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Abstract. Blockchain-based platforms often rely on token-weighted voting (“τ-weighting”)
to efficiently crowdsource information from their users for a wide range of applications,
including content curation and on-chain governance. We examine the effectiveness of such
decentralized platforms for harnessing the wisdom and effort of the crowd. We find that
τ-weighting generally discourages truthful voting and erodes the platform’s predictive
power unless users are “strategic enough” to unravel the underlying aggregation mecha-
nism. Platform accuracy decreases with the number of truthful users and the dispersion in
their token holdings, and in many cases, platforms would be better off with a “flat” 1/n
mechanism. When, prior to voting, strategic users can exert effort to endogenously improve
their signals, users with more tokens generally exert more effort—a feature often touted in
marketing materials as a core advantage of τ-weighting—however, this feature is not at-
tributable to the mechanism itself, and more importantly, the ensuing equilibrium fails to
achieve the first-best accuracy of a centralized platform. The optimality gap decreases as the
distribution of tokens across users approaches a theoretical optimum, which we derive, but
tends to increase with the dispersion in users’ token holdings.
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1. Introduction
Many blockchain-based platforms have implemented
token-weighted voting (τ-weighting) to incentivize
efficient information crowdsourcing from their users
in a decentralized way. These systems aggregate in-
formation through user votes, where the final action
of the system is determined based on the weighted
average of the users’ votes, and each user’s vote is
weighted by his token holdings within the system. At
their core, these systems work under the principle
that users with more tokens have more skin in the
game and are thus incentivized to provide higher-
quality votes.

Though τ-weighting has already been deployed on
many live blockchain platforms, there is surprisingly
little research attesting to its theoretical soundness.
This paper examines some of its basic economics
(tokenomics) to gauge its effectiveness. In particular, we
focus on the following questions: Does τ-weighting
encourage or discourage truthful voting? How ac-
curate is the resulting crowdsourced information?
Does having skin in the game in the form of token

holdings adequately incentivize user effort to im-
prove the platform’s predictive power?
The surge of blockchain-based platforms over the

past several years has brought with it many new
challenges. One of the most critical issues faced by
these platforms is the need to crowdsource infor-
mation from their users. This issue is at the core of
many decentralized systems, regardless of how dif-
ferent theymay otherwise be. Fittingly, there is awide
range of applications, ranging from governance is-
sues such as how funds raised from an initial coin
offering should be spent to evaluating the quality of
code-upgrade proposals, to soliciting user feedback
on service experience, aggregating product quality
ratings, combating fake news, and many others.
One of the first applications of τ-weighted voting

was in the Slock.it decentralized autonomous orga-
nization (DAO) (Jentzsch 2016). The DAO was en-
visioned as a new type of user-managed investment
fund, where users could deposit tokens into a joint
fund, and the fund’s investment decisions would be
made by the weighted votes of the users. Although the
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Ethereum smart contract running the DAO was
hacked, leading to its collapse, the DAOmodel inspired
countless blockchain startups to adopt similar forms of
on-chain governance, where token holders are allowed
to direct the overall system through either informal
(nonbinding) votes like CarbonVote (Lv and Ashu
2018) or binding resolutions (Warren and Bandeali
2018, Eufemio et al. 2018, Goodman 2014). Carbon-
Vote has tallied more than five million Ether (the plat-
form’s currency) toward votes (Lv and Ashu 2019),
and Tezos had more than 28,000 votes in for its first,
binding hard-fork proposal (Kim 2019).

Token-weighted voting has also been used for con-
tent curation, whereby users can promote (upvote)
content with their votes weighted proportionally to
their token holdings—Steem (2018) and Sapien (Bhatia
et al. 2018) are two notable examples. Steem iden-
tifies itself as a “blockchain-based rewards platform
for publishers to monetize content” and has more
than 60,000 daily active users (Team Steemit 2019).
Sapien is a “social news platform that gives users
control of their data, rewards content creators, and
fights fake news.” In a different application, a pro-
totype implementing a variant of τ-weighted voting has
been developed to allow users to vote on the trust-
worthiness of TLS and SSL certificates (Hentschker
2018). A general model of token-curated registries
(TCRs) (Goldin 2017) has applied this principle to
allow users to collectively curate a list of high-quality
content. Civil (Iles 2018) has adopted the TCR model
to combat fake news by identifying high-quality news
sources, and AdChain (Goldin et al. 2017) uses a TCR
to fight fraud in digital advertising.

Despite differences in their specific implementa-
tions, these systems all share a common underlying
design and incentivemechanism: individual users are
allowed to vote on the quality of content (e.g., a news
source, a social media post, an investment plan, the
quality of a product or a service), and the system
aggregates these votes, weighting them according to
each user’s token holdings. The system then takes
action based on this weighted average. Importantly,
the system’s reward is proportional to the quality of
the decision. This reward is realized in the form of
increased token value and is thus distributed among
the users proportionally to their token holdings. The
key design principle here is that users with large
token holdings will be the most incentivized to in-
crease the overall value of the platform.

These features are at the core of our model of
τ-weighted crowdsourcing. We consider a product
or a service of unknown quality subjected to a vote on
a platform. The platform commits (e.g., through a
smart contract) to aggregate user votes according to a
standard τ-weighted mechanism. Platform value is
driven by accuracy, which depends on the nature

of the incoming votes it receives from stakeholders.
The more accurate the platform, the more valuable
its tokens, and the more value it generates for its
stakeholders. The voters are simply the token holders
of the platform and are heterogeneous along two
dimensions: their token holdings and the precision of
their private signals. We first examine a simple voting
game with exogenous signal precisions and consider
two types of players: strategic and truthful. Truthful
players simply vote their posterior beliefs after ob-
serving their own signal, while ignoring the presence
of other voters on the platform. Strategic players, on
the other hand, are fully rational—they report a vote
that maximizes the expected value of their tokens,
taking into account not only their own signal but
other voters’ strategies as well. Next, recognizing that
strategic players may want to try to improve their
information before voting, we extend the base model
to account for endogenous information acquisition,
adding an additional stage of effort provisioning;
that is, before choosing a voting strategy, each player
has the option to exert (costly) effort to improve the
precision of his own signal. We characterize the equi-
libria (in linear strategies) of the crowdsourcing games
with exogenous and endogenous information acquisition.
In brief, our results suggest that when it comes to

crowdsourcing information, τ-weighted aggregation
generally (i) discourages truthful voting and (ii) re-
duces platform accuracy, unless players are sophis-
ticated enough to endogenously unravel the under-
lying weighting mechanism. When we incorporate
effort into our model to account for endogeneity in
information acquisition, we show that τ-weighting
(iii) provides some desirable effort incentives of skin-
in-the-game type for strategic players but (iv) none-
theless fails to achieve the first-best predictive power
of a centralized platform.
Beyond these high-level insights, which provide

answers to the questions raised earlier in the discussion,
our analysis affords a series of more in-depth results on
the nature and impact of strategic versus truthful voting,
the effectiveness of centralized versus decentralized ag-
gregation, and sensitivities to token dispersion (i.e.,
how tokens are distributed across users).
Intuitively, one might expect τ-weighting to lead to

suboptimal outcomes because it has the potential to
exacerbate an inherent mismatch that may exist be-
tween the distribution of tokens and the distribution
of information. For instance, a voter might have ex-
cellent information but low stake, in which case his
vote will be underweighted in the aggregate, and vice
versa. We find that strategic voters are able to fully
overcome this mismatch by purposely misreporting
their beliefs to the platform, effectively unraveling the
platform’s suboptimal weighting mechanism. How-
ever, this holds only when all voters are strategic.
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First-best accuracy is elusive when even a single truthful
voter is present, and the optimality gap increases in the
number of truthful voters. In such cases, we show the
platform is generally better off with an unweighted 1/n
aggregation mechanism. Taken together, these re-
sults suggest that if these decentralized platforms can
effectively harness the wisdom of the crowd, it is
despite of, not because of, their τ-weightingmechanism.

To account for the fact that strategic voters may
want to try to correct the aforementioned mismatch
between the distribution of tokens and information,
we then endogenize their information acquisition
decisions in Section 5, where, before voting (stage 2),
we give them the ability to improve the precision of
their ownprivate signal by exerting costly effort (stage 1).
The extended two-stage model requires introducing
twogeneric functionswhosepropertieswill be critical for
the analysis: the information improvement function,
which maps effort to signal accuracy, and the effort cost
function, which maps effort to costs incurred.

