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Abstract: Recently, the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique 
is widely used for quantifying the land surface deformation, which is very important to assess the 
potential impact on social and economic activities. Radar satellites operate in different wavelengths 
and each provides different levels of vertical displacement accuracy. In this study, the accuracies of 
Sentinel-1 (C-band) and ALOS/PALSAR-2 (L-band) were investigated in terms of estimating the 
land subsidence rate along the study area of Alexandria City, Egypt. A total of nine Sentinel-1 and 
11 ALOS/PALSAR-2 scenes were used for such assessment. The small baseline subset (SBAS) pro-
cessing scheme, which detects the land deformation with a high spatial and temporal coverage, 
was performed. The results show that the threshold coherence values of the generated interfero-
grams from ALOS-2 data are highly concentrated between 0.2 and 0.3, while a higher threshold 
value of 0.4 shows no coherent pixels for about 80% of Alexandria’s urban area. However, the 
coherence values of Sentinel-1 interferograms ranged between 0.3 and 1, with most of the urban 
area in Alexandria showing coherent pixels at a 0.4 value. In addition, both data types produced 
different residual topography values of almost 0 m with a standard deviation of 13.5 m for Senti-
nel-1 and −20.5 m with a standard deviation of 33.24 m for ALOS-2 using the same digital elevation 
model (DEM) and wavelet number. Consequently, the final deformation was estimated using high 
coherent pixels with a threshold of 0.4 for Sentinel-1, which is comparable to a threshold of about 
0.8 when using ALOS-2 data. The cumulative vertical displacement along the study area from 2017 
to 2020 reached −60 mm with an average of −12.5 mm and mean displacement rate of −1.73 
mm/year. Accordingly, the Alexandrian coastal plain and city center are found to be relatively 
stable, with land subsidence rates ranging from 0 to −5 mm/year. The maximum subsidence rate 
reached −20 mm/yr and was found along the boundary of Mariout Lakes and former Abu Qir La-
goon. Finally, the affected buildings recorded during the field survey were plotted on the final land 
subsidence maps and show high consistency with the DInSAR results. For future developmental 
urban plans in Alexandria City, it is recommended to expand towards the western desert fringes 
instead of the south where the present-day ground lies on top of the former wetland areas. 

Keywords: Sentinel-1; ALOS/PALSAR-2; land subsidence; accuracy assessment; Alexandria City; 
Egypt 
 

1. Introduction 
Coastal cities along the Nile Delta encompass most of the social and economic ac-

tivities in Egypt. Meanwhile, the combined impact of sea level rise and land subsidence 
causes serious risks and problems [1]. Together, subsidence and lack of sediment supply 
along the depositional zone of the Nile Basin (downstream Nile Delta) caused by the in-
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tensive construction of dams could potentially cause a relative rise in sea level over time 
[2]. Additionally, coastal erosion is predicted to increase hazard risks in coastal cities 
[3,4]. Therefore, there is an urgent need for regular monitoring, with high accuracy, the 
deformation in coastal cities in order to mitigate the expected hazards. Traditional survey 
instruments are point observations and thus have a spatially limited coverage. Remote 
sensing techniques are more cost-effective and provide better spatial coverage for coastal 
and land observations [5–11]. 

Numerous studies have been conducted to measure land subsidence in coastal areas 
across the Nile Delta of Egypt using SAR remote sensing data [12–25]. Information on the 
spatial distribution of natural hazards needs to be generated as quickly as possible in 
order to be useful for emergency response efforts [26]. Such information is usually gen-
erated from the analysis of optical satellite imagery [27,28]. However, relying only on 
optical satellite imagery for natural hazards assessment is problematic as the mapping 
processes can be significantly delayed by cloud cover and bad weather conditions [29]. 
Synthetic Aperture Radar (SAR) satellite imagery provides an alternative method to 
generate information under all-weather conditions. SAR is most widely used to measure 
the downslope velocity of slow-moving landslides and to provide subtle measurements 
of coastal subsidence at a significantly improved spatial resolution and over large areas 
[30–41]. 

