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A B S T R A C T

Background: Decision-making is the process of choosing and performing actions in response to sensory cues to
achieve behavioral goals. Many mathematical models have been developed to describe the choice behavior and
response time (RT) distributions of observers performing decision-making tasks. However, relatively few re-
searchers use these models because it demands expertise in various numerical, statistical, and software tech-
niques.
New method: We present a toolbox — Choices and Response Times in R, or ChaRTr — that provides the user the
ability to implement and test a wide variety of decision-making models ranging from classic through to modern
versions of the diffusion decision model, to models with urgency signals, or collapsing boundaries.
Results: In three different case studies, we demonstrate how ChaRTr can be used to effortlessly discriminate
between multiple models of decision-making behavior. We also provide guidance on how to extend the toolbox
to incorporate future developments in decision-making models.
Comparison with existing method(s): Existing software packages surmounted some of the numerical issues but
have often focused on the classical decision-making model, the diffusion decision model. Recent models that
posit roles for urgency, time-varying decision thresholds, noise in various aspects of the decision-formation
process or low pass filtering of sensory evidence have proven to be challenging to incorporate in a coherent
software framework that permits quantitative evaluation among these competing classes of decision-making
models.
Conclusion: ChaRTr can be used to make insightful statements about the cognitive processes underlying observed
decision-making behavior and ultimately for deeper insights into decision mechanisms.

1. Introduction

Perceptual decision-making is the process of choosing and per-
forming appropriate actions in response to sensory cues to achieve
behavioral goals (Freedman and Assad, 2011; Hoshi, 2013; Shadlen and
Newsome, 2001; Gold and Shadlen, 2007; Shadlen and Kiani, 2013;
O’Connell et al., 2018a). A sophisticated research effort in multiple
fields has led to the formulation of cognitive process models to describe
decision-making behavior (Donkin and Brown, 2018; Ratcliff et al.,
2016). The majority of these models are grounded in the “sequential
sampling” framework, which posits that decision-making involves the
gradual accumulation of noisy sensory evidence over time until a bound
(or criterion/threshold) is reached (Forstmann et al., 2016; Ratcliff
et al., 2016; Shadlen and Kiani, 2013; Brunton et al., 2013; Ratcliff and

Rouder, 1998; Ratcliff and McKoon, 2008; Gold and Shadlen, 2007;
Hanks et al., 2014). Models derived from the sequential sampling fra-
mework are typically elaborated with various systematic and random
components so as to implement assumptions and hypotheses about the
underlying cognitive processes involved in perceptual decision-making
(Ratcliff et al., 2016; Diederich, 1997).

The most prominent sequential sampling model of decision-making
is the diffusion decision model (DDM), which has an impressive history
of success in explaining the behavior of human and animal observers
(e.g., Forstmann et al., 2016; Ratcliff et al., 2016; Palmer et al., 2005;
Tsunada et al., 2016; Ding and Gold, 2012a,b). However, recent studies
propose alternative sequential sampling models that do not involve the
integration of sensory evidence over time. Instead, novel sensory evi-
dence is multiplied by an urgency signal that increases with elapsed
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decision time, and a decision is made when the signal exceeds the
criterion (Ditterich, 2006a; Thura et al., 2012; Cisek et al., 2009). An-
other line of research proposes that observers aim to maximize their
reward rate and suggests that the decision boundary dynamically de-
creases as the time spent making a decision grows longer. Such a fra-
mework has been argued to provide a better explanation for decision-
making behavior in the face of sensory uncertainty (Drugowitsch et al.,
2012).

One approach to distinguish between these different models is to
systematically manipulate the stimulus statistics and/or the task
structure and then test whether behavior is qualitatively consistent with
one or another sequential sampling model (Cisek et al., 2009; Thura
and Cisek, 2014; Carland et al., 2015; Brunton et al., 2013; Scott et al.,
2015). An alternative approach is to quantitatively analyze the choice
and RT behavior with a large set of candidate models, and then care-
fully use model selection techniques to understand the candidate
models that best describe the data (e.g., Hawkins et al., 2015b;
Chandrasekaran et al., 2017; Purcell and Kiani, 2016; Evans et al.,
2017). The quantitative modeling and model selection approach allows
the researcher to determine whether a particular model component
(e.g., an urgency signal, or variability in the rate of information accu-
mulation) is important for generating the observed behavioral data. It
also provides a holistic method for testing model adequacy because the
proposed model is judged on its ability to account for all available data
(e.g., Evans et al., 2017), rather than focusing on a specific subset of the
data.

Despite the apparent benefits of model selection, there are technical
and computational challenges in the application of decision-making
models to behavioral data. Some researchers have surmounted these
issues by simplifying the process: using analytical solutions for the
predicted mean RT and accuracy from the simplest form of the DDM,
applied to participant-averaged behavioral data (Palmer et al., 2005;
Tsunada et al., 2016). However, the complete distribution of RTs is
highly informative, and often necessary, to reliably discriminate be-
tween the latent cognitive processes that influence decision-making
(Forstmann et al., 2016; Ratcliff and McKoon, 2008; Ratcliff et al.,
2016; Luce, 1986). Until recently, applying sequential sampling models
like the DDM to the joint distribution over choices and RT required
bespoke domain knowledge and computational expertise. This has
hindered the widespread adoption of quantitative model selection
methods to study decision-making behavior.

Some recent attempts have demystified the application of cognitive
models of decision-making to behavioral data, providing a path for
researchers to apply these methods to their own research questions. For
instance, Vandekerckhove and Tuerlinckx (2008) developed the Diffu-
sion Modeling and Analysis Toolbox (DMAT), and Voss and Voss (2007)

developed the diffusion model toolbox (fast-dm; for an updated version
see fast-dm-30, Voss et al., 2015). Other modern toolboxes have im-
proved the parameter estimation algorithms and can leverage multiple
observers to perform hierarchical Bayesian inference (Wiecki et al.,
2013). In hBayesDM (Ahn et al., 2017) and Dynamic Models of Choice
(Heathcote et al., 2018) researchers can apply a range of models to
behavior from a wide variety of decision-making paradigms ranging
from choice tasks to reversal learning and inhibition tasks.

A common feature across all of the excellent toolboxes currently
available is that they provide code to apply the DDM to data, or the
DDM in addition to a few alternative models. As a consequence, the
toolboxes provide no pathway for a researcher to rigorously compare
the quantitative account of the DDM to alternative theories of the de-
cision making process including models with an urgency signal
(Ditterich, 2006a), urgency-gating (Cisek et al., 2009), or collapsing
bounds (Hawkins et al., 2015b). Simply put, we currently have no
openly available and extensible toolbox for understanding choice and
RT behavior using the many hypothesized models of decision-making.
We believe there is a critical need for examining how these different
models perform in terms of explaining decision-making behavior.

The objective of this study was to address this need and provide a
straightforward framework to analyze a range of existing sequential
sampling models of decision-making behavior. Specifically, we aimed
to provide an open-source and extensible framework that permits
quantitative implementation and testing of novel candidate models of
decision-making. The outcome of this study is ChaRTr, a novel toolbox
in the R programming environment that can be used to analyze choice
and RT data of humans and animals performing two-alternative forced
choice tasks that involve perceptual or other types of decision-making.
R is an open source language that enjoys widespread use and is main-
tained by a large community of researchers. ChaRTr can be used to
analyze choice and RT behavior from the perspective of a (potentially
large) range of decision-making models and can be readily extended
when new models are developed. These new models can be in-
corporated into the toolbox with minimal effort and require only basic
working knowledge of R and C programming; we explain the required
skills in this manuscript. Similarly, new optimization routines that are
readily available as R packages can be implemented if desired.

2. Methods and materials

The methods are focused on the specification of various mathema-
tical models of decision-making, and the parameter estimation and
model selection processes. For reference, the symbols we use to describe
the models are shown in Table 1. The naming convention for the models
we have developed in ChaRTr is to take the main architectural feature

Table 1
List of symbols used in the decision-making models implemented in ChaRTr.

Parameter Description

x(t) State of the decision variable at time t.
Δt Time step of the decision variable.
z, sz Starting state of the decision variable (i.e., x(0)= z), and decision-to-decision variability in starting state. sz is the range of a uniform distribution with mean

(midpoint) z.
vi, sv Rate at which the decision variable accumulates decision-relevant information (drift rate, v) in condition i, and decision-to-decision variability in drift rate. sv

is the standard deviation of a normal distribution with mean vi.
γ(t) Urgency signal that dynamically modulates the decision variable as a function of t. Can take different functional forms in different models.
aupper, alower Upper and lower response boundaries that terminate the decision process.
aupper(t), alower(t) Upper and lower response boundaries that vary as a function of t.
Ter, st Time required for stimulus encoding and motor preparation/execution (non-decision time), and decision-to-decision variability in non-decision time. st is the

range of a uniform distribution with mean (midpoint) Ter.
s Within-decision variability in the diffusion process. Represents the standard deviation of a normal distribution. By convention, set to a fixed value to satisfy a

scaling property of the model.
E(t) Momentary sensory evidence at time t.
b, sb Intercept and variability of the intercept in urgency based models with linear urgency signals.
� (0, 1) Normal distribution with zero mean and unit variance.
� l l( , )1 2 Uniform distribution over the interval l1 and l2.
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of the model and use it as a prefix to the model.

• The diffusion decision model, henceforth DDM, refers to the sim-
plest sequential sampling model.

• cDDM refers to a DDM with collapsing boundaries (Hawkins et al.,
2015b).

• cfkDDM refers to a DDM with collapsing boundaries and a fixed
parameter for the function defining the collapsing boundary
(Hawkins et al., 2015b).

• uDDM refers to a DDM with a linear urgency signal with a slope and
an intercept.

• dDDM refers to a DDM with urgency signal defined by Ditterich
(2006a).

• UGM refers to an Urgency Gating Model (Cisek et al., 2009; Thura
et al., 2012).

• bUGM refers to a UGM with a linear urgency signal composed of a
slope and an intercept (Chandrasekaran et al., 2017).

For reference, the models being considered, the parameters for the
models and the number of parameters in each model are shown in
Table 2.

2.1. Mathematical models of decision-making

Sequential sampling models of decision-making assume that RT
comprises two components (Ratcliff and McKoon, 2008; Ratcliff et al.,
2016). The first component is the decision time, which encompasses
processes such as the accumulation of sensory evidence and additional
decision-related factors such as urgency. The second component is the
non-decision time (or residual time), which involves the time required
for processes that must occur to produce a response but fall outside of
the decision-formation process, such as stimulus encoding, motor pre-
paration and motor execution time.

We introduce various models of the decision-making process in
approximately increasing level of complexity, beginning with the
simple DDM.