We show that under certain technical/structural
conditions on these functions, there is a unique effort-
exerting equilibrium in which individual effort levels
can be derived in closed form. Leveraging the ex-
pressions obtained, we show that effort increases
with token holdings—a feature that platforms often
tout in their marketing materials as a key advantage
of τ-weighted voting.We find the effect, however, not
to be attributable to the token-weighting mechanism
itself, which remains irrelevant when all users are stra-
tegic, even under endogenous information acquisition.
Rather, it is simply thatplayerswithmore tokens stand to
benefit more from an increase in platform accuracy,
because accuracy directly drives token value. In other
words, the same effectwould be observed if the platform
adopted a flat 1/n aggregation mechanism, as long as
agents with more tokens stand to benefit more from
an increase in platform accuracy. We also show that,
ceteris paribus, an agent with higher precision will
exert more effort than one with lower precision, im-
plying some free-riding from less-informed voters.

Comparing the resulting equilibrium to that of a
centralized platform that can coordinate user be-
havior, we find that decentralized equilibrium effort
levels are strictly lower. As a result, the platform
cannot achieve first-best effort provisioning in the
decentralized setting, even in the best-case scenario in
which all agents are strategic. We characterize the
ensuing optimality gap and show that on average, it
grows with the dispersion in players’ token holdings,
implying platforms may generally prefer that tokens
are not too disproportionately held by platform users.
The effect is stronger when all players have homo-
geneous precisions and is weaker, but still positive,
otherwise. Finally, we derive the platform’s optimal
allocation of tokens, as a function of the distribution

of precisions across its users, and we show, through
an appropriately chosen distance measure, that the
platform would prefer dispersed distributions if these
are close enough to the theoretical optimum and prefer
a homogeneous distribution otherwise.
To summarize, our results bring to light some of the

more subtle pros and cons of τ-weighted aggregation
systems, and, in contrast towhat theirwidespread use
implies, we raise some questions about their effective-
ness at harnessing information and user effort. Despite
the ever-increasing popularity of τ-weighted aggrega-
tion systems in practice, the academic literature has
remained relatively silent on their theoretical soundness.
This paper,which can be seen as a step to bridge this gap,
strives to put the emerging topic of τ-weighted aggre-
gation on a firmer foundation and to provide guidance
on the design of blockchain-based voting systems.

2. Related Literature
Though we are not aware of any other theoretical
papers focusing specifically on the effectiveness of
τ-weighted crowdsourcing, our work is related to
several literature streams.

2.1. Blockchain Systems and TCRs
Blockchain-based systems provide a natural platform
for τ-weighted voting, because each player’s token
holdings are usually publicly known (on the block-
chain) and ballots can be cast, aggregated, and ver-
ified in a completely automated manner. In fact,
numerous τ-weighted voting mechanisms have been
deployed on various blockchain platforms, as men-
tioned in the introduction. There is a growing prac-
titioner literature on the topic of TCRs (Goldin 2017);
however, previous studies focused on practical im-
plementation (e.g., coding details) and did not for-
mally model strategic agent behavior, which we
do here. On the academic side, some studies have
started to appear; for instance, Asgaonkar and
Krishnamachari (2018) dive into some of the techni-
cal details of TCRs in a deterministic setting with
known information. Many variants of TCRs have
been proposed (Simon 2017, Lockyer 2018), and we
expect these platforms to continue to grow. Abstrac-
ting away from the technicalities of these systems, our
study sheds light on the effectiveness of the token-
weighting mechanism that often sits at their core.
More broadly, the paper contributes to a rapidly

growing literature discussing economic incentives in
blockchain systems (Cong et al. 2018, Saleh 2018, Biais
et al. 2019, Hinzen et al. 2019, Rosu and Saleh 2019)
and studying the implications of the technology for a
variety of areas such as auditing (Cao et al. 2018),
corporate governance (Yermack 2017), crowdfunding
(Chod and Lyandres 2018, Gan et al. 2020), finance
(Biais et al. 2018), innovation (Catalini and Gans 2017),
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and operations management and supply chains (Babich
and Hilary 2020, Chod et al. 2020).

2.2. Crowdsourcing and Information Sharing
in Networks

Our work is closely related to the literature on crowd-
sourcing, which studies the ability of firms to
source information (Araman and Caldentey 2016,
Papanastasiou et al. 2017), funds (Alaei et al. 2016,
Strausz 2017, Babich et al. 2020, Belavina et al. 2020),
or innovation (Terwiesch and Xu 2008, Bimpikis et al.
2015, Stouras et al. 2017) from users.We are not aware
of any work in this literature that, like we do, ex-
amines the feasibility and effectiveness of crowd-
sourcing information and effort using a τ-weighted
mechanism.

More broadly, our work is related to the literature on
information sharing in networks that studies informa-
tion exchange and aggregation, either through direct
communication (Acemoglu et al. 2014) or through
observational learning (Acemoglu et al. 2011). In a
related but different setting, Saghafian et al. (2018)
examine information aggregation through (imper-
fect) sensors that can solicit information from other
sensors. Unlike ours, these papers do not focus on the
strategic incentives that agents have to (mis)report
their information and exert effort when subjected to a
τ-weighted voting mechanism.

2.3. Weighted Voting and Shareholder Voting
Our work is broadly related to the literature on
weighted voting mechanisms that have been studied
in a variety of settings. For example, Banzhaf (1964)
and a series of papers that build on that work (see,
e.g., Snyder et al. 2005 and references therein) ex-
amine electoral weighted voting, focusing on the
distinction between voting rights and voting power.
Taylor and Zwicker (1993), Nordmann and Pham
(1999), and Elkind et al. (2008) focus on coalition
structures and the division of power in weighted
voting games. Gifford (1979) and Tong and Kain
(1991) study weighted voting in distributed com-
puting systems, focusing on characterizing compu-
tational complexity.

Weighted voting is also relevant for the literature
on shareholder voting, given that one share often
entitles one vote, and shareholders hold different
share amounts. Papers in this area tend to focus on
issues specific to the context, for example, the mis-
match of incentives between managers and share-
holders (Shleifer and Vishny 1986), issues of vote
trading (Christoffersen et al. 2007), and the differ-
ences between binding and nonbinding votes (Levit
and Malenko 2011).

Our work departs from these settings in a number
of ways. First, the input and/or output space studied

in these papers is generally constrained to be discrete
and, in most cases, binary (yes/no). With these con-
straints, the complexity comes from the combinato-
rial nature of the problem. In contrast, the choice of
continuous input and output spaces in our model de-
liberately draws from the established economics and
finance literature on information aggregation and ac-
quisition (Myatt and Wallace 2012, Colombo et al.
2014) and price informativeness (Vives 1988, Vives
2011, Ostrovsky 2012, Even et al. 2019) and ismeant to
capture situations that are best approximated by
continuous states. For instance, our model is more
suitable for situations in which agents are asked
to estimate quality of content or products, as in the
TCR examples mentioned previously, or investment
amounts, as in the DAO example, and is less suitable
to inform on yes/no issues of governance, such as
electing board members, stock splits, and merger and
acquisition decisions. Second, papers in these areas
generally do not focus on user effort incentives, which
is one of the main contributions of our work and one
of the main areas of focus of τ-weighted platforms in
their marketing materials. Third, these papers do not
specifically focus on the tokenomics of τ-weighted
crowdsourcing systems. As such, they do not ad-
dress the specific questions we examine, including
truthful versus strategic voting, centralized versus decen-
tralized aggregation, τ-weighting versus 1/n-weight-
ing, token dispersion, and the implications these have
for token value and platform effectiveness.