Achache et al. 1996 [42] have demonstrated the ability of InSAR to monitor small 
displacements at the required scale for large landslide monitoring and their work shows 
similar trends to those acquired from ground-based measurements. Many studies are 
adopting InSAR technology for land subsidence tracking, and the derived patterns and 
results are comparable to ground-based measurements [43–46]. In this context, 
high-accuracy monitoring methods, including persistent scatterer InSAR [47] and small 
baseline subset DInSAR (SBAS-InSAR) [48], were proposed and applied to monitor land 
subsidence with high accuracy. Indeed, the SBAS approach allows for the detection of 
land deformation at high spatial and temporal coverage. This research work aims to im-
prove the SBAS DInSAR methodology and to determine the best SAR data (L-band or 
C-band) for estimating the land-subsidence rate with high accuracy in an economically 
important and densely populated part of the Nile Delta of Egypt, which has suffered 
from many subsidence events in recent years [49]. In addition, a systematic comparison of 
two SAR sensors (ALOS/PALSAR-2 and Sentinel-1A) is presented to determine which 
dataset provided the most suitable and accurate results of land subsidence measure in 
locations showing high coherence within the Alexandrian urban area (Figure 1). 
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Figure 1. The urban study area in Alexandria City is outlined with a red border plotted on a Sen-
tinel-2 image of October 2019. The yellow dots represent the recently recorded subsidence events. 

2. Study Area 
Alexandria was chosen as a research area due to its complicated pattern of urban 

subsidence. The city lies on the Mediterranean Sea at the western edge of the Nile Delta, 
about 183 km northwest of Cairo City and encloses an area of approximately 2679 km2. It 
is Egypt’s second-largest city and a major economic center. It hosts 40% of the Egyptian 
industrial and commercial activities, as well as the largest harbor in the country [50,51]. It 
is located in a moderately tectonically stable plate in North East Africa. The periodic in-
stability has been caused by the readjustment to downwrapping (sediment compaction, 
faulting, isostatic lowering) of the sedimentary sequences (locally exceeding 4000 m) 
[52,53]. 

Generally, the low-lying region of the Nile Delta is subjected to significant differen-
tial subsidence. The reduction in annual Nile water and sediment discharge over the last 
two centuries associated with dams constructions along the Nile River has resulted in an 
environmental imbalance along the depositional zone of the Nile watershed, and thus, 
has increased the impact of sea level rise across the city [54]. 

Many subsidence events were recorded along Alexandria City in recent years [49]. 
Land subsidence in Alexandria has not been thoroughly documented in the literature; 
however, subsidence was partially studied using traditional geological measurements, 
mostly in the eastern and southern parts of the city [55,56]. The DInSAR technique has 
been used to study land subsidence in the central part of the city and its relation to sea 
level rise [57]. It is worth mentioning that the previous DInSAR studies in Alexandria 
mainly focused on the period before 2015, using a variety of radar images with different 
wavelengths and producing results with different levels of accuracy. 

3. Datasets 
In this study, a total of 11 ALOS/PALSAR-2 L-band images acquired from 8 March 

2015 to 31 March 2019, as well as 9 Sentinel-1A C-band images acquired from 7 August 
2017 to 24 January 2020 were utilized to map the ground deformation over Alexandria 
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City, Egypt. The ALOS-2 acquisitions were captured in ScanSAR mode, ascending with 
single-look complex format (SLC), right-looking and HH polarization. All the Sentinel-1 
images were acquired in the descending path, SLC format and Interferometric Wide (IW) 
swath mode. The short sampling rate of the Sentinel-1 images has the potential to main-
tain the coherence, even if the wavelength is short (~5.5 cm). The ALOS-2 images with a 
longer wavelength (~24 cm) are less affected by temporal decorrelation of the SAR signal. 
Table 1 lists the details of the used SAR data. 

Table 1. Characteristics of ALOS/PALSAR-2 and Sentinel-1A SAR data used in this study. 

Satellite ALOS/PALSAR-2 Sentinel-1A 
Band L C 
Orbit Ascending Descending 

Master image 27 November 2016 27 June 2018 
Number of scenes 11 9 
Acquisition period 2015–2019 2017–2020 

λ (cm) 23.6 5.6 
Polarization HH VV 
Revisit cycle 14 days 12 days 

Mode ScanSAR IW 

Sentinel-1 products consist of three main sub-swaths (Figure 2, red labels) for each 
polarization channel, with a total of three (single polarizations) or six (dual polarization) 
images in an IW product. Each sub-swath image consists of a number of bursts (Figure 2, 
white labels), where each burst has been processed as a separate SLC image. The indi-
vidually focused complex burst images are combined, in azimuth-time order, into a sin-
gle sub-swath image with black-fill demarcation in between. The data used in evaluating 
the land subsidence in Alexandria City lies in the sub-swath IW2 in the western part of 
Nile Delta. 