2.1.1. Simple diffusion decision model (DDM)
The diffusion decision model (or DDM) is derived from one of the

oldest interpretations of a statistical test – the sequential probability
ratio test (Wald and Wolfowitz, 1948) – as a model of a cognitive
process – how decisions are formed over time (Stone, 1960). The DDM
provides the foundation for the decision-making models implemented
in ChaRTr and assumes that decision-formation is described by a one-
dimensional diffusion process (Fig. 1A) with the stochastic differential
equation

�+ = + +x t t x t v t s t( Δ ) ( ) Δ Δ (0, 1) (1)

where x(t) is the state of the decision-formation process, known as the
decision variable, at time t; v is the rate of accumulation of sensory
evidence, known as the drift rate; Δt is the step size of the process; s is
the standard deviation of the moment-to-moment (Brownian) noise of
the decision-formation process; � (0, 1) refers to a random sample from
the standard normal distribution. A response is made when x
(t+ Δt)≥ aupper or x(t+ Δt)≤ alower. Whether a response is correct or
incorrect is determined from the boundary that was crossed and the
valence of the drift rate (i.e., >v 0 implies the upper boundary corre-
sponds to the correct response, <v 0 implies the lower boundary cor-
responds to the correct response). In Fig. 1A, and in all DDM models in
ChaRTr, we specify alower=0 and aupper=A, without loss of generality.
z represents the starting state of the evidence accumulation process
(i.e., the position of the decision variable at x(0)) and can be estimated
between alower and aupper. When we assume there is no a priori response
bias, z is fixed to the midpoint between alower and aupper (i.e., A/2). The
decision time is the first time step t at which the decision variable
crosses one of the two decision boundaries. The predicted RT is given as
a sum of the decision time and the non-decision time Ter.

2.1.2. DDM with variable starting state, variable drift rate, and variable
non-decision time

The (simple) DDM assumes a level of constancy from one decision to
the next in various components of the decision-formation process: it
always commences with the same level of response bias (z), the drift
rate takes a single value (vi, for trials in experimental condition i), and
the non-decision time never varies (Ter).

None of these simplifying assumptions are likely to hold in experi-
mental contexts. For example, the relative speed of correct and

Table 2
List of the 37 models available in ChaRTr along with the individual parameters
in each model and the total number of parameters. n refers to the number of
stimulus conditions used. aU is the short form of aupper.

Abbreviation Parameters N

Diffusion decision model (DDM)
References: Ratcliff (1978), Ratcliff and Rouder (1998)Ratcliff, 1978Ratcliff (1978),

Ratcliff and Rouder (1998)
DDM …v n1 , aU, Ter n+2
DDMSv …v n1 , aU, Ter, Sv n+3
DDMSt …v n1 , aU, Ter, St n+3
DDMSvSz …v n1 , aU, Ter, Sv, Sz n+4
DDMSvSt …v n1 , aU, Ter, Sv, St n+4
DDMSvSzSt …v n1 , aU, Ter, Sv, Sz, St n+5

Collapsing diffusion decision model (cDDM)
References: Drugowitsch et al. (2012), Hawkins et al. (2015b)Drugowitsch et al.,

2012Drugowitsch et al. (2012), Hawkins et al. (2015b)
cDDM …v n1 , aU, Ter, a′, k n+4
cDDMSv …v n1 , aU, Ter, a′, k, Sv n+5
cDDMSt …v n1 , aU, Ter, a′, k, St n+5
cDDMSvSz …v n1 , aU, Ter, a′, k, Sv, Sz n+6
cDDMSvSt …v n1 , aU, Ter, a′, k, Sv, St n+6
cDDMSvSzSt …v n1 , aU, Ter, a′, k, Sv, Sz, St n+7

Collapsing diffusion decision model with fixed k (cfkDDM)
References: Hawkins et al. (2015b)
cfkDDM …v n1 , aU, Ter, a′ n+3
cfkDDMSv …v n1 , aU, Ter, a′, Sv n+4
cfkDDMSt …v n1 , aU, Ter, a′, St n+4
cfkDDMSvSt …v n1 , aU, Ter, a′, Sv, St n+5
cfkDDMSvSzSt …v n1 , aU, Ter, a′, Sv, Sz, St n+6

Linear urgency diffusion decision model (uDDM)
References: Ditterich (2006a), O’Connell et al. (2018b)
uDDM …v n1 , aU, Ter, b, m n+4
uDDMSv …v n1 , aU, Ter, b, m, Sv n+5
uDDMSt …v n1 , aU, Ter, b, m, St n+5
uDDMSvSt …v n1 , aU, Ter, b, m, Sv, St n+6
uDDMSvSb …v n1 , aU, Ter, b, m, Sv, Sb n+6
uDDMSvSbSt …v n1 , aU, Ter, b, m, Sv, Sb, St n+7

Ditterich urgency diffusion decision model (dDDM)
References: Ditterich (2006a)
dDDM …v n1 , aU, Ter, sx, sy, d n+5
dDDMSv …v n1 , aU, Ter, sx, sy, d, Sv n+6
dDDMSt …v n1 , aU, Ter, sx, sy, d, St n+6
dDDMSvSt …v n1 , aU, Ter, sx, sy, d, Sv, St n+7
dDDMSvSzSt …v n1 , aU, Ter, sx, sy, d, Sv, Sz, St n+8

Urgency gating model (UGM)
References: Cisek et al. (2009), Thura et al. (2012)Cisek et al., 2009Cisek et al. (2009),

Thura et al. (2012)
UGM …v n1 , aU, Ter n+2
UGMSv …v n1 , aU, Ter, Sv n+3
UGMSt …v n1 , aU, Ter, St n+3
UGMSvSt …v n1 , aU, Ter, Sv, St n+4

Urgency gating model with intercept (bUGM)
(Chandrasekaran et al., 2017)
bUGM …v n1 , aU, Ter, b n+3
bUGMSv …v n1 , aU, Ter, b, Sv n+4
bUGMSvSt …v n1 , aU, Ter, b, Sv, St n+5
bUGMSvSb …v n1 , aU, Ter, b, Sv, Sb n+5
bUGMSvSbSt …v n1 , aU, Ter, b, Sv, Sb, St n+6
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erroneous responses can differ, and participants’ arousal may exhibit
random fluctuations over time, possibly due to a level of irreducible
neural noise. Decades of research into decision-making models suggests
that these effects, and others, are often well explained by combining
systematic and random components in each of the starting state, drift
rate, and non-decision time (Fig. 1B). In ChaRTr, we provide variants of
the DDM where all of these parameters can be randomly drawn from
their typically assumed distributions over different trials,

�+ = + +x t t x t v t s t( Δ ) ( ) Δ Δ (0, 1)j j ij (2)

�∼ ⎛
⎝

− + ⎞
⎠

x z
s

z
s

(0)
2

,
2j

z z

(3)

�∼v v s( , )i vij (4)

�∼ ⎛
⎝

− + ⎞
⎠

T T s T s
2

,
2j

t t
er, er er (5)

where i denotes an experimental condition; j denotes an exemplar trial;
� denotes the uniform distribution. ChaRTr provides flexibility to the
user such that they can assume the decision-formation process involves
none, some or all of these random components. Furthermore, it pro-
vides flexibility to assume distributions for the random components
beyond those that have been typically assumed and studied in the lit-
erature. For example, one could hypothesize that non-decision times are
exponentially distributed rather than uniformly distributed (Ratcliff,
2013).

Fig. 1. Schematic of some sequential sampling models of decision-making incorporated in ChaRTr. (A) The DDM model is the simplest example of a diffusion model
of decision-making. (B) A variant of the DDM with variable non-decision time (St), variable drift-rate (Sv) and a variable start point (Sz). (C) A DDM with collapsing
bounds and variability in the non-decision time and drift rate. The function A(t) takes the form of a Weibull function as defined in Eq. (6). (D) A variant of the DDM
with variable non-decision time and drift rate, and an “urgency signal”. This urgency signal grows with elapsed decision time, which is implemented by multiplying
the decision variable by the increasing function of time γ(t) (Eq. (10), following Ditterich, 2006a). (E) UGM with variable drift rate (Sv) and variable non decision
time (St). In the standard UGM, the urgency signal is only thought to depend on time and thus starts at 0. The sensory evidence is passed through a low pass filter
(typically a 100-250ms time constant, Carland et al., 2015; Thura et al., 2012). The sensory evidence is then multiplied by the urgency signal to produce a decision
variable that is compared to the decision boundaries. (F) Schematic of urgency signals with an intercept (top panel) and a variable intercept (bottom panel).
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2.1.3. DDM with collapsing decision boundaries (cDDM)
The DDM with collapsing boundaries generalizes the classic DDM by

assuming that the sensory evidence required to commit to a decision is
not constant as a function of elapsed decision time. Instead, it assumes
that the decision boundaries gradually decrease as the decision-for-
mation process grows longer (e.g., Bowman et al., 2012; Drugowitsch
et al., 2012; Hawkins et al., 2015a; Milosavljevic et al., 2010; Tajima
et al., 2016). Collapsing boundaries terminate trials with weak sensory
signals (i.e., lower drift rates) at earlier time points than models with
‘fixed’ boundaries (i.e., simple DDM) and otherwise equivalent para-
meter settings. The net result of collapsing boundaries is a reduction in
the positive skew (right tail) of the predicted RT distribution relative to
the fixed boundaries DDM. This signature in the predicted RT dis-
tribution holds whether there is variability in parameters across trials
(Section 2.1.2) or not (Section 2.1.1).

Collapsing boundaries allow the observer to implement a decision
strategy where they do not commit an inordinate amount of time to
decisions that are unlikely to be correct (i.e., decision processes with
weak sensory signals). This allows the observer to sacrifice accuracy for
a shorter decision time, so they can engage in new decisions that might
contain stronger sensory signals and hence a higher chance of a correct
response. When a sequence of decisions varies in signal-to-noise ratio
from one trial to the next, like a typical difficulty manipulation in de-
cision-making studies, collapsing boundaries are provably more optimal
than fixed boundaries in the sense that they lead to greater predicted
reward across the entirety of the decision sequence (Drugowitsch et al.,
2012; Tajima et al., 2016). In this type of decision environment, col-
lapsing boundaries have provided a better quantitative account of an-
imal behavior, including monkeys, who might be motivated to obtain
rewards to a greater extent than humans, possibly due to the operant
conditioning and fluid/food restriction procedures used to motivate
these animals (Hawkins et al., 2015a). Whether humans also aim to
maximize reward via collapsing boundaries is less clear (e.g., Evans
et al., 2019).

Fig. 1C shows a schematic of a collapsing boundaries model. In
ChaRTr we assume the collapsing boundary follows the cumulative
distribution function of the Weibull distribution, following Hawkins
et al. (2015a). The Weibull function is quite flexible and can approx-
imate many different functions that one might wish to investigate, in-
cluding the exponential and hyperbolic functions. We assume the lower
and upper boundaries follow the form

⎜ ⎟⎜ ⎟= ⎛

⎝
− ⎛

⎝
−⎛

⎝
⎞
⎠

⎞
⎠

⎞

⎠
⎛
⎝

− ′⎞
⎠

a t a t
λ

a( ) 1 exp 1
2

k

lower
(6)

= −a t a a t( ) ( )upper lower (7)

where alower(t) and aupper(t) denote the position of the lower and upper
boundaries at time t; a denotes the position of upper boundary at t=0
(initial boundary setting, prior to any collapse); a′ denotes the asymp-
totic boundary setting, or the extent to which the boundaries collapsed
(the maximal possible collapse – where the upper and lower boundaries
meet – can occur when a′=1/2); λ and k denote the scale and shape
parameters of the Weibull distribution.

