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Abstract Central exclusive and semiexclusive production
of π+π− pairs is measured with the CMS detector in proton-
proton collisions at the LHC at center-of-mass energies of
5.02 and 13 TeV. The theoretical description of these non-
perturbative processes, which have not yet been measured
in detail at the LHC, poses a significant challenge to mod-
els. The two pions are measured and identified in the CMS
silicon tracker based on specific energy loss, whereas the
absence of other particles is ensured by calorimeter infor-
mation. The total and differential cross sections of exclusive
and semiexclusive central π+π− production are measured
as functions of invariant mass, transverse momentum, and
rapidity of the π+π− system in the fiducial region defined as
transverse momentum pT(π) > 0.2 GeV and pseudorapid-
ity |η(π)| < 2.4. The production cross sections for the four
resonant channels f0(500), ρ0

(770), f0(980), and f2(1270)

are extracted using a simple model. These results represent
the first measurement of this process at the LHC collision
energies of 5.02 and 13 TeV.

1 Introduction

The central exclusive production (CEP) process has been
studied for a long time from both theoretical [1–7] and exper-
imental [8–18] perspectives. In this process, both protons
remain intact in the collision and a central system is pro-
duced. The process is referred to as exclusive when no par-
ticles other than the central system are produced. If one or
both protons dissociate into a forward diffractive system, the
process is called semiexclusive production. Various central
systems can be produced in this process, like π+π−, K+K−,
and 4π. In this paper, the π+π− central system is measured.
At the CERN LHC energies, the two dominant mechanisms
of π+π− production via CEP are double pomeron exchange
(DPE) and vector meson photoproduction (VMP), which are
illustrated by the diagrams shown in Fig. 1. The pomeron
(P) is a color singlet object introduced to explain the rise of

� e-mail: cms-publication-committee-chair@cern.ch

the inelastic cross section at high collision energies [19,20].
The quantum numbers of the pomeron constrain the possi-
ble central systems in DPE processes, whereas the photon
exchange restricts the central system in VMP processes. By
functioning as a quantum number filter, the CEP process is
suitable to study low-mass resonances, which would be dif-
ficult to study otherwise. Furthermore, DPE processes are
also suitable to search for glueballs (bound states of gluons
without valence quarks), because they provide a gluon-rich
environment [21,22]. Another process that could contribute
to the same final state is the two-photon fusion γ γ → π+π−,
which is expected to have a much smaller cross section than
DPE and VMP processes and gives a negligible contribution
[23].

The DPE process of pion pair production has two sub-
categories: continuum and resonant production. In the case
of continuum production, the pion pair is directly produced;
thus the pairs have a nonresonant invariant mass spectrum.
Resonant production means that an intermediate meson reso-
nance is produced centrally, which manifests itself as a peak
in the invariant mass distribution of the pion pair. Since the
pomeron is a Regge trajectory running over states with quan-
tum numbers J PC = {0++

, 1++
, 2++

, . . . } and I G = 0+,
the resonance is restricted to have J PC = {0++, 2++,
4++

, . . . } and I G = 0+, where J is the total angular momen-
tum, I is the isospin, P is the parity, C is the charge parity,
and G = C (−1)

I . The known particles [24] satisfying these
criteria are the f0, f2, χc0, χc2, χb0, and χb2 resonances. The
cross section for DPE (σDPE

π+π− ) can be calculated from the

amplitude of continuum (ADPE,C

π+π− ) and resonant (ADPE,R

π+π− ) pro-

duction as

σ
DPE
π+π− ∝ |ADPE,C

π+π− + ADPE,R

π+π−|2. (1)

Interference terms between the continuum and resonant pro-
duction channels must be included to describe the observed
spectra and to measure the cross sections for resonances.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-8166-5&domain=pdf
cms-publication-committee-chair@cern.ch


718 Page 2 of 28 Eur. Phys. J. C (2020) 80 :718

(a) (b) (c)

Fig. 1 Diagrams of the dominant mechanisms for π+π− production via CEP in proton-proton collisions: a continuum; b resonant double pomeron
exchange; and c vector meson photoproduction

In VMP, one of the protons emits a virtual photon, which
fluctuates into a quark-antiquark bound state and scatters
from the proton via the pomeron exchange. The quan-
tum numbers of the possible resonances are constrained
by the quantum numbers of the pomeron and the pho-
ton (J PC = 1−−), leading to mesons with odd spin and
the following quantum numbers J PC = {1−−

, 3−−
, . . . }.

Resonances satisfying these conditions are ρ0, ω, φ, J/ψ,
ψ(2S), and Υ, but only the ρ0 → π+π− decay has a
significant branching fraction, since decays in this chan-
nel are strongly suppressed in the case of φ, J/ψ, ψ(2S),
and Υ according to the Okubo–Zweig–Iizuka rule [25–
27] and in the case of ω because of G-parity conservation
[28].

