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CHAPTER I: INTRODUCTION 

Memory and Processing in the Brain 

The initial goal of this project is to bridge the gap between the physiological brain and 

mathematically-based neuromorphic computing models. Neuromorphic computing is a style of 

computing that aims to be smarter and more energy-efficient than regular computing by mimicking 

the behavior of neurons in the brain. Since neuromorphic computing is based on the human brain, 

it is important to understand how the brain functions. The human brain is comprised of trillions of 

neurons, with thousands of different neuron cell types. Each neuron contains dendrites which 

receive signals from other neurons, a cell body that consolidates signals from the dendrites, and an 

axon which transmits signals to other neurons. The sites where an axon of one neuron connects 

with the dendrites of other neurons are called synapses (Fig. 1). 

Within a synapse, there is a pre-synaptic side on the axon that provides stimuli (usually in 

the form of the voltage-dependent release of neurotransmitter), and a post-synaptic side on the 

dendrite that receives stimuli through specialized neurotransmitter receptors. The pre-synaptic and 

post-synaptic sides of a synapse do not physically touch, creating a gap. When an excitation wave, 

or action potential (Fig. 2), passes through the axon and reaches the synapse, it is converted from 

an electrical signal to neurotransmitters, which are able to traverse the gap. Because axons do not 

have neuroreceptors and dendrites cannot produce neurotransmitters, the synapse can transmit 

information in only one direction. The strength of a synapse, or the magnitude of its excitatory or 

inhibitory effect, is determined by the amount of neurotransmitter released per action potential. 

Neurotransmitters can either potentiate this signal or attenuate the transmission of an action 

potential. 
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Figure 1. The Structure of an Idealized Neuron 

 

Note A) A single neuron. The region on the left that receives signals from other neurons is 

called the dendrites, which feed into the cell body from multiple sources (e.g., other neurons). The 

cell body manages the signals from the dendrites, and if the transmembrane voltage becomes high 

enough, an action potential propagates through the axon on the right. The axon is able to branch 

in multiple places, allowing the same signal to be transmitted to multiple target neurons. B) The 

connection between neurons is called the synapse. The pre-synaptic (axon) and post-synaptic 

(dendrite) sides interact via a specialized cell-to-cell junction called a synapse, which controls the 

release and diffusion of neurotransmitters from the pre-synaptic side to their neurotransmitter 

receptors on the post-synaptic side. 
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Figure 2. A Typical Action Potential, Modelled in Matlab using Dimensionless Morris-Lecar 

Equations 

 

Note The solid line represents the transmembrane voltage of a point along the axon, while 

the dashed line represents the recovery. The increase in the transmembrane voltage is caused by 

the influx of sodium ions into the cell, and denotes the wave front. The plateau with slowly 

decreasing voltage is driven by natural leakage of ions from the neuron, and the sudden decrease 

in voltage is caused by the outflux of potassium ions leaving the neuron. The potassium gates open 

when the voltage and recovery values intersect, which also marks the wave back of an action 

potential. After the potassium ions leave the neuron there is a period of recovery, during which 

another action potential cannot be formed. 

Synaptic strengths change over time through long-term potentiation (LTP) and long-term 

depression (LTD). LTP is the process of suddenly increasing synaptic strength in response to 

repeated or strong stimuli, while LTD is the gradual decrease in synaptic strength due to a lack of 
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stimuli (1,2). It has been determined that the amount of neurotransmitter present affects LTP and 

LTD, and that the maximum change is double for LTP and half for LTD (3). Memory in the brain 

is tied to LTP and LTD through the key memory processes of sensitization, habituation, and 

dishabituation, which are the observable effects of changes in synaptic strengths. Sensitization 

increases the probability of an action potential by increasing the strength of excitatory synapses 

(through LTP) and habituation decreases this probability by either increasing the strength of 

inhibitory synapses (through LTP) or decreasing the strength of excitatory synapses (through LTD) 

(4,5). Dishabituation is the process through which habituated neurons can become sensitized again, 

which occurs by either inhibiting the inhibiting/habituating neuron, or by applying a sufficiently 

large stimulus that triggers LTP and overcomes habituation (6,7). 

A common example for demonstrating the role of sensitization and habituation in memory 

is the startle response in zebrafish (8,9). This is a simple neuronal circuit that contains an auditory 

sensory neuron, an inhibitory interneuron, and a motor neuron connected to the tail. The sensory 

neuron excites both the interneuron and the motor neuron, while the interneuron inhibits the motor 

neuron. When the zebrafish is presented with a loud sound, an action potential is triggered in the 

sensory neuron, and is transmitted to both the interneuron and the motor neuron. If the sound is 

unfamiliar, the excitatory strength of the synapse connecting the sensory neuron to the motor 

neuron is greater than the inhibitory strength of the synapse connecting the interneuron to the motor 

neuron, and the action potential successfully travels to the tail, causing the zebrafish to move or 

“startle” (8,9). As the zebrafish is repeatedly presented with the loud sound, the interneuron 

becomes sensitized through LTP, allowing the inhibitory synapse to overcome the excitatory 

synapse and habituate the motor neuron. Since the motor neuron does not transmit action 

potentials, the excitatory synapse undergoes LTD. The startle response demonstrates memory 
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because as the zebrafish is repeatedly exposed to the loud sound, it becomes familiar with the 

sound and no longer reacts to it. 

Sensitization and habituation can also be tied to several neurological diseases, like post-

traumatic stress disorder (PTSD) and dementia (10–12). PTSD can occur after a vivid traumatic 

event, and stimuli that trigger a memory of that event are met with a strong emotional response 

(10,11). This is related to memory as the response to fear becomes sensitized, and fear extinction 

becomes habituated (11). Dementia is characterized as the inability of the aging brain to remember 

recently-occurring events (12). To compensate for this, the brain increases the number of 

excitatory synapses (13), which results in a slower speed for processing information (14). 

In addition to memory, the brain is also capable of information processing. Processing 

occurs when there are a large number of connections, and can be structured as shown in Fig. 3. 

While the most efficient design for information processing would be densely connected neurons 

spanning long distances (15), this organization is metabolically expensive and costly to maintain. 

The densely packed structure is also less robust, as long connections are susceptible to damage 

from interruptions to the metabolic process (15–19). Because of this, the brain maintains an 

optimization between wiring costs and efficiency (Fig. 3B), resulting in structures called modules 

(15,16,20). 

Figure 3. Different Methods of Organization for Information Processing 
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Note A) The structure that optimizes processing efficiency by forming every available 

connection. The high density of connections maximizes information processing, but also 

maximizes the total length of axons. As such, this organization is too metabolically expensive. B) 

The structure that balances processing efficiency and metabolic costs. In this organization neurons 

that are close together form connections more readily, with long axons reserved for specific 

connections. This design maintains a high density of connections while significantly reducing the 

total axonal length, striking a balance between processing efficiency and metabolic costs. C) The 

structure that optimizes metabolic costs. This organization only allows connections to adjacent 

cells, minimizing both the axonal lengths and metabolic costs. However, the low connection 

density also minimizes the processing efficiency. 

Modules are regions in brain with high connectivity, defined by a large number of neurons 

with short connection lengths (Fig.4) (15,16). Because the neurons are clustered together, modules 

optimize energy cost vs. processing efficiency by reducing the need for long axons. The neurons 

within a module are categorized as hubs, nodes, and edges based on the density of connections 

relative to the number of neurons present (Fig. 4). Hubs are neurons that have a high density of 

connections and are classified as either connector hubs, if they span between modules, or 

provincial hubs, if they are contained within a single module (15). Nodes are neurons with a 

moderate density of connections, and edges are neurons with few connections. 
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Figure 4. An Example of Modules and the Connections Between Them 

 

Note Each circled region is its own module, and the connections within each module are 

noticeably shorter than the connections between modules. 

Processing that occurs within a single module is called segregated processing, which 

handles simple tasks that do not require much thought or need to be handled quickly, such as 

reacting to a stimulus (15). For example, when treating the zebrafish startle response as a module, 

the auditory sensory neuron and the motor neuron would act as connector hubs as they extend 

beyond the module, and the interneuron would serve as either a node or provincial hub (Fig. 5). 

