,Wt ≥

pm

p

)
≤ exp

(
− x2

2m

)
.

Now, if we choose m = p
p
(x+ 1/p) it follows that

∀Wt ≥
p

p
m,

pm− xp
mp

Wt ≥
1

p
,

and thus

P

(
∃t : W̃t

p
≤ 1

p
,Wt ≥

1

p
+ x

)
≤ exp

(
− px2

2(1/p + x)p

)
,

and choosing x ≥ 1/p further ensures that

P

(
∃t : W̃t ≤ 1,Wt ≥ 2x

)
≤ exp

(
−px
4p

)
.

Now, setting x = max
(

1
p
, 4p

p
log(1/δ)

)
leaves us with

P

(
∃t : W̃t ≤ 1,Wt ≥ max

(
2

p
,
8p

p
log(1/δ)

))
≤ δ.

The conclusion follows on observing since p < 1/2, 8p ≥ 4, and thus, for log(1/δ) ≥ 1/2,
2
p
≤ 8p

p
log(1/δ).
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E.1.2 An improved ALLN via a Self-Normalised Law of Iterated Loga-

rithms

The line-crossing inequalities we utilised in the previous subsection can be stitched

together, by picking an exponentially increasing set of xs, and optimising the ms at

each, to yield a curve crossing inequality, which in effect determines a curve that the

deviations are unlikely to cross. We use the results of Howard et al. [HRMS18] that

produce non-asymptotic constructions.

For our purposes, note that the processes ∆t and −∆t are both sub-Gamma with

variance process Vt, with the scale parameters c+ = 0 and c− = 1
3
· 1−2p

p
respectively.

The former property is useful for controlling the upper deviations of ∆t, and the

latter for the lower deviations. Note that since the scale parameter c+ is 0, the upper

tails in the following can be improved, but for ease of presentation we will just set

c = |c+| = c− in the following.

Using Theorem 1 of Howard et al. [HRMS18] twice - for ∆t and −∆t, and

instantiating it with η = e, h(k) = π2k2

6
yields that for the sub-gamma process ∆t with

scale parameter ≤ c, and variance process Vt, and any constant m > 0, and for the

functions

Sm,δ(v) = 2
√
vℓm,δ(v) + cℓm,δ(v),

ℓm,δ(v) = log
π2

6
+ 2 log log

v

m
+ log

2

δ
,

the following bound holds true

P(∃t : |∆t| ≥ Sm,δ(max(Vt,m)) ≤ δ.

The curve S(max(Vt,m)) can be simplified upon observing that

{∃t : Vt ≥ m, |∆t| ≥ Sm,δ(Vt)} ⊂ {∃t : |∆t| ≥ Sm,δ(max(Vt,m))}.
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With the above in hand, set m = p/p, so that Wt ≥ 1 ⇐⇒ Vt ≥ m, and observe that

log(π2/6) < 1. The following bound is immediate upon recalling that Vt = p
p
Wt,∆ =

Wt − W̃t/p.

Theorem E.1.2. In the setting of Lemma 6.3.1,

P

(
∃t : Wt ≥ 1, |Wt − W̃t/p| ≥ 2

√
pWt

p

(
2 log

(
2e

δ
logWt

))
+

2 log
(
2e
δ
logWt

)

3p

)
≤ δ.

Technically, the log logWt is not always defined in the above. This should be

read as log(max(1, logWt)) to handle edge cases - alternately, it can be handled by

replacing Wt ≥ 1 by Wt ≥ 3 > e in the above.1

Notice that the bound above has the correct form when taking into account the

behaviour of binomial tails, which W̃t behaves like. Indeed, if W is some natural

number valued random variable, and W̃ |W ∼ Bin(W, p), then Bernstein’s inequality

[BLM13, Ch. 2] states that

P

(
|W − W̃/p| ≥ C

√
p
W

p
log(2/δ) + C log(2/δ)

)
≤ δ,

which entirely parallels the form of the above theorem, barring the log logWt blowup

due to the uniformity over time.

The above analysis was inspired by studying the recent work of Ben-Eliezer and

Yogev [BY20], on adversarial sketching - their goal was to maintain an estimate of the

incidence of a process within a given set (and more generally, within sets in a given

system) while using limited memory, and they analysed a similar sampling approach,

showing via an application of Freedman’s inequality that [BY20, Lemma 4.1]

P

(
|WT − W̃T/p| ≥ C

√
T

p
log(2/δ) + C

log(2/δ)

p

)
≤ δ.

1In a similar vein of edge-cases, if Wt < 1 =⇒ Wt = 0, then 0 ≤ W̃t ≤ Wt = 0, and thus the
bound extends to all possible values of Wt.
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This essentially amounts to using the crude bound WT ≤ T . The same paper, in

Theorem 1.4 and associated lemmata argues that the Reservoir Sampler [BY20, ğ2]

of size ∼ pT controls deviations uniformly over time at scale
√

T
p
log log T

δ
, and it was

asserted that the Bernoulli Sampler cannot attain such a ‘continuous robustness’[BY20,

ğ1]. The above result improves upon this in a few ways - firstly, the result applies

to the simpler Bernoulli sampler, and improves the deviation control to O(
√
Wt)

instead of O(
√
T ). This has the further advantage that if one is concerned with

the number of samples queried along with the memory, the Bernoulli sampler only

queries ∼ pT times with high probability, while the reservoir sampler queries about

pT log T times. Secondly, it shows that the Bernoulli sampler does offer continuous

robustness, but up to a ŕattening of the deviation control for sets of small incidence

(small Wt). Ben-Eliezer & Yogev show a number of applications of such bounds to

sketching, and Alon et al. have recently applied this to tightly characterise the regret

in online classification [Alo+21], using techniques of Rakhlin et al. [RST15a; RST15b].

We believe that self-normalised bounds as above can contribute to showing adaptive

versions of these results.

E.2 Analysis of vue Against Adaptive Adversaries

This section serves to show Theorems 6.3.2 and 6.5.4. We will analyse the excess

abstention, and the mistakes separately. Both deviations are controlled with probability

1− δ/2, and so a union bound completes the argument. The excess abstention control

is common to both, and exploits Bernstein’s inequality.