This paper presents measurements of exclusive and
semiexclusive π+π− total and differential cross sections as
functions of invariant mass m(π+π−

), transverse momen-
tum pT(π+π−

), and rapidity y(π+π−
) of the pion pair, in

a fiducial region defined by single pion transverse momen-
tum pT(π) > 0.2 GeV and single pion pseudorapidity
|η(π)| < 2.4. Because the outgoing protons are not tagged
in this measurement, there is a residual contribution from
semiexclusive production with all dissociation products out-
side the |η| > 4.9 range. In the following, the exclusive
and the residual semiexclusive contribution together will be
referred to as central exclusive production. The data were
recorded by CMS with beam conditions ensuring a small
probability of multiple pp collisions in the same bunch cross-
ing (pileup) in August 2015 at a center-of-mass energy of
13 TeV with luminosity 258μb−1 and in November 2015 at
5.02 TeV with a luminosity of 522μb−1. The average num-
ber of pp collisions in a bunch crossing was around 0.3–
0.5 for the 5.02 TeV and around 0.5 for the 13 TeV data
sets.

2 The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter. Within the solenoid
volume are a tracker, a lead tungstate crystal electromag-
netic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two
endcap sections, covering the |η| < 3.0 region. Forward
calorimeters extend the η coverage provided by the barrel
and endcap detectors. Muons are measured in gas-ionization
detectors embedded in the steel flux-return yoke outside the
solenoid.

The silicon tracker measures charged particles within the
range |η| < 2.5. It consists of 1440 silicon pixel and 15 148
silicon strip detector modules and is located in the 3.8 T
solenoid field. Three pixel barrel layers (PXB) are situated
at radii of 4.4, 7.3, and 10.2 cm; PXB also has two pixel end-
cap disks (PXF). The strip tracker consists of the innermost
tracker inner barrel (TIB) and the tracker inner disks (TID),
which are surrounded by the tracker outer barrel (TOB). It
is completed by endcaps (TEC) on both sides. The barrel
part of the strip tracker has a total of 10 layers at radii from
25 to 110 cm, whereas the endcap of the strip tracker con-
sists of 12 layers. For charged particles with pT < 1 GeV
and |η| < 1.4, the track resolutions are typically 1–2% in
pT , and 90–300 and 100–350 µ for the transverse and lon-
gitudinal impact parameters, respectively [29]. The tracker
provides an opportunity to identify charged particles with
0.3 < p < 2 GeV based on their specific ionization in the
silicon detector elements [30].

The ECAL consists of 75 848 lead tungstate crystals,
which provide coverage in |η| < 1.479 in the barrel region
and 1.479 < |η| < 3.0 in the two endcap regions.

The barrel and endcap sections of the HCAL consist of 36
wedges each and cover the |η| < 3.0 region. In the region
|η| < 1.74, the HCAL cells have widths of 0.087 in η and
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0.087 radians in azimuth (φ). In the η-φ plane, and for |η| <

1.48, the HCAL cells map onto 5×5 ECAL crystal arrays to
form calorimeter towers projecting radially outwards from
close to the nominal interaction point. At larger values of |η|,
the towers are larger and the matching ECAL arrays contain
fewer crystals.

The forward hadron (HF) calorimeter uses steel as an
absorber and quartz fibers as the sensitive material. The two
halves of the HF are located at 11.2 m from the interaction
region, one at each end. Together they provide coverage in the
range 3.0 < |η| < 5.2. Each HF calorimeter consists of 432
readout towers, containing long and short quartz fibers run-
ning parallel to the beam. The long fibers run the entire depth
of the HF calorimeter (165 cm, or approximately 10 interac-
tion lengths), whereas the short fibers start at a depth of 22 cm
from the front of the detector. By reading out the two sets of
fibers separately, it is possible to distinguish showers gener-
ated by electrons or photons, which deposit a large fraction of
their energy in the long-fiber calorimeter segment, from those
generated by hadrons, which typically produce, on average,
nearly equal signals in both calorimeter segments.

The triggers used in this analysis are based on signals
from the Beam Pick-up and Timing for eXperiments (BPTX)
detectors [31]. The BPTX devices have a time resolution of
less than 0.2 ns. They are located around the beam pipe at a
distance of ±175 m from the nominal interaction point, and
are designed to provide precise information on the bunch
structure and timing of the proton beams.

A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the rele-
vant kinematic variables, can be found in Ref. [32].