 
Figure 2. Sub-swaths (red) and bursts (white) of Sentinel-1 products of the study area. 

4. SBAS Processing 
The Interferometric analysis of ALOS/PALSAR-2 and Sentinel-1A sensors was car-

ried out through the SBAS method [58]. All acquired steps to calculate the rates of dis-
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placement affecting the study area are shown in Figure 3. Firstly, the specifications of the 
perpendicular and temporal baselines thresholds for processing were calculated based on 
the conditions of the study area and the used SAR data. If the study area is urban, the 
time baseline can be set for a longer period, as several stable points can stay without 
changing their coherence over a long time period. An interferogram can still be generated 
over an urban area, even if the temporal baseline is up to four years [59]. Based on these 
considerations, the connection graphs were produced for each group (Figure 4). A com-
parison was made between the spatial and temporal baselines of the radar images. Sub-
sequently, the links between radar images were built to show which baselines are small 
enough to be comparable [60]. 

 
Figure 3. Flowchart of SBAS-DInSAR processing steps. 
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Figure 4. The temporal and spatial baseline distributions of the SAR interferograms from the Sentinel-1A and 
ALOS/PALSAR-2 data sets (a–d), where each acquisition is represented by a diamond associated to an ID number; the 
green diamonds represent the valid acquisitions and the yellow diamonds represent the super master image of the small 
baseline subset (SBAS). (a) Time–baseline plot of SBAS interferograms generated by the Sentinel-1A data, with 27 June 
2018 as the super master image (b) time–baseline plot of SBAS interferograms generated by the ALOS/PALSAR-2 data, 
with 27 November 2016 as the super master image; (c) time–position plot generated by the Sentinel-1A and (d) time–
position plot generated by the ALOS/PALSAR-2. 

The result is a network of connections, defined as a connection graph (Figure 4a,b), 
where the yellow and green dots in these graphs represent the super master and the slave 
of the SAR images, respectively. The red lines represent the interferograms that pass the 
SBAS minimal requirements. Figure 4c,d indicate the distance between the various im-
ages, depending on the date of acquisition. These graphs make it possible to conduct a 
quick visual evaluation of the relations between the images and the time distribution of 
the SAR data being used. Consequently, pairs of images were generated and later used to 
create interferograms [61,62]. For the ALOS/PALSAR-2 data (2015–2019) about 39 pairs of 
interferograms were generated and 22 pairs for Sentinel-1A data (2017–2020). 

Each pair of compatible radar images identified in the previous step is used to gen-
erate an interferogram. In addition to the radar images and the connecting graph, this 
process requires the use of an accurate digital terrain model [61]. The digital elevation 
model SRTM 1-arcsecond provided by NASA with a resolution of 30 m was used in this 
study. During the first step of co-registration, all SAR images were geometrically ad-
justed by resampling each image with the master, which was chosen during the correla-
tion step to give them the same geometry [62,63]. During the second stage, a stack of in-
terferograms formed, followed by a process of flattening. 
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In this study, the multi-looking process was performed by setting the number of 
looks for both SAR data (ALOS/PALSAR-2 and Sentinel-1A) as 1 in the range direction 
and 4 in azimuth direction. Such multi-looking process increases Signal to Noise Ratio 
(SNR) of the interferograms and thus improves the quality of coherence estimation [64]. 
Next, interferograms were generated after meeting the temporal, geometric baseline and 
Doppler difference criteria. The formed interferograms are considered as Stripmap like 
interferograms, thus phase filtering and unwrapping were implemented. There are sev-
eral methods for unwrapping the interferograms; however, in this study, the Minimum 
Cost Flow (MCF) method was used for both ALOS/PALSAR-2 and Sentinel-1A data. The 
other methods were tested, compared visually, and were found to be less suited for the 
study area than the MCF method. 

In order to use the possible maximum number of coherent pixels a compromise 
value of 0.35 is suggested, when using the minimum cost flow method for the unwrap-
ping stage. Indeed, all areas with coherence lower than the 0.35 threshold value were 
eliminated. As low coherence values can lead to particularly noisy areas in the analysis, it 
reduces the reliability of the final results [65]. Besides unwrapping interferograms, co-
herence maps for each interferogram were generated. Therefore, the Goldstein filters 
were applied to the generated interferograms in order to minimize the amount of noise 
[66]. 

