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ARTICLE

Anthropogenic influence in observed regional
warming trends and the implied social time
of emergence
Francisco Estrada 1,2,3✉, Dukpa Kim4 & Pierre Perron5

The attribution of climate change allows for the evaluation of the contribution of human

drivers to observed warming. At the global and hemispheric scales, many physical and

observation-based methods have shown a dominant anthropogenic signal, in contrast,

regional attribution of climate change relies on physically based numerical climate models.

Here we show, using state-of-the-art statistical tests, the existence of a common nonlinear

trend in observed regional air surface temperatures largely imparted by anthropogenic for-

cing. All regions, continents and countries considered have experienced warming during the

past century due to increasing anthropogenic radiative forcing. The results show that we now

experience mean temperatures that would have been considered extreme values during the

mid-20th century. The adaptation window has been getting shorter and is projected to

markedly decrease in the next few decades. Our findings provide independent empirical

evidence about the anthropogenic influence on the observed warming trend in different

regions of the world.
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The attribution of the observed warming to natural and
anthropogenic drivers is fundamental for the study of cli-
mate change1–5. Estimates of the contribution of natural

and anthropogenic forcing to the observed changes in regional
temperatures provide relevant information for policymakers to
propose portfolios of mitigation and adaptation strategies6,7.
These can also create more accurate perceptions of the risks of
climate change and support pertinent climate policies. The Paris
Agreement illustrates the international consensus about the
anthropogenic contribution to warming and the need to curb
greenhouse gas emissions6. However, in some political circles,
(e.g., in the US), there seems to be an increasing skepticism that
could hamper the success of international agreements8. This is
important since even short delays in the participation of key
countries in the Paris Agreement could render the climate targets
unattainable9. Such a situation would require the adoption of
prompter and stronger adaptation and risk reduction strategies.
The current global health crisis10,11 and the expected economic
downturn could significantly reduce international efforts to
mitigate climate change.

A clear human fingerprint on global and hemispheric warming
has been corroborated by a variety of physical and statistical
methods, sometimes based on conflicting assumptions and
approaches12–17. In contrast, regional attribution studies of long-
term trends have been largely based on climate models1,18,19,
which depend on the models’ performance to reproduce the
observed climate and, despite their improvements, are less reliable
at this scale5,20. Furthermore, model performance evaluation, and
thus attribution results, may imply circular reasoning21.
Observation-based attribution studies do not depend on climate
models’ performance, tuning or calibration and can provide
independent evidence (see “Methods”).

The attribution of regional changes in climate can influence the
perception and participation in risk management efforts due to a
sense of information sufficiency and responsibility22–24. The time
of emergence (ToE)25 is a property of the climate system and
provides an estimate of the date when the projected anthro-
pogenic climate signal would exceed some measure of long-term
natural variability. The ToE has also been used to estimate risk
measures in ecological systems26 as well as the benefits of miti-
gation policy for reducing climate risk27. It can further be
extended to represent a risk in the socio-environmental realm as a
property of the interaction of the climate and human systems. For
this, a more relevant metric for decision-makers consists in
determining when the climate signal becomes larger than the
variability societies have experienced in the recent past and what
they are presently prepared for. Current thermal comfort stan-
dards, infrastructure, services, productive, and recreational
activities, energy consumption, disease distribution, among many
others are more a function of observed rather than of long-term
climate natural variability28–31. We define this metric as the social
time of emergence (SToE) and it consists of the signal to noise
ratio of the climate response to changes in radiative forcing
relative to a measure of the observed natural variability to which a
society is able to adapt (“Methods”). A related metric is defined as
the Time to Adapt (TtA) which expresses the expected number of
years to reach a novel climate.

Based on recent statistical methods, we analyze annual mean
surface air temperature from a variety of sources to evaluate the
anthropogenic contribution to the observed warming trends. The
analysis is performed for three different spatial scales: latitude
belts, continent, and country levels. A set of 13 countries was
selected based on a combination of spatial extension, their
aggregate emissions and fossil fuels reserves, and relevance for
international climate policy negotiations. Detection of climate
change based on analyzing observed trends is not addressed here,

instead, we focus on inferring the underlying warming trends
produced by global aggregates of external forcing12,32,33. Natural
variability and external forcing factors with marked influence on
regional scales modulate the underlying warming trends imparted
by the globally aggregated radiative forcing34,35 and can make
observed and inferred warming trends differ in magnitudes and
features such as breaks and their associated break dates32,33. We
apply statistical methods to test the existence of common trends
in nonstationary variables36–38. The tests allow us to evaluate the
influence of anthropogenic forcing on the observed warming and
whether the trend imparted by anthropogenic greenhouse gas
forcing is present, accounting for factors such as the regional
effects of forcings and natural variability that may have altered
some relevant features (e.g., breaks in trend) of temperature
series12.

Results
Common trends, the observed contributions of external for-
cing, and the evaluation of SToE and TtA. Cotrending tests36–38

were applied to sets of variables that include the radiative forcing
of well-mixed greenhouse gases (WMGHG), the sum of all nat-
ural and anthropogenic radiative forcing (TRF), and the regional
temperatures of interest (see “Methods”). This allows us to
investigate the attribution of the observed warming in regional
annual temperatures to anthropogenic influence. The selection of
variables allows us to test for a common trend in WMGHG, TRF,
and regional temperature. Finding a common trend implies that
WMGHG, which has an anthropogenic origin, imparts the
secular movement in TRF and regional temperatures, allowing
other factors such as low-frequency natural variability and the
regional effects of external forcing to have an important mod-
ulating influence.