3. Model
Consider a product (or a service) of unknown quality, q,
subject to a vote on a platform with n token holders
(“players”), indexed by i ∈ {1, . . . , n}. Players cannot
directly observe q but have a common Gaussian prior
belief

q ∼ 1 μ, σ2q

( )
,

where E[q] � μ is the mean quality, and Var[q] � σ2q
captures quality dispersion, which can be a proxy for
the novelty of the product.1

Players are tasked to vote on quality and are het-
erogeneous along two dimensions: their relative to-
ken holdings τi ∈ (0, 1), normalized so that

∑n
i�1 τi � 1,

and the signal they obtain about the product quality.
More specifically, player i receives a private noisy
signal

si � q + εi, (1)
where εi is a normally distributed noise term with
E[εi] � 0 and Var[εi] � σ2i , that is, εi ∼ 1(0, σ2i ),∀i ∈{1, . . . ,n}. It follows that signals are independent and
normally distributedwith si ∼ 1(μ, σ2q + σ2i ). In linewith
extant literature, σi, i ∈ {1, . . . ,n}, are publicly visible,
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but players cannot observe others’ private signals.
Similarly to how these platforms operate in prac-
tice, token holdings τi, i ∈ {1, . . . ,n}, are also publicly
visible.2

After observing their private signal, players si-
multaneously submit their votes vi � vi(si); in line
with extant literature (e.g., Vives 1988, Myatt and
Wallace 2012), we restrict our attention to the class
of linear strategies, represented by letter L, that is,

vi � αisi + (1 − αi)μ, (2)
where αi ∈ R is the weight player i chooses to place on
his signal.3 We note that we purposely do not restrict
αi to the interval [0, 1], so assuming vi to be a linear
combination of si and μ does not restrict the range
of vi. The linear model also facilitates comparisons
with Bayesian posteriors that are also linear in the
signal. In particular, conditional on si, q is normally
distributed with mean E[q|si] � βisi + (1 − βi)μ, where
βi � σ2q(σ2q + σ2i )−1 is the weight player i places on his
signal, and Var[q|si] � (σ−2q + σ−2i )−1.

In Section 5, we will allow users to try to improve
their signals, and we defer the required modeling
extension to that section.

The platform aggregates incoming votes weighted
by token holdings, which forms the platform’s quality
estimate q̂, that is,

q̂(v1, . . . , vn) �
∑n
i�1

τivi. (3)

Consistent with how these platforms operate in
practice, the platform commits to the aggregation
mechanism in Equation (3), for example, through an
auditable “smart contract.” Throughout the paper we
will compare this mechanism, which we refer to as
τ-weighted aggregation, or simply τ-weighting, to a
benchmark of an equally weighted (flat) mechanism,
which we refer to as 1/n-weighted aggregation, or
simply 1/n-weighting, that assumes all players are
attributed a weight 1/n, irrespective of their token
holdings; formally q̂1/n(v1, . . . , vn) � 1

n
∑n

i�1 vi. For the
sake of completeness, we will also consider the case
of a platform optimizing the aggregation mechanism
in Online Appendix A.3.

Players are rewarded through the value of their
tokens, which in turn depends on the accuracy of the
platform.4 In particular, the closer the aggregate
quality, q̂, is to q, the more valuable the platform
becomes and hence the more valuable the tokens
become.

To model the platform’s value, we work with a gen-
eral class of differentiable and concave payoff functions
taken over the error (q − q̂), and we assume these to be
well behaved if they satisfy the following properties.

Assumption 1 (Well-Behaved Payoffs). A payoff function
π : R → R is said to be well behaved if (1) π is symmet-
ric about the origin, that is, π(x) � π(−x), and (2) π is
decreasing away from the origin, that is, π(x) ≤ π(y),
whenever |x| ≥ |y|.
The “well-behaved” assumption means that over-

estimating and underestimating the quality are
equally bad and that the more accurate the estimate,
that is, the lower the error (q − q̂), the higher the payoff.
As we shall see, these basic assumptions suffice to
obtain meaningful results in Section 4, without hav-
ing to restrict the payoff to a specific functional form.
Many standard functional forms would satisfy these
conditions, for instance, π(x)f −x2, which would
correspond to a quadratic utility, or π(x)f e−x2 .
Defining the platform’s payoff as π(q − q̂), we can

also define each player’s individual share of this
payoff by πi � τi · π, that is, consistent with how these
platforms operate in practice, each player obtains a
share of the payoff proportional to his relative share
of the tokens. This feature drives several of our re-
sults, as we shall see in Section 3.
Our core model assumes all players are strategic

(fully rational), represented by letter S, andwe seek to
characterize the linear pure-strategy Bayesian Nash
equilibria of the game.More specifically, each player i
maximizes his expected payoff over his linear voting
strategy vi ∈ L, conditional on the private signal he
receives, si, given the platform aggregation mecha-
nism in Equation (3), and the linear strategies played
by others, v−i ∈ L,

max
vi∈L

E πi q − q̂ v1, . . . , vn( )( )|si[ ]
. (4)

In Section 4, the platform composed of strategic
players will be compared with a benchmark platform
consisting of nonstrategic players following simple
truthful voting strategies. Truthful voters, repre-
sented by letter T, vote their true, albeit individual,
Bayesian posteriors. That is, they update their beliefs
based on their own private signal, setting weight αi �
βi � σ2q(σ2q + σ2i )−1 and vote vi � βisi + (1 − βi)μ, with-
out considering other players. Practically speaking,
platforms may be composed of players exhibiting
different degrees of strategic behavior (another in-
terpretation is that players may have different be-
havioral biases), hence, it is meaningful to examine
the implications that player heterogeneity along this
dimension can have for platform accuracy. The two
player types we consider can be thought of as a coarse
representation of the spectrum.5 In Section 4.3, we ex-
tend the model to the more realistic case in which both
player types are simultaneously present on the platform.
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4. Crowdsourcing Information
In this section, we examine equilibrium voting strate-
gies and their implications for the platform’s predictive
accuracy. We begin with the first-best variance ob-
tainable in the centralized setting.

4.1. First-Best Platform Variance
Before presenting the result, we introduce one in-
termediate technical lemma that will be useful
throughout the analysis.

Lemma1 (Payoff-VarianceEquivalence). Supposeπ : R → R

satisfies Assumption 1 and let N(0, σ2) denote a normally dis-
tributed random variable with mean 0 and variance σ2; then

i. E[π(N(0, σ2))] is monotonically decreasing in σ2;
ii. E[π(N(0, σ2))] ≥ E[π(N(x0, σ2))] for all x0;
iii. if V(x1, . . . , xn) : Rn → R+, S ⊂ Rn is a set of

constraints, and x∗ �def argminx∈S V(x), then E[π(N(0,
V(x∗)))] � maxx∈S E π N(0,V(x)( ))[ ].

Proofs are provided in the online appendix. One
useful implication of Lemma 1 is that since the payoff
function is well behaved and the aggregate error (q − q̂)
is normally distributed with mean 0, we can in-
terchangeably talk about the platform/players maxi-
mizing expected payoff, or minimizing the variance of
the aggregate error.

Consider an omniscient central planner that can
directly observe all signals and set q̂ to maximize
E[π(q − q̂)|s1, . . . , sn].6 In light of Lemma 1, this can
equivalently be written as a minimization prob-
lem over the variance, Vfb �def minVar[q − q̂|s1, . . . , sn] �
Var[q|s1, . . . , sn]. The latter is simply the Bayesian
posterior variance in the standard multivariate
Gaussian setting,7 thus

Vfb � σ−2q +∑n
i
σ−2i

( )−1
. (5)

As expected, Vfb increases in σq and σi, that is, the
more imprecise the prior and signals, the worse the
platform’s predictive power over q. Furthermore,
the platform becomes perfectly accurate as the num-
ber of players n → ∞. In other words, the centralized
platform can fully harness thewisdom of the crowd at
the limit. This, however, hinges on “reasonable” σi,∀i,
for example, independence of individual signals and
of their variance from n. For an alternative setting in
which aggregate information does not necessarily
grow with the number of users, see Bergemann and
Välimäki (1997).

Finally, as is standard in the literature, it will be
convenient to formally define the platform’s first-best
precision as the inverse of its first-best variance,
ρ f b � (Vfb)−1. Combining this definition with the fact
that the platform’s estimate is unbiased (given all

signals are unbiased and the aggregation mechanism
is linear), we can say that the centralized setting
yields the first-best (highest possible) accuracy the
platform can achieve, and we use the terms “pre-
cision” and “accuracy” interchangeably.

4.2. Equilibrium with Strategic Players
Next, we examine player voting strategies and the
resulting platform accuracies they can achieve, and
then compare these to the first-best benchmark.
To build intuition, consider first the simple case of

a platform consisting of a single strategic player,
holding all tokens (i.e., τ1 � 1). In this case, q̂ � τ1 ·
v1 � v1 and the player’s optimal strategy, conditional
on observing signal s1, is simply to truthfully report
his Bayesian posterior, v∗1 � E[q|s1] � β1s1 + (1 − β1)μ,
where β1 � σ2q(σ2q + σ21)−1 (see Online Appendix A.2 for
details). We emphasize two points. The first is the
importance of Assumption 1. In Online Appendix A.1
we give some natural payoff functions (that are not
well behaved, i.e., violate Assumption 1), where the
player’s optimal strategy is not to vote his Bayesian
posterior. One particularly illustrative case is that of
a price-is-right type of payoff function.8 Second, al-
though truthfully voting one’s posterior is intuitive,
it does not carry over to the general n-player game,
which we describe next.