Based on the purpose of the startle response, the task being processed is determining whether to 

react to a loud noise. Because the task is simple, the module needs only three neurons, resulting in 

a minimally structured module. When multiple modules are needed to process a task, it is called 
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integrated processing. Integrated processing is used for complex tasks, such as solving an equation 

or answering questions on an IQ test (15). Information is transferred between modules, allowing 

the task to be performed in parallel. More complicated tasks require a greater number of modules 

to perform. 

Figure 5. An Illustration of the Startle Response in Zebrafish Based on the Descriptions 

Given in (8,9) 

 

Note When treated as a module, the sensory and motors neurons act as connector hubs 

since they receive or send information outside of the module. The interneuron can be treated as 

either a node, because it is only connected to two neurons, or a provincial hub, since it is connected 

to every other neuron in the module. 

To summarize, the brain is capable of both memory and information processing. Memory 

is controlled by the processes of sensitization, habituation, and dishabituation, which in turn are 

affected by LTP and LTD. Information processing takes place within modules, which are regions 

in the brain with short, densely connected neurons. Modules are optimized to balance processing 

efficiency and metabolic costs, and can act independently for segregated processing or jointly for 

integrated processing. 
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Neuromorphic Approaches to Modelling the Brain 

Classical computing systems behave exactly as they are programmed to, with minimal 

ability to learn or to perform tasks independently (21). These systems are fragile, as a single faulty 

element in a component can render it inoperative. One approach to fix these issues is neuromorphic 

computing in which computer systems are designed to function like the human brain. 

Neuromorphic systems are more robust, have a higher level of adaptability, and tend to be more 

efficient than classical computing systems (22). 

The three types of neuromorphic computing systems are memristors, integrate-and-fire 

equations, and reaction-diffusion equations. Of these three, the reaction-diffusion equations were 

chosen for this project over memristors and integrate-and-fire equations because the reaction-

diffusion equations naturally incorporate delays associated with propagating action potentials. The 

integrate-and-fire equations require delays to be added manually and memristors do not 

incorporate delays (23,24). Additionally, the reaction-diffusion equations model the entire neuron, 

instead of treating the neuron as a single point (Fig. 6). The reaction portion of the equations 

represents the flow of ions both into and out of the cell, while the diffusion portion covers the 

movement of ions along the neuron’s axon. Because this approach models the entire axon the 

delays associated with the propagation of excitation waves are inherently present. 

Figure 6. A Reaction-Diffusion Representation of the Zebrafish Startle Response Circuit 
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Note This model behaves in the same way as the zebrafish circuit, sending a signal to both 

the interneuron and motor neuron in response to external stimuli (Input A). Depending on the 

synaptic strengths (C1-3) the motor neuron can become activated (sensitization) or remain at rest 

(habituation). 

 The three main reaction-diffusion equations for neurons are the Hodgkin-Huxley 

equations, the Morris-Lecar equations, and the Fitzhugh-Nagumo equations. The Hodgkin-Huxley 

equations are the most detailed and complex, while the Fitzhugh-Nagumo equations are the 

simplest and easiest to implement. For this work the Morris-Lecar equations were used, as they 

are capable of complex behavior not seen in the Fitzhugh-Nagumo model (25), yet are more 

manageable than the Hodgkin-Huxley equations because of the reduced number of variables. 

Goals and Objectives 

The two major goals of this project are to model the brain functions of both memory and 

processing using a reaction-diffusion computational model. The hypotheses for both goals are as 

follows: 1) It is possible to model the brain function of memory using the Reaction-Diffusion 

Memory Unit (RDMU). The RDMU needs to A) demonstrate sensitization through the activation 

of a target neuron; B) demonstrate habituation through the inhibition of a target neuron; C) 

demonstrate dishabituation through the activation of a habituated target neuron. 2) It is possible 

to model the brain function of information processing using the Reaction-Diffusion Brain 

Module (BM). Since processing is a vague term, the specific goal is to model single-digit binary 

addition. To perform this task, the BM needs to A) distinguish between the number of inputs; B) 

determine the correct output based on the inputs; C) determine the conditions under which 

single-digit addition can take place. 
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CHAPTER II: REACTION-DIFFUSION MEMORY UNIT 

Background Information 

The goal of this section is to model the brain process of memory. The formation of memory 

has been linked to long-term potentiation (LTP) and long-term depression (LTD), or the lasting 

increase or decrease of the strength of synaptic connections (1,2). Through LTP and LTD, 

information is stored, and behavioral patterns can become fixed in the brain. LTP and LTD occurs 

after a period of learning, which is dominated by sensitization and habituation (2). 

Sensitization and habituation are two basic processes in memory that are controlled by the 

strength of synaptic connection. Sensitization increases the probability that a given stimulus will 

produce a downstream transmembrane potential by increasing the connectivity of excitatory 

synapses while habituation decreases the probability of a transmembrane potential by increasing 

the connectivity of inhibitory synapses (4,26). This has been demonstrated in experiments on the 

gill withdrawal reflex in Aplysia californica, where repeated stimulation cased a prolonged 

withdrawal of the gill (27,28). 

The process of altering behavior based on changes in synaptic connection strengths is 

known as synaptic plasticity and is considered to be the underlying mechanism of the formation 

of memory (27,29). So far, the main stream approach to model the formation of memory was based 

on the threshold models of individual neurons (23,30,31). Nevertheless, these models did not 

consider physiological reaction-diffusion mechanisms which are responsible for the conduction of 

excitation in the neuronal environment. A recent effort to incorporate reaction-diffusion effects to 

quantify changes in the synaptic strength of isolated biological synapses (32) and synaptic-like 

memristor elements (33) was a step in the right direction. However, it still did not help to elucidate 

the reaction-diffusion origin of sensitization and habituation. 



 12 

Another way to account for the spatial distribution of neuronal structures is the introduction 

of the concept of a meta-neuron. A meta-neuron consists of a relatively small group of several tens 

of neurons, which may be collectively involved in a particular macroscopic function. Such a 

structure includes Hodgkin-Huxley axons with added synaptic connections described by a set of 

gating equations (34). In general, this approach may be considered as an adequate tool to describe 

large neuronal clusters, yet it entirely ignores the essential structural details which govern the 

balance between sensitization and habituation needed to process the information by a particular 

memory unit. 

A typical example of sensitization and habituation can be seen in the startle response in 

zebrafish. The startle circuit is comprised of an auditory sensory neuron, a Mauthner cell (motor 

neuron) that triggers startle movement, and an inhibitory neuron that prevents familiar stimuli from 

triggering a startle response (8,9). The auditory neuron connects to both the inhibitory neuron and 

Mauthner cell with two excitatory synapse regions. The inhibitory neuron also connects to the 

Mauthner cell with an inhibitory synapse region. As a new incoming stimulus is repeated, the 

excitatory synapses connecting to the inhibitory neuron strengthen, and inhibitory synapses 

connecting to the Mauthner cell strengthen as well, resulting in less frequent triggering of the 

startle response. Although the described above circuit may be useful for explanation of a simple 

startle response in zebrafish (8), it lacks sufficient complexity to relate to the abrupt disappearance 

of habituation (dishabituation) which, according to Groves and Thompson dual-process theory that 

sensitization and habituation are in competition, occurs even if the strength of excitatory synapses 

in the sensory neuron remains constant (26). 

More complex examples of habituation are described in Sokolov’s comparator and 

Ramaswami’s negative-image models (6,7). The system for the formation of the model in 
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Sokolov’s approach inhibits the excitatory process for recognized stimuli. When presented with 

unfamiliar stimuli, this inhibition ceases, resulting in dishabituation. Similarly, dishabituation may 

also occur in the negative-image model by inhibiting the negative image that negates incoming 

stimuli. 

Based on these examples, a novel method was proposed that uses a reaction-diffusion 

approach and is capable of quantifying combined effects of sensitization, habituation, and 

dishabituation by connecting just a few axons with several synapses of adjustable strength. This 

model incorporates a system of three Morris-Lecar-type neurons (35) linked by four synapses 

defined by Hebbian synaptic strength rules (36), which will be described later. The circuit is 

connected to two distinct Morris-Lecar-type input cables to allow a separate stimulation of sensory 

and inhibitory neurons. This system will be further referred to as the reaction-diffusion memory 

unit (RDMU) (Fig. 7). 