In order to re-flatten the interferograms, ground control points (GCPs) are required 
as input, which should be positioned on areas that are thought to be stable or with 
pre-known deformation values. The height values of these GCPs were estimated from the 
input DEM [67]. In this study a total number of 150 points were used and manually 
placed only on the persistent scatterers with very high coherence pixels to ensure that 
each interferogram has received the necessary amount of control points to correct any 
inconsistencies caused by orbital fluctuations and re-flattening the interferograms to 
make phase data more accurate [68]. 

Following the previous processing scheme, the first inversion step was applied to 
the generated and re-flattened interferograms in order to measure the residual height 
and the velocity of the displacement using the linear model [69]. In the same context, the 
second unwrapping process was performed to improve the SAR data for the next step. In 
addition, the second inversion step was applied to provide more accurate estimation of 
the final velocity displacement. The high and low pass atmospheric filter was applied to 
remove the noise through temporal and spatial filtering operations [70,71]. The dis-
placement observed by DInSAR is one dimensional along the Line of Sight (LOS). In or-
der to convert the LOS displacement to the vertical direction (subsidence), an additional 
equation was used [72]. This operation suggests that the displacement is primarily 
caused by the subsidence (vertical displacement) and that the horizontal displacement, 
which is in the same direction of the LOS is very small compared to the vertical subsid-
ence; thus, it can be ignored. However, it is very difficult to convert the measured phase 
change along the LOS into the perpendicular horizontal displacement. Therefore, the 
geocoding was applied to the different outputs from the previous steps to convert the 
slant range format to the geocoded images with the required coordinate system. Finally, 
the data was exported in the Geotiff format to ArcGIS, where statistics have been calcu-
lated. 

5. Results 
After assessing the accuracy of both ALOS-2 and Sentinel-1 in estimating the vertical 

displacement, the final land subsidence rate of Alexandria City and its surroundings was 
monitored from August 2017 to September 2020 by using nine Sentinel-1 SAR images 
with 5 × 20 m spatial resolution and VV polarization. A total of 22 interferometric pairs 
were generated using the image of 27 June 2018 as the super master. All slant ranges of 
the nine images were co-registered with this super master, which was used as the refer-
ence image. 
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Selecting the proper perpendicular and temporal baselines is considered to be a very 
important step to discard the unsuitable SAR images and to examine the validity of the 
generated interferograms. For Sentinel-1 interferograms, the mean absolute normal 
baseline was 78 m with minimum and maximum absolute baseline of 13 m and 191 m, 
respectively. The mean absolute temporal baseline was 285 days with minimum and 
maximum value equal to 12 days and 504 days, respectively. Table 2 illustrates each 
master and slave image of Sentinel-1, which was combined to generate 22 interferograms. 
While, for ALOS/PALSAR-2 interferograms, the mean absolute normal baseline was 110 
m with minimum and maximum absolute baseline of 18 m and 287 m, respectively. The 
mean absolute temporal baseline was 329 days with minimum and maximum values 
equal to 28 days and 600 days, respectively. 

Table 2. Sentinel-1 data pairs for SBAS processing. 

Master Slave 
Normal  

Baseline (m) 
Temporal  

Baseline (days) 