For every region, continent and country analyzed there is
strong evidence of a common trend between forcing variables and
annual mean temperatures due to anthropogenic forcing
(Supplementary Tables S1–S18). Across tests and datasets, the
existence of cotrending is seldomly rejected and in all cases at
least two out of the three tests support the conclusion of a
common trend (Supplementary Table S19). These results strongly
suggest a warming trend attributed to anthropogenic forcing at all
spatial scales: latitude belts, continent, and country levels. The
warming has been widespread and followed a common secular
movement, modulated by the effects of regional climate
variability, and the regional effects of forcings. These conclusions
are robust to the use of different radiative forcing, temperature
datasets, and cotrending tests (Supplementary Tables S1–S19).

The existence of a common long-term trend allows the use of
ordinary least squares regression to estimate the transient climate
response (TCR) for each temperature series, which measures the
response of regional temperatures to changes in external radiative
forcing (Supplementary Tables S20–S22). This is in accordance with
the established linear relationship between radiative forcing and
perturbative temperature changes, including regional temperatures
with the exception of areas in which strong regional effects of
external forcing occur1,39,40. At the most aggregated level, only the
TCR of the extratropical region in the northern hemisphere (24°
N–90°N) is statistically larger (±2SE) than those of the southern
hemisphere and the tropics. The results for finer latitude belts reveal
that, in general, only the values for the high latitudes in the northern
hemisphere are statistically larger than those for other latitude belts
(Supplementary Fig. S1). This is consistent with the results from
climate models, in which the high latitudes warm faster than the rest
of the world due to the arctic amplification phenomenon41,42. At the
continental and country levels, the TCR tends to be larger at higher
latitudes (Supplementary Figs. S2 and S3). With the BEST dataset,
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Asia and North America have the largest TCR values (0.79 and
0.76 °C per Wm−2, respectively) followed by Europe, Africa, and
South America (0.70, 0.63, 0.62 °C per Wm−2, respectively). The
lowest value is for Oceania (0.52 °C per Wm−2), probably because
of the ocean influence. These estimates are not statistically different
from each other except for Asia and Oceania: for Asia, the TCR
value is larger than those of Africa, South America, and Oceania; for
Oceania, it is smaller than those of North America and Asia. Canada
and Russia show the largest TCR of all countries, regardless of the
temperature dataset used.

Estimates of the contributions of total and specific radiative
forcing components to the secular trend at the country level can
help decision-makers and the society to have a clearer picture of
the magnitude of climate change and its causes. Using the
estimated values of TCR, these contributions to the warming
trends can be approximated (Fig. 1). To estimate the increase in
temperature due to changes in both natural and anthropogenic
radiative forcing, the TCR values are multiplied by TRF, while the
TCR values are multiplied by WMGHG and solar forcing
(SOLAR) to approximate the changes in temperatures due to
these specific components of anthropogenic and natural forcings,
respectively. Note that the estimates based on WMGHG and
SOLAR do not represent the full response to changes in
anthropogenic and natural forcings. The increase in anthropo-
genic radiative forcing due to WMGHG with respect to 1880 has
produced significant warming in all selected countries, while non-
WMGHG forcing had a modulating effect. By the year 2011, TRF
contributed to an average increase of about 1 °C, with warming
near 1.2–1.3 °C in France, Germany, and China and up to 1.6 °C
and 1.7 °C in Canada and Russia (Fig. 1a and Supplementary Fig.
S4a). Without the modulating effect of other forcing factors
(Fig. 1b and Supplementary Fig. S4b), WMGHG would have led
to a warming of at least 1.5 °C in most countries and more than
2.8 °C in Canada and Russia. Solar forcing alone would have
produced slight warming of about 0.1–0.2 °C (Fig. 1c and
Supplementary Fig. S4c). However, these warming estimates do
not provide a clear perspective about how extreme these changes
are. The SToE and TtA metrics offer a simple and easy way to
quantify the relative magnitude of the changes and how fast they
are occurring.

The SToE was calculated for four reference years: 1880 and
1960, using the historical TRF43; 2010 and 2020 using the
projections of TRF from the Representative Concentration
Pathways (RCP) RCP8.5, RCP4.5, and RCP2.6 scenarios44. For
each case, the warming signal was obtained as ΔTref ;i;t ¼
TCRi � ðTRFt � TRFref Þ, where i and t denote region and time,
respectively, and ref is the reference year (“Methods”). The
estimates of the temperature variability experienced by societies
(σi) are the standard deviation of the residuals when regressing
temperatures on TRF. The social time of emergence is defined as

SToEðBÞi;ref ¼ min year � I ΔTref ;i;t

Bσ i
≥ 1

� �h i
, where B is a constant;

I(·) is the indicator function and year is the calendar date
(“Methods”). Note that for trend stationary variables such as
temperatures12,45, a warming signal (ΔT) equal to Bσi implies that
the whole distribution of temperatures has shifted toward higher
temperature values, not only the mean value. For example, if
changes in temperatures are normally distributed and B= 2, the
reference climate as experienced by the affected population at date
SToE2 would have a very small overlap. The new mean
temperature societies would experience at date SToE2 corresponds
to the 97.5th percentile of the previous temperature distribution.
For a SToE based on three standard deviations (SToE3), there
would be no discernable overlap between the reference climate
and the SToE.

The results show that most groups (whether by countries,
continents, and latitude belts) are already experiencing annual
mean temperatures that would have been considered extreme
values with respect to the temperature distributions at the end of
the 19th century or even during the second part of the 20th

Fig. 1 Contributions to the warming trend from total and specific
radiative forcing factors in the year 2011 with respect to 1880. Panel a
shows the response of regional temperature trends to changes in TRF. The
response of regional temperature trends to changes in WMGHG is shown
in panel b. Panel c shows the response of temperature trends to changes in
SOLAR. Estimates of radiative forcing for 2011 are from Hansen’s dataset
(see “Methods”). Units are °C.
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century. For the reference year 1880, the SToE2 dates are similar
for all groups (Tables 1–3 and Supplementary Tables S23–S25),
with estimated values in the late 1970s. When considering 1960 as
the reference year, the SToE2 values increase slightly to the late
1980s. Such small variations when changing the reference year
indicate that the climate is warming at an accelerated pace. The
general spatial patterns of SToE2 values are similar to those of
ToE reported in the literature25,46,47. The warming signal emerges
from natural variability sooner in the tropics than in high
latitudes where SToE occurs decades later. We also find that mid-
latitude regions in the southern hemisphere may also experience
novel climate conditions sooner than other latitudes. These
regions are commonly identified as particularly vulnerable and
with low financial and adaptation capacities46. The uncertainty in
the estimates of StoE and TtA was evaluated using a bootstrap
procedure (see “Methods”; Supplementary Tables S33–S35). The
confidence intervals show the uncertainty in SToE to be highly
skewed towards higher values and, in agreement with previous
studies based on climate models’ simulations, the uncertainty is
larger for higher latitudes than for near-tropical regions48.