Proposition 1 (Voting Equilibrium). If the payoff function
satisfies Assumption 1, and all players are strategic, then in
equilibrium, (i) player i votes v∗i � α∗

i si + (1 − α∗
i )μ, where

α∗
i is given in Equation (6), and (ii) the platform achieves the

first-best variance given by Equation (5).

α∗
i �

σ2q

τiσ2i 1 +∑n
j�1

σ2q
σ2j

( ) , i ∈ {1, . . . ,n}. (6)

We outline three main takeaways from Proposition 1.
First, strategic players are able to recover first-best
optimality in token-weighted platforms, but to do so,
they must be willing to adjust votes based on the
presence of their peers on the platform and their own
token holdings. The former is observable from the
dependence of the optimal weight on σi,∀i, and the
latter from its inverse relationship to τi (and its in-
dependence from τj, j �� i).
Second, the aggregationmechanism is irrelevantwhen

the platform is composed of strategic players, that is,
first best can also be restored under 1/n-weighted ag-
gregation (this is best seen by going through the proof
of Proposition 1, replacing τi by 1/n,∀i).
Third, the Bayesian weight βi �� α∗

i . This implies
that truthful voting is generally suboptimal under
τ-weighted aggregation. Put differently, strategic
players’ votes will not reflect their true individual
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posterior beliefs. The votes cast can be either higher
(vote inflation) or lower (vote shading) compared with
truthful votes. To illustrate, Figure 1 comparesplayer1’s
equilibrium vote upon receipt of a positive (s1 � 4 >
μ � 1 in Figure 1(a)), or negative (s1 � 1 < μ � 4 in
Figure 1(b)) signal, in an n � 2-player platform.

This type of strategic behavior may not be harmless
in practice. Consider, for instance, the implications
for rating and review platforms. If individual ratings
are visible (as opposed to just aggregate scores), cus-
tomers who rely on such platforms for information
may be exposed to a disproportionate amount of
extreme ratings, either very good or very bad scores.
For example, in Figure 1, strategic players with few
tokens (∼0.2) who receive a positive (negative) signal,
inflate (deflate) their ratings well beyond their true
beliefs. Without diving into a discussion on behav-
ioral foundations, this type of outcome could possibly
undermine the credibility of the platform as cus-
tomersmay fail to realize that this gaming of ratings is
actually in their best interest, in terms of achieving
maximal aggregate accuracy.

How realistic it is to assume all voters are strategic
in practice, and are thus capable of restoring first best,
is debatable. If some voters are in fact less sophisti-
cated, for instance, if they have an inherent preference
to report their true beliefs, two sets of questions arise.
First, (Q1) can strategic players restore first best in the
presence of truthful voters, and, if not, (Q2) how does
the resulting optimality gap vary with the relative
number of truthful voters? Second, (Q3) in the pres-
ence of truthful voters, should the platform prefer a
τ-weighted or an equally weighted mechanism? and,
(Q4) relatedly, how is this preference affected by the
distribution of tokens across voters?

We address the first set of questions in Section 4.3,
and the second set in Section 4.4.

4.3. Equilibrium with Mixed Player Types
We extend the model from Section 3 to consider a
platform containing a mixture of |T| truthful and |S|
strategic players, such that |T| + |S| � n (notation | · |
represents set cardinality). As before, strategic players
cannot observe other players’ signals or votes, but
they can observe truthful voters’ identities.9 Truthful
players, by definition, consider only their own sig-
nals. Before stating the result, let weights αS

i �def α∗
i , i ∈ S,

from Equation (6), where the summation 1 to n in
the denominator is now over the set of strategic
players S.

Proposition 2 (Voting Equilibrium with Mixed Types). In
the presence of truthful voters on the platform, if the pay-
off function satisfies Assumption 1, then in equilib-
rium, (i) strategic player i votes vT,Si � αT,S

i si + (1 − αT,S
i )μ,

where αT,S
i � αS

i (1 −∑
j∈T τjβj), i ∈ S, and (ii) the corre-

sponding platform variance VT,S � (1 −∑
j∈T τjβj)2Vfb +∑

j∈T(τjβjσj)2 > Vfb.

Proposition 2 shows that in this more realistic
setting, there is still a unique equilibrium in which
strategic players adjust their optimal signal weights
from Equation (6) to try to correct for the presence of
truthful voters. However, in contrast to the result in
Proposition 1, the platform no longer achieves first-
best predictive accuracy. Interestingly, even the pres-
ence of a single truthful voter (|T| � 1) prevents strategic
players from restoring first best under τ-weighted
aggregation, and the more truthful players present,
the worse the platform accuracy becomes. Proposi-
tion 3 formalizes the latter statement.

Proposition 3 (Platform Accuracy with Mixed Types).
Consider a platform with a partition |S|, |T| of a set of n
total players. For fixed n, if any number k ∈ {1, . . . , |T|} of
truthful players become strategic, then the platform’s ac-
curacy increases.

Figure 1. Player 1’s Vote v1 on Receiving Signal s1 vs. Relative Token Holdings τ1 in Two-Player Platform

Note. Parameters σ1 � σ2 � σq � 1/2.
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As a reminder, the results hold assuming the plat-
form has precommitted to a token-weighted (or
equally weighted) aggregation mechanism, for exam-
ple, via a smart contract. For the sake of completeness,
we relax this assumption in Online Appendix A.3,
where we assume the platform can optimally set the
weights it attributes to each player’s incoming vote.
With this type of precise control, we show that the
platform would indeed be able to recover first-best
variance as long as it knows the identity of truthful
voters. Note, however, that centralizing the aggre-
gation mechanism in this way would go against the
core philosophy these platforms were built on—that
of decentralizing decisions—and so may be of limited
applicability.

4.4. Properties of the Optimality Gap
Having shown that the presence of truthful players
generates an indelible optimality gap in Section 4.3,
answering questions (Q1) and (Q2), we now examine
platform preference between τ- and 1/n-weighting
(question (Q3)) and the effects of token dispersion
(question (Q4)). To ease exposition, for the rest of this
subsection we will assume the worst-case scenario
of a platform consisting entirely of truthful players,
|T| � n. Our qualitative insights remain valid for 1 <
|T| < n (for |T| � 0, there is no optimality gap as per
Proposition 1). Before proceeding with the analysis,
we introduce some necessary notation and interme-
diate results.

Platform Variance. Let Vi
j , i ∈ {T, S}, j ∈ {τ, 1/n}, rep-

resent the variance achieved by the platform under
truthful (i � T) or strategic (i � S) voting and un-
der τ-weighting ( j � τ) or 1/n -weighting ( j � 1/n).
Note that from Proposition 1, VS

τ � VS
1/n � VS � Vfb,

that is, strategic players achieve first best under both
mechanisms. The corresponding values are given in
Table 1.

Finally, define the optimality gap between truthful
and strategic (first-best) voting as follows:

&j � VT
j − Vfb � VT

j − VS, j ∈ τ, 1/n{ }.

Token Dispersion. Define d(x,y) as the Euclidean dis-
tance (L2 norm) between vectors x and y, that is,

d(x,y) � ‖x − y‖2 � (∑n
i�1(xi − yi)2)1/2. Let the n-dimen-

sional vectors τ �def {τ1, . . . , τn}, n−1 �def {1n , . . . , 1n}, and
1 �def {1, . . . , 1}. Lastly, define the dispersion of vector τ
as the Euclidean (L2) norm from its average value,
that is,

disp(τ) � d(τ, τ̄1) � ‖τ − τ̄1‖2, where τ̄ � 1
n

∑n
i�1

τi � 1
n
.

With notation and definitions in place, we proceed
with the analysis focusing first on the simple case
in which all players have homogeneous signal pre-
cisions, before turning to the more general case with
precision heterogeneity.

4.4.1. Homogeneous Precisions (σi � σ, ∀i). Within
this case of homogeneous precisions, we also dis-
tinguish between homogeneous and dispersed token
holdings. The fully homogeneous case is relatively
straightforward. Given there is no token dispersion
in this case, there is no difference between τ- and
1/n-weighting. Simplifying the expressions in Table 1
we obtain

&τ � &1/n � (n − 1)2σ4σ4q
n σ2 + σ2q

( )2
σ2 + nσ2q
( ) ≥ 0,

which is decreasing in n. Note that as n → ∞, &τ →
σ4σ2q

(σ2+σ2q )2 ≥ 0, that is, though the optimality gap is de-
creasing in the number of players, it can persist at the
limit as n tends to infinity, meaning that neither ag-
gregation scheme can fully harness the wisdom of a
truthful voting crowd, no matter how large.10

Next, we consider heterogeneity in token holdings
while keeping all players’ signals equally precise.

