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Modeling and simulating urban expansion is required for assessing and predicting the 

consequences of the current urban growth patterns. Given the dynamic and convoluted nature of 

the urban expansion process and the necessity of handling continuous and categorical variables, 

non-normal distributed data, and non-linear relationships, urban expansion modeling is 

challenging. It is also critically important to find an appropriate method for modeling and 

simulating urban expansion in order to meticulously identify spatiotemporal variables and 

predicting the direction of land use/land cover (LULC) changes. To handle these issues effectively 

and enhance the quality of urban expansion prediction, the capabilities of machine learning 

methods are explored in this dissertation. Machine learning methods are relatively unknown in 

urban expansion modeling and have not been evaluated thoroughly in the current literature. The 

machine learning methods allow the exploration of a variety of data sampling strategies, predictor 

variables, and model configurations to enhance the accuracy and predictability of urban expansion 

modeling. The models are calibrated using spatiotemporal data of 2001-2016 and are applied to 

simulate future urban developments for two urbanized counties—Guilford and Mecklenburg in NC, 

USA. The accuracy and reliability of the models are evaluated by apposite evaluation metrics. 

Distance to highways is recognized as the most important predictor variable in both study areas, 

however, the importance of the predictor variables varies in different geographic contexts and with 

different methods. A comparative study on machine learning methods demonstrated that the 

random forest (RF) model is a fast, high-performance, and accurate model with low uncertainty; 

therefore, it can be effectively utilized to evaluate a wide range of urban development scenarios 

and support decision-making to accomplish the goal of implementing environmentally sustainable 

development. Sustainable urban growth management in addition to sophisticated and elaborative 



models requires different urban growth scenarios. An integration of random forest and cellular 

automata (RF-CA) is proposed to simulate urban development under three urban growth scenarios, 

including current trends, controlled urban development, and environmentally sustainable urban 

development. While current trends allow the urban fringe to be uncontrollably developed, the 

controlled and environmentally sustainable urban development scenarios constrain future 

developments and reduce the environmental implications. The results show that the current urban 

development in the study area for 2021 and 2026 will appear near current or newly built urban 

clusters or adjacent to the major roads, however, the controlled and environmentally sustainable 

urban development scenarios are much higher compact and minimize environmental costs. 
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CHAPTER I 

INTRODUCTION 

1.1 Research Background and Motivations 

Urban growth, the most conspicuous indication of land-use/land-cover (LULC) 

change caused by human activities (B. Huang et al. "Support Vector Machines for Urban 

Growth Modeling"), has been identified as an important element of environmental risk 

(Martellozzo et al.). In other words, urban growth causes the conversion of the natural 

environment to agricultural lands and finally to urban land uses such as residential, 

recreational, transport, commercial, and industrial land uses (Clarke et al.; del Mar López 

et al.; Meyer and Turner). It is undeniable that urban growth is a complex and dynamic 

spatial-temporal process (Sultana and Weber "The Nature of Urban Growth and the 

Commuting Transition: Endless Sprawl or a Growth Wave?") which is the result of 

several factors such as continuous urbanization (Weber and Puissant), population growth 

(Meyer and Turner), economic growth (Black and Henderson), industrialization (Kelley 

and Williamson), transportation development (Duranton and Turner), government 

developmental policies (Darin-Drabkin), and development and property tax (Bengston et 

al.). Currently, almost half of the world’s population lives in urban areas and United 

Nations has forecasted that 67.2% of the world population will live in urban areas in 

2050. The global urban footprint will increase approximately 40–67% until 2050 relative 

to 2013, and this trend will continue to a growth ratio of more than 200% by 2100
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(X. Li et al.). The rapid and low-density urban growth has broad impacts on the 

environment such as diminishing them in size, resulting in habitat fragmentation 

(Nagendra et al.), and disturbing wildlife (Marzluff; McKinney), as well as generating 

damaging effects through such sources as pollutions (Shukla and Parikh), hydrological 

complications (Lindh; Williams), deforestation and agricultural fields loss (Masri; 

Yankson and Gough), and regional and global warming (Alcoforado and Andrade; Stone 

Jr The City and the Coming Climate: Climate Change in the Places We Live). Broad 

conversion of native vegetation to agricultural lands to provide food for the growing 

population has occurred at an unprecedented pace in the last century, which has led to 

diminishing the natural environment in size (Armesto et al.). Expanding the urban area 

into the natural environment, decreasing domestic habitat area, and increasing the extent 

of forest-opening boundaries (H. Li et al.) has led to habitat fragmentation. These 

circumstances result in species loss, on both a local and global level (McCauley et al.). 

Urban growth and transportation development are interdependent and by expanding 

urban area construction of new transport networks is inevitable (Sultana "Land Use and 

Transportation"). As a result, vehicle traffic introduces toxic metals into the urban soils, 

water, and air (Mireles et al.). Also, population concentration and industries, as the main 

sources of smog, causes pollution (Romero et al.). Extensive increases of impervious 

surfaces which are mainly artificial structures such as roads, sidewalks, roofs, parking 

lots, airports, and turfgrass can dramatically increase the speed and amount of runoff and 

other aspects of the water cycle, therefore have tremendous impacts on basin hydrology 

and water quality (McDonald et al.). Urban growth converts the natural land cover to 
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agricultural lands and then to urban land uses, the whole process leads to forest and 

agricultural field loss (Richards and VanWey). Urban heat island (UHI) and climate 

change are two significant outcomes of uncontrolled growth on a regional and global 

scale, respectively. UHI, a higher temperature in an urban area compared to its 

surrounding rural or less developed areas (Coseo and Larsen; Memon et al.; 

Nuruzzaman). UHI causes various adverse effects on the urban environment, society, and 

economics such as an increase in energy consumption, deterioration of livability and 

safety of the urban environment, elevation in ground-level ozone, and even an increase in 

heat-related mortality rate (Coseo and Larsen; Kim and Guldmann; Memon et al.; 

Mirzaei and Haghighat; Nuruzzaman; Onishia et al.; Stone Jr "Urban Heat and Air 

Pollution: An Emerging Role for Planners in the Climate Change Debate"; Tomlinson et 

al.). Urban growth affects climate change patterns by emitting greenhouse gases through 

deforestation and plant clearance (Stone Jr The City and the Coming Climate: Climate 

Change in the Places We Live). But the impacts of the expansion do not end to the 

aforementioned problems. In addition to environmental impacts, urban growth also leads 

to unbalanced economic growth which jeopardizes productivity, and personal and public 

finances (Ekins). Urban growth endangers the security, livability, and social equity of 

city dwellers by changing the size and form of urban areas (Bramley and Power; Lin and 

Yang). 

Thus, a precise perception of the location, direction, scale, type, causes, and 

consequences of urban growth is required for most urban purpose projects, future 

planning, and sustainable development (Pradhan; Yao et al.). Urban growth models act as 
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essential tools for understanding the dynamic process of urban expansion, assessing 

causal factors, examining the consequences of planning policies, supporting the planning 

and decision-making, and determining the efficiency of the plans before implementation 

(Hosseinali et al.). But, urban growth modeling is not sufficient for maintaining 

sustainable development. Sustainable development is the cities capability to decrease the 

environmental impacts of urban activities while protecting a stable economy and 

enhancing social equity and quality of life in urban areas (Haughton and Hunter; 

Newman and Kenworthy). While rapid and horizontally urban growth in an uncontrolled 

and unorganized manner exacerbates the mentioned problems (Jiang et al.; Sisodia et al.),  

managed and compact growth is a sustainable form of development advocated by many 

researchers (Burton et al. The Compact City: A Sustainable Urban Form? ; Burton et al. 

"The Compact City and Urban Sustainability: Conflicts and Complexities"; Nurul). To 

attain environmental urban sustainability and to solve the problems caused by urban 

expansion, sustainable urban development strategies should be embedded with urban 

growth and LULC change modeling approaches. Some operational strategies for 

environmentally sustainable urban development are: (1) not to convert good-quality 

agricultural lands to urban lands excessively; (2) to control the amount of land conversion 

based on available lands and population growth; (3) to guide land conversion to less 

important sites from sustainability point of view; and (4) to retain compact development 

patterns. 

Over the last three decades, various types of models and methods have been 

developed based on remote sensing (RS) and geographic information system (GIS) 
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techniques with the general purpose of understanding the complexity of urban growth 

(Aburasa et al.; Musa et al.). GIS plays an important role in storing, managing, and 

preparing the data layers. Most of the GIS-based models are cell-based and the data 

layers are tessellated to form a grid of cells, where the values of each cell exhibit its 

spatial attributes (Batty et al.; Michalak). RS provides the fundamental required data for 

urban growth modeling through satellite images (Chen et al.). The conventional models 

such as cellular automata (CA) have demonstrated different levels of success in various 

case studies; but, their shortcomings limit their effectiveness in urban expansion and 

LULC change modeling (Batty et al.; Clarke et al.; de Noronha Vaz et al.; Feng et al.; 

Wu and Martin). In recent years, machine learning methods, as an important part of 

artificial intelligence, have been taken researchers' attention in related studies because 

they are learning algorithms that implement the modeling process automatically without 

human assistance or expertise (Suthaharan). The increased use of non-parametric and 

supervised machine learning models in urban growth and LULC change studies is 

because of their effectiveness and reliability, which have been proven by most previous 

studies (Aburas et al.). These machine learning methods address both continuous and 

categorical variables, non-linear relationships, noisy and complicated data, and the 

existence of outliers in the training dataset, also avoid overfitting and ensure good 

generalization performance (B. Huang et al. "Support Vector Machines for Urban Growth 

Modeling"; B. Huang et al. "Land-Use-Change Modeling Using Unbalanced Support-

Vector Machines"). In urban growth studies, these models are assessed for their 

effectiveness and, there is still the debate on the effectiveness and reliability of the 
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machine learning methods for modeling, simulating, and predicting future urban growth 

patterns.  In addition, these machine learning methods can be coupled with dynamic 

models such as CA to predict alternative future patterns of urban growth (Shafizadeh-

Moghadam et al.). 

1.2 Research Objectives  

This doctoral dissertation research aims to model urban expansion patterns more 

effectively and efficiently by using machine learning methods. Very specifically this 

dissertation intends to address the following three research questions using a mixture of 

historical LULC maps, social, and physical data:  

1. How can machine learning improve urban expansion modeling? 

2. What is the best machine learning method to model urban expansion patterns?  

3. How can urban expansion modeling support environmentally sustainable urban 

development? 