The collapsing boundaries are denoted in ChaRTr as cDDM. When
the k parameter is fixed to a particular value to aid stronger identifia-
bility in parameter estimation (Hawkins et al., 2015a), we refer to the
architecture as cfk to denote a fixed k value (cfkDDM), here chosen to
be 3 but can be modified in user implementations.

The collapsing boundaries, as implemented here, are symmetric,
though they need not be; ChaRTr provides flexibility to modify all
features of the boundaries, including symmetry for each response op-
tion, and the functional form. For instance, one might hypothesize that
linear collapsing boundaries are a better description of the decision-
formation process than nonlinear boundaries (O’Connell et al., 2018a;
Murphy et al., 2016). ChaRTr also permits DDMs with collapsing

boundaries to incorporate any combination of variability in starting
state, drift rate, and non-decision time (e.g., models of the form
cDDMSvSzSt and cfkDDMSvSzSt).

2.1.4. DDM with an urgency signal (uDDM)
The DDM with an urgency signal assumes that the input evidence –

consisting of the sensory signal and noise – is modulated by an “urgency
signal”. This urgency-modulated sensory evidence is accumulated into
the decision variable throughout the decision-formation process. As the
process takes longer, the urgency signal grows in magnitude, implying
that sensory evidence arriving later in the decision-formation process
has a more profound impact on the decision-variable than information
arriving earlier (Fig. 1D). To make the distinction between an urgency
signal and collapsing boundaries clear, the DDM with an urgency signal
assumes a dynamically modulated input signal combined with bound-
aries that mirror those in the classic DDM; the DDM with collapsing
boundaries assumes a decision variable that mirrors the classic DDM
combined with dynamically modulated decision boundaries.

As with the collapsing boundaries, the urgency signal can take many
functional forms; we have implemented two such forms in ChaRTr. The
general implementation of the urgency signal is

�= +E t v t s t( ) Δ Δ (0, 1) (8)

+ = +x t t x t E t γ t( Δ ) ( ) ( ) ( ) (9)

where E(t) denotes the momentary sensory evidence at time t; γ(t) de-
notes the magnitude of the urgency signal at time t. Note that with
increasing decision time the urgency signal magnifies the effect of the
sensory signal (v tΔ ) and the sensory noise ( �s tΔ (0, 1)).

The first urgency signal implemented in ChaRTr follows a 3 para-
meter logistic function with two scaling factors (sx, sy) and a delay (d),
originally proposed by Ditterich (2006a, dDDM)Ditterich, 2006aDit-
terich (2006a, dDDM):

= −S t s t d( ) exp( ( ))x1 (10)

= −S t s d( ) exp( )x2 (11)

=
+

+
+ −

+
γ t

s S t
S t

s S t
S t

( )
( )

1 ( )
1 (1 ) ( )

1 ( )
y y1

1

2

2 (12)

The second form of urgency signal implemented in ChaRTr follows a
simple, linearly increasing function (uDDM)

= +γ t b( ) mt (13)

where b is the intercept of the urgency signal and m is the slope.
As with the DDMs described above, urgency signal models can in-

corporate any combination of variability in starting state, drift rate and
non-decision time, giving rise to a family of different decision-making
models. We also allow for the possibility of variability across decisions
in the intercept term of the linear urgency signal,

= +γ t b( ) mtj j (14)

�∼ ⎛
⎝

− + ⎞
⎠

b b s b s
2

,
2j

b b

(15)

where j denotes an exemplar trial, and b and sb denote the mean (i.e.,
midpoint) and range of the uniform distribution assumed for the ur-
gency signal respectively.

In ChaRTr, we have assumed that the urgency signal exerts a mul-
tiplicative effect on the sensory evidence (Eq. (9)). One variation of
urgency signal models proposed in the literature posits that urgency is
added to the sensory evidence, rather than multiplied by it (Hanks
et al., 2011, 2014). In the one-dimensional diffusion models considered
here, additive urgency signals make predictions that cannot be dis-
criminated from a DDM with collapsing boundaries (Boehm et al.,
2016). That is, for any functional form of an additive urgency signal,
there is a function for the collapsing boundaries that will generate
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identical predictions. For this reason we do not provide an avenue for
simulating and estimating additive urgency signal models in ChaRTr,
and instead recommend the use of the DDM with collapsing boundaries.

2.1.5. Urgency gating model (UGM)
In a departure from the classic DDM framework, the urgency gating

model (UGM) proposes there is no integration of evidence, at least not
in the same form as the DDM (Cisek et al., 2009; Thura et al., 2012;
Thura and Cisek, 2014). Rather, the UGM assumes that incoming sen-
sory evidence is low-pass filtered, which prioritizes recent over tem-
porally distant sensory evidence, and this low-pass filtered signal is
modulated by an urgency signal that increases linearly with time (Eq.
(13)).

Implementation of the UGM in ChaRTr uses the exponential average
approach for discrete low-pass filters (smoothing). The momentary
evidence for a decision is a weighted sum of past and present evidence,
which gives rise to the UGM's pair of governing equations

=
+

α τ
τ tΔ (16)

�= − + − +E t αE t α v t s t( ) ( 1) (1 )( Δ Δ (0, 1)) (17)

where τ is the time constant of the low-pass filter, which has typically
been set to relatively small values of 100 or 200ms in previous appli-
cations of the UGM, and α controls the amount of evidence from pre-
vious time points that influences the momentary evidence at time t. For
instance, when α=0 there is no low-pass filtering, and when
τ=100ms (and Δt is 1 ms) the previous evidence is weighted by 0.99
and new evidence by 0.01.

The decision variable at time t is now given as

= +γ t b( ) mt (18)

=x t E t γ t( ) ( ) ( ). (19)

The intercept and slope of the urgency signal are set to particular values
in standard applications of the UGM (b=0, m=1), reducing Eq. (19)
to

=x t E t t( ) ( ) . (20)

In ChaRTr, we allow for variants of the UGM where the parameters of
the urgency signal are not fixed. For instance, similar to the DDM with
an urgency signal, we can test a UGM where the intercept (b) is freely
estimated from data (bUGM), and even an intercept that varies on a
trial-by-trial basis (Eq. (14)).

2.2. Fitting models to data

2.2.1. Parameter estimation
In ChaRTr, we estimate parameters for each model and participant

independently, using Quantile Maximum Products Estimation (QMPE;
Heathcote et al., 2002; Heathcote and Brown, 2004). QMPE uses the
QMP statistic, which is similar to χ2 or multinomial maximum like-
lihood estimation, and produces estimates that are asymptotically un-
biased and normally distributed with asymptotically correct standard
errors (Brown and Heathcote, 2003). QMPE quantifies agreement be-
tween model predictions and data by comparing the observed and
predicted proportions of data falling into each of a set of inter-quantile
bins. These bins are calculated separately for the correct and error RT
data. In all examples that follow, we use 9 quantiles calculated from the
data (i.e., split the RT data into 10 bins), though the user can specify as
many quantiles as they wish. Generally speaking, we recommend no
fewer than 5 quantiles, to prevent loss of distributional information,
and no more than approximately 10 quantiles, to prevent noisy ob-
servations in observed data especially at the tails of the distribution
potentially bearing undue influence on the parameter estimation rou-
tine.

Many of the models considered in ChaRTr have no closed-form

analytic solution for their predicted distribution. To evaluate the pre-
dictions of each model, we typically simulate 10,000 Monte Carlo re-
plicates per experimental condition during parameter estimation. Once
the parameter search has terminated, we use 50,000 replicates per
experimental condition to precisely evaluate the model predictions and
perform model selection. In ChaRTr, the user can vary the number of
replicates used for parameter estimation and model selection; in pre-
vious applications, we have found these default values provide an ap-
propriate balance between precision of the model predictions and
computational efficiency. To simulate the models, we use Euler's
method, which approximates the models’ representation as stochastic
differential equations.

Alternatives to our simulation-based approach exist, such as the
integral equation methods of Smith (2000) or others that use analytical
techniques to calculate first passage times (Gondan et al., 2014;
Navarro and Fuss, 2009), to generate exact distributions. We do not
pursue those methods in ChaRTr owing to the model-specific im-
plementation required, which is inconsistent with ChaRTr's core phi-
losophy of allowing the user to rapidly implement a variety of model
architectures.

We estimate the model parameters using differential evolution to
optimize the goodness of fit (DEoptim package in R, Mullen et al.,
2011). For the type of non-linear models considered in ChaRTr, we have
previously found that differential evolution more reliably recovers the
true data generating model than particle swarm and simplex optimi-
zation algorithms (Hawkins et al., 2015a). DEoptim also allows easy
parallelization and can be used readily in clusters and the cloud with
large number of cores to speed the process of model estimation. How-
ever, we again provide flexibility in this respect; the user can change
this default setting and specify their preferred optimization algorithm
(s).

2.2.2. Model selection
ChaRTr provides two metrics for quantitative comparison between

models. Each metric is based on the maximized value of the QMP sta-
tistic, which is a goodness-of-fit term that approximates the continuous
maximum likelihood of the data given the model.

The DDM is a special case of most of the model variants considered
and will almost always fit more poorly than any of the other variants.
We provide model selection methods that determine if the incorpora-
tion of additional components such as urgency or collapsing bounds
provide an improvement in fit that justifies the increase in model
complexity.

The raw QMP statistic, as an approximation to the likelihood, can be
used to calculate the Akaike Information Criterion (AIC Akaike, 1974)
and the Bayesian Information Criterion (BIC; Schwarz, 1978). We
provide methods to compute AIC and BIC owing to the differing as-
sumptions underlying the two information criteria (Aho et al., 2014),
and differing performance with respect to the modeling goal (Evans,
2019b).

ChaRTr also provides functionality to transform the model selection
metrics into model weights, which account for uncertainty in the model
selection procedure and aid interpretation by transformation to the
probability scale. The weight w for model i, w M( )i , relative to a set of m
models, is given by

=
−

∑ −=

w M
Z M

Z M
( )

exp( ( ))

exp( ( ))
i

i

j
m

j

1
2

1
1
2 (21)

where Z is AIC, BIC, or the deviance (−2× log-likelihood; that is,−2×
QMP statistic). The model weight is interpreted differently depending
on the metric Z:

• Where Z is the log-likelihood, the model weights are relative like-
lihoods. The log-likelihood should only be used in the model weight
transformation when all models under consideration have the same
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number of freely estimated parameters.

• Where Z is the AIC, the model weights become Akaike weights
(Wagenmakers and Farrell, 2004).

• Where Z is the BIC, and the prior probability over the m models
under consideration is uniform (i.e., each model is assumed to be
equally likely before observing the data), the model weights ap-
proximate posterior model probabilities (p(M|Data), Wasserman,
2000).