Proof of excess abstention bound. Notice that the procedure only abstains if Ct = 1

or if Ŷt = {⊥}. In the latter case, the competitor also abstains, and thus no
excess abstention is incurred. Therefore, the net excess abstention is bounded as
AT − A∗

T ≤
∑
Ct. Now,

∑
Ct is a Binomial random variable with parameters T, p.
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By Bernstein’s inequality [BLM13, Ch. 2],

P

(∑
Ct ≥ pT + 2

√
p(1− p)T log(2/δ) + 2 log(2/δ)

)
≤ δ

2
.

We move on to bounding mistakes in a N -dependent way.

Proof of mistake bound from Theorem 6.3.2. As in the main text, consider the fil-
tration {Ft} = {σ(H A

t )}, U f
t := 1{f(Xt) ̸∈ {⊥, Yt}}, and consider the processes

W f
t =

∑
s<t U

f
t , Bt = Ct, W̃

f
t = U f

t Ct. Note that since N ≥ 2, δ
2N
≤ 1

4
≤ 1√

e
.

Note that for every f , U f
t and Ct satisfy the requirements of Lemma 6.3.1, since Ct

is tossed independently of H A
t−1. Therefore, we may invoke Lemma 6.3.1 to find that

P

(
∃t : W̃ f

t = 0,W f
t ≥

8

p
log(2N/δ)

)
≤ δ

2N
,

and applying a union bound over f ∈ F , we conclude that

P

(
∃t, f : W̃ f

t = 0,W f
t ≥

8

p
log(2N/δ)

)
≤ δ

2
,

Notice that if W̃ f
t−1 is non-zero, then f ̸∈ Vt since we’ve seen it make a mistake

prior to the time t. Now define the stopping times τf := max{t : f ∈ Vt} = max{t :
W̃ f

t−1 = 0}. We observe that

MT =
∑

t

1{Ŷt ̸∈ {⊥, Yt}} ≤
∑

t

1{∃f ∈ Vt : f(Xt) ̸∈ {⊥, Yt}}

≤
∑

f

∑

t

1{f ∈ Vt, f(Xt) ̸∈ {⊥, Yt}}

=
∑

f

∑

t

1{t ≤ τf}U f
t .

Next, define the event

E :=
{
∃t, f : f ∈ Vt,W f

t−1 ≥ 8 log(2N/δ)/p
}
.

Since f ∈ Vt ⇐⇒ W̃ f
t−1 = 0 ⇐⇒ t ≤ τf . Also recall that W f

t−1 =
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∑
s<t 1{f(Xs) ̸∈ {⊥, Ys}. Therefore, given E

c,

∑

t

1{t ≤ τf , f(Xt) ̸∈ {⊥, Yt}} ≤ 8
log(2N/δ)

p
+ 1,

since on E
c, t ≤ τf =⇒ W̃ f

t−1 = 0 =⇒ ∑
s<t U

f
t ≤ 8 log(2N/δ)

p
, and the additional 1

arises since E
c does not control behaviour at τf . We conclude that given E

c, we have

MT ≤
∑

f

9
log(2N/δ)

p
= 9

N log(2N/δ)

p
.

But E occurs with probability at most δ/2, and we have shown that

P

(
MT >

9N log(2N/δ)

p

)
≤ δ

2
.

As discussed in ğ6.5, the X -dependent argument proceeds similarly.

Proof of mistake bound from Theorem 6.5.4. Again, we will work with the the natural
filtration {Ft} = {σ(H A

t )}. Define Ŷx
t = {f(x) : f ∈ Vt}, and the process Ux

t :=

1{Xt = x, Ŷt ̸∈ {⊥, Yt}}, and consider the processes W x
t =

∑
s<t U

x
t , Bt = Ct, W̃

x
t =

Ux
t Ct. Again, since |X | ≥ 2, δ

2|X | ≤ 1
4
≤ 1√

e
.

Invoking Lemma 6.3.1, since Ct is tossed independently of H A
t−1, we find that

P

(
∃t : W̃ x

t ≤ 1,W x
t ≥

8

p
log(2|X |/δ)

)
≤ δ

2|X | ,

and applying a union bound over x ∈ X , we conclude that

P

(
∃t, x : W̃ x

t ≤ 1,W x
t ≥

8

p
log(2|X |/δ)

)
≤ δ

2
,

Now, from the argument in the main text, Ux
t ≥ 0 =⇒ |Ŷx

t | ≥ 2 ⇐⇒ W x
t−1 ≤ 1.

So, define the stopping times

τx := max{t : |Ŷx
t | ≥ 2} = max{t : W x

t−1 ≤ 1}.



282

We have that

MT =
∑

t

1{Ŷt ̸∈ {⊥, Yt}}

=
∑

x

∑

t

1{|Ŷx
t | ≥ 2}Ux

t

=
∑

x

∑

t

1{t ≤ τx}Ux
t .

Defining the event

E :=
{
∃t, x : t ≤ τx,W

x
t−1 ≥ 8 log(2|X |/p)

}
,

we again observe that given E
c,

∑

t

1{t ≤ τx}Ux
t ≤ 1 + 8

log(2N/δ)

p
,

since on E
c, t ≤ τx ⇐⇒ W̃ x

t−1 ≤ 1 =⇒ ∑
s≤t−1 U

x
s ≤ 8 log(2|X|/δ

p
. We thus conclude

that
MT ≤

∑

x

9
log(2|X |/δ)

p
=

9|X | log(2|X |/δ)
p

.

But E occurs with probability at most δ/2, and we have shown that

P

(
MT >

9|X | log(2|X |/δ)

p

)
≤ δ

2
.

E.3 Stochastic Adversaries

This section contains proofs omitted from ğ6.4.

E.3.1 Performance of vue-prod

This section consitutes a proof of Theorem 6.4.1. We begin by controlling the excess

abstentions.

Proof of excess abstention bound. We begin by analysing the prod algorithm for
the setting where decision sets may shrink with time. For succinctness, denote
aft = 1{f(Xt) = ⊥}, Af

t :=
∑

s≤t a
f
t .
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Lemma E.3.1. Let πf
t be as in Algorithm 3. If η ≤ 1/2, then for any g ∈ VT , it holds

that ∑

t,f

πf
t a

f
t ≤

logN

η
+ Ag

T + η
∑

t≤T

(agt )
2.

