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Abstract 
Background 
Accurate patient identification is essential for delivering longitudinal 
care. Our team developed an ear biometric system (SEARCH) to 
improve patient identification. To address how ear growth affects 
matching rates longitudinally, we constructed an infant cohort, 
obtaining ear image sets monthly to map a 9-month span of 
observations. This analysis had three main objectives: 1) map 
trajectory of ear growth during the first 9 months of life; 2) determine 
the impact of ear growth on matching accuracy; and 3) explore 
computer vision techniques to counter a loss of accuracy.   
Methodology 
Infants were enrolled from an urban clinic in Lusaka, Zambia. Roughly 
half were enrolled at their first vaccination visit and ~half at their last 
vaccination. Follow-up visits for each patient occurred monthly for 6 
months. At each visit, we collected four images of the infant’s ears, 
and the child’s weight. We analyze ear area versus age and change in 
ear area versus age. We conduct pair-wise comparisons for all age 
intervals. 
Results 
From 227 enrolled infants we acquired age-specific datasets for 6 days 
through 9 months. Maximal ear growth occurred between 6 days and 
14 weeks. Growth was significant until 6 months of age, after which 
further growth appeared minimal. Examining look-back performance 
to the 6-month visit, baseline pair-wise comparisons yielded 
identification rates that ranged 46.9–75%. Concatenating left and right 
ears per participant improved identification rates to 61.5–100%. 
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Concatenating images captured on adjacent visits further improved 
identification rates to 90.3–100%. Lastly, combining these two 
approaches improved identification to 100%. All matching strategies 
showed the weakest matching rates during periods of maximal 
growth (i.e., <6 months). 
Conclusion 
By quantifying the effect that ear growth has on performance of the 
SEARCH platform, we show that ear identification is a feasible solution 
for patient identification in an infant population 6 months and above.
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Introduction
The coordinated delivery of healthcare services relies heav-
ily on accurately and repeatedly identifying each individual  
at the point of care. Everything from effective disease manage-
ment to tracking vaccination records hinges on reliable patient  
identification. 

In the USA, the expanded adoption of electronic health records 
(EHRs) was largely driven by the HITECH Act passed in 
2009, increasing adoption rates from 3.2% to 86% in 20171.  
EHRs were rolled out with promises to improve quality and  
efficiency of care. While the shift from paper-based record systems  
to EHRs has promised to improve the delivery, management,  
and coordination of care, they carry little to no advantage  
over their paper-based counterparts unless the subject identifi-
cation problem has been solved. Without that solution, EHRs 
quickly become overloaded with duplicate and incomplete 
patient records resulting in many of the same inefficiencies as a  
paper-based system. An audit of Children’s Medical Center in 
Texas found that duplicate records led not only to administra-
tive costs incurred by the hospital to merge and/or store the 
records in a database, but also to unnecessary medical care costs  
incurred by the patient2.

In low- and middle-income countries, like Zambia, the advan-
tages of transitioning from paper-based systems to EHRs have  
been promoted as a mechanism to improve the quality of 
care and to provide data by which to monitor and evaluate  
programs. Unfortunately, the challenge of subject identification has  
proven a significant barrier to realizing these benefits. In 
2004, the Zambian Ministry of Health and the US Centers for  
Disease Control rolled out SmartCare, a Windows-based clinical  
information management system. SmartCare was originally 
intended to support HIV care delivery services but has since  
expanded to include other non-HIV care services. 

Upon enrollment into SmartCare, each patient is given a “Care 
Card”. The Care Card acts as the patient’s unique identi-
fier. Healthcare workers scan this card to access the patient’s  
digital health records. If a patient is unable to produce her/his 
card at a clinical encounter, the healthcare worker must rely on 
other external identifiers (a database search involving names, 
dates of birth). Often, a patient without a Care Card is not  
successfully found in the system, and a duplicate record is  
created that does not contain the patient’s longitudinal medical  
history. The inability to link a patient to their correct medical  
record leads to costly inefficiencies, the proliferation of  
aliases, and ultimately gaps in care delivery3. Given the difficulties  
of developing a robust identification system based on ID cards 
or other external identifiers, there is considerable interest  
in using biometrics to identify an individual in healthcare  
settings4,5.