The TtA metric (TtAB;i;ref ¼ SToE Bð Þi;ref � yearref ) measures
the transition time to reach a novel climate, i.e., the time available
to adapt to a new climate. Taking 1880 as the reference year,
TtA2,1880 is close to 100 years for most latitude belts and
continents (Tables 1 and 2 and Supplementary Tables S23–S25),
and for some countries it can be as large as 130 years (Table 3 and
Supplementary Table S24). The TtA value decreased rapidly
during the 20th century. By the mid-20th century (circa 1960), for
most latitude belts, transitioning to a new climate (TtA2,1960) took
only about 2–3 decades and at the continental level about 3 to 4
decades, with few exceptions such as Europe and North America,
where this threshold is reached a decade later. The SToE2 dates
and TtA are slightly more heterogeneous at the country level but
follow a similar pattern (Table 3 and Supplementary Table S25).
The time to adapt was more than halved in the mid-20th century,

with TtA2,1960 values ranging from 30 to 60 years; e.g., the
TtA2,1960 value is 57 years for the UK and Germany, while it is as
low as 28 years for China and Brazil.

To illustrate the pace of change in climate and the reduction in
the time societies may have to adapt given the change in climate,
three RCP scenarios were used to project TtA and StoE using
2020 as the reference year (Tables 1–3 and Supplementary Tables
S26–S32). These were selected to represent different levels of
international mitigation policy: RCP8.5 represents a high
warming scenario with no mitigation actions, while RCP4.5 and
RCP2.6 can be viewed as approximations to the strict compliance
of the Nationally Determined Contributions (NDC) commit-
ments and the goals of the Paris Agreement49, respectively. Under
the RCP8.5, the time available to adapt during this century
becomes markedly shorter. The TtA values with respect to 2020
are about 12 years for Asia, Africa, and South America and 20
years for Europe and North America (Table 2 and Supplementary
Tables S28–S29). At the country level, the TtA2,2020 values are
around 20 years, with countries such as China and Brazil having
values as low as 13 years (Table 3). Hence, in general, it would
take about 10–20 years to experience mean temperatures that
would be considered extreme by today’s standards. It is also
notable that the confidence intervals for TtA and SToE2 become
increasingly narrower for higher warming trajectories (Supple-
mentary Tables S33–S35). This illustrates the magnitude of the
adaptation challenges that societies would experience under high
warming and no climate policy scenario. Moreover, the TtA
values get smaller through the 20th century as the reference
period is updated, making it unlikely that adaptation processes
could keep up with the pace of change in climate conditions.
Achieving strict compliance of the NDC would provide about
10–15 years more for most countries to adapt, although, for
countries like Germany and the UK, the TtA2,2020 values could be
about 25 years (Table 3). In contrast, under an emission scenario
consistent with the goal of the Paris Agreement, the pressure to

Table 1 Estimates of SToE and TtA at various latitude zones.

Observed (NASA) RCP8.5 RCP4.5 RCP2.6

SToE21880 [TtA21880] SToE21960 [TtA21960] SToE22020 [TtA22020] SToE22020 [TtA22020] SToE22020 [TtA22020]

24°N–90°N 1976
[96]

1987
[27]

2032
[12]

2040
[20]

>2100
[>80]

24°S–24°N 1978
[98]

1988
[28]

2033
[13]

2042
[22]

>2100
[>80]

90°S–24°S 1966
[86]

1979
[19]

2030
[10]

2032
[12]

>2100
[>80]

64°N–90°N 1988
[108]

2012
[52]

2042
[22]

2054
[34]

>2100
[>80]

44°N–64°N 1976
[96]

1987
[27]

2032
[12]

2041
[21]

>2100
[>80]

24°N–44°N 1977
[97]

1988
[28]

2033
[13]

2042
[22]

>2100
[>80]

EQU–24°N 1978
[98]

1989
[29]

2034
[14]

2043
[23]

>2100
[>80]

EQU–24°S 1977
[97]

1988
[28]

2033
[13]

2042
[22]

>2100
[>80]

44°S–24°S 1966
[86]

1979
[19]

2030
[10]

2032
[12]

>2100
[>80]

64°S–44°S 1977
[97]

1988
[28]

2033
[13]

2042
[22]

>2100
[>80]

90°S–64°S >2020
[>140]

>2020
[>60]

2057
[37]

>2100
[>80]

>2100
[>80]

The estimates of SToE and TtA are shown for (a) the observed period using the TRF data from Hansen and three future scenarios about the radiative forcing based on estimates of TCR and σ using the
NASA dataset for temperatures; (b) high warming/no climate policy (RCP8.5); (c) intermediate climate policy similar to a strict NDC compliance (RCP4.5); and (d) consistent with the Paris Agreement
goals (RCP2.6). See Supplementary Table S33 for confidence intervals, and Supplementary Tables S22, S25–S27 for sensitivity analyses with different temperature datasets.
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adapt would be much lower as the future and current climate
would remain similar to that of 2020 during this century and the
SToE22020 would take values beyond the present century (Table 3
and Supplementary Tables S31–S32).