Proof. We follow the standard analysis of prod, updated slightly to account for
versioning. Consider the potential Wt :=

∑
f∈Vt

wf
t , where recall that wf

t =
∏

s<t(1−
ηafs ). Since the weights are always non-negative, for any g ∈ VT , we have that

WT+1 ≥
∏

t≤T

(1− ηagt ).

Therefore, we have the lower bound

log
WT+1

W1

≥ − logN +
∑

log(1− ηagt ) ≥ − logN −
∑

ηagt −
∑

(ηagt )
2,

which exploits the fact that for z ≤ 1/2, log(1− z) ≥ −z − z2.
To upper bound the same quantity, notice that for any t,

Wt+1 =
∑

f∈Vt+1

wf
t+1 ≤

∑

f∈Vt

wf
t (1− ηaft ) = Wt

(
1− η

∑

f

πf
t a

f
t

)
,

which again exploits that weights are non-negative, and that Vt is a non-increasing
sequence of sets. Taking ratios and bounding log(1− z) by −z, and finally summing
over t = 1 : T, we have

log
WT+1

W1

=
∑

t

log
Wt+1

Wt

≤ −η
∑

t

∑

f

πf
t a

f
t .

Rearranging the inequality obtained by sandwiching log WT+1

W1
yields the bound.

Note that the above lemma holds generically, for any loss ℓft ≤ 1, and any sequence
of shrinking decision sets. We will exploit this fact later.

For our purposes, observe that since aft is an indicator, (aft )2 = aft . Thus, using
Lemma E.3.1 for g = f ∗ ∈ VT ,

∑

t,f

πf
t a

f
t ≤

logN

η
+ A∗

T + ηA∗
T .
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Now, the total abstention incurred by the learner is

AT =
∑

1{Ct = 1}+ 1{Ct = 0, ft(Xt) = ⊥}.

Exploiting the independence of the exploratory coin, we find that

E[AT ] = pT + (1− p)E[
∑

t,f

πf
t a

f
t ].

Invoking the above bound on
∑

t,f π
f
t a

f
t and rearranging then yields that

E[AT ] ≤ pT +
(1− p) logN

η
+ (1− p)E[A∗

T ] + η(1− p)E[A∗
T ].

Now, if η = p, then η(1− p)− p = −p2 < 0, and then exploiting that A∗
T ≥ 0 yields

the bound
E[AT − A∗

T ] ≤ pT +
logN

p
.

This leaves the mistake control. The argument we present critically relies on the
law πf

t being chosen independently of Xt, given H L
t−1. This is ultimately a source

of inefficiency - for instance, if πf
t were allowed to depend also on Xt, then we could

enforce that non-abstaining actions are not played when Ct = 0, and drop the second
log(N)/p term from the excess abstention bound. However, we were unable to show
mistake control with only logarithmic dependence on N in this situation.

Proof of mistake bound. The mistake control proceeds by partitioning the class F
according to the mistake rates of individual Fs and arguing that whole groups of these
are simultaneously, and quickly, eliminated from the version space without incurring
too many mistakes. This fundamentally exploits the stochasticity of the setting.

To this end, define

Fζ := {f ∈ F : 2−ζ ≤ P (f(Xt) ̸∈ {?, Yt}) ≤ 21−ζ

F ζ := {f ∈ F : P (f(Xt) ̸∈ {?, Yt}) ≤ 2−ζ}.

In the following, ζ0 is a parameter for the purposes of analysis, that will be chosen
later. Notice that F =

⋃
ζ≤ζ0
Fζ ∪ F ζ0 .

We’ll argue that all f ∈ Fζ are eliminated quickly (for small ζ). For this, it is
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useful to define the stopping times

τζ := max{t : ∃f ∈ Fζ ∩ Vt}.

Notice that for any f ∈ Fζ ,

P (Ct = 1, f(Xt) ̸∈ {⊥, Yt}) ≥ 2−ζp.

As a consequence of this and the union bound, we have the following tail inequality.

Lemma E.3.2. For any δ ∈ (0, 1),

P (∃ζ ≤ ζ0 : τζ > σδ,ζ0(ζ)) ≤ δ,

where

σδ,ζ0(ζ) :=
2ζ

p
log(ζ0N/δ).

With this in hand, notice that

MT =
∑

t

∑

f

1{ft = f}1{f(Xt) ̸∈ {⊥, Yt}

=
∑

t

∑

ζ≤ζ0

∑

f∈Fζ

1{ft = f}1{f(Xt) ̸∈ {⊥, Yt}}

+
∑

t

∑

f∈Fζ0

1{ft = f}1{f(Xt) ̸∈ {⊥, Yt}}.

Next, we observe that

E


∑

f∈Fζ

1{ft = f}1{f(Xt) ̸∈ {⊥, Yt}

∣∣∣∣∣∣
H

L
t−1


 =

∑

f∈Fζ

πf
t P (f(Xt) ̸∈ {⊥, Yt})

≤ 21−ζπt(ft ∈ Fζ)

≤ 21−ζ
1{t ≤ τζ},

where the first equality is because πf
t is predictable given H L

t−1, the second uses the
definition of Fζ , and the final inequality is because πt is a distribution that is supported
on Vt, and thus has total mass at most 1, and mass 0 when Fζ ∩ Vt = ∅. In much the
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same way, also notice that

E


 ∑

f∈Fζ0

1{ft = f, f(Xt) ̸∈ {⊥, Yt}}

∣∣∣∣∣∣
H

L
t−1


 ≤ 2−ζ0 .

Exploiting both the linearity of expectations and the tower rule,

E[MT ] ≤
∑

t

∑

ζ≤ζ0

21−ζP (τζ ≥ t) + 2−ζ0T

≤
∑

ζ≤ζ0


21−ζ

∑

t≤σδ,ζ0
(ζ)

1 +
∑

t>σδ,ζ0
(ζ)

δ


+ 2−ζ0T

≤ 2ζ0
log(ζ0N/δ)

p
+ 2δT + 2−ζ0T.