For the last several years, our team has focused on solving 
the patient identification challenge through ear biometrics. 
Through our NIH-funded research, Project SEARCH (Scanning  
Ears for Child Health) we were able to develop a mHealth 
tool that was an accurate and acceptable way of identifying a 

cohort of Zambian infants. The current SEARCH system takes 
an image of an individual’s ear and displays a list of top-ten  
likely matches. From this list, the user can leverage other demo-
graphics linked to the individual to select the correct match. The 
system consists of a hardware component, the “Donut” to opti-
mize the image-capture process, and a mobile application that 
uses a pattern recognition algorithm, Scale Invariant Feature  
Transformation (SIFT), to transform an image of the ear into a 
unique identifier6. In previous experiments using three distinct 
cross-sectional cohorts of increasing complexity, top-1 match-
ing rates (when the correct individual appeared first on the  
list of top-10 matches) of the SEARCH system reached 100%7–9.

Previous experiments, however, did not account for the 
impact of ear growth on identification, a problem that may be  
particularly challenging early in infancy when growth velocities  
are maximal. An essential first step in our analysis is to  
characterize the normal trajectory of ear growth during the first 9  
months of life, to assess how balanced this is between the right 
and left ears, and whether there are substantial differences in 
growth based on sex. From that baseline, our analysis focused 
on 1) understanding the impact of growth on ear biometric  
matching rates; and 2) assessing the ability of the computer  
science technique of concatenation to counter the negative effects  
of growth on matching accuracy.

Methods
This section describes the creation of the longitudinal data-
set, methods for measuring ear growth, the image matching  
pathway (how a match is made using ear biometrics) and  
optimizations made to the matching pathway.

Dataset acquisition
Data were collected at the Chawama Clinic among infants attend-
ing routine well-child care visits. The Chawama township is  
one of the largest, most densely populated, and poorest section  
of Lusaka. 

Written consent forms were approved to collect non-medically 
sensitive data from participants in this study. All forms were 
translated into two local languages and approved by both the  
Boston University IRB and University of Zambia Board of  
Ethics. Approval/Reference Number: H-38650. To be included 
in the study, all participants had to be attending Chawama  
Clinic for a vaccination visit and planning to attend  
well-child visits at Chawama Clinic in the future. Infants with a  
low birthweight (<2.5 kg) were excluded from the study.

Data collection spanned a period of 6 months from 11/2019  
through 04/2020.

We enrolled 227 infants attending Chawama Clinic. The infants 
were either enrolled at their regular day 6 post-partum well-
child follow up visit (creating the cohort providing growth  
data between just after birth and 14 weeks of age), or were 
older infants enrolled at their regular 14-week well-child  
visit (creating the cohort that provided growth data from 14 
week through 9 months). By enrolling these two groups in  
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parallel, we were able to shorten enrollment times and reduce 
study attrition over time. From 227 enrolled infants, we had 661  
follow-up visits, the following age-specific datasets were 
acquired: 6 days (n=132); 6 weeks (n=109); 10 weeks (n=107);  
14 weeks (n=150); 4 months (n=110); 5 months (n=54); 6 
months (n=83); 7 months (n=89); 8 months (n=35); and 9 months 
(n=15). Loss to follow-up was highest in follow-up visits that 
did not coincide with vaccination (all visits past 14 weeks), and  
when data collection activities were temporarily halted due  
to CV19 pandemic in March 2020 (5 months and 9 months).

Data collection. The SEARCH system has two components, 
one hardware and one software. The hardware component  
is a light opaque cylinder, which we call the ‘Donut’. It is  
open on one end but mounts a semi lunar plastic insert shroud. 
The ear is cupped by the shroud, and the purpose of the 
shroud is to exclude distracting visual data from the image,  
such as the neck and hair. The other end mounts a flat plastic  
plate with a Velcro strip to mount the smart phone, with a  
hole through which the camera is directed. 

In this project, we used an infant sized scaled-down version  
of the Donut, termed the ‘Munchkin’. The purpose of the 
Donut (and Munchkin) is essentially to minimize variation in  
the ear image capture process. The device accomplishes this 
by: (1) standardizing distance and angle from the camera 
to the ear, and thereby maintaining a constant camera focus 
length; (2) minimizing variations in light intensity for the photo  
both by having the device supply its own lighting through a 
ring of 360 degree LED lights built with a voltage regulator; 
and because the donut cylinder is light opaque, such that the 
only light seen by the camera would come from the donut itself;  
and (3) by reducing motion artifact since the donut, when 
applied to the side of the head, stabilizes the camera. Prior  
work has shown that the Donut significantly improves the  
accuracy of the SEARCH system8.

Images were taken by one data collector, who was thoroughly 
trained and replaced the 9 Volt battery for the LED lights  
on a bi-weekly basis.

At enrollment we collected basic demographic data on each 
participant: age and sex. At baseline and all follow up visits,  
we obtained two images of the left ear and two images of the 
right ear, plus their current weight. In this way, we created a lon-
gitudinal library of ear images with paired infant growth data,  
allowing us to observe the relationship between ear growth  
over time and weight gain over time. 