Conclusions
We provided an observation-based regional attribution study that
shows the existence of a dominant warming trend of anthropogenic
origin in annual mean temperature series at different spatial scales,
including continent and country level. The attribution results are

robust to different temperatures, forcing datasets, cotrending tests,
and assumptions about the time-series properties of the various
series. The results show that a common nonlinear trend imparted
by anthropogenic forcing (WMGHG) is present in all temperature
series and that other forcing factors as a whole and natural varia-
bility have modulated it. Warming is widespread among the dif-
ferent regions with external forcing contributing to an increase of
about 1 °C in 2011 across the world relative to 1880. Solar forcing
had a slight warming effect of about 0.1° to 0.2 °C, while WMGHG
forcing alone had a warming effect up to almost 3 °C in high

Table 2 Estimates of SToE and TtA at the continent level.

Observed (BEST) RCP8.5 RCP4.5 RCP2.6

SToE21880 [TtA21880] SToE21960 [TtA21960] SToE22020 [TtA22020] SToE22020 [TtA22020] SToE22020 [TtA22020]

Africa 1976
[96]

1987
[27]

2032
[12]

2041
[21]

>2100
[>80]

Asia 1970
[90]

1986
[26]

2032
[12]

2035
[15]

>2100
[>80]

Europe 1989
[109]

2013
[53]

2042
[22]

2055
[35]

>2100
[>80]

N. America 1986
[106]

2000
[40]

2039
[19]

2053
[33]

>2100
[>80]

Oceania 1981
[101]

2000
[40]

2039
[19]

2052
[32]

>2100
[>80]

S. America 1976
[96]

1987
[27]

2032
[12]

2041
[21]

>2100
[>80]

The estimates of SToE and TtA are shown for (a) the observed period using the TRF data from Hansen and for three future scenarios about the radiative forcing based on estimates of TCR and σ using
the BEST dataset for temperatures; (b) high warming/no climate policy (RCP8.5); (c) intermediate climate policy similar to a strict NDC compliance (RCP4.5); and (d) consistent with the Paris
Agreement goals (RCP2.6). See Supplementary Table S34 for confidence intervals, and Supplementary Tables S23, S28, and S29 for sensitivity analyses with different temperature datasets.

Table 3 Estimates of SToE and TtA for selected countries.

Observed (BEST) RCP8.5 RCP4.5 RCP2.6

SToE21880 [TtA21880] SToE21960 [TtA21960] SToE22020 [TtA22020] SToE22020 [TtA22020] SToE22020 [TtA22020]

Mexico 1987
[107]

2010
[50]

2040
[20]

2053
[33]

>2100
[>80]

China 1977
[97]

1988
[28]

2033
[13]

2042
[22]

>2100
[>80]

Canada 1989
[109]

2014
[54]

2042
[22]

2056
[36]

>2100
[>80]

Brazil 1977
[97]

1988
[28]

2033
[13]

2042
[22]

>2100
[>80]

Australia 1987
[107]

2011
[51]

2041
[21]

2054
[34]

>2100
[>80]

Argentina 1981
[101]

1999
[39]

2038
[18]

2046
[26]

>2100
[>80]

Russia 1988
[108]

2011
[51]

2041
[21]

2054
[34]

>2100
[>80]

India 1986
[106]

2010
[50]

2040
[20]

2053
[33]

>2100
[>80]

USA 1988
[108]

2011
[51]

2041
[21]

2054
[34]

>2100
[>80]

S. Arabia 1986
[106]

2010
[50]

2040
[20]

2053
[33]

>2100
[>80]

France 1988
[108]

2012
[52]

2042
[22]

2054
[34]

>2100
[>80]

Germany 2000
[120]

2017
[57]

2044
[24]

2076
[56]

>2100
[>80]

UK 2000
[120]

2017
[57]

2044
[24]

2067
[47]

>2100
[>80]

The estimates of SToE and TtA are shown for (a) the observed period using the TRF data from Hansen and for three future scenarios about the radiative forcing based on estimates of TCR and σ using
the BEST dataset for temperatures; (b) high warming/no climate policy (RCP8.5); (c) intermediate climate policy similar to a strict NDC compliance (RCP4.5); and (d) consistent with the Paris
Agreement goals (RCP2.6). See Supplementary Table S35 for confidence intervals and Supplementary Tables S24, S30, and S31 for sensitivity analyses with different temperature datasets.
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latitudes of the northern hemisphere. The results are consistent with
estimates of regional warming produced by climate models and
with attribution studies based on models’ simulations1,42,50, pro-
viding an independent confirmation.

The concept of time of emergence was modified to make it
more informative for decision-makers. It is based on the natural
temperature variability over the observed period, which is better
able to reflect what societies are prepared for, than long-term
natural variability used in the standard construction of the ToE
metric. Our study uses the attribution results to compute all the
necessary ingredients to obtain SToE and TtA, which are inter-
related metrics that express: (1) the date when the climate signal
would exceed a threshold of B times the standard deviation of
experienced natural temperature variability; and (2) the number
of years left to reach this new climate. The results show that the
time to adapt to a novel climate has been rapidly decreasing since
the late 19th century. While TtA had values near 100 years at the
beginning of the 20th century, by the mid-20th century it
decreased to about 3 or 4 decades. Then, in only 3 or 4 decades
most parts of the world have experienced mean temperature
values that would have been considered extreme realizations from
the right tail of temperature distributions with respect to the
1960s. Projections for this century indicate that taking 2020 as the
reference year, most parts of the world would experience in about
10–20 years a novel climate that would now be considered
extreme if warming is not controlled by relevant climate policies.
Moreover, TtA is projected to rapidly decrease during this cen-
tury. These results have important implications about the time
available to adapt and whether successful adaptation is feasible.
The estimates based on the RCP4.5 scenario suggest that an
intermediate international mitigation effort could help by pro-
viding about 10–15 additional years for adaptation. Under an
emissions scenario consistent with the Paris Agreement, most
countries, continents, and regions would not experience tem-
perature conditions much different than current ones.