Proposition 4 (Dispersed Tokens). When players have
heterogeneous token holdings and homogeneous signal
variances,
i. &τ − &1/n ≥ 0, that is, 1/n-weighting dominates token

weighting;
ii. &τ−&1/n increases in disp(τ), that is, 1/n-weighting

dominance increases with token dispersion.

In line with intuition, when all players have the
same information precision, there is nothing to be
gained by weighing one player’s vote more or less

Table 1. Player Voting Strategies and Platform Variance

Vote Platform variance

Truthful τ-weighting vi � βisi + (1 − βi)μ VT
τ � ∑n

i�1 τiβiσi
( )2 + σ2q 1 −∑n

i�1 τiβi
( )2

Truthful 1/n-weighting vi � βisi + (1 − βi)μ VT
1/n � ∑n

i�1 1
n βiσi
( )2 + σ2q 1 −∑n

i�1 1
n βi

( )2
Strategic vi � α∗

i si + (1 − α∗
i )μ VS � Vf b � σ−2q +∑n

i�1 σ−2i
( )−1
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than any other’s. Thus, when the platform is com-
posed of truthful, equally informedplayers, it is better
to adopt an equally weighted mechanism and/or
reduce token dispersion, if possible.

4.4.2. Heterogeneous Precisions. Here, we consider
heterogeneity in both token holdings and signal vari-
ances, and we examine the impact of token dispersion
on the optimality gap. In this most general case, the
comparison between τ-weighting and 1/n-weighting
is nontrivial and either aggregationmechanism could
a priori outperform. Intuitively, which mechanism
“wins” will depend on the mismatch that may exist
between the distribution of tokens and the distribu-
tion of information. For instance, a voter might have
excellent information but low stake, in which case
his vote will be underweighted in the aggregate, and
vice versa. As we shall see, this intuition is only par-
tially true.

The set of τ’s for which τ-weighting dominates
is given by the sublevel set of VT

τ , + �def {τ |VT
τ (τ) ≤

VT
1/n ∩ 1′τ � 1}. This set generally needs to be com-

puted numerically, with the exception of low values
of n. We focus here on the simplest case n � 2, which
suffices to extract the main qualitative insights. The
general case n > 2 is analyzed inOnline Appendix A.4
and confirms result robustness.

Consider a platform with two players, and assume
player 1 is better informed than player 2, that is,
σ1 � 1 < σ2 � σq � 1.5.

Figure 2(a) shows the optimality gaps under each
mechanism as a function of player 1’s token holdings
τ1 and illustrates the dominance set +, which is
represented by a simple interval τ1 ∈ [1/2, τc], with
τc � 3

2 − 2σ21
σ21+σ22 and τ2 � 1 − τ1. We highlight two main

takeaways. First, the basic intuition that τ-weighting
dominates when the better-informed player has more
tokens does not always hold. If this player has too
many tokens (τ1 ≥ τc ∼ 0.9), 1/n-weighting outper-
forms. Second,&τ has aminimum (reached at τ1 ∼ 0.7)
that represents the “best possible” allocation of to-
kens, and at this point τ-weighting is understandably

better. However, as the platform does not control
token allocation, it is more meaningful to consider the
entire range of possible realizations of τ1 in the in-
terval [0, 1]. Doing so reveals that τ-weighting dom-
inates only about 40% of the time. More importantly,
when it does dominate, it tends to do so by much a
lower margin than in cases where it lags behind (e.g.,
compare&τ to&1/n in Figure 2(a), as τ1 → 0.7, and then
as τ1 → 0), suggesting that 1/n-weighting might be
the better mechanism on average.
Figure 2(b) by and large confirms this result but

nuances it further by examining how the optimality
gap changes with disp(τ). To construct the values
of disp(τ), we simulate independent realizations of
vector τ � {τ1, τ2} drawn from a uniform [0, 1] (nor-
malized so that τ1 + τ2 � 1). The results show that
the relationship between &τ and disp(τ) is not trivial
and is represented by two branches (reflecting the
fact that disp(τ) is symmetric under permutation of
the players, i.e., disp((τ1, τ2) � disp(τ2, τ1)). The av-
erage value of &τ ∼ 0.15 > &1/n ∼ 0.10, and hence the
optimality gap under 1/n-weighting, is ∼ 1/3 lower
on average. Finally, Figure 2(c) digs one step deeper
by showing how the expectation over &τ, E[&τ], in-
creases with disp(τ) (this is roughly equivalent to
averaging the two branches from Figure 2(b)).11

These results, as well as the extended analysis in
Online Appendix A.4, support the following conclusion.

Numerical Result 1. If players have heterogeneous token
holdings and signal variances, then on average, as token
dispersion increases, (i) &τ increases and (ii) 1/n-weighting
increasingly outperforms τ-weighting.

To summarize, the results suggest that when all
players follow truthful voting strategies, 1/n-weighting
outperforms τ-weighting, on average (across a uni-
form spectrum of possible token holding realiza-
tions). We make the following caveat: the entire
analysis in Section 4 has so far ignored possible
endogeneity in acquiring information. Presumably,
strategic players may have an incentive to exert effort
to improve their information, and this could plausibly

Figure 2. When Does τ-Weighting Dominate?
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affect these insights. Section 5 analyzes these endog-
enous information acquisition effects.

5. Crowdsourcing Effort
Having analyzed player voting behavior in Section 4,
we now turn our attention to an important feature
that these crowdsourcing platforms were designed
around: the incentives that players have to endoge-
nously improve the platform’s accuracy. Marketing
materials often claim token weighting provides
proper effort-exerting incentives. For instance, in the
case of TCRs,

[t]oken-curated registries are decentrally-curated lists
with intrinsic economic incentives for token holders to
curate the list’s contents judiciously. (Goldin 2017)

This section examines this claim in depth. To ease
exposition, we focus on effort-exerting incentives
when all players are strategic. As a reminder, in this
case we showed that first-best variance is fully re-
stored in the exogenous setting of Section 4. As we
shall see, even in this best-case scenario, first-best
platform variance can no longer be restored in the
endogenous setting. The main implications of the
analysis extend to the more complicated situations in
which the platform is composed of amixture of player
types (andwould bemore pronounced in these cases).

For the rest of the section, it will bemore convenient
to work with signal precisions as opposed to signal
variances, ρi �def 1

σ2i
, i ∈ {1, . . . ,n}.

5.1. Model with Endogenous
Information Acquisition

We begin by expanding the model in Section 3 to
account for endogenous information acquisition. To
this end, we introduce an additional stage to the
game: before observing his signal and choosing his
vote, player i has the option to exert effort, ui, to im-
prove the precision of his signal from ρi to ρig(ui), at
a cost of c(ui). We refer to g(·) and c(·) as the precision
improvement and effort cost functions, respectively.
This new setting is a two-stage game similar in spirit
to that of Colombo et al. (2014), that is, in stage 1,
players simultaneously choose how much effort to
exert, and in stage 2, players simultaneously choose
their votes after observing their private signals.

Formally, this extension renders the private signal
in Equation (1) a function of one’s effort,

si ui( ) � q + εi ui( ), (7)
where εi(ui) is normally distributed, with E[εi(ui)] � 0
and Var[εi(ui)] � 1

ρig(ui). To ensure that functions c(·)
and g(·) have desirable properties, for example, effort

should lead to improved information, we make the
following basic assumptions.

Assumption 2. Precision improvement g(u) and effort cost
c(u) are continuous differentiable functions with g(u) ≥
0, c(u) ≥ 0,∀u ≥ 0 (positive), g′(u) ≥ 0, c′(u) ≥ 0,∀u ≥ 0
(increasing), and g(0) � 1, c(0) � 0 (boundary conditions).