1.3 Synopsis of Dissertation  

The dissertation is organized as follows: Chapter I is an introduction to the study 

and outlines the research problem and objectives. Chapter II explores the capabilities of 

the support vector machine (SVM) method with the emphasis on the process of machine 

learning-based urban expansion prediction and evaluating the importance of causal 

factors. Chapter III examines five machine learning methods to thoroughly understand 

the performance of the models and their strengths and limitations. Chapter IV examines 

urban growth models to simulate urban development under three urban growth scenarios, 
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including current trends, controlled urban development, and environmentally sustainable 

urban development. Chapter V draws the conclusions, indicates the limitations, and 

provides potential future research.
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CHAPTER II 

AN ENHANCED SUPPORT VECTOR MACHINE MODEL FOR URBAN 

EXPANSION PREDICTION1 

2.1 Introduction 

Urban growth is a dynamic process (Bruegmann; Sultana and Weber "The Nature 

of Urban Growth and the Commuting Transition: Endless Sprawl or a Growth Wave?") 

resulting in the expansion of urban areas into surrounding natural areas (Adams; 

Blumenfeld; Puertas et al.; Wehrwein). The adverse effects of urban expansion such as 

reducing natural areas and habitat fragmentation (Nagendra et al.), increasing air, water, 

and soil pollutions (Shukla and Parikh), exacerbating hydrological problems (Lindh; 

Williams), destroying forests and agricultural fields (Masri; Yankson and Gough), 

disturbing natural and wildlife (Marzluff; McKinney), and intensifying regional and 

global warming (Alcoforado and Andrade; Stone Jr The City and the Coming Climate: 

Climate Change in the Places We Live) are great concerns among researchers, 

practitioners, and decision-makers (Agarwal et al.; P.H. Verburg et al.). That is why there 

is always a major interest to study and understand the processes of urban expansion from

 

 

1 Karimi, F., Sultana, S., Babakan, A. S., & Suthaharan, S. (2019). An enhanced support vector 

machine model for    urban expansion prediction. Computers, Environment and Urban Systems, 

75, 61-75. https://doi.org/10.1016/j.compenvurbsys.2019.01.001 
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many perspectives (Gober and Burns; Greene; Hart; Theobald) and how it influences the 

physical environment (Swenson and Franklin).  Likewise, modeling and simulating urban 

expansion patterns have been a long tradition in geography and planning fields, which not 

only allow to assess the efficiency of a plan before implementing it but also help to 

forecast its consequences after implementation (Batty et al.; Clarke et al.; de Noronha 

Vaz et al.; Feng et al.; Wu and Martin). Hence, finding an appropriate method for 

modeling and simulating urban expansion becomes critically important for managing 

sustainable urban development (Hersperger et al.; Turner et al.).  

It is undeniable that urban expansion modeling is a convoluted process requiring a 

deep historical understanding of urban growth and policies in the particular geographic 

context in order to meticulously perceive spatiotemporal relationships between predictor 

variables and land use/land cover (LULC) change (Clarke et al.; Pijanowski et al. "Using 

Neural Networks and Gis to Forecast Land Use Changes: A Land Transformation 

Model"). Over the last three decades, a variety of models and methods have been 

developed to understand the complexity of urban growth processes (Aburasa et al.; Musa 

et al.). The integration of geographic information system (GIS) in modeling urban 

expansion became essential in the late 20th century (Batty et al.; Michalak) for capturing 

the spatiotemporal changes of predictor variables. Various urban growth and LULC 

change models including cellular automata (CA) (Batty et al.; Clarke et al.; de Noronha 

Vaz et al.; Feng et al.; Wu and Martin), regression models (Z. Hu and C.P.  Lo; Liao and 

Wei; Mom and Ongsomwang; Tahami et al. "Virtual Spatial Diversity Antenna for Gnss 

Based Mobile Positioning in the Harsh Environments"; Tahami et al. "The Preliminary 
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Study on the Prediction of a Hurricane Path by Gnss Derived Pwv Analysis"; Tayyebi et 

al. "Predicting the Expansion of an Urban Boundary Using Spatial Logistic Regression 

and Hybrid Raster-Vector Routines with Remote Sensing and Gis"), artificial neural 

networks (ANNs) (Mohammady and Delavar; Pijanowski et al. "Using Neural Networks 

and Gis to Forecast Land Use Changes: A Land Transformation Model"; Pijanowski et 

al. "A Land Transformation Model: Integrating Policy, Socioeconomics and 

Environmental Drivers Using a Geographic Information System"; Pourebrahim et al.; 

Tayyebi et al. "An Urban Growth Boundary Model Using Neural Networks, Gis and 

Radial Parameterization: An Application to Tehran, Iran"; Tian et al.), agent-based 

models (ABMs) (Babakan and Taleai; Hosseinali et al.; J. Li et al.; Murray-Rust et al.; 

Shirzadi Babakan and Alimohammadi; Shirzadi Babakan et al.), and tree-based models 

(Shafizadeh-Moghadam et al.; Tayyebi and Pijanowski) have demonstrated significant 

accomplishments in various case studies, yet their drawbacks limit their efficiency in 

urban expansion modeling (Musa et al.). 

In recent years, support vector machine (SVM), one of the most effective 

Machine Learning (ML) techniques, has been attracted the attention of many researchers 

in geospatial analysis. While in a majority of geospatial studies, SVM has been applied to 

the classification of remotely sensed data (C. Huang et al.; Huang and Zhang; Muñoz-

Marí et al.), it has recently been used for modeling LULC changes (B. Huang et al. 

"Land-Use-Change Modeling Using Unbalanced Support-Vector Machines"; Samard zic´ 

-Petrovic´ et al.; Samardži´c-Petrovi´c et al.). SVM is not only able to effectively 

consider both continuous and categorical variables, non-normal distributed data, non-
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linear relationships, noisy and complex data, and training datasets with outliers, it can 

also avoid overfitting and ensures good generalization performance (B. Huang et al. 

"Support Vector Machines for Urban Growth Modeling"; B. Huang et al. "Land-Use-

Change Modeling Using Unbalanced Support-Vector Machines"). These characteristics 

of SVM can be very useful for modeling urban expansion patterns. B. Huang et al. 

"Land-Use-Change Modeling Using Unbalanced Support-Vector Machines" is the first 

scholar proposed the application of SVM method for LULC modeling and developed an 

SVM model to address the issue of dealing with unbalanced LULC data. They considered 

9 causal factors including population, distance to roads and facilities, and surrounding 

land uses to model LULC changes in Calgary, Canada over the periods of 1985-90, 1990-

92, 1992-99, 1999-2000, and 2000-01 and found that the unbalanced SVM can achieve 

high and reliable results for LULC change modeling. However, they trained and 

evaluated their model in the same period which considerably leads to obtaining 

overestimated and biased results. In other words, there is no assurance to achieve such 

high-accurate results if a model is developed in one period and applied to predict LULC 

changes in the next period. To realistically assess the predictive power of a model, it is 

essential to train and evaluate the model in consecutive periods. Moreover, in their 

evaluations, they did not consider the capability of the model for predicting unchanged 

land cells.  

In another similar study, B. Huang et al. "Support Vector Machines for Urban 

Growth Modeling" used SVM to model urban expansion of New Castle County, 

Delaware, during 1984-1992, 1992-1997, and 1997-2002. They compared the results of 
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SVM with the results of a binomial logistic regression (BLR) model and demonstrated 

the better performance of SVM. Rienow and Goetzke integrated the SLEUTH model and 

SVM to compare the results with a combination of SLEUTH and BLR models. Their 

results showed that the performance of SLEUTH increases by coupling with BLR-based 

or SVM-based probability maps. They also demonstrated that not only the SVM 

approach requires fewer variables than the BLR model but also exhibits lower 

uncertainty. Samard zic´ -Petrovic´ et al. used a balanced data sampling method as a 

solution for addressing the issue of handling unbalanced datasets in LULC change 

modeling. They developed a SVM model for LULC change modeling in the Municipality 

of Zemun, Republic of Serbia, using LULC data in the years 2001, 2003, 2007, and 2011. 

Although unlike B. Huang et al. (2009, 2010), they trained and evaluated their model in 

two separate time intervals, they just used balanced sampled datasets for this purpose. 

Additionally, their approach did not examine various kernel functions; instead, the RBF 

function was used as the standard kernel function. In a recent study, Samardži´c-Petrovi´c 

et al. examined the effectiveness of three ML techniques including Decision Trees (DT), 

Neural Networks (NN), and SVM for land-use change modeling. They applied these 

techniques to the same case study in three urban districts in Belgrade, the capital of 

Republic of Serbia, using historical LULC data sets comprised of nine land-use classes. 

Their results indicated that all three ML techniques can be effectively used for short-term 

land-use change forecasting, but the SVM model showed the highest prediction accuracy. 

Yet, utilization of SVM method in urban modeling is still at infancy. 
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The major question of this study is whether utilizing a proper sampling strategy 

and regulating SVM can improve the accuracy and predictability of urban expansion 

modeling. To answer this question, an appropriate SVM-based urban expansion model is 

developed by investigating a variety of sampling approaches, predictor variables, kernel 

functions, and SVM parameters in Guilford County, NC, over the period of 2001-2011. 

The performance and prediction accuracy of the model is also evaluated by apposite 

evaluation metrics particularly developed for LULC change case studies. This study 

contributes to the literature in several ways. First, the effectiveness of three sampling 

methods including random sampling (Cheng and Masser), balanced sampling 

(Marjanović et al.), and sampling all the changed cells, developed for the first time in this 

study, are employed to create an appropriate sample training dataset. The effects of these 

sampling methods on the performance of the SVM-based urban expansion model are 

examined. Second, nineteen predictor variables, four of which are first introduced in this 

study, are classified into three main categories of proximity, neighborhood, and site-

specific characteristics. Then, a comprehensive combination of the most significant 

predictor variables is determined using an information gain metric defined based on the 

entropy concept (Shannon). Third, by simultaneously regulating the SVM’s penalty 

parameter, kernel function, and kernel’s parameter, various configurations of the model 

are evaluated to find the most efficient configuration of SVM-based urban expansion 

model. Fourth, novel goodness-of-fit metrics are proposed to specifically evaluate the 

performance of SVM model for LULC change modeling. Finally, to achieve more 

realistic and reliable results, contrary to most previous studies, the predictability and 
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performance accuracy of the model is evaluated in the entire study area over a separate 

period. 

The rest of this paper is organized as follows: first, SVM-based urban expansion 

modeling is elucidated. Then the data and methodology including the study area, 

predictor variables, data collection and preparation, data sampling, and model 

development are elaborated. Finally, experimental results together with a number of 

implications for future studies are presented. 

2.2 A Background on SVM-Based Urban Expansion Modeling  

Urban expansion is probably the most conspicuous indication of LULC change 

induced by human (B. Huang et al. "Support Vector Machines for Urban Growth 

Modeling") and mostly occurs at the fringe of an urban area (Sultana and Weber "The 

Nature of Urban Growth and the Commuting Transition: Endless Sprawl or a Growth 

Wave?") where lands are converted from their previous LULC to urban land use. There 

are various geospatial factors affecting this complex process in a non-linear way that is 

regarded as data layers in a GIS-based urban expansion modeling. GIS plays a prominent 

role in preparing, managing, analyzing, and presenting geospatial data layers. Most of the 

GIS-based urban expansion models are cell-based; namely, data layers are presented as 

grids of cells in which each cell representing an area with specified attributes. The goal of 

urban expansion modeling is to model LULC type at time t+1 according to LULC and 

other characteristics at time t. That is, an appropriate function f(xt,yt+1) should be found to 

model the most probable LULC class at the next time (yi
t+1) for a cell at the previous time 

(xi
t). Afterward, the effectiveness and prediction accuracy of the model should be 
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evaluated for the next time interval (xt+1,yt+2)(Samard zic´ -Petrovic´ et al.). If the model 

reflects LULC changes correctly and the past LULC change patterns persist in the study 

area, it can be applied to simulate LULC in the future (xt+2,yt+3). In other words, although 

the past LULC change patterns are informative for simulation of LULC changes in 

future, there is no guarantee that patterns occurred in the past will be replicated in future. 

The aforementioned function can be SVM, a supervised non-parametric ML technique, 

which uses binary LULC classification and past LULC change patterns to train the model 

(Suthaharan). 