3 Monte Carlo simulations

Two kinds of Monte Carlo (MC) event generators are used in
this analysis: inclusive and exclusive generators. The inclu-
sive generators model the inclusive diffractive dissociation
[33] and nondiffractive interactions, and are used to estimate
the tracking efficiency, multiple reconstruction and misre-
construction rates. The exclusive generators are used to gen-
erate CEP events and to calculate the vertex correction fac-
tors. There are no available MC event generators that produce
exclusive scalar and tensor resonances via DPE, such as the
production of f0(500), f0(980), and f2(1270) mesons.

Event samples are generated with various tunes for diffrac-
tion and the underlying event:

– pythia 8.205 [34] with CUETP8M1 tune [35] and MBR
model [36]: pythia 8 is an inclusive generator based on
the Schuler and Sjöstrand model. It is capable of mod-
eling a wide variety of physical processes, such as sin-
gle diffractive (SD), double diffractive (DD), and cen-

tral diffractive (CD) dissociation, as well as nondiffrac-
tive (ND) production [33]. The SD, DD, and ND events
are generated with the CUETP8M1 tune. The Minimum
Bias Rockefeller (MBR) model of pythia is based on
the renormalized pomeron flux model and it is capable
of generating SD, DD, ND and CD events.

– epos [37] with its LHC tune [38]: This inclusive generator
is based on the Regge–Gribov phenomenology [39], and
it models SD, DD, CD, and ND processes.

– starlight [40]: This event generator models photon-
photon and photon-pomeron interactions in pp and heavy
ion collisions. The production of ρ0 mesons and their
successive decay into two pions through the VMP pro-
cess is simulated by starlight. For background studies,
ω mesons are also generated with starlight and their
decay simulated by pythia to the π+π−π0 final state.

– dime mc 1.06 [5]: The dime mc software describes con-
tinuum π+π− production through DPE. The generator
uses a phenomenological model based on Regge theory.
Events are generated with the Orear-type off-shell meson
form factors with parameters aor = 0.71 GeV−1 and
bor = 0.91 GeV−1 [5]. Furthermore, two additional MC
samples are generated with an exponential form factor
withbexp = 0.45 [5] and 1 GeV−2 [1] to study the system-
atic uncertainty in the measured resonance cross sections
arising from uncertainties in the dime mc parametriza-
tion.

All of the generated events are processed by a detailed
Geant4 simulation [41] of the CMS detector.

4 Event selection

The following triggers were employed:

– Zero bias: zero-bias events are selected by using either
the BPTX detectors (13 TeV data) or the LHC clock sig-
nal and the known LHC bunch structure (5.02 TeV data).
Both methods provided zero-bias events.

– BPTX XOR: Here XOR stands for the exclusive OR
logic, where only one BPTX is fired, corresponding to
an incoming proton bunch from only one direction. This
trigger was used in both 5.02 and 13 TeV data sets.

– No-BPTX: There is no signal in the BPTX detectors,
which means there are no incoming proton bunches. This
trigger was used in both 5.02 and 13 TeV data sets.

The present analysis uses events acquired with the zero
bias trigger. The BPTX XOR and No-BPTX triggers select
events with no interacting bunches, which are used to esti-
mate the electronic noise of calorimeters and possible col-
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Table 1 The value of calorimeter thresholds for different calorimeter
constituents, used in the selection of exclusive events

Calorimeter Threshold [GeV] η coverage

ECAL barrel 0.6 |η| < 1.5

ECAL endcap 3.3 1.5 < |η| < 3.0

HCAL barrel 2.0 |η| < 1.3

HCAL endcap 3.8 1.3 < |η| < 3.0

HF 4.0 3.15 < |η| < 5.2

lisions between beam particles and residual gas molecules
in the CMS beampipe (beam-gas background). The contri-
bution from beam-gas collisions is negligible because there
is no difference in the measured calorimeter tower energy
distributions for the BPTX XOR and No-BPTX triggered
events.

In the offline selections, it is required that the event has
exactly two tracks, both of which satisfy χ

2
/ndf < 2 (where

the χ
2 value is calculated based on the fitted trajectory and

the measured tracker hits, and ndf is the number of degrees
of freedom), pT > 0.2 GeV, and |η| < 2.4 to ensure high
track reconstruction efficiency. Only events with oppositely
charged (opposite-sign, OS) tracks are selected for analysis,
whereas events with same-sign (SS) tracks are used in the
background estimation.

Events with a single collision are selected by requiring the
two tracks form a single reconstructed vertex subject to the
constraint that

|z1 − z2| < 3
√

σ
2
1 + σ

2
2 , (2)

where z1 and z2 are the z coordinates of the closest approach
of the reconstructed tracks to the beamline, and σ1 and σ2 are
their corresponding uncertainties.