7/8/2017 

19/8/2017 −62  12 
15/6/2018 −36 312 
27/6/2018 −20 324 
24/12/2018 34 504 

19/8/2017 
15/6/2018 28 300 
26/6/2018 44 312 
24/12/2018 95 492 

15/6/2018 

27/6/2018 18 12 
24/12/2018 69 192 
10/6/2019 −121 360 
22/6/2019 −68 372 

27/6/2018 
28/12/2018 53 180 
10/6/2019 −138 348 
22/6/2019 −84 360 

24/12/2018 
22/6/2019 −191 168 
10/6/2019 −138 180 

10/6/2019 
22/6/2019 54 12 
8/9/2020 126 456 

20/9/2020 134 468 

22/6/2019 
8/9/2020 72 444 

20/9/2020 80 456 
8/9/2020 20/9/2020 13 12 

Table 3 illustrates the temporal and normal baseline for each master and slave 
ALOS/PALSAR-2 interferogram pairs, which were combined to generate 33 interfero-
grams. The mean absolute value of the normal and absolute baseline for ALOS-2 inter-
ferograms is higher than the value of Sentinel-1 interferograms, with approximately 32 m 
and 44 days, respectively. The increase in baselines has a negative effect on the reliability 
and accuracy of the generated interferograms. The correlation between the pixels of the 
used SAR pair in terms of power and phase is recognized as coherence. The zero coher-
ence means there is no matching between the pixels with high changes on the ground 
and coherence value of 1 means complete matching with no change. The coherence de-
creases due to an increase in the normal and temporal baseline, as well as in situ an-
thropogenic activities. Figure 5 illustrates the coherence values of the generated inter-
ferograms from Sentinel-1 and ALOS-2 data. The histograms in Figure 5a show the co-
herence of ALOS-2 interferograms, with values concentrating mostly in the range be-
tween 0.2 and 0.3. Whereas, Figure 5b represents the coherence value of Sentinel-1 inter-
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ferograms, with values ranging between 0.3 and 1. Based on these histograms and the 
distribution of coherence values, the coherence thresholds were selected as 2 and 4 for 
ALOS/PALSAR-2 and Sentinel-1A, respectively. 

Table 3. ALOS/PALSAR-2 data pairs for SBAS processing. 

Master Slave 
Normal  

Baseline (m) 
Temporal  

Baseline (days) 

8/3/2015 
12/7/2015 84 126 
12/6/2016 −56 462 
10/7/2016 −34 490 

12/7/2015 
12/6/2016 −134 336 
10/7/2016 −111 364 
27/11/2016 −105 504 

12/6/2016 

10/7/2016 22 28 
27/11/2016 37 168 
9/7/2017 −242 392 

12/11/2017 −35 518 
21/1/2018 −36 588 

10/7/2016 

21/1/2018 −58 560 
12/11/2017 −57 490 
9/7/2017 −264 384 

27/11/2016 27 140 

27/11/2016 

1/4/2018 −149 490 
21/1/2018 −71 420 
12/11/2017 −62 350 
9/7/2017 −273 224 

9/7/2017 

6/1/2019 287 546 
1/4/2018 128 266 

21/1/2018 206 196 
12/11/2017 211 126 

12/11/2017 

31/3/2019 −109 504 
6/1/2019 76 420 
1/4/2018 −87 140 

21/1/2018 −18 70 

21/10/2018 
31/3/2019 −102 434 
6/1/2019 83 390 
1/4/2018 134 468 

1/4/2018 6/1/2019 −79 70 
31/3/2019 −23 364 

6/1/2019 31/3/2019 −185 84 
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Figure 5. Illustrates the coherence values distribution of interferograms produced from the ALOS-2 data (a) and coherent 
interferogram values produced from the Sentinel-1 data (b). 

The generated interferograms, which show strong residual phase ramps and jumps 
originated from the orbital inaccuracies, together with large atmospheric artifacts, were 
corrected by removing the residual phase frequency. Since Alexandria City lies in a 
coastal area with a dense cloud cover during the winter season, the atmospheric artifact 
was expected to cause a negative effect on the interferograms quality. The very large 
temporal or normal baseline between the two acquisitions resulted in the generation of 
wrapped interferograms with very low coherence; thus, these interferograms were dis-
carded (Figure 6). 
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Figure 6. (a) Wrapped ALOS-2 low coherent interferogram showing errors during the flattening sub-step; white arrow 
indicates systematic residual fringes that could have been caused by strong orbital inaccuracy or issues with some pa-
rameter settings, while red arrows indicate strong atmospheric artifacts and phase jumps. (b) Histogram representing the 
coherence value of interferogram with a mean coherent value of 0.15. 

However, the highest coherent Sentinel-1 wrapped interferogram (Master 15 De-
cember 2018 and Slave 10 June 2019) was considered to be acceptable. The urban areas 
have shown high coherent pixels without any phase jump, unlike the agricultural cover, 
which shows low coherent pixels (Figure 7). Wrapped interferograms were subsequently 
filtered and used together with the coherence data to calculate the phase unwrapping. 
The unwrapped interferogram were refined and re-flattened by using the residual phase 
method to estimate and remove the remaining phase constants and phase ramps, in order 
to relate the change in slant range to the deformation only (due to subsidence). A total of 
150 GCPs were selected for both Sentinel-1 and ALOS-2 data, where the unwrapped 
phase value was close to zero and the flat areas were identified. 
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Figure 7. Wrapped Sentinel-1 interferogram with low coherence. The cause is the very large tem-
poral and normal baseline between the two acquisitions used to make the interferogram (a). The 
histogram illustrates the coherence value between two interferogram pairs (master 15 December 
2018 and Slave 10 June 2019) (b). 