Figure 7. The Structure of the RDMU 

 

Note Excitatory synapses C1 and C2 are shown as empty triangles. Inhibitory synapses C3 

and C4 are represented by filled-in triangles. Synaptic junctions are denoted by empty squares and 

the neuronal branching point is marked with an empty circle. The portion of the RDMU between 

C1 and C3 is the interneuron. 
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Unlike conventional spiking threshold models, which implement integrate-and-fire 

equations, the reaction-diffusion approach eliminates the need for the use of purely 

phenomenological temporal delays associated with the propagation of excitation from one neuron 

to another (37,38). Instead, these delays form naturally because of spatial-temporal evolution of 

excitation waves under the influence of different rates of cellular membrane polarization and re-

polarization processes, various neuronal lengths, and altered strengths of synaptic connections 

between different neuronal fibers. 

Model and Methods 

It is possible to illustrate each individual synaptic connection as shown in Fig. 8. To 

quantify cases with an arbitrary number of such connections, we define a variable C as a 

conglomerate synapse given by the sum in Eq. (1) 

� = � ��
�

���
 (1) 

where excitatory and inhibitory synaptic weights si between two specific neurons have 

positive and negative signs, respectively. The sign of the conglomerate synapse C tells whether 

the net effect of all connection in the bundle is excitatory (+) or inhibitory (-) (Fig. 8). 
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Figure 8. The Summation of Weights of Individual Synaptic Connections to a Conglomerate 

Synapse C 

 

Using synaptic connections determined by Eq. (1), one can link neurons to elucidate the 

processes of sensitization, habituation, and dishabituation (Fig 7). In this figure, the initial 

propagation of the transmembrane potential is provided by stimulating inputs A and B. The further 

evolution of the wave from input A causes sensitization through the passage of excitatory synapse 

C2. The wave also propagates to the interneuron through excitatory synapse C1 and produces 

habituation via inhibitory synapse C3. The evolution of the wave from input B causes 

dishabituation by passing through inhibitory synapse C4. 

The RDMU is studied mathematically using a Morris-Lecar model with incorporated 

Hebbian conditions at the synaptic junctions, no-flux boundary conditions at the ends of neurons, 

and additional diffusion terms at the sensory neuron’s branching point (35) (Fig. 7). The equations 

for the Morris-Lecar model are as follows: 

�
 ���� = ���(� � ��) � �����(� � ���) � ���(� � ��) � � ������ � �(�) (2) 

���� = (�� � �)  (3) 
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�� = 12 "1 � tanh "� � ���� '' (4) 

�� = 12 "1 � tanh "� � �)�* '' (5) 

 = 1, sech "� � �)2�* ' (6) 

�(�) = 12,   � ≤ �5670,   � > �567  (7) 

where I and tdur are the amplitude of the external current (stimulus) and its duration, 

respectively. Variables v and w represent the transmembrane voltage and dimensionless gating 

variable corresponding to the inhibitory response of the potassium channels. Parameters vL, vCa, 

and vK are equilibrium potentials for leakage, calcium, and potassium currents, respectively. 

Factors M∞ and W∞ are dimensionless constants which are determined by regulating voltages v1, 

v2, v3, and v4 (39). 

By introducing specific time and spatial scales, one can define a set of dimensionless 

variables as follows: 

�∗ = ���� , ��∗ = ����� , < = =, >, �?, 1,2,3,4 (8) 

�∗ = � ����
  (9) 

B∗ = B=
  (10) 

=C = D ����  (11) 

��∗ = ����� , < = =, >, �? (12) 

,∗ = , �
���  (13) 
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Here v*, t*, and x* are dimensionless variables for transmembrane potential, time and spatial 

variables. Parameters gL
* and gK

* refer to dimensionless leakage and potassium conductance, 

respectively. Parameter gCa
*, which determines dimensionless calcium conductance, is equal to 

one. The value of LD corresponds to the diffusion length. The value of L0 is the length of the main 

section of the RDMU, which is equal to the sum of the lengths of the sensory and motor neurons. 

The scales are given as follows: C0 = 10µF, vCa = 100mV, D = 1µS·cm2, gCa = 10mS, and L0 = 

1mm. 

For simplicity, dimensionless variables will further be referred to as v, w, t, x, gK, vK, etc., 

continuing with dimensionless Morris-Lecar equations in the following way: 

���� = �(�) � ��(� � ��) � ��(� � ���)
����(� � ��) � "=C=
 '� ����B� (14) 

���� = (�� � �) (15) 

�� = 12 "1 � tanh "� � ���� '' (16) 

�� = 12 "1 � tanh "� � �)�* '' (17) 

 = 1, sech "� � �)2�* ' (18) 

Table 1 summarizes the model dimensionless parameters which, unless otherwise stated, 

were used in all numerical experiments. These values are based on the dimensional values from 

(39). 
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Table 1. The Dimensionless Parameters Used to Solve Model Eqs. (14)-(22) 

φ ��� �� �� ��� �� �� �� �� �) �* I �
 w0 vthr 

.017 1 1.8 .45 1 -.84 -.6 -.012 .18 .02 .30 1 -.58 .0177 -.225 

A set of boundary conditions for Eqs. (14-18) includes no-flux conditions at the ends of 

neurons (Eq. (19)), and Hebbian links between the pre- and post-synaptic values of transmembrane 

potential at each of the RDMU synapses (Eq. (20)) (36). 

���B = 0 (19) 

�E,FGHI � �
 = ��J�E,F7K � �
L � �)J�M,F7K � �
L (20N) 

�M,FGHI � �
 = ��J�E,F7K � �
L � �*J�M,F7K � �
L (20O) 

Here Ci, vi,pre, vi,post, and v0 are synaptic strengths, pre- and post-synaptic potentials of the 

ith synapse and resting value of the transmembrane potentials, respectively. The first of Eq. (20) 

describes the cumulative post-synaptic action of adjacent excitatory and inhibitory synapses C2 

and C3, located at the beginning of the motor neuron. The second part describes the cumulative 

post-synaptic action of adjacent excitatory and inhibitory synapses C1 and C4, located at the 

beginning of the interneuron. The resting transmembrane potential, v0, as well as the resting value 

of the recovery variable, w0, are determined by the intersection of null-clines of the system of Eqs. 

(14) and (15). The null-clines also define the excitation threshold, vthr, as shown in Fig. 9. 
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Figure 9. The Phase Portrait for the Morris-Lecar Model 

 

Note The solid line is the null-cline for v and the dashed line is the nullcline for w. The 

equilibrium values for v and w occur at the intersection of null-clines. The horizontal dot-dashed 

line has a value of w0 for all v, and is used to find vthr, which is the second intersection of v and w0. 

To complete the formulation of synaptic conditions one needs an additional boundary 

condition to warrant that each synapse acts as a unidirectional gate which prevents the backwards 

flow of transmembrane potentials. This condition is defined by Eq. (21): 

���BPQ�QR = 0 (21) 

Here x− is upstream with respect to the direction of the synaptic current. 

Finally, the branching point located at the end of input A, where the sensory axon diverges 

(Fig. 7), is analyzed. At this point one needs to modify Eq. (14) and consider two diffusion terms 
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and account for cumulative two-dimensional effects comprised of two one-dimensional diffusion 

processes in the first (x) and the second (y) neuron branches, respectively: 

���� = �(�) � ��(� � ��) � ��(� � ���)
����(� � ��) � "=C=
 '� S����B� � ����T�U (22) 

The rationale for considering a linear steady-state Hebbian rule (Eq. (20)) is based upon 

the observation that behavioral and, to some extent, cognitive memories are associated with neural 

oscillations withing theta and partial gamma ranges below 20 Hz (40,41). Under these conditions 

one can consider only isolated stimulating currents (Eq. (7)) applied to the sensory neuron shown 

in Fig. 7. Indeed, the transmembrane potentials induced by neuronal spikes in the hippocampus 

are on average 1-3ms in duration (42) and the intervals between successive spikes at frequencies 

below 20Hz are greater than 50ms. Therefore, the temporal evolution of the transmembrane 

potential resulted from a previous neuronal spike becomes completed well before the initiation of 

the next spiking activity. Accordingly, propagation of the transmembrane potentials in the RDMU 

branches evolves into transmission of the steady-state solitary pulses. Finally, since the 

propagation of transmembrane potentials is steady-state, a temporal derivative term in the Hebbian 

rule (36) can be omitted and the resulting steady-state Hebbian links can be expressed as linear 

algebraic relations described by Eq. (20). 

