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KÄHLER GEOMETRY OF QUIVER VARIETIES AND MACHINE LEARNING

GEORGE JEFFREYS AND SIU-CHEONG LAU

Abstract. We develop an algebro-geometric formulation for neural networks in machine
learning using the moduli space of framed quiver representations. We find natural Hermit-
ian metrics on the universal bundles over the moduli which are compatible with the GIT
quotient construction by the general linear group, and show that their Ricci curvatures
give a Kähler metric on the moduli. Moreover, we use toric moment maps to construct
activation functions, and prove the universal approximation theorem for the multi-variable
activation function constructed from the complex projective space.

Keywords: Quiver varieties; Kähler geometry; Representation theory; Moduli spaces; Toric geometry; Neural networks

1. Introduction

Machine learning by artificial neural networks has made exciting developments and
has been applied to many branches of science in recent years. Mathematically, stochastic
gradient flow over a matrix space (or called the weight space) is the central tool. The
non-convex nature of the cost function has made the problem very interesting. Current
research has focused on different types of stochastic gradient flows and finding new types
of networks, which have brought great improvements of computational efficiency.

In geometry and physics, the applications of gradient flow and Morse theory have
a long history and have brought numerous fundamental breakthroughs. For instance,
the gradient flow of the Yang-Mills functional is used to find Hermitian Yang-Mills con-
nections, whose existence in a stable holomorphic vector bundle is proved by Donald-
son [Don85] and Uhlenbeck-Yau [UY86]. The celebrated Ricci flow found by Hamilton
[Ham82], which is a crucial tool to solve the three-dimensional Poincaré conjecture, is
essentially a gradient flow [Per02, Per03]. Its Kähler analog has been an important tool in
finding Kähler-Einstein metrics on Fano manifolds [Yau96, Tia97, Don12, CSW18, CDS15a,
CDS15b, CDS15c]. In these works, GIT quotients and finite-dimensional models have pro-
vided important motivations and guidelines [Don99]. Hamiltonian Floer theory [Flo89],
which is essentially Morse theory on the loop space, was invented to solve the Arnold
conjecture [FHS95, Ono95, FO99]. Various versions of Floer theory have been crucial
ingredients in the study of mirror symmetry.

In this paper, we would like to develop a foundational algebro-geometric formulation for
neural networks in machine learning. The theory of quiver representations, which is a well-
developed branch of mathematics motivated from Lie theory and has been an important
tool in mathematical physics, will be well suited for this purpose.

A quiver representation assigns to a directed graph Q a bunch of vector spaces for the
vertices and a bunch of linear maps for the arrows. Such a construction is in common with
neural networks. However, in order to use quiver theory to formulate machine-learning
neural networks, there are two main differences between these two subjects that needs to
be addressed.

1
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(1) Compactness of moduli space. A moduli space of quiver representations [Kin94]
is defined by identifying isomorphic quiver representations using GIT quotients.
As a result, the moduli space is compact when the quiver has no oriented cycle. On
the other hand, the matrix space used in neural networks is non-compact. In ma-
chine learning, isomorphic quiver representations may correspond to physically
different input or output information and in general cannot be identified.

(2) Non-linearity. Activation functions, which are non-linear maps on the vector spaces
over the vertices, serve as a crucial ingredient to achieve machine learning of non-
linear functions. Such non-linearity jumps out of the category of quiver repre-
sentations. This is also related to the first point above. Namely, such non-linear
maps are not necessarily equivariant under the group of automorphisms of quiver
representations.

For the first point, we shall use framed quiver representations, which were first found
by Nakajima [Nak94] in the study of affine Lie algebras. A framed representation assigns
to each vertex a vector space together with a choice of ‘framing’ (for instance it is a basis in
the simplest situation). In the applications considered here, such a decoration makes sure
that isomorphic framed quiver representations correspond to the same physical state.
Note that framed quiver moduli M are also compact when Q has no oriented cycle.
Compactness is one of the main advantages of our algebro-geometric formulation, which
makes sure the convergence of a gradient flow.

In this formulation, the weight matrices are encoded as morphisms between the uni-
versal vector bundles (over the framed quiver moduli) associated to the vertices. The data
flow is encoded by sections of the universal bundles, which are sent from one to another
bundles by the morphisms associated to the arrows of Q. The cost function, and hence
its gradient flow, is defined on the framed quiver moduli M.

In particular, the critical points and the gradient flow are controlled by the topology of M
(for instance, the Morse inequalities). The topology of a framed quiver moduli is well-
understood by the work of Reineke [Rei08] when Q has no oriented cycle. M is an
iterated Grassmann bundle, and its Poincaré polynomial is a product of that of the Grass-
mannians.

For the purpose of gradient flow, one needs to choose a Kähler metric on M, and
also Hermitian metrics on the universal vector bundles. As a result, we have found
metrics that are defined by explicit beautiful formulae. These metrics are not just U~d-
equivariant so that they descend to symplectic quotients, but are also GL~d-equivariant
and hence compatible with the GIT construction of M. Moreover, they are compatible
with the iterated Grassmann structure found by Reineke. In application, such metrics
would simplify the actual computational algorithm over the quiver moduli. They are
summarized as follows.

Theorem 1.1 (Combining Theorem 3.7, 3.15,3.18). Let Q be an arbitrary quiver. Fix a vertex
i P Q0. Let ρ be the row vector whose entries are Vγe(t(γ)), where γ is any path whose head
h(γ) is i (including the trivial path), t(γ) denotes its tail, and Vγ P Hom(Cdt(γ) , Cdh(γ)) is the
representing matrix of γ. Then

(ρiρ
�
i )
�1 =

 ¸
h(γ)=i

(
Vγe(t(γ))

) (
Vγe(t(γ))

)��1

is GL~d-equivariant, and it descends to a metric on the universal bundle Vi over a certain domain
of convergence M�.
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When Q has no oriented cycle, M� = M. Moreover, the Ricci curvature of the induced metric
on

Â
iPQ0

Vi gives a Kähler metric on M.

The precise definition of M� is given in Section 3.3.
In this paper, we focus on the framed quiver moduli defined over complex numbers.

In actual applications, we can also restrict to real coefficients. Then the above formula
defines a bundle metric over MR, and the Ricci curvature gives a Riemannian metric on
MR.

Now let us address the second point. Namely, we need to introduce non-linearity in
addition to the usual theory of quiver representations. By definition, morphisms between
universal vector bundles over M are linear along fibers. They correspond to weight ma-
trices in neural networks. To introduce non-linearity, we shall treat the universal bundles
as fiber bundles and construct suitable fiber-bundle maps that play the role of activation
functions.

One of the commonly-used activation functions is

e2x

1 + e2x : R Ñ (0, 1).

We observe that this function also appears in the base of the symplectic trivialization of
the open dense toric orbit of P1 as a toric variety:

(C�, ωCP1) � ((0, 1)� S1, ωstd),

or lifted to the universal cover:

(C, π�ωCP1) � ((0, 1)�R, ωstd).

Here, ωCP1 denotes the Fubini-Study metric of CP1, that is, the standard area form of the
unit sphere; ωstd = dx^ dy is the standard symplectic form.

Similarly, another activation function
za

1 + |z|2 : C Ñ C

also arises as a symplectic trivialization: (C, ωCP1) � (tw P C : |w|   1u, ωC).
Motivated from these observations, we consider

σ(x) =

(
e2xi

1 +
°n

j=1 e2xj

)n

i=1

: Rn Ñ ∆

and

ψ(~z) =

(
zia

1 + }~z}2

)n

i=1

: Cn Ñ t~w P Cn : }~w}   1u

as multi-variable activation functions, where ∆ denotes the standard simplex with ver-
tices 0 and ε1, . . . , εn, the standard basis of Rn. They arise from symplectomorphisms
(Cn, ωCPn) � (t~w P Cn : }~w}   1u, ωCn). More generally, these come from moment maps
of toric varieties [Gui94, Abr98]. We note that ψ has an advantage of being U(n)-equivariant.

The universal approximation theorem (see for instance [Cyb89, Pet99, MM92, Pin99]) pro-
vides a theoretical foundation for the success of neural networks. In existing literature,
the theorem was proved for single-variable activation functions.

In this paper, we prove the universal approximation theorem for the above multivari-

able function σ = σRn . Note that σ is the softmax function
(

e2xi
°n

j=0 e2xj

)n

i=0
restricted to the



KÄHLER GEOMETRY OF QUIVER VARIETIES AND MACHINE LEARNING 4

hyperplane x0 = 0 and composed with the projection along x0-direction. We shall restrict
to real coefficients in this theorem.

Theorem 1.2 (same as Theorem 5.2). Let K be a compact set of Rd1 , and f : K Ñ Rd3 a
continuous function. For any ε ¡ 0, there exists d2 ¡ 0 and W1 P Mat(d2, d1), W2 P Mat(d3, d2),
b P Rd2 such that } f U

W1,W2,b � f }L2(K)   ε. Here, f U
W1,W2,b(x) = W2 � σ

Rd1 (W1 � x + b) is the
function coming from the A3 quiver.

The A3 quiver corresponds to the feed-forward network with one input layer, one
middle layer and one output layer. See Figure 1.

a b cα β

Figure 1. The A3 quiver.

The above theorem is proved by using the tropical limit of the toric manifold Pn, and a
geometric object that we call a centered polyhedral web, which is an analog of a tropical
variety in an integral affine manifold. Since we do not have integral structure in the
context here, we need to invent this new notion.

In above, we have focus on explaining non-linearity for a single vector space. We shall
globalize them as non-linear fiber-bundle morphisms for the universal bundles over M. This
can be achieved with the help of Hermitian metrics on the universal bundles, so that
the Fubini-Study metric on Pn can be globalized as a fiberwise symplectic structure on
projective bundles over M. Actually, the globalization from a single framing vector space
V to the universal fiber bundle over M works for any continuous function V Ñ V (and
in particular for a symplectomorphism from V to its image). Combining the ingredients
explained above together, we can construct a gradient flow over the framed quiver moduli
to achieve machine learning. The detail is given in Section 4.

Such an algebro-geometric formulation has several advantages. First, the gradient flow
under consideration runs in a compact manifold. This ensures the existence of absolute
extrema, convergence of the flow, and upper bound for the norm of the gradient vector
field. Second, because of compactness, the flow is constrained by topology of the manifold
due to Morse theory. See Section 4.4. Finally, the moduli space has extra symmetry coming
from framing. If we use activation functions that respect this symmetry (for instance ψ
above enjoys U(n)-equivariance), we can perform dimension reduction which improves
the effectiveness of the network. (See Proposition 4.16 and 4.17.)

In summary, from this point of view, the success of neural network is resulted from
the interplay between algebraic morphisms and (transcendental) symplectomorphisms.
Interestingly, such an interplay is also an important feature that occurs in the study of
complete integrable systems and mirror symmetry for toric manifolds and flag varieties,
see for instance [Gui94, FLTZ12, Abo06, CLL12, NNU10, HKL18].

Some related works. The relation between neural network and quiver representation
was investigated in the recent paper [AJ20]. Their work considered the quotient space
by (C�)N of pairs (W, f ), where W is a quiver representation of Q with the dimension
vector~1, and f associates each vertex a function C Ñ C (playing the role of an activation
function). Moreover, in dimension ~1 (which is a typical case for machine learning), they
invented an interesting way of encoding the data flow as a quiver representation. (In our
work, the data flow is given as sections of universal bundles over the quiver moduli.)



KÄHLER GEOMETRY OF QUIVER VARIETIES AND MACHINE LEARNING 5

The approach and the goal of this paper is rather different. We aim at formulating
machine learning as a gradient flow over a compact quiver moduli. In [AJ20], quiver
representations were used in encoding the data in the network; however, the machine
learning process was independent of the quiver moduli. Moreover, ‘double-framing’ was
used, and the corresponding moduli space is non-compact.

The map (W, f ) ÞÑ W gives an infinite-dimensional fiber bundle over the quiver moduli
M, whose fibers are the spaces of choices of activation functions. In a typical program
of machine learning, the activation functions are fixed during the optimization process.
In order to formulate the program as a gradient flow over the compact moduli M, we
found a non-trivial way by equipping intermediate vertices with additional framings and
metrics, so that we can lift f to be a well-defined fiber-bundle map over M. Note that f
is not equivariant under the group action of (C�)N (GL~d in the higher rank case). Such a
lifting is an important non-trivial step.

Furthermore, we have dealt with representations of general rank ~d, and a class of
activation functions coming from toric symplectomorphisms. Different functions (on the
same domain and target) are obtained if we deform the toric Kähler metric. To also
optimize the activation functions during the learning process (see also [GGL19]), we may
consider a gradient flow on M�K where K denotes the moduli of toric Kähler metrics in
the same class. By the celebrated works of [Don99, Sem92], K is an infinite-dimensional
negatively curved symmetric space.

Recently, there is a rising interest of applying geometric techniques to the study of
neural networks. For instance, in the works [GBH18, CYRL19], hyperbolic spaces are
applied to machine learning in graphs and achieved great performance.

Moreover, the applications of symmetry and group equivariance in neural networks
were studied and developed in [CW16, CGW19, CGKW18, CWKW19, CAW+19, dHCW20].
Overall, these works aim at capturing symmetry of the input data and designing networks
that are adapted to such symmetry. Moreover, homogeneous spaces (in place of vector
spaces) have been employed in layers of convolutional neural networks.

In comparison, our paper aims at revealing the geometric nature of neural networks
and build a connection with algebraic geometry. The resulting framed quiver moduli,
which has interesting topology and metrics, is the main geometric object of interest. Fur-
thermore, we study activation functions that respects the ‘intrinsic symmetry’ over the
quiver moduli, which can provide a more effective algorithm by dimension reduction.

In the reverse direction, there are interesting applications of machine learning in fron-
tier geometry and physics. For instance, [HY20] used machine learning to solve problems
in computing graph Laplacians, such as recognizing graph Ricci-flatness and predicting
the spectral gap. In physics, [HSTT18a, HSTT18b] used deep learning to study AdS/CFT
correspondence by discretizing the equation of motion. Since we have formulated ma-
chine learning using quiver representations, it will be interesting to find direct relations
between quiver gauge theory and these problems that can be attacked via machine learn-
ing.

Organization of this paper. In Section 2, we will take a quick review on quiver represen-
tations and their moduli spaces. In Section 3, we will construct nice Hermitian metrics
on universal bundles over the moduli. For readers who are mainly interested in machine
learning, Section 3 can be skipped for the first reading. Then we give an algebro-geometric
formulation of neural network using quiver representations in Section 4. In Section 5, we
prove the universal approximation theorem for the multivariable activation function σ.
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2. Review of framed quiver moduli

Let Q be a directed graph. Denote by Q0, Q1 the set of vertices and arrows respectively.
A quiver representation V with dimension vector ~d P Z

Q0
¥0 associates each arrow a with

a matrix V(a) of size dh(a) � dt(a) (where h(a), t(a) denote the head and tail vertices of a
respectively). The set of complex quiver representations with dimension ~d form a vector
space denoted by R~d(Q). The moduli space of quiver representations is a GIT quotient
of R~d(Q) by the group of isomorphisms GL(~d) =

±
iPQ0

GL(di, C) [Kin94], where GL(~d)
acts on R~d(Q) via

g � (V(a) : a P Q1) = (gh(a) �V(a) � g�1
t(a) : a P Q1). (2.1)

In the applications we consider in this paper, since the vector space over the input and
output vertices are equipped with fixed basis with physical meanings, we need to use
framed quiver representations [Nak94, Nak01, CB03, Rei08].

Let ~d,~n P Z
Q0
¥0. ~n will be the dimension vector for the framing, which is a linear map

e(i) : Cni Ñ Vi at each i P Q0 (where Vi = Cdi ). Since we will take a quotient by GL(~d), we
shall think of Vi as a vector space without a preferred basis, while Cni is equipped with
the standard basis.