Methods
Statistical methods for detection and attribution of climate change. The use of
time-series methods in detection and attribution studies has a long history in
climate change literature12,33,45,51–53. While these methods offer the advantages of
not depending on the accuracy and performance of complex climate models,
attribution is not possible without invoking a physical model that may be implicit
in the statistical framework used and without assessing its physical consistency1. As
described below, our attribution analysis is grounded on a zero-dimensional energy
balance model and on the well-established result of stationary spatial patterns
found in different generations of complex global atmosphere-ocean general cir-
culation models54–56. Another challenge of attribution studies based on statistical
techniques has been the correct identification of the time-series properties of cli-
mate and forcing variables. One of the main problems for obtaining empirical
evidence about the influence of anthropogenic forcing using observed temperature
records was the lack of adequate statistical tests to relate trending variables. While
this was apparently solved with the introduction of cointegration techniques51,52,
they impose important restrictions about the type of data-generating processes for
temperature and forcing time series57. The analysis of the time-series properties of
these variables using modern econometric tests indicates that cointegration tech-
niques may find spurious relationships which generated a debate12,58–60. Here, we
use an encompassing strategy based on a selection of cotrending tests that (1)
makes results robust to the possible misidentification of the integration order and;
(2) implies the existence of common breaks between the group of time series when
a cotrending relationship is found. This is of importance because it provides strong
evidence of causality in the relationships as recently argued61.

Zero-dimensional energy balance model and analyzing the influence of
aggregate anthropogenic forcing at regional scales. The cotrending tests used
here to analyze the influence of anthropogenic forcing are interpreted in terms of
zero-dimensional energy balance model12,62,63 and the assumption of stationarity
in the spatial patterns of change frequently used in the literature54–56.

The foundations of time-series models to analyze the relationships between
radiative forcing and temperature series have been established in previous
publications62,63. The time-series models used in our study can be represented by

Tt ¼ αþ γFt þ εt ; ð1Þ

where Tt is global temperature, Ft is a measure of the change in radiative forcing, α
and γ are the intercept and slope parameters, respectively, and εt is a stochastic
noise process that represents high to low-frequency natural variability12. The
structural model supporting this statistical model can be described by a simple two-
compartment climate model12,62,64,65. It consists of an upper compartment (U)
which represents mainly the atmosphere and the upper ocean, and a lower
compartment (L) associated with the deep ocean. These components are thermally
coupled and can be described by the following equations62:

CU
dTU

dt
¼ F � λΔTU � β ΔTU � ΔTLð Þ ð2Þ

CL
dTL

dt
¼ β ΔTU � ΔTLð Þ ð3Þ

where CU and CL represent the heat capacity of the upper and lower compartments,
respectively, and ΔTU and ΔTL are the changes in temperature in the respective
compartments. F is the external forcing, and λ and β are the climate response and
heat exchange coefficients. The heat capacity is much larger in the lower than in the
upper compartment. The time constant of the response of the upper compartment
is ~4–9 years, while for the lower compartment this value ranges from 400 to 580
years62,64. The analysis in this paper relates to the transient climate response (TCR)
which characterizes how the upper compartment responds to sustained increases in
the external radiative forcing. The TCR is defined by Str ¼ κþ λð Þ�1 were κ is the
heat uptake coefficient of the climate system. This coefficient relates the time-
dependent changes in surface temperature and external forcing via ΔT(t)= StrF(t)
and it is represented as γ in Eq. (1)12. The response of surface temperatures to
external radiative forcing is dominated in the observed period by the short time
constant of the upper compartment and the TCR. This provides a physical
explanation of why temperatures and external forcing share a common nonlinear
trend and common features such as co-breaks. By construction and following the
physical model described above, the selection of variables used for two of the three
cotrending tests36,38 (TRF, WMGHG, and temperature) implies evaluating
causality and the importance of anthropogenic greenhouse gas forcing. The
simplest radiative forcing series included in the cotrending tests is WMGHG and if
its nonlinear trend is common to TRF and temperature series, this indicates that it
is the dominant driver of the secular movement in TRF and temperatures.
Moreover, co-breaking is a necessary condition for cotrending in one of the tests
used and the existence of common breaks provides strong evidence for causality61.
The third cotrending test used was developed specifically to test for a linear stable
relationship between temperature and TRF and complements the other cotrending
results37.

The analysis of simulations from different generations of global coupled
ocean–atmosphere general circulation models have shown strong support for
stationary spatial patterns of change in variables such as surface temperature54.
This result has been used for a variety of purposes such as producing scaling
patterns or climate scenarios56,66, time of emergence25, and regional TCR estimates
based on aggregate quantities55. The regional estimates of TCR can be estimated
regressing regional temperatures on external forcing series:

Tt;r ¼ cþ βFt þ et ¼ cþ φTt þ ut ; ð4Þ
where β= φγ is the regional TCR, γ is the global TCR from Eq. (1), c is the
intercept, Ft is a measure of TRF, and Tt,r is surface temperature in region r. It is
important to note that if regional forcing (such as aerosols) significantly distorts the
underlying global forcing trend, instead of only modulating it, there would be no
cotrending between WMGHG, TRF, and regional temperature. Our results show
that at the spatial scales and regions chosen for the analysis, regional forcing factors
have not altered the secular movement imparted by global radiative forcing enough
to preclude finding a common nonlinear trend between WMGHG and/or TRF and
regional temperatures. Finding a cotrending relationship between TRF and regional
temperatures helps to identify physically meaningful TCR, SToE, and TtA
estimates. It also provides a rationale consistent with climate physics to use TRF to
decompose regional temperature series into their trend and noise components, the
latter including both natural oscillations and the modulation effects produced by
regional external forcing.