To select exclusive events, all calorimeter towers not
matching the trajectories of the two tracks must have energy
deposits below a threshold, which is defined in Table 1.
A tower is matched to a track if the intersection of the
extrapolated trajectory with the calorimeter surface is within
three standard deviations in η and φ from the center of the
tower. The threshold values are chosen to have a maximum
1% rejection of signal events resulting from the electronic
noise of the calorimeters. Non-exclusive events might be
also selected because of the lack of coverage in the eta gap
between the HF and central calorimeters; these events are
also taken into account in the background estimation pre-
sented later in this paper.

Using all of the above listed event selection criteria, a total
of 48 961 events were selected from the 5.02 TeV and 20 980
from the 13 TeV dataset.

5 Data analysis

5.1 Particle identification

Particle identification is used to select pion pairs by the mean
energy loss (dE/dx) of particles in the silicon tracking detec-
tors. The dE/dx values shown in the left panel of Fig. 2 are
calculated by a second-order harmonic mean using only the
strip detectors [42]:

〈
dE

dx

〉
=

(
1

N

N∑
i=1

(ΔE/Δx)−2
i

)− 1
2

, (3)

where N is the number of energy loss measurements,
ΔE/Δx is a single energy loss measurement per path length
in one tracker module, and the sum runs over the strip detec-
tors carrying energy loss measurements. The −2 exponent in
this formula suppresses high ΔE/Δx values arising from the
highly asymmetric ΔE/Δx Landau distribution, thus avoid-
ing a bias in the estimate of the average dE/dx of the track.

The track classification is achieved by fitting the mean
energy loss distributions of tracks from low multiplicity
(Ntrack ≤ 4) events with a sum of three Gaussian func-
tions corresponding to pions, kaons, and protons. An exam-
ple for such a fit is shown in the right panel of Fig. 2. In
the 0.3–2 GeV momentum range pions are selected from the
±3 standard deviation region of the corresponding Gaus-
sian peak. This region is shown in the left panel of Fig. 2.
Tracks that have p < 0.3 or p > 2 GeV are assumed
to be pions. The contamination from kaons and protons is
estimated using the data-driven approach described in Sect.
5.3.

5.2 Corrections

Each event is weighted by several correction factors to com-
pensate for the detector and reconstruction effects. The mul-
tiplying factor is the product of four independent corrections:
tracking, multiple reconstruction, vertex, and pileup correc-
tion.

A tracking correction is used to correct for track recon-
struction inefficiencies:

Ctr = 1

εtr,1

1

εtr,2
, (4)

where εtr,1 (εtr,2) is the tracking efficiency in the region where
the first (second) particle is reconstructed. A single charged
particle may lead to two reconstructed tracks, such as spi-
ralling tracks near η ≈ 0 or split tracks in the overlap region
of the tracker barrel and endcap. This effect is corrected using
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Fig. 2 Left: The distribution of the logarithm of the mean energy loss
and absolute value of the momentum of tracks from low-multiplicity
(Ntrack ≤ 4) events collected at

√
s = 13 TeV. The π-selection region is

shown in the 0.3–2 GeV range. All tracks outside this momentum range

are identified as pions. Right: The fit of energy loss distributions in a
given momentum bin with the sum of three Gaussian curves. Plots are
similar for the 5.02 TeV data

εmrec, which is the probability for this situation to occur. In
this case the correction factor takes the form

Cmrec = 1

1 − εmrec,1

1

1 − εmrec,2
. (5)

The values of εtr and εmrec are estimated as a function of
η and pT using MC simulations. Their dependence on the
track φ and the vertex position z-coordinate is integrated
over. The simulated events are weighted such that the vertex
z-coordinate distribution agrees with collision data.

The vertex correction Cvert accounts for events with an
unreconstructed vertex. It is the reciprocal of the vertex effi-
ciency, which is calculated using samples produced by the
dime mc and starlight generators. The vertex efficiency
has a slight dependence on the invariant mass of the track
pair that is included when applying the vertex correction.

Some real CEP events are rejected because of pileup. To
account for these lost events, a correction factor Cpu for the
number of selected events can be computed. The CEP events
are selected from bunch crossings with a single collision, so
by assuming that the number of collisions follows a Poisson
distribution, one can derive Cpu:

Cpu = Nμ

N μ exp (−μ)
= exp (μ). (6)

Table 2 Correction factors

Type Range

Tracking 1.05–1.50

Multiple reconstruction 1.005–1.040

Vertex 1.05–1.33

Pileup 1.3–2.1

Here, μ is the average number of visible inelastic collisions,
in a given bunch crossing, N is the total number of analyzed
events. The value of μ depends on the instantaneous lumi-
nosity associated with individual bunch crossings, Lbunch,
according to the following expression:

μ = σinel,visLbunch

f
, (7)

where σinel,vis is the visible inelastic pp cross section, f is
the revolution frequency of protons, andLbunch is the average
instantaneous luminosity at the given bunch crossing posi-
tion for time periods of 23.3 s. The ratio of σinel,vis to f is
obtained by fitting the fraction of events with no observed
collisions as a function of Lbunch with the functional form
A exp(−bLbunch), where A and b are free parameters of the
fit.