The system of Eqs. (14)-(22) was solved numerically using an explicit finite difference 

method (See appendix of (43)). The dimensionless time and space steps were Δt = 2.5×10-5 and Δx 

= 0.1 for all experiments, respectively. Parameter V�W�XY�
 in Eqs. (14) and (22) was set to 0.01. 

Unless stated otherwise, the sensory neuron and both inputs spanned 25 spatial intervals 

each, while the motor neuron and interneuron individually consisted of 50 spatial intervals (Fig. 
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10). At the initial time t = 0 an external stimulus I of amplitude one was applied for a duration of 

5×104Δt to nodes one through fifteen located at the beginning of inputs A and B. 

Figure 10. The Diagram Which Depicts the Spatial Scales of the RDMU 

 

Taking into consideration that the speed of transmembrane potentials in the brain is on 

average greater than 10m/s, parameters in Table 1 were set to reflect that the width of the excitation 

wave is much longer than a one millimeter total length of the sensory and motor neurons (44,45). 

Typical spatial and temporal evolutions of such waves are depicted in Fig. 11. 
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Figure 11. Transmembrane Potential v and Gating Variable w as Functions of Spatial 

Variable x 

 

Note Upper panels show a spatial evolution of the excitation pulse in the sensory and motor 

neurons in the interval of time between 2.5 and 25. Lower left panel shows progression of the 

excitation pulse in the interneuron at time 25. Lower right panel illustrates temporal evolution of 

excitation at x = 0.75. Parameters C1, C2, and C3 are equal to 1, 1.8, and -0.2, respectively, for ideal 

propagation through all regions. 

The propagation of solitary pulses originated by identical input stimuli, I, applied to both 

inputs of the RDMU was studied. A series of numerical simulations has been performed to evaluate 

the RDMU’s ability to reproduce the processes of sensitization, habituation, and dishabituation. 

Depending on the values of synaptic strengths C1, C2, C3, and C4, the input stimuli propagated to 
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the motor neuron and originated either sub-threshold or over-threshold responses, thus signifying 

the initiation of processes of sensitization, habituation, and dishabituation. 

The synaptic strength boundary between sensitization and habituation (BSH) was 

computed iteratively with the value of C4 fixed at zero. At fixed values of C2 the value of C3 was 

incrementally adjusted until regimes changed from sensitization to habituation, preventing the 

propagation of the over-threshold stimulus in the motor neuron. After that, the values of C2 were 

increased by a set of sufficiently small increments and the process was repeated until values of 

C2 were equal to 1.5 of values of |C3| exceeded 5, beyond which the BSH and BHDH curves 

become linearly proportional. The boundary between habituation and dishabituation (BHDH) 

was calculated in the same manner at different values of C4. 

Results and Discussion 

It was determined whether the system was in sensitization, habituation, or dishabituation 

by comparing the maximum transmembrane potential to a threshold potential shown in Fig. 9. The 

threshold potential was increased by 20% to account for wave propagation decay due to diffusion. 

BSH and BHDH curves were determined depending on whether the maximum transmembrane 

potential exceeded the modified threshold or remained below it. It was found that the difference 

between BSH and BHDH curves measured at 10 Δx from the end of the motor neuron and further 

away (30 Δx) did not exceed 5% and 16% at low and high values of C3, respectively. We chose to 

measure the magnitude of the transmembrane potentials closer to the end of the motor neuron at 

10 Δx. 

One of the main parts of the numerical simulations was focused on investigating the 

influence of the relaxation parameter ϕ and the potassium conductance and leakage conductance 

on the dynamics of excitation pulses in the RDMU. As expected, it was found that the magnitude 
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of ϕ significantly affected the rate of relaxation of recovery variable w, and therefore invoked 

considerable changes in the width and speed of the excitation pulse. Potassium and leakage 

conductances also contributed to changes of the width of the pulse in a noticeable way. Figure 12 

demonstrates various shaped of excitation pulses for different parameters ϕ, gK, and gL. One can 

observe that smaller values of ϕ cause prolongation of pulses. Similar changes occur due to the 

decrease of either gK or gL. 

Figure 12. Various Transmembrane Potentials for Different Sets of Parameters 

 

Note The top left panel depicts the transmembrane potential for the parameters in Table 1, 

while the tip right, bottom left, and bottom right show the transmembrane potentials for decreased 

ϕ, increased gK, and decreased gL, respectively. 
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A series of numerical simulations was performed to study the edge between sensitization 

and habituation processes in the RDMU, where the propagation of excitation waves is depicted in 

Fig. 12. As shown in Fig. 13 the BSH can be adequately described by Eq. (23) (See also Table 2). 

�) = ?��Z � [, \ > 1 (23) 

Table 2. Constants a, b, and c for Curves Depicted in Figs. 13 and 14 

ϕ, gK, gL, C1 a b c Figure/curve shape 

0.0017, 2.5, 0.45, 0.8 -3.81 2.76 1.59 14, filled circle 

0.0017, 1.8, 0.45, 0.8 -3.37 3.14 1.06 14, filled square 

0.0017, 1.8, 0.3, 0.8 -3.39 3.60 0.33 13, filled square 

0.017, 1.8, 0.3, 0.8 -3.36 3.47 0.59 13, open square 

0.0017, 1.8, 0.3, 0.6 -21.11 5.50 0.57 13, filled diamond 

0.017, 1.8, 0.3, 0.6 -18.08 4.08 2.10 13, open diamond 

Note The values of these constants are determined from Eq. (23) using linear regression. 
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Figure 13. Sensitization-Habituation Boundaries Depicted as Dependences of C3 on C2 for 

Different Values of ϕ and gL (gK = 1.8) 

 

Note Open and filled shapes correspond to ϕ = 0.017 and ϕ = 0.0017, respectively. 

Parameter C1 is equal to 0.8 for all curves except open and filled diamonds, where C1 = 0.6. Circles 

correspond to gL = 0.45 while diamonds and squares relate to gL = 0.3. Other parameters are fixed 

at values shown in Table 1. 

It should be noted that shorter (slower) pulses with higher values of ϕ correspond to lower 

absolute values of the inhibitory synaptic strength |C3|, thus indicating that it is easier to counter 

play an excitatory action of the synapse C2 for higher magnitudes of relaxation parameter ϕ. 

Alternatively, it was found that a decrease of leakage conductance gL resulted in an opposite shift 

of BSH towards higher values of |C3| associated with greater thresholds required to inhibit the 

RDMU at any given strength of C2 (Fig. 13). 
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As shown in Fig. 7, the excitatory synapse C1 plays a role as some type of a gate which 

regulates the flow of transmembrane potentials between the sensory and interneuron branches of 

the RDMU. Specifically, it varies the transmembrane potential’s diffusion flux, and therefore 

controls the amplitude of the excitation pulse which propagates through the inter-neuronal branch 

of the RDMU. 

At lower values of C1, as well as in case of lesser gL, a significant shift of the BSH towards 

high values of |C3| is again observed (Fig. 13). Specifically, at C1 = 0.6 and C2 = 0.65 the value of 

|C3| required for the suppression of a pulse in the motor neuron was more than three times greater 

than a corresponding value of |C3| necessary for the suppression of a similar pule at C1 = 0.8. It 

should be noted that all BSH curves depicted in Fig. 13 are in agreement with approximation (23), 

since values of b are greater than one (Table 2). However, when the relaxation parameter ϕ and 

potassium conductance gK increase simultaneously the BSH curves turn to nearly directly 

proportional changes between inhibitory and excitatory synaptic strengths C2 and C3 (Fig. 14). 
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Figure 14. Sensitization-Habituation Boundaries Depicted as Dependences of C3 on C2 for 

Different Values of ϕ and gK (gL = 0.45) 

 

Note Open and filled shapes correspond to ϕ = 0.017 and ϕ = 0.0017, respectively. Circles 

and squares correspond to gK = 2.5 and gK = 1.8, respectively. Other parameters are fixed at values 

shown in Table 1. 