Although AIC and BIC are provided and easily computed in ChaRTr,
their use for discriminating between models requires careful con-
sideration from the researcher. Our perspective is influenced by an
excellent paper that describes the worldviews for the two metrics (Aho
et al., 2014). Here, we provide a succinct summary of the re-
commendations from Aho et al. (2014). Ultimately, whether AIC or BIC
are used depends on the goals of the researcher.

If a researcher believes that all of the models implemented in
ChaRTr or novel models they develop are all wrong but provide useful
descriptions of choice and RT data, then AIC is more appropriate for
model selection. In this scenario, the goal of model selection is to assess
which model will provide the best predictions for new data. In this
sense, AIC is closely linked to cross validation. As more and more data
are collected, the assumption under AIC is that the model that produces
the best predictions will become more and more complex.

In contrast, if a researcher believes that the true model is im-
plemented in ChaRTr or in the set of novel models they develop, then
BIC is likely to be the better tool. In this scenario, the goal of model
selection is to address the question “Which of these models is correct?”.
As more and more data are collected, the assumption under BIC is that
the correct model will be identified. BIC is thus ideally suited to answer
questions about identifying which model was most likely to have gen-
erated the data.

The only difference between AIC and BIC is the size of the penalty
term correcting for model complexity. AIC considers false negatives
(“Type II” errors) worse than false positives and errs on the side of

selecting more complex models, and thus can be perceived as favoring
“overfitting” models. In contrast, BIC is more conservative and con-
siders false positives (“Type I” errors) worse than false negatives and
errs on the side of the selecting simpler models, and thus could be
perceived as favoring “underfitting”models. Both are valid perspectives
and our opinion is that claiming one is better than the other is not a
particularly fruitful endeavor.

Thus, our position is that both metrics have utility when a re-
searcher applies ChaRTr to real data. Practically, we recommend using
both AIC and BIC for model comparison as a method for identifying a
set of likely models. We take this approach in the case studies described
below, which leads us to some nuanced conclusions. Throughout this
paper, and in other papers (Chandrasekaran et al., 2018), we argue that
using model selection techniques such as AIC and BIC to identify a
single best model might not be the best approach. Rather, we suggest
researchers use these metrics judiciously to guide their analyses and
ultimately new experiments.

2.2.3. Visualization: quantile probability plots
Visualization of choice and RT data is critical to understanding

observed and predicted behavior. Such visualization can prove chal-
lenging in studies of rapid decision-making because each cell of the
experimental design (e.g., a particular stimulus difficulty) yields a joint
distribution over the probability of a correct response (accuracy) and
separate RT distributions for correct and error responses. Since most
decision-making tasks manipulate at least one experimental factor
across multiple levels, such as stimulus difficulty, each data set is
comprised of a family of joint distributions over choice probabilities
and pairs of RT distributions (correct, error). Following convention and
recommendation (Ratcliff et al., 2016; Ratcliff and McKoon, 2008), we
visualize these joint distributions with quantile probability (QP) plots.
QP plots are a compact form to display choice probabilities and RT
distributions across multiple conditions.

In a typical QP plot, quantiles of the RT distribution of a particular
type (e.g., correct responses) are plotted as a function of the proportion
of responses of that type. Consider a hypothetical decision-making ex-
periment with three different levels of stimulus difficulty; Fig. 2 pro-
vides a plausible example of the data from such an experiment. Now
assume that for one of the experimental conditions, the accuracy of the
observer was 55%. To display the choice probabilities, correct RTs and
error RTs for this condition, the QP plot shows a vertical column of N
markers above the x-axis position ∼0.55, where the N markers corre-
spond to the N quantiles of the RT distribution of correct responses
(rightmost gray bar in Fig. 2). The QP plot also shows a vertical col-
umns of N markers at the position 1− 0.55= 0.45, where this set of N
markers correspond to the N quantiles of the distribution of error RTs
(leftmost gray bar in Fig. 2). This means that RT distributions shown to
the right of 0.5 on the x-axis reflect correct responses, and those to the
left of 0.5 on the x-axis reflect error responses.

The default ChaRTr QP plot displays 5 quantiles of the RT dis-
tribution: 0.1, 0.3, 0.5, 0.7 and 0.9 (sometimes also referred to as five
percentiles: 10th, 30th, 50th, 70th, 90th). The .1 quantile summarizes
the leading edge of the RT distribution, the 0.5 quantile (median)
summarizes the central tendency of the RT distribution, and the 0.9
quantile summarizes the tail of the RT distribution. The goal of visua-
lization with QP plots, or other forms of visualization, is to enable
comparison of the descriptive adequacy of a model's predictions relative
to the observed data.

3. Results

The results section first provides guidance on the use of ChaRTr and
how to apply the various models of the decision-making process to data.
The second part of the results section illustrates the use of ChaRTr to
analyze choice and RT data from hypothetical observers, followed by a
case study modeling data from two non-human primates (Roitman and

Fig. 2. A quantile probability (QP) plot of choice and RT data from a hy-
pothetical decision-making experiment with three levels of stimulus difficulty.
The three difficulty levels are represented as vertical columns mirrored around
the midpoint of the x-axis (0.5). In this example, the lowest accuracy condition
had ∼55% correct responses, so the RTs for correct responses in this condition
are located at 0.55 on the x-axis and the corresponding RTs for error responses
are located at 1− 0.55=0.45 on the x-axis; these two RT distributions are
highlighted in gray bars. For each RT distribution we plot along the y-axis the
10th, 30th, 50th, 70th, 90th percentiles (i.e., 0.1, 0.3, 0.5, 0.7, 0.9 quantiles),
separately for correct and error responses in each of the three difficulty levels.
For clarity, correct responses are shown in blue and error responses are shown
in yellow. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Shadlen, 2002). Code for the ChaRTr toolbox is available at chartr.
chandlab.org/ or directly from github at https://github.com/
mailchand/CHaRTr and will eventually be released as an R library.

3.1. Toolbox flow

Figs. 3 and 4 provide flowcharts for ChaRTr. Fig. 3 provides an
overview of the five main steps involved in the cognitive modeling
process. Fig. 4 provides a schematic overview of the steps involved in
the parameter estimation component of the process, which uses the
differential evolution optimization algorithm (Mullen et al., 2011).

The typical steps in ChaRTr for estimating the parameters of a de-
cision-making model from data are as follows:

1) Model Specification: Specify models in the C programming lan-
guage, and compile the C code to create the shared object, chartr-
ModelSpec.so, that is dynamically loaded into the R workspace.
Future versions of ChaRTr will use the Rcpp framework and will not
require the compilation and loading of shared objects (Eddelbuettel
and François, 2011).

2) Formatting and Loading Data: Convert raw data into an appro-
priate format (choice probabilities, quantiles of RT distributions for
correct and error trials). Save this data object for each unit of ana-
lysis (e.g., a participant, different experimental conditions for the

same participant). Load this data object into the R workspace.
3) Parameter Specification: Choose the parameters of the desired

model that need to be estimated along with lower and upper
boundaries on those parameters (i.e., the minimum and maximum
value that each parameter can feasibly take).

4) Parameter Estimation: Pass the parameters, model and data to the
optimization algorithm (differential evolution). The algorithm
iteratively selects candidate parameter values and evaluates their
goodness of fit to data. This process is repeated until the goodness of
fit no longer improves (Fig. 4).

5) Model Selection: The parameter estimates from the search termi-
nation point (i.e., the point where goodness of fit no longer im-
proves), the corresponding goodness of fit statistics and model
predictions are saved for subsequent model selection and visuali-
zation.

These 5 steps are repeated for each model and each participant
under consideration. In the next few sections, we elaborate on each of
the steps with examples to illustrate their implementation in ChaRTr.
We note that use of ChaRTr requires a basic knowledge of R program-
ming, and if one wishes to design and test a new decision-making model
then also C programming. Owing to the many excellent online resources
for both languages (a simple search of “R program tutorial” will return
many helpful results), we do not provide a tutorial for either language

Fig. 3. ChaRTr flow chart. Models are specified and once data is available, the parameters are estimated through the optimization procedure. Once parameter
estimation is complete, the final goodness of fit statistic is calculated for every model under consideration, which is used for subsequent model selection analyses.
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here.

Algorithm 1. Simulating a diffusion decision model (DDM): z is the
starting state, v is the drift rate, aL and aU are lower and upper bounds
for the simulation

3.1.1. Model specification
The difference equation for the model variants implemented in

ChaRTr is specified in C code in the file “chartr-ModelSpec.c”. An ex-
ample algorithm for the DDM (Section 2.1.1) is shown in Algorithm 1.

The functions take as input the various parameters that are to be op-
timized along with various constants such as the maximum number of
time points to simulate as well as the time step.

Once the C code has been specified for the model, the code is
compiled using the following command that uses the SHLIB framework
(R Core Team, 2019) at the terminal (usually ITERM in mac, Terminal
Emulator in linux). The command shown in Listing 1 calls the appro-
priate compiler (clang on mac, gcc on linux), identifies the appropriate
compiler to run, and loads the appropriate libraries and ensures the
correct options are applied during compilation to create the archi-
tecture-specific shared object.

Listing 1. Creating a shared library for loading the specified models
into R.

$ R CMD SHLIB chartr-ModelSpec.c

The output of the compilation is a shared object called chartr-
ModelSpec.so that is dynamically loaded into R for use with the differ-
ential evolution optimizer. We anticipate that future versions of ChaRTr
will use the Rcpp framework (Eddelbuettel and François, 2011), which
will obviate the need for compiling and loading shared object libraries.

3.1.2. Formatting and loading data
To estimate the parameters of decision-making models in ChaRTr,

the data need to be organized in a separate comma separated values
(CSV) file for each participant in a simple three column format: “con-
dition, response, RT”. “condition” is typically a stimulus difficulty
parameter, “response” is correct (1) or incorrect (0), and RT is the re-
sponse time (or reaction time when response time and movement can
be separated). For example, in a typical file, data for a single stimulus
difficulty (e.g., one level of motion coherence in a random dot motion
task) would look like Listing 2.

Listing 2. The required raw data format for parameter estimation in
ChaRTr.

condition, response, RT

90,1,0.573

90,1,0.472

90,1,0.556

.

.

.

90,0,0.406

90,0,0.429

90,0,0.57

The raw data are converted in “chartr-processRawData.r” to gen-
erate 9 quantiles (10 bins) of correct and error RTs to be used in the
parameter estimation process. It also stores the data as a R list named
dat, which includes four fields: n, p, q, pb.

• n is the number of correct and error responses in each condition.

• p is the proportion of correct responses in each condition (derived
from n).

• q is the quantiles of the correct and error RT distributions in each
condition.

• pb is the number of responses in each bin of the correct and error RT
distributions in each condition (derived from n).

dat is saved to disk as a new file. The dat file is loaded into the R
workspace as required for the model estimation procedure.