Definition 2.1. The vector space of framed representations is given by

R~n,~d = R~d �
à
iPQ0

Hom(Cni , Cdi).

It carries a natural action of GL(~d) given by g � (V, e) = (g �V, (ge(i) : i P Q0)), where g �V is
given by Equation (2.1).

We need to remove unstable framed representations from R~n,~d in order to get a nice

quotient by GL(~d).

Theorem 2.2 ([Nak96]). (V, e) P R~n,~d is called stable if there is no proper subrepresentation U
of V which contains Im e. The set of all stable points of R~n,~d is denoted by Rs

~n,~d
. Then the quotient

M~n,~d := Rs
~n,~d

/GL(~d) is a smooth variety, which is called to be a framed quiver moduli.

Actually M~n,~d can be formulated as a GIT quotient [CB03, Rei08]. Namely, by adding
an extra vertex labeled as 8 to the quiver and ni arrows from the vertex 8 to the vertex i,
(V, e) can be identified as a usual representation of this bigger quiver with the dimension
vector (~d, 1). The above stability condition can be rewritten as slope stability, and hence
it is a GIT quotient [Kin94].

Since (d, 1) is a primitive vector, M~n,~d is a smooth fine moduli. There are universal
vector bundles Vi over M~n,~d corresponding to each vertex i, with fibers Vi|[V,e] = Vi.
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Example 2.3. For the quiver with a single vertex and no arrow, and n ¡ d,

Mn,d = Gr(n, d) = te P Hom(Cn, Cd) : e is surjectiveu/GL~d

is the (dual) Grassmannian. We have the tautological bundle V over Gr(n, d). (Note that this
tautological bundle is dual to the one on Gr(d, n) � Gr(n, d).)

The topology of M~n,~d is well-understood. Let’s make an ordering of the vertices.
Namely the vertices are labeled by t1, . . . , Nu, such that i   j implies there is no arrow
going from j to i. Such a labeling exists if Q has no oriented cycle.

Theorem 2.4 (Reineke [Rei08]). Assume Q has no oriented cycle. Consider the chain of iterated
Grassmann bundles M(N) pNÑ M(N�1) pN�1Ñ . . .

p2Ñ M(1) p1Ñ pt (where pt denotes a singleton)
defined by induction:

M(i) = GrM(i�1)

(
Cni `à

jÑi
p�i�1 . . . p�j+1(Sj), di

)
Ñ M(i�1),

where Si denotes the tautological bundle on Mi (as a Grassmann bundle over Mi�1). (The direct
sum is over each arrow j Ñ i.) Then M~n,~d � M(N), with universal bundles Vi � p�N . . . p�i+1Si

for all i P Q0.

Corollary 2.5 (Reineke [Rei08]). The Poincare polynomial of nonempty M~n,~d is given by

¹
iPQ0

(
ni +

°
jÑi dj

di

)
q2

where (
n
d

)
q
=

d¹
k=1

qn�d+k � 1
qk � 1

.

Remark 2.6. In [Rei08], the framing e goes in the other direction (from Cdi to Cni ). The above
theorem is stated in the dual way, which is the convention we take for the rest of this paper.

Example 2.7. Consider the A3-quiver which has three vertices i = 1, 2, 3 and two arrows a1 : 1 Ñ
2, a2 : 2 Ñ 3. Suppose n1 = d1, n2 = d2 + 1 and n3 = d3. Then the iterated Grassmann bundle is
M(3) Ñ M(2) Ñ M(1), where M(1) = Gr(d1, d1) = pt (and its tautological bundle is the vector
space Cd1); M(2) = Gr(d2 + 1 + d1, d2) is equipped with the tautological bundle S2 of rank d2;
M(3) = GrGr(d2+1+d1,d2)(C

d3 ` S2, d3) is a Grassmannian bundle over Gr(d2 + 1 + d1, d2) with
fibers Gr(d2 + d3, d3). The corresponding Poincare Polynomial will be(

d3¹
k=1

q2(d2+k) � 1
q2k � 1

)(
d2¹

k=1

q2(d1+1+k) � 1
q2k � 1

)
.

See Figure 2.
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1 Gr(d1, d1) = pt

2 Gr(d2 + 1 + d1, d2)

3 GrGr(d2+1+d1,d2)(C
d3 ` S2, d3)

a1

a2

Figure 2. The iterated Grassmann bundles associated to the A3 quiver.

3. Hermitian Metric over framed quiver moduli

In constructing fiber-bundle endomorphisms, it will be crucial to consider Kähler met-
rics on universal bundles. In this section, we find a beautiful formula for the canonical
metric on the universal bundle Vi over Mn,d written in homogeneous coordinates. Using
this formula, we then show that the sum of Ricci curvatures over the vertices i give a
Kähler metric on M~n,~d.

First, let us begin by recalling the typical example Gr(n, k).

3.1 The Grassmannian. Consider

Gr (n, k) = MatC
n,k �χ=1U(k) =

!
e P MatC

n,k : ee� = Ik

) /
U (k)

for n ¥ k. Here we have used the dual description which better matches the frame con-
vention used in this paper. Namely, Gr (n, k) parametrizes k-dimensional quotient vector
spaces of a fixed n-dimensional vector space as opposed to k-dimensional subspaces. The
moment map for the standard U(k)-action on MatC

n,k is ee� : MatC
n,k Ñ iuk. We have taken

the moment map level χ = 1 in the above symplectic reduction. Note that U(k) is acting
on the left, although in the above expression U(k) appears on the right.

Writing e = (b, p) where b P MatC
k,k and p P MatC

n�k,k, the moment-map equation
ee� = Ik becomes

bb� + pp� = Ik.
We shall consider the chart defined by

U = t[b, p] P Gr(n, k) : det b �= 0u � MatC
n�k,k

where the identification is given by the holomorphic coordinates

ζh = b�1 p P MatC
n�k,k .

We also have the symplectic coordinates

ζu = (b�b)
1
2 b�1 p P MatC

n�k,k .

The entries of ζu are not meromorphic functions. On the other hand, ζu has the advantage
that it satisfies the moment-map equation

b�b + ζu(ζu)� = Ik. (3.1)

(Note that the first term is b�b instead of bb�.)
The construction of ζu uses the polar decomposition

b =
(

b (b�b)�
1
2

)
(b�b)

1
2
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where
(

b (b�b)�
1
2

)
P U(k) and (b�b)

1
2 P iu(k) is positive definite. We obtain the coordi-

nates ζu by observing

[b, p] =
[
(b�b)

1
2 , ζu

]
using the left-U(k)-action, such that the first component (b�b)

1
2 is Hermitian, and is de-

termined ζu due to the moment-map equation (3.1).
The two coordinate systems are related by

ζu = (b�b)
1
2 � ζh. (3.2)

Let S be the tautological vector bundle whose fibers are the quotient vector spaces.
(This is dual to the tautological bundle of Gr(k, n) � Gr(n, k).) It can be written as the
quotient of the trivial bundle:

S =
(
tee� = Iku �Ck

) /
U (k)

where the left action of U(k) on Ck is the standard one.
We now take the standard metric on Ck, which is preserved by U(k) and hence de-

scends to a metric H of S.
Denote the standard basis of Ck by εj for j = 1, . . . , k. Under this metric, we have the

lifting of a local Hermitian frame over the chart U = tdet b �= 0u being

ui = b (b�b)�
1
2 � εi

since
[
b, p, b (b�b)�

1
2 εi

]
�
[
(b�b)

1
2 , ζu, εi

]
.

We also have the lifting of a local holomorphic frame

hi = bεi = b (b�b)
1
2 b�1ui

since [b, p, bεi] �
(

Ik, ζh, εi
)
. The two frames are related as follows.

Lemma 3.1. hi = uja
j
i where

(
aj

i

)
= (b�b)

1
2 , i is indexing the colomns and j is indexing the

rows.

Proof. Consider

(h1 . . . hk) = b (b�b)
1
2 b�1 (u1 . . . uk) = (u1 . . . uk)

(
aj

i

)
.

Thus
(

aj
i

)
= (u1 . . . uk)

�1 b (b�b)
1
2 b�1 (u1 . . . uk).

(u1 . . . uk) = b (b�b)�
1
2

since ui = b (b�b)�
1
2 εi. Result follows. �

Proposition 3.2. The metric H defined above on the tautological bundle S is represented by the

matrix
(

Ik + ζh (ζh)�)�1
in the local holomorphic frame hi and the local coordinates ζh.

Proof. Using Lemma 3.1,(
H
(
hi, hp

))
=

¸
j,l

(
H
(

aj
iuj, al

pul

))
=

¸
j,l

(
aj

i a
l
pH
(
uj, ul

))
=

¸
j

(
aj

i a
j
p

)
= b�b
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where i is indexing the rows and p is indexing the columns. By the moment map equation
(3.1) and the relation (3.2),

b�b + (b�b)
1
2 � ζh

(
ζh
)�

(b�b)
1
2 = Ik.

Then

Ik + ζh
(

ζh
)�

= (b�b)�1 .

Hence

H =
(

Ik + ζh
(

ζh
)�)�1

.

�

Example 3.3. Let’s consider the simplest example:

P1 = Gr(2, 1) = (C2 � t0u)/C� = S3/U (1) .

The tautological bundle for Gr(2, 1) is

S =
(
S3 �C

)
/U (1)

where U(1) acts on C in the standard way, and it acts on both factors on the left. (Note that this is
dual to the usual notion of the tautological bundle of Gr(1, 2) = P1, since we are now considering
the family of quotient lines of C2, which are dual to subspaces of C2.)

Let’s take the standard metric on C. We have the local Hermitian frame (over z1 � 0) u given
by

(z1, z2, z1/ |z1|) U(1)� (|z1| , ζu, 1)

where ζu is the coordinate of P1 which belongs to the open unit disc, and |z1| is determined by the
moment-map equation

|z1|2 + |z2|2 = |z1|2 + |ζu|2 = 1.

We also have the local holomorphic frame h defined by

(z1, z2, z1)
C��
(

1, ζh, 1
)

.

The unitary and holomorphic coordinates are related by ζu = |z1| � ζh = (1�|ζu|2) � ζh for ζh P C.
The frames are related by

h = |z1| � u.

The Hermitian frame u always have length one. Writing the metric in the holomorphic frame h:

|h|2 = |z1|2 = 1� |ζu|2 = 1� |z1|2
���ζh

���2
= 1�

(
1� |z1|2

���ζh
���2) ���ζh

���2 = . . .

=
1

1 +
��ζh

��2 .

This is the standard metric on OP1(1), whose curvature gives the Fubini-Study metric on P1.
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3.2 Metric on framed quiver moduli. We have seen that the standard metric on the
trivial bundle over MatC

n,k descends to give the standard metric on Gr(n, k). However, it
turns out that for the framed quiver moduli, the standard metric on the trivial bundle
over R~n,~d is not good from the GIT quotient point of view, namely it is not equivariant
under GL~d. In this section, we find a nice metric over R~n,~d which is equivariant under
GL~d.

Recall from the last section that M~n,~d = Rs
~n,~d

/GL~d. The universal bundle over the
vertex i is given by

Vi =
(

Rs
~n,~d
�Cdi

) /
GL~d

where GL~d acts diagonally on the left, the factor GL(di, C) of GL~d acts on Cdi in the
standard way, and other factors of GL~d act trivially on Cdi .

There is an equivalent description of M = M~n,~d and the universal bundle Vi in terms
of symplectic quotient. Namely, let µ : R~n,~d Ñ iu~d be the moment map. Explicitly,
µ = (µi)iPQ0 where

µi = e(i)(e(i))� �
¸

t(a)=i

V�
a Va +

¸
h(a1)=i

Va1V�
a1 .

Then define
M~n,~d = µ�1 t�cu /U~d

for the following level c.

Lemma 3.4. The slope stability condition
(

1,~0
)
P CQ̂0 corresponds to the moment-map level

c =
(�Idi

)
iPQ0

P iu~d, where Ik denotes the identity matrix of rank k.

Proof. The character taken in King’s stability [Kin94] corresponding to
(

1,~0
)

is(
1 + Σ~d

)((
1,~0
)
� 1

1 + Σ~d

(
1,~1
))

=
(

Σ~d,�1, . . . ,�1
)

where Σ~d =
°

iPQ0
di, and the first entry is over the root vertex. (Note that there is no

group action over the root vertex.) Thus we should take c to be �Idi over each vertex
i. �

The universal bundle over the vertex i is then given by

Vi =
(

µ�1  I~d
(�Cdi

) /
U~d.

Let’s review some very basic definitions about group actions.

Definition 3.5. Suppose a Lie group G acts on a vector bundle V πÑ M equivariantly, namely,
g � π = π � g for all g P G, and the action is fiberwise linear. A metric H on V is said to be
G-equivariant if

Hx (v, w) = Hg�x (g � v, g �w) .

Writing in matrix form when G = GL(n, C), the above equation is v� � Hx � w = v� �(
g� � Hg�x � g

) �w, that is,
(g�)�1 � Hx � g�1 = Hg�x. (3.3)

The following easily follows from the definition.
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Lemma 3.6. Suppose a Lie group G acts on a vector bundle V πÑ M equivariantly and fiberwise
linearly, and the action of G on M is free and proper. A Hermitian form H on V descends to the
corresponding bundle over the quotient M/G if and only if H is G-equivariant.

For framed quiver varieties, we have the framing map e(j) : Rs
~n,~d

Ñ Hom
(

Cnj , Cdj
)

for each vertex j. Using this, we cook up a GL~d-invariant Hermitian form on the trivial
bundle Cdi Ñ R~n,~d, which descends to a metric on Vi ÑM~n,~d.

Theorem 3.7. Suppose Q has no oriented cycle. Fix i P Q0. Let ρ be the row vector whose entries
are Vγe(t(γ)), where γ is any path whose head h(γ) is i (including the trivial path), t(γ) denotes
its tail, and Vγ P Hom(Cdt(γ) , Cdh(γ)) is the representing matrix of γ. This defines a map

Vγe(t(γ)) : R~n,~d Ñ Hom(Cnt(γ) , Cdi).

Take

ρρ� =
¸

h(γ)=i

(
Vγe(t(γ))

) (
Vγe(t(γ))

)�
: R~n,~d Ñ End(Cdi).

Then H = (ρρ�)�1 is GL~d-equivariant, and it descends to a metric on Vi over M~n,~d.

Proof. (ρρ�)�1 is GL~d-equivariant:

H(
gh(a)Vag�1

t(a),gje(j)
)

aPQ1,jPQ0

=

(¸
γ

(
gh(γ)Vγe(t(γ))

) (
gh(γ)Vγe(t(γ))

)�)�1

= (g�i )
�1

(¸
γ

(
Vγe(t(γ))

) (
Vγe(t(γ))

)�)�1

g�1
i

for all g P GL~d. By Lemma 3.6, it descends to the bundle Vi of the quotient.
Then we prove that the matrix-valued function H(Va,e(j))aPQ1,jPQ0

= (ρρ�)�1 defines a

positive-definite metric on the trivial bundle Cdi over the moment map level µ�1(I~d) (rather
than the whole R~n,~d). We prove by induction on the vertices that ρρ� = Idi + B where B is
a semi-positive-definite Hermitian matrix, and hence ρρ� is positive definite (and so does
(ρρ�)�1).

Since the quiver does not have oriented cycle, Q0 can be ordered such that i   j when-
ever there is an arrow i Ñ j. Let i0 be the minimal vertex.

At i0, there is no incoming arrow (other than the framing), and the moment-map equa-
tion reads

e(i0)(e(i0))� = Idi0
+

¸
t(a)=i0

V�
a Va.