SVM was first proposed by Vapnik and Lerner, and then, Boser et al. enhanced it 

by inspiration from statistical learning theory. The standard SVM technique was 

introduced as a binary classification tool, but it can be upgraded to an n-class 

classification method by regarding a sequence of n or n(n-1)/2 binary classifications 

(Belousov et al.). SVM projects input data into the Hilbert space where an optimal 

separating hyperplane is used for classification (Yang et al.). By maximizing the 

hyperplane separating the two classes, binary SVM minimizes the upper bound of 

generalization error (B. Huang et al. "Land-Use-Change Modeling Using Unbalanced 

Support-Vector Machines"; C. Huang et al.; Samard zic´ -Petrovic´ et al.). This capability 

can be regarded as the approximate implementation of Structural Risk Minimization 

(SRM), which grants SVM a good generalization performance, independent of the 

distribution of data.  

A training dataset consisting of n data points that are separable into two classes 

can be represented by Ὕ ὼȟώ ȟὼȟώ ȟȣȟὼȟώ ᶰὢ ὣȟὢ ‭Ὑȟὣ ‭ρȟρ. 
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The goal of the classification method is to find a classifier y = f(x), which is a projection 

from X to Y based on data in T. Any points outside the training set T but inside ὢ ὣ 

will be classified correctly by the defined projection (Vapnik). Suppose the problem of 

separating the training set into two classes of +1 and -1, ὌȡύȢὼ ὦ ρ and 

ὌȡύȢὼ ὦ ρ(Øɴ Ὑȟὦɴ Ὑ  would be possible hyperplanes such that the majority 

of class 1 instances lie above H1 (ύx+b> 1) and the majority of class -1 fall below H2 

(ύx+b <-1), where the points located on H1 and H2 are defined as support vectors and 

are responsible for determining the optimal separating hyperplane  H:w.x+b=0 

(Statnikov) (Figure 2.1). The distance between H1 and H2 can be denoted by  
ȿȿ

; 

therefore, the maximization of the distance between H1 and H2 can be obtained by 

minimizing the norm of w, leading to a constrained optimization problem. As Figure 2.1 

shows, all training sample data may not be linearly separated by a hyperplane perfectly. 

To consider misclassification errors, a penalty parameter c for the instances falling off the 

margin, and also nonnegative slack variables ξi are incorporated into the problem. Slack 

variables represent the distances between the misclassified points and the initial 

hyperplane. The penalty parameter c makes a trade-off between the margin size and the 

number of misclassified training points; whereas larger c provides smaller 

misclassifications, which also leads to smaller margin size. As a result, it is a constrained 

optimization problem, a quadratic programming problem with inequality constraints, 

which is presented by Eq. 1 (Vapnik): 

 

Minimize    Ὢύȟ‚ ᴁύᴁ ὧВ ‚ 
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Subject to   ώύȢὼ ὦ ‚ ρ π ȟ    ‚ ρȟὭ ρȟȣȟὲ  (1) 

 

 

Where ʊ are the positive slack variables and c is the penalty parameter. However, 

the goal is to find an optimal hyperplane to minimize the misclassification errors and 

maximize the margin size simultaneously. The most common way to deal with such 

problems, which is hard to solve directly, is the use of Lagrange multipliers to transfer 

the problem from the primal space to a dual space. Introducing n nonnegative Lagrange 

multipliers a1,a2,…, an ≥ 0 associated with the inequality constraints defined in Eq. 1 

results in Eq. 2 (Vapnik): 

 

Maximize ὒὥ В ‌ В В ‌‌ώώὼȢὼ 

 

 

Subject to: В ‌ώ πȟπ ‌ ὧȟὭ ρȟȣȟὲ   (2) 
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Figure 2.1: A Linear, Binary SVM Classifier and the Optimal Separating Hyperplane H, Lying 

Between and Parallel with H1 and H2 

 

 

To address non-linearity, data can be mapped to a higher dimensional space 

created using a mathematical projection and known as the kernel trick (Statnikov). 

Because in this optimization problem, only the dot product of two vectors appears in the 

feature space, by replacing x with its mapping in the feature space, the kernel function k 

can be defined as Ὧὼȟὼ  ὼȢ ὼ . Using a kernel function, the optimization 

function accounts to maximizing Eq. 3 (Chapelle et al.): 

 

ὒὥ В ‌ В В ‌‌ώώὯὼȢὼ    (3) 

 

 

Where common kernel functions are the linear function Ὧὼȟώ ὼȢὼ, radial 

basis function (RBF) Ὧὼȟὼ Ὡὼὴ‎ ȿὼ ὼȿ , and polynomial function 

Ὧὼȟώ ρ ὼȢὼ , where γ and q are kernel parameters (Chapelle et al.). 
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2.3 Data and Methodology 

2.3.1 Study Area 

In this study, the developed SVM model is applied to model urban expansion in 

Guilford County, North Carolina (NC), USA, over the period of 2001-2011. Guilford 

County, located in the piedmont area and a part of the Metropolitan Statistical Area of 

Greensboro- High Point, is one of the ten most urban and third most populous County in 

NC (Carolina Population Center) (Figure 2.2). The estimated population of Guilford 

County was 421,048, 489,557, and 521,330  respectively in 2000, 2010, and 2016, 

making it one of the fastest-growing counties in NC (U.S. Census Bureau). The area of 

this county is about 170324 ha (U.S. Census Bureau), of which 31% was built lands and 

69% was natural lands in 2001. The percentage of built lands in this county was grown 

6% from 2001 to 2006, and 3% from 2006 to 2011 (USGS "The National Map"). Given 

NC is one of the fastest-growing states in the United States (U.S. Census Bureau), no 

doubt Guilford County will continue to grow (News and Records) and built areas will 

imperil the natural environment and underscore the necessity of studying urban 

expansion patterns in this county. Developing an efficacious urban expansion model 

enables urban planners and decision-makers in Guilford County to scrutinize LULC 

change patterns and make proper plans regarding the preservation of crucial natural lands 

and the management of urban expansion patterns. 
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Figure 2.2: The Location of Guilford County in North Carolina 

 

 

2.3.2 Predictor Variables 

Urban expansion converts vacant or agricultural lands into urban built lands (del 

Mar López et al.). It is evident that such LULC changes are influenced by an intricate 

combination of various social, economic, and environmental factors and cannot be 

simplistically attributed to any single group of factors (Bhatta). The relationship between 

these factors and LULC change patterns can be illustrated by urban expansion models. 

According to the summary of the most widely used factors in previous studies conducted 

by Musa et al., the historical spatiotemporal LULC change patterns in the study area, and 

data availability, 19 predictor variables are considered under three main categories to 

model urban expansion in this study (Table 2.1): 

1) Site-specific characteristics: One of the significant factors considered in this 

category is the population density of a cell which leads to striking LULC changes (Meyer 
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and Turner). Another factor in this category is the current LULC type of a cell which 

considerably affects its future LULC type (Samard zic´ -Petrovic´ et al.). 

2) Proximity characteristics: proximity measures the minimum Euclidean 

distances to various influential factors (Rienow and Goetzke) on LULC change such as 

the nearest city center or downtown area, urban facilities, transportation network 

infrastructures (road/railway), green spaces, and water bodies (Musa et al.). Because of 

more employment opportunities at downtowns and city centers, proximity to city centers 

is a consequential factor in LULC change modeling (Deng and Srinivasan). Proximity to 

urban areas is also reported as an important factor in urban expansion; closest lands to 

urban areas have more potential for urbanization due to less monetary costs required for 

connecting to urban utilities such as water and sewer (Pijanowski et al. "Calibrating a 

Neural Network-Based Urban Change Model for Two Metropolitan Areas of the Upper 

Midwest of the United States"). Because of less commuting costs and more mobility, new 

residential areas predominantly emerge in proximity to transportation networks (Cervero 

and Landis; Horner and Schleith; H. Kim et al.); therefore, proximity to transportation 

facilities such as roads and railways is a driving factor for LULC change (Babakan and 

Taleai; Shirzadi et al.; Shirzadi Babakan and Alimohammadi; Shirzadi Babakan et al.). 

Proximity to green spaces and water bodies are other momentous variables in LULC 

change studies; while they play a restricting role in urban expansion due to imposing 

some limitations for building new residential properties, they are considered a boon by 

inhabitants due to their benefits on mental and physical health and providing a suitable 

place to support various social and recreational activities (Dadvand et al.; Pijanowski et 
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al. "Calibrating a Neural Network-Based Urban Change Model for Two Metropolitan 

Areas of the Upper Midwest of the United States").  

3) Neighborhood characteristics: In addition to its own LULC type, the 

neighboring lands’ LULC types of a cell have substantial effects on its future LULC type. 

In general, the potential of changing a cell’s LULC to the built type increases when its 

neighborhood is mostly developed. On the other hand, if a majority of neighboring lands 

of a cell are undeveloped, the probability of LULC change in that cell will decrease (P. 

H. Verburg et al.; White and Engelen). In this study, the numbers of a variety of 

developed and undeveloped LULC types such as wetland, forest, water, barren, built 

lands with different densities, and potential lands for urban expansion including 

agricultural lands, shrubs, herbaceous and pastures are calculated in a 3*3 Moore’s 

neighborhood of each cell and used to enhance the efficiency of LULC change modeling.  

Irrelevant and redundant predictor variables affect the modeling results through 

overfitting and poor generalization (Y. Kim et al.). Feature selection is a pre-processing 

stage to determine the most significant predictor variables (Chandrashekar and Sahin; H.  

Peng et al.) and information gain is a frequently used supervised feature selection 

algorithm in ML classification studies (Azhagusundari and Thanamani; Lee and Lee; 

Yang and Pedersen). Information gain measures how much a predictor variable is 

important and relevant to the target variable (Yang and Pedersen). The information gain 

function originated from information theory (Shannon) and it is based on the notion of 

entropy. Entropy indicates the uniformity of the system, the more chaotic, the higher the 

value of entropy (Yang and Pedersen). Entropy is calculated using Eq. 4 (Shannon): 
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Ὁὲὸὶέὴώ Ὀ В ὴὰέὫὴ    (4) 

 

 

Where pi is the proportion of instances belonging to the target variable m in the 

dataset D. Information gain of a predictor variable is the reduction in the entropy that is 

archived by that variable. 

 

Table 2.1: A Summary of Considered Predictor Variables for Urban Expansion Modeling 

 
Predictor Category Predictor Variable 

Site-specific 

characteristics 

The current LULC type of a cell 

The population density of a cell    

Proximity 

characteristics 

The distance to city centers 

The distance to urban built areas 

The distance to highways 

The distance to major roads 

The distance to streets 

The distance to railroads 

The distance to water bodies 

The distance to greens spaces 

Neighborhood 

characteristics 

The number of potential lands for urban expansion including agricultural 

lands, shrubs, herbaceous and pastures 

The number of water body cells in the neighborhood of a cell 

The number of forest cells in the neighborhood of a cell 

The number of wetlands cells in the neighborhood of a cell 

The number of barren land cells in the neighborhood of a cell 

The number of developed, open-space cells in the neighborhood of a cell 

The number of low-intensity developed cells in the neighborhood of a cell 

The number of medium-intensity developed cells in the neighborhood of a cell 

The number of high-intensity developed cells in the neighborhood of a cell 

 

 

2.3.3 Data Collection and Preparation 

As the necessity of using historical LULC data in urban expansion modeling, 

Guilford County’s LULC data were collected from the National Land Cover Database 

(USGS "The National Map") at the spatial resolution of 30 meters for the years of 2001 

(C. Homer et al.), 2006 (Fry et al.), and 2011 (C.G. Homer et al.) (Figure 2.3) with the 

overall accuracy of 79% (J. D. Wickham et al. "Thematic Accuracy of the Nlcd 2001 
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Land Cover for the Conterminous United States"), 78% (J. D. Wickham et al. "Accuracy 

Assessment of Nlcd 2006 Land Cover and Impervious Surface") and 83% (J. Wickham et 

al.), respectively. In these LULC maps, the built environment is classified into developed 

open spaces, low-intensity, medium-intensity, and high-intensity developed areas and the 

natural or unbuilt environment includes the classes of open water, barren land, deciduous 

forest, evergreen forest, mixed forest, shrub and scrub, herbaceous, and hay and pasture. 