Ear growth measurements
In early proof of concept experiments, a methodology was 
created to systematically measure radial measurements of 
the ear based on key anatomical features10. We adapted this  
methodology for the purpose of measuring ear area and radial 
measurements. The ear is a complicated anatomical struc-
ture, with features that vary from individual to individual. One  
exception is the point where two cartilage structures meet and 
form a point that is present across most ears that were observed. 
We’ve named this the ‘anchor point’, and this is the point  

from which we derived all subsequent growth annotations (see  
Figure 5).

Annotations: manual measurements. Manual measurements 
were taken on a subset of 90 participants. These measure-
ments included 13 radial measurements and a polygonal area  
measurement (per ear image) that were taken using a  
MATLAB-aided user-interface. To set up for the radial  
measurements in a systematic way, the user first defined the base 
line which runs through the anchor point, tangent to the tragus. 
The first measurement C1, runs from the anchor point to where 
the baseline intersects with the ear. Following C1, each radial  
measurement starts from the anchor point and is offset by 15 
degrees from the previous radial measurement (Figure 5(i)). A 
polygon was automatically generated using the endpoints of all 
radial measurements and the baseline. Because each image was  
taken at a fixed distance using the Donut, the ear area was 
defined as the area of the polygon and was calculated using  
a pixel to millimeter conversion based on known dimensions of  
the Donut.

Annotations: automated area measurements. A subset of 
35 manual area measurements were saved as masked data in 
Matlab R2020b (RRID:SCR_001622) (.mat files containing  
the location of the polygonal region of interest or area). Alter-
natively, this could be done by writing a similar program in 
Google Colaboratory. We trained a Faster R-CNN12 detec-
tion network to detect the ear area from the taken photo. We 
trained it with 165 manually labeled images in our collected ear  
data. We adopt the trained Faster R-CNN network to detect the 
ear area of the rest of the ear images in our collected data. The 
full dataset of n=227 participants (left and right ears for each  
visit) was the input into the trained model. The output was area 
measurements and masked ear images for all 227 participant  
datasets (Figure 5(ii)).

We performed a regression using the larger subset of 90 
participants. Here we compared automatic area measure-
ments with the manual measurements from these participants  
(Figure 5(iii)). Since there was a strong correlation, we then  
transitioned to using automated area measurements for analysis. 

The SIFT algorithm, implementation, and testing
Earlier work under Project SEARCH set out to prove that ears 
could be used as a biometric identifier. In doing so, a number 
of pattern recognition algorithms were tested on a dataset of  
ear images. The Scale Invariant Feature Transform (SIFT) 
algorithm stood out as the optimal candidate6. When provided 
with an image, the SIFT algorithm tries to detect local points  
of interest called “keypoints”. When all the keypoints in the 
image are detected, the set of keypoints describing the image 
are converted into a vector of values called a “descriptor”.  
The descriptor can then be compared against descriptors of 
other images, calculating the Euclidean distance between key-
points in each descriptor. The result of this is an average  
distance score for each set of descriptors being compared9,11. 
A low average distance score is indicative of a stronger match, 
so the descriptor that yielded the lowest score is returned as the  
matching image.
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Implementation. For all experiments conducted, the applica-
tion used was built on Android OS. The intention is to have  
an on-device matching solution deployable in low- and  
middle-income countries, and in doing so the cost and viability 
of the platform have to be considered. The SIFT implementation  
packaged in the OpenCV library was used9.

Operation. To run the application, Android OS 5.0 or  
higher is required. OpenCV version 2.4.11 is used.

Look-back Period Tests. In the look-back tests, we analyze  
recognition rates associated with images taken of participants  
at different points in time. The recognition rate of each test 
is defined as the percent of participants in the testing dataset  
(n) that successfully match to an image in the training  
dataset (database n) divided by the total possible correct matches. 
The calculation of this rate does not take into account the  
size of the database n.

           100
successfully matched nRecognition Rate

total n
= ×

             

Due to loss to follow-up along with a staggered enrollment 
at 6 days and 14 weeks (thus overlap in the two cohorts), the  
training and testing datasets for each test do not have equiva-
lent sample sizes (defined as n and database n). Figure 6 uses 
a simplified example of a 7 month to 6 month look-back test 
to illustrate how recognition rates are determined for single  
look-back periods. All look-back tests follow this same approach. 
For experiment three, database n for the concatenated look-
back tests contains data from participants who had images  
stored for both specified time periods. 