It has been demonstrated above that the propagation of excitation waves from the sensory 

to motor neuron may significantly depend on both the strengths of the excitatory synapses C1 and 

C2, as well as on the influence of the inhibitory interneuron synaptic connection C3. 

It was also found that the lengths of the RDMU neurons can be additional important 

contributors into the balance between habituation and sensitization. Accordingly, the larger ratio 

of the interneuron’s length to the total length of the sensory and motor neurons results in a more 



 29 

significant shift of the BSH curve to the left, making it more difficult to inhibit the RDMU even 

at smaller values of C2 (Fig. 15). 

Figure 15. Sensitization-Habituation Boundaries Depicted as Dependences of C3 on C2 for 

Different Interneuron Lengths 

 

Note Black diamonds denote interneurons with length 0.625 while squares relate to 

interneurons with length 0.5. Parameters ϕ and gL are equal to 0.0017 and 0.3, respectively. Other 

parameters are fixed at values shown in Table 1. 

To calculate the BHDH curves, two stimuli were applied through inputs A and B. As shown 

in Fig. 7, input A connects directly to the interneuron through inhibitory synapse C4. In this 

manner, C4 affects the BHDH curves by decreasing the responsiveness of the interneuron. 

It was found that increasing the strength of C4 resulted in a shift of BHDH curves towards 

smaller values of C2, thus reflecting the dishabituation of the motor neuron. This effect is more 
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pronounced for lower values of gL, where the shift in C2 is greater, and the slopes of the BHDH 

curves are consistently shallower (Fig. 16). 

Figure 16. Habituation-Dishabituation Boundaries Depicted as Dependences of C3 on C2 for 

Different Values of C4 

 

Note Filled shapes represent gL equal to 0.45 while empty shapes represent gL equal to 0.3. 

Squares, circles, and diamonds stand for C4 equal to 0, 0.05, and 0.15, respectively. Dashed lines 

correspond to C4 equal to 0.225. Other parameters are fixed at values shown in Table 1. 

As the strength of C4 further increases, the BHDH curves continue to shift to the left with 

steeper slopes, until the value of C4 is approximately 0.225, where the BHDH curves become 

vertical, as shown by the dashed lines (Fig. 16). Beyond this value, waves in the interneuron are 

unable to propagate to inhibitory synapse C3, resulting in complete dishabituation. 
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Using a novel approach, variations in the BSH dependences were studied in response to 

changes of parameters of the reaction-diffusion model with Hebbian type synaptic junctions 

between neurons. It was found that longer transmembrane potential waves (lower gL), which 

propagate in the motor neuron, caused the BSH curves to shift towards sensitization. On the 

contrary, shorter waves (greater gK) triggered the opposite shift of the BSH curves towards 

habituation. Also, it was observed that synaptic strength C1 is another important parameter which 

has a significant effect on the positioning of BSH. 

The value of C1 directly affects the transmembrane potential flux into the interneuron, thus 

changing its inhibitory influence on the RDMU. Specifically, it was found that different values of 

C1 either substantially reduced or increased the effectiveness of the inhibitory synapse C3, resulting 

in a state of the RDMU that is either significantly harder or easier to habituate. In addition to 

excitatory synapse C1, inhibitory synapse C4 also influences the RDMU through changing 

conditions for dishabituation. Indeed, just a small increase in C4 produces a notable shift in the 

BHDH curves towards lower values of excitatory strength in the synapse C2. 

There are two possible approaches for incorporating dishabituation in the RDMU. These 

two approaches can be derived from the existing concepts of superimposition of sensitization and 

reversal of habituation described in (46). The first approach is to increase the responsiveness of 

the motor neuron through an additional strong stimulus, which can be accomplished by adding an 

additional sensory neuron. In contrast, the second approach is to inhibit the interneuron that causes 

habituation. While the first approach results in the intertwining of sensitization and dishabituation, 

since the two processes share the same mechanism, the second one allows sensitization and 

dishabituation to be further distinguished. 
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There has been much debate about whether sensitization and dishabituation can be 

dissociated (46–50). Once again, based on specific experimental procedures, these two processes 

could either occur through the same mechanisms (47,48) or could have differing ones (46,49,50). 

The classic dishabituation described in (26) could be an example of superimposed sensitization, 

where dishabituation and sensitization both result from direct stimulation to the habituated neuron. 

However, a more recent revision of this work emphasizes the reversal of habituation as another 

form of dishabituation (5), which was chosen for the RDMU utilizing additional input B (Fig. 7). 
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CHAPTER III: BRAIN MODULE 

Background Information 

The goal of this section is to model processing in the brain. Since processing can range 

from visual recognition, language, cognitive control, emotion, and social cognition (16), this 

project uses the specific task of single-digit binary addition. Development of novel principles of 

information processing has generated a significant body of scholarly work and allowed researchers 

to introduce a unique idea of “unconventional” neuromorphic reaction-diffusion computing 

systems (51). However, understanding of reaction-diffusion mechanisms of processing of 

information in the human brain remains a challenging research frontier. Recently it has been shown 

that reaction-diffusion mechanisms are indeed essential for the functioning of brain memory 

circuits capable of sensitization and habituation (43). Although these novel concepts allowed for 

the modeling and quantification of some basic functions of memory, it was not clear if they were 

suitable for modeling even basic signal processing tasks such as binary operations. 

Signal processing in the brain occurs in various neuronal circuits with a sufficiently great 

number of synaptic junctions and adequate lengths of neurons connecting corresponding synapses. 

Such conglomerates of neuronal circuits are known as brain modules (BMs), and contain parts 

with high neuronal connectivity that can extend information to other modules (15), (16). The signal 

processing performance in BMs is greatly influenced by their structure and dimensions. While 

longer axons may improve processing performance by connecting distant modules, they are 

metabolically expensive and more likely to incur damage associated with interruptions in the 

significant caloric uptake needed for neural maintenance (17). Therefore, neurons with longer axon 

lengths are more susceptible to diseases caused by disruptions of the metabolic process (15,16,18), 

(19). As such, the focus will be on modeling simple binary signal operations which can be 
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performed within a single BM with a minimal composition of synapses connected by shortest 

straight neuronal fibers (Fig. 17). 

To perform binary signal operations, a particular BM needs to be able to both transmit and 

combine multiple incoming signals. For example, if the BM just transmits the signals without 

combining them together, it may function as a neuronal circuit capable of modelling the memory 

related processes of habituation and sensitization in response to external stimuli (43). However, 

such a BM would be unsuitable for computational operations due to the absence of multiple input 

signals. To address this deficiency, a BM with a pair of inputs and a pair of outputs interconnected 

by a single inhibitory interneuron (shown in Fig. 17) was investigated. In this way such a minimally 

structured BM can transmit input signals one by one or combine them together if the signals are 

present simultaneously. 

Figure 17. The layouts of the brain modules 
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Note A) The BMA is a brain module with shorter interneuron and longer Output 2 neuron. 

B) The BMB is a brain module with longer interneuron and shorter Output 2 neuron. Signals travel 

from left to right. 

This section examines two types of BM layouts with reduced (Fig. 17, BMA) and 

prolonged (Fig. 17, BMB) lengths of the interneuron to ascertain if the neuron’s dimensions and 

the order of their connections in the BM affect its capability to process input signals. 

Specifically, it elucidates a process of combining a pair of synchronous input signals and 

introduce it as a model of a single-digit binary addition which is essential for signal processing in 

the BM. Neuronal signals are modelled as propagating reaction-diffusion waves, and the 

neuronal reaction-diffusion parameters and the values of synaptic strengths needed to minimize 

the time to perform this single-digit binary operation are determined. 