As shown in Figure 2.3, the urban expansion mostly happened along the boundary of 

existing urban areas; therefore, the proximity to urban facilities seems to play a major 

role in urban expansion.  

In addition to LULC data, vector data of transportation networks were collected 

from TIGER files (U.S. Census Bureau "Tiger/Line Shapefiles and Tiger/Line Files") and 

prepared for Guilford County over the years of 2001, 2006, and 2011. The vector data of 

built areas, city centers, green spaces, and water bodies are extracted from LULC maps 

and used to produce the required proximity raster maps. As shown in Figure 2.4, the 

proximity maps display the Euclidian distance of each cell to the closest facility of 

interest as grayscale images where darker gray values represent shorter distances from the 

facility. Furthermore, the neighborhood raster maps displaying the number of cells with 

the LULC type of interest within the 3*3 Moore’s neighborhood of each cell are 

produced using ESRI ArcGIS 10.3 software as grayscale images where lighter gray 

values represent the higher number of neighboring cells (Figure 2.5).  Population data 

were gathered from (U.S. Census Bureau) at the scale of census tracts for the decennial 

census years of 2000 and 2010. Because of the unavailability of census population data 
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for 2001, 2006, and 2011, a simple population estimation model is used to approximate 

population data in these years from the available decennial census data in 2000 and 2010. 

Finally, a population density map representing the number of inhabitants per cell is 

produced as a grayscale image where lighter gray values show higher population density 

(Figure 2.6).  

To train and evaluate a binary SVM-based LULC change model, the prepared 

data layers are used as predictor variables at time t to model the binary classification map 

of LULC including the two classes of built and unbuilt at time t+1. In other words, at 

first, the 2001 data layers are considered as predictor variables, and a binary LULC 

classification map of the two classes of built and unbuilt in 2006 is used to train the 

model; then the 2006 data layers and the binary classification map of LULC in 2011 are 

utilized as a testing dataset to evaluate the effectiveness and prediction accuracy of the 

model (Table 2.2).  

 
Table 2.2: The Training and Testing Datasets 

 
 Predictor variables Label 

Training Dataset 2001 data layers binary classification of LULC in 2006 

Testing Dataset 2006 data layers binary classification of LULC in 2011 

 

 

2.3.4 Data Sampling 

The LULC change process neither occurs randomly over the whole study area nor 

uniformly among all types of LULC. While some LULC types such as wetlands and 

water bodies remain immutable for a very long time, a number of LULC types such as 

agricultural lands and pastures indicate more potential to change to an urban area in a 
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short time. Table 2.3 shows the number of urban built and unbuilt land cells over the total 

number of 1,892,491 land cells in the study area for the years 2001, 2006, and 2011. 

Table 2.4 provides the number of changed and unchanged land cells together with the 

rate of LULC changes and the rate of increase in urban built areas that have been 

occurred during the study period. Clearly, only LULC of a small portion of the study area 

has been changed over the period of 2001-2011 (Table 2.4), which may make the SVM 

model biased considering the fact that a majority of lands do not contribute to the LULC 

change process. This critical issue is punctiliously resolved by applying three sampling 

strategies to create a training dataset. First, the training dataset is created by a random 

selection of 5%, 10%, and 20% of the whole cells. Second, the training dataset is created 

by selecting all the changed cells. Finally, a balanced sampling strategy is applied to 

create the training dataset from all the changed cells and an equal number of unchanged 

cells randomly selected over the whole study area. The results of applying these sampling 

strategies and their efficiency for urban expansion modeling in Guilford County are 

discussed in detail in the results and discussion section. 
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Figure 2.3: The LULC Map of Guilford County in (a) 2001, (b) 2006, and (c) 2011 
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Figure 2.4: The Distance Map to a) City Centers, b) Built Areas, c) Highways, d) Main Roads, e) 

Streets, f) Railroads, g) Green Spaces, and h) Water Bodies in Guilford County in 2001. 
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Figure 2.5: The Number of Neighboring Cells with the LULC Type of a) Forest, b) Water body, 

c) Wetland, d) Low-intensity Developed Area, e) Medium-intensity Developed Area, f) High-

intensity Developed Area, g) Developed Open Space, h) Potential LULC for Urban Expansion 

Including Agricultural Land, Shrub, Herbaceous and Pasture, and i) Barren Land in Guilford 

County in 2001. 
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Figure 2.6: The Population Density Map in Guilford County in 2001 

 

 
Table 2.3: The Number of Built and Unbuilt Land Cells in Guilford County for the Years 2001, 

2006 and 2011 

 

 

 
 

 

 
Table 2.4: A Summary of LULC Change in Guilford County Over 2001-2011 

 
 2001-2006 2006-2011 

The number of changed cells 34,722 19,959 

The number of unchanged cells 1857769 1872532 

The rate of change  2% 1% 

The rate of increase in urban built areas 6% 3% 

 

 

2.3.5. Model Implementation  

The SVM-based urban expansion model is developed using MATLAB 2017. All 

the prepared raster data layers for Guilford County are converted to Ascii files to make 

them readable by MATLAB Software. To train the model, nineteen data layers are 

prepared for 2001 and the binary classification of the LULC map in 2006 are considered. 

As the study area is composed of 1,892,491 30 by 30-meter cells, the training dataset 

 2001 2006 2011 

The number of built land cells 589,929 624,651 644,610 

The number of unbuilt land cells 1,302,562 1,267,840 1,247,881 
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includes 1,892,491 observations and 19 features in 2001, and 1,892,491 binary LULC 

labels (-1,1), 1 for built and -1 for unbuilt cells, in 2006. However, by applying a 

sampling method, not only the number of observations in the training dataset decreases, 

and subsequently the computational performance increases considerably, but also the 

prediction accuracy of the model is improved. For this purpose, different sampling 

strategies are implemented to recognize the best sampling strategy to create the training 

dataset. Finally, the cell values of features including proximity, neighborhood, and 

population density data layers are standardized (mean 0, variance 1), because the 

determination of optimal hyperplane in SVM is significantly influenced by the scale 

value of input features. Therefore, the standardization of feature values makes the 

significance of all the features equal in the SVM model. Similarly, the 2001 LULC type, 

which is used as a feature data layer in the training dataset, is converted to a dummy 

variable due to its categorical scale value. 

The configuration of a SVM model including regularizing the parameter c, 

selecting a kernel function type, and regulating the kernel function’s parameter has 

substantial effects on the model’s performance and should be specifically considered for 

each case study. The regularization of parameter c is used to control the trade-off 

between the empirical risk and the model complexity. A larger c value leads to a more 

complex model that decreases the empirical risk and thus tends to overfit the training 

dataset by a decision surface which is more influenced by local support vectors. On the 

other hand, smaller c values produce smoother surfaces and result in simpler models that 

reduce the model complexity but may not effectively consider the underlying LULC 
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change patterns. As a consequence, an optimal c value should be identified to trade off 

the model complexity and the empirical risk in order to attain the best generalization 

performance. In this study, the c values of 0.1, 1, 10, and 100 are tested to achieve the 

best performance of the SVM model.  

In addition to c value, the efficiency of a kernel function in converting the 

nonlinear boundary to a linear one profoundly influences the performance of a SVM 

model. In this study, the linear function, radial basis function (RBF), and polynomial 

function are tested to select the most suitable kernel function for addressing the 

nonlinearity issue in the SVM-based urban expansion modeling. While in the linear 

kernel, there is no parameter to be set, in the RBF kernel, the number of support vectors 

decreases by increasing the kernel’s parameter γ. Therefore, when parameter c is kept 

constant, raising the value of parameter γ up to a certain threshold leads to a more 

complex model because the decision surface’s shape is more influenced by local support 

vectors. In the polynomial kernel, increasing the kernel parameter q brings about a better 

generalization, but when it excessively increases, the performance of the model decreases 

due to overfitting the SVM model. In this study, the γ values of 1, 2, and 3 and the q 

values of 1, 2, and 3 are explored to determine the best values for these parameters. As a 

result, an efficacious SVM model is secured by regulating the configuration of SVM 

model. Figure 2.7 shows the entire process of SVM-based urban expansion modeling. 

2.3.6. Model Evaluation 

The developed SVM model is evaluated using various accuracy metrics. First, a 

training accuracy, the classification accuracy based on the training dataset (2001-2006 
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dataset), is evaluated to investigate the model’s ability to demonstrate the existing LULC 

change patterns in the training dataset. The training accuracy evaluates the stability and 

generalization performance of the model (Suthaharan). In the next step, to validate the 

applicability of the model, its performance is tested using a dataset related to another 

period (2006-2011 dataset). The testing performance including the computation of testing 

accuracy, precision, sensitivity, and specificity is performed using a confusion matrix 

(Suthaharan). The definition of the confusion matrix is presented in Tables 2.5 and 2.6. In 

this study, two confusion matrices are produced using built and unbuilt, and also, 

changed and unchanged cells. In the confusion matrix based on built and unbuilt cells, if 

a cell with the real-world label of built is correctly classified as built by the model, then it 

calls a True Positive (TP) and if it is incorrectly classified as unbuilt, then it calls a False 

Negative (FN). Similarly, if a cell whose real label is unbuilt is incorrectly classified as 

built by the model, it calls False Positive (FP) and if it is correctly classified as unbuilt, 

then it calls True Negative (TN) (Table 2.5). In a similar manner, a confusion matrix 

based on changed and unchanged cells is specifically designed to investigate the testing 

performance of the LULC change model for the first time in this study (Table 2.6). 

 
Table 2.5: The Built-unbuilt Confusion Matrix 

 
                      predicted 

observed 

built unbuilt 

built True positive False negative 

unbuilt False positive True negative 
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Table 2.6: The Changed-unchanged Confusion Matrix 

 
                       predicted 

observed 

changed unchanged 

changed True positive False negative 

unchanged False positive True negative 

 

 

After the creation of confusion matrices, the testing accuracy, precision, 

sensitivity, and specificity are calculated using the following equations (Suthaharan): 

 

Testing accuracy =     (5) 

 

 

Testing precision =    (6) 

 

 

Testing sensitivity =    (7) 

 

 

Testing specificity =    (8) 

 

 

Testing accuracy shows the performance of the model based on the 

proportionality between the FP and the TP. A high testing accuracy indicates that the 

classification is highly accurate, and therefore, the classification errors of FN and FP are 

negligible. Testing precision exhibits the performance of the model based on the 

proportionality between FP and TP. A high precision indicates that TP is high together 

with low values of FN. Testing sensitivity represents the performance of the model 

regarding the proportionality between FN and TP. A high sensitivity demonstrates that 

the classification of TP is highly sensitive to FP. Testing specificity presents the 



35 

 

performance of the model according to the proportionality between TN and FP. A high 

testing specificity means that while TN is high, FN is also significant (Suthaharan). 

Because of the small number of changed cells in the study area, the 

aforementioned evaluations are not able to reveal the realistic performance of the model 

(Jantz et al.). In other words, the main objective of a SVM-based urban expansion model 

is not the classification of built and unbuilt cells but is the prediction of the LULC change 

process, change from unbuilt cells to built cells. Therefore, the model can be claimed to 

show high performance when it is able to accurately predict the LULC change process 

over time. To evaluate the realistic performance of the SVM-based urban expansion 

model, a novel combination of five evaluation metrics including the percentage of 

correctly predicted cells (PCP), the percentage of correctly predicted cells as built 

(PCPB), the percentage of correctly predicted cells as unbuilt (PCPUB), the percentage of 

correctly predicted cells as unchanged (PCPUC), and the percentage of correctly 

predicted cells as changed (PCPC) are defined in this study (Eq.8-12). PCPC and PCPUC 

are the most important metrics for evaluating the performance of an urban expansion 

model because they consider the LULC change process.  