Now set ζ0 = ⌊log T ⌋, δ = 1/T . Since ζ0N/δ ≤ N2T 2, we find that

E[MT ] ≤ 4
log T log(NT )

p
+ 4,

and finally since p ≤ 1, 4
p
≥ 4, leading to the claimed bound (for T ≥ 3).

E.3.2 Lower Bound

Proof of Theorem 6.4.2. Without loss of generality, assume f2(x) = 1. Recall that
f1(x) = ⊥. We describe the two adversaries -

• P γ
1 is supported on {(x, 1)}, so that for each time Xt = x, and the label Yt = 1.

• P γ
2 is supported on {(x, 1), (x, 2)} such that for each time Xt = x, while the

label is drawn iid from the law Yt =




1 w.p. 1− γ
2 w.p. γ

.

Notice that against P γ
1 , the competitor is f2, which attains A(P γ

1 )
T = 0, while against

P γ
2 , the competitor is f1, which attains A(P γ

2 )
T = T . Observe further that since γ < 1/2,

if any learner does not play ⊥, it is advantageous for it to play 1 and never play 2.2

We thus lose no generality in assuming that the learner’s actions lie in {⊥, 1}. Now,

2More formally, given any leaner, we can create the better—in expectation—learner that abstains
when the given one does, and predicts 1 when the given one plays something other than ⊥.
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run two coupled versions of the learner, so that if these observe the same Zts, they
produce identical actions. Feed the first of these data generated from P γ

1 , and the
second of these data generated from P γ

2 .
Let η1 be the (random) number of abstentions that the first version of the learner

makes - this means that it must have played 1 T − η1 times. Denote the number of
mistakes that the second version of the learner makes as η2. Given η1, the second
version gets exactly the same sequence as the first with probability (1− γ)η1 - indeed,
due to the coupling, they first abstain together, and then receive the same label with
probability 1− γ. Conditioned on this, they again abstain together, and then receive
the same label with probability 1− γ and so on, η1 times. This means that, given η1,
and the event that they get the same sequence, the second version of the learner plays
T − η1 ‘1’ actions. Since each of these is wrong with probability γ, independently and
identically,

E[η2|η1] ≥ (1− γ)η1γ(T − η1).

Notice that (1−γ)η1 is a convex function of η1. Thus, E[(1−γ)η1] ≥ (1−γ)E[η1] = (1−
γ)K . Further, E[−(1− γ)η1η1] ≥ E[−η1] = −K, and finally, for γ ≤ 1/2, (1− γ) ≥ e−2γ .
It follows that

E[η2] ≥ (1− γ)KγT − γK = γ(e−2γKT −K).

While here, let us also comment that the proof of Corollary 6.4.3 is mildly in-
complete, since the argument requires that φ ≥ 2. If instead φ < 2, then notice that
setting γ = 1/2 in the above, and using that E[η2] ≥ γ((1 − γ)KT − K), we have
ψ ≥ 2−φ T

2
− 2

2
≥ T

8
− 1, which grows linearly with T .

E.4 Analysis of mixed-loss-prod Against Adaptive Adver-

saries

This section provides a proof of Theorem 6.5.1, and describes an adaptive variant of

the same scheme, based on a doubling trick, that serves to show Theorem 6.5.3.

Proof of Theorem 6.5.1. Recall that the scheme runs prod with the loss

ℓft := 1{Ct = 1}1{f(Xt) ̸∈ {⊥, Yt}}+ λ1{f(Xt) = ⊥}.

We first observe that repeating the proof of Lemma E.3.1 with aft replaced by ℓft gives
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us that for any g ∈ VT ,
∑

t,f

πf
t ℓ

f
t ≤

logN

η
+
∑

t

ℓgt + η
∑

(ℓgt )
2. (E.1)

Note that this relation holds given the context and label processes. For g = f ∗ ∈ VT ,
we observe that ℓf

∗

t = λ1{f ∗(Xt) = ⊥}, since by definition f ∗ makes no mistakes.
Instantiating the above with f ∗, and noting

∑
1{f ∗(Xt) = ⊥} = A∗

T , we conclude
that ∑

t,f

πf
t ℓ

f
t ≤

logN

η
+ λA∗

T + ηλ2A∗
T . (E.2)

We proceed to characterise the mistakes and abstentions that the learner makes in
terms of

∑
t,f ℓ

f
t . To this end, notice that

MT =
∑

t,f

1{ft = f} · 1{Ct = 0} · 1{f(Xt) ̸∈ {⊥, Yt}}.

As a result, integrating over the randomness of the algorithm, but not over the
contexts or labels, we find that

E[MT ] = E

[∑

t,f

E[1{ft = f}1{Ct = 0}1{f(Xt) ̸∈ {⊥, Yt}}|H A
t−1, Xt, Yt]

]

=
∑

t,f

E

[
πf
t (1− p)1{f(Xt) ̸∈ {⊥, Yt}

]
.

But, observe that

E[πf
t ℓ

f
t ] = E

[
E[πf

t Ct1{f(Xt) ̸∈ {⊥, Yt}+ λπf
t 1{f(Xt) = Yt}|H A

t−1]
]

= E[pπf
t 1{f(Xt) ̸∈ {⊥, Yt}}] + λE[πf

t 1{f(Xt) = ⊥}].

Therefore,

E[MT ] =
∑

t,f

E

[
(1− p)
p

(
πf
t ℓ

f
t − πf

t λ1{f(Xt) = ⊥}
)]

. (E.3)

Further, notice that

AT =
∑

t

1{Ct = 1}+
∑

t,f

1{Ct = 0}1{ft = f}1{f(Xt) = ⊥},
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and thus,

E[AT ] = E

[
pT + (1− p)

∑

t,f

πf
t 1{f(Xt) = ⊥}

]
.