°
t(a)=i0 V�

a Va is semi-positive definite: v� �V�
a Va � v = }Va � v}2 ¥ 0 for any column vector

v. Thus the statement is true for ρρ� = ei0 e�i0 .
Suppose the statement is true for all vertices less than i P Q0. At i, the moment-map

equation is

e(i)(e(i))� = Idi +
¸

t(a)=i

V�
a Va �

¸
h(a1)=i

Va1V�
a1 .
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Then

ρρ� = e(i)(e(i))� +
¸

h(a)=i

Vaρ(t(a))ρ
�
(t(a))V

�
a

= Idi +
¸

t(a)=i

V�
a Va �

¸
h(a1)=i

Va1V�
a1 +

¸
h(a1)=i

Va1(Idt(a1)
+ Bt(a1))V

�
a1

= Idi +
¸

t(a)=i

V�
a Va +

¸
h(a1)=i

Va1Bt(a1)V
�
a1

where ρ(t(a)) =
(

Vγe(t(γ))
)

h(γ)=t(a)
, which by inductive assumption can be written as

Idt(a1)
+ Bt(a1) where Bt(a1) is semi-positive definite. The matrices V�

a Va and Va1Bt(a1)V�
a1 are

semi-positive definite:

v�Va1Bt(a1)V
�
a1v = (V�

a1v)
�Bt(a1)(V

�
a1v) ¥ 0

for all v. This proves the statement for the vertex i. �

The expression (ρρ�)�1 can be understood as follows. ρ� embeds the dual V�
i into the

dual frame which is a trivial bundle equipped with the standard metric. This gives an
induced metric on V�

i , which is ρρ� written in matrix form. Taking the dual, we get the
metric Hi = (ρρ�)�1 on Vi.

By construction, the metrics on the dual V�i (still denoted as Hi) have the following nice
property. Inductively, it gives nice expressions of Hi in terms of holomorphic coordinates.

Proposition 3.8. Suppose Q has no oriented cycle. For v, w P (Vi)
�,

Hi(v, w) = H0((e(i))�(v), (e(i))�(w)) +
¸

h(a)=i

Ht(a)(a�(v), a�(w))

where H0 denotes the trivial metric on the trivial bundle, and e(i), a are denoting the holomorphic
bundle maps corresponding to the framing and arrow maps respectively.

Proof. The metric on V�i is given by the matrix ρρ�. Then the above equation follows from

ρρ� = e(i)(e(i))� +
¸

h(a)=i

Vaρ(t(a))ρ
�
(t(a))V

�
a .

�

Remark 3.9. As we have seen, the Grassmannian Gr(n, k) can be understood as the framed
moduli for the quiver which has one vertex and no arrow. The matrix e P Hom(Cn, Ck) is the
framing map. Then the moment map equation implies

ρρ� = ee� = Ik

in the above proposition. This is the standard metric on the trivial bundle Ck that we have used
in the last subsection. In particular ρρ� = (ρρ�)�1 in this case. But this is not true for other
quivers.

Remark 3.10. Note that the above becomes an infinite sum if the quiver has oriented cycles.
The GL~d-equivariance still holds. We should restrict to the open subset of Rs

n,d that (ρρ�)�1 is
convergent. In the next subsection, we will prove that the same expression defines a metric for any
given quiver.
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The GIT description will be important to the proof of Theorem 3.14.
There is a residual symmetry U~n =

±
iPQ0

U(ni) acting on M~n,~d. Actually, there is a
bigger symmetry by the non-compact group GL(Ŵ) [Rei08]. U~n is considered here since
this is the symmetry of the metric H on Vi as we shall see.

Definition 3.11. The right residual action of U~n on M is defined as[
(Va, e(j))aPQ1,jPQ0

]
� g =

[
(Va, e(j) � gj)aPQ1,jPQ0

]
for g = (gj P U(di))jPQ0 P U~n.

Since the above commutes with the left action of GL~d, the action is well-defined on M.

Lemma 3.12. There is a canonical lift of the action of U~n on M~n,~d to the universal bundle Vi, so
that the bundle map Vi ÑM~n,~d is equivariant.

Proof. Vi is the GL~d-quotient of the trivial bundle Rs
n,d �Vi. U~n acts on this by acting on

the component Vi trivially. This action commutes with the left action of GL~d on Rs
n,d �Vi,

and hence descends to act on Vi. �

Lemma 3.13. The metric defined in Theorem 3.7 are U~n-invariant.

Proof. For any g P U~n, since gjg�j = Inj for any j P Q0,

H(Va,e(j))aPQ1,jPQ0
�g =

(¸
γ

(
Vγe(t(γ)) � gt(γ)

) (
Vγe(t(γ)) � gt(γ)

)�)�1

=

(¸
γ

(
Vγe(t(γ))

) (
Vγe(t(γ))

)�)�1

= H(Va,e(j))aPQ1,jPQ0

.

�

Recall from Theorem 2.4 that M~n,~d is the total space of an iterated Grassmann bundle

M(N) pNÑ M(N�1) pN�1Ñ . . .
p2Ñ M(1) p1Ñ pt. Moreover, Vi is the pull-back of the tautological

bundle Si of the Grassmann bundle M(i) = GrM(i)(Cni `À
jÑi p�i . . . p�j+1(Sj), di)Ñ M(i�1).

The tautological bundle of the Grassmannian is equipped with a standard metric as illus-
trated in Section 3.1. Inductively, Vi is also equipped with a pull-back metric. We show
that this equals to the metric H we defined by an explicit formula.

Theorem 3.14. For all i P Q0, the metric H =
(°

h(γ)=i

(
Vγe(t(γ))

) (
Vγe(t(γ))

)�)�1
equals to

the metric on Vi constructed from the iterated Grassmann bundle.

Proof. As the proof of Theorem 3.7, we do induction on the vertices, which are totally
ordered such that i   j whenever there is an arrow i Ñ j.

First, we have the GIT fiber-bundle map M Ñ M(j), where M(j) is the framed moduli
of the quiver Q(j) (which is obtained by removing all vertices k ¡ j and the correspond-
ing arrows from Q). This map (V, e) ÞÑ (V1, e1) is simply forgetting all the irrelevant
arrow maps and frame maps that are not supported on the subquiver Q(j). Note that
the stability condition is preserved: any subrepresentation R1 � V1 can be extended to a
subrepresentation R � V by assigning the whole Vk to the additional vertices k ¡ j (and
the arrow maps just come from restriction). If Im(e1) � R1, then Im(e) � R.
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Note that here we use the GIT description instead of symplectic reduction since (V1, e1)
no longer satisfies the moment-map equation in defining M(j) (even when (V, e) satisfies
the moment-map equation for M).

We start with the minimal vertex i0. The quiver Q(i0) is simply a single vertex, and the

corresponding framed moduli is M(i0) = Gr(ni0 , di0). The universal bundle VQ(i0)

i0
is the

tautological bundle of M(i0) = Gr(ni0 , di0). From the last subsection, the standard metric

of VQ(i0)

i0
is descended from Idi0

, which is exactly (eQ(i0)(eQ(i0))�)�1 by the moment map

equation for Q(i0). The statement is trivial in this case.
Now consider the vertex i. Denote the vertex right before i by i � 1. For the quiver

Q(i�1), assume that the two metrics on the universal bundle VQ(i�1)

j agree for every

j P Q(i�1)
0 . We have the bundle map π : M(i) Ñ M(i�1), and VQ(i)

j = π�VQ(i�1)

j for

all j   i. Moreover, the metric on VQ(i)

j is pull-back from VQ(i�1)

j , which equals to(°
h(γ)=j

(
Vγe(t(γ))

) (
Vγe(t(γ))

)�)�1
by inductive assumption. The pull-back map does

not change the arrow and framing maps of Q(i�1). This proves the statement for SQ(i)

j for
j   i.

Consider VQ(i)

i , which is the tautological bundle associated to the Grassmannian bundle
over M(i�1) parametrizing quotients of

(e(i), (Va)h(a)=i) :

Cdi `
 à

h(a)=i

VQ(i�1)

t(a)

������
xPM(i�1)

Ñ Cdi .

The metric on (VQ(i)

i )� is induced by the embedding (e(i), (Va)h(a)=i)
� to

(
Cdi `

(À
h(a)=i Vt(a)

))�
,

whose metric is given by

Idi `
à

h(a)=i

 ¸
h(γ)=t(a)

(
Vγe(t(γ))

) (
Vγe(t(γ))

)�
by inductive assumption. Thus the induced metric on (VQ(i)

i )� is

(e(i), (Va)h(a)=i) �
Idi `

à
h(a)=i

 ¸
h(γ)=t(a)

(
Vγe(t(γ))

) (
Vγe(t(γ))

)� � (e(i), (Va)h(a)=i)
�

= e(i)(e(i))� +
¸

h(a)=i
h(γ)=t(a)

Va �
(

Vγe(t(γ))
) (

Vγe(t(γ))
)�
�V�

a

=
¸

h(γ)=i

(
Vγe(t(γ))

) (
Vγe(t(γ))

)�
.

Taking reciprocal gives the metric on VQ(i)

i . This proves the metric has the given expres-
sion. �

Theorem 3.15. The Ricci curvature of the metric on
Â

iPQ0
Vi given in Theorem 3.7 defines a

Kähler metric on M.
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Proof. As in Theorem 3.7, denote ρ = ρ(i) =
(

Vγe(t(γ))
)

γ:h(γ)=i
which is a matrix-valued

function on the vector space R~n,~d. At each point of R~n,~d, ρ is a linear map from

pWi :=
à

γ:h(γ)=i

Cnt(γ) (3.4)

to Vi. The Ricci curvature of the metric (ρρ�)�1 is given by iBB log det ρρ�. We have

BB log det ρρ� = B
(

tr
(
(ρρ�)�1 B (ρρ�)

))
= tr

(
B
(
(ρρ�)�1 ρ (Bρ)�

))
= tr

(
(ρρ�)�1 Bρ (Bρ)� +

(
B (ρρ�)�1

)
ρ (Bρ)�

)
= tr

(
(Bρ)� (ρρ�)�1 Bρ

)
� tr

(
(ρρ�)�1 (B (ρρ�)) (ρρ�)�1 ρ (Bρ)�

)
= tr

(
(Bρ)� (ρρ�)�1 Bρ

)
� tr

(
(ρρ�)�1 ρ (Bρ)� (ρρ�)�1 ((Bρ) ρ�)

)
= tr

(
(Bρ)� (ρρ�)�1 Bρ

)
� tr

((
Bρ �

(
ρ� (ρρ�)�

1
2

))�
(ρρ�)�1

(
Bρ �

(
ρ� (ρρ�)�

1
2

)))
where Bρ = 0 since the matrix ρ has polynomial entries in holomorphic coordinates.

We can take the singular value decomposition

ρ = U � (diag
(
λ1, . . . , λdi

)
0
) �V�

where U P U (di) , V P U
(

dim pWi

)
, and λi ¡ 0. (λi � 0 since ρ is surjective.) Then

ρρ� = U
(

diag
(

λ2
1, . . . , λ2

di

))
U�.

ρ� (ρρ�)�
1
2 = V

(
diag

(
λ1, . . . , λα(i)

)
0

)(
diag

(
λ�1

1 , . . . , λ�1
α(i)

))
U� = V

(
Iα(i)

0

)
U�.

In other words, ρ� =
(

ρ� (ρρ�)�
1
2

)
(ρρ�)

1
2 is decomposed into the rescaling ρρ� and the

orthogonal embedding
(

ρ� (ρρ�)�
1
2

)
to Imρ� � pWi.

Now take a vector v P T1,0Rα,d � TRα,d, and evaluate the above two-form by (v, v̄). The

first term tr
(
(Bvρ)� (ρρ�)�1 Bvρ

)
is the square norm of the linear map

Bvρ :
( pWi, hstd

)
Ñ
(

Vi, h
(ρρ�)�1

)
.

Namely we take the standard basis in pWi (which is orthonormal under the standard
metric hstd), map it to Vi by Bvρ, and take the sum of their square norms with respect to
the metric h

(ρρ�)�1 .
The second term

tr
((
Bvρ �

(
ρ� (ρρ�)�

1
2

))�
(ρρ�)�1

(
Bvρ �

(
ρ� (ρρ�)�

1
2

)))
is the square norm of the following component (Bvρ)1 of Bvρ. Namely, we decompose

pWi = (Im ρ�)` (Im ρ�)K

and write Bvρ = ((Bvρ)1 , (Bvρ)2) where (Bvρ)1 : Im ρ� Ñ Vi and (Bvρ)2 : (Im ρ�)K Ñ Vi.
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We have
BvBv log det ρρ� = }Bvρ}2

H �
��(Bvρ)1

��2
H =

��(Bvρ)2

��2
H ¥ 0 (3.5)

for all v P T1,0. (H stands for the metric (ρρ�)�1.) This proves that the Ricci curvature of
the metric for each i is semi-positive definite.

Now consider
HT =

¸
iPQ0

BB log det ρ(i)
(

ρ(i)
)�

.

Suppose it is zero when evaluated at (v, v̄). Then each individual term equals to zero.

This forces
(
Bvρ(i)

)
2
= 0 for all i, that is, image of

(
Bvρ(i)

)�
= Bv(ρ(i))� sits in the image

of (ρ(i))�. This exactly means v descends to the zero tangent vector in the quotient M: v
does not alter the subspaces given by (ρ(i))� : Vi Ñ Ŵi for all i. By the identification of M
as a quiver Grassmannian [Rei08], it means v does not change the position of the point
((ρ(i))� : i P Q0) in the quiver Grassmannian, and hence must be the zero tangent vector.
This proves the above expression is positive definite. �

By Equation (3.5), the metric on TM produced from the Ricci curvature of Vi is

HT(v, v) =
¸

iPQ0

}(Bvρ(i))2}2
Hi

.

We have the tautological exact sequence of vector bundles over M:

0 Ñ à
iPQ0

End(Vi)Ñ
à
aPQ1

Hom(Vta ,Vha)`
à
iPQ0

Vni
i Ñ TMÑ 0

where the second arrow is given by sending X|[φ,e]PM PÀiPQ0
End(Vi) to(

(Xha φa � φaXta)aPQ1 , (Xie(i))iPQ0

)
(which is the derivative of the action of GL~d), and TM is obtained as the quotient bundle
(of the middle one by the first one). H(v, v) can be defined for v PÀaPQ1

Hom(Vta ,Vha)`À
iPQ0

Vni
i . HTM is zero on

À
iPQ0

End(Vi): the action of GL(dj, C) does not change ρ(i)

for j �= i; for X P End(Vi), (X � ρ(i) � w)�v = w�(ρ(i))�(X� � v) = 0 for all v P Vi, w P
(Im(ρ(i))�)K, and so (BXρ(i))2 = 0.

3.3 Quiver with oriented cycles. When the quiver Q has an oriented cycle, the framed
moduli M~n,~d is no longer projective. Examples of such quivers were studied algebraically
by [Fed13, ER09] along the line of Reineke.

On the other hand, the metric given in Theorem 3.7 still makes sense for quiver with
oriented cycles, as long as we stay in the domain of convergence and prove that it is
positive-definite. Below we will prove this for any given quiver.

Denote the moment-map level by Rµ=I
n,d = tµ = 1u � R~n,~d. Let }A} = sup}v}=1 }A � v} be

the operator norm of a matrix A. We take the following open subset of Rµ=I
n,d .

Definition 3.16. Define

Rµ=I,�
~n,~d

:= t(V, e) P Rµ=I
n,d : }V(γ)}   1 for every oriented cycle γu

where V(γ) = V(ak) . . . V(a1) for γ = ak . . . a1.

R�
~n,~d

:= GL~d � Rµ=I,�
~n,~d

.
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and
M�

~n,~d
:= Rµ=I,�

~n,~d
/U~d = R�

~n,~d
/GL~d.

The above definition of M�
~n,~d

makes sense because of the following.

Lemma 3.17. Rµ=I,�
~n,~d

is invariant under U~d.

Proof. For every oriented cycle γ at i P Q0, (g �V)(γ) = giV(γ)g�1
i , and hence the condi-

tion }V(γ)}   1 is respected for g P U~d. �

The main theorem in this section is the following.