The boundary conditions are set such that if zero effort
is exerted in stage 1, the outcome of the game in stage 2
is identical to that of Section 4 (with strategic agents).
As before, votes are linear in the signal, which

means that players’ voting strategy is determined by
the weight, αi, they place on their signal, but votes
now also depend on effort levels since they affect the
signal, vi � αisi(ui) + (1 − αi)μ. Therefore, the plat-
form’s aggregate quality estimate q̂ � ∑n

i�1 τivi now
also depends on effort. We use the notation q̂(u, v)
with u � {u1, . . . ,un} and v � {v1, . . . , vn} to make the
dependence explicit when necessary.
Up until this stage, we have kept the platform

payoff function as general as possible. We now spe-
cialize it to a standard form satisfying Assumption 1.
In particular, the platform’s payoff is quadratic in the
aggregate error q − q̂, that is, π � k1 − k2(q − q̂(u, v))2,
where k1 ≥ 0, k2 > 0 are constants.12 Specializing the
payoff enables us to keep functions g(·) and c(·)
as general as possible and shift the focus of the anal-
ysis to understanding their effects on player effort
incentives.
In Section 4, player imaximized his payoff over his

vote vi. Here, player imaximizes over both effort level
and vote:

max
ui≥0

−c(ui) + τi max
vi∈L

E k1 − k2(q − q̂(u,v))2|si[ ]{ }
, (8)

where the inner maximization corresponds to the
second stage in which players vote after observ-
ing their signals, and the outer maximization corre-
sponds to the first stage in which players choose their
effort levels.
Note that although the payoff function is quadratic in

the error, the problem is not quadratic in all decisions,
which potentially makes the optimization nontrivial. To
proceed, we first use existing results from Section 4 to
solve the second stage. This allow us to express the
players’ second-stage optimal voting strategies as a
function of effort levels, which reduces the two-stage
optimization problem, Equation (8), to a simpler
single-stage problem optimizing over effort levels.

Lemma 2 (Problem Reduction).
i. At the second stage of the game, given a fixed vector u,

player i’s optimal vote is v∗i (u) � α∗
i (u)si + (1 − α∗

i (u))μ,

Tsoukalas and Falk: Token-Weighted Crowdsourcing
3852 Management Science, 2020, vol. 66, no. 9, pp. 3843–3859, © 2020 The Author(s)



where α∗
i (u) and the platform’s resulting variance are

given by

α∗
i (u) �

ρig ui( )
τi ρq +∑n

j�1 ρjg uj
( )( ) ,

and V(u) � ρq +
∑n
i�1

ρig ui( )
( )−1

. (9)

ii. At the first stage of the game, player i’s profit
maximization problem, Equation (8), is equivalent to the
following cost-minimization problem over effort level:

min
ui≥0

#i(u) � τiV(u) + c ui( ). (10)

For convenience, we define the platform’s precision
ρ(u) �defV(u)−1 � ρq +∑n

i�1 ρig(ui).

5.2. Equilibrium
Before stating the equilibrium, we discuss the con-
ditions under which one exists. From Lemma 2, it
suffices to focus on Problem (10). When #i(u) is
continuous and convex with respect to ui for ui ≥ 0,
there exists at least one equilibrium (Rosen 1965).
Given that #i(·) is the sum of two functions, it is
convex if both functions are convex. While it is gen-
erally common to assume convex cost of information
acquisition c(·) (see, e.g., Vives 2011), convexity of
τiV(u) depends on the properties of the information
improvement function g(ui). We have the following
result.

Lemma 3 (Convexity of V(·)). V(u) is convex in ui iff

ρi

ρ(u) ≥
1
2
g′′ ui( )
g′ ui( )2 . (11)

A sufficient condition is g(·) linear or concave.
Lemma 3 has important implications. First, note

that ρi ≥ 0 and ρ(u) ≥ 0 by construction, and thus the
left-hand side is positive. It follows that convexity of
V(·) trivially holds when g(·) is linear as g′′(·) � 0 in
this case. For instance, g(ui) � 1 + ui, which also sat-
isfies Assumption 2 (g > 0, g′ > 0 and g(0) � 1). Con-
vexity of V(·) also trivially holds when g(·) is concave
as g′′(·) ≤ 0 in this case.

Up until now, we have been working with gen-
eral functions g(·) and c(·), and our results, al-
though also general, have not addressed the equilib-
rium outcome. To make headway, we need to impose
some additional structural requirements on c(·) and
g(·). To see why, consider the first-order conditions
of (10) τiV′ + c′ � 0,∀i. Using the expression for V′
(see Equation (33) in the online appendix), these

are equivalent to the following system of nonlinear
equations:

τ1ρ1 � ∂c u1( )
∂u1

/ ∂g u1( )
∂u1

( )
ρ u1, . . . , un( )2

..

.

τnρn � ∂c un( )
∂un

/ ∂g un( )
∂un

( )
ρ u1, . . . ,un( )2. (12)

While such nonlinear systems are generally intract-
ible, the structure of these equations motivates the
following additional assumption, which will facili-
tate the computation of the equilibrium.

Assumption 3. Let k > 0 be a constant and suppose c and g
satisfy the following equation:

c′/g′ � k · g2. (13)
In online Appendix A.5, we show that a broad class of
linear and concave forms of g(·) (which by Lemma 3
suffice for equilibrium existence), and corresponding
functions c, satisfy this requirement. For instance,
consider g(ui) � 1 + ui, thus g′(ui) � 1. Condition (13)
(with k � 1) implies c′(ui) � (1 + ui)2, and thus c(ui) �
(1/3)(1 + ui)3, which is convex, positive increasing
for ui ≥ 0.
Leveraging Equation (13) and some additional

properties, we obtain that the system in Equation (12)
can have not only a unique solution but one that is
also characterizable in closed form.

Theorem 1 (Equilibrium). Let vectors τ � {τ1, . . . , τn}, ρ �
{ρ1, . . . , ρn}. Suppose c(·) and g(·) satisfy Assumptions 2
and 3, c(·) is convex, and g(·) is either linear or a concave
bijective (invertible) function. Then, the effort-exerting game
has a unique equilibrium, characterized by votes v∗i (u∗) �
α∗
i (u∗)si + (1 − α∗

i (u∗))μ,where the signal weights α∗
i (u∗) are

given in Equation (9), and effort levels u∗i are given by

u∗i (τ,ρ) � g−1
(
f ∗i (τ, ρ)

)
, with

f ∗i (τ, ρ) �
ρ2
q + 4

k1/2
∑n

j�1 τjρ3
j

( )1/2( )1/2
−ρq

2 1
ρiτi( )1/2

∑n
j�1 τjρ3

j

( )1/2 . (14)

Having derived the equilibrium, we now examine
how equilibrium effort levels depend on token hold-
ings and information precision.

Proposition 5 (Comparative Statics). Suppose the condi-
tions of Theorem 1 are satisfied; then equilibrium effort levels
(i) monotonically increase in token holdings and (ii) are
nonmonotonic in information precisions. Further, consider
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two hypothetical players i and i′ and suppose they have the
same precision; then (iii) τi > τi′ ⇒ u∗i > u∗i′ . Suppose in-
stead the two players have the same token holdings; then
(iv) ρi > ρi′ ⇒ u∗i > u∗i′ .

Proposition 5(i) states that the more tokens a player
has, the more effort he provides in equilibrium—a
desirable feature often touted in marketing materials.
Relatedly, part (iii) can be interpreted as an equivalent
statement on fairness—when comparing two equally
informed players, the one with more tokens always
exerts more effort in equilibrium. However, as we
shall show in Section 5.3, these desirable features
are not attributable to the τ-weighted aggregation
mechanism itself.

Proposition 5(ii) highlights that there is amore subtle
(nonmonotonic) relationship between the amount of
effort a player exerts and his information precision.
Part (iv) shows that when comparing two players
with equal token holdings, the one with better in-
formation precision exerts more effort in equilibrium.
In other words, there is some amount of free-riding
from less-informed players, which is not necessarily a
desirable feature.

To illustrate these results, Figure 3 shows equilib-
rium effort levels in a n � 2-player game assuming a
linear information improvement function g(x) � 1 +
ηx with η > 0. Figure 3(a) (parameters η � ρ1 � ρ2 �
ρq � 1) highlights the results of Proposition 5 parts (i)
and (iii). That is, player 1’s effort increases with
his share of the tokens τ1, and player 1 exerts more
effort than player 2 when τ1 > 1/2. Figure 3(b) (pa-
rameters η� τ1 � τ2 � 1/2,ρ2 � ρq � 1) shows the more
subtle relationship between effort levels and in-
formation precision described in Proposition 5
parts (ii) and (iv). The first vertical line marks the
point where player 1’s precision and effort exceed
player 2’s, and the second vertical line highlights the
nonmonotonicity.

For the rest of the analysis, we assume all results are
subject to the conditions of Theorem 1, and we will
work with the linear form of g(·) described above and
in Online Appendix A.5.1.