Keypoint concatenation. As described in an earlier publica-
tion, this technique allows for two or more image descriptors to 
be combined prior to matching7,12. Matching with these complex 
descriptors allows the SIFT algorithm to identify more of the  
unique features in a participant’s ear images. The four images 
captured per participant allowed for a number of varying  
concatenation configurations to be tested, allowing us to test  
the performance of concatenating multiple images from the same 
ear against a concatenation technique that used images from  
both ears for example.

Statistical analysis
Growth curves were created using SAS JMP software  
v.16.0.0 (RRID:SCR_014242). Alternatively, Google Colaboratory  
could be used to run a similar analysis. For the cumulative  
growth charts (ear area versus age, and weight versus age), 
we smoothed the graph using a cubic spline bounded by 95%  
confidence intervals. We used matched paired t-tests to conduct  
the mean difference in ear area between visits analysis.  
These experiments were conducted for consecutive visits, with 
a critical p-value of 0.05 to determine significance (Figure 2, 
Table 3 in extended data). Finally, we used a linear regression  
bounded by 95% confidence intervals to plot ear area versus 
weight. We calculated R2 values for each configuration (left  

and right ear area by weight for males, left and right ear  
area by weight for females).

Results
Construction of the longitudinal dataset
To study the impact of growth, we assembled a two-segment 
longitudinal cohort consisting of Zambian infants enrolled at 
6 days and from 14 weeks of age, both followed for up to six  
months. By combining these two, we can map ear growth 
and matching rates from birth through 9 months of life. We 
refer to this as a “benchmarking” cohort. These longitudinal  
data allowed us also to assess the degree to which different  
computer science enhancements, principally concatenation,  
might improve matching accuracy rates. 

From these infants we obtained serial images of their ears,  
creating a time-series data set that simultaneously mapped the 
sex-specific growth of ears over time, and provided a series of  
pair-wise look back intervals across different points in time. We 
also generated growth curves, analogous to pediatric growth 
charts that plot age versus weight over time, so that we could 
explore the relationship between age, weight, and ear area.  
These measurements allowed us to isolate the effect of cumu-
lative growth over time as well as growth velocity across dif-
ferent time points. The distinction between cumulative growth 
and growth velocity is potentially important given prior  
observations that the ear growth curve is steepest early in life  
but flattens out in the first year eventually becoming asymptotic. 

During the project, a cohort of Zambian infants (N=227) were 
followed longitudinally over a six-month period at the Chawama  
Clinic health center in Lusaka, Zambia. We enrolled a  
cohort of 132 infants (50% female) at their 6-day vaccination 
visit. We enrolled a second cohort of 95 infants (46% female) 
at their 14-week vaccination visit. We recorded a monthly  
follow-up visit on infants in each cohort for 6 months.  
Demographic features of the cohort are summarized in Table 1.

Of the 227 participants enrolled, 161 infants (71%) had  
completed four or more visits, while 48 infants (21%) were lost 
to follow-up after the enrollment visit. Due to the COVID-19  
pandemic, in April 2020, all human subjects’ research in 
Lusaka was halted by the Ministry of Health. The suspension of  
these research activities explains the dip in cohort retention at 
month 5 and 9 for the 6-day and 14-week cohorts respectively  
(Figure 1).

Question 1: what is the natural trajectory of ear growth 
over time?
Data show a consistent increase in ear area over time, with 
similar growth among boys and girls and between the left 
and right ears. As predicted, the increase in growth with time  
appears most pronounced in the early months. Table S1 in 
the extended data section also highlights the shifting number 
of participants who could be sampled at different time points,  
and therefore that the statistical precision of later compari-
sons will vary13. Mean weights between males and females 
were similar at 6 days. By 6 weeks, males weighed more than  
females (p<0.05), with this trend continuing through all later 
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Table 1. Dataset characteristics at each visit. This table shows the number of participants per visit, average age, 
average weight, and average ear area at each visit (left/right), grouped by sex. * signifies a significant difference in 
mean values between male and females (p<0.05).

Female Male

N (%) Mean SE / 
(CI 95%)

N (%) Mean SE/ 
(CI 95%)

6 Day Ear Area (Right/Left) (mm^2) 66 (50%) 541/544* 9.8/11.1 66 (50%) 583/579* 9.8/11.1

Age (days) 7 .15 7 .15

Weight (kg) 3.1 .05 3.0 .05

6 Week Ear Area (Right/Left) 57 
(48%)

651/654* 12.5/11.9 52 
(52%)

712/695* 13.0/12.5

Age (days) 42.6 .52 42.3 .54

Weight (kg) 4.8* .10 5.1* .11

10 Week Ear Area (Right/Left) 55 
(51%)

708/726* 15.0/15.4 52 
(49%)