Theorem 3.18. Let Q be an arbitrary quiver. As in Theorem 3.7, for each i P Q0, set

Hi = (ρiρ
�
i )
�1 =

 ¸
h(γ)=i

(
Vγe(t(γ))

) (
Vγe(t(γ))

)��1

which is an infinite sum, whose terms are ordered by the length of the path γ. (There are just finitely
many paths under each fixed length.) This gives a convergent function Hi : R�

~n,~d
Ñ End(Cdi). Hi

is GL~d-equivariant, and it descends to a metric on Vi over M�
~n,~d

.

We break into several steps to prove the above theorem. First, consider the convergence.

Lemma 3.19. ρρ� is absolutely convergent over Rµ=I,�
~n,~d

. Hence (ρρ�)�1 is well-defined and GL~d-
equivariant on R�

~n,~d
.

Proof. For (V, e) P Rµ=I,�
~n,~d

, we consider the expression

¸
h(γ)=i

���Vγe(t(γ))
��� ���(Vγe(t(γ))

)���� ¤ ¸
h(γ)=i

���Vγe(t(γ))
���2

.

There are only finitely many paths γ1, . . . , γk with h(γl) = i which do not contain any
oriented cycle. Any other path (with h(γ) = i) can be written as concatenation of one of
these γl and some oriented cycles at some vertices. Thus

¸
h(γ)=i

���Vγe(t(γ))
���2
¤

ķ

l=1

}γle(t(γl))}2
8̧

p=0

(1� ε)p =
ķ

l=1

}γle(t(γl))}2
8̧

p=0

(1� ε)p =
ķ

l=1

}γle(t(γl))}2

ε
  8

where given V, there is a fixed ε P (0, 1) such that }Vγ}2   1� ε for all oriented cycles γ.
Hence ρρ� is absolutely convergent for every (V, e) P Rµ=I,�

~n,~d
.

Every element in R�
~n,~d

can be written as g � (V, e) for g P GL~d and (V, e) P Rµ=I,�
~n,~d

.

(ρρ�)�1|g�(V,e) = (g�i )
�1(ρρ�)�1|(V,e)g

�1
i where (ρρ�)�1|(V,e) is convergent. �

It remains to prove positive definiteness of Hi. First we consider the following specific
quiver which is simply a single oriented cycle.

Lemma 3.20. If Q is a single oriented cycle with N vertices, then for each vertex i, ρiρ
�
i is positive

definite. (In particular, when N = 1, Q consists of one vertex and a self loop.)
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Proof. By symmetry, we just need to prove for i = N. Let l = aN . . . a1, where ak is the
arrow (k� 1)Ñ k.

ρNρ�N =
Ņ

k=1

aN . . . ak+1eke�k a�k+1 . . . a�N +
¸
p¡0

lpaN . . . ak+1eke�k a�k+1 . . . a�N(l
p)�

 .

The moment map equation at the vertex k is eke�k = I � aka�k + a�k+1ak+1. Then the first
term gives

Ņ

k=1

aN . . . ak+1(I � aka�k + a�k+1ak+1)a�k+1 . . . a�N

=
Ņ

k=1

aN . . . ak+1a�k+1 . . . a�N �
Ņ

k=1

aN . . . ak+1aka�k a�k+1 . . . a�N +
Ņ

k=1

aN . . . ak+1a�k+1ak+1a�k+1 . . . a�N

=I � ll� +
Ņ

k=1

aN . . . ak+1a�k+1ak+1a�k+1 . . . a�N .

Similarly, the second term gives
Ņ

k=1

¸
p¡0

lpaN . . . ak+1(I � aka�k + a�k+1ak+1)a�k+1 . . . a�N(l
p)�

=
¸
p¡0

lp(lp)� �
¸
p¡0

lpll�(lp)� +
¸
p¡0

Ņ

k=1

lpaN . . . ak+1a�k+1ak+1a�k+1 . . . a�N(l
p)�

=ll� +
¸
p¡0

Ņ

k=1

lpaN . . . ak+1a�k+1ak+1a�k+1 . . . a�N(l
p)�.

Combining the two terms,

ρNρ�N = I +
¸
p¥0

Ņ

k=1

lpaN . . . ak+1a�k+1ak+1a�k+1 . . . a�N(l
p)�

and the second term is semi-positive-definite. Hence ρNρ�N is positive definite. �

The following is the key lemma to prove positive-definiteness for a general quiver.

Lemma 3.21. Suppose Q has the property that for every i P Q0, restricted to the intersection of
the moment map locus and RQ,�

n,d , ρQ
i (ρ

Q
i )

� = I + Bi for some semi-positive definite matrix Bi. Let

Q1 be obtained by concatenating to Q a chain x1
a11Ñ . . .

a1k�1Ñ xk where x1 and xk are certain vertices
in Q. (x1 can be equal to xk, meaning what we have added is an oriented cycle. When k = 1, we
have added a loop; a10 = a11. When k = 2, there is no intermediate vertex in the chain.) Then Q1

has the same property. Namely, for every i P Q1
0, restricted to the intersection of the moment map

locus and RQ1,�
n,d , ρQ1

i (ρQ1
i )� = I + B1i for some semi-positive-definite matrix B1i .

Proof. First, consider the case that the given vertex i P Q1
0 belongs to Q0. For the original

quiver Q, ρQ
i (ρ

Q
i )

� = I + Bi where Bi is semi-positive definite. After concatenating the
chain, the terms in ρQ

i ,

γx1Ñi
Q e(1)(e(1))�(γx1Ñi

Q )� and γxkÑi
Q e(k)(e(k))�(γxkÑi

Q )�
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where γx1Ñi
Q (γxkÑi

Q resp.) is a path from x1 (from xk resp.) to i, get affected. Namely, the
moment map equation for e(1)(e(1))� (or e(k)(e(k))�) gets an extra term (a11)

�a11 (�a1k�1(a1k�1)
�

resp.). (If k = 1, x1 = xk and a11 = a10, and the moment map equation for e(1)(e(1))� gets
both the extra terms (a10)

�a10 and �a10(a10)
�.) As a result, we have an extra negative term

� γxkÑi
Q a1k�1(a1k�1)

�(γxkÑi
Q )� (3.6)

for each path γxkÑi
Q . We shall show that these negative terms can be canceled.

We also have additional paths in Q1 heading to i, which can be divided into the follow-
ing types:

(1) γxkÑi
Q a1k�1 . . . a1le

(xl) for l = 2, . . . , k� 1. (This is an empty case when k = 1, 2.)

(2) γxkÑi
Q γnewγ

jÑx1
Q ej where γnew := a1k�1 . . . a11 and γ

jÑx1
Q is any path in Q from j P Q0

to x1. (γx1Ñx1
Q can be the trivial path. γnew = a10 when k = 1.)

(3) γxkÑi
Q

(±p
r=1 γnewγxkÑx1

Q,r

)
a1k�1 . . . a1le

(xl) for some p ¡ 0 and l = 2, . . . , k� 1.

(4) γxkÑi
Q

(±p
r=1 γnewγxkÑx1

Q,r

)
γnewγ

jÑx1
Q ej for some p ¡ 0 and j P Q0.

For (1), by the moment-map equation e(xl)(e(xl))� = I + (a1l)
�a1l � a1l�1(a1l�1)

�, we have

γxkÑi
Q a1k�1 . . . a1l � e(xl)(e(xl))� � (γxkÑi

Q a1k�1 . . . a1l)
�

=γxkÑi
Q a1k�1 . . . a1l(γ

xkÑi
Q a1k�1 . . . a1l)

� + γxkÑi
Q a1k�1 . . . a1l(a1l)

�a1l(γ
xkÑi
Q a1k�1 . . . a1l)

�

� γxkÑi
Q a1k�1 . . . a1la

1
l�1(a1l�1)

�(γxkÑi
Q a1k�1 . . . a1l)

�.

The first term above for l = k � 1 cancel with the extra negative term (3.6) for ρQ
i . The

third term (which is negative) for l P t3, . . . , k� 1u cancel with the first term of l � 1. As a
result, after combining (1) with the modified ρQ

i , the remaining negative terms are

� γxkÑi
Q a1k�1 . . . a11(γ

xkÑi
Q a1k�1 . . . a11)

� = �γxkÑi
Q γnew(γ

xkÑi
Q γnew)

�. (3.7)

(For the case k = 1, this trivially holds since γnew = a10, and the above equals to (3.6).)
Now consider (2): γxkÑi

Q γnewγ
jÑx1
Q eje�j (γ

xkÑi
Q γnewγ

jÑx1
Q )�. The moment map equation

for eje�j when j �= x1, xk are the same for Q and Q1. Summing γxkÑi
Q γnewγ

jÑx1
Q eje�j (γ

xkÑi
Q γnewγ

jÑx1
Q )�

over arbitrary γ
jÑx1
Q and j P Q0, we obtain

(γxkÑi
Q γnew) � ρQ

x1 � (γxkÑi
Q γnew)

� = (γxkÑi
Q γnew) � (I + B1) � (γxkÑi

Q γnew)
�

plus¸
γ

x1Ñx1
Q

γxkÑi
Q γnewγx1Ñx1

Q (a11)
�a11(γ

xkÑi
Q γnewγx1Ñx1

Q )��
¸

γ
xkÑx1
Q

γxkÑi
Q γnewγxkÑx1

Q a1k�1(a1k�1)
�(γxkÑi

Q γnewγxkÑx1
Q )�

which is due to the additional terms in the moment map equations for e(x1)(e(x1))� and
e(xk)(e(xk))�. (When k = 1, γx0Ñx0

Q being the trivial path at x0 is one of the possibilities.) In
above, B1 is semi-positive-definite by the assumption on Q. Then the negative terms (3.7)
cancel with the first term. After combining the paths in Q and (1) and (2), the remaining
negative terms are

�
¸

γ
xkÑx1
Q

γxkÑi
Q γnewγxkÑx1

Q a1k�1(a1k�1)
�(γxkÑi

Q γnewγxkÑx1
Q )�. (3.8)
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(If there is no path γxkÑx1
Q in Q from xk to x1, then this is zero, and we do not have (3) nor

(4). We stop here and get that ρQ1
i (ρQ1

i )� = I + B1i for a semi-positive-definite matrix B1i .)
The terms in (3) for p = 1 and l = k� 1 cancel with the above (3.8):

γxkÑi
Q

( p¹
r=1

γnewγxkÑx1
Q,r

)
a1k�1 . . . a1l � e(xl)(e(xl))� �

(
γxkÑi

Q

( p¹
r=1

γnewγxkÑx1
Q,r

)
a1k�1 . . . a1l

)�

=γxkÑi
Q

( p¹
r=1

γnewγxkÑx1
Q,r

)
a1k�1 . . . a1l

(
γxkÑi

Q

( p¹
r=1

γnewγxkÑx1
Q,r

)
a1k�1 . . . a1l

)�

+ γxkÑi
Q

( p¹
r=1

γnewγxkÑx1
Q,r

)
a1k�1 . . . a1l(a1l)

�a1l

(
γxkÑi

Q

( p¹
r=1

γnewγxkÑx1
Q,r

)
a1k�1 . . . a1l

)�

� γxkÑi
Q

( p¹
r=1

γnewγxkÑx1
Q,r

)
a1k�1 . . . a1la

1
l�1(a1l�1)

�

(
γxkÑi

Q

( p¹
r=1

γnewγxkÑx1
Q,r

)
a1k�1 . . . a1l

)�
.

Like in (1), for each p, the third term (which is negative) for l P t3, . . . , k� 1u cancel with
the first term for l � 1. (When p = 0 and l = k� 1, the third term is exactly (3.8).) Then
the remaining negative terms are (3.7) modified by inserting the loops

(±p
r=1 γnewγxkÑx1

Q,r

)
for p ¡ 0, that is, �γxkÑi

Q

(±p
r=1 γnewγxkÑx1

Q,r

)
γnew(γ

xkÑi
Q

(±p
r=1 γnewγxkÑx1

Q,r

)
γnew)�. Then

like in (2), these negative terms cancel with terms in (4). Summing up to finite p, the only
negative terms left are (3.8) modified by inserting the loops

(±p
r=1 γnewγxkÑx1

Q,r

)
:

�
¸

γ
xkÑx1
Q

γxkÑi
Q

( p¹
r=1

γnewγxkÑx1
Q,r

)
γnewγxkÑx1

Q a1k�1(a1k�1)
�

(
γxkÑi

Q

( p¹
r=1

γnewγxkÑx1
Q,r

)
γnewγxkÑx1

Q

)�

which cancel with terms in (3) for (p + 1). As p Ñ 8, }
(±p

r=1 γnewγxkÑx1
Q,r

)
} Ñ 0. This

finishes the proof that ρQ1
i (ρQ1

i )� = I + Bi, for i P Q0.
For the case that i = xj for j = 2, . . . , k � 1, the proof is similar. (We do not need to

consider this case when k = 1, 2.) The paths in Q1 heading to xj are divided into the
following types:

(1) a1j�1 . . . a1le
(xl) for l = 2, . . . , j.

(2) a1j�1 . . . a11
(±p

r=1 γxkÑx1
Q,r γnew

)
γ

jÑx1
Q ej for some p ¥ 0, j P Q0.

(3) a1j�1 . . . a11
(±p

r=1 γxkÑx1
Q,r γnew

)
γxkÑx1

Q a1k�1 . . . a1le
(xl) for some p ¥ 0, l = 2, . . . , k� 1.

The cancellation is similar and we do not repeat here. �

Similarly, adding a chain at a single vertex of Q preserves the positive-definiteness
property.

Lemma 3.22. Suppose Q as in Lemma 3.21. Let Q1 be obtained by concatenating to Q a chain

x1
a11Ñ . . .

a1k�1Ñ xk at either x1 or xk in Q0. Then for every i P Q1
0, ρQ1

i (ρQ1
i )� = I + B1i for some

semi-positive-definite matrix B1i .

Proof. The proof in this case is simpler than that of Lemma 3.21, since there is no new
oriented cycle.
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Consider the case that xk P Q0. If i belongs to the chain, then the only paths that
head to i are contained in the chain. Since no oriented cycle is involved in all such paths,
Theorem 3.7 already gives the result.

If i P Q0, then

ρQ1
i (ρQ1

i )� =
¸

jPQ0�txku

¸
γ

jÑi
Q

(γ
jÑi
Q e(j))(γ

jÑi
Q e(j))� +

¸
γ

xkÑi
Q

γxkÑi
Q � e(xk)(e(xk))� � (γxkÑi

Q )�

+
¸

γ
xkÑi
Q

k�1̧

r=1

(γxkÑi
Q ak�1 . . . ar)exr e

�
xr
� (γxkÑi

Q a1k�1 . . . a1r)
�

=ρQ
i (ρ

Q
i )

� �
¸

γ
xkÑi
Q

γxkÑi
Q (a1k�1(a1k�1)

�)(γxkÑi
Q )�

+
¸

γ
xkÑi
Q

k�1̧

r=1

(γxkÑi
Q a1k�1 . . . a1r)(I � a1r�1(a1r�1)

� + (a1r)
�a1r) � (γxkÑi

Q a1k�1 . . . a1r)
�

=ρQ
i (ρ

Q
i )

� +
¸

γ
xkÑi
Q

k�1̧

r=1

(γxkÑi
Q a1k�1 . . . a1r)(a1r)

�a1r � (γxkÑi
Q a1k�1 . . . a1r)

�.

Since ρQ
i (ρ

Q
i )

� = I + Bi for some semi-positive-definite matrix Bi, and the second term is
semi-positive-definite, ρQ1

i (ρQ1
i )� satisfies the requirement.