3.1.3. Parameter specification
The next step in model estimation is, for each model, to specify a list

Fig. 4. Flow chart for the parameter estimation component of ChaRTr, which
uses the differential evolution optimization algorithm (Mullen et al., 2011).
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of parameters that can be freely estimated from data along with each
parameter's lower and upper bound; we provide default suggestions for
the lower and upper boundaries in ChaRTr. Model parameters can be
generated by calling the function paramsandlims with two arguments:
model name and the number of stimulus difficulty levels in the ex-
periment. The number of stimulus difficulties is internally converted
into drift rate parameters; for example, if there are n stimulus diffi-
culties, then paramsandlims will estimate n independent drift rate
parameters. There is also functionality in ChaRTr to specify fixed (non-
estimated) values of some parameters, such as a drift rate of 0 for
conditions with non-informative sensory information (e.g., 0% co-
herence in a random dot motion experiment). paramsandlims returns a
named list with the following fields: lowers, uppers, parnames, fitUGM.
These variables are used internally in the parameter estimation rou-
tines.

3.1.4. Parameter estimation
Steps 1–3 loaded the required data, identified the desired model to

fit and specified the parameters of the model to be estimated. This in-
formation is now passed to the optimization algorithm (differential
evolution). Parameter optimization is an iterative process of proposing
candidate parameter values, accepting or rejecting candidate parameter
values based on their goodness of fit, and repeating. This process con-
tinues until the proposed parameter values no longer improve the
model's goodness of fit. These are assumed to be the best-fitting para-
meter values, or the (approximate) maximum likelihood estimates.
Fig. 4 provides an overview of the steps involved in parameter esti-
mation when using the differential evolution optimization algorithm
(Mullen et al., 2011).

The accompanying file “chartr-DemoFit.r” provides a complete code
example for estimating the parameters of a model with urgency.

3.1.5. Model selection
Once the best-fitting parameters have been estimated from a set of

candidate models, the final step is to use this information to guide in-
ference about the relative plausibility of each of the models given the
data. Many different levels of questions can be asked of these models.
The best practices for model selection are described generally in Aho
et al. (2014) and for the specific problem of behavioral modeling in
Heathcote et al. (2015).

In ChaRTr, we provide functions for converting the raw QMP sta-
tistic that approximates the likelihood. The likelihood is a goodness-of-
fit statistic that can be combined with penalized model comparison
metrics. This could entail comparison between two models at multiple
levels of granularity. For instance, the question could be “which of the
models considered provides the better description of the data”, or “is a
DDM with variable baseline better than a DDM without a variable
baseline”. It could also be used to compare between a model with
collapsing boundaries and a model with drift-rate variability (O’Connell
et al., 2018a) or between models with different forms of collapsing
boundaries (Hawkins et al., 2015a). All of these questions can be an-
swered using ChaRTr. As a guide, we provide illustrations of model
selection analyses using ChaRTr in two case studies presented in Section
3.4. We also apply the model selection analyses to the behavior of
monkeys performing a decision-making task (Roitman and Shadlen,
2002).

3.2. Extending ChaRTr

ChaRTr is designed with the goal of being readily extensible, to
allow the user to specify new models with minimal development time.
This frees the user to focus on the models of scientific interest while
ChaRTr takes care of the model estimation and selection details behind
the scenes. Here, we provide an overview of the steps required to add
new models to ChaRTr.

1. Add a new function to “chartr-ModelSpec.c” with the parameters
needed to be estimated for the model. Specify the model in C code,
following the structure of the pseudo-code example given in
Algorithm 1. Provide the new model with a unique name (i.e., not
shared with any other models in the toolbox), preferably using the
convention defined in Table 2.

2. Add any new parameters of the model to the function makeparamlist,
and to the paramsandlims function in script “chartr-
HelperFunctions.r”.

3. Add the name of the model to the function returnListOfModels, in
script “chartr-HelperFunctions.r”.

4. Make sure additional parameters are passed to the functions
diffusionC and getpreds, in scripts “chartr-HelperFunctions.r” and
“chartr-FitRoutines.r”, respectively.

5. Finally, specify in function diffusionC the code for generating choices
and RTs to use for model fitting. For example, the code for gen-
erating the choices and RTs for DDMSvSzSt is shown in Listing 3.

Listing 3. R Code for simulating choices and RTs for the model
DDMSvSzSt.

3.3. Simulating data from models in ChaRTr

Once models are specified, they can be used to generate simulated
RTs and discrimination accuracy for each condition. Simulated data
help refine quantitative hypotheses. They also provide much greater
insight into the dynamics of different decision-making models and how
different variables in these models modulate the predicted RT dis-
tributions for correct and error trials (Ratcliff and McKoon, 2008).

ChaRTr provides straightforward methods to simulate data from
decision-making models and generate quantile probability plots to
compactly summarize and visualize RT distributions and accuracy. The
function paramsandlims, used above in the parameter estimation rou-
tine, can also be used to generate hypothetical parameters to be passed
to the function simulateRTs, which generates a set of simulated RTs and
choice responses. By hypothetical parameters, we mean a set of rea-
sonable starting values. An example is shown in Listing 4. These
parameters can be changed by the user.

Listing 4. R code for simulating RT and choice responses from the
simple diffusion decision model (DDM).

source(”chartr-HelperFunctions.r”)

nCoh = 5

nmc = 50000

model = ”DDM”

fP = paramsandlims(model, nCoh, hypoPars = TRUE)

currParams = fP$hypoParams

R = simulateRTs(model, currParams, n=nmc, nds=nCoh)

Fig. 5 shows the output of “chartr-Demo.r”, which simulates and
visualizes choice and RT data from four models in ChaRTr: DDM,
DDMSvSzSt, UGMSv, and dDDMSv. Fig. 5A shows predictions of the
simple DDM (see Section 2.1.1), a symmetric, inverted-U shaped QP
plot (Ratcliff and McKoon, 2008); the symmetry implies that correct
and error RTs are identically distributed. As variability is introduced to
the DDM's starting state (Sz) and/or drift-rate (Sv; see Section 2.1.2), the
QP plot loses its symmetry (Fig. 5B); relative to correct RTs, error RTs
can be faster (due to Sz) or slower (due to Sv). Fig. 5B also introduced
variability in non-decision time (St), which increases the variance of the
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fastest responses.
Fig. 5C shows predictions of a standard variant of the UGM model

(UGMSv) that assumes variable drift rate, zero intercept, a slope (β) of 1
and a time constant of 100ms (see Section 2.1.5). The urgency gating
mechanism in this model reduces the positive skew of the RT dis-
tributions, and leads to the prediction that error RTs are always slower
than correct RTs (Fig. 5C; Hawkins et al., 2015b). Like the UGM, the
dDDMSv model, another model of urgency (see Section 2.1.4), also
predicts reduced positive skew of the RT distributions. Unlike the
standard UGM, however, it can also predict error RTs that are faster or
slower than correct RTs (Fig. 5D).

It is clear from Fig. 5 that various features in data discriminate
between various features of the decision-making models: the relative
speed of correct and error RTs, and critically the shape of complete RT
distributions. We now provide three illustrative case studies that take
advantage of the differential predictions of the models, demonstrating
the use of ChaRTr for parameter estimation and selection amongst sets
of competing models.

3.4. Case studies

To illustrate the utility of the toolbox, we provide three case studies

where we simulated data from decision-making models in ChaRTr (case
studies 1 and 2) or use ChaRTr to model data collected from monkeys
performing a decision-making task (case study 3). We use the case
studies to demonstrate the typical model estimation and selection
analyses. The case studies also provide a modest test of model and
parameter recovery. That is, whether ChaRTr reliably suggests that the
true data-generating model is in the set of candidate models, and
whether it reliably estimates the parameters of the true data-generating
model.

3.4.1. Case study 1: hypothetical data generated from a DDM with variable
drift rate and non-decision time (DDMSvSt)

For our first case study, we assumed the data came from hypothe-
tical observers who made decisions in a manner consistent with a DDM
with variable drift rate (Sv) and variable start times (St). In ChaRTr, this
corresponds to simulating data from the model DDMSvSt, where an
observer's RTs exhibit variability due to both the decision-formation
process and the non-decision components. We simulated 300 trials for
each of 5 stimulus difficulties, for 5 hypothetical participants.

For each model and hypothetical participant, we repeated the
parameter estimation procedure 5 times, independently. We strongly
recommend this redundant-estimation approach as it greatly reduces

Fig. 5. Quantile probability plots of data simulated from four models in ChaRTr. (A) DDM, (B) DDM with variable drift rates, starting state and non-decision time
(DDMSvSzSt), (C) urgency gating model with variable drift rates (UGMSv), and (D) DDM with an urgency signal and a variable drift rate defined as per Ditterich
(2006a, dDDMS)Ditterich, 2006aDitterich, 2006aDitterich (2006a, dDDMS)Ditterich, 2006aDitterich, 2006aDitterich (2006a, dDDMS)Ditterich, 2006aDitterich
(2006a, dDDMS)Ditterich, 2006aDitterich (2006a, dDDMS)Ditterich, 2006aDitterich (2006a, dDDMS)Ditterich, 2006aDitterich (2006a, dDDMS). Gray points denote
data. Lines are drawn for visualization purposes.
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the likelihood of terminating the optimization algorithm in local
minima, which can arise in simulation-based models like those im-
plemented in ChaRTr. Variability occurs due to randomness in simu-
lating predictions of the model at each iteration of the optimization
algorithm, and randomness in the optimization algorithm itself (for a
similar approach see Hawkins et al., 2015a,b). We then select the best

of the 5 independent parameter estimation procedures (or ‘runs’) for
each model and participant (i.e., the ‘run’ with the highest value of the
QMP statistic). If computational constraints are not an issue, then we
encourage as many repetitions as possible of the parameter estimation
procedure.

Fig. 6A and B shows the AICs and BICs for a set of models, obtained

Fig. 6. Model selection and parameter estimation outcomes from applying a range of cognitive models of decision-making to choice and RT data from five hy-
pothetical observers (case study 1). A–C shows outcomes from one hypothetical observer and E shows outcomes from a second hypothetical observer. Data were
generated using the model DDMSvSt. (A) AIC values for each model with the DDM model as the reference. To guide the eye and ease readability, bars are colored
based on whether they are better or worse than the DDM in fitting the data. The best model is shown in green, and the next five best models are shown in orange. The
remaining models better than the DDM are shown in gray and models worse than the DDM are shown in purple. (B) Same as A but using BIC as the model comparison
metric. (C) Akaike weights and BIC-based approximate posterior model probabilities for the top six models that provided the best account of the data. ChaRTr
correctly identifies the true data-generating model (DDMSvSt) as the one of the most likely candidates for describing the data. (D) Data-generative and estimated
parameter values for the DDMSvSt model shown in A. Close alignment indicates ChaRTr recovered the true parameter values. (E) Akaike weights and posterior model
probabilities from another hypothetical observer. Color conventions as in C. (F) Average akaike weights and posterior model probabilities across all five hypothetical
observers, assuming the observers are independent. Reassuringly, DDMSvSt is identified as one of the most plausible models for the data. (For interpretation of the
references to color in the print version for this figure legend, the reader is referred to the web version of this article.).
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after using ChaRTr to fit the choice and RT data from one of the hy-
pothetical observers. Both information criteria (ICs) are reported with
reference to the DDM (i.e., as difference scores relative to the DDM).
Thus, negative values suggest a more parsimonious account of the data
than the DDM, and positive values suggest the opposite. Fig. 6C shows
the Akaike weights and BIC-based approximate posterior model prob-
abilities (Eq. (21)) for the top six models.