Moving the negative terms in (E.3) to the left hand side, and exploiting the above, we
find that

E[MT ] +
λ

p
E[AT − pT ] =

1− p
p

E

[∑

t,f

πf
t ℓ

f
t

]
,

where we note that both the terms E[MT ] and E[AT − pT ] are non-negative.
Exploiting the inequality E.2 and the above relation, we conclude that

E[MT ] + E

[
λ

p
(AT − pT )

]
≤ E

[
1− p
p

(
logN

η
+ λA∗

T + ηλ2A∗
T

)]
. (E.4)

The required bounds are now forthcoming. Dropping the MT term in the left hand
side of (E.4), and pushing the constants N, η, p, λ through the expectations,

λ

p
E[AT − pT ] ≤

(1− p) logN
pη

+
(1− p)λ

p
E[A∗

T ] +
η(1− p)λ2

p
E[A∗

T ]

⇐⇒ E[AT − pT ] ≤
(1− p) logN

ηλ
+ (1− p)E[A∗

T ] + ηλ(1− p)E[A∗
T ]

⇐⇒ E[AT − A∗
T ] ≤ pT +

logN

ηλ
+ (ηλ− p)E[A∗

T ].

Taking η = 1/2, λ ≤ p, observe that the last term is negative (since A∗
T ≥ 0). Thus,

making these substitutions and dropping the final term gives the required excess
abstention control.

In a similar way, dropping the E[AT − pT ] term in (E.4) gives

E[MT ] ≤
logN

pη
+
λ(1 + ηλ)

p
E[A∗

T ].

The claim follows on setting η = 1/2, and observing that ηλ ≤ 1.
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E.4.1 Adapting Rates for small A∗
T

E.4.1.1 Deriving the form of α̃

We first describe a derivation of the form of α̃. As noted, the relevant parametrisation

is p = T−u, λ = T−(u+v), for u, v ≥ 0. This, with the bounds of the previous section

gives the control

E[MT ] ≤ 2T u logN + T α∗−v

E[AT − A∗
T ] ≤ T 1−u + 2T u+v logN + T α∗−u−v.

Notice that α∗ − u− v ≤ 1− u− v ≤ 1− u, since α∗ ≤ 1, v ≥ 0. Thus, we have

the rate bounds

µ = max(u, α∗ − v)

α = max(1− u, u+ v)

Deriving the optimal α attainable for a fixed µ then amounts to the following

convex program

minmax(1− u, u+ v)

s.t. 0 ≤ u ≤ µ

max(0, α∗ − µ) ≤ v

Notice that the objective is a non-decreasing function of v, so the optimal choice

of the same is (α∗ − µ)+, the smallest value it may take. This leaves us with trying

to minimise max(1− u, u+ (α∗ − µ)+) for 0 ≤ u ≤ µ. The unconstrained minimum

of this function occurs at u0 =
1−(α∗−µ)+

2
, which is feasible if µ ≥ u0. If on the other

hand µ < u0, then the max-affine function is in the decreasing branch 1− u, and the
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optimal choice of u is just µ. Thus, the optimum is achieved at

v = (α∗ − µ)+

u =





1−(α∗−µ)+
2

1− (α∗ − µ)+ ≤ 2µ

µ 1− (α∗ − µ)+ > 2µ

=
min(1− (α∗ − µ)+, 2µ)

2
.

Correspondingly, α̃ takes the form

α̃(µ;α∗) =





1+(α∗−µ)+
2

1− (α∗ − µ)+ ≤ 2µ

max(1− µ, µ+ (α∗ − µ)+) 1− (α∗ − µ)+ > 2µ

.

But,

1− (α∗ − µ)+ > 2µ ⇐⇒ 1− µ ≥ µ+ (α∗ − µ)+,

and therefore

α̃(µ;α∗) =





1+(α∗−µ)+
2

1− (α∗ − µ)+ ≤ 2µ

1− µ 1− (α∗ − µ)+ > 2µ

= max

(
1− µ, 1 + (α∗ − µ)+

2

)
.

E.4.1.2 Adaptive Scheme and Proofs

We start by recalling the definition of B∗
t

B∗
t = min

f∈Vt

∑

s≤t

1{f(Xt) = ⊥}.

We will also use the term

β∗
t :=

logB∗
t

log T
.

For the remainder of this section, let κ := λ
p
. Recall that the optimal behaviour is



292

attained by setting p = T−u, κ = T−v, where

u =
min(1− (α∗ − µ)+, 2µ)

2

v = (α∗ − µ)+.

Algorithm 6 essentially consitutes a doubling trick by setting p and κ in phases,

which are indexed by non-negative integers, n. The scheme is parametrised by a scale

parameter, θ.

• We begin in the zeroth phase, with κ = 1, p = T−min(1,2µ)/2 This phase ends

when β∗ first exceeds µ, at which point the first phase begins.

• At the beginning of each phase, we re-initialise the scheme.

• For n ≥ 1, the nth phase ends when (the reinitialised) β∗ first exceeds µ+ nθ.

• Each time the nth phase ends, we restart the scheme, with κ = T−(n+1)θ,

p = T−min(1−(n+1)θ,2µ)/2.

Since the scheme is restarted in each phase, we may analyse each phase separately.

Note that if AT ≤ T α∗
almost surely, then the index of the largest phase is at most

n∗ = ⌊ (α∗−µ)+
θ
⌋ phases, since β∗

t ≤ α∗ always. For convenience, we set Tn to be the

length of the nth phase. Times tn correspond to rounds within the nth phase, and

Mn
Tn
, An

Tn
are the number of mistakes and abstentions incurred by the learner in the

nth phase, while , A∗,n
Tn

is the number of abstentions incurred by f ∗ in the nth phase.

Consider the behaviour in the nth phase. Let gn be the function that minimises

∑

sn≤Tn

1{g(Xt) = ⊥} subject to
∑

sn≤Tn

Ct1{g(Xt) ̸∈ {⊥, Yt} = 0,

and set the value of this optimum to B∗,n
Tn

By exploiting inequality (E.1) instantiated
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with gn, and setting η = 1/2, we may infer that

∑

tn≤Tn

πf
tnℓ

f
tn ≤ 2logN + pnκnB

∗,n
Tn

+
p2nκ

2
n

2
B∗,n

Tn
.