Carrion-i-Silvestre and Kim cotrending and cointegration tests. Carrion-i-
Silvestre and Kim37 proposed joint tests of cotrending and cointegration, which
were developed specifically for a linear stable relationship between temperature and
TRF. These tests are quasi-likelihood ratio tests in a bivariate system of tempera-
ture and TRF. Under the null hypothesis, TRF and temperature are linearly related;
under the alternative, they are not. These tests aim at offering valid inferences
regardless of the true type of the trends in the data. TRF is allowed, but not
assumed, to have a stochastic trend in addition to an obvious trend due to the
well-mixed greenhouse gas forcing. Temperature is also allowed, though not
assumed, to have any of a stochastic trend, a broken linear trend, a trend due to
the well-mixed-greenhouse-gases forcing. We use the Ŝ2 test, which tests for an
exact linear relationship. It is constructed as follows. Suppose that y, x, and m
are observed vectors of temperature, total radiative forcing, and well-mixed
greenhouse-gases series: y= (y1,…, yT)′, x= (x1,…, xT)′, and m= (m1,…,mT)′.
In addition, define regressors such as 1T= (1,…, 1)′, Dx= [1T,m], τ ¼ ð1; � � � ;TÞ0 ,
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B Tπ½ �ð Þ ¼ ð0; � � � ; 0; 1; 2; � � � ;T� ½Tπ�Þ0 with π 2 ð0; 1Þ. The Ŝ2 statistic combines
Ŝþ2 and Ŝ�2 via Ŝ2 ¼ Ŝþ2 � 1ðα̂s ¼ 1Þ þ Ŝ�2 � 1� 1 α̂s ¼ 1ð Þð Þ, where 1(·) is an indicator
function; α̂s ¼ α̂, if α̂� 1j j> 1:96T�1=2, and 1, otherwise; and α̂ is a consistent esti-
mator for the sum of autoregressive coefficients of x̂0 ¼ x-DxðD0

xDxÞ�1Dxx. The Ŝ
þ
2

statistic is computed as follows. Let β̂ and δ̂y be the ordinary least squares estimate from

a regression of y on x and Dx and let δ̂x be the ordinary least squares estimate from a

regression of x on Dx. Obtain û ¼ ½y � xβ̂� Dx δ̂y ; ûx � and ûx ¼ Ψ�1=2
0 ðx � Dx δ̂xÞ

with Ψ1=2
0 being a lower triangular matrix of ones. Then, estimate the long-run variance

of ût, the transpose of the tth row of û by Σ̂ ¼ T�1
P

ût û
0
t , Γ̂ ¼ P

j κ
j
bT

� �
RðjÞ,

RðjÞ ¼ T�1 P ût û
0
tþj , and Ω̂ ¼ Σ̂þ Γ̂þ Γ̂

0
, where κ(·) is a kernel function and bT is a

bandwidth. Partition Ω̂ ¼ ω̂yy ω̂xy
ω̂yx ω̂xx

� �
, Σ̂ ¼ σ̂yy σ̂xy

σ̂yx σ̂xx

� �
, and Γ̂ ¼ γ̂yy γ̂xy

γ̂yx γ̂xx

� �
.

Then, ω̂yyjx ¼ κ0Ω̂κ, γ̂yyjx ¼ κ0Γ̂κ, and Λ̂x ¼ ðσ̂xy þ γ̂xy ; σ̂xy þ σ̂xxÞ with
κ ¼ ð1;�ω̂xy=ω̂xxÞ0. Define lþT ðθjZÞ ¼ � 1

2 log
jZ0Ψ�1

θ Zj
jZ0Zj � 1

2ω̂yyjx
yþ0
θ ðΨ�1

θ �
Ψ�1

θ ZðZ0Ψ�1
θ ZÞ�1Z0Ψ�1

θ Þyþθ for a given θ and Z where yþθ ¼ y � θûxω̂
�1
xx ω̂xy �

ûΣ̂
�1
Λ̂
0
x β̂ and Ψ1=2

θ is a lower triangular matrix with ones on the diagonal and 1− θ off

the diagonal. Then, Ŝ
þ
2 ¼ �2 lþT 1jZþ

2

� ��maxπ2 :15;:85½ � l
þ
T

�θjZþ
π

� �h i
� 2�λω̂�1

yyjx γ̂yyjx
where Zþ

2 ¼ ½xþ; 1T �, Zþ
π ¼ ½xþ;Dx ; τ;Bð½Tπ�Þ�, xþ ¼ x � ûΣ̂�1Λ̂0

x ,
�θ ¼ 1� �λ=T ,

and �λ ¼ 13:5. On the other hand, the Ŝ�2 statistic is computed as follows.

Ŝ
�
2 ¼ �2 l�T 1jZ2ð Þ �maxπ2 :15;:85½ � l

�
T

�θjZπ

� �h i
� 2�λω̂�1

yy γ̂yy , where l
�
T θjZð Þ ¼

� 1
2 log

jZ0Ψ�1
θ Zj

jZ0Zj � 1
2ω̂yy

y0 Ψ�1
θ � Ψ�1

θ ZðZ0Ψ�1
θ ZÞ�1Z0Ψ�1

θ

� �
y and ω̂yy and γ̂yy are

obtained from û ¼ ½y � xβ̂� Dx δ̂y ; x � Dx δ̂x �.