The AIC scores/weights suggest that DDMSvSt provides the best
account of the data; by ‘best account’, we mean the model that provided
the most appropriate tradeoff between model fit and model complexity
among the specific set of models under consideration, according to AIC.
This suggests that ChaRTr reliably recovers the generating model as one
of the candidate models – a necessary test for any parameter estimation
and model selection analysis. We strongly recommend this form of
model recovery analysis when developing and testing any proposed
cognitive model; if a data-generating model cannot be successfully
identified as a set of candidate models in simulated data, where the true
model is known, it is not a useful measurement model for real data.

The BIC scores/weights also suggest that DDMSvSt and DDMSt are
the best models for describing the data. However, interestingly, BIC
ranks DDMSt higher than DDMSvSt. This result does not suggest that
ChaRTr is failing to recover the data generating model. Instead, our
interpretation of the results is that both DDMSvSt and DDMSt should be

considered candidate explanations for the data and that they are very
close in terms of explanations for the choice and response time data.
That is, the most likely explanation for the data is a DDM with variable
non-decision time. There might also be a contribution from drift rate
variability. As we explained in the methods, AIC is more focused on
false negatives and thus places a lower penalty on complexity. BIC is
more focused on false positives and thus places a higher penalty on
complexity.

The models ChaRTr ranked 3rd to 6th using both AIC and BIC were
sensibly related to the data-generating model. These models all as-
sumed that observed RTs were influenced by factors other than sensory
evidence (such as growing impatience), which might mimic the data-
generating model's RT variability that arose due to factors external to
the decision-formation process (variable non-decision time). The results
serve as an important reminder that model selection should not be used
to argue for the “best” model in an absolute sense. Rather, when con-
sidering the collection of the highest ranked models (e.g., models in
green and orange in Fig. 6A and B) it can be most constructive to rank
useful hypotheses/explanations of the data that can then guide further
study (Burnham et al., 2011), which is the approach we have used here.
For instance, considering this set of highly-ranked models provides
strong evidence that the true decision process involves perfect in-
formation integration (as opposed to low-pass filtering of sensory

Fig. 7. Quantile probability (QP) plots showing correct RTs (blue) and error RTs (orange) for two hypothetical observers (case study 1), along with the model
predictions (gray dots). Predictions from the four best-fitting models are shown along with the simplest model the DDM. The best fitting models DDMSvSt, DDMSt,
DDMSvSzSt, cfkDDMSvSt, and dDDMSvSt are shown. Numbers at the top of each plot show the log likelihood, AIC, and BIC for the model under consideration. AIC and
BIC are computed with respect to the DDM. Higher values of log-likelihood are better. When assuming the DDM as the base (reference) model and AIC as the
penalized model selection metric, the model DDMSvSt provides the best account of the data. When using BIC as the penalized model selection metric, the model
DDMSt provides a better description of the data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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evidence, as in the UGM) and includes variability in non-decision time
components, which were both components of the data-generating
model.

Fig. 6D shows the estimated parameter values for the DDMSvSt
model. The parameter estimates were very similar to the data-gen-
erating values, with some minor over- or under-estimation of the drift
rate parameters. This suggests that ChaRTr can reasonably recover the
data-generating model and parameters. As above, we also strongly re-
commend this form of parameter recovery analysis when developing and
testing any proposed cognitive model.

Fig. 6E shows the model selection outcomes from another hy-
pothetical observer. When using AIC, ChaRTr again identifies the best
fitting model as DDMSvSt and the next best model as DDMSt. BIC again
prefers DDMSt over DDMSvSt. A few other models also provided good
accounts of the data. As was the case for observer 1, these models
predict variability in RTs due to mechanisms outside the decision-for-
mation process.

In the three other hypothetical observers that we simulated, the
pattern of results returned by ChaRTr was consistent with the results
shown for the two hypothetical observers in Fig. 6: DDMSvSt was

chosen as the best fitting model for all observers by AIC. If we assume
the set of observers are independent, which is true in the case of our
hypothetical example and usually in experiments, we can average the
individual-participant posterior model probabilities to obtain a group-
level estimate. As shown in Fig. 6F, across the set of observers DDMSvSt
is identified as the most plausible model for the data, indicating rea-
sonably good model recovery; the next-best models are the same as
those described earlier. The results from BIC were again consistent,
preferring the DDMSt model over DDMSvSt for this group of hypothe-
tical observers.

Fig. 7 shows QP plots of the data from two hypothetical observers
overlaid on the predictions from a range of models. The simple DDM
predicted greater variance than was observed in data, and therefore
provided a poor account of the data. When the DDM is augmented with
St and both Sv and St, it provided a much improved account of the data,
capturing most of the RT quantiles and the accuracy patterns. Three
other models provided an almost-equivalent account of the data in
terms of log-likelihoods (DDMSvSzSt, cfkDDMSvSt, dDDMSvSt), but they
did so with the use of more model parameters than DDMSvSt and
DDMSt. This led to a larger complexity penalty for those models and

Fig. 8. Model selection and parameter estimation outcomes from applying a range of cognitive models of decision-making to data from hypothetical observers (case
study 2). Decision-making in these hypothetical observers is controlled by the model bUGMSv. (A) AIC values as a function of model with the DDM model as the
reference for one hypothetical observer, Subj 3. Color conventions as in Fig. 6A. (B) BIC values as a function of model with the DDM model as the reference for the
same subject shown in A. (C) Akaike Weights and Posterior model probabilities for the top six models that provided the best account of Subj 3's behavior. (D) Results
for another hypothetical subject. (E) Results for the population of hypothetical subjects. The most probable model for this set of hypothetical observers is the
generative model, bUGMSv. However, we note that other models such as bUGM, UGMSv, and uDDMSv provide quite good descriptions of the behavior. This result is
in keeping with the general notion that model selection ought to be used as a guide to the most likely models and not necessarily to argue for a “best” model. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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thus larger AICs and BICs in comparison to the DDMSvSt model, as
shown in the model selection analysis in Fig. 6.

Together, this case study highlights the power of ChaRTr in dis-
criminating between 37 albeit overlapping models of decision-making
and ranking the most likely models. As we have emphasized, the models
selected by AIC and BIC will differ slightly because of the different
penalties assumed for the two methods which underlie their different
philosophies. If we obtained this result in real data, our interpretation
would be that for this population of subjects, the data are consistent
with a model that involves a DDM and variable non-decision time and
that there is also the possibility of variability in the drift rate parameter.
We would also conclude that the most likely models are DDMs without
a dynamic component such as an urgency signal, since the DDMs per-
formed better than models with collapsing boundaries or urgency.

3.4.2. Case study 2: hypothetical data generated from a UGM with variable
intercept (bUGMSv)

In a second case study we simulated data from hypothetical ob-
servers whose decision-formation process was controlled by an urgency
gating model (Cisek et al., 2009; Thura et al., 2012) with a variable drift
rate and an intercept (Chandrasekaran et al., 2017), termed bUGMSv in
ChaRTr. We again assumed five hypothetical subjects, five stimulus
difficulties and simulated 500 trials for each of them. We then fit the
data with the redundant-estimation approach as in case study 1 and
evaluated the results of the model selection analysis, all using routines
contained in ChaRTr.

Fig. 8A and B shows the AICs and BICs for the set of models con-
sidered for one hypothetical observer's data, again referenced to the
DDM (i.e., as difference scores relative to the DDM). Negative values
suggest a more parsimonious account of the data than the DDM, and
positive values suggest the opposite. Fig. 8C shows the Akaike weights
and posterior model probabilities for the top six models. bUGMSv

provides the best account of the data for this hypothetical observer
according to both AIC and BIC.

The models ChaRTr ranked 2nd to 6th were also sensibly related to
the data-generating model; they all assumed the decision-formation
process was influenced by factors other than sensory evidence, such as
growing impatience or other variants of the urgency gating model. The
second case study reaffirms our conclusion from the first case study that
model selection may not be put to best use when arguing for a single
“best” model in an absolute sense. This is especially true when the data-
generating model is not decisively recovered from data.

For example, Fig. 8D shows the top six models identified by ChaRTr
using AIC and BIC as providing the best account of another of the hy-
pothetical observers’ data. For this particular hypothetical dataset,
many other models provided a better account than the generative
model bUGMSv. This result highlights two important points. First, some
models under some circumstances can mimic each other (i.e., generate
similar predictions), which makes their identification in data difficult.
Second, some models may not be mimicked, but they may require very
many data points to reliably recover. We note that these points are not
specific to ChaRTr – they are properties of quantitative model selection
in general and are an important reminder of the necessary careful steps
needed when aiming to select between models (Chandrasekaran et al.,
2018).

Fig. 8E shows the Akaike weights (left panel) and posterior model
probabilities (right panel) for the different models averaged over all
five observers considered. Reassuringly, the most plausible model
across the set of observers is the generative model bUGMSv for both AIC
and BIC. For AIC, the next five best models are all conceptually related
to the data generating model. For instance, the next best model was
uDDMSv which is a DDM with urgency but no gating. The third best
model was bUGMSvSb which is an urgency gating model with variable
intercept.

Similarly, when using posterior model probabilities, the most
plausible model across the set of observers is the generative model

bUGMSv. Again the next five best models are all conceptually related to
the data generating model. For instance, the next best model was bUGM
which is an urgency gating model with an intercept and no drift rate
variability. The third best model was uDDM which is a DDM with an
urgency signal but no gating.

Together these results serve as another reminder of the utility of
ChaRTr in the analysis of decision-making models, including the ability
to quantitatively assess a large set of conceptually similar and dissimilar
models. If we were to obtain results like the case study in a hypothetical
experiment, we would reject a simple DDM as an explanation for our
data and suggest that a model with an urgency signal containing an
intercept is a more likely model to explain the data. We would also
likely suggest the presence of a gating component in the data but
qualify our conclusions by saying that additional subjects and larger
number of trials per subject would be needed for more confidence in the
result.

3.4.3. Case study 3: behavioral data from monkeys reported in Roitman
and Shadlen (2002)

To demonstrate the utility of ChaRTr in understanding experimental
data, we model the freely available choice and RT data from two
monkeys performing a random dot motion decision-making task
(Roitman and Shadlen, 2002). In this classic variant of the random-dot
motion task, the monkeys were trained to report the direction of co-
herent motion with eye movements. The percentage of coherently
moving dots was randomized from trial to trial across six levels (0%,
3.2%, 6.4%, 12.8%, 25.6% and 51.2%). Monkey b completed 2614
trials and Monkey n completed 3534 trials.