776/778* 15.4/15.9

Age (days) 75 .6 75 .6

Weight (kg) 5.6* .09 6.0* .09

14 Week Ear Area (Right/Left) 72 
(48%)

744/759* 13.6/13.0 78 
(52%)

828/826* 13.0/12.4

Age 106 .6 105 .6

Weight 6.2* .10 6.7* .09

4 Month Ear Area (Right/Left) 52 
(47%)

786/790* 18.1/18.0 58 
(53%)

877/868* 17.1/17.1

Age (days) 131 1.2 130 1.2

Weight (kg) 6.7* .12 7.1* .12

5 Month Ear Area (Right/Left) 21 
(39%)

763/786* 25.2/23.6 33 
(65%)

890/900* 20.1/18.8

Age (days) 152 1.7 149 1.4

Weight (kg) 6.6* .17 7.1* .14

6 Month Ear Area (Right/Left) 38 
(46%)

826/833* 19.5/18.6 45 
(54%)

893/901* 17.9/17.1

Age (days) 182 1.3 181 1.2

Weight (kg) 6.9* .16 7.7* .15

7 Month Ear Area (Right/Left) 40 
(45%)

820/845* 19.9/18.9 49 
(55%)

922/916* 18.0/17.1

Age (days) 208 3.5 203 3.2

Weight (kg) 7.1* .15 8.0* .14

8 Month Ear Area (Right/Left) 14 
(40%)

832/832* 38.5/37.7 21 
(60%)

941/946* 31.4/30.8

Age (days) 240 1.9 237 1.6

Weight (kg) 7.4* .26 8.2* .21

9 Month Ear Area (Right/Left) 5 
(33%)

855/840 44.5/41.0 10 (67%) 936/920 31.4/29.0

Age (days) 271 2.9 270 2.1

Weight (kg) 7.5* .50 8.9* .35
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visits (6 weeks through 9 months). On average, left and right 
ear area was significantly larger in males from 6 days through 8  
months.

We define ear growth as cumulative growth (ear area), veloc-
ity of growth (change in ear area), and directionality of growth 
(change in radial C measurements) over time (see the Methods  

Figure 1. Number of completed visits per participant. Those enrolled on their 6 Day vaccination in orange, those enrolled on their 14 
week vaccination visit marked in blue.

Figure 2. Ear growth charts (cumulative and velocity). Figure 2a shows the relationship between ear area (mm2) and age (days), 
with blue representing the left and right ear area for males and red for females. These cumulative growth curves were smoothed using 
a cubic spline bounded by 95% confidence intervals. Figure 2b shows the relationship between growth velocity (change in ear area) and 
chronologically paired visits (look-backs). The mean growth velocity is displayed as a dot bounded by 95% confidence intervals. Figure 2c 
shows the growth chart of our cohort (weight by age) grouped by sex, using a cubic spline bounded by 95% confidence intervals.
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section). Figure 2 shows three different growth charts from 
our longitudinal dataset, grouped by sex (color): a) right and 
left ear area (mm2) by age (days); b) change in ear area across a  
series of pairwise look-back periods; and, for comparison with 
a well-accepted anthropometric scale, c) weight by age for  
the same infants.

As can be seen, the slope for growth is maximal during the 
first few months of life, before leveling off at around 5–6  
months of age. 

Further analysis using a series of chronologically paired t-tests  
show that the change in ear area between visits is significant  
until 6 months (p < 0.001), whereafter growth velocity is  
no longer statistically significant (Figure 2b). This follows an 
inverse trajectory to cumulative growth, with largest growth 
occurring early (6W-6D, and 10W-6W), becoming asymptotic 
6 months and above. It should be noted that cohort retention  
drastically dipped at 9 months. We included 9-month data in 
our analyses, however the precision of these comparisons are 
low due to small sample sizes (i.e. for 8–9 month look-back,  
we had only seven infants still in the cohort). 

Growth was roughly symmetrical between left and right ear 
areas. Conversely, the ear growth curves for male and female  
babies differed significantly, with males having larger ears  
on average at all time periods (Figure 2a). 

The data also emphasize the substantial variability in ear 
areas across the cohort such that the range of variation present 
at the six-day visit overlaps with some areas measured at  
9 months. This is to say that some babies are born with very 
large ears and some with very small ears, but all tend to increase 
in size with time in a predictable way, particularly during  
the first six months.

Weight gain is significant between all look-back period inter-
vals, and steadies to between 0.3 and 0.5 kg per month in 
later visits (Table 1). While the relationship between ear  
growth velocity and weight gain looks linear over the first 9 
months, this analysis is weakened due to limited data in later 
visits. We predict that weight gain continues past 9 months, 
while growth in ear area remains asymptotic close to zero  
(Figures S1)13.