Model and Methods 

To examine the propagation of excitation waves in the BM the dimensionless system of 

Morris-Lecar reaction-diffusion equations are used for the neurons (35) and Hebbian synaptic 

equations for the synapses (36,43). While modeling of reaction-diffusion processes in the BM is 

compatible with any reaction-diffusion equations, the Morris-Lecar equations were specifically 

chosen as they can exhibit complex behaviors like bursting, which simpler models like the 

Fitzhugh-Nagumo equations are unable to produce (25). Moreover, the Morris-Lecar equations 

have fewer parameters than the Hodgkin-Huxley equations, allowing them to be implemented in 

computations more readily. As in chapter 2, applying the Morris-Lecar approach gives the 

following system of governing equations in dimensionless form 

���� = �(�) � ��(� � ��) � ��(� � ���)
����(� � ��) � "=C=
 '� ����B� (24) 
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���� = (�� � �) (25) 

�� = 12 "1 � tanh "� � ���� '' (26) 

�� = 12 "1 � tanh "� � �)�* '' (27) 

 = 1, sech "� � �)2�* ' (28) 

Variables v and w represent the transmembrane voltage and gating variable which 

corresponds to the inhibitory response of the potassium channels. Parameters vL, vCa, and vK are 

equilibrium potentials for leakage, calcium, and potassium currents, respectively. Factors M∞ and 

W∞ are dimensionless constants which are determined by regulating voltages v1, v2, v3, and v4. 

Parameter τ is characteristic time of activation (39). Parameters gL and gK are the leakage and 

potassium conductance scaled relative to the characteristic value of calcium conductance of 20mS 

(35). With this value of conductance and a typical value of cellular membrane capacitance of 10µF, 

each unit of dimensionless time in the system of Eqs. (24)-(28) is equivalent to 0.5ms. The value 

of L0 in the Eq. (24) is generally ten times greater than the diffusion length LD =(D/gCa)
1/2 which is 

typically equal to 100µm when the diffusion coefficient D is set to a characteristic value of 

1μS•cm2. Thus, the value of parameter (LD/L0)
2 in the Eq. (24) is equal to 0.01. 

The dimensionless length of the BM, LBM, is comprised of the sum of equal lengths of input 

and output neurons. These lengths are set to 1, except for the Output 2 neuron, which is set to 

longer 5/3 and shorter 3/2 values for BMA and BMB, respectively (Fig. 18A,B). The lengths of 

the interneuron are set in the opposite way, to shorter value of 1/2 for BMA (Fig. 28A) and longer 

value of 2/3 for BMB (Fig. 28B). Synaptic junctions are located at 1/3, 1/2, and 1 to optimize both 
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distance between synapses and length of the interneuron, allowing excitation waves to fully 

develop/decay along all segments of the BM.  

Figure 18. The Length Scales for the BMA and BMB 

 

Note Excluding overlapping sections of neurons, the total length of the BM (LBM) is 2. The 

BMA circuit has a reduced interneuron length of 1/2 and increased Output 2 neuron length of 5/3. 

The BMB circuit has an increased interneuron length of 2/3 and decreased Output 2 neuron length 

of 3/2. Synapses are located at 1/3, 1/2, and 1. 

The dimensionless amplitude of the stepwise stimulus F(t) in the Eq. (24) simulates an 

activation of the transmembrane potential induced by the external signal incoming from another 

module or a sensory neuron. The amplitude of F(t) and its duration were set to 3 and 2.5, 

respectively. The stimulus is utilized when the medium is at the equilibrium and is applied between 

x = 0 and x = 0.15 in one or both inputs of the BM. Other parameters are set to values given in 

Table 3. 
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Table 3. The Parameters of the BM Neuronal Cables Inspired by (39) 

φ ��� �� �� ��� �� �� �� �� �) �* �
 

0.0167 1 1.8 0.3 1 -0.84 -0.6 -0.012 0.18 0.02 0.30 -0.58 

Note The values of parameters remain constant unless stated otherwise. 

To complete the system of Eqs. (24)-(28), one needs an additional relationship which 

would describe the transformation of the excitation wave while it evolves through the synaptic 

junction. At each of the junctions a Hebbian synaptic equation adjoined with no-flux condition is 

implemented to ensure that the synapse acts as a unidirectional gate. While the Hebbian synaptic 

equation is typically nonlinear (36), it can be linearized if sufficient time passes between 

consecutive input signals to allow the system to return to its resting state. This allows the Hebbian 

equation to be integrated into existing models more readily. 

For neurons with parameters in Table 1 an excitation wave quickly becomes steady state 

right near the entrance to the BM at a short x = 0.3 distance from its input. Indeed, over a period 

of approximately 60-time units, or 30ms, the transmembrane voltage variable v is nearly 5% away 

from its equilibrium value (Fig. 19A). As such, within a low range of gamma oscillations in the 

brain at ~ 30Hz (52), one can treat these waves as a sequence of solitary pulses. Thus, the linear 

synaptic equation can be utilized, combined with a directional Neumann no-flux condition written 

as follows 

�FGHI � �
 = � ��J��,F7K � �
L�
���

, ���BPQ�QR
= 0 (29) 

where vpost and vi,pre are the post- and pre-synaptic transmembrane potentials, respectively, 

and x_ is upstream with respect to the direction of the synaptic current. The value of v0 is the resting 

transmembrane potential, and Ci is the synaptic strength of the ith synapse in a junction. 
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Figure 19. The Phase Portrait for the Morris-Lecar Model 

 

Note A) A fully developed excitation wave in the BM recorded at x = 0.3 with parameters 

gk = 2.5 and gL = 0.3. The solid line represents transmembrane voltage v and the dashed line shows 

recovery variable w. At the distance x =0.3 away from the BM entrance the wavefront becomes 

smooth, indicating that the wave is no longer influenced by initial external current F(t). B) Thick 
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contour depicts a phase trajectory for the steady-state wave propagating in neuronal cables shown 

in Panel A.  Nullclines are indicated as thin and dash contours.  The excitation threshold is defined 

as a difference between the coordinate of intersection of nullclines and the coordinate of 

intersection of the phase contour with the cubic-like nullcline. This threshold is equal to 0.42. 

Equation (29) is applied at all synaptic junctions shown in Fig. 1. At the inputs and outputs 

of the BM no-flux boundary conditions are implemented, and at four cable intersections marked 

by dots (Fig. 17) the Eq. (24) like balances with two-dimensional diffusion terms are applied. Since 

analytical solution of the system of Eqs. (24) - (29) is not possible it is solved numerically using 

an explicit finite difference method with a first and second order of approximation with respect to 

time, Δt, and space, Δx, numerical grid intervals. For all numerical experiments the values of these 

intervals were set to 2.5×10−5 and 0.01 for time and space intervals, respectively. Details of 

discretization of the boundary conditions and numerical solution of the system of Eqs. (24)-(29) 

have been described in (43). 

Numerical solution of Eqs. (24)-(29) can be implemented to study processing of 

information in the BM. As mentioned above, the focus will be on the assessment of one of the 

simplest processing sequences such as a single digit addition of two binary input signals and will 

assume that BMs have equal strengths of excitatory synapses according to Eq. (30)  

1�� = �� = �) = �*�] = �^ (30) 

Using Eqs. (24)-(30), we will model single digit binary addition using the following 

essential rules. The first rule is that if any single input stimulus is present, the propagation of the 

excitation wave in the Output 1 neuron and its absence in the Output 2 neuron determines the 

binary sum as equal to 1. If no input stimulus is present, then the binary sum is equal to 0. The 

second rule is that the presence of the excitation wave in the Output 2 neuron and its absence in 
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the Output 1 neuron implies that two input stimuli are added to each other resulting in the binary 

sum equal to 0. Concurrently, 1 must be added to the next significant digit in the adjacent BM, if 

multiple digit addition is considered. These rules can only be upheld in a specific synaptic range. 

From the linearity of Eq. (29) and the set of equalities (30), it follows that the first rule is 

satisfiable if C6 = C7=1. This condition ensures transmission of a single input stimulus to the 

Output 1 neuron without changing the steady state character of the propagation of excitation. 

Likewise, from the linearity of Eq. (29) one can conclude that both rules are satisfiable if C1 = C2 

= 0.5. This restriction ensures either the absence or presence of propagation of a steady state 

excitation wave in the Output 2 neuron if just one or both BM input stimuli are present, 

respectively.  

Equation (30) entails that the strengths of the other excitatory synapses C3 and C4 are also 

equal to 0.5. So, there is one more steady state excitation wave which is propagating through the 

inhibitory neuron when both input signals are present. If so, the second rule implies that C5 = -2 to 

force complete inhibition of the excitation waves propagating through C6 and C7, thus ensuring a 

binary sum of zero in the Output 1 neuron. 