Bierens nonparametric nonlinear cotrending test. The advantage of the test
proposed by Bierens36 is that the nonlinear trend does not have to be parameterized,
it can be modeled as zt= g(t)+ μt where g tð Þ ¼ β0 þ β1t þ f tð Þ; zt is a k-variate
time series, μt is a k-variate zero-mean stationary process and f(t) is a deterministic
k-variate general nonlinear trend function that allow for structural changes. Non-
linear cotrending occurs when there exists a non-zero vector θ such that θ′f(t)= 0
where a’b is the inner product of two vectors a and b. Hence, the null hypothesis of
this test is that the multivariate time series zt is nonlinear cotrended, and one or
more linear combinations of the time series are stationary around a constant or a
linear trend. This test is a cointegration test in the case when it is applied to series
that contain unit roots. The nonparametric test for nonlinear cotrending is based on
the generalized eigenvalues of the matrices M1 and M2 defined by M1 ¼ T�1

PT
t¼1

F̂ t=Tð ÞF̂ t=Tð Þ0, where F̂ xð Þ ¼ T�1
P Tx½ �

t¼1 ðzt � β̂0 � β̂1tÞ if x 2 T�1; 1½ � and F̂ xð Þ ¼
0 if x 2 0;½ T�1Þ, with β̂0 and β̂1 being the estimates of the vectors of intercepts and
slope parameters in a regression of zt on a constant and a time trend. M2 is defined
as M2 ¼ T�1 PT

t¼m½m�1
Pm�1

j¼0 ðzt�j � β̂0 � β̂1ðt � jÞÞ�½m�1
Pm�1

j¼0

ðzt � j� β̂0 � β̂1ðt � jÞÞ�0 , where m= Ta with T the number of observations and
α= 0.5. Solving M1 � λM2j j ¼ 0 and denoting the solution of the largest rth
eigenvalue by λ̂r , the test statistic is T

1�αλ̂r . The null hypothesis is that there are r
cotrending vectors against the alternative of r − 1 cotrending vectors. The test has a
non-standard distribution and the critical values are tabulated in Bierens36. The
existence of r cotrending vectors in r + 1 series indicates the presence of r linear
combinations of the series that are stationary around a linear trend and that these
series share a single common nonlinear deterministic trend. Such a result indicates a
strong secular co-movement in the r + 1 series.

Guo and Shintani consistent cotrending rank selection when both stochastic
and nonlinear deterministic trends are present. Guo and Shintani38,67 propose a
model-free consistent cotrending rank selection procedure when both stochastic and
nonlinear deterministic trends are present in a multivariate system. Their procedure
defines two cotrending ranks: r1, which is the total number of linearly independent
vectors in an m-variables system that can eliminate both stochastic and determi-
nistic trends at the same time; and r2, which is the total number of linearly inde-
pendent vectors that can eliminate the deterministic trend, regardless of whether
they eliminate the stochastic trend at the same time. r2 is called the weak cotrending
rank and m − r2 is the total number of common deterministic trends. These
cotrending ranks can be estimated in paired or joint ways, but for large enough
samples (T= 100) the two methods yield similar results. The proposed cotrending
rank selection procedure allows for a wide variety of nonlinear trends, including
breaks in the trend function and smooth transitions. In the case of breaks in the
trend function, no common deterministic trends will be reported by this procedure
if either: (1) there is no co-breaking (i.e., the breaks in the trend functions of the
variables in the system are not common) or; (2) not all of the piece-wise trend slope
coefficients are proportional between the trend functions. For cotrending to hold,
co-breaking is a necessary, but not sufficient, condition. Here we report only the
weak cotrending rank r2 as the literature has shown temperature and radiative
forcing series to be better represented as trend stationary processes with breaks in

their trend function3,39,43. Let Zt denote an m-variate process for t= 1,…, T. Let
λ̂1 ≥ λ̂2 ≥ � � � ≥ λ̂m denote the eigenvalues of S�1

11 S00 where S11 ¼ T�1
PT

t¼1 ztz
0
t and

S00 ¼ T�1
PT

t¼2ðzt � zt�1Þðzt � zt�1Þ0 . The paired procedure selects r1 and r2
independently by minimizing each of VN1 r1ð Þ ¼ �Pr1

i¼1 λ̂i þ f r1ð ÞCT=T and
VN2 r2ð Þ ¼ �Pr2

i¼1 λ̂i þ f r2ð ÞC0
T=T

2. The joint procedure selects both r1 and r2 by
minimizing VN r1; r2ð Þ ¼ �Ta Pr1

i¼1 λ̂i �
Pr2

i¼r1þ1 λ̂iþ f r1ð ÞCT=T þ f r2ð ÞC0
T=T

2

with 0 < a < 1. CT= In(T), 2 In (In(T)), and 2 for the Bayesian information criterion
(BIC), Hannan–Quinn criterion (HQ), and Akaike information criterion (AIC),
respectively. f(s) is an increasing function in s. The BIC was used for the results
presented here.

Regression-based method to estimate the TCR and natural variability around
the warming trend. The results from cotrending tests and of the procedure to
estimate the cotrending rank indicate that temperature series from all spatial scales
considered share a single common trend which is imparted by TRF and dominated
by WMGHG. Deviations from such a trend are consistent with a second-order
stationary process and thus natural variability is deemed to remain stable during
the sample period. Both the estimation of TCR and the natural variability around
the trend use the results of the cotrending tests. First, we use ordinary least square
to estimate the regression Tt= α+ βTRFt+ εt, in which β represents the TCR. The
residuals εt represent the variations around the warming trend produced by natural
variability and other factors such as regional/local forcing. We use εt to produce
estimates of the natural variability around the warming trend (σ) required to
calculate SToE and TtA. Given the time-series properties of εt, σ is assumed to be
invariant during the observational period and thus we use the full sample to
estimate the value of σ to provide a measure of the variations in temperature for
which societies are assumed to be prepared for and able to cope with.

ToE and the procedure to compute SToE and TtA. ToE has been commonly
used in the climate change literature to estimate when the warming signal will
become larger than the background climate variability25. ToE helps to put into
context how extreme warming projections are with respect to climate variability
and thus seek to identify regions where risk could be higher and faced sooner.
Examples of the application of this concept are found in ecology26, climate policy,
and reducing the risk of climate extremes27. Its application covers diverse spatial
and temporal scales as well as climate variables25,46,47,68. These studies typically
involve using simulations from complex physical models to approximate the cli-
mate signal and a measure of long-term climate variability.