 

PCP= 
  

 
ρππ   (9) 

 

 

PCPB= 
   

  
ρππ   (10) 

 

 

PCPUB= 
   

  
ρππ  (11) 

 

PCPUC= 
   

  
ρππ  (12) 
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PCPC= 
   

  
ρππ  (13) 

 

 

  

 

Figure 2.7: The Diagram of SVM-based Urban Expansion Modeling 
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2.4 Results and Discussion 

The SVM model is developed using the value of parameter c equal to 1 and linear 

kernel. As mentioned before, the major evaluation metrics for choosing the best sampling 

method are PCPUC and PCPC; therefore, the values of these metrics obtained by 

applying three sampling methods are presented in Table 2.7. As illustrated in Table 2.7, 

the SVM model based on the sampling of all changed cells and random sampling does 

not predict changed and unchanged cells properly. In the sampling of all changed cells, 

because only the changed cells are considered for training the model, the ability of the 

model to predict unchanged cells is very low. On the other hand, in random sampling, the 

probability of taking into account changed cells is significantly low due to the small 

number of changed cells compared to the number of unchanged cells; hence, the ability 

of the model to predict changed cells considerably decreases. As a result, the balanced 

sampling method, selecting all the changed cells and the same number of unchanged cells 

randomly is utilized to train the SVM model in all the remaining experiments. The 

balanced sampling just contains about 4% of the training dataset that means with a few 

numbers of cells, the SVM model can be trained efficiently. To evaluate the effects of 

stochasticity on the results, the model is run with all three sampling methods several 

times. The results show that the outcomes of LULC change prediction do not change 

significantly in different runs of the model. 
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Table 2.7: PCPC and PCPU Values for Three Sampling Methods 

 

 
Random sampling Changed cells 

sampling 

Balanced 

sampling 5% of cells 10% of cells 20% of cells 

PCPC (%) 1 3 8 98 67 

PCPUC (%) 100 100 100 1 38 

 

 

After choosing the best sampling method, the next step is the evaluation of 

predictor variables. Selecting the most informative features by eliminating those with 

little significance from the model not only enhances the accuracy of the model but also 

reduces the model’s complexity and the required time for training and testing the model 

(Y. Kim et al.). For this purpose, the predictor variables are ranked using the Information 

Gain metric (Shannon). As presented in Table 2.8, the current LULC type is the most 

significant predictor, following with distance to highways, neighboring with medium-

intensity developed areas, neighboring with potential lands for urban expansion, and 

distance to water bodies as the next high-ranked predictors. Because of the low 

significance of neighboring with forests, neighboring with developed open spaces, 

neighboring with water bodies, neighboring with wetlands, and neighboring with barren 

lands, these predictor variables are not considered in the modeling process. 

To improve the prediction accuracy, the model is configured by adjusting the 

parameter c, applying different kernel functions, and adjusting the kernel’s parameter. 

For this purpose, a combination of the c values of 0.1, 1, 10, and 100 with various 

configurations of kernel functions including the linear kernel with no kernel parameter, 

the RBF kernel with the γ values of 1, 2, and 3, and the polynomial kernel with the q 

values of 1, 2, and 3 are tested to select the most efficient SVM model. The best model 
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should demonstrate a good balance between PCPC and PCPUC and acceptable values for 

other evaluation metrics. Figure 2.8 shows the training accuracy of all the configured 

SVM models for the period of 2001-2006. As illustrated in this diagram, the training 

accuracy resulted from the RBF kernel is conspicuously higher than other kernel 

functions. In general, excluding c = 0.1, by raising the values of c and the RBF kernel’s 

parameter γ, the training accuracy increases. As a result, the training accuracy is 

approximately 100% in all the configurations of the model using the RBF kernel and the 

c values of 10 and 100. On the other hand, all the configurations of the model by 

polynomial kernel show low training accuracies. Finally, the linear kernel function 

presents a moderate training accuracy of about 75% for all the c values, except for c = 

100 that the accuracy decreases to 60%.  

 
Table 2.8: The Significance of Predictor Variables 

 
Predictor variable Rank Weight 

Current LULC type 1 0.21 

Distance to highways 2 0.18 

Neighboring with medium-intensity developed areas 3 0.17 

Neighboring with potential lands for urban expansion 4 0.17 

Distance to water bodies 5 0.16 

Distance to streets 6 0.15 

Distance to major roads 7 0.15 

Distance to urban built areas 8 0.14 

Distance to green spaces 9 0.11 

Neighboring with low-intensity developed areas 10 0.10 

Population density 11 0.08 

Distance to city centers 12 0.08 

Neighboring with high-intensity developed areas 13 0.05 

Distance to railroads 14 0.02 

Neighboring with forests 15 0.00 

Neighboring with developed open spaces 16 0.00 

Neighboring with water bodies 17 0.00 

Neighboring with wetlands 18 0.00 

Neighboring with barren lands 19 0.00 
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The testing accuracy, precision, sensitivity, and specificity of the developed SVM 

models are examined using both built-unbuilt and changed-unchanged confusion matrices 

(Figures 2.9 and 2.10). Similar to the training accuracy (Figure 2.8), the RBF kernel 

generally results in better testing performances than other kernel functions to predict both 

built-unbuilt and changed-unchanged cells. As shown in Figures 2.8 and 2.9, the RBF-

based configurations present noticeably higher testing accuracy, precision, and specificity 

compared to other configurations of the model. In addition, while the testing sensitivity 

of predicting built-unbuilt cells is very high for all the configurations of the model, the 

RBF-based configurations show significantly better testing sensitivities for predicting 

changed-unchanged cells. Particularly, for all the c values, the testing sensitivity 

increases by raising γ values. 

 

  

Figure 2.8: The Training Accuracy for Different Configurations of SVM Models (2001-2006)  

 

 

In the prediction of built-unbuilt cells, besides the testing sensitivity which is 

remarkably higher than other metrics and changes a little around 100% in all the 

configurations of the model, the testing accuracy, precision, and specificity follow nearly 
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the same pattern. However, in all the configurations, the testing accuracy is higher than 

the testing precision and specificity (Figure 2.8). On the other hand, in the prediction of 

changed-unchanged cells, the testing accuracy and specificity are approximately equal 

and the testing precision slightly changes in all the configurations of the model (Figure 

2.9). 

 

 

 

Figure 2.9: The Testing Accuracy, Precision, Sensitivity, and Specificity Using the Built-unbuilt 

Confusion Matrix 

 

 

 

Figure 2.10: The Testing Accuracy, Precision, Sensitivity, and Specificity Using the Changed-

unchanged Confusion Matrix 
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The PCP, PCPB, PCPUC, PCPUC, and PCPC evaluations of the developed SVM 

models show that similar to previous evaluations, the RBF kernel generally leads to more 

reliable results in comparison to other kernel functions (Figure 2.11). As indicated in 

Figure 2.10, excluding PCPB which is notably higher than other metrics and slightly 

changes around 100% in all the configurations of the model, PCP, PCPUB, PCPUC, and 

PCPC approximately pursue the same pattern. In addition, PCPUB and PCPUC are 

almost equal in all the configurations of the model. Also, by raising γ, while PCPC 

increases in all the RBF-based models, PCPUB and PCPUC decrease in all the RBF-

based models except in the case of c=1.  

Because of changing a small number of cells in the study area, PCPC is the most 

effective metric for the evaluation of change predictability of a SVM-based urban 

expansion model. However, other evaluation metrics are also consequential and should 

be taken into account to select the best model. Considering all the evaluation metrics, 

especially PCPC and the computational complexity of the models, the SVM model 

regularized by the c value of 1 and the RBF kernel function with the γ value of 2 is 

selected as the best SVM-based urban expansion model in Guilford County. The 

performance evaluations of the final SVM-based model are highlighted by red boxes in 

Figures 2.8, 2.9, 2.10, and 2.11. Also, Table 2.9 and 2.10 present the specifications and 

performance evaluation results of the final model.  
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Figure 2.11: The Results of PCP, PCPB, PCPUB, PCPUC, and PCPC Evaluations of the 

Developed SVM models (2006, 2011) 

 

 
Table 2.9: The Performance Evaluation Results of the Final Model 

 
Performance evaluation Value (%) 

Training accuracy 98 

b
u
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u
n

b
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ilt 

Testing accuracy  85 

Testing precision  70 

Testing sensitivity  99 

Testing specificity  78 

ch
an

g
ed

-

u
n
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g
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Testing accuracy  78 

Testing precision  76 

Testing sensitivity  89 

Testing specificity  78 

PCP 85 

PCPB 100 

PCPUB 78 

PCPUC 78 

PCPC 87 

 

 

Table 2.10: The Specifications of the Final Model 

 
Sampling method Balanced sampling 

Selected predictor variables Current LULC type, Distance to highways, Neighboring with 

medium-intensity developed areas, Neighboring with potential lands 

for urban expansion, Distance to water bodies, Distance to streets, 

Distance to major roads, Distance to urban built areas, Distance to 

green spaces, Neighboring with low-intensity developed areas, 

Population density, Distance to city centers, Neighboring with high-

intensity developed areas, Distance to railroads 

Penalty parameter c 1 

Kernel function RBF 

Kernel parameter 2 
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To compare to the real binary classification map of LULC, the final SVM-based 

urban expansion model is applied to produce a binary classification map of LULC in 

2011 (Figure 2.12). As illustrated in this Figure, the predicted LULC map is 

conspicuously compatible with the real LULC map that demonstrates the high efficiency 

of the model to predict urban expansion. After substantiating the model’s predictability 

performance, the model can be applied to simulate urban expansion in the future 

assuming that the past urban expansion patterns will similarly continue in the future. For 

instance, in this study, the model is used to simulate urban expansion in 2016 (Figure 

2.13) in the case that this data is not available. Since the NLCD LULC map of the study 

area in 2016 is not available, the binary LULC map can be useful in planning and 

development studies. By using predictor variables of 2016, the SVM-based urban 

expansion model can predict the binary LULC map of 2021 and any further binary maps 

by a 5-year interval.  
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Figure 2.12: The Binary Classification of Real and Predicted LULC Maps in 2011 

 

 

 
 

Figure 2.13: The Binary Classification of Simulated LULC Map in 2016 
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2.5 Conclusion 

The capability of the SVM method for modeling urban expansion is explored in 

this study. Various SVM models are evaluated to select the most efficient urban 

expansion model in Guilford County, NC, over the period of 2001-2011. The modeling 

process includes the exploration of different sampling methods, the examination of a 

variety of predictor variables, the investigation of SVM parameterization and kernel 

regulation, and the development of various evaluation metrics. The application of three 

sampling methods including random sampling, sampling of all changed cells, and 

balanced sampling reveals the significant effects of these methods on the performance of 

the model. The findings demonstrate that the balanced sampling method produces more 

reliable results due to considering all changed cells and making a balance between the 

changed and unchanged cells in the sampling dataset. In addition, a variety of predictor 

variables are considered in three main categories of proximity, neighborhood, and site-

specific characteristics, and their significance is examined using the information gain 

metric. The results show that the elimination of five insignificant variables including 

neighboring with forests, neighboring with developed open spaces, neighboring with 

water bodies, neighboring with wetlands, and neighboring with barren lands from the 

model leads to less complexity and more accuracy of the model.  