5.3. Centralized Solution and Optimality Gap
Having derived player equilibrium effort levels, we
now compare the resulting platform accuracy they
obtain to that of a centralized setting.
In the centralized case, we assume the platform is

maximizing the sum of all expected player payoffs.
Noting that

∑n
i�1 τiV(u) � V(u)∑n

i�1 τi � V(u), and us-
ing the equivalence between maximizing payoffs and
minimizing variance from Lemma 1, the centralized
problem can be written as a minimization problem
over the platform variance and effort costs given by

min
u≥0 V(u) +∑n

i�1
c ui( ). (15)

Convexity of V(·) (see Lemma 3) and c(·) suffice to
guarantee a unique solution. Denote by u f b the vector
representing this solution and let Vfb �defV(u f b). Let
Veq �defV(u∗), with u∗ � {u∗1(τ, ρ), . . . ,u∗n(τ,ρ)} given by
Equation (14), be the equilibrium platform variance of
the decentralized game, and define the optimality gap
between the two as

& � Veq − Vfb. (16)

Proposition 6. Suppose the assumptions from Theorem 1
hold, and let 1 � {1, . . . , 1} be an n-dimensional vector of
ones; then
i. the optimal effort levels of the centralized platform are

given by u f b
i (ρ) � u∗i (1,ρ),∀i ∈ {1, . . . ,n};

ii. the effort levels of the centralized platform exceed
those of the decentralized one, u f b > u∗;
iii. the optimality gap is positive, & > 0.

Figure 3. Equilibrium Effort Levels in Two-Player Game with a Linear Information Improvement Function
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Part (i) of Proposition 6 shows that the effort levels
of the centralized platform have a simple connection
to the equilibrium effort levels of the decentralized
platform in Equation (14). Mathematically, they can
be obtained by setting τi � 1,∀i. This implies the
distribution of token holdings is irrelevant from the
centralized platform’s perspective; intuitively, when
it comes to assigning effort levels to players, only the
vector of information accuracy, ρ, matters. Part (ii)
follows from Proposition 5(i), which implies u∗i (1,ρ) >
u∗i (τ,ρ),∀n > 1, as long as τi �� 1,∀i, that is, no sin-
gle player has all the tokens. Part (iii) follows from
part (ii) and the fact thatV(u) is decreasing in u (see the
proof of Proposition 6).

Unlike our results in Section 4, where strategic
players can fully restore first best, here the optimality
gap is strictly positive. This is because in contrast to
voting, providing effort is costly, and each player
stands to benefit differently depending on his token
holdings, which implies that player i’s individu-
al profit incentives are no longer aligned with the
platform’s.

Having shown that first-best accuracy can no lon-
ger be restored in the game with effort, even in the
best-case scenario in which all agents are strategic,
we now examine how the resulting optimality gap
is affected by (i) the aggregation mechanism, com-
paring τ- and 1/n-weighted schemes, and (ii) the
dispersion in token holdings.

Irrelevance of Aggregation Mechanism. Recall that in
Section 4, we showed the aggregation mechanism to
be irrelevant if all players are strategic. This result
continues to hold in the broader game with effort. To
see why, consider the voting game in Equation (8) and
note that for a fixed vector u, player i’s optimization
problem in the second stage parallels the original
voting game in Equation (4) analyzed in Section 4 (the
two are in fact identical when u � 0). When all players
are strategic, they adjust their votes in the second
stage to undo the platform’s aggregation mechanism
and recover the first-best accuracy achievable for a
given vector u. In other words, although the plat-
form’s choice of aggregation mechanism influences
how individual players vote, it does not influence the
final voting outcome, once all votes are aggregated.
This also means that the optimality gap is not affected
by the choice of the aggregation mechanism (formal
statements are provided in the proof of Lemma 2).

Relevance of Token Dispersion. It is important to
emphasize that the previous result does not imply
that the distribution of tokens is irrelevant. In fact,
Theorem 1 shows the opposite: each player’s equi-
librium effort level depends on the entire vector of
token holdings τ. This is because the distribution of

tokens directly affects each player’s expected payoff
in the first stage of the game, because of the pro-
portionality of returns. Recall that individual payoffs
are defined as τiπ, that is, players with more tokens
stand to benefit more from an increase in platform
value and, in turn, are incentivized to exert more
effort. Ironically, this runs contrary to some of the
claims made by τ-weighted platform operators, re-
garding the role played by the aggregation mecha-
nism in providing adequate effort-exerting incentives.
The fact that this effect is tied to the proportionality of
returns means that it would persist even if platforms
were to adopt an equally weighted 1/n mechanism.
This suggests it is particularly meaningful to explore
question (ii) regarding the impact of token dispersion,
in some depth. We do so next.

5.4. The Impact of Token Dispersion
In this section, we examine the impact of token dis-
persion on the optimality gap. Before proceeding, we
summarize the equilibrium player actions and derive
the platform variances in the decentralized and cen-
tralized (first-best) settings in Table 2. Within the
decentralized setting, it will be useful to distinguish bet-
ween a special homogeneous case in which all players
hold 1/n tokens and the general heterogeneous case in
which token holdings are dispersed. Abusing nota-
tion for simplicity, let n−1 �def {1/n, . . . , 1/n} and denote
by Veq

1/n �defVeq(τ → n−1) the platform variance in the
purely homogeneous case. This type of distinction is
not necessary in the centralized case given token
holdings are irrelevant in that setting. We emphasize
that this notation is fundamentally different from
the one adopted in Section 4, where the subscript
1/n represented the platform choosing an equally
weighted aggregation mechanism. Here, subscript 1/n
represents the special case of homogeneous holdings
under τ-weighted aggregation. Without loss of gen-
erality, we display all expressions taking the limit
σq → ∞ to ease exposition.
We proceed by first examining the simple case

in which all players have the same precision, and
then we analyze the more complicated heteroge-
neous case.

5.4.1. Optimality Gap with Homogeneous Precisions.
Similarly to Equation (16), let &1/n �defVeq

1/n − Vfb de-
note the optimality gap between the equilibrium
platform variance when all players hold 1/n tokens,
and first best.

Proposition 7. Under the conditions of Theorem 1, when all
players strategically choose effort levels and votes and have
homogeneous precisions, that is, ρi � ρ, ∀i ∈ {0, . . . ,n}, we
have& ≥ &1/n > 0, that is, the platformwould prefer an even
allocation of tokens.
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It is interesting to note that a homogeneous allo-
cation is preferred although players withmore tokens
exert more effort in equilibrium (see Proposition 5).
This is (in part) due to the convexity of Veq with re-
spect to τ (see the proof of Proposition 7 for a step-by-
step derivation).

We now examine the more general case with het-
erogeneous precisions.

5.4.2. Optimality Gap with Heterogeneous Precisions.
The set of τ’s for which a dispersed allocation dom-
inates is given by {τ |Veq(τ) ≤ Veq

1/n ∩ 1′τ � 1}. We ex-
amine dominance numerically, considering a plat-
formwith n � 20players, described by afixed vector σ
(split evenly across the interval [0, 1], meaning the
average signal precision is 0.5). As before, we draw
realizations of vector τ from a uniform in [0, 1]
(normalized so that the components sum to 1). For
each of those draws, we record the corresponding
value of & and disp(τ).

Figure 4(a) shows the optimality gap& as a function
of disp(τ). The single point represented by an empty
rectangle at the x-axis origin is the optimality gap
resulting from an even allocation of tokens, &1/n. By
definition, disp(n−1) � 0 (there is no dispersion when
all players have the same number of tokens). From
this point, we trace the horizontal dashed line. Points
below this horizontal line, in black, represent domi-
nance of dispersed token allocations, over the 1/n
allocation. Points above this line, in gray, represent
the reverse. There is a positive, albeit low, correlation
(∼10%) between & and disp(τ), suggesting that, on
average, the optimality gap slightly increases with
disp(τ), though the effect is weak.

To bring to light the intricacies of their relation-
ship, we run a more extensive simulation: Figure 4(b)
shows that the probability that dispersed tokens are
preferred, Pr(& < &1/n), tends to decrease with disp(τ)
(going from ∼50% to ∼20%). Figure 4(c) expands the
analysis beyond probabilities to take into account
magnitudes and shows that the average E[&] tends to
increase with disp(τ).13 These results support the
following conclusion.

Numerical Result 2. When all players strategically choose
effort levels and votes, and have heterogeneous precisions,
equilibrium effort levels decrease and the optimality gap
increases, on average, with token dispersion.