As a result, reiterating the previous analysis over the nth phase, the number of

mistakes and abstentions incurred in this phase

E[Mn
Tn
] ≤ 2 logN

pn
+ 2E[κnB

∗,n
Tn

]

E[An
Tn
− B∗,n

Tn
] ≤ E[pnTn + 2

logN

κnpn
]

Further, notice that in each phase, B∗,n
Tn
≤ T µ+(n+1)θ, κn = T−nθ, and pn =

T−min(1−nθ,2µ)/2. Substituting these into the above bounds, we have

E[Mn
Tn
] ≤ 2Tmin(1−nθ,2µ)/2 logN + 2T µ+θ ≤ 4T µ+θ logN

E[An
Tn
− B∗,n

Tn
] ≤ T−min(1−nθ,2µ)/2

E[Tn] + T nθ+min(1−nθ,2µ)/2 logN

But then, summing over the phases,

E[MT ] =
∑

0≤n≤n∗

E[Mn
Tn
]

≤ 4T µ logN · (n∗ + 1)T θ

≤ 4T µ logN · T
θ

θ
.
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Further,

E[AT − A∗
T ] = E[

∑

n≤n∗

An
Tn
− A∗,n

Tn
]

≤ E[
∑

0≤n≤n∗

An
Tn
− B∗,n

Tn
]

≤ E[
∑

0≤n≤n∗

T−min(µ,1−nθ/2)Tn] + logN
∑

0≤n≤n∗

T nθ+min(1−nθ/2,µ)

≤
(

n∗∑

n=0

T 1−min(µ,1−nθ/2) +
∑

n=0

T nθ+min(1−nθ/2,µ)

)
logN.

To simplify the above, let n0 = ⌊1−2µ
θ
⌋, so that min(µ, 1−nθ

2
) = µ for n ≤ n0. Notice

that n0 may be bigger or smaller than n∗. We can then write the bound as

E[AT − T ∗
T ]

logN
≤

min(n∗,n0)∑

n=0

T 1−µ +
n∗∑

n=min(n∗,n0)+1

T
1+nθ

2

+

min(n∗,n0)∑

n=0

T nθ+µ +
n∗∑

n=min(n∗,n0)+1

T
1+nθ

2 ,

where we interpret
∑j

n=i = 0 for i > j. This can further be simplified to

E[AT − A∗
T ]

logN
≤ min(n∗ + 1, n0 + 1)T 1−µ

+
T µ

T θ − 1
T (min(n∗,n0)+1)θ) + 21{n0 < n∗}T

1+(n∗+1)θ
2

T θ/2 − 1
.

If we further assume that θ is chosen so that T θ/2 ≥ 2, we can lower bound

T θ/2 − 1 ≥ T θ/2/2, T θ − 1 ≥ T θ/2 which gives the bound

E[AT − A∗
T ]

4 logN
≤ (min(n0, n∗) + 1)

(
T 1−µ + T µ+min(n0,n∗)θ + 1{n0 < n∗}T (1+n∗θ)/2

)
,

from which we can derive the rate control

α ≤ ζ(µ, n0, n
∗, θ) = max(1− µ, µ+min(n0, n

∗)θ,1{n0 < n∗}(1 + n∗θ)/2)
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The exact statement of the theorem is now straightforward to prove

Proof of Theorem 6.5.3. We run the above procedure with θ = 2 ln 2
log T

. Notice that
T θ/2 ≥ 2, and that T θ/θ ≤ 2

ln 2
log T ≤ T ε for large enough T . Therefore, mistakes are

controlled at O(T µ+ε).
Further, for the abstention control, again min(n∗, n0) + 1 ≤ n0 + 1 ≤ 1

θ
= log T

2 ln 2
.

Recall the abstention rate bound ζ above. It suffices to argue that ζ ≤ α̃+ θ, since
T θ = 4 = O(1).

To this end, first notice that

n0 < n∗ ⇐⇒ ⌊1− 2µ

θ
⌋ < ⌊(α

∗ − µ)+
θ

⌋ =⇒ 1− 2µ < (α∗ − µ)+.

In this case,

ζ = max

(
1− µ, µ+ n0θ,

1 + n∗θ

2

)

≤ max

(
1− µ, µ+

(1− 2µ)

θ
· θ, 1 +

(α∗−µ)+
θ
· θ

2

)

= max

(
1− µ, 1 + (α∗ − µ)+

2

)

= α̃(µ;α∗).

On the other hand, if n0 ≥ n∗ then we have that

(α∗ − µ)+
θ

− 1 ≤ (1− 2µ)

θ
⇐⇒ µ ≤ 1 + θ − (α∗ − µ)+

2
.

As a result, in this case,

ζ ≤ max (1− µ, µ+ n∗θ)

≤ max (1− µ, µ+ (α∗ − µ)+)

≤ max

(
1− µ, 1 + (α∗ − µ)+ + θ

2

)

≤ α̃(µ;α∗) + θ/2
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Algorithm 6 Adaptive-mixed-loss-prod

1: Inputs: F , Time T , Mistake rate µ, Scale θ.
2: Initialise: n← 0;nmax ← ⌈1/θ⌉; ∀f ∈ F , wf

1 ← 1; ∀n ≤ nmax, τn ← T.
3: for t ∈ [1 : T ] do
4: u← min(1− nθ, 2µ)/2, v ← nθ
5: p← T−u, λ← T−(u+v).
6: Sample ft ∼ πt = wf

t/
∑

wf
t .

7: Toss Ct ∼ Bern(p).
8: if Ct = 1 then
9: Ŷt ← ⊥

10: else
11: Ŷt ← ft(Xt)

12: ∀f ∈ F , evaluate

ℓft = Ct1{f(Xt) ̸∈ {⊥, Yt}}+ λ1{f(Xt) = ⊥}

13: wf
t+1 ← wf

t (1− ηℓft ).
14: Compute

B∗ = min
g∈F

∑

τn<s≤t

1{g(Xs) = ⊥}

s.t.
∑

τn<s≤t

Cs1{g(Xs) ̸∈ {⊥, Yt} = 0.

15: if logB∗ ≥ (µ+ nθ) log T then
16: n← n+ 1
17: τn+1 ← t
18: ∀f ∈ F , wf

t+1 ← 1.

E.5 Details of Experiments.

N.B. Code required to reproduce the experiments is provided at https://github.

com/anilkagak2/Online-Selective-Classification.

E.5.1 Dataset Details

GAS [Ver+12] dataset is a 6-way classification task based on the 16 chemical sensors

data. These sensors are used to discriminate 6 gases at various levels of concentrations.