Afterward, several configurations of the SVM model are developed using 

different values of the penalty parameter c, kernel functions, and kernel’s parameters. 

The evaluation of the model configurations elucidates that the kernel function and other 

model parameters substantially affect the performance of the model; hence, they must be 
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specifically regularized for each case study to maximize the efficiency of the SVM-based 

urban expansion model. To conduct a more realistic and reliable evaluation, novel 

performance evaluation metrics are meticulously defined for the application of the SVM 

model to urban expansion modeling. The evaluation results show that the SVM model 

developed using the c value equal to 1 and the RBF kernel with the γ value equal to 2 is 

the most efficient model to predict urban expansion in this study. The comparison of 

predicted and real LULC maps demonstrates the high predictability and accuracy of the 

SVM technique to model urban expansion. The results show the overall training accuracy 

of 98%, the testing accuracy of 85% for built-unbuilt land cells, and the testing accuracy 

of 78% for changed-unchanged land cells. Moreover, the percentage of correctly 

predicted cells as unchanged is 78%, and the percentage of correctly predicted cells as 

changed is 87%. The results substantiate the striking efficacy, reliability, and 

predictability of the developed SVM-based urban expansion model. 

The SVM-based urban expansion model can be utilized to evaluate the impacts of 

urban expansion on habitat fragmentation, environmental pollutions, hydrological issues, 

wildlife disturbance, deforestation, destruction of agricultural fields, and regional and 

global warming. Therefore, the model would remarkably help urban planners, 

environmental policymakers, and geographers to ameliorate activities regarding the 

interaction between the natural and built environments. Investigating more predictor 

variables, developing a multi-class SVM model, and comparing the performance of SVM 

with other ML methods such as decision tree, random forest, and deep learning are 

suggested for future studies to enhance the efficacy of urban expansion modeling.
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CHAPTER III 

A COMPARATIVE STUDY ON MACHINE LEARNING ALGORITHMS FOR 

URBAN GROWTH PREDICTION2    

3.1 Introduction 

In the last century, urbanization and population growth have made considerable 

changes to the natural environment (Mohammady and Delavar; Taravat et al.). Currently, 

almost half of the world’s inhabitants live in urban areas resulting from continued 

urbanization and population growth (B. Cohen). United Nations has forecasted that 

67.2% of the world's inhabitants will live in urban areas in 2050. Urban growth is faster 

than urban population growth, which means expansion of cities as low-density areas 

(Mohammady and Delavar; Taravat et al.). The rapid and low-density urban growth 

converts the natural environment and open spaces to urban land-uses, which makes 

concerns among urban planners and geographers to understand when and where urban 

growth occurs and how it influences the natural environment (Karimi et al. "An 

Enhanced Support Vector Machine Model for Urban Expansion Prediction"). Predicting 

the complex process of urban expansion is essential for them to make proper decisions 

for future urban development (Yao et al.). Urban growth prediction needs to consider 

comprehensive historical information of land conversion to precisely understand this

 

 

2 Karimi, F., Sultana, S. (2021). A comparative study on machine learning algorithms for urban 

expansion prediction. Landscape and urban planning. In review. 
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complex process and spatiotemporal relationships (Clarke et al.; Pijanowski et al. "Using 

Neural Networks and Gis to Forecast Land Use Changes: A Land Transformation 

Model"). Over the last three decades, various methods such as cellular automata (Batty et 

al.; Liu and Phinn) and Markov chain (Baja and Arif; Myint and Wang) have been 

utilized to model and predict urban growth based on remote sensing and geographic 

information system (GIS) techniques. The models aim to learn the spatial process of 

urban expansion within a specific time toward the determination of future policies of 

urban development (Amato et al.). Hence, researchers are constantly looking for novel 

approaches to promote urban expansion predictions for effective planning. 

 Recently, the use of machine learning (ML) models, including decision tree (DT) 

(Karimi et al. "Urban Expansion Modeling Using an Enhanced Decision Tree 

Algorithm"; Samardžić-Petrović et al. "Exploring the Decision Tree Method for 

Modelling Urban Land Use Change"), random forest (RF) (Kamusoko and Gamba; 

Shafizadeh-Moghadam et al.), support vector machine (SVM) (B. Huang et al. "Support 

Vector Machines for Urban Growth Modeling"; B. Huang et al. "Land-Use-Change 

Modeling Using Unbalanced Support-Vector Machines"; Karimi et al. "An Enhanced 

Support Vector Machine Model for Urban Expansion Prediction"; Samard zic´ -Petrovic´ 

et al.), logistic regression (LR) (Z. Hu and C.P.  Lo; Mom and Ongsomwang; Tayyebi et 

al. "A Spatial Logistic Regression Model for Simulating Land Use Patterns: A Case 

Study of the Shiraz Metropolitan Area of Iran"), and artificial neural network (ANN) 

(Mohammady and Delavar; Pourebrahim et al.; Tayyebi et al. "An Urban Growth 

Boundary Model Using Neural Networks, Gis and Radial Parameterization: An 
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Application to Tehran, Iran"; Tian et al.) has increased in due to their effectiveness and 

accuracy. ML methods are learning algorithms that implement the modeling process 

automatically without the need for human assistance or expertise for modeling and 

prediction using these methods (Suthaharan). They can handle categorical and continuous 

variables, identify non-linear relationships, and cope with noisy and complex data. In 

urban growth studies, these models are assessed for their effectiveness and, there is still 

debate about which ML model is more reliable, accurate, and proper for modeling and 

predicting future urban growth patterns and land-use\land-cover (LULC) changes.  

Based on the literature, the DT algorithms have significant potential for urban 

growth modeling (Samardžić-Petrović et al. "Exploring the Decision Tree Method for 

Modelling Urban Land Use Change"; Shafizadeh-Moghadam et al.). Samardžić-Petrović 

et al. "Exploring the Decision Tree Method for Modelling Urban Land Use Change" 

demonstrated that DT is an efficient method for LULC change modeling. Later, 

Shafizadeh-Moghadam et al. confirmed that the DT is a reliable method for LULC 

change modeling. Tayyebi and Pijanowski found the tree model's ability to simulate 

multiple land use classes. Karimi et al. "Urban Expansion Modeling Using an Enhanced 

Decision Tree Algorithm" focused on exploring different configurations of stopping rules 

for the tree model for urban expansion modeling and demonstrated a remarkable 

performance.  

The RF method mostly has been used for land-cover classification in geospatial 

studies (Belgiu and Drăguţ), however, some studies have investigated RF for urban 

growth studies. Kamusoko and Gamba combined RF with cellular automata (CA) to 
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model urban growth. They demonstrated that the RF-CA model is approximately reliable 

at allocating land conversion. Shafizadeh-Moghadam et al. also combined RF with CA 

and highlighted the RF ability to identify the importance of variables during the model 

building process in addition to its high accuracy. 

SVM has recently been applied for modeling land-use changes. B. Huang et al. 

"Land-Use-Change Modeling Using Unbalanced Support-Vector Machines" for the first 

time proposed the SVM method to analyze LULC change and found that the unbalanced 

SVM is accurate and reliable for LULC change modeling. Samard zic´ -Petrovic´ et al. 

used the SVM method for LULC change modeling, and their results showed that the 

SVM-based models perform precisely by balanced data sampling, reducing datasets to 

informative variables, and adequately recognizing the optimal learning parameters. 

Karimi et al. "An Enhanced Support Vector Machine Model for Urban Expansion 

Prediction" found the SVM method reliable for modeling and predicting urban 

expansion. 

Several studies have been conducted using the ANN method. Pijanowski et al. "A 

Land Transformation Model: Integrating Policy, Socioeconomics and Environmental 

Drivers Using a Geographic Information System" developed a packaged urban growth 

model by coupling ANN and GIS to model LULC changes. Later, Pijanowski et al. 

"Calibrating a Neural Network-Based Urban Change Model for Two Metropolitan Areas 

of the Upper Midwest of the United States" parameterized ANN-based models for two 

different case studies and developed different types of models to evaluate ANN. Tayyebi 

et al. "An Urban Growth Boundary Model Using Neural Networks, Gis and Radial 
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Parameterization: An Application to Tehran, Iran" developed an urban growth boundary 

model (UGBM) using ANN, GIS, and remote sensing to model and simulate the 

complicated geometry of the urban boundary. Mohammady and Delavar studied urban 

sprawl by proposing an urban sprawl model utilizing ANN and adaptive neuro-based 

fuzzy inference system (ANFIS) methods with remote sensing data and GIS spatial 

analyses.  

Regression models have been used by several studies. Tayyebi et al. "A Spatial 

Logistic Regression Model for Simulating Land Use Patterns: A Case Study of the Shiraz 

Metropolitan Area of Iran" presented an urban expansion model which uses LR as a 

mean to model and predict urban growth pattern. Later, Tayyebi et al. "Predicting the 

Expansion of an Urban Boundary Using Spatial Logistic Regression and Hybrid Raster-

Vector Routines with Remote Sensing and Gis" developed an urban growth boundary 

model by using spatial logistic regression, remote sensing, and GIS to simulate the 

geometry of a dynamic urban boundary that expands in different directions over decadal 

periods. In another research, LR was applied to model urban growth in GIS software, and 

discovered that the relationship between urban growth and the predictor variables is 

challenging and problematic (Z. Hu and C.P.  Lo). Mom and Ongsomwang used satellite 

images and employed a LR model to discover the predictor variables of urban growth and 

predict urban growth trends.  

Among the studies using ML methods for urban growth modeling and prediction, 

just a few of them compared different ML models (Samardžić-Petrović et al. "Machine 

Learning Techniques for Modelling Short Term Land-Use Change"; Shafizadeh-
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Moghadam et al.); however, these studies compared the models only from the aspect of 

accuracy by different goodness-of-fit metrices. In this study, all the models are evaluated 

on the same case study and compared from the aspects of accuracy, the number of 

required hyperparameters to be adjusted, run time, the need for data preparation, and the 

number of false-positive and false-negative land cells in the prediction. In the following, 

first, ML-based Urban expansion modeling, ML methods are explained, and the 

advantages and disadvantages of each model are summarized.  Next, the case study, data, 

and methodology are described. Then, the experimental results are illustrated and 

discussed. Finally, a summary and the conclusion are presented. 

3.2 Machine-Learning-Based Urban Expansion Modeling 

Urban expansion modeling aims to model LULC map at time t according to 

LULC map and some predictor variable layers at time t-1. Therefore, a suitable function 

should be determined to model the most probable LULC map at time t for a cell at time t-

1. Afterward, the effectiveness, reliability, and prediction accuracy of the model should 

be assessed for the next time intervals (Karimi et al. "An Enhanced Support Vector 

Machine Model for Urban Expansion Prediction"; Samard zic´ -Petrovic´ et al.). If the 

model indicates LULC changes precisely for times t+1, and the past relationships insist in 

the study area, it can be applied to predict LULC change in the future at the same time 

intervals (Figure 3.1). This function can be RF, SVM, DT, ANN, and LR, which can use 

past LULC maps and spatial variables to train the model and predict binary LULC maps 

for the future (Karimi et al. "An Enhanced Support Vector Machine Model for Urban 

Expansion Prediction"). These methods are supervised ML methods, but the first three 
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are non-parametric and the two latter are parametric methods. The following sections 

briefly introduce these methods, and Table 3.1 summarizes their strengths and 

limitations. 