To explore directionality of ear growth, we examined radial C 
measurements on a subset of 90 participants from our study. 
C measurements were taken from a common anchor point on  
every ear (see the Methods section), where C1 measures 
from the anchor point to the top of the ear, C7 the width of the 
ear, and C13 from the anchor point to the bottom most point  
on the ear lobe. Figure S2 in the extended data section shows 
three of these measurements, plotted over time (C1, C7, 
and C13) for both left and right ears. These show that C7  
(width of the ear) and C13 (dropping of the ear lobe) drive  
the growth, whereas C1 has little to no change over time13.

Question 2: how does cumulative growth and growth 
velocity impact matching accuracy?
In our prior published work, we presented matching rates 
from cross-sectional data sets where each individuals were 
repeatedly photographed7. Since all photographs were taken  
within several minutes of one another, it is reasonable to assume 
that growth is essentially zero. Those analyses address the ques-
tion, ‘how well can we match photo 1 to photo 2, both taken  
at time X?’. Using a variety of computer science techniques, we 
were able to achieve nearly perfect matching rates, including  
in infants.

However, by definition, these cross-sectional analyses do not 
assess the impact of ear growth over time, which is what the 
following analyses address. To do that the problem can be  
restated generally as, ‘how well can we match photo 1 at time X 
to photo 2 at time X+n?’, where n can vary reflecting the time  
between the two photographs.

Earlier tests using cross-sectional datasets achieved high rec-
ognition rates with the right mix of pre- and post-processing  
techniques7. Access to a longitudinal dataset allowed us to  
test the algorithm’s performance when matching images 
from later visits to images from earlier visits (look-back  
periods), which is a close approximation to how the tool would 
work in a real-world setting. The tests were performed on the 
Android implementation using left vertical ear images. Due 
to the drop-off in cohort retention between visits (Table S1,  
Extended Data), the number of participants with data  
for each visit varies. Because of this, each look-back test has 
a specified number of participants (n), looking for a match 
within a dataset of specific size (database n) (see the Methods  
section)13.

Results of these look-back periods, along with the number 
of participants for each test, are shown in supplementary 
tables (Tables S2a-S2i, extended data)13. Figure 3 summa-
rizes the recognition rates between pairwise comparisons of all  
potential look-back intervals created by the two sub-cohorts 
(those enrolled at 6 days and followed for 6 months and those 
enrolled at 14 weeks and followed for 6 months). For example, 
the purple line at the top left of the graph provides the match  
rates for 9 versus 8 m, 9 versus 7 m, 9 m versus 6 m 
through 9 m versus 14 weeks, which was the first time point  
for that sub-cohort. 

Accepting that these data are somewhat noisy due to variations  
in sample size at each time point, these results are broadly 
consistent with our theory that growth should adversely  
impact matching accuracy, and that growth velocity, being 
maximal earlier in life, has an additional impact on match-
ing rates. Specifically, we observe a more rapid decline in  
matching accuracy in the pairwise comparisons from 4 m and 
below than 14 weeks and above. These results focus our atten-
tion on the younger age group as the key challenge in the ear  
biometric system and support our a priori assumption that  
growth of the ear is a key determinant in matching accuracy. 
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Question 3: is it possible to compensate for lost 
matching accuracy due to growth using computer 
vision enhancement techniques?
The results from our look-back period analysis made clear 
that improvements to the SEARCH algorithm were needed to 
move towards our ultimate goal of creating a robust identifi-
cation system that could be used in early infancy. Our results  
to this point suggest that matching after 6 months of age is  
feasible, but the poor performance below 6 months remains  
challenging. While this represents an important advance over 
fingerprint technology, which has struggled to identify infants  
and children aged under 5 years, the first 6 months are an  
important period in an infant’s life where much longitudinal  
care occurs. We therefore focused on this age group

In our earlier published experiments, image concatenation 
proved to be a very powerful approach to improving match-
ing accuracy7. Therefore, we conducted a series of experiments 
designed to test the effect of concatenation within the current  
matching algorithm as opposed to switching to a new match-
ing algorithm. Concatenation is a technique for combining 
data from multiple images of the same object (in this case ears 
from a given individual) to improve the signal to noise ratio  
in matching experiments. This can be done by combining two 
images of the same ear at the same time, or the right and left 
ears (with one flipped digitally to create its mirror image), 
or combinations of the above taken at adjacent visits in time.  
In our prior work, we demonstrated that concatenation signifi-
cantly improved matching rates in cross-sectional analyses. Here  
we apply this technique to the longitudinal case.