The linear model was used to estimate the residual height and the displacement 
velocity [73]. An incorrect residual topography calculation will cause horizontal shifts in 
the final SBAS geocoding results. The accuracy of the residual topography calculation 
depends on the vertical and horizontal accuracy of the used DEM, as well as the pixel 
spacing of SAR data [73,74]. In this study, the freely available SRTM data was used for 
estimating the residual topography. But due to the high spatial resolution of Sentinel-1 
interferograms, its sensitivity is large enough to estimate the average residual topogra-
phy to almost 0 m with a standard deviation equal to 13.5 m using 1 as a wavelet number 
(Figure 8c). Moreover, the accuracy of the ALOS-2 interferograms was also checked using 
the same SRTM data and the same wavelet number and showed average residual to-
pography equal to −100 m and high standard deviation equal to 70 m (Figure 8a). 
Meanwhile, by using two wavelet numbers, the ALOS-2 interferograms showed average 
residual topography equal to −20.5 m and standard deviation equal to 33.24 m (Figure 
8b). 
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Figure 8. Statistics of estimated residual topography: (a) for ALOS-2 interferograms by using the 
SRTM data, which showed average residual topography equal to −100 m and high standard devi-
ation equal to 70 m; (b) the average residual topography and standard deviation reduced by in-
creasing the wavelet number; (c) for Sentinel-1 interferogram with average residual topography to 
almost 0 m with a standard deviation equal to 13.5 m. 

Increasing the value of the wavelet to two means that the information that is coarser 
than 200 m is removed, while the information, which is finer than 200, is preserved. Such 
a result is highly unlikely because the estimation produced is extremely imprecise. It is 
clear that even after using a large wavelet number with the ALOS-2 SAR data, the Sen-
tinel-1 interferograms with a zero wavelet showed an accurate and improved estimation 
of the average residual topography. After removing the residual topography, the phase 
information characterizes the displacement along the line of sight (LOS) direction. The 
sensitivity of displacement rate depends on the system wavelength. Thus, sensors with 
longer wavelength will have a sensitivity smaller than the sensors with a shorter wave-
length. 

Finally, all the obtained results were geocoded to adopt two constraints: the velocity 
and height precisions thresholds. To estimate meaningful thresholds, in terms of cover-
age and precision, the statistic tool of the ArcGIS was used (Figure 9). Consequently, the 
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velocity precision threshold value of 9 mm/y and the height precision threshold value of 
35 m were used for Sentinel-1 data, while the velocity precision threshold value used for 
ALOS-2 data was 40 mm/y and the height precision threshold of 100 m. 

 

Figure 9. (a) Statistics histograms of precision height and (b) the corresponding height precision for 
ALOS/PALSAR-2 data. (c) Representative histograms of Sentinel-1 data precision height and (d) 
the corresponding precision velocity. 



Remote Sens. 2021, 13, 1838 15 of 25 
 

 

The deformation component can be isolated from the non-deformation component 
by addressing phase noise due to changing the properties of scattering over time. This 
has been achieved by using the phase behavior of radar signals to select pixels with 
minimal decorrelation [75]. Thus, the accuracy of the final results depends on the final 
coherence and the wavelength of the used data. Accordingly, coherence of 0.2 in C-band 
comparable to a coherence of about 0.6 in L-band to obtain the same precision, but with 
less pixels. The final coherence result of Sentinel-1 data ranges from 0.2 to 0.75 with an 
average coherence value of about 0.4 and standard deviation of 0.11. Coherent pixels 
represent good coverage of all urban area of Alexandria City, which has been used in 
calculating the land subsidence (Figure 10). However, the final coherence coverage of 
ALOS-2 data is very poor with an average coherence value of about 0.6 and standard 
deviation of 0.04 and about 80% of Alexandria City showed no coherent data (Figure 11). 

 
Figure 10. An excellent final coherence map result is shown based on the C-band Sentinel-1 data with values ranging 
from 0.5 to 0.8 (a) and its associated histogram(b). 

 
Figure 11. The final coherence coverage of ALOS-2 data which is very poor with average coherence values of about 0.6, 
standard deviation of 0.04 and about 80% of Alexandria City show no coherent data (a) and its associated histogram (b). 

The measured average vertical displacement of Alexandria City during the period 
from 2015 to 2019 using a coherence threshold value of 0.2 for ALOS/PALSAR-2 data is 
about 5 cm for the maximum uplift rate and about −15 cm for the maximum vertical 
subsidence rate (Figure 12). Since ALOS-2 data do not have enough coherent pixels to be 
used to estimate the deformation along the urban areas, the final deformation results are 
discussed by using Sentinel-1 data with a threshold value of 0.4, which corresponds to a 
threshold value of 0.8 using ALOS-2 data. 
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Figure 12. Vertical displacement of Alexandria City using coherence threshold value of 0.2 during 
the period from 2015 to 2019 using ALOS/PALSAR-2 images. 