3.2.1 Classification And Regression Trees (CART) 

CART (Breiman et al.) is a binary DT method that uses several if-then rules 

(Debeljak and Dzeroski) to divide a complex dataset into one of the target variable 

categories based on the value of the predictor variables (Suthaharan). To construct a tree, 

the DT classifies the training dataset by sorting it from the root to some leaf nodes 

descendingly (Tan et al.). The DT algorithm is implemented in the whole training dataset 

repetitively and divides it into subsets based on the splitting rules. The tree is built when 

stopping rules are met (Quinlan). The minimum number of records in a leaf node, the 

minimum number of records in a parent node (the node before splitting), and the 

maximum number of splits are the most common stopping rules (Singh and Gupta; Song 

and Ying). The final purpose of splitting is to determine proper variables and their 

corresponding thresholds to maximize the homogeneity of subsets. CART uses Gini 

Index and towing criteria as splitting rules (Delen et al.; Singh and Gupta). 

CART is easy to understand and interpret, requires little data preparation, makes 

no statistical assumptions as it is strictly non-parametric, and analyzes data with different 

measurement scales (Qin et al.). The performance of CART in dealing with large datasets 

is excellent (Friedl and Brodley; Pal and Mather). It is able not only to recognize the most 

important predictor variables and their relative weights (Debeljak and Dzeroski) but also 

produces visualizations of the relationships between the variables (Delen et al.). One of 
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the most important disadvantages of CART is that a small change in the dataset can cause 

a large change in the structure of the DT and lead to instability.  Although CART easily 

handles the splits, CART may not catch the correct structure of the dataset if the structure 

is complex (Timofeev). 

3.2.2 Random Forest (RF) 

RF (Breiman "Random Forests") consists of a combination of DT models, in 

which each model assigns the most prevalent class to the input with a single vote 

(Breiman "Bagging Predictors"; Dietterich). The basic premise of a combination of 

models is that a set of models perform better than a single model (Dietterich) and much 

information can be garnered by selecting random samples from the training dataset 

(Breiman "Random Forests"). A RF grows trees from various training subsets to enhance 

diversity (Breiman "Bagging Predictors"; Gislason et al.; Pal; Suthaharan). Thus, greater 

classification stability and more classification accuracy are achieved (Breiman "Random 

Forests"). RF method requires the regulation of two hyperparameters for building a 

model. A constant number of, m predictor variables selected randomly at each node, and 

each subset is classified by a k number of trees. In RF, the generalization error converges 

as the number of trees enhances, thus, the model does not overfit the data (Breiman 

"Bagging Predictors"). Decreasing the number of predictor variables (m) causes each tree 

of the model to be less strong, and reduces the computational complexity of the algorithm 

and the correlation between trees, which increases the accuracy of the model and leads to 

the reduction of the generalization error (Breiman "Random Forests").  
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RF is a fast algorithm and can handle multicollinearity and high-dimensional data 

(Belgiu and Drăguţ). It performs efficiently on huge datasets, can handle a large number 

of variables without variable deletion, estimates predictor variables importance, produces 

an internal unbiased estimate of the generalization error, and computes proximities 

between pairs of cases that can be used in locating outliers which makes it relatively 

robust to outliers and noise (Breiman "Random Forests"; Rodriguez-Galiano et al.). A 

disadvantage of RF compared to a simple tree is that individual trees cannot be examined 

separately, thus becoming a black-box approach (Wiesmeier et al.). Also, RF strongly 

depends on the input dataset, especially the quality of spatial sampling; high-quality data 

leads to minimizing extrapolation problems and any type of bias in data (Ließ et al.). 

3.2.3 Support Vector Machine (SVM) 

SVM (Boser et al.; Vapnik and Lerner) was initially presented as a binary 

classification method, but it can be promoted to an n-class method (Belousov et al.). 

SVM projects input data into the Hilbert space where an optimal separating hyperplane is 

utilized for classification (Yang et al.). A binary SVM minimizes the upper bound of 

generalization error by maximizing the hyperplane separating the two classes, (B. Huang 

et al. "Land-Use-Change Modeling Using Unbalanced Support-Vector Machines"; C. 

Huang et al.; Samard zic´ -Petrovic´ et al.). This reduces generalization error, 

independent of the data distribution (B. Huang et al. "Land-Use-Change Modeling Using 

Unbalanced Support-Vector Machines"). In order to address non-linear datasets, the 

instances are mapped to a feature space of very high dimension with a particular class of 

functions called kernels (Cristianini and Shawe-Taylor; Samard zic´ -Petrovic´ et al.; 
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Statnikov; Suthaharan). Common kernel functions for a SVM model are the linear 

function, radial basis function (RBF), and polynomial function with their kernel 

parameters (Chapelle et al.). To consider the misclassification error of the data falling off 

the margin, a penalty parameter c is considered, which makes a trade-off between the 

margin size and the number of misclassified training data; whereas larger c gives smaller 

misclassifications and reduces the margin size. The goal is to find an optimal hyperplane 

to minimize the misclassification errors and simultaneously maximize the margin size.  

SVM can consider non-normal distributed data, and training datasets with 

outliers, it can also avoid overfitting and guarantees good generalization performance (B. 

Huang et al. "Support Vector Machines for Urban Growth Modeling"; B. Huang et al. 

"Land-Use-Change Modeling Using Unbalanced Support-Vector Machines"). On the 

other hand, SVM cannot evaluate the relative importance of predictor variables. It needs 

standardization of data with different scales and hot encoding of the categorical data. It 

requires large memory and the training process is time‐consuming dealing with huge 

datasets (Zhang et al.). 

3.2.4 Logistic Regression (LR) 

LR is a statistical model for solving binary problems that was developed by Cox, 

which tessellates the data layers to form a grid of cells. In LR, the target variable is a 

categorical binary value of 1 or 0 and the output of LR is likelihood values, which specify 

the probability of the occurrence of a specific class based on the predictor variables 

(Tayyebi et al. "A Spatial Logistic Regression Model for Simulating Land Use Patterns: 

A Case Study of the Shiraz Metropolitan Area of Iran"). Mathematically, a LR estimates 
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a multiple linear regression and is based on the central mathematical concept of logit, the 

natural logarithm of an odds ratio (Hosmer Jr and Lemeshow, 2000). The plot of linear 

regression for one feature and one dichotomous outcome is two parallel lines which is a 

linear plot in the middle and curved at the ends, by computing the mean of the two 

outcomes. It is not easy to describe this S-shaped plot with a linear equation as the ends 

are not linear and the errors are not normally distributed or constant across the entire 

range of data (C. Y. J. Peng et al.). The key to solving this problem is LR as it applies the 

logit transformation to the target variable and predicts the logit of outcomes from features 

(Peng et al., 2002). The conditional mean of the dichotomous outcome in LR is based on 

the binomial distribution which is the only assumption of LR and denotes that there is the 

same probability across the range of feature values.  

LR describes the effect of predictor variables by determining the coefficients of 

them (Menard). Interpretability of this model for gaining knowledge of the processes and 

driving the change of spatial patterns is desirable (Z. Hu and C.P.  Lo; Triantakonstantis 

and Mountrakis). This model considers factors like spatial effects, autocorrelation, and 

heterogeneity (J.J. Arsanjani et al.). The disadvantage of LR is that data cannot deviate 

from the normal distribution and it is less effective in modeling spatial-temporal data 

(Westreich et al.). 

3.2.5 Artificial Neural Network (ANN) 

ANN is one of the most popular artificial intelligence methods that identify 

intricate patterns in data (Skapura). This method comprises many non-linear 

computational components working in parallel and arranged in patterns inspired 
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by biological neural nets (Lippmann). ANN has traditionally been composed of an input 

layer, one or more hidden layers, and an output layer, designing a multilayer perceptron 

(Rosenblatt). This network is trained in three phases: the feed-forward, the 

backpropagation, and weights adjustment (Basheera and Hajmeer). In the feed-forward 

phase, the data broadcasts to each of the hidden layers with multiple weighted 

summations occurring before reaching the output layer then an activation function 

computes the output value. The back-propagation phase randomly chooses the primary 

weights and then compares the estimated output with the actual output. After giving all 

the observations to the network, the weights are adjusted according to a generalized delta 

rule, and the total error is distributed among the various nodes in the network. The 

process of feeding-forward the signals and back-propagating the errors is repeated 

iteratively until a high performance is achieved.  

ANN has the ability to deal with a large number of data, is a fast processing 

approach, can conduct pattern cognition, parallel processing, and data fusion (Basheera 

and Hajmeer; Mohammady and Delavar). One of the most important disadvantages of 

ANN is the disability of dealing with uncertainty, which is an inescapable part of spatial 

phenomena. A combination of ANN with fuzzy logic can be one of the best solutions to 

overcome this shortage (Mohammady and Delavar). ANN needs data preparation of the 

input data through scaling and hot encoding. ANN might suffer from multiple local 

minima, therefore, has challenges with generalization and may construct models that 

overfit the data (B. Huang et al. "Land-Use-Change Modeling Using Unbalanced 

Support-Vector Machines").   
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Figure 3.1: The Process of Machine-learning-based Urban Expansion Modeling 
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Table 3.1: Summary of the Strengths and the Limitations of the Models (Breiman "Random 

Forests"; Cheng et al.; B. Huang et al. "Land-Use-Change Modeling Using Unbalanced Support-Vector 

Machines"; Musa et al.; Qin et al.; Rodriguez-Galiano et al.; Timofeev; Torrens and O'Sullivan; 

Wiesmeier et al.; Zhang et al.) 

 
Model Strength Limitation 

CART ¶ easy to understand and interpret 

¶ requires little data preparation 

¶ makes no statistical assumptions 

¶ handles large datasets 

¶ estimates predictor variables importance  

¶ may have unstable trees 

¶ splits only by one variable 

¶ a binary classification 

¶ difficulty with complex structures 

RF ¶ fast algorithm 

¶ handles multicolinearity and high 

dimensional data  

¶ runs efficiently on large datasets 

¶ handles a large number of variables 

¶ estimates predictor variables importance  

¶ estimates the generalization error 

¶ requires little data preparation 

¶ is a black-box approach  

¶ high sensitivity to input data quality 

SVM ¶ handles non-normal distributed data 

¶ deals with training datasets with outliers 

¶ avoids overfitting 

¶ establish good generalization performance 

¶ cannot evaluate the relative 

importance of predictor variables  

¶ sensitive to the scale of input data 

¶ requires large memory 

¶ the training process is long dealing 

with large datasets 

LR ¶ examine the relationships of predictor 

variables 

¶ examine factors such as spatial effects, 

autocorrelation, and heterogeneity 

¶ data cannot deviate from the normal 

distribution 

¶ less effective in modeling spatial-

temporal data 

¶ a binary classification 

¶ difficulty with non-linear datasets 

ANN ¶ deal with a large volume of data 

¶ fast processing 

¶ pattern cognition 

¶ parallel processing 

¶ data fusion 

¶ handling noisy data 

¶ disability of dealing with uncertainty 

¶ difficulties with generalization and 

overfitting the data 

¶ is a black-box approach  

¶ might suffer from multiple local 

minima 

 

 

3.3 Data and Methodology 

3.3.1 Study Area 

The five ML models were applied and assessed in Mecklenburg County, NC, 

USA (Figure 3.2). Some characteristics of this study area including rapid population 

growth, developing transportation network and economic growth have made it to be 
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expanding over time (Swain). Due to the rapid population growth, Mecklenburg County 

is the most populous county and the first county exceeding 1 million population in NC 

(U.S. Census Bureau). On the other hand, Charlotte, the major city and commercial hub 

of the state seat in Mecklenburg County. Charlotte is the third-fastest-growing major city 

in the United States (Balk), Uptown Charlotte is the central business district (CBD) of the 

county and the transportation network has been developing in this city such as the 

interstate highways (I-485) around the city of Charlotte (U.S. Census Bureau "Tiger/Line 

Shapefiles and Tiger/Line Files"). Therefore in this county, the area of the natural 

environment has been decreasing by the expansion of the urban area in a low density and 

dispersed pattern (MRLC) which highlights the importance of urban growth modeling.  