The range of correction factors is summarized in Table 2.
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Fig. 3 The number of extra calorimeter towers over threshold in events
containing an identified pion pair with opposite (left) and same (right)
charge. The known contributions, denoted with the red hatched areas,
are used to estimate the background in the zero bin of the opposite-sign

distribution, which is denoted by the blue hatched area. The error bars
correspond to statistical uncertainties, whereas the error rectangle on the
background denotes the 14% systematic uncertainty in the background
normalization. Plots are similar for 5.02 TeV data

5.3 Background estimation

The main background contributions to π+π− CEP are the
multiparticle background and the exclusive K+K−/pp pro-
duction. The multiparticle background in the selected exclu-
sive sample consists of events with more than two particles
created in the interaction, of which only two are observed
because the additional particles yield energy deposits below
the thresholds, or outside the acceptance. The SD, DD,
ND, and CD processes with more than two centrally pro-
duced particles belong to this contribution. A method based
on control regions is used to estimate this multiparticle
background. Control regions are selected in which events
have at least two calorimeter towers above threshold, not
matched to the two selected pions, with all the other selec-
tion criteria satisfied. The distribution of the number of
events selected in this way as a function of the num-
ber of extra towers with energy above threshold is shown
in Fig. 3. The counts in the bins with 2, 3, 4, and 5
towers are used to estimate the background. The normal-
ization factor is calculated using the following assump-
tion:

Nmpart,SS(0 extra towers)

Nmpart,SS(2–5 extra towers)

= Nmpart,OS(0 extra towers)

Nmpart,OS(2–5 extra towers)
, (8)

Table 3 Checking the validity of Eq. (8) by comparing the true and
predicted number of background events in inclusive MC samples

Event generator Difference in normalization

epos (+11 ± 4)%

pythia 8 CUETP8M1 (−5.5 ± 3)%

pythia 8 MBR (+10 ± 4)%

where Nmpart,OS/SS is the number of multiparticle events
with two OS or SS tracks. The validity of this assumption
is checked by comparing the true and predicted number of
background events in inclusive MC samples (Table 3). The
observed discrepancy reflects the differences between OS
and SS events and is included as a systematic uncertainty
in the estimate of the total number of multiparticle back-
ground events, as discussed in Sect. 5.4. With this formula
and the fact that all SS events are multiparticle events because
of charge conservation, it is possible to calculate the value
of Nmhad,OS(0 towers), which is the number of multiparticle
background events. The expected distribution of the multi-
particle background is obtained using OS events with 2–5
extra calorimeter towers.

This method does not take into account the background
contribution from ω → π+π−π0, because this decay can-
not be observed in the SS events. This latter contribution is
negligible (0.5%) based on MC simulation results.
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Fig. 4 Background distributions as functions of kinematic variables
estimated by data-driven methods. The proton dissociation background
is not shown here, since it is included via scaling of the final cross sec-

tion values. The error bars correspond to statistical uncertainties. The
results for the 5.02 TeV data set are similar

Genuine exclusive K+K− and pp events, where both par-
ticles are misidentified as pions, are included in the previous
multiparticle background estimate. To correct for this contri-
bution, the K/π ratios are calculated in the exclusive events
using tracks with p < 1 GeV. Similarly, the p/π ratio is cal-
culated in the same sample in the range 1 < p < 2 GeV.
The K/π and p/π ratios are assumed to be 0.3+0.1

−0.05 in the
region p > 1 and p > 2 GeV, respectively [43]. Using

this assumption and the measured ratios, the average K/π
and p/π ratios are then calculated over the entire momen-
tum range of the exclusive sample. These average ratios can
then be used to compute the number of K+K− and pp events
under two extreme scenarios. The first scenario assumes that
the production of a K or a p is always accompanied by the
production of its antiparticle, whereas in the second scenario
it is assumed that the production of an individual K+, K−, p,
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or p is a totally independent process. The final estimate of the
exclusive K+K− and pp background normalization is calcu-
lated as the average of the estimates obtained from assuming
these two scenarios. According to these calculations, there
is an 11% residual contribution of exclusive K+K− and pp
events in the sample after the multiparticle background sub-
traction. The background distributions of this contribution
are calculated by using two-track OS exclusive events with
at least one identified K± (Fig. 4).

The estimated multiparticle and exclusive K+K−/pp
background distributions, as functions of the main kinematic
variables, are shown in Fig. 4. These two background contri-
butions are subtracted from the measured distributions. The
background subtracted spectra are divided by the integrated
luminosity to obtain the differential cross sections.