We demonstrate that ChaRTr replicates key findings from past
analyses of these behavioral data. Roitman and Shadlen (2002)'s be-
havioral (and neural) data were originally interpreted as a neural cor-
relate of the DDM. Later studies suggested a stronger role for im-
patience/urgency in these data (Ditterich, 2006a; Hawkins et al.,
2015b). This is the first result we wish to reaffirm using ChaRTr. The
second result we aim to reaffirm is that Hawkins et al. (2015a) showed
the urgency gating model provides a better description of the data than
the DDM. We note that recent work suggests the evidence for im-
patience/urgency in Roitman and Shadlen (2002)'s data might be the
result of the particular training regime their monkeys experienced that
is not shared by other monkey training protocols (Evans and Hawkins,
2019).

Fig. 9A and B shows the results from ChaRTr. For both monkeys, the
four best-performing models all included a DDM with collapsing
bounds, and the worst performing models were largely DDMs without
any form of urgency. As mentioned above, for any functional form of a
collapsing boundary there is a form of additive urgency signal that can
generate identical predictions. So finding that collapsing bound models
describe the data better is consistent with prior observations that (ad-
ditive) urgency is an important factor. Together, the results are broadly
consistent with those of Ditterich (2006a) and Hawkins et al. (2015b)
who reported that models with forms of impatience are systematically
better than models without it, for Roitman and Shadlen (2002)'s data.
Fig. 9C and D shows that when the comparison is restricted to a subset
of the ChaRTr models – UGMs and DDMs – variants of the UGM better
explain the behavior of the monkeys than variants of the DDM, which is
consistent with the findings of Hawkins et al. (2015a).

We can use ChaRTr to derive more insights into the behavior of the
monkeys in this decision-making task, by examining whether urgency
or the time constant of integration is a more important factor in ex-
plaining their behavior. Fig. 10 shows quantile probability plots for five
models: DDMSvSzSt, a model from the DDM class without urgency but
elaborated with variability in various parameters (Sv, Sz, St), two
models with urgency and variability in some parameters (uDDMSvSt,
uDDMSvSb), and two UGM models with variability in parameters
(bUGMSvSb, bUGMSvSt). As was shown in the model selection outcomes
in Fig. 9, the addition of urgency dramatically improved the ability of
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the models to account for the decision-making behavior of the two
monkeys.

We next used ChaRTr for a preliminary analysis of whether the
gating component of the urgency gating model improves model pre-
dictions over and above urgency alone. In both monkeys, we found that
the data are slightly more consistent with models such as bUGMSvSb
and bUGMSvSt, models that involve urgency and gating with a 100ms
time constant of integration (Fig. 10). These observations provide hy-
potheses for further analyses of the neural data and further targeted
model selection. Together, our conclusions would be that urgency is the
more important factor. However, there might be a modest role for
imperfect integration as well (especially in monkey n).

Together, the results in Figs. 9 and 10 highlight the ease with which
ChaRTr can be used to make insightful statements about the latent
cognitive processes underlying behavior in decision-making tasks and
ultimately may be a stepping stone for deeper insights into mechanism
(Krakauer et al., 2017).

3.5. Performance

In this final section we discuss computational requirements for a full
ChaRTr model selection analysis. Fig. 11A–C shows that the average
time to estimate the set of 37 ChaRTrmodels for a single run for a single

subject is approximately 88 h. This estimate is based on tests on a node
of the Boston University Shared Computing Cluster (BU SCC, two 14
core 2.4 GHz Xeon E5-2680V4 processors, 256 GB RAM) for an im-
plementation with 400 particles in the differential evolution optimizer,
10,000 Monte Carlo replicates per experimental condition, and un-
optimized random number generators. We consider this the baseline
performance of ChaRTr as it reflects the initial implementation of the
code.

We also investigated factors that influenced computation time for
the models. As might be expected, computation time increases as model
complexity (number of parameters) increases, though this is not the
sole driver of the time required for the model fitting analysis. Our
parameter estimation approach (QMPE) is based on quantiles of the RT
data, meaning that the size of the data set does not influence run speed.
This is different to alternative estimation schemes such as maximum
likelihood estimation that scales directly with the size of the data set.
However, three other factors that we loosely term “hyperparameters”
increase computational time in ChaRTr: the random number generators,
the number of particles used in the differential evolution algorithm, and
the number of Monte Carlo replicates per experimental condition (i.e.,
number of simulated trials). Optimizing these hyperparameters in-
creases the speed of the model fits. Below we outline how changing
these parameters improves the computational performance of ChaRTr.

Fig. 9. Model selection outcomes from applying a range of cognitive models of decision-making to data from two monkeys (Roitman and Shadlen, 2002). (A) and (B)
show outcomes from monkeys b and n to compare models with various forms of urgency vs. simple diffusion decision models without urgency. For both monkeys,
ChaRTr suggests models with urgency are better candidates for describing the data than DDMs without urgency. (C) and (D) show outcomes from monkeys b and n
when comparing UGM vs. DDM models. For both monkeys, UGM based models substantially outperform the DDM based models.
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In a recent study, Evans (2019a) analyzed models similar to those in
ChaRTr and found that a relatively large amount of time is spent gen-
erating random numbers for simulating the models (in particular,
sampling the diffusion noise on each time step of each simulated trial).
In our C implementation, random number generation is performed
using the norm_rand() function, and it is the most time consuming
component of the simulation. To reduce the time required for random
number generation, Evans (2019a) recommended replacing the
norm_rand() function of the random number generation process with
Lookup Tables (LUTs). We implemented the recommended LUTs and
compared them to the speed of our original implementation on the
same compute nodes (BU SCC, 28 core systems). Using LUTs for random
number generation decreased simulation time: For the 37 models we
considered, the revised implementation was performed in ∼56 h
(compare “slow” to “fast” in Fig. 11A–C). This is ∼36% faster than the
standard implementation.

Second, we considered the number of particles used to explore the
parameter space in the differential evolution optimization algorithm. In
general, a higher number of particles is better as it minimizes the risk of
falling into local minima, though this comes at the cost of computa-
tional time. We reduced the number of particles from 400 to 200 and
found that computation time again halved (Fig. 11A–C). The general
rule of thumb proposed for the number of particles is 10 times the
number of parameters to be estimated; 200 particles is consistent with
the rule of thumb for the models implemented in ChaRTr.

Finally, a key component of the parameter estimation routine is to
simulate thousands of trials for a given set of parameters (i.e., one
particle for one iteration of the differential evolution algorithm) and
then assess whether the simulated data are in close agreement with the
observed data. The speed-up obtained when we halved the number of
simulated trials from our standard of 10,000 to 5000 was ∼50%
(Fig. 11A–C). For these hyperparameter settings — LUT random
number generation, 200 particles for the differential evolution opti-
mizer, and 5000 trials for the simulation of the models — a full model
selection analysis was performed in approximately 16 h.

One concern is that altering the hyperparameters of the estimation
routine might be detrimental to model selection. This did not occur in
either of our case studies involving simulated data: when using Akaike
weights, the data-generating model and the next most likely models
were broadly consistent even when we used LUTs for the random
number generation, combined LUTs with a smaller number of particles,
or combined LUTs, smaller number of particles, and smaller number of
simulated trials (Fig. 12A and B). Similar results were observed with
posterior model probabilities (not shown).

This reliability across different hyperparameter settings suggests
that when large computing resources are not available, one could
perform an initial fast assessment using the hyperparameter settings
that provide the fastest model selection analysis to identify a candidate
set of models. After that first phase, a subset of the models that per-
formed best could be re-estimated with more conservative

Fig. 10. Quantile probability (QP) plots showing data in blue (corrects) and yellow crosses (errors) for the two monkeys from Roitman and Shadlen (2002), along
with the model predictions (gray dots). Predictions from DDMSvSzSt are shown along with four other models uDDMSvSb, bUGMSvSb, uDDMSvSt, bUGMSvSb. Numbers
at the top of each plot show the Log likelihood, the AIC and the BIC for the model under consideration. Higher, that is, more positive values of log likelihood are
better. AIC and BIC are reported assuming DDMSvSzSt as the base (reference) model. For both monkeys the model bUGMSvSb is the best model for describing the data
out of these candidate set of models. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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hyperparameter settings to refine and confirm the results of the initial
assessment.

Such an approach may also be particularly important when cross
validation is used instead of model selection metrics. Given the ne-
cessity to run the model fitting code many times with different random
seeds to avoid local minima, even a 10 fold cross validation would lead
to enormous numbers of model fitting runs. For instance for five repeats

and 10 fold cross validation, it would take nearly 50 such repeats which
might be very time consuming if the researcher wishes to test every
single model in this process. Using the model selection metrics to pare
down to the most likely set of models and then pursuing cross valida-
tion and different hyperparameter settings is likely advisable. We leave
the judicious choice of these settings to the users of ChaRTr.

Fig. 11. Computation time for models in ChaRTr. (A) Run time as a function of the number of parameters in the models for the four different settings we considered.
(B) Computation time for each model under each of the four settings. (C) Total time for parameter estimation under the different parameter settings and random
number generators. In all panels, np refers to the number of particles used in the differential evolution algorithm, n is the number of Monte Carlo replicates used for
simulation of each of these models. Higher values of n provide more precision but require more time.
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4. Discussion

Advances in our understanding of decision making have come from
three fronts: (1) through novel experimental manipulations of sensory
stimuli (Brody and Hanks, 2016; Cisek et al., 2009; Ratcliff, 2002;
Ratcliff and Rouder, 2000; Smith and Ratcliff, 2009; Thura and Cisek,
2014) and/or task manipulations (Hanks et al., 2014), (2) recording
neural data in a variety of decision-related structures in multiple model
systems (Shadlen and Newsome, 2001; Schall, 2001; Chandrasekaran
et al., 2017; Thura et al., 2014; Coallier et al., 2015; Ding and Gold,
2012a; Hanks et al., 2015), and (3) developing and testing quantitative
cognitive models of choices, RTs, and other behavioral readouts from
animal and human observers performing decision-making tasks
(Ratcliff and Smith, 2015). Quantitative modeling is a lynchpin in
generating novel insights into cognitive processes such as decision-

making. However, it has posed significant technical and computational
challenges to the researcher. Widespread and rapid uptake of quanti-
tative modeling requires software toolboxes that can easily implement
the many sophisticated models of decision-making proposed in the lit-
erature.

We argue that the ideal toolbox for developing and implementing
cognitive process models of decision-making and evaluating them
against choice and RT data should be simple to use, offer a plurality of
cognitive models, provide model estimation and model selection pro-
cedures, provide simple simulation and visualization tools, and be ea-
sily extensible when new hypotheses are developed. Such a view is
broadly consistent with recent research that lays out the best practices
for computational modeling of behavior (Wilson and Collins, 2019;
Heathcote et al., 2015). Ready adoption is also facilitated when the
toolbox is implemented in an open-source, free programming language
obviating the need for expensive licenses. The added benefit of an open
source toolbox is that researchers can look “under the hood”, which has
at least three benefits: (1) allow a deeper level of understanding of the
models, (2) readily permit extension of the toolbox, and (3) catch errors
in implementation. At the time of development of this toolbox and
submission of this study, no existing toolbox has satisfied all of these
criteria.