The deformation in the vertical direction along the study area can be clearly ob-
served in Figure 13 during the period from 2017 to 2020. The color ramp from red to blue 
indicates the negative to positive velocities in the vertical direction. The negative values 
indicate the surface is moving away from the satellite (subsidence), while the positive 
values indicate the opposite direction of movement (uplift). Vertical deformation from 
2017 to 2018 varies between −30 mm and 20 mm (Figure 13a) with an average of −4 mm. 
Figure 13c,d presents the vertical motion from 2017 to 2019, which ranged between −40 
mm and 20 mm with an average about −4.3 mm with a standard deviation of 8 mm. The 
cumulative displacement in vertical direction along the study area from 2017 to 2020 
reached −60 mm away from the sensor with an average of −12.5 mm and standard devi-
ation of −10 mm (Figure 13e,f). These calculated subsidence rates show the subsidence 
rate is not constant over the years. 
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Figure 13. Vertical displacement of Alexandria City from: (a) 2017/2018; (c) 2017/2019; (e) 2017/2020 and the correspond-
ing histograms of each period (b,d,f). 

The mean velocity (mm/year) maps of the final geocoded vertical displacements 
generated from the Sentinel-1 data are shown in Figure 14. The histograms of the esti-
mated displacement velocities along the study area are shown in Figure 14b, with an 
average displacement rate and a standard deviation of −1.73 and 4 mm/year, respectively. 
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Figure 14. (a) The estimated mean displacement velocity of Alexandria and Alagami Cities using 
the Sentinel-1 data from August 2017 to September 2020 with coherence threshold of 0.4; (b) the 
corresponding histogram distribution of the derived displacement velocity rates. 

6. Discussion 
Selecting the proper master and slave SAR images with acceptable perpendicular 

and temporal baselines is a very important issue to avoid generating noisy interfeoro-
grams. Such a selection should also consider the types of the surface features along the 
study area, where the urban areas can maintain a large temporal baseline, unlike the 
vegetation cover. Moreover, the coherence threshold value should be determined in a 
professional way so that a large number of pixels is used in order to achive high coher-
ence with no surface changes and good matching between the different images. 

All phase jumps, phase ramps, orbital inaccuracies, atmospheric artifacts and re-
sidual topography were calibrated and corrected before estimating the final vertical dis-
placement to improve the accuracy of the results. The longer wavelength of SAR data 
shows less sensitivity, as well as less spatial coverage in calculating the land subsidence. 

However, Alexandria is located at the western margin of the Nile Delta on a ce-
mented Pleistocene sandstone ridge covered by a thin layer of Holocene sediments [76], 
except in the paleo island of Pharos and the former southern wetlands. Accordingly, the 
Alexandrian coastal plain and city center are considered to be relatively stable, with an 
estimated land subsidence of 0 to −5 mm/year. The maximum average subsidence value 
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reached −20 mm/yr, where the high subsidence areas are located mostly in the former 
Abu Qir Lagoon, the dry and recently reclaimed region of the former Mariout Lake, and 
parts of the northeast Alagami area. 

The port of Alexandria plays an important role in Egypt’s economy. Its capacity 
represents 75% of Egypt’s total capacity Ports of the Mediterranean. It accounts for 40% 
of Egypt’s total population industry and 56% of the petroleum industry. Due to new ur-
banized areas and infrastructure constructed for all of these facilities it has negatively 
affected the land deformation of Alexandria City. Whereas the city area constructed be-
fore 1917 was relatively stable relative to urban expansion. The city has been expanding 
more than double, mainly along its built-up areas during the last quarter century. 

The type of Alexandria substrate rocks has an effect on the surface deformation. The 
soil substrate of Alexandria City represents carbon ridges, gravel, sand, stabilized sand 
dunes, oolitic beach and beach ridge, Nile silt and sabkha deposits, as well as refilled 
materials of the former lagoons. The maximum thickness of sabkha deposits reaches 
about 35 m in the south-western part of Alexandria where it plays an important role in 
accelerating the land subsidence compared to other lithological formations. The thickness 
of the Nile silt is about 30 m in the eastern and central part of the city. All pixels with 
velocity of less than −20 mm/y represent areas with different degrees of subsidence, as 
shown in the small-data-frame of Figure 14. Subsided areas were mainly distributed in 
the southern newly urbanized areas of the city, built on dried grounds from former lakes 
and lagoons (Figure 15). 