5.4 Systematic uncertainties

Systematic uncertainties in the measured cross sections orig-
inate from various sources. These include reconstruction
effects, particle identification, correction factors, background
estimation, and the luminosity estimation. The uncertainty
assigned to the tracking efficiency in the case of a single
track is 3.9% [29], which corresponds to 7.8% uncertainty
for two tracks. Furthermore, the uncertainty in the multiple
reconstruction rate for a single track is also 3.9%, which prop-
agates to a maximum of 0.4% uncertainty in the cross section
for two tracks, which is neglected in the analysis. Misrecon-
structed tracks bias the sample in two ways: either a CEP
event is rejected if a third misreconstructed track is found, or
an event is identified as CEP with a misreconstructed and a
genuine track. This source of systematic uncertainty is esti-
mated to be 1% for a single track, which is the maximal mis-
reconstruction rate calculated using inclusive MC samples in
the kinematic region (pT(π) > 0.2 GeV and |η(π)| < 2.4) of
the analysis. Since the probability to have two or more misre-
constructed tracks in these low-multiplicity events is negligi-
ble, the final uncertainty remains 1%. From the comparison
of the dime mc and starlight simulations, the uncertainty
of the vertex correction is estimated to be 1%.

The systematic uncertainty in the pileup correction fac-
tor for a single event is calculated from only the systematic
uncertainties in the luminosity measurement that do not affect
its overall normalization. Indeed, the normalization-related
systematic uncertainties are compensated in the exponential
fit described in Sect. 5.2. The uncertainties that do not affect
the normalization are estimated to be 1.6% and 1.5% for
5.02 [44] and 13 TeV [45] data, respectively. These values
propagate to a 1% uncertainty in the pileup correction factor
for a single event. After adding up all the selected events,
the pileup uncertainty becomes smaller than 0.1%, which is
neglected in the following.

The measured signal yield is affected by the uncertainty
arising from the two effects associated with calorimeter noise
and veto inefficiency caused by the adopted energy thresh-
olds. A genuine CEP event can be erroneously discarded if the
calorimeter noise appears above the energy thresholds used
in the veto. Conversely a nonCEP event can pass the final
selection if the extra particles pass the veto requirements.
In the HF, these uncertainties are estimated by varying the
calorimeter energy thresholds by ±10% [46]. The resulting
uncertainty is estimated to be 3% for both the 5.02 and 13 TeV
data sets. Similarly, the ECAL and HCAL thresholds are var-
ied by ±5% [47,48], which results in a 1% uncertainty in the
corrected yields at both energies.

The systematic uncertainty estimation of the multiparticle
background is done by varying the control region used in the
background estimation procedure: 1–2, 2–9, and 5–9 extra
towers. The estimate of the systematic uncertainty in the mul-
tiparticle background normalization is 10%. Additionally, a
10% uncertainty is added to this value quadratically, taking
into account the deviations shown in Table 3; thus the final
uncertainty in the multiparticle background normalization
is 14%. After subtracting this contribution, this propagates
to systematic uncertainties depending on the invariant mass,
transverse momentum and rapidity of the pion pair. The mul-
tiparticle background estimation uncertainty varies between
10–20% below 1500 MeV. Over 1500 MeV the uncertainty
varies between 20–60%, because the signal versus back-
ground ratio is much smaller. The average uncertainty, used
as the systematic uncertainty of the total cross section, is
15%.

The exclusive K+K− and pp background uncertainty
comes from three sources: (1) multiparticle contamination
in the dE/dx vs. momentum distribution that modifies the
K/π and p/π ratios, (2) the uncertainty in the K/π ratio above
1 GeV, and (3) the uncertainty in the p/π ratio above 2 GeV.
The multiparticle contamination is estimated by checking the
difference between two extreme cases: all particle types are
produced independently, or the sample is purely exclusive.
The results correspond to an uncertainty of 70% in the nor-
malization of this background contribution at both energies.
To account for the uncertainty of K/π above 1 GeV and p/π
over 2 GeV, the exclusive background normalization is cal-
culated assuming different values (0.25, 0.30, and 0.40 [43])
for the K/π and p/π ratios in these regions. The uncertain-
ties assigned to these effects are 16 and 4%, respectively.
Thus the total systematic uncertainty of the exclusive K+K−

and pp background normalization is 72%. After subtracting
this background contribution, this propagates to systematic
uncertainties, which depend on the invariant mass, transverse
momentum, and rapidity of the pion pair. The typical range
of this systematic uncertainty contribution is 5–20%. For
the total cross section, this source contributes to an average
uncertainty of 6%.
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Table 4 The sources and average values of systematic uncertainties,
used as the systematic uncertainty of the total cross section

Source Average value

Tracking efficiency 7.8%

Misreconstructed tracks 1%

Vertex 1%

HF energy scale 3%

ECAL and HCAL energy scale 1%

Multiparticle background 15%

Exclusive K+K− and pp background 6%

Total w/o int. luminosity 18.3%

+ Integrated luminosity 2.3%

All of the systematic uncertainties listed above are the
same for the 5.02 and 13 TeV data sets. Additionally, the
systematic uncertainty in the integrated luminosity is 2.3%
[44,45]. The average values of the systematic uncertainties
are summarized in Table 4. The total systematic uncertainty
is obtained by adding the individual contributions in quadra-
ture. All systematic uncertainty contributions are considered
fully correlated across invariant mass bins.