The case that x1 P Q0 is similar and the proof is omitted. �

Proof of Theorem 3.18. Without loss of generality, suppose Q is connected. (Otherwise
M~n,~d and Vi decompose into products coming from the connected components, and we
just need to study each component.) The case without oriented cycle is given in Theorem
3.7. Suppose Q has at least one oriented cycle. By Lemma 3.20, the statement is true for
this oriented cycle as a quiver. There must be additional arrows if this single oriented
cycle is not yet the whole Q. Then we can either add a chain as in Lemma 3.21 or 3.22,
and the statement still holds. (Both the cases of loop at a vertex or multiple edge are
covered by Lemma 3.21.) Inductively the statement holds for Q. �

Example 3.23. For the A2-quiver, ρiρ
�
i gives a metric for all i. By Lemma 3.21, this is still true

if we add an oriented cycle with arrows l1, . . . , lp. See Figure 3.

Note that the following equality still holds over R�
n,d:

ρρ� = e(i)(e(i))� +
¸

h(a)=i

Vaρ(t(a))ρ
�
(t(a))V

�
a .

Thus Proposition 3.8 still holds for quivers with oriented cycles.

Proposition 3.24. For any quiver Q and every v, w P (Vi)
�,

Hi(v, w) = H0((e(i))�(v), (e(i))�(w)) +
¸

h(a)=i

Ht(a)(a�(v), a�(w)).

Now we consider a version of Theorem 3.15 in this case. We define Ŵi by Equation
(3.4). But this time, it is an infinite direct sum of Hilbert spaces (meaning that it consists
of infinite sequence w = (wγ : h(γ) = i) with }w}2 =

°
γ }wγ}2   8).
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e(1)

a1

e2,1

e2

a2

`1

e3

`p

e2,p�1

Figure 3. A2 modified by adding an oriented cycle.

Lemma 3.25. For each (V, e) P R�
n,d, ρi(V, e) defines a bounded linear map Ŵi Ñ Vi. Its adjoint

ρi(V, e)� : Vi Ñ Ŵi has a singular-value decomposition.

Proof. For w = (wγ : h(γ) = i) P Ŵi, ρi(V, e) maps it to¸
γ:h(γ)=i

Vγe(t(γ))wγ.

Like in the proof of Lemma 3.19, consider
°

γ:h(γ)=i }Vγe(t(γ))}}wγ} ¤ }w}°γ:h(γ)=i }Vγe(t(γ))}  
+8. This also shows that if }w} = 1, then the image of w is also bounded. ρi(V, e)� has
image being finite-dimensional (since Vi is finite-dimensional), and hence is a compact
operator. Thus it has a singular-value decomposition. �

Proposition 3.26. The Ricci curvature of the metric given by (ρiρ
�
i )
�1 is semi-positive definite

on M�.

Proof. By the previous lemma, the proof of Theorem 3.15 on semi-positive definiteness
still works. Namely,

BB log det ρρ� = tr
(
(Bρ)� (ρρ�)�1 Bρ

)
� tr

((
Bρ �

(
ρ� (ρρ�)�

1
2

))�
(ρρ�)�1

(
Bρ �

(
ρ� (ρρ�)�

1
2

)))
.

Note that the two terms on the RHS are finite: tr
(
(Bρ)� (ρρ�)�1 Bρ

)
= tr (ρρ�)�1 Bρ

(
(Bρ)�

)
=°di

j=1xBρ (Bρ)� εj, (ρρ�)�1 εjyVi which is a finite sum, and similar for the second term.

ρ� =
(

ρ� (ρρ�)�
1
2

)
(ρρ�)

1
2 is decomposed into the rescaling (ρρ�)

1
2 and the orthogonal

embedding
(

ρ� (ρρ�)�
1
2

)
to Im ρ� � pWi. Then the above equals to }(Bρ)2}2

H ¥ 0 as in
Theorem 3.15. �

4. Fiberwise Nonlinearity

In the mathematical study of quivers, we mostly focused on linear representations. In
particular, the morphisms between universal vector bundles are linear along fibers. On
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the other hand, nonlinear ‘activation functions’ play a key role in machine learning. In
this section, we construct some natural non-linear fiber-bundle endomorphisms of the
universal bundles Vi over M~n,~d by using fiberwise symplectomorphisms.

For simplicity, we shall take ni = di + 1 for all i P Q0 in this section.

4.1 Activation functions arising from toric moment maps and symplectomorphisms.
In this section, we make the observation that several activation functions commonly used
in machine learning actually belong to a much bigger class, namely the T-equivariant
symplectomorphisms on open subsets of a symplectic toric variety.

First, let’s recall the basic setup for toric varieties. Let’s equip Cm with the standard
Kähler structure. We obtain a symplectic toric variety (X, ωX) as a symplectic quotient
by the real torus Tm�d. We assume X is smooth. The Tm�d-action can be specified by an
injective homomorphism Zm�d Ñ Zm, which induces a map Tm�d Ñ Tm, and Tm acts on
Cm by coordinate-wise multiplication. We assume that the quotient of Zm by the image
of Zm�d is again a lattice, which we identify as Zd. We denote by vi P Zd the images of
the standard basic vectors of Zm under the quotient map Zm Ñ Zd.

The residual action of Td on X gives a moment-map fibration over a polytope P, which
is given by the intersection of m half-spaces in Rd:

tx P Rd : `j(x) := vj � x� cj ¥ 0u
where the constants cj P Rd are determined by the level taken in the symplectic quotient.
We assume that the level is chosen such that for all j, t`j(x) = 0u X P is a (non-empty)
codimension-one boundary of the polytope P.

Consider the open toric orbit of X, which can be identified as (C�)d by fixing a basis
of Zd. Denote by ωX the Kähler form induced on the symplectic quotient. Let ωstd =°d

i=1 dxi ^ dθi be the standard symplectic form on Rd � Td (where Td denotes the real d-
torus). The symplectic form ωX|(C�)d has an explicit description by the following beautiful
formula.

Theorem 4.1 ([Gui94, Abr98]).(
1
2

(
m̧

i=1

vi log `i(x)

)
, Id

)
: (P� � Td, ωstd|P��Td)Ñ Rd � Td exp� ((C�)d, ωX|(C�)d)

is a symplectomorphism.

Taking the universal cover Rd Ñ Td and lifting the above, one obtains the following.

Corollary 4.2. The inverse of
( 1

2 (
°m

i=1 vi log `i(x)) , Id
)

gives a symplectomorphism

σC = (σ(Re(~z)), Im(~z)) : (Cd, exp� ωX)Ñ (P� �Rd, ωstd)

where exp : Cd Ñ (C�)d � X, and σ : Rd Ñ P� is the inverse of
( 1

2 (
°m

i=1 vi log `i(x)) , Id
)
.

Example 4.3. For Cd, the moment polytope P is Rd
¥0 = txi ¥ 0 : i = 1, . . . , du. v = (1, . . . , 1).

The above map is simply
(

log xi
2

)d

i=1
: Rd

¡0 Ñ Rd. The symplectomorphism ((C�)d, ωCn |C�)d)
�Ñ

(Rd
¡0 � Td, ωstd|P��Td) is

(
|zi|2, log zi�log z̄i

2i

)d

i=1
.

Example 4.4. For the complex projective space Pd, the corresponding moment polytope P (for a
chosen level) is the d-simplex given by `i ¥ 0 where `i(x) = xi for i = 1, . . . , d, and `d+1(x) =
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/2πiZ

�

(
e2x

1+e2x , y
)

Figure 4. C as a Covering Space Mapped to an Open Strip

1 � x1 � x2 � � � � � xd. The generators are vi = εi for i = 1, . . . , d (the standard basis) and
vd+1 = �°d

i=1 vi. We have

d

(
1
2

d+1̧

i=1

`i(x) log `i(x)

)
=

1
2

ḑ

i=1

log

(
xi

1�°d
j=1 xj

)
dxi

as a map P� Ñ Rd. By direct computation, the inverse of this map equals to

σ(~r) =

(
e2ri

1 +
°d

j=1 e2rj

)d

i=1

: Rd Ñ P�. (4.1)

Written in terms of the complex coordinates~z P (C�)d, the symplectomorphism ((C�)d, ωPn |(C�)d)Ñ
(P� � Td, ωstd|P��Td) is given by(

|zi|2
1 +

°d
j=1 |zj|2

,
log zi � log z̄i

2i

)d

i=1

.

Pulling back by Cd Ñ (C�)d, we have the symplectomorphism σC =

((
e2ri

1+
°d

j=1 e2rj

)d

i=1
, Id

)
:

(Cd, exp� ωX)Ñ (P� �Rd, ωstd).
When d = 1, e2r

1+e2r is a commonly-used activation function. See Figure 4. By taking a direct

product,
(

e2ri

1+e2ri

)d

i=1
: Rd Ñ [0, 1]d corresponds to (P1)d.

Remark 4.5. In above, we have taken the quotient Kähler structure from Cm. For a general toric
Kähler structure, the symplectomorphism in Theorem 4.1 is given by(

d

(
1
2

(
m̧

i=1

`i log `i(x)

)
+ h

)
, Id

)
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where h is a smooth function on the closed polytope P such that the Hessian of
( 1

2 (
°m

i=1 `i log `i(x)) + h
)

is positive definite in P� [Abr98].
In particular, for a general projective toric variety X, we can take an embedding of X to PN by

toric holomorphic sections of a very ample line bundle L, and use the induced toric Kähler structure
from PN . Then the symplectomorphism σC is given by (σ, Id) where

σ(~r) =
°d

i=1 e2(~ui ,~r)~ui°d
j=1 e2(~uj,~r)

: Rd Ñ P�,

~ui are points such that their convex hull equal to P, and (~u,~r) is the standard dot product on Rd.
See [Ful93, Section 4.2].

Now we have the symplectomorphisms φX : (P� � Td, ωstd|P��Td)
�Ñ ((C�)d, ωX|(C�)d)

and φCd : Rd
¡0 � Td �Ñ ((C�)d, ωCd |(C�)d) (Example 4.3). For the toric structure of X, let’s

arrange the order of the indices such that the first d vectors vi for i = 1, . . . , d form a basis
of Zd. (We assume m ¥ d.) Moreover, we take the first d constants cj = 0 for j = 1, . . . , d.
Then P� � Rd

¡0.
Consider the composition φCd � φ�1

X : ((C�)d, ωX|(C�)d) Ñ ((C�)d, ωCd |(C�)d). It is a
symplectomorphism onto the image φCd(P� � Td).

Proposition 4.6. φCd � φ�1
X extends to a T-equivariant symplectomorphism

ψ : (Cd, ωX|Cd)
�Ñ (π�1

Cd (P� B), ωCd |π�1
Cd (P�B))

where B =
�m

i=d+1t`i(x) = 0u, and πCd = (|zi|2)d
i=1 : Cd Ñ Rd

¥0 is the moment map for Cd.

Proof. φX is given by 2rX
i = log xi +

°m
j=d+1(v

(i)
j log `j(x)), where vj = (v(1)j , . . . , v(d)j ). φCd

is given by 2rCd

i = log xi. Hence e2rX
i = e2rCd

i
±m

j=d+1 `
v(i)j
j (e2rCd

1 , . . . , e2rCd
d ). In terms of the

complex coordinates, this gives

zX
i = zCd

i

 m¹
j=d+1

`
v(i)j
j

(
|zCd

1 |2, . . . , |zCd

d |2
)1/2

.

It is obviously well-defined over π�1
Cd (P� B). We need to show that it has inverse, which

gives the required extension of φCn � φ�1
X . Since (φCn � φ�1

X )�(ωCn) = ωX on (C�)d, this
still holds over Cd as the equality is a closed condition.

Consider the Jacobian of ~zX(~zCd
,~zCd). We shall show it is positive definite, and hence

invertible. To simplify, we write z = zCd
. Denote G = 1

2 (
°m

i=1 `i(x) log `i(x)� v � x). For
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any non-zero vector (a1, . . . , ad),¸
i,j

ajaiBzi z
X
j

=
¸
i,j

ajaiBzi

(
exp(Bxj |xp=zp z̄p G) � zj

|zj|
)

=
¸
i,j

ajai exp(Bxj |xp=zp z̄p G) � Bzi

(
zj

|zj|
)
+
¸
i,j

ajai
zj

|zj|
� exp(Bxj |xp=zp z̄p G) � B(zi z̄i)

Bzi
� B2G
BxiBxj

=
¸

i

|ai|2|zX
i | �
(

1
2|zi|

)
+
¸
i,j

|zj|�1 � |zX
j | � ajzj � ai z̄i � B2G

BxiBxj
.

Note that |zj|�1|zX
j | =

(±m
k=d+1 `

v(j)
k

k

(
|zCd

1 |2, . . . , |zCd

d |2
))1/2

which is positive. Let c =

mint|zj|�1|zX
j | : j = 1, . . . , du. Then the second term is no less than cai z̄i � B2G

BxiBxj
. Since

B2G
BxiBxj

is positive definite on P�, it is semi-positive definite on P � B. Thus this term is

non-negative. The first term is positive. Thus
°

i,j ajaiBzi z
X
j ¡ 0. Similarly

°
i,j ajaiBzi z

X
j .

Hence the Jacobian is positive-definite and hence invertible. �

Example 4.7. We continue to consider Pd. From Example 4.4, xi =
|zPd

i |2

1+
°d

j=1 |z
Pd
j |2

. π�1
Cd (P� B) =

t}~zCd}   1u. From Example 4.3, xi = |zCd

i |2. Hence the symplectomorphism (Cd, ωPd |Cd)
�Ñ

(t}~zCd}   1u, ωCn |π�1
Cd (P�B)) is

zCd

i =
zPd

ib
1 + }~zPd}2

. (4.2)

When d = 1, this gives z?
1+|z|2

which is another activation function used in machine learning. (z

is restricted in R in most algorithms.) The symplectomorphism can be easily checked in this case:
(z = zP1

for simplicity)

dzC ^ dzC =d
za

1 + |z|2 ^ d
za

1 + |z|2

=
(1 + zz̄)dz� (|z|2dz + z2dz)/2

(1 + zz̄)3/2 ^ (1 + zz̄)dz� (|z|2dz + z̄2dz)/2
(1 + zz̄)3/2 =

dz^ dz
(1 + zz̄)2

giving the Fubini-Study metric. See Figure 5.

By taking the direct product, the symplectomorphism for the case X = (P1)d is
(

zj?
1+|zj|2

)d

i=1
.

Due to the nice fact that the Fubini-Study metric on Pd is U(d)-invariant (and so does
the standard metric on Cd), we have the following (which is not true for (P1)d nor general
toric manifolds).

Lemma 4.8. For X = Pd, the symplectomorphism ψ : (Cd, ωPd |Cd)
�Ñ
(

π�1
Cd (P� B), ωCn |π�1

Cd (P�B)

)
in Proposition 4.6 is U(d)-equivariant.
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z?
1+|z|2

Figure 5. C as a Chart in P1 Mapped to an Open Disk

Proof. Using the explicit expression (4.2),

ψ(U �~zPd
) =

U �~zPdb
1 + }U �~zPd}2

=
U �~zPdb
1 + }~zPd}2

= U � ψ(~zPd
)

for all U P U(d). �

As explained in Remark 4.5, we can also equip X with another T-invariant Kähler form
(that do not come from the standard Kähler structure on Cm). The symplectomorphism
is given by(

1
2

d

(
m̧

i=1

`i(x) log `i(x) + h(x)

)
, Id

)
: (P��Td, ωstd|P��Td)Ñ Rd�Td exp� ((C�)d, ωh|(C�)d).

Thus the toric construction is rather flexible.

Example 4.9. The ‘softplus’ function x = log(1 + e2y) : R Ñ R¡0 gives an example of such
a Kähler structure on C (by identifying it with R¡0 � R with the standard symplectic struc-
ture). The inverse is y = 1

2 log(ex � 1), whose difference with 1
2 log x is h1 = 1

2 log ex�1
x =

1
2 log

(
1 +

°8
k=1

xk

(k+1)!

)
which is indeed a smooth function on R¥0. Moreover, y1 = ex

2(ex�1) ¡ 0
on R¡0.