Configuration one: concatenating left and right ear 
images from the same visit. The first configuration involved  
concatenating multiple images taken during the same visit. For  
example, 9 M to 8 M involved concatenating the 9-month left 
vertical and right vertical descriptors before matching them 
against a database of 8 month left vertical and right vertical  
descriptors. In both cases, the right-hand image was flipped 
to create a pseudo left image prior to concatenating with the 
true left. In essence, mimicking a situation where an image  
is taken of each ear on each visit. The resulting identification 
rates (Tables S3a-S3i, extended data) show a marked improve-
ment over the baseline – initial look-back period analysis (see  
Figure 4(i))13. The later tests (9 month, 8 month and 7 
month) going as far back as the 5 month look-back show this  
improvement when compared with the baseline. In the baseline  
experiment, the identification rates ranged from a maximum  
of 75% to a minimum of 33.3% in that range while configuration 
one produced a range of 100% to 55.6%.

Configuration two: concatenating images across adjacent  
visits. The second configuration involved concatenating data-
base images from multiple visits. In these tests, one source image 
was matched against a database of concatenated descriptors  
(usually made up of two descriptors from different visits). The 
results (Tables S4a-S4h, extended data) show an additional  
improvement across the board as a result of concatenating  
images at different stages of growth (see Figure 4(iii))13.  
Examining results of the 9, 8 and 7 month look-back tests up to 
the 5 month + 4 month test, the identification rates ranged from 
a maximum of 100% to a minimum of 66.667% compared  
with a range of 100% to 55.556% from configuration one.

Figure 3. Recognition rates of various look-back periods. This graph shows results from various look-back tests. The color of the line 
signifies the starting point for each look-back test, while the x-axis represents the point in time being looked back to. For example, the solid 
red line represents a cohort of infants at 8 months. Each data point in this line represents the recognition rate (as a percent) for this cohort 
looking back to all data stored in a visit-specific database (specified by position on x-axis). 
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Figure 4. Improving recognition rates through different configurations of concatenation. This set of graphs shows the look-
back performance under various concatenation configurations. Graph (i) is the baseline, with no feature concatenation. The result of 
concatenating the left and right ear features are depicted in graph (ii). Graph (iii) is the result of concatenating the left ear features from 
two consecutive visit dates. Lastly, graph (iv) is a combination of the strategies in (ii) and (iii), the left and right image features from two 
consecutive visits are concatenated.

Figure 5. Transition from manual to automated area measurements. Figure 5 shows the method for manual annotations (5i), the 
automated area detection model (5ii), and how these two methods compare (5iii). Figure 6a shows manual measurements taken using 
MATLAB. Annotated features include the base line (the black line through the anchor point and the point tangent to the tragus), each of the 
radial measurements (red lines, c1-c13), and the polygon generated to calculate ear area (blue). These manual annotations were taken on 
a subset of images from our longitudinal dataset and were used to train a Faster R-CNN to automatically detect ear area. Figure 6b shows 
the input and output of the trained model, where (a) shows the raw image as input into the model, with outputs of (b) the detected region 
defined as ear area, and (c) the black and white masked area used to compute the area measurements. Finally, to justify using automated 
area measurements for the entire dataset (saving time and resources), Figure 6c shows manually measured area vs. the automated area 
measurements for the subset of 90 participants that were manually annotated. Because of the strong correlation between the two, we 
moved forward with reporting all areas as automated areas.
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Configuration three: concatenating every image from 
listed visits. Our third approach combines our methods from  
configuration 1 and 2. For each listed visit, every image (left  
vertical, left rotated, right vertical and right rotated) was  
concatenated on the database end. The four images were also 
concatenated to create the source descriptor. The results (Tables 
S5a-S5h, extended data) show a further improvement, with 
identification rates maxing out at 100% on the 9, 8 and 7 month 
look-back tests up to the 5 months + 4 months interval (see  
Figure 4(iv))13. The set of configuration strategies tested is by 
no means exhaustive, capturing a more varied set of images per 
participant during dataset creation would allow for different  
concatenation permutations to be tested. But more generally,  
these experiments show that it is possible to improve lost  
matching accuracy through software enhancements.

Discussion
Our analysis demonstrates that ear growth follows a stereotypi-
cal pattern, with maximal growth during the first few months 
of life, eventually becoming asymptotic after 6–7 months of 
age. Unsurprisingly, matching rates were generally excellent  
when considering pairwise look back periods in infants older 
than six months but fell in younger infants. This loss of accuracy 
is a consequence of cumulative growth and of growth velocity  
but can be compensated for using basic tools of computer vision. 