6 Results

The differential cross sections are calculated from the
selected events as functions of the invariant mass, trans-
verse momentum, and rapidity of the pion pair. These are
shown in Fig. 5 with the generator-level predictions from
the starlight and dime mc generators, normalized to their
cross sections. The MC generators provide an incomplete
description of the available data, since they do not model the
f0(500), f0(980), and f2(1270) resonances as mentioned in
Sect. 3.

There is a peak at 800 MeV, which corresponds to the
ρ0

(770) resonance. Since its quantum numbers I G(J PC
) =

1+
(1−−

) are forbidden in DPE processes, the ρ0 mesons
must be produced in VMP processes. The sharp drop vis-
ible around 1000 MeV is expected from previous measure-
ments [11,16] and can be attributed to the quantum mechan-
ical interference of f0(980) with the continuum contribution.
There is a prominent peak at 1200–1300 MeV, which corre-
sponds to the f2(1270) resonance with I G(J PC

) = 0+
(2++

)

quantum numbers. This resonance is produced via a DPE
process.

Both dime mc and starlight underestimate the mea-
sured spectrum as these MC event generators do not model
the forward dissociation of protons.

The total cross section of the CEP process with two pions
in the final state in the kinematic region pT(π) > 0.2 GeV

and |η(π)| < 2.4 is obtained by integrating the observed
spectra in this region:

σ
pp→p ′p ′π+π−(

√
s = 5.02 TeV) = 32.6 ± 0.7 (stat)

± 6.0 (syst) ± 0.8 (lumi) μb, (9)

σ
pp→p ′p ′π+π−(

√
s = 13 TeV) = 33.7 ± 1.0 (stat)

± 6.2 (syst) ± 0.8 (lumi) μb. (10)

Below, it is demonstrated that the measured invariant π+π−

mass spectrum is well-described by the sum of the contin-
uum distributions obtained from thedime mcmodel and four
dominant resonances, modeled here by Breit-Wigner func-
tions. In the fitting procedure the quantum mechanical inter-
ference effect and the detector resolution are also included.

The following fit function is used:

f (m) =
∫

G(m − m′; σ)
[
|Aρ0

RBW(m′
)|2

+ |Af0(500)

RBW (m′
)eiφf0(500)m′ + A

f0(980)

RBW (m′
)eiφf0(980)m′

+ A
f2
RBW(m′

)eiφf2m′ + b Bdime
(m′

)|2
]
dm′

. (11)

Here G(m; σ) is a Gaussian distribution with variance σ and
zero mean, Bdime

(m) is the nonresonant background esti-
mated from the dime mc using the Orear-type form fac-
tor, and b is a scale factor for the continuum contribution,
and φ

f0(500) , φ
f0(980) , and φ

f2 are phases that characterize
interference effects. The Ai

RBW(m) is the relativistic Breit–
Wigner amplitude, which can be written as [49]:

Ai,J
RBW(m) = Ai

√
mMiΓ (m)

m2 − M2
i + iMiΓ (m)

, (12)

Γ (m) = Γi
Mi

m

[
m2 − 4m2

π

M2
i − 4m2

π

] 2J+1
2

, (13)

where Ai , Mi , and Γi are the yield, mass, and width of the
resonance, respectively, mπ is the mass of charged pions, and
J is the total angular momentum of the resonance. Accord-
ing to Ref. [2], the magnitude of the interference between the
DPE and VMP processes is around 1%, therefore no inter-
ference term is used between ρ0 and DPE resonances. The
convolution with the Gaussian distribution models the mass
resolution of the detector.