The data consists of these sensor readings for over a period of 36 months divided into

https://github.com/anilkagak2/Online-Selective-Classification
https://github.com/anilkagak2/Online-Selective-Classification
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10 batches. There are 13, 910 data points in this dataset. We use the first 7 batches as

training set and the remaining 3 batches as test set. This split results in train and test

sets with 9546 and 4364 data points respectively. The gas task contains data from 16

sensors (each of which gives 8 numbers). The standard error attained by the class we

use (see below) on this is ≈ 87%. For the selective classification task, we use only the

data from the first 8 sensors (and thus only 64 out of 128 features). The standard error

attainable for this is ≈ 67%. Importantly, for the GAS task, the selective classification

setting we study only demands matching the performance of the best classifier with

the full 16-sensor data, and thus supervision for the 8-sensor function is according to

this best function. To be more concrete, denote the training data as {(X1
i , X

2
i , Yi)},

where X1 and X2 are the features from the first and second 8 sensors respectively,

and Y is the label. We train a classifier g on this whole dataset. Then we produce

the labelled dataset {(X1
i , g(X

1
i , X

2
i ))}, and train selective classifiers on this dataset.

The online problem then takes the test dataset, and gives to the learner only the X1

features from it. If the learner abstains, then the label Yt = g(X1
t , X

2
t ) is given to the

learner.

CIFAR-10 [Kri09] dataset is a popular image recognition dataset that consists

of 32× 32 pixels RGB images of 10 classes. It contains 50, 000 training and 10, 000

test images. We use standard data augmentations (shifting, mirroring and mean-std

gaussian normalisation) for preprocessing the datasets. The best standard error

attainable for this task by the models we use (see below) is ≈ 90%. This experiment is

more straightforward to describe- selective classifiers are trained on the whole dataset.

For the online problem, the test image is supplied to the learner, and if it abstains,

then the true label of that image is provided as feedback.
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E.5.2 Training Experts

[GKS21] proposed a scheme to train classifiers with an in-built abstention option.

This scheme provides a loss function, which takes a single hyper-parameter µ, and is

trained as a minimax program using gradient ascent-descent. The scheme then uses

the outputs of this training with a second hyper-parameter t to provide classification

or abstention decisions. Therefore, the scheme utilises two hyper-parameters (µ, t) to

control the classification accuracy and abstentions.

We trained selective classifiers using this scheme. As per their recommendation,

we used 30 values of µ with 10 values equally spaced in [0.01, 1] and remaining 20

values in the [1, 16]. For the threshold parameter t, we used 20 equally spaced values

in [0.2, 0.95). The minimax program was run with the learning rates (10−4, 10−6) for

the descent and ascent respectively. Notice that the resulting set of classifiers have

20× 30 = 600 functions.

Note that classification on CIFAR-10 is a relatively difficult task than GAS. Hence,

we used a simpler 3-layer fully connected neural network architecture for the GAS

dataset, and a Resnet32 architecture [Ide19; HZRS16] for the CIFAR-10 dataset.

E.5.3 Algorithm implementation, Hyper-parameters, Compute require-

ments

We implemented Algorithm 7 (which relaxes the versioning in 3) using Python con-

structs. It has three hyper-parameters: (a) T denoting the number of rounds, (b) the

exploration rate p, and (c) ε controlling the mistake tolerance. For each run, the test

data points were randomly permuted, and the first T of them were presented to the

algorithm.

There are two main departures from the scheme in the main text. Firstly, rather

than only using feedback gained when Ct = 1, the version space is refined whenever

Ŷt = ⊥, allowing faster learning. Secondly, the versioning is relaxed as already
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described, to only exclude functions that make too many mistakes, as determined by

ε.

An important implementation detail is that for very small ε, the version space

may get empty before the run concludes. This is particularly relevant for small values

of ε. As a simple fix, we modify the versioning rule so that if the version space were

to become empty at the end of a round, it is not updated (and, indeed, the state of

the scheme is retained, see below).

Since our experiments are CPU compute bounded, we used a machine with two

Intel Xeon 2.60 GHz CPUs providing 40 cores. Both the regret-with-varying-time

experiments took about 1 hour compute time, and the operating point experiments

took nearly 5 hours each.

E.5.4 Regret Behaviour as Time-horizon in Varied.

We use the hyperparameter ε = 0.01. For the sake of efficiency, we use the adaptive

scheme Algorithm 8 that adapts to the time horizon, that instead varies p with the

number of rounds as pt = min(0.1, 1√
t
), ηt = pt. This adaptation strategy is a standard

way to handle varying horizons, and the observations obtained via this represent (and

slightly overestimate) the regrets for when Algorithm 7 is run with p = η = 1√
T
. A

major advantage is that this significantly increases the efficiency of the procedure,

since instead of re-starting the experiment for each time horizon, we can now run for

one single time horizon, and obtain representative values of regret at smaller horizons

by recording the values at checkpoints corresponding to these. In the plots, we ran for

T = 4000, and checkpointed every 250 rounds.

E.5.4.1 Excess Abstention Behaviour

As noted in the main text, the excess abstention regret for both datasets is negative.

This remains consistent with the theory, and likely arises since these datasets are, of
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course, not the worst case distributions. The excess abstentions regret are plotted

below.

Figure E·1: Excess abstention regret, normalised by T , in the setting of
Figure 6·2 for CIFAR-10 (left) and GAS (right). The plots are averaged
over 100 runs, and one-standard-deviation error bars are drawn. Notice
that the values are negative for GAS, and strongly dominated by the
MMEA for CIFAR.

E.5.5 Achievable Operating Points of Mistakes and Abstentions

We use Algorithm 7, instantiated with T = 500, and always choosing η = p. The

particular values of p, ε that are scanned are, as listed in the main text, 20 equally

spaced values of p in the range [0.015, 0.285], and 10 equally spaced values of ε in the

range [0.001, 0.046], giving in total 200 values of (p, ε) pairs that are scanned over.

The post-hoc batch operating points are obtained as follows: We first find the

largest value of the number of mistakes that are attained by the online learner for

some choice of (p, ε). Call this M . The values attained were MCIFAR = 50 and

MGAS = 120. Then, we then instantiated the set MCIFAR = {2, 3, . . . , 50}, and for

MGAS = {2, 7, . . . , 117}. The density was chosen lower for GAS for visual pleasantness.