4.2 Symplectomorphisms of fiber bundles over the moduli. In the last subsection, we
have exhibited various symplectic embeddings for Cn. Now we want to make a family
version of these maps over the framed quiver moduli M~n,~d. The last subsection can be
understood as constructing self-maps on a fiber of a vector bundle over M~n,~d.

To globalize (4.2), we consider the universal bundle Vi equipped with a Hermitian
metric Hi. (We have constructed a nice Hermitian metric on Vi in Section 3.1.) We have a
fiberwise symplectic structure ωVi induced from the Hermitian metric. Moreover, we have
the projective bundle P(Vi `OM) which is a fiberwise compactification of Vi. Then the
fiber bundle P(Vi `OM) is equipped with a fiberwise Kähler metric ωP(Vi`OM) induced
from Hi (namely, i

2BB̄ log(Hi ` H0) where H0 is the trivial metric on OM).

Proposition 4.10. There is a fiberwise symplectomorphism

ψVi : (Vi, ωP(Vi`OM)|Vi)
�Ñ
(
tv P Vi : Hi(v, v)   1u, ωVi |tHi(v,v) 1u

)
.

Proof. For each p PM, we have computed the symplectomorphism

(Vi|p, ωP(Vi`OM)|Vi|p)
�Ñ
(
tv P Vi|p : Hi(v, v)   1u, ωVi |tHi(v,v) 1u

)
in (4.2), with the metric given by Hi|p here. Thus

ψVi(v) =
va

1 + Hi(v, v)
(4.3)



KÄHLER GEOMETRY OF QUIVER VARIETIES AND MACHINE LEARNING 29

gives a fiberwise symplectomorphism whose image is tHi(v, v)   1u. �

Recall that the universal bundle Vi Ñ M admits an action of U~n coming from framing
(Definition 3.11). One advantage of ψVi is that it is equivariant under this action.

Lemma 4.11. For g P U~n,
ψVi � g = g � ψVi

if we used the metric Hi given in Theorem 3.7.

Proof. This follows from (4.3) and Hi(g � v, g � v) = Hi(v, v) by Lemma 3.13. �

Remark 4.12. Equation (4.3) has an alternative derivation using the framing. Namely, we have
the surjective morphism ρ : Ŵi Ñ Vi (see Equation (3.4)), whose dual give a fiberwise-linear

embedding ρ� : Vi
Hi� V�i Ñ Ŵi

�
. (The underline means the trivial bundle over M associated with

the vector space.) Then P(Ŵi
� `O) (with the standard metric) induces a fiberwise Kähler form

on V�i , and we have a fiberwise symplectic embedding (Vi, ω
P(Ŵi

�

`O)
) ãÑ (Vi, ωVi). This gives

ρρ� � Hi � va
1 + H0(ρ� � Hi � v, ρ� � Hi � v)

=
ρρ� � Hi � va

1 + v� � H�
i � ρρ� � Hi � v

.

Now if we use the metric Hi = (ρρ�)�1 given by Theorem 3.7, then the above equals to the
expression in (4.3).

We also have a more flexible construction using the framing, which globalize any given
non-linear continuous map σC : Cni Ñ Cni . Namely, σC can be regarded as a fiberwise
non-linear self-map on the trivial bundle Cni Ñ Cni (still denoted by σC). Then we take
the composition

Vi
Hi� V�i

(e(i))�Ñ Cni σCÑ Cni e(i)Ñ Vi

and denote it by σVi . See Figure 6.

Cn Cn�

Vi V�i

e(i)

σC
�

�

(e(i))�

Figure 6. Using the framing to globalize an activation function σC : Cn Ñ
Cn over M.

It is easy to get the following explicit expression in terms of σC.

Lemma 4.13. The above fiber-bundle map σVi : Vi Ñ Vi equals to

σVi(v) =
ni̧

k=1

(σC)k

(
Hi(e

(i)
1 , v), . . . , Hi(e

(i)
ni , v)

)
� e(i)k (4.4)

where we write σC = ((σC)1, . . . , (σC)ni) and e(i) = (e(i)1 . . . e(i)ni ).

For instance, we can take σ to be the one coming from the symplectomorphism in
Corollary 4.2. We shall prove the universal approximation theorem for such σ in Section
5.
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4.3 A machine learning program using the framed quiver moduli. Let Q be a digraph
and denote by C � Q its path algebra over C. Let ~d P Z

Q0
¥0 be a dimension vector. We

take the framing dimension vector to be ~n = ~d +~1, where~1i := 1 for all i P Q0. The one
additional framing vector is used for translation (called a ‘bias’ vector).

We fix a collection of input vertices and a collection of output vertices Iin, Iout � Q0,
and

γ P Iout � (C �Q) � Iin =
à

iPIin,jPIout

j � (C �Q) � i.

(The trivial path at a vertex i is again denoted by i.)

4.3.1 Machine learning using a flat space. Let’s first formulate a typical machine learning
program in the quiver setup. The following flat space

U �
¹
aPQ1

Hom(Vt(a), Vh(a))�
¹
iPQ0

Vi

is used frequently in the subject.

Lemma 4.14. The open subset

U = t[V, e] PM~d+~1,~d : (e(i)1 , . . . , e(i)di
) = Idi for all i P Q0u �M

gives a coordinate chart of M. (Idi denotes the identity matrix of rank di.)

Proof. First, such (V, e) are stable: Im(e) is the whole V. Second, for distinct (V, e), (V1, e1)
satisfying the above condition, [V, e] �= [V1, e1]: since they are stable, their orbits are
closed. Suppose g � (V, e) = (V1, e1) for some g P GL~d. Then gi � e(i) = (e1)(i). But

since (e(i)1 , . . . , e(i)di
) = Idi = ((e1)(i)1 , . . . , (e1)(i)di

), this forces g = Id and so (V, e) = (V1, e1),
contradicting that they are distinct.

Then we have the chart map U �Ñ±
aPQ1

Hom(Vt(a), Vh(a))�
±

iPQ0
Vi defined by

Wa := (e(i)1 , . . . , e(i)di
)�1V(a), bi := (e(i)1 , . . . , e(i)di

)�1e(i)di+1.

�

Now we fix a path γ from the input vertices Iin to the output vertices Iout. For each
element [V, e] P U, by composing the affine linear maps Va(�) + e(t(a))

dt(a)+1 attached to arrows
a in the path γ, together with some non-linear functions σi : Vi Ñ Vi that are called
‘activation functions’, one obtains a non-linear function

f U
[V,e] :

à
iPIin

Cdi
(e(i)1 ,...,e(i)di

)

� à
iPIin

Vi Ñ
à

jPIout

Vj

(e(j)
1 ,...,e(j)

di
)

� à
jPIout

Cdj

which is used to approximate a non-explicitly given function f . A stochastic gradient
flow of the error function on U is employed to find the optimal point in U.

Let’s write down the symmetry in Lemma 4.11 in the chart U.

Lemma 4.15. The chart U is invariant under the right action by¹
iPQ0

U(di) �
¹
iPQ0

U(di + 1) = U~n

where U(di) � U(di + 1) is embedded as
(

U(di) 0
0 1

)
.
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Consider the trivialization Vi|U �
(±

aPQ1
Hom(Vt(a), Vh(a))�

±
jPQ0

Vj

)
� Vi. The right

action of g P U(di) on Vi|U is given by

(Wa, bj, v) aPQ1
jPQ0,bjPVj

vPVi

� g = (g�1 �Wa, g�1 � bj, g�1v) aPQ1
jPQ0,bjPVj

vPVi

where g�1 �Wa equals to g�1Wa if h(a) = i, Wag if t(a) = i, and Wa otherwise; g�1 � bj equals to
g�1bj if j = i, and bj if j �= i.

Proof. U consists of points [V, e] where (e(j)
1 , . . . , e(j)

di
) are invertible for all j P Q0. This

property is invariant under the action of
±

iPQ0
U(di). Hence U is an invariant subset.

(Wa, bj, v) aPQ1
jPQ0,bjPVj

vPVi

corresponds to the point [W, e, v] P Vi = (Rs
n,d � Vi)/GL~d. where

e(j) = (Idj bj).

[W, e, v] � g = [W, e � g, v] = [W, (g bj)jPQ1 , v]

=[g�1 �W, (Idj g�1 � bj)jPQ1 , g�1 � v]

where the left action by g�1 (as an element in GL~d) is as specified by definition. �

Now we prove an important symmetric property that the activation function (4.2) en-
joys, which can be used to reduce the dimensions.

Proposition 4.16. Suppose the activation functions σi : Vi Ñ Vi are taken to be the one given
in Equation (4.2). Then f U is invariant under

±
jRIinYIout

U(dj) � U~n. (See the embedding in
Lemma 4.15.)

Proof. The terms of f U are of the form σh(ak)

(
Wak . . .

(
σh(a1)

(
Wa1(v) + bh(a1)

)
. . .
)
+ bh(ak)

)
.

By the above lemma, for g P U(dh(ai)) where h(ai) R Iin Y Iout, the action of g results in
σh(ai) ÞÑ g � σh(ai)g

�1 in the above expression and does not affect any other part. By Lemma
4.8, σi is U(di)-equivariant, and hence f U remains invariant. �

By the above proposition, we can descend f U to the orbit space U/
±

jRIinYIout
U(dj) to

reduce the dimensions. However, the quotient space will be highly singular. Instead, we
can realize the dimension reduction by restricting f U to a submanifold U1 of U whose
orbit occupies the whole U, and do stochastic gradient flow on U1 instead of U. The
following gives one simple possibility.

Proposition 4.17. Consider a subset ta1, . . . , apu of arrows whose heads and tails do not belong
to Iin Y Iout, and for any two distinct arrows a1, a2 in the subset, t(a1) �= h(a2). Then the vector
subspace

U1 := t(Wa, bj) aPQ1
jPQ0,bjPVj

P U : Wai is of the form
(

D W1
ai

) @i = 1, . . . , pu

has its orbit being the whole U, that is,
(±

jRIinYIout
U(dj)

)
�U1 = U. In above, D is a diagonal

matrix (of the maximum possible size) and W1
ai

is any matrix occupying the rest.

Proof. This follows from the singular-value decomposition of a matrix W as A � (D W1) � B
where A and B are unitary matrices of appropriate sizes. �
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4.3.2 Machine learning using the quiver moduli. The quiver moduli M = M~n,~d gives a
compactification of U. Compactness is important for the formulation of Morse theory
and convergence of a gradient flow. We would like to use the whole M in application of
machine learning. Non-trivial metrics over the moduli will play a crucial role.

First, consider the situation before adding in activation functions. Each arrow a P Q1 is
associated with a vector-bundle morphism aM : Vt(a) Ñ Vh(a). For each path ak . . . a1, we
take the map

(ak)M
(

. . .
(
(a2)M

(
(a1)M(v) + e(h(a1))

dh(a1)
+1

)
+ e(h(a2))

dh(a2)
+1

)
. . .
)
+ e(h(ak))

dh(ak)
+1 (4.5)

which is fiberwise affine linear. Thus a path γ gives an affine bundle morphism

γM : VIin :=
à
iPIin

Vi Ñ VIout :=
à

jPIout

Vj.

Then we have

Lγ

((
s(i)k

)
iPIin

kPt1,...,diu

)
=

(
Hj

(
e(j)

p ,
¸
iPIin

γM �
di̧

k=1

s(i)k e(i)k

))
jPIout,

pPt1,...,dju

:
à
iPIin

Cdi Ñ à
jPIout

Cdj .

(4.6)
Suppose a continuous function f = K Ñ À

jPIout
Cdj is given, where K is a compact

subset of
À

iPIin
Cdi . Then the fiberwise integral

E :=
»

K

�� f � Lγ

��2
VIout

dµK (4.7)

gives a smooth function on M.

Remark 4.18. Alternatively, we can define the fiber-bundle morphism

fM :
¸

jPIout

d j̧

l=1

f (j)
l � e(j)

l : K Ñ VIout

and take »
K

����� fM

((
s(i)k

)
iPIin

kPt1,...,diu

)
�

¸
iPIin

γM �
di̧

k=1

s(i)k e(i)k

�����
2

VIout

dµK.

However, with such a definition, we need to worry that (e(j)
1 , . . . , e(j)

dj
) for some output j degenerates

(as a frame), in which case approximating f and approximating fM are different.

We have a gradient flow r : R ÑM which can be used to minimize E :

dr
dt

= �(∇E)(r(t))

where ∇E = (dE)#g where (�)#
g : T�M

g� TM is the identification by a metric g on M.
((∇E)p = gpqBqE in local coordinates.) g can be taken to be the induced metric from
the trivial metric on the vector space R~n,~d via symplectic reduction. Alternatively, g can
be taken to be the metric given by the Ricci curvature in Theorem 3.15 (when Q has no
oriented cycle), which has a better expression in homogeneous coordinates.

Note that (Lγ)|[V,e] is affine linear on
À

iPIin
Cdi for every [V, e] PM, which is not good

enough for the purpose of approximating f . We introduce fiberwise non-linearity below.
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Definition 4.19. Let A be a finite set whose every element is associated with two vertices (head h
and tail t) in Q0. Elements in A are called activation arrows. (These are not arrows in Q1.) The
semiring generated by Q1 and A, denoted by Γ(Q, A), has the underlying vector space spanned
by the independent set

²8
p=0 Sp where Sp is defined inductively as follows.

(1) S0 consists of all paths of Q.
(2) Suppose Sp has been defined, and each element in Sp has a head h and a tail t. Sp+1 consists

of γ � α � γ̃, where α P A, γ is any path of Q with h(α) = t(γ), and γ̃ P t(α) � (C � Sp).
(C � Sp denotes the vector space generated by Sp; t(α) � (C � Sp) is the subspace generated
by elements of Sp with head being t(α).) The above element has the head h(γ) and the tail
t(γ̃).

The above vector space Γ(Q, A) has an obvious product by concatenation. (s1 � s2 = 0 if h(s2) �=
t(s1).) Note that for α P A, (s1 + cs2) � α = s1 � α + cs2 � α, but α � (s1 + cs2) �= α � s1 + cα � s2.

Now, suppose each element α P A is associated with a fiber-bundle morphism

αM : Vt(α) Ñ Vh(α).

Then by composing the corresponding affine linear morphisms (as in Equation (4.5)) and
αM, an element γ̃ P Γ(Q, A) induces a fiber-bundle morphism

γ̃M : Vt(γ̃) Ñ Vh(γ̃).

In particular, if we fix γ̃ P Iout � Γ(Q, A) � Iin, then we define

fγ̃ :
à
iPIin

Cdi Ñ à
jPIout

Cdj

like in the definition of Lγ in (4.6) by replacing γM by γ̃M. Then a stochastic gradient
flow for the corresponding error function (by replacing Lγ by fγ̃ in (4.7)) can be carried
out.

For now, we set A to be Q0 as a set, and each element oi has the head and tail being
i P Q0. We can associate oi with the fiber-bundle morphism ψVi given in (4.3), or σVi in
(4.4). Then we obtain fγ̃ above which is non-linear along fibers for the purpose of machine
learning.

If we associate oi with ψVi given in (4.3), then the symmetry of
±

jRIinYIout
U(dj) � U~n is

respected, by Lemma 4.11. The proof is similar to that for Proposition 4.16 and is omitted
here.

Proposition 4.20. Suppose oi is assigned as ψVi given in (4.3), and Hi is taken to be the metric in
Theorem 3.7. Then fγ̃ is invariant under

±
jRIinYIout

U(dj) � U~n. (See the embedding in Lemma
4.15.)

Remark 4.21. Since we are taking affine linear morphisms (ai)M(v) + e(h(ai))
dh(ai)

+1 for the arrows

which involves the term e(h(ai))
dh(ai)

+1, only the symmetry U(dj) rather than U(dj + 1) = U(nj) is

respected. If the bias vector e(h(ai))
dh(ai)

+1 is not used in the program, then fγ̃ will be invariant under

the bigger group
±

jRIinYIout
U(nj).