The mass resolution (σ ) is calculated by fitting the distri-
bution of the difference between generator-level and recon-
structed mass from the starlight and dime mc simulations.
Based on these calculations, the mass resolution is found to
vary from 9 to 14 MeV in the mass range 500–2000 MeV. In
the final fit, an effective mass resolution of 11 MeV is used
and the systematic uncertainty associated with this value is
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Fig. 5 Differential cross sections as functions of mass (upper row), transverse momentum (middle row), and rapidity (bottom row), compared
with generator-level simulations for the 5.02 (left) and 13 TeV (right) data sets. The error bars correspond to statistical, whereas the open boxes to
systematic uncertainties
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Fig. 6 Fit to the measured cross section with the sum of four interfering
relativistic Breit–Wigner functions convolved with a normal distribu-
tion (to account for the the experimental resolution of the detector) for

the 5.02 (left) and 13 TeV (right) data sets. The error bars correspond
to statistical, whereas the open boxes correspond to systematic uncer-
tainties

Table 5 Cross sections of the resonant processes in the pT(π) >

0.2 GeV, |η(π)| < 2.4 fiducial region, extracted from the simple model
fit using the sum of the continuum distribution obtained from the dime

mcmodel and four dominant resonances. The luminosity-related uncer-
tainties are included in the systematic uncertainties. The starlight

predictions for pp → p′p′ρ0 → p′p′π+π− processes are 2.3 and 3.0
μb for 5.02 and 13 TeV, respectively, which is compatible with the fit
results

Resonance σ
pp→p ′p ′X→p ′p ′π+π−[μb]

√
s = 5.02 TeV

√
s = 13 TeV

f0(500) 2.8 ± 1.4 (stat) ± 2.2 (syst) 2.2 ± 0.8 (stat) ± 1.3 (syst)

ρ0
(770) 4.7 ± 0.9 (stat) ± 1.3 (syst) 4.3 ± 1.3 (stat) ± 1.5 (syst)

f0(980) 0.5 ± 0.1 (stat) ± 0.1 (syst) 1.1 ± 0.4 (stat) ± 0.3 (syst)

f2(1270) 3.6 ± 0.6 (stat) ± 0.7 (syst) 4.2 ± 0.9 (stat) ± 0.8 (syst)

taken into account by repeating the fit with a mass resolution
varying from 9 to 14 MeV. The resulting systematic uncer-
tainty is 7–8% for the yield of f0(980) and around 1–2% for
the yields of the f0(500), ρ0

(770), and f2(1270) resonances.
The impact of the uncertainty in the multiparticle (exclusive
K+K− and pp) background yield is included by varying the
background normalization in the fit by ±14% (±72%).

The masses and widths of ρ0
(770) and f2(1270) reso-

nances are fixed to the values of Ref. [24]. The mass and
width of f0(500) and f0(980) are fixed according to the
results from the most advanced calculations using dispersion
relations [50].

The fits are also performed with the mass and width
of f0(500) and f0(980) varied according to their uncer-

tainties [24] and the resulting variation in the cross sec-
tion of the resonances is added in quadrature to the other
systematic uncertainty contributions. Furthermore the fit is
repeated with the two other dime mc settings and the varia-
tion in the cross section is taken as an additional systematic
uncertainty and added in quadrature to the other uncertain-
ties.

The above simple model fit also provides values for the
cross sections of the resonances; these are obtained by inte-
grating the fitted squared amplitudes from the dipion thresh-
old (2mπ) to Mi + 5Γi :

σ
res
i =

∫ Mi+5Γi

2mπ

|A2
RBW,i (m)|dm. (14)

The fits are shown in Fig. 6 and the cross sections are sum-
marized in Table 5.

The model of interfering Breit–Wigner resonances with a
continuum gives a good description of the data in the region
of resonant peaks (below 1500 MeV). The cross sections for
ρ0

(770) production calculated from the fits are slightly larger
than the predicted values from starlight, which are 2.3
and 3.0µbfor 5.02 and 13 TeV, respectively. The differences
can be attributed to the additional semiexclusive contribution
that is not modeled by starlight. The values of the scale
parameter b are 0.7 ± 0.2 for 5.02 TeV and 1.1 ± 0.3 for
13 TeV, and therefore they are consistent within uncertainties
for the two energies.
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7 Summary

The cross sections for central exclusive pion pair produc-
tion have been measured in pp collisions at 5.02 and 13 TeV
center-of-mass energies. Exclusive events are selected by
vetoing additional energy deposits in the calorimeters and
by requiring two oppositely charged pions identified via
their mean energy loss in the tracker detectors. These events
are used together with correction factors to obtain invariant
mass, transverse momentum, and rapidity distributions of the
π+π− system. The measured total exclusive π+π− produc-
tion cross section is 32.6±0.7 (stat)±6.0 (syst)±0.8 (lumi)
and 33.7±1.0 (stat)±6.2 (syst)±0.8 (lumi) μb for 5.02 and
13 TeV, respectively. The observed mass spectrum exhibits
resonant structures, which can be fitted with a simple model
containing four interfering Breit-Wigner functions, corre-
sponding to the f0(500), ρ0

(770), f0(980), and f2(1270) res-
onances, and a continuum contribution modeled by the dime
mc. The exclusive production cross sections are extracted
from this fit. The obtained cross sections of ρ0

(770) produc-
tion are higher than the starlight model prediction, which
can be explained by the presence of semiexclusive production
which is not modeled by the starlight generator.
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