5.5. Optimal Token Allocation
Though the previous analysis suggests it is preferable
on average to limit token dispersion across players, it
does not account for the distribution of precisions that
can be used to better inform the platform on the pre-
ferred allocation of tokens. Figure 4(b) shows that
between 20% and 50% of the time, the platformwould
be better off with dispersed tokens. It is therefore of
interest to examine these instances further.
Consider the equilibrium platform variance Veq(τ),

where we are now being explicit about the depen-
dence on the vector of tokens (τ). The allocation of
tokens that minimizes the platform’s variance with
strategic players is given by τ∗ �def {argminτ V

eq(τ),
subject to 1′τ � 1}. For the linear effort model and
taking the limσq→∞ Veq(τ) to simplify expressions, the
optimal allocation is obtainable in closed form:

τ∗i (ρ) � 1 + 1
ρ3
i

∑
j��i

ρ3
j

( )−1
. (17)

Table 2. Equilibrium Player Actions and Platform Aariance as σq → ∞
Setting Equilibrium votes and effort Platform variance

Decentralized, dispersed holdings vi α∗
i u

∗
i τ,ρ
( )( )( )

; u∗i (τ,ρ) Veq � k1/4
∑n

i�1 ρ
3/2
i

̅̅̅
τi

√( )−1/2
Decentralized, 1/n holdings vi α∗

i n
−1,u∗i n−1,ρ

( )( )( )
;u∗i (n−1,ρ) Veq

1/n � k1/4 (1/ ̅̅
n

√ )∑n
i�1 ρ

3/2
i

( )−1/2
Centralized (first best) vi α∗

i 1,u
∗
i 1,ρ
( )( )( )

;u∗i (1, ρ) Vfb � k1/4
∑n

i�1 ρ
3/2
i

( )−1/2

Figure 4. Optimality Gap & with Heterogeneous Precisions
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As can be intuitively expected, player i’s optimal
token holdings are a function of all players’ precisions:
they increase in his own precision and decrease in
others’ precisions.

Next, consider the Euclidean distance d(τ, τ∗),
which measures how far apart a random vector τ is
from the optimal allocation τ∗. Using the same sim-
ulation parameters as in Section 5.4, Figure 5 shows
that the optimality gap tends to increase with this
distance. Furthermore, there is a positive correlation
of 85% between the two, suggesting a strong effect.
This leads to our last numerical result.

Numerical Result 3. When all players strategically choose
effort levels and votes and have heterogeneous precisions,
(i) the optimality gap increases, on average, with d(τ, τ∗);
(ii) there exists a critical distance above which an even allo-
cation dominates all dispersed allocations and a critical dis-
tance below which all dispersed allocations dominate an
even allocation.

Note that the numerical results are generally robust
when changing: the number of players n, the fixed
vector ρ, and the metric chosen to compare vectors
(e.g., similar results are obtainable if using the geo-
metric angle between vectors, as opposed to the
Euclidean distance).

6. Conclusion and Limitations
Many blockchain-based platforms have deployed
voting mechanisms that use some form of token-
weighted aggregation. These platforms rely on the
argument that token weighting incentivizes users to
provide higher-quality votes, which in turn improves
the overall accuracy of the platform. Our results show
that this intuition is at best only partially correct.
In many cases, the platform could achieve equal or
sometimes better accuracy (higher overall payoffs) by
pursuing a different aggregation strategy and/or by
limiting token dispersion across users.

Like all stylized models, some of our assumptions
place limitations on the scope of the paper. For in-
stance, our model assumes a continuous voting and
outcome space in R. In some cases, votes are con-
strained to be binary, that is, users can vote content up

or down, or can like or dislike, and in others, votes are
constrained to be in discrete ranges, for example,
Uber ratings following a completed trip allowusers to
provide only discrete feedback levels, one to five
stars. Constraining the vote space would be an in-
teresting direction to explore.
Second, some of our results rely on players knowing

the token holdings, signal precisions, and/or the
strategy types of other players. Relaxing these types
of assumptions is challenging but could lead to in-
teresting insights, such as whether platforms should
purposely obfuscate information or disseminate it as
much as possible.
Third, though our model considers endogenous

information acquisition, it does not consider endog-
enous token acquisition, for instance, through an
initial coin offering (ICO), or through secondary
trading of tokens over time. Presumably, if signal
precisions remain stable (e.g., users are constrained to
vote on similar topics over time), users may have an
incentive to work toward realizing the optimal token
allocation derived in Section 5.5. Conversely, when
signal precisions vary (e.g., users are asked to vote on
different topics over time), and/or when trading
tokens is subject to frictions, this type of endogeneity
may be less relevant.
As mentioned in the introduction, token-weighted

voting has been adopted for many different appli-
cations, and our model paints these systems with a
broad enough brush to capture some of the common
economic trade-offs they all share. As such, this paper
should be viewed as a first step in expanding our
theoretical understanding of these systems. These
limitations could represent interesting directions for
future work in this space.

Endnotes
1For instance, when σq → 0, there is no uncertainty about product
quality. Conversely, when σq → ∞, any value of q on the real line is
equally likely; for example, this could represent an innovative
product that has just hit the market. Formally, σq → ∞ represents
the case of a uniform improper prior.
2Relaxing these basic assumptions generally has nontrivial conse-
quences and could thus be an interesting direction for future research.
3 It is known that when all other players are playing linear strategies,
the focal agent’s best response is linear (see, e.g., Myatt and Wallace
2012, p. 347). This assumption is often adopted in the literature to
ensure tractability.
4Whereas token value may be driven by additional factors, such as
the secondary market liquidity of the tokens, the quality of the un-
derlying blockchain sustaining the tokens, the presence of speculators
in the market, and so forth, our primary interest in this paper is to
assess whether these platforms can effectively crowdsource infor-
mation solely based on accuracy incentives. We therefore consider
accuracy as the primary driver of token value and, by implication,
platform value.
5Note that an additional, even less sophisticated, truthful player type
that simply votes his raw signal, vi � si, instead of his Bayesian

Figure 5. & vs. d(τ, τ∗)
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posterior is subsumed in the currentmodel by taking the limiting case
of a diffuse prior, σq → ∞, which implies βi → 1, and hence vi → si.
6Alternatively, we can consider a central planner that observes all
signals and sets player votes vi instead of directly setting q̂, and the
same results will hold.
7To see this, first note that the optimal q̂∗ solvesE[q − q̂∗|s1, . . . , sn] � 0,
which gives q̂∗ � E[q|s1, . . . , sn]. As a result, Var[q− q̂∗|s1, . . . , sn] �
Var[q−E[q|s1, . . . , sn]|s1, . . . , sn] �Var[q|s1, . . . , sn]. Since q and si{ }ni�1
are normally distributed, one can use the standard result concerning
multivariate normals Var[q|s1, . . . , sn] � σ2q − Σq�sΣ

−1
�s�s Σ�sq, where Σq�s, Σ�s�s

and Σ�sq are the covariance matrices. A straightforward calculation
gives Equation (5).
8 In the popular U.S. game show The Price is Right, which has been
running since 1972, contestants (voters in our framework) compete to
guess the price of an item but face the prospect of elimination if their
guess ends up being above the true price. We show that simple
Bayesian posterior voting is generally suboptimal when it comes to
dealing with this type of asymmetry in player payoffs.
9This assumption, made for tractability, eliminates the need to define
additional belief sets but begs the question of how player types could
be revealed in practice—a potentially interesting direction for future
work. See Chandrasekhar et al. (2015) for a related experimental study.
10To see why, consider that as n → ∞, the optimal weight to place on
the prior 1 − α∗ � 1 − n/(n + σ2

σ2q
) → 0, whereas truthful voters main-

tain a fixed weight of 1 − β > 0, which by definition is indepen-
dent of n.
11To be more precise, for Figure 2(c), we ran a simulation drawing
50,000 independent realizations of τ. To calculate E[&τ], we dis-
cretized disp(τ) into 50 bins of equal length, recording the mean &τ

within each bin. To preserve statistical significance, we discarded bins
with fewer than 50 total values.
12The constants k1, k2 are added for additional flexibility and to keep
the value positive (if k1 is large enough), but alternatively, k1 could be
set to zero and k2 set to one, and π could be interpreted as relative
utility, rather than value.
13To be more precise, in both cases, we ran a simulation drawing
1-mm independent realizations of τ from a standard (normalized)
uniform distribution. We then discretized disp(τ) into 50 bins of
equal length, recording Pr(& < &1/n) and E[&] within each bin. To
preserve statistical significance, we discarded bins with fewer than
50 total values.
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