The social time of emergence SToE is evaluated using the estimates of TCR and σ
via the following steps: (1) obtain estimates of the warming trend for a given reference
period; (2) estimate the warming trend via ΔTref ;i;t ¼ TCRi � ðTRFt � TRFref Þ
where i and t denote region and time, respectively, and ref represents the
reference year. Subtracting the constant TRFref from TRFt implies that at the reference
year ΔTref,i,t is equal to zero; (3) the social time of emergence is calculated as

SToEðBÞi;ref ¼ min year � I ΔTref ;i;t

Bσ i
≥ 1

� �h i
, where B is a constant; I(·) is the indicator

function; year is the calendar year and σi the standard deviation of the residuals
obtained from regressing temperatures of region i on TRF. The time to adapt metric
TtA is obtained by subtracting the reference year from the estimated SToE value, i.e.,
TtAB;i;ref ¼ SToE Bð Þi;ref � yearref .

Bootstrap procedure for constructing SToE and TtA confidence intervals. The
bootstrap procedure we employ consists of two steps: (i) we estimate the regression,
Tt ¼ αþ βFt þ ϵt to obtain ϵ̂t ¼ Tt � α̂� β̂Ft . Then, we fit an auto-regression of
order 2 on ϵ̂t , which is ϵ̂t ¼ c0 þ c1 ϵ̂t�1 þ c2 ϵ̂t�2 þ ηt . Since the ordinary least
squares estimator used for an auto-regression is subject to bias, we correct it by a
bootstrap procedure. That is, we subtract from the ordinary least squares estimate
of (c0, c1, c2) the bias computed as the difference between the average of bootstrap
estimates and the original estimate. If the bias adjusted estimates imply a non-
stationary autoregressive process, then we reduce the magnitude of bias adjustment
until the implied autoregressive process becomes stationary; (ii) Using the bias-
corrected estimate of (c0, c1, c2), we re-construct bootstrap samples of ϵ̂t and
combine them with α̂þ β̂Ft to generate bootstrap samples of Tt. For each bootstrap
sample of Tt, we compute and store SToE and TtA measures. The confidence
intervals reported in Supplementary Tables S33–S35 are percentiles of the boot-
strap distributions of SToE and TtA.

Data description and sources. The annual mean near-surface temperature
anomalies for zonal means (latitude belts) were obtained from the GISTEMP
dataset69 of the Goddard Institute for Space Studies of NASA (https://data.giss.
nasa.gov/gistemp/), the HadCRUT4 dataset70 version HadCRUT.4.6.0.0 from the
Met Office https://www.metoffice.gov.uk/hadobs/hadcrut4/ and the Climate
Explorer website (https://climexp.knmi.nl/select.cgi?hadcrut4); the corrected and
filled-in HadCRUT4 dataset (version 2; referred to here as HadCRUT4k) of
Cowtan and Way71, see https://www-users.york.ac.uk/~kdc3/papers/coverage2013/
series.html; https://climexp.knmi.nl/select.cgi?had4sst4_krig_v2).
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The continent-level annual mean near-surface temperature anomalies were
obtained from the Berkeley Earth Surface Temperatures (BEST; http://
berkeleyearth.org/) and; the NOAA GlobalTemp dataset (https://www.ncdc.noaa.
gov/cag/global/time-series). The country-level annual mean surface temperature
anomalies were obtained from the Berkeley Earth Surface Temperatures (BEST;
http://berkeleyearth.org/) and the CRU TS v. 4.0372 and the derived CY v. 4.03
dataset (https://crudata.uea.ac.uk/cru/data/hrg/).

We use two radiative forcing datasets from the Goddard Institute for Space
Studies of NASA (https://data.giss.nasa.gov/modelforce/). The main one used is
that of Hansen43 and for sensitivity analyses we also consider the Miller dataset73.
The aggregated radiative forcing variables used are the well-mixed greenhouse
gases (WMGHGs; carbon dioxide (CO2), methane (NH4), nitrous oxide (N2O),
and CFCs), and the total radiative forcing (TRF), which includes WMGHG plus
ozone (O3), stratospheric water vapor, solar irradiance, land-use change, snow
albedo, black carbon, reflective tropospheric aerosols, and the indirect effect of
aerosols.

We use simulations from climate models included in the Atlas subset of the
CMIP5 ensemble50 to compare our regional TCR estimates with those that can be
inferred from current climate projections. The Atlas subset includes a single
realization per model in the CMIP5 ensemble. We use the historical simulations
and those produced under the RCP4.5 scenario. The complete list of models is
given in Table 1 of the Annex of the Working Group I AR5 report50. The models
with simulations for the RCP4.5 scenario are HadGEM2-CC, HadGEM2-ES,
inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MIROC5, MIROC-
ESM, MIROC-ESM-CHEM, MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P, MRI-
CGCM3, NorESM1-M, NorESM1-ME. For each simulation, we calculated a 20-
year average centered around 2011 (the year for which estimates in Fig. 1 are
reported) and obtained the TRF value for 2011 from the RCP emission scenario
database (http://www.pik-potsdam.de/~mmalte/rcps/index.htm)44. TCR is

calculated as TCR ¼ Δ�T2011
TRF2011

. Supplementary Tables S20 to S22 provide the TCR

estimates (ensemble mean and 95% confidence intervals) for each region based on
the IPCC’s Atlas subset. The results show that the estimates of TCR based on the
Atlas subset of the CMIP5 and those presented here are similar for all regions.
Moreover, in all cases, our estimates fall within the confidence intervals of the
models’ projections.

Data availability
No datasets were generated during this study. All data used in this study are publicly
available from the sources cited in “Methods” and at https://doi.org/10.6084/m9.
figshare.13380779.v1.
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