Based on the data presented above there is clear potential for 
ear biometrics to be a viable solution to patient identification in 
an infant population, where fingerprinting, iris scanning, and 
facial recognition historically fail. In Zambia the transition to  

using SmartCare, an EHR developed for tracking and moni-
toring pediatric ART, has been fraught with numerous patient 
identification challenges such as card readers failing, hard-
ware incompatibility, cards being lost, misplaced, or forgotten,  
and patients not being found via a database demographic 
search (using first, and surname along with dates of birth). In 
the event that a patient is unable to be identified, a new record 
is created for the patient. This results in duplicate records  
which take up time and space within the system, and often  
contain inaccurate or incomplete patient data. Additionally, when 
a patient is not found and linked to their previous record, the  
provider does not have access to the patient’s longitudinal  
medical data during the encounter.

To fully realize the benefits that would result from the use of 
an EHR, we aim to show that a gold standard biometric solu-
tion would improve on the identification rate and reduce the 
number of times a patient is unable to be linked to their medical  
record. This gold standard solution could be applicable in a 
wide range of areas such as with cohort management in clinical 
research projects and in tracking and identification of refugees  
or displaced populations. It could also be used to link mobile  
clinics to a centralized EHR.

Though we have shown that ear biometric identification has 
the potential to be a reliable means of patient identifica-
tion in an infant population, there are limitations of note. The  
first is that below 6 months, the SEARCH platform shows a 
steep drop-off in performance. Although we have been able to 
retrieve some identification accuracy lost, the pre-6 month age 

Figure 6. Matching process for look-back period tests. This figure depicts the process for matching using a simplified 7 month to 6 
month look-back test example. In this example, there are 4 participants who have both 7 month and 6 month data (n=4). To perform the 
look-back test, we search for a match between the 7 month data and images in the 6 month database. The 6 month database includes 
these four participants plus four decoys, who do not have 7 month data. In this example, three of the four participants were correctly 
matched, resulting in a 75% recognition rate. 
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range is still a challenge. We are confident that with a larger  
cohort of infants, and more data, we will be able to test  
additional improvements for this younger age-range. Testing 
and iterative improvements of SEARCH using a larger, infant  
cohort focused on these younger age groups is the first of many  
next steps we propose.

The ongoing COVID-19 pandemic brought our data col-
lection process to a premature end. This resulted in a much 
smaller dataset than initially envisioned. Though the resulting  
dataset was still large enough for us to notice the loss of per-
formance in participants before the 6-month visit, in con-
tinuation of this work, we intend to test the SEARCH tool on a  
much larger cohort. A larger number of participants will assist 
in proving the viability of the tool. Taking more images per par-
ticipant will also allow for more permutations of concatena-
tion to be tested. Thus, another next step is to test SEARCH in  
real-time on a much larger database (thousands of people as  
opposed to hundreds). 

Though funding for SEARCH has ended, we are propos-
ing continuation of this work via an NIH R01 grant that will 
allow us to improve performance of the algorithm and test  
SEARCH as part of SmartCare (Zambia’s EHR for pediatric 
ART) in real-time across clinics in Zambia’s Southern Prov-
ince. We are hopeful that SEARCH can be optimized and used  
to improve patient identification in infant populations, leading  
to improved continuity of healthcare. 

Consent
Written informed consent for publication of the participants’ 
details and/or their images was obtained from the participants’ 
next of kin. Approval for the infant cohort was provided by  
the ethical review boards at Boston University Medical Center  
and the University of Zambia. 

Data availability
Underlying data14

Zenodo: Ear Datasets – Longitudinal 10.5281/zenodo.5676103

This project contains the following underlying data:

•     All right ear images from all participants across all  
visits in the longitudinal study. The name of the image 
follows the format: “patientID – weekofvisit”, where  
the week of visit is the grouping used for lookback  
period tests in this paper.

•     All left ear images from all participants across all 
visits in the longitudinal study. The name of the  
image follows the format: “patientID – weekofvisit”, 
where the week of visit is the grouping used for lookback  
period tests in this paper.

Extended data13

Zenodo: Extended Data 10.5281/zenodo.5675940

Includes a document that contains extended data tables and  
figures related to the paper.

Reporting guidelines15

Strobe checklist for “The impact of ear growth on identifica-
tion rates using an ear biometric system in young infants”,  
10.5281/zenodo.5676380

Software availability16

Zenodo: SEARCH Software 10.5281/zenodo.5676294

This database contains the python code for the automated 
ear area detection model, and the OpenCV code for the  
Android Testbed used to simulate all lookback period analyses  
done in this paper.
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