The amount of time it takes for an incoming signal to propagate from the BM input neurons 

to its output neurons is defined as the computational period (CP). The CP is a very important 

characteristic which determines the BM signal processing speed and is closely related to its spatial 

extension and the strength of its synaptic connections. The shorter the CP, the higher the processing 

speed in the BM. However, at certain values of synaptic strength, the mismatch between the 

excitation wavelength and the spatial scales of the BM can result in processing errors. Under such 

conditions the signal does not have enough space to completely decay and is still capable of 

activating synapses in the output- and inter neurons, thus, breaking the described above rules for 
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binary addition. Such instances of computational volatilities caused by incorrect signal 

transmission in short BMs will be considered as computational errors with CP set to zero. 

It should be noted that since there are two BM output neurons (Fig. 17), one can determine 

two values of CP. To minimize the influence of the output boundary conditions both values of CP 

are measured from the onset of the initial stimuli to the moment they reach the points located at 

LD away from the ends of output neurons. The greater value will be signified as the BM’s CP. 

Results and Discussion 

Firstly, the dynamics of reaction-diffusion waves were computed to confirm that their 

evolution through the synapses C1-C7 accurately reflects each of the defined above single digit 

binary addition rules. Figure 20 elucidates the first addition rule with just a single input stimulus 

present in the BM. Without restriction of generality the stimulus is applied in the Input 2. Panels 

A-F show propagation of the resulting reaction-diffusion wave from the beginning of the input (x 

= 0) towards the synapse C7 (x = 1). Down the way when the wavefront passes a synapse C4 (Fig. 

20B,G, t = 2.5) it initiates a subthreshold excitation at the beginning of the interneuron which 

decays around inhibitory synapse C5 without influencing the excitation in the Output 1 neuron 

(Fig. 20I). In contrast, the excitation initiated by the wave propagating from the Input 2 neuron has 

a fully developed excitation plateau (Fig. 20C) which, through the synaptic connection C7, triggers 

the wavefront in the Output 1 neuron (Fig. 20J). This wavefront propagates further towards the 

end of the Output 1 neuron (Fig. 20K-Q) and, therefore, produces binary addition yield equal to 1. 
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Figure 20. Voltage Over Time for the Third Synaptic Junction with a Single Input Present
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Note A-F correspond to the Input 2 neuron, G-I show the interneuron, and J-O show the 

Output 1 neuron. Parameters used were gK = 1.8, gL = 0.3, ϕ = 0.0167. 

Figure 21 illuminates the second addition rule when incoming signals are present in both 

inputs of the BM. Sufficiently fast input reaction-diffusion waves (Fig. 21A) transmit the 

excitation into the interneuron through the synaptic junction C3-C4 (Fig. 21D). Therefore, the 

resulting reaction-diffusion wave in the interneuron is as developed as both input waves, so all 

three of them reach synaptic junction C5-C7 practically in phase. The balance between inhibitory 

(C5 = -2) and excitatory (C6 = C7 = 1) synaptic strengths ensures the absence of excitation in the 

Output1 neuron, producing binary addition yield equal to 0. In a similar way the transmission of 

in phase input waves through the synaptic junction (C1 = C2 = 0.5) results in propagating reaction-

diffusion wave in the Output 2 neuron, thus producing a yield equal to 1 which needs to be added 

to the next significant digit in the adjacent BM unit. 

 

 

 

 

 

 

 

 

 

 



 45 

Figure 21. Voltage Over Time for the Third Synaptic Junction when Both Inputs are 

Present 

 

Note A-C corresponds to both Input 1 and 2 neurons, D-F corresponds to the interneuron, 

and G-I correspond to the Output 1 neuron. 
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Secondly, to evaluate the speed of binary addition operation described above the values of 

CP were computed at various BM lengths, different reaction-diffusion parameters, and different 

synaptic strengths. Unlike previous examples, the strength of excitatory synapses C1-4 in the first 

two synaptic junctions were varied while other synaptic strengths were still set to constant values 

C5 = -2, C6-7 = 1. The effects of changes of values of parameters on the CP can be seen in Figs. 22-

24. As mentioned above, in all these figures zero values of CP correspond to computational errors 

when under-threshold excitation waves do not properly decay prior to entering the output neurons. 

Figure 22. The BMA Computational Periods at Different Reaction-Diffusion Parameters and 

Different BM Lengths 

 

Note Dashed lines represent the lowest length where computational errors still do not occur. 

Synaptic strengths and set of parameters used are as follows: C1-4 = 0.5. A) gK = 1.8, gL = 0.3, ϕ = 
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0.0167. B) gK = 1.8, gL = 0.2, ϕ = 0.0167. C) gK = 2.5, gL = 0.3, ϕ = 0.0167. D) gK = 1.8, gL = 0.3, 

ϕ = 0.00167. 

Figure 23. The BMA Computational Periods at Different Parameters C1-4 and Different BM 

Lengths 

 

Note Squares, diamonds, triangles, and circles represent C1-4 = 0.35, C1-4 = 0.4, C1-4 = 0.45 

and C1-4 = 0.5, respectively. Parameters used were gK = 2.5, gL = 0.3, ϕ = 0.0167.  
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Figure 24. Dependencies of Computational Periods for the BMA (Dark Gray) and BMB 

(Light Gray) on Various Values of BMA/BMB Lengths LBM and Synaptic Strengths Ci (i = 

1,…,4) 

 

Note Parameters used were gK = 2.5, gL = 0.3, ϕ = 0.0167. 

Figure 22 demonstrates that regardless of a parameter’s values the dependences of CP on 

the length of the BMA are virtually linear. The average slope of these dependences amounts to 

15.9 with deviations from the average less than 20%.  Although variations in parameter’s values 

did not alter the linear nature of dependences of CP on LBMA, they significantly affected the minimal 

length of the BMA below which it could not function due to computational errors. For instance, 

the increase of leakage conductance from 0.2 to 0.3 at constant ϕ and gK (Fig. 22A,B) resulted in 

almost a 20% decrease in minimal length allowing the BMA to function at smaller sizes without 

computational errors. Concurrently, a decrease in potassium conductance and increase in ϕ 
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decreased the minimal length too, although it did this to lesser extent compared to variations in 

leakage current (Fig. 22A,C,D). It is important to note that while the minimal value of LBMA 

noticeably changes in response to variations of BMA parameters, the values of CP do not alter 

much and fluctuate around 15.  Also, at fixed LBMA the greater values of synaptic strengths reduce 

the CP by the amounts that get gradually saturate at around C1-4 = 0.5 (Fig. 23). 

Figure 23 shows dependencies of CP on BMA/BMB lengths and parameters C1-4. The 

range of synaptic strengths at which both types of BM can correctly perform binary calculations 

significantly decreases for shorter BMs. Higher synaptic strengths generate computational errors 

at greater BM lengths since the length of the interneuron becomes insufficient to allow appropriate 

decay of propagating excitation waves. It is worth noticing that CPs tend to increase very abruptly 

near the boundaries of regions of computational errors, which might explain some computational 

volatilities associated with severe changes in synaptic strengths due to certain external stressors 

(53).  

As shown in Fig. 24 variations in CP for different synaptic strengths and LBM are quite 

substantial for both types of BMs. Nonetheless, the BMB’s CPs extend to visibly lower values due 

to greater length of the interneuron. Unlike the strong influence of LBM, the alterations of CP in 

response to different values of reaction-diffusion parameters are not significant as decreasing ϕ by 

an order of magnitude and increasing the value of gK by 40% result only in six and nine percent 

change in CP, respectively (Fig. 22,23).  In general, one could expect greater differences in CP 

due to changes in reaction diffusion parameters since excitation waves with greater wavelengths 

typically travel faster. However, in these simulations the BM length as in (43) is significantly 

shorter than the length of the excitation waves, causing only a segment of the wave being present 
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in the BM neurons. This in turn results in a more uniform distribution of CP over the range of 

reaction-diffusion parameters. 

Finally, these simulations demonstrate that both types of BMs can perform reliable and 

quite fast single digit binary operations with CPs ranging between approximately 2 and 25 

milliseconds (Fig. 22-24). Concurrently, it is shown that BM lengths vary within nearly three- and 

eight-millimeters range, so longer BMs correspond to longer calculation periods.  The range fits 

well within the distribution of BM connection lengths in cortical networks of some primates (19) 

and within determined range of CPs allows to perform binary operations with frequencies in a low 

range of gamma oscillations in the brain. 