 
Figure 15. Shows the recent urban expansions along the border of former Mariout Lake causing land subsidence. 

Subsidence are found in parts of the northwest (Alagami), newly reclaimed areas in 
the northeast of palaeo-island of Farous, the sandy tombolo of the old city, some parts of 
stabilized sand dunes in the eastern part of the city, and newly reclaimed areas in the far 
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eastern side of Abu-Qir area. These subsidence areas are controlled by the subsurface 
rock type. There are three refilled and reclaimed areas from former lagoons, including the 
former Alharda Lake, a part of the former Abu-Qir Lagoon and a part of the former 
Mariout Lake in the south Western section of the study area (Figure 16). The dried and 
reclaimed areas from Abu-Qir Lagoon in the southeast of the study area have the highest 
average subsidence when compared to other dried and reclaimed former lakes and la-
goon areas, about −20. mm/y. The reclaimed areas of the former Lake Alhadra showed 
the lowest annual average subsidence among dried and reclaimed former lakes and la-
goon areas, −8.5 mm/y. Land subsidence was recorded in the refilled areas from a former 
lagoon in the southern part of the study area. 

 
Figure 16. Former lakes and lagoons in Alexandria based on displacement velocity of Alexandria 
and Alagami cities using the Sentinel-1 data from August 2017 to September 2020. 

Different levels of subsidence at different locations along the study area leave visual 
marks on the surface of the city. The field investigation provided supporting evidence of 
the results presented in this study. Figure 17 shows the visual cracks on buildings and 
roads captured at subsided locations, as defined in our vertical displacement results. 
Different degrees of subsidence can be easily inferred from the road cracks shown in the 
pictures in Figure 17b–d. The subsidence and field-checked buildings were plotted on the 
final land subsidence maps derived from Sentinel-1 data using the SBAS technique. The 
location of the affected buildings shows high consistency with the estimated results of the 
DInSAR. 
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Figure 17. Land-Subsidence map shows the locations of the affected buildings (a); samples of 
cracks on roads and ground deformations located in high subsided areas (b–d). 

The frequently occurred land subsidence events along the Alexandria City, espe-
cially along the newly urbanized areas should be carefully considered for future expan-
sion or any other developmental plans. This is to avoid any related hazards that might 
cause damages. The western desert fringes of Alexandria should be considered for future 
developmental plans instead of the southern part of the city, which is suffering from the 
high subsidence rate due to its fragile substrate soil. 

7. Conclusions 
Quantifying the vertical land displacement with high accuracy is a very important 

aspect in many applied science fields, especially those focusing on mitigating the result-
ing environmental hazards and their impact on various human driven activities and in-
frastructure. Meanwhile, the DInSAR is considered as one of the best tools to provide 
such deformation measures with very high accuracy and with good spatial coverage. In 
this study, different SAR sensors (Sentinel-1 and ALOS/PALSAR-2) were used to assess 
their relative accuracy in estimating the land subsidence along the coastal city of Alex-
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andria in Egypt, which was selected as a test site. A total of nine Sentinel-1 and 11 
ALOS/PALSAR-2 data covering the period of 2017 to 2020 were processed using the 
SBAS method approach. 

The Sentinel-1 C-band data showed higher coherence and less residual topography 
than the ALOS/PALSAR-2 L-band. Consequently, there are not enough distributed co-
herent pixels in the ALOS-2 data to be used to accurately represent the deformation for 
urban along the study area, thus the final deformation result was discussed by using 
Sentinel-1 data only. The cumulative displacement pattern in vertical direction from 2017 
to 2020 recorded −60 mm away from the sensor with an average of −12.5 mm and a 
standard deviation of −10 mm. These results show that the Alexandria coastal plain and 
main city center are considered to be relatively stable, with estimates of 0 to −5 mm/year. 
However, the maximum average subsidence value was estimated as −20 mm/yr and lo-
cated mostly along the dried regions of the former Abu Qir Lagoon and Mariout Lake, as 
well as parts of the northeast Alagami area. Finally, the results have been validated using 
field information, which show good correlation. In addition, the western desert fringes of 
Alexandria should be considered for future developmental plans instead of the southern 
part, which show a high subsidence rate due to its fragile substrate soil. 
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