4.3.3 A simple example. Recall the quiver in Example 2.7. Let’s take n1 = d1, n2 = d2 +
1, n3 = d3 instead of ni = di + 1@i, since we do not need to use bias vectors at the input
and output vertices. The path γ is simply a2a1, and γ̃ = a2 � o1 � a1.

We have the universal bundles V1 � Cd1 , V2 and V3. We have ρ(1) = e(1), ρ(2) =
(e(2) a1e(1)), ρ(3) = (e(3) a2e(2) a2a1e(1)). In terms of homogeneous coordinates (namely
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the coordinates (e(1), e(2), e(3), a1, a2) on the vector space R~n,~d, where each entry is a matrix
of suitable size), the metrics given in Theorem 3.7 are

H1 =
(

e(1)(e(1))�
)�1

, H2 =
(

e(2)(e(2))� + a1e(1)(e(1))�a�1
)�1

,

H3 =
(

e(3)(e(3))� + a2e(2)(e(2))�a�2 + a2a1e(1)(e(1))�a�1 a�2
)�1

.

on Vi, i = 1, 2, 3 respectively. The activation functions we constructed in the previous
subsection are

ψi(v) =
v?

1 + v�Hiv
and σi(v) =

di+1̧

k=1

(σC)k

(
(e(i)1 )�Hiv, . . . , (e(i)di+1)

�Hiv
)
� e(i)k ,

where we can take (σC)k(~z) = e2Re(zk)

1+
°di+1

j=1 e2Re(zj)
+ i Im(zk) for instance. Both have the GL-

equivariance property ψi(g � v) = g � ψi(v) and σi(g � v) = g � σi(v).
The function (over M) cooked up from this quiver is fγ̃ : Cd1 Ñ Cd3 ,

fγ̃(s1, . . . , sd1) =

(
H3

(
e(3)p , a2 � σ2

(
a1 �

d1̧

k=1

ske(1)k + e(2)d2+1

)))d3

p=1

if we use σ2 as the activation function, or the same expression with σ2 replaced by ψ2.
Then we run a stochastic gradient flow on M (or on the vector space R~n,~d upstairs) to
minimize the distance of fγ̃ and a function f coming from reality.

To run the gradient flow, we need to take a metric on M. Recall that we have the metric
on the tangent bundle of M coming from the Ricci curvatures of Hi:

HT(v, w) =
3̧

i=1

tr
((

Bvρ(i)
)�

� Hi � Bwρ(i)
)
�

3̧

i=1

tr
((

Bvρ(i) � (ρ(i))� � H
1
2
i

)�
� Hi �

(
Bwρ(i) � (ρ(i))� � H

1
2
i

))
.

(4.8)
Consider the open subset of the vector space R~n,~d in which (e(i)1 , . . . , e(i)di

) is invertible.
(This is the preimage of the chart U � M.) A tangent vector v of M is lifted as
(δa1, δa2, δe(2)d2+1) (and all other components are set to be zero). Since ρ(1) = e(1), ρ(2) =

(e(2), a1e(1)), ρ(3) = (e(3), a2e(2), a2a1e(1)), we have Bvρ(1) = 0, Bvρ(2) =
(
(0 δe(2)d2+1), (δa1)e(1)

)
,

and
Bvρ(3) =

(
0, (δa2)e(2) + (0 a2δe(2)d2+1), (δa2)a1e(1) + a2(δa1)e(1)

)
.

Then the above metric HT can be computed explicitly in terms of the homogeneous coor-
dinates.

Remark 4.22. In above, if we use trivial metrics over the vector space R~n,~d instead of Hi and
HT, the expressions will get simpler; however they will only be U~d-equivariant rather than GL~d-
equivariant. Then we need to restrict to the moment-map level µ�1(I) � R~n,~d and its tangent
bundle, in order to stay in the same moduli M downstairs. This would increase the computational
complexity.

We can also write in inhomogeneous coordinates (W1, W2, b) in the chart U � M,
where (e(i)1 , . . . , e(i)di

) = Idi for all i = 1, 2, 3. W1, W2 are the matrices of the arrows a1, a2

and e(2)d2+1 = b is the bias vector. Then H1 = I, H2 = (I + bb� + W1W�
1 )

�1, and H3 =
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(I + W2W�
2 + W2bb�W�

2 + W2W1W�
1 W�

2 )
�1. Then we can run the gradient flow in U �M

(which has lower dimensions than R~n,~d).
Note that when W1, W2, b are close to zero, Hi are close to the identity matrix, and σi

is close to σC. Moreover, the second term of (4.8) is close to zero, and the first term is
close to the standard metric. Thus when W1, W2, b are small, the function fγ̃ is close to the
commonly used one

f U
W1,W2,b(v) = W2 � (σC(W1 � v + b)), (4.9)

and the gradient flow is close to the usual one on the flat space U (see Section 4.3.1). The
additional terms can be understood as modifications to ensure the flow converges in M.

4.4 A discussion on Morse inequalities. By the work of Reineke [Rei08], the framed
quiver moduli M is a tower of Grassmannians (Theorem 2.4), and hence its Poincaré
polynomial is a product of that of Grassmannians (Corollary 2.5). Such topological in-
variants give important information about a gradient flow on M.

In particular the Morse inequalities for a Morse function E on a compact manifold M
state as follows. Let cj(E) be the number of critical points of index j for E . Then for every
j,

cj(E) ¥ hj(M)

where hj(M) denotes the cohomological numbers (which are coefficients of the Poincaré
polynomial).

Given a gradient flow, which is a path γ : R ÑM satisfying the gradient flow equation,
limtÑ�8 γ(t) are critical points. Moreover, critical points carry important effect to the rate
of the gradient flow. Namely, when the flow γ gets close to a critical point with index
being 1, . . . , dimM� 1, }γ1(t)} = }grad E(γ(t))} becomes small. In other words the flow
slows down when it passes through a neighborhood of a critical point. Such a slowing-
down effect of saddle points was studied in machine learning in [PDGB14, DPG+14].

The cohomological numbers hj(M) give the minimum number of critical points and
hence are important invariants of a neural network (which simply means a directed graph
Q together with a dimension vector ~d here). Over C, hj(M) = 0 when j is odd. Thus the
Euler characteristic χQ,~d equals to

°
j hj(M), which is the minimal total number of critical

points. It is computed by simply setting q = 1 in Corollary 2.5. Another important
invariant is dimM (that is, the number of training parameters of the network), which is
simply

DQ,~d =
¸

iPQ0

di

ni +
¸
jÑi
j �=i

dj


using the notation of Corollary 2.5. (We take ni = di + 1 in this section.) These are
illustrated in the two practical examples below.

Example 4.23. Consider Q being the Ak+2 quiver, which has k+ 2 vertices labeled by 0, . . . , k+ 1,
and there is exactly one arrow from i to i + 1 for i = 0, . . . , k, and no arrow otherwise. Set
d�1 := 0. Then the minimal total number of critical points is

χQ,~d =
k¹

i=�1

(
di + di+1 + 1

di+1

)
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and

DQ,~d =
ķ

i=�1

di+1(di + 1).

Example 4.24. Now consider the following quiver A1
k+2, which has vertices labeled by 0, . . . , k +

1, and there is one arrow from vertex i to vertex j for every i   j. Set d�1 := 0. Then

χQ,~d =
k¹

i=�1

(°i+1
j=0 dj + 1

di+1

)
and

DQ,~d =
ķ

i=�1

di+1

 i̧

j=0

dj + 1

 .

Figure 7 shows the graph of log χQ,~d versus DQ,~d for the two examples, where we set
k = 3, d1 = 600, d5 = 10, and d2 = d3 = d4.

Note that the quiver denoted by A1
k+2 in Example 4.24 is a simple analog of the network

known as ResNet, which adds arrows to the Ak+2-quiver that skip the middle vertices to
get around with the ‘gradient-vanishing problem’. Namely, in the Ak+2 case, the deriva-
tives of E with respect to matrix entries for arrows in the early stage are typically very
small by chain rule, which is not good for the flow rate. Arrows that skip the middle
vertices are added, so that there are short paths which involve the early arrows.

From Figure 7, we see that in the same dimensions, the minimal number of critical
points in M is smaller for A1

5 than that for A5. (We have numerically verified this for
general k.) This gives a supporting evidence that χQ,~d is an important invariant in appli-
cations to machine learning.

A5

A5
′

200000 400000 600000 800000

500

1000

1500

2000

Figure 7. A plot of log χQ,~d (y-axis) versus DQ,~d (x-axis) for A5 and A1
5.

4.5 A remark on Abelianization. In many basic neural networks, each vertex of Q is
associated with a vector space of only dimension one. When ~d = ~1, that is, all entries of
the dimension vector equal to one, M~n,~1 is a quotient by the Abelian group (C�)Σ~d, and
hence a toric variety. Indeed, by Theorem 2.4, M~n,~1 is a tower of projective spaces Pk for
a sequence of k.
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Given Q and ~d, we can always construct a bigger quiver QAb,~das follows. For each
vertex i P Q0, we make di copies indexed by (i, p) for p = 1, . . . , di. For each arrow of
Q from i to j, we make a corresponding arrow for QAb,~d from (i, p) to (j, q) for every
p = 1, . . . , di and q = 1, . . . , dj. See Figure 8 for an example.

2 4 1

Figure 8. An example of Abelianization. The LHS shows a quiver Q to-
gether with the dimension vector ~d. The RHS shows QAb,~d.

Given a dimension vector~n P Q0, define~nAb P QAb,~d
0 by~nAb

(i,p) = ~ni for all p. The relation

between MQ
~n,~d

and the toric variety MQAb,~d

~nAb,~1
is known as Abelianization and is well-studied

in [Mar00]. The basic example is Gr(n, d) (which is the framed moduli for the quiver with
a single vertex), whose Abelianization is (Pn)d (the disconnected quiver with d vertices
and no arrow).

Namely, the moduli spaces MQ
~n,~d

and MQAb,~d

~nAb,~1
are GIT quotients of the same vector

space RQ
~n,~d

= RQAb,~d

~nAb,~1
by GL~d and (C�)Σ~d respectively. More precisely, we have the fiber

bundle µ�1
U~d
(tIu)/T Ñ MQ

~n,~d
with fibers being a product of complete flags U~d/TΣ~d, and

the inclusion µ�1
U~d
(tIu)/T � MQAb,~d

~nAb,~1
. The universal bundles Vi over MQ

~n,~d
is descended

from the direct sum of universal line bundles
Àdi

p=1 V(i,p) over MQAb,~d

~nAb,~1
(restricted to the

above subset). The cohomology of MQ
~n,~d

is generated by the Chern classes ck(Vi), which
can be written as the k-th elementary symmetric polynomials in c1(V(i,p)) for p = 1, . . . , di.

On the other side, the cohomology of MQAb,~d

~nAb,~1
is generated by c1(V(i,p)).

Note that the functions f Q
γ̃ and EQ over MQ

~n,~d
constructed in Section 4.3.2 cannot be

lifted to MQAb,~d

~nAb,~1
. The reason is that, f Q

γ̃ and EQ are GL~d-equivariant functions on RQ,s
n,d , the

subset of stable representations, rather than the whole RQ
n,d. The definition of f Q

γ̃ involves
the metrics on the universal bundles Vi, which take the expression (ρiρ

�
i )
�1, and it is only

defined over RQ,s
n,d where ρi is surjective. Rather, we have the functions f QAb,~d

γ̃ and EQAb,~d

on MQAb,~d

~nAb,~1
, which uses the metrics (ρi,pρ�i,p)

�1 on the line bundles Vi,p.
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Previously we have taken ~n = ~d +~1 for MQ
n,d. After Abelianization, the dimension

vectors ~nAb and~1 for MQAb,~d

~nAb,~1
no longer satisfy such equality. This is actually not a prob-

lem, since the function f QAb,~d

γ̃ defined on MQAb,~d

~2,~1
can be lifted to MQAb,~d

~nAb,~1
. Alternatively,

we can set the k-th framing vectors to be zero for all k = 2, . . . , di + 1 and for all vertices

(i, p) P QAb,~d
0 . This gives a subvariety of MQAb,~d

~nAb,~1
which is isomorphic to MQAb,~d

~2,~1
.

5. Universal Approximation Theorem

In Section 4.1, we have introduced the multi-variable functions σ coming from moment
maps of toric varieties. For instance, σk(x) = e2xk

1+
°d

j=1 e2xj
for X = Pd. In this section, we will

give a theoretical basis for using this as an activation function, by proving the universal
approximation theorem for this function.

The universal approximation theorem ensures that in theory, any given function on a
compact set can be approximated (as close as you want) by the functions produced from
directed graphs (denoted by f U

[V,e] in Section 4.3.1). There are several different versions of
this theorem [Cyb89, LLPS93, LJ18, LPW+17]. To the authors’ knowledge, the past works
have focused on proving the theorem for single-variable activation functions.

In the work of Cybenko in proving the theorem below, rescaling on the domain of the
activation function plays a key role. The rescaling technique will also be very useful in
our situation.

Theorem 5.1 ([Cyb89]). Let φ : R Ñ R be any continuous function with limxÑ8 φ(x) = 1 and
limxÑ�8 φ(x) = 0. Let K be a compact set in Rd. Then the collection of functions G : K Ñ R of
the form

G(x) =
Ņ

j=1

αjφ(yT
j x + θj)

where N P Z¡0,yj P Rd, and θj, αj P R, are dense in the space of continuous functions C(K).

The above function G can be understood as f U
W1,W2,b (4.9) produced from the graph

A3, when the dimension at the output vertex is d3 = 1, and σ : Rd2 Ñ Rd2 is taken
to be σ(~x) = (φ(x1), . . . , φ(xd2)). (Take d2 = N, W1 = (yT

j )j=1,...,N , b = (θj)j=1,...,N , and
W2 = (αj)j=1,...,N .) For general dimension d3, we simply have (G1, . . . , Gd3), where Gi are
of the same form as above (with different αj,i) which can be used to approximate any
given continuous function K Ñ Rd3 .

We will prove the following theorem. Consider the quiver with three vertices as in
Section 4.3.3, and the function f U

W1,W2,b(v) = W2(σ(W1 � v + b)) in (4.9), where σ is the
multi-variable activation function on Rd2 made from Pd2 .

Theorem 5.2. Let K be a compact set of Rd1 , and f : K Ñ Rd3 a continuous function. For
any ε ¡ 0, there exists d2 ¡ 0 and W1 P Mat(d2, d1), W2 P Mat(d3, d2), b P Rd2 such that
} f U

W1,W2,b � f }L2(K)   ε.

The compact set is given as a subset in Rn. Thus from now on we restrict to the real
field, which will suffice for the theorem. This means we take real-valued matrices and the
real part σ of σC.
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5.1 Tropical limit. A crucial idea in the work of [Cyb89] is to compose φ with a rescal-
ing, so that it tends to a step function in the limit. We can apply such a rescaling to the
multi-variable function σ : Rd Ñ P�. This is well-known in toric geometry and is called
the tropical limit.

Let Σ be the dual fan of the moment polytope P. Σ is the collection of cones that are
dual to the boundary strata of the polytope P. In particular, maximal cones of Σ are
one-to-one corresponding to corners of P.

We assume that |Σ| = Rd. Rd is stratified into the relative interiors of cones in Σ. We
recall the following interesting fact from toric geometry. It plays an important role in the
study of holomorphic discs and Lagrangian Floer theory for toric varieties.

Lemma 5.3. Let XΣ be a toric variety (equipped with any toric Kähler form). Let C be a cone in
Σ. For any x �= 0 which lies in the relative interior of C, pC = limtÑ�8 σ(tx) exists and equal
to a point (which is independent of x) in the boundary stratum of P that is dual to C.

In other words, the family of functions σt(x) = σ(tx) converges (as t Ñ +8) to the discontin-
uous function σ8, where σ8(x) = pC if x belongs to the relative interior of C.