To verify the accuracy of results of the computational modeling, excitation waves evolved 

in response to a single stimulus applied at the beginning of the BMA’s Input 2 neuron were used. 

A comparison was made using different steady-state (t = 2.5 Fig. 20B) grid solutions computed in 

the Input 2 neuron for a set of Δx varying as 0.02, 0.01, 0.005, 0.0025, and 0.00125. At t = 2.5 the 

Output 1 neuron was still quiescent, so the difference between solutions was evaluated based on 

grid values of transmembrane voltage computed only in the Input 2 neuron. The difference 

between two grid solutions determined at Δx1 and Δx2 was calculated as a norm in the space of 

continuous functions 

T = ‖�‖` = a?B���,…,cd��(�) � ��(�)d  (31) 

where h is the number of overlapping points between grid solutions vi computed at Δx1 and 

Δx2. Table 4 shows that the norm y decreases as the difference between spatial scales x = Δx1 – 

Δx2 decreases. 
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Table 4. Dependence of the Norm y on x = Δx1 – Δx2 

Spatial scales ∆B� = 0.02 ∆B� = 0.01 

 ∆B� = 0.01 ∆B� = 0.005  

 ∆B� = 0.005 ∆B� = 0.0025 

 ∆B� = 0.0025 ∆B� = 0.00125 

T 0.0590 0.0290 0.0167 0.0078 

Note The dependence shown in Table 4 can be well approximated by a regression line y = 

5.769x + 0.001 with a high r2 value of 0.9833. This, in turn, confirms the accuracy of a grid solution 

vi which converges to a solution of the nonlinear system of Eqs. (24)-(29) with a sufficiently good 

degree of convergence of o(Δx). 

In summary, it was demonstrated that a minimally structured BM can effectively process 

binary information which propagates through the module’s neurons in the form of reaction-

diffusion waves.  It was found that such millimeter size module may consist of only a few 

synaptic junctions and neurons and can operate at frequencies typical of low range of gamma 

oscillations in the brain. It was also determined that BM’s calculation speed strongly depends on 

synaptic strengths and module’s size, and only weakly reacts to the alterations of neuronal 

reaction-diffusion parameters.  This suggests that the adaptation of synaptic strengths, which 

typically occurs during various cognitive processes, may noticeably enhance the computational 

power of the brain. 
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CHAPTER IV: CONCLUSIONS AND FUTURE DIRECTIONS 

Conclusions 

This work demonstrates that reaction-diffusion systems can be used to model both memory 

and processing functions that are similar to those found in the human brain. The RDMU 

demonstrates the three core functions of memory: sensitization, habituation, and dishabituation. 

The RDMU also showed results notably similar to the definitions of PTSD and dementia. This 

portion is not in the chapter, as there is not much evidence to suggest the RDMU is capable of 

modelling either of these diseases, yet the similarity is striking enough to warrant interest. Neurons 

in patients of PTSD become shorter in specific regions of the brain, and responsiveness to fear is 

increased while suppression of fear is decreased (10,11). Increasing the length of the interneuron 

causes dishabituation to be significantly harder to achieve, as seen in Fig. 15. As such, the motor 

neuron is much more responsive to incoming stimuli. Since length is dimensionless, increasing the 

length of the interneuron can also be interpreted as decreasing the length of both the sensory and 

the motor neuron. In this way the reduced length of the RDMU, increased responsiveness to 

stimuli, and reduced ability to habituate correspond to the effects of PTSD. 

The RDMU can similarly demonstrate effects that match the definition of dementia. 

Referring to (12–14), the effects of dementia include the inability to remember recent events, 

increased number of excitatory synapses, and slower processing speeds. Looking at Fig. 14, one 

can see that greater synaptic strengths are needed for sensitization to occur when ϕ is 0.017. The 

lack of sensitization implies that LTP is not taking place, which in turn suggests that information 

is not being stored. Referring to Fig. 12 shows that the pulse is much weaker for this parameter 

range, which translates to a slower moving excitation wave and thus decreased processing speeds. 

While these similarities are not sufficient to claim that the RDMU can model dementia, it is 
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intriguing that a system as simple as the RDMU can show these effects at all. With a more 

complicated model and proper experimentation, it could be shown that reaction-diffusion systems 

are capable of modelling brain-related diseases. 

It was shown that the BM is able to model the specific processing task of single-digit 

binary addition.  It is worth noting that the BM performs addition similarly to how an arithmetic 

logic unit (ALU) performs addition in a computer. As the BM and ALU perform the same task, 

one could argue that the BM is more efficient as it uses fewer synapses than the ALU uses 

components (21). Additionally, since the BM and ALU have the same number of inputs, same 

number of outputs, and both operate in binary, it could be possible to incorporate the BM into 

current computing systems with minimal modifications once a physical BM has been created. 

Future Directions 

At present, the three immediate directions this research can take are as follows: 1) 

combining multiple RDMUs and BMs to perform more complex tasks; 2) implementing equations 

to allow synapses to automatically adjust strengths according to inputs or lack thereof; and 3) 

building physical circuits as proof-of-concept in preparation of more complex reaction-diffusion 

designs. 

Progress has already been made for combining multiple BMs to perform multi-digit binary 

addition, with an existing design (Fig. 25) and an existing framework for experimentation. By 

connecting the output 2 neuron from the first BM to the synaptic junctions of the second BM, the 

first BM can transfer specific information to the second BM. In the case of multi-digit binary 

addition, this information is akin to carrying the 1 in base-10 addition. 
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Figure 25. The Design for a Multi-Digit Binary Addition BM 

 

Note The output neuron from one BM becomes an interneuron connecting to all synaptic 

junctions of the other BM. 

Combining modules for more complex tasks may also be used in image processing. While 

there is currently no intention to pursue reaction-diffusion image processing, as a plethora of better 

versions are in existence, a theoretical example can still be given (Fig. 26). Using a digital black-

and-white image, each pixel in the image can be stored in a RDMU, with a sensitized RDMU 

representing a black pixel and a habituated RDMU representing a white pixel. The output of the 

RDMU would connect to one input of a BM, with the other input being the value of the equivalent 

pixel in the image being compared. If the two pixels are the same, the result of the “addition” is 

zero, while the result is one if the pixels are different. The output of each BM would connect to a 

multi-digit addition BM to sum the value of all single-digit BM’s, giving a scale of how familiar 

the comparison image is to the stored image. For example, using 25 pixels for an image, a value 
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of 0 means the images are identical, while a value of 5 means the images are similar but different. 

A value of 12 would mean the images are unrelated, and a value of 25 would show that the colors 

in the images are inverted. This particular setup would take 25 RDMU’s and ~30 BM’s. 

Figure 26. An Example for Reaction-Diffusion Image Processing 

 

Note A) The pixel to be stored acts as the input for the RDMU, and when a comparison is 

made the stored pixel and a test pixel become the inputs for the BM. B) The results of the individual 

comparison are summed, and the result determines how similar the two images are. 

The second path this project can take is dynamic synaptic strengths. At present, all synaptic 

strengths are fixed, and adjustments are made manually. Using naturally adjusting synapses would 

be useful in modelling memory, as this behavior would more closely mimic the physiological 

process of memory. The synapses can be made to adjust automatically by introducing a new 

equation from (36): 

�f g�g� = �FGHI ∗ J�F7K � �
L (32) 
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where tw is a time constant for the rate of change of the synaptic strengths, C is the synaptic 

strength, and vpost, vpre, and v0 are the post-synaptic, pre-synaptic, and resting transmembrane 

potentials, respectively. This equation was not used in the RDMU because it was not known at the 

time and was not implemented in the BM because addition required strict, unchanging synaptic 

strengths. Equation (32) can be easily incorporated into future systems, though experiments will 

need to be done to optimize the value of tw. 

The third path this project can take is designing a physical circuit. The issue with this 

path is that with current electronics, information is instantaneously transmitted between 

components. This precludes propagating waves, and thus feedback and feedforward loops. This 

problem may be able to be sidestepped with the introduction of a circuit component that requires 

time for an activity to occur. Once all three paths are followed, this research may hopefully 

become the base for a new type of artificial intelligence.
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