Finally, for each m ∈M∗, we run the post-hoc optimisation

a(m) := min
f∈F

∑

t

1{f(Xt) = ⊥} s.t.
∑

t

1{f(Xt) ̸∈ {⊥, Yt}} ≤ m.
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The resulting points (a(m),m) are plotted as black triangles.

Definition of MMEA As stated in the main text, the mistake matched competitor

is defined as follows: suppose that the scheme makes M mistakes and A abstentions

over a stream. If the following program is feasible, then we define

A∗(m) = min
f∈F

∑
1{f(Xt) = ⊥} s.t.

∑
1{f(Xt) ̸∈ {⊥, Yt}} ≤M.

If not, then we take A∗(M) to be the abstentions made by the least mistake f , which

is the competitor in the rest of the section. Then we define

MMEA = A− A∗(M).

E.5.6 Sensitivity of the scheme to hyperparameters

Working in the setting of Figure 6·2, we show how the excess mistake and abstention

regrets vary at T = 4000 (the final point) as ε is varied in Figure E·2. As expected, the

excess mistakes increase roughly linearly with large ε, but the data reŕects subtle non-

monotonicities in the same. The variation in abstentions is, as expected, essentially

opposite to that of the mistakes.

Similarly, in Figure E·3, we show the operating points that can be achieved by

varying ε for a fixed p, and by varying p for a fixed ε. We observe first that the

variation with ε for a fixed p is relatively regular, with larger ε increasing mistakes

but decreasing abstentions at roughly the same rate, up to small variations. On the

other, the behaviour with increasing p for a fixed ε is much more subtle, and indicates

that a sweet-spot of the coin-based exploration rate exists for each tolerance level.

Together, these plots indicate that the optimal tuning of ε and p together can be

subtle, and exploring how one can execute the same in an online way is an interesting

open problem.
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Figure E·2: Senstivity with ε of the excess mistakes (left) and excess
abstention (right) regrets at T = 4000 for CIFAR (top) and GAS
(bottom) datasets. Points are averaged over 100 runs, and one-standard-
deviation error bars are included.
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Figure E·3: Illustration of how operating points achieved by the scheme
vary as p is changed for fixed values of ε (left) and as ε is changed for
fixed values of p (right), in the CIFAR (top) and GAS (bottom) datasets.
The sets of εs and ps marking the traces is reduced with respect to
Figure 6·3 for the sake of legibility. The arrow denotes the direction of
increasing the varied parameter.
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Algorithm 7 vue-prod-relaxed

1: Inputs: F , Exploration rate p, Learning rate η, Tolerance ε.
2: Initialise: V1 ← F ; ∀t,Ut ← ∅; ∀f ∈ F , wf

1 ← 1, of0 ← 0; Ctr0 ← 0.
3: for t ∈ [1 : T ] do

4: Sample ft ∼ πt =
wf

t 1{f∈Vt}∑
f∈Vt

wf
t

.

5: Toss Ct ∼ Bern(p).

6: Ŷt ←
{
⊥ Ct = 1

ft(Xt) Ct = 0
.

7: if Ŷt = ⊥ then ▷ Refine the version space if the exploratory coin is heads
8: Ctrt ← Ctrt−1 + 1.
9: for f ∈ Vt do

10: oft ← oft−1 + 1{f(Xt) ̸∈ {⊥, Yt}
11: if oft ≤ εCtrt +

√
2εCtrt then ▷ Retain all fs that have error rate < ε

w.h.p.
12: Ut ← Ut ∪ {f}.
13: Vt+1 = Vt ∩ Ut.
14: else
15: Vt+1 ← Vt.
16: ∀f ∈ Vt+1, o

f
t ← oft−1

17: Ctrt ← Ctrt−1.
18: if Vt+1 ̸= ∅ then ▷ Penalise Abstentions if the version space is non-empty
19: for f ∈ Vt+1 do
20: aft ← 1{f(Xt) = ⊥}
21: wf

t+1 ← wf
t · (1− ηaft ).

22: else ▷ Vt+1 = ∅, and so revert the state
23: Vt+1 ← Vt.
24: Ctrt ← Ctrt−1.
25: for f ∈ Vt+1 do
26: oft ← oft−1.

27: wf
t+1 ← wf

t .
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Algorithm 8 vue-prod-relaxed-time-adapted

1: Inputs: F , Tolerance ε.
2: Initialise: V1 ← F ; ∀t,Ut ← ∅; ∀f ∈ F , wf

1 ← 1, of0 ← 0; Ctr0 ← 0.
3: for t ∈ [1 : T ] do
4: pt ← min(0.1, 1/

√
t).

5: ηt ← pt.
6: Sample ft ∼ πt =

wf
t 1{f∈Vt}∑
f∈Vt

wf
t

.

7: Toss Ct ∼ Bern(pt).

8: Ŷt ←
{
⊥ Ct = 1

ft(Xt) Ct = 0
.

9: if Ŷt = ⊥ then ▷ Refine the version space if the exploratory coin is heads
10: Ctrt ← Ctrt−1 + 1.
11: for f ∈ Vt do
12: oft ← oft−1 + 1{f(Xt) ̸∈ {⊥, Yt}
13: if oft ≤ εCtrt +

√
2εCtrt then ▷ Retain all fs that have error rate < ε

w.h.p.
14: Ut ← Ut ∪ {f}.
15: Vt+1 = Vt ∩ Ut.
16: else
17: Vt+1 ← Vt.
18: ∀f ∈ Vt+1, o

f
t ← oft−1

19: Ctrt ← Ctrt−1.
20: if Vt+1 ̸= ∅ then ▷ Penalise Abstentions if the version space is non-empty
21: for f ∈ Vt+1 do
22: aft ← 1{f(Xt) = ⊥}
23: wf

t+1 ← wf
t · (1− ηtaft ).

24: else ▷ Vt+1 = ∅, and so revert the state
25: Vt+1 ← Vt.
26: Ctrt ← Ctrt−1.
27: for f ∈ Vt+1 do
28: oft ← oft−1.

29: wf
t+1 ← wf

t .
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