ChaRTr was guided by these pragmatic principles, and is our at-
tempt to provide a practical toolbox that encompasses a range of cog-
nitive models of decision-making. Some of the models are grounded in
classic random walk and diffusion models (Ratcliff, 1978; Stone, 1960).
Others incorporate modern hypotheses that decision-making behavior
might involve signals such as urgency (Ditterich, 2006a), collapsing
boundaries (Drugowitsch et al., 2012), and variable non-decision times
(Ratcliff and Tuerlinckx, 2002). Since all of the source code is freely
available, the toolbox thus provides a framework where models that are
proposed into the future can also be implemented and contrasted
against existing models. We provide a suite of functions for estimating
the parameters of decision-making models, methods to compare log-
likelihoods, and calculating penalized information criteria from these
different models. Finally, the toolbox is developed in the R Statistical
Environment, an open source language that is maintained by an active
community of scientists and statisticians (R Core Team, 2016).

We anticipate that ChaRTr will provide a pathway to standardizing
quantitative comparisons between models and across studies, and ul-
timately serve as one of the reference implementations for researchers
interested in developing and experimentally testing candidate models
of decision-making processes. ChaRTr also codifies the various para-
meters of decision-making models, which reflects the hypothesized la-
tent constructs and how they interact, and provides easy access to many
models of behavioral performance in decision-making tasks including
variants of the diffusion decision model, the urgency gating model,
diffusion models with urgency signals, and diffusion models with col-
lapsing boundaries. ChaRTr also offers pedagogical value because it
allows the user to effortlessly simulate the many different models of
decision-making and generate choice and RT data from hypothetical
observers. ChaRTr will also allow quantitative evaluation of the pre-
dictions of various decision-making models and help move away from
qualitative intuition-based predictions from these models. Finally,
ChaRTr is also sufficiently flexible that users can implement novel
models with their own specific assumptions.

ChaRTr provides researchers with the resources to apply and test
more than 30 different, albeit overlapping, variants of decision-making
models. We have argued throughout that model selection techniques
ought to be used as a tool for selecting families of models to guide the
next generation of experiments and further analyses, which is in the
spirit of Burnham et al. (2011); we do not believe model selection
should be used to justify categorical answers (“the best model”). In this
sense, model selection is one tool in the whole gamut of tools that are
needed to understand decision-making (Chandrasekaran et al., 2018).

The most promising approaches for advancing our understanding of

Fig. 12. Optimizing computational speed is not detrimental to model selection
analysis in ChaRTr. Akaike weights averaged over five hypothetical subjects in a
model selection analysis with different settings of the random number gen-
erator, number of particles, and number of simulated trials per particle for case
study 1 (A) and case study 2 (B). For both case studies, ChaRTr reliably iden-
tifies the correct data-generating model and in many cases agrees on the second
best model for the data. We also note that the exact ranking of the models
slightly differ across hyperparameter settings, but the set of identified models is
consistent.
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decision-making will combine the rigorous model selection techniques
we advocate here with novel experimental manipulations of stimulus
statistics (Brody and Hanks, 2016; Cisek et al., 2009; Evans et al., 2017;
Thura et al., 2014), task contingencies (Heitz and Schall, 2012; Hanks
et al., 2014; Thura and Cisek, 2016; Murphy et al., 2016), and a range
of other factors. We believe that validating and advancing models of
decision-making will be facilitated by data that is freely available for
the kinds of model estimation and model selection analyses we have
performed here. Here, we took advantage of the freely available dataset
from Roitman and Shadlen (2002). We anticipate the application of
ChaRTr to many more decision-making datasets will help to form a
coherent picture of how various latent cognitive processes affect the
behavior of animal and human decision-making. This deeper under-
standing of decision-making behavior (Krakauer et al., 2017) will in
turn facilitate a deeper understanding of decision-related neural re-
sponses (Murphy et al., 2016; Thura et al., 2012; Cisek et al., 2009;
Churchland et al., 2008; Purcell and Kiani, 2016; Chandrasekaran et al.,
2017; O’Connell et al., 2018a).

Rigorous model selection techniques are even more relevant if we
wish to make further inroads into understanding the neural correlates
of decision-making. In particular, discriminating between multiple
candidate models of decision-making is critical for neurophysiological
studies of decision-making that attempt to relate neural responses in
decision-related structures to the features of sequential sampling
models (Ditterich, 2006a,b; Shadlen and Newsome, 2001; Gold and
Shadlen, 2007; Ratcliff et al., 2003, 2007; Heitz and Schall, 2012;
Hanes and Schall, 1996). For example, one of the most well-established
tenets of the neural basis of decision-making is the gradual ramp-like
increase in the firing rates of individual neurons in decision-related
structures such as the lateral intraparietal area (Shadlen and Newsome,
2001; Roitman and Shadlen, 2002), frontal eye fields (Ding and Gold,
2012a; Hanes and Schall, 1996), superior colliculus (Ratcliff et al.,
2003, 2007), prefrontal cortex (Kim and Shadlen, 1999) and dorsal
premotor cortex (Chandrasekaran et al., 2017; Thura et al., 2014;
Coallier et al., 2015). However, questions still remain; for example, is
the ramp in a neuron's response a signature of the evidence integration
process posited by a DDM or is it more consistent with the presence of,
say, an increasing urgency signal. It can be challenging to neurally
discriminate between frameworks without (1) a detailed and ideally
quantitative understanding of the behavior (Krakauer et al., 2017;
O’Connell et al., 2018a), and (2) a clear hypothesis about the mapping
from the underlying neural mechanisms to the observed behavior
(Schall, 2004). We believe ChaRTr and other toolboxes of its ilk will
play a critical role in further advancing our understanding of the neural
correlates of decision-making.

4.1. Future directions

ChaRTr provides a powerful framework for estimating and dis-
criminating between candidate decision-making models. Nevertheless,
there is considerable scope for extending its capabilities. Here, we
outline a few future directions we believe would make ChaRTr, and
other toolboxes that come in its wake, even more useful for decision-
making researchers.

First, ChaRTr provides options to estimate sequential sampling
models that assume relative evidence is accumulated over time. A re-
lated and compelling line of research assumes a race model architecture
where a choice between n options is represented as a race between n
evidence accumulators. The n≥ 2 accumulators collect evidence in
favor of their respective response options as a dynamic race toward
their respective thresholds. The first accumulator to reach the threshold
triggers a decision for the corresponding response option. There are a
range of race models that differ in details, including accumulators that
are independent (e.g., Brown and Heathcote, 2008; Reddi and
Carpenter, 2000) or dependent (e.g., Usher and McClelland, 2001).
Naturally, these models can be elaborated with many features of the

relative evidence accumulation models implemented in ChaRTr, in-
cluding variable non-decision times and urgency (though see Zhang
et al., 2014; Bogacz et al., 2006, for demonstration of the equivalence
between relative and absolute evidence accumulation models under
certain circumstances). Incorporation of race models in ChaRTr will be
a useful extension into the future.

Second, the current instantiation of ChaRTr assumes that observers
are independent. Recent efforts have proposed the use of hierarchical
Bayesian methods for the DDM and other decision-making models (Ahn
et al., 2017; Heathcote et al., 2018; Wiecki et al., 2013). Bayesian es-
timation methods provide at least two advantages over the current
framework provided in ChaRTr. First, Bayesian methods incorporate
prior knowledge into the plausible distribution of parameter values and
they provide full posterior distributions for all model parameters.
ChaRTr currently provides only the most likely value for a parameter
without any measure of its uncertainty, whereas the full posterior dis-
tribution provides uncertainty in the estimate for each parameter, thus
reducing the likelihood of drawing over-confident conclusions. Second,
Bayesian methods are advantageous when used in contexts where there
are only modest numbers of trials per observer. Hierarchical Bayesian
models in particular can enhance statistical power by providing op-
portunities for simultaneous estimation of the parameters of individual
observers as well as the population-level distributions from which they
are drawn.

Despite these benefits, we emphasize that it is far from straight-
forward to extend the models implemented in ChaRTr to Bayesian
parameter estimation methods. The goal of ChaRTr is simple and rapid
implementation and testing of new models, which takes place via si-
mulation-based techniques. Bayesian methods require model likelihood
functions, which can be challenging to derive and may not even exist
for some of the models implemented in ChaRTr, and as such the ex-
tension to Bayesian methods is not trivial. In future work, we aim to
extend the parameter estimation routines in ChaRTr to make use of
approximate Bayesian techniques.

Third, the framework in ChaRTr is currently only amenable for
analyzing behavior from decision-making tasks where the sensory sti-
mulus provides constant evidence over time, albeit with noise, and
varies along a single dimension. However, previous research suggests
that a powerful way to dissociate between different models of decision-
making is to use time-varying stimuli (Brunton et al., 2013; Brody and
Hanks, 2016; Cisek et al., 2009; Ratcliff, 2002; Ratcliff and Rouder,
2000; Smith and Ratcliff, 2009; Thura et al., 2014; Usher and
McClelland, 2001). In a related vein, there has been increased interest
in combining frameworks that posit sensory stimuli are optimally
combined and could drive multisensory decision-making models
(Drugowitsch et al., 2014; Chandrasekaran, 2017). Future versions of
ChaRTr will provide opportunities for implementing and testing models
in contexts where the sensory stimuli have temporal structure (Evans
et al., 2017), or involve multi-sensory integration (Chandrasekaran,
2017; Chandrasekaran et al., 2019).

Fourth, in ChaRTr, we have largely focused on the use of model-
selection metrics rather than predictive tests such as cross validation.
However, cross validation is a powerful tool to guard against over-fit-
ting and for predicting generalization performance on held out data and
does not explicitly include a penalty term. If one intends to use cross
validation, one could subset the data that is passed into the parameter
estimation routines; say, retain 80% of the data and hold out 20% of the
data. Parameter estimation would then operate on the training data as
described below. Once the best-fitting parameters are identified they
could be passed with the held out 20% of the data to the same functions
as the training phase to calculate the out-of-sample goodness of fit. This
process could then be repeated, say, 10 times, to obtain an estimate of
the average out-of-sample goodness of fit. We anticipate implementing
cross validation as an additional approach in future versions of ChaRTr.

Finally, ChaRTr currently allows the quality of the evidence signal
(drift rate) to vary with an experimental factor (stimulus difficulty). In
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future versions of ChaRTr, we will provide capabilities for different
model parameters to vary with different experimental factors. There are
a range of other experimental manipulations whose effect will likely
appear in model parameters other than the drift rate; for example,
emphasizing the speed or accuracy of decisions is most likely to affect
the decision boundary, or the speed with which a boundary collapses.
Future versions of ChaRTr will allow researchers to test and dis-
criminate between these hypotheses.
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