Proof. The cone C corresponds to a complex torus orbit of the toric variety X. To be more
explicit, consider a maximal cone Cmax that contains C. Without loss of generality, let
Cmax = R¥0 � tv1, . . . , vdu, and C = R¥0 � tv1, . . . , vku. Cmax gives a local chart Cd of the
toric variety, and the complex torus orbit corresponding to C is given by z1 = . . . = zk = 0.

We have a special point given by z1 = . . . = zk = 0, zk+1 = . . . = zd = 1 in the orbit.
We assert that pC = limtÑ�8 σ(tx) P P (for any x in the relative interior of C) is the
moment-map image of this point.

To see this, we write x =
°k

i=1 xivi where xi �= 0 for all i = 1, . . . , k. Consider the lifting
of tx = (tx1, . . . , txk, 0, . . . , 0): (etx1 , . . . , etxk , 1, . . . , 1) in the chart Cd � X. Then σ(tx) is the
moment-map image of (etx1 , . . . , etxk , 1, . . . , 1). Taking t Ñ �8, (etx1 , . . . , etxk , 1, . . . , 1) Ñ
(z1 = . . . = zk = 0, zk+1 = . . . = zd = 1). Thus σ(tx) converges to the above special point
pC. �

In terms of solving equations, pC is the solution of the simultaneous equations x1 =

. . . = xk = 0 and xi
±m

j=d+1 `
vj,i
j (0, . . . , 0, xk+1, . . . , xd) = 1 for i = k + 1, . . . , m. (We have

used the dual basis of tv1, . . . , vdu to write the coordinates of P, and vj =
°d

i=1 vj,ivi.) By
above, the solution exists and is unique.

Example 5.4. Consider X = Pd. Denote the coordinates of Rd by (x1, . . . , xd), and set x0 � 0.
The (d+ 1� l)-cones C of Σ are given by

 
xi1 = . . . = xil ¡ xk for all k P t0, . . . , du � ti1, . . . , ilu

(
,

where i1, . . . , il P t0, . . . , du are fixed, l = 1, . . . , d + 1. For σ =

(
e2xp

1+
°d

j=1 e2xj

)d

p=1
, the point

pC = limtÑ�8 σ(tx) has coordinates (pC)ir = 1/l for r = 1, . . . , l and ir �= 0, and (pC)j = 0
for all other j �= i1, . . . , il , 0. In particular, for the maximal cones Si = txi ¡ xk for all k P
t0, . . . , du � tiuu, pSi = εi for i = 0, . . . , d where ε0 := 0 and tε1, . . . , εdu denotes the standard
basis.

Corollary 5.5. Let K be any compact set in Rd. For any ε ¡ 0 and an open neighborhood of the
union U of codimension-one strata of Σ, there exists t " 0 such that |σt(x)� σ8(x)|   ε for all
x P K�U. (σ8 is defined in Lemma 5.3.)
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S0 S1

S2

(1/3,1/3)

Figure 9. The left shows the fan picture of P2, and the right shows the
moment-map polytope. The dots show the limit points pC for each cone C
of the fan.

Proof. Any x P K � U belongs to one of the maximal cones C. By Lemma 5.3, σt(x)
converges to pC. Moreover, both σt and σ8 are continuous on K �U. Then the result
follows from the compactness of K�U. �

In order to prove Theorem 5.2, we consider a particular type of polyhedral decomposi-
tions of Rn, which we call to be a centered simplicial web.

5.2 Centered polyhedral web.

Definition 5.6. A centered simplicial web with N ordered compact chambers in Rn is a polyhedral
decomposition of Rn whose vertices are all trivalent, defined inductively on the number of compact
chambers as follows.

A centered simplicial web with zero compact chamber is the polyhedral decomposition given by
the fan of Pn, up to an affine linear isomorphism in GL(n, R)
Rn.

Now suppose the notion of a centered simplicial web with N ordered compact chambers has
been defined, which has exactly (n + 1) non-compact rays (which we call the outer rays), whose
corresponding infinite lines intersect at exactly one point called the N-th center that lies in the
union of the N compact chambers. Moreover, the web is required to have (n + 1) non-compact
chambers; each non-compact chamber is adjacent to n outer rays and opposite to the remaining one
outer ray. (‘Opposite’ here means that the non-compact chamber is disjoint from the corresponding
outer ray, whose infinite line intersects the chamber at a half-line.) The outer rays are one-to-one
corresponding to their opposite non-compact chambers.

A centered simplicial web with (N + 1) ordered compact chambers is defined as follows. First,
take a centered simplicial web with N ordered compact chambers. Second, we choose a non-compact
chamber, and denotes the direction of its opposite ray by a non-zero vector v. Third, we take an
affine hyperplane which intersects all the relative interior of the n adjacent rays of the non-compact
chamber. This bounds a new compact chamber and the intersection points Vi are the new vertices.
Finally, we choose the (N + 1)-th center to be cN+1 = cN � tv, where cN is the N-th center, and
t P R¡0 is taken such that cN+1 lies in the union of the compact chambers (including the new
one). Then we have n new rays emanated from the vertices Vi whose infinite lines pass through
cN+1. This gives a new web with (N + 1) ordered compact chambers, and it still has (n + 1)
non-compact chambers, each of which is adjacent to n outer rays and opposite to one outer ray.

See Figure 10 for some examples of centered simplicial webs in R2.
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c1 c1
c2

Figure 10. Examples of centered simplicial web in R2. They have zero,one,
and two compact chambers respectively.

From the above definition, there is a one-to-one correspondence between the cen-
ters and compact chambers. Moreover, the (k + 1)-th compact chamber Ck+1 (for k =
1, . . . , N � 1) is associated with a one-strata of the web, which is a subset of the opposite
ray of the non-compact chamber containing Ck+1 in the (k + 1)-th inductive step. Further-
more, both the k-th and (k + 1)-th centers lie in the infinite line of the associated 1-strata
of Ck+1.

Remark 5.7. The above notion is closely related to tropical subvarieties. In the tropical context,
there is an integral structure on the ambient space and the balancing condition (whose definition
requires the integral structure) is imposed on each vertex of a tropical variety. However, we do not
have an integral structure here, since σC is defined on the universal cover Cd rather than (C�)d

(see Corollary 4.2 and Example 4.4). It means affine linear maps are taken over R rather than over
Z. Instead of the balancing condition, we impose the notion of centers in the above definition.

Theorem 5.8. Given a centered simplicial web A with N ordered compact chambers in Rn, there
exists an affine-linear embedding L : Rn Ñ Rd, where d = n + N, such that the L-preimage of
the fan of Pd in Rd equals to the web A.

Proof. We shall prove the following statement: given a centered simplicial web A with
N ¥ 1 compact chambers in Rn, there exists a centered simplicial web B with N � 1 com-
pact chambers in Rn+1 such that the intersection of Rn � Rn � t0u with B equals to A.
Then by applying this statement N times, we obtain a web B(N) with zero compact cham-
ber in Rn+N whose intersection with Rn � t0u gives A. By an affine linear isomorphism
on Rn+N , B(N) is identified with the fan of Pn+N . The required map L is given by the
composition of the inclusion Rn � t0u � Rn+N with this linear isomorphism.

The above statement is proved by induction on N. First consider the case N = 1.
We take a point V away from Rn � t0u � Rn+1. Then we take a cone at V over the
compact simplicial chamber of A. Moreover, the line joining V with the given center
of A intersects with the complement of the cone and produces a ray emanated from V.
This gives a simplicial web in Rn+1 with no compact chamber, whose intersection with
Rn � t0u is exactly A. (See Figure 11.)

Now suppose it is true for N. Consider a centered simplicial web A in Rn � Rn �
t0u with N + 1 ordered compact chambers. We can take away the (N + 1)-th compact
chamber C = CN+1 (and forget the corresponding center cN+1) and obtain a centered
simplicial web A1 with N compact chambers. By inductive hypothesis, there exists a
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centered simplicial web B1 in Rn+1 with N � 1 compact chambers whose intersection
with Rn � t0u gives A1.

The compact chamber C of A is contained in a non-compact chamber C1 of A1, which
is the intersection of Rn � t0u with a non-compact chamber D1 of B1. C1 is opposite to an
outer ray R of A1, which is the intersection of Rn � t0u with a non-compact 2-plane P of
B1. Note that the last two centers cA

N and cA
N+1 of A are contained in the line of R, and

hence contained in the infinite 2-plane of P. Consider the two rays of B that are adjacent
to P. Denote the one which is opposite to the chamber D1 by L. The other one is denoted
by L1, which must be adjacent to D1.

Now we construct a web B in Rn+1 whose intersection with Rn � t0u gives A. A point
V in the relative interior of the ray L1 is taken to be a new vertex. Consider the line passing
through V and the last center cA

N+1. This line lies in the infinite 2-plane of P. Thus for a
generic choice of V, it must intersect with the infinite line of L at a point, which we shall
define as the new center cB

N for B. V is taken far away enough in the ray L1 so that the
intersection point cB

N equals to cB
N�1 � v for some vector v in the direction of L.

Consider the n outer rays of A1 that are adjacent to the chamber C1. They are the
intersections of Rn � t0u with the corresponding n outer-2-planes of B1 that are adjacent
to L1. The last chamber C of A is formed by the hyperplane through the vertices taken in
the relative interior of the n outer rays of A1. The lines joining V to these vertices in A
lie in the outer-2-planes of B1, and hence intersect with the corresponding outer rays of
B1 at certain points, which we take to be new vertices of B. The hyperplane through V
and these new vertices bounds a new chamber. The lines joining cB

N with the new vertices
produce the outer rays of the new web B. This gives B whose intersection with Rn � t0u
equals to A. �

A

V

B

Figure 11. Construction of a tropical web with zero compact chamber
whose intersection with a hyperplane equals to a given tropical web with
one compact chamber.

The inductive step in the above proof is illustrated by Figure 12.
Next, we consider polytopes rather than simplices and the corresponding webs formed

from polytopes. Motivated from the well-known fact below, we define a centered polyhe-
dral web to be the intersection of a centered simplicial web with an affine subspace.

Proposition 5.9. For a polytope P with m facets in Rn where m ¡ n + 1, there exists a simplex
S in Rm�1 such that SX (Rn � t0u) = P (where Rn is identified with Rn � t0u).
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L
P

C’
D’

L

C D

L’ c V

R R

Figure 12. Construction of a tropical web with 3 compact chambers whose
intersection with a hyperplane equals to a given tropical web with 2 com-
pact chambers.

The simplex S in Proposition 5.9 can be constructed as follows. Without loss of general-
ity suppose 0 P P. Consider the dual polytope P_ = tν P (Rn)� : (ν, v) ¤ 1 for all v P Pu,
which is the convex hull of its vertices νi for i = 1, . . . , m. Then we have a surjective map
from the standard simplex S_ = t°i aiε

�
i P (Rm

¥0)
� :

°
i ai = 1u (where tε�i : i = 1, . . . , mu

is the standard basis) to P_ by sending ε�i to νi. S_ in the affine subspace t°i ai = 1u can
be identified as a simplex in (Rm�1

¥0 )� by the projection along the direction �°
i εi. Then

the dual linear map gives the desired linear injection Rn Ñ Rm�1 which sends P into S.
By composing with a linear isomorphism, the image of Rn can be made to be Rn � t0u.

As a result, a centered polygonal web with one compact chamber (which is constructed
by taking a polygon with a chosen center c and outer rays at vertices whose lines pass
through c) can be obtained as an intersection with Rn � t0u of a centered simplicial web
with one compact chamber in Rm�1 (where m is the number of non-compact chambers).
See the left of Figure 13 for an example.

Figure 13. The left shows an example of a polyhedral web with one com-
pact chamber, which is given as an intersection of a simplicial web with a
subspace. The right two figures show a concentric simplicial and a polyg-
onal web.
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The following degenerate configuration will be helpful. In Definition 5.6, suppose we
take all the centers to be the same. Moreover, suppose the new hyperplane introduced to
bound a new chamber is allowed to intersect the outer rays at the original vertices (rather
than their relative interior). Then we can construct the following configuration.

Definition 5.10. Let’s take (n + 1) rays emanated from 0 P Rn, such that any n of them are
linearly independent. For each ray, we take a sequence of distinct points Vi,k (where i = 1, . . . , n +
1 is indexing the ray) such that Vi,k+1 �Vi,k is pointing in the ray direction. Then for each k ¡ 0,
we take a simplex with vertices at Vi,k for i = 1, . . . , n + 1. This gives a polyhedral decomposition
of Rn. This is called a concentric simplicial web.

By taking an intersection of the above degenerate simplicial configuration with a sub-
space (that passes through the center 0), we get a configuration made from a sequence
of polytopes whose vertices lie in a fixed collection of p rays, where p is the number of
vertices of each polytope. We call this a concentric polyhedral web. See the right of Figure
13.

5.3 Proof of the approximation theorem. We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. For any δ ¡ 0, we can take a concentric polyhedral web B in Rd1 ,
such that for every chamber C of B, C X K is contained in a δ-ball. B is constructed
as follows. Without loss of generality, let K Q 0. First, we take a polytope P that lies
in a δ-ball centered at 0 P Rd1 . P induces a subdivision on the unit sphere Sd1�1 by
projecting its boundary strata onto Sd1�1. P is taken with sufficiently many vertices such
that the induced subdivision on the unit sphere Sd1�1 lies in a δ1-ball for a chosen δ1. By
Proposition 5.9, P = SX (Rd1 � t0u) for some simplex S in Rm�1 where m is the number
of facets of P. We take 0 P S to be the center. Then we take rays from 0 through the
vertices of S and construct a concentric simplicial web. Since K is compact, by taking
δ1 sufficiently small, and the sequences of vertices in the rays sufficiently close to each
other, the resulting concentric polyhedral web B can be made such that every chamber
intersects K in a δ-ball.

Next, we take a centered simplicial web A in Rm�1 whose centers are chosen suffi-
ciently close to each other, and the vertices in the inductive steps are taken such that
A X K is sufficiently close B X K. Namely, for every chamber C of A, C X K lies in the
δ-neighborhood of C1 X K for the corresponding chamber C1 of B. In particular, C X K is
contained in a 2δ-ball.

By Theorem 5.8, there exists L1 : Rm�1 Ñ Rd2 such that A is the L1-preimage of the fan
ΣPd2 . By composing L1 with Rd1 � t0u � Rm�1, we obtain L : Rd1 Ñ Rd2 such that for
every maximal cone Si of ΣPd2 , L�1(Si)X K lies in a (2δ)-ball.

Since f is uniformly continuous in K, for every ε ¡ 0, δ can be taken such that | f (x)�
f (y)|   ε for every x, y P K lying in a 2δ-ball. In particular, we have a step function
s =

°
C rCδC supported over A (where δC(x) = 1 for x P C and 0 otherwise, and C are

chambers of A) such that } f � s}L2(K)   ε
a

Vol(K).
We have the step function σ8 which sends the interior of the maximal cones Si of ΣPd2

to ei for i = 0, . . . , d2, where e0 = 0. (See Example 5.4.) The cone Si corresponds to
chambers L�1(Si) of A under L. Since tei � e0 : i = 1, . . . , d2u forms a basis, there exists
a unique affine linear map W2 : Rd2 Ñ Rd3 which sends ei to rL�1(Si)

for all i = 0, . . . , d2.
Thus s = W2 � σ8 � L.

Finally, by Corollary 5.5, there exists t " 0 such that |W2 � σt � W2 � σ8|   ε/2 on
L(K) � U, where U is an arbitrary open neighborhood of the codimension-one strata
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of ΣPd
2
. Moreover, |W2 � σt � W2 � σ8| is bounded. Hence by taking Vol(L�1(U) X K)

sufficiently small, we have }W2 � σt � L �W2 � σ8 � L}L2(K)   ε. In conclusion, }W2 � σ �
(tL) � f }L2(K) ¤ }W2 � σ � (tL) �W2 � σ8 � L}L2(K) + }W2 � σ8 � L � f }L2(K) can be made
arbitrarily small. �
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