3.3.2 Data 

The required data was collected based on the data availability and data used in 

previous studies (Bhatta; Li and Yeh "Calibration of Cellular Automata by Using Neural 

Networks for the Simulation of Complex Urban Systems"; White and Engelen) and then 

prepared using ESRI ArcGIS 10.3 software to create predictor variable layers fixed at a 

ground resolution of 30m2. The LULC maps were collected from the national land cover 

database (NLCD) (USGS "The National Map") at the spatial resolution of 30 meters for 

the years 2001, 2006, 2011, and 2016 to provide historical information on LULC changes 

in the study area. In these LULC maps, the urban area includes developed open spaces, 

low-intensity, medium-intensity, and high-intensity developed areas and the natural 

environment involves open water, barren land, deciduous forest, evergreen forest, mixed 

forest, shrub, and scrub, herbaceous, and hay and pasture. Additionally, vector data of 
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transportation networks were collected from (U.S. Census Bureau "Tiger/Line Shapefiles 

and Tiger/Line Files"). The vector data of built areas, city centers, green spaces, and 

water bodies were extracted from LULC maps and used to produce the proximity raster 

maps. The digital elevation model (DEM) of the study area was acquired from “the 

national map data download and visualization services” (USGS "Elevation Products 

(3dep)"). Population data were gathered from (IPUMS-USA) at the scale of census tracts 

for the years 2000 and 2010.  

 

 

Figure 3.2: The Map of the Study Area (Mecklenburg County, NC, USA) 

 

 

All the data were prepared for the study area over the years 2001, 2006, 2011, and 

2016. The target variable is the urban development in the study period. The predictor 

variables are categorized into proximity, neighboring, physical and social variables 

(Table 3.2). Proximity variables were acquired by calculating the distances to CBD, 
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suburb towns, highways, major roads, railways, and urban areas. These variables play an 

essential role in urban development, as a higher development probability occurs near 

transportation networks and urban areas (Kucsicsa and Grigorescu). Neighborhood 

variables are important spatial components that highlight the dynamics of different 

change circumstances. The number of developed land cells about a cell is important in 

determining the conversion of a cell, as there is a higher development probability if a cell 

has surrounded by a larger number of developed land cells. Furthermore, land change 

mostly occurs by converting agricultural lands and open spaces to urban areas which are 

potential lands for development (Karimi et al. "Land Suitability Evaluation for Organic 

Agriculture of Wheat Using Gis and Multicriteria Analysis"). The neighboring variables 

were calculated in the Moore neighborhood of 5×5. The physical variables also affect the 

development probability in an urban growth model. The development probability of a cell 

is affected by the type of LULC of it. Terrain features such as slope and elevation exert 

constraints to urban development. The layer of the slope was generated from DEM. 

Finally, a population density map denoting the number of residents per cell is produced 

as a social variable. Because of the unavailability of census data in 2001, 2006, 2011, and 

2016, a population estimation model is used to approximate population data in these 

years from the available census data in 2000 and 2010.  

3.3.3 Methodology 

The process of implementing the models in the study area is presented in Figure 

3.3. After collecting the data, the raster layer of predictor and target variables, composed 

of 1,569,230 30-by-30-meter land cells, are prepared for 2001, 2006, 2011, and 2016. 
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The layers are converted to Ascii files for the next steps. Then, a sampling strategy based 

on the number of developed and undeveloped land cells during the study period is 

considered to create the training dataset over the 2001-2006 period. Thus, all the 

developed land cells and a different number of undeveloped land cells selected randomly 

are combined. Next, the models are developed using Python 3.7 and configured by 

different values of their hyperparameters, based on the influences on the performance and 

complexity of the algorithms.  

 
Table 3.2: Predictor and Target Variables Utilized for Urban Expansion Modeling 

 
Variables Acquisition Method Value ranges 

Target variable: Urban development Binary LULC map 1: Developed urban 

area 

0: Natural 

environment 

Proximity Predictor variables Euclidean distance of ArcGIS  

 Distance to CBD (km)   

 Distance to suburb towns (km)   

 Distance to the nearest highway (km)   

 Distance to the nearest major road (km)   

 Distance to the nearest streets (km)   

 Distance to the nearest railway (km)   

 Distance to the nearest urban area (km)   

 Distance to the nearest greenspaces (km)   

 Distance to the nearest water bodies 

(km) 

  

Neighboring Predictor variables  The focal tool of ArcGIS  

 Number of developed cells   

 Number of potential lands for 

development 

  

 The most frequent LULC type   

Physical Predictor Variables   

 LULC type NLCD maps  

 Slope (%) Slope tool of ArcGIS from DEM  

 Elevation (m) DEM  

Social variable   

 Population density Census bureau  
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The CART model is adjusted by three stopping rules including the minimum 

number of records in a leaf node, the minimum number of records in a parent node, and 

the maximum number of splits. Lower values for CART’s hyperparameters lead to a less 

complex model, and the higher values may build a model with higher performance. To 

achieve the best performance of the model, different combinations of the minimum 

number of records in a leaf node with the 1 to 9 values, the minimum number of records 

in a parent node parameter with 2 to 10 values, and the maximum number of splits 

parameter with values 1 to 10000 are evaluated. The minimum number of records in a 

leaf node value should be always less than the value of the minimum number of records 

in a parent node. One of the most conspicuous strengths of the Due to the ability of the 

DT algorithm to identify the predictor variables importance (Karimi et al. "Urban 

Expansion Modeling Using an Enhanced Decision Tree Algorithm"), the CART model 

selects the most significant predictor variables based on the model configuration to 

generate the tree.  

For configuration of the RF model, the RF model hyperparameters including the 

number of input variables selected at each node split, m, by the values of 1 to 16 and the 

total number of trees included in the model, k, by the values of 1 to 1000 are adjusted. By 

enhancing the number of trees, the generalization error converges, and overfitting does 

not occur. Reducing the number of predictor variables causes each tree of the model to be 

less intense, but, degrades the computational complexity of the algorithm and the 

correlation between trees, and increases the model accuracy. Optimization of m by 

keeping a large and constant k may minimize the generalization error and lead to a robust 
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RF model (Breiman "Random Forests"). Thus, hyperparameters optimization is essential 

for generalization error minimization. Like DT, the RF model can determine the most 

significant predictor variables in the process of building the model (Suthaharan). 

For the SVM model configuration, the hyperparameters including the penalty 

parameter c, the kernel function, and the kernel function’s are regularized. A larger c 

value leads to a more complex model that leads to overfitting the training dataset. Hence, 

smaller c values produce simpler models but may reduce the accuracy. The 0.1, 1, 10, and 

100 values for c are tested to obtain the best model performance. In this study, the radial 

basis function (RBF) (Karimi et al. "An Enhanced Support Vector Machine Model for 

Urban Expansion Prediction") with the γ values of 1, 2, and 3 are tested to solve the non-

linearity concern in the modeling. By keeping the hyperparameter c constant, and raising 

the value of parameter γ a more complex model is achieved.  

The configuration of the LR model hyperparameters including the maximum 

iteration, a solver, the inverse of regularization strength, and the tolerance for stopping 

criteria highly affects the model performance. The maximum iteration is the maximum 

number of iterations taken for the solvers to converge. The solver is an algorithm to use 

in the optimization problem. For inverse of regularization strength, values close to 1.0 

shows very little penalty, and values close to zero indicate a strong penalty. For model 

configuration, the maximum iteration values of 1 to 2000, the solver equal to limited-

memory broyden-fletcher-goldfarb-shanno (lbfgs), stochastic average gradient (sag), and 

a variant of sag (saga), the inverse of regularization strength float values of 0 to 1 and the 

tolerance for stopping criteria values of 0.0001 to 0.1 are set.  
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For configuring the ANN model, the hyperparameters including the number of 

hidden layers and neurons in each layer, an activation function for the hidden layer, and a 

learning rate for weight updates are set, a solver for weight optimization, and the 

maximum number of iterations. The number of hidden layers is set from 2 to 200 and the 

number of neurons in each layer is set to 2 to reach the highest accuracy, the activation 

function is set to identity, logistic, tanh, and Relu, the learning rate for each network 

weight is set from 0.0001 to 0.1, the solver is set to broyden-fletcher-goldfarb-shanno 

(bfgs), stochastic gradient descent (sgd), and Adam, and the maximum iteration is set 

from 1 to 2000. The solver algorithm updates network weights iteratively based on 

training data; it iterates until convergence. Adam is a method for stochastic optimization.  

For configuring the models, the trained models are implemented on the testing 

datasets of 2006-2011 and 2011-2016 periods over the whole study area. The 

performance of the models to predict future patterns of urban expansion is tested by 

comparing the actual and predicted binary LULC maps of 2011 and 2016 and conducting 

the evaluation strategies. The process of training and testing is conducted repetitively to 

find the best hyperparameters for each model. Finally, the best model is chosen, and it 

can be used to predict future urban expansion patterns with an interval of 5 years (e.g., 

2021 and 2026).  

For evaluating the models, after the creation of the confusion matrix (Suthaharan) 

and determining the number of true-positive (TP), false-positive (FP), true-negative (TN), 

and false-negative (FN) values, the training accuracy, testing accuracy, precision, 

negative predictive value (NPV), sensitivity, specificity, F-score, MCC, Kappa statistics 
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and AUC are calculated (Karimi et al. "An Enhanced Support Vector Machine Model for 

Urban Expansion Prediction"; Suthaharan). Training and testing accuracy show the 

performance of the model on the training dataset (2001-2006) and testing datasets (2006-

2011 and 2011-2016), respectively, based on the number of the land cells to be predicted 

correctly. A high training and testing accuracy indicate that the modeling is highly 

accurate. Precision is the percentage of correctly predicted land cells as developed. A 

high value of precision shows that TP is high together with low values of FP. NPV is the 

percentage of correctly predicted cells as undeveloped. A high value of NPV shows that 

TN is high together with low values of FN. Sensitivity depicts the performance of the 

model concerning the proportionality between TP and FN. A high sensitivity shows a 

higher value of TP while FN is negligible. Specificity demonstrates the performance of 

the model regarding the proportionality between TN and FP. A high specificity value 

shows that TN is high, FN is low. F-score is a single metric that combines testing 

sensitivity and precision using the harmonic mean (Sokolova et al.). Matthews correlation 

coefficient (MCC) (Matthews) shows the correlation between the reference and predicted 

cells. A MCC equal to +1 indicates a perfect prediction, when it is equal to -1 

demonstrates absolute dissimilarity between prediction and reference land cells, and zero 

means that no better than random prediction. Cohen's kappa coefficient (J. Cohen) is a 

measure of how well the model performed as compared to how well it would have 

performed simply by chance. Equally arbitrary guidelines characterize Kappa over 0.75 

as excellent, 0.40 to 0.75 as fair to good, and below 0.40 as poor (Landis and Koch). 

Receiver Operator Characteristic (ROC) is defined as the sensitivity plotted against [1 – 
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specificity]. The balance between sensitivity and specificity is a demonstration of the 

model performance (Evans et al.). The Area Under the Curve (AUC) indicates the area 

under a ROC curve, ranging from 0 to 1, and 0.5 indicates no discrimination and 1.0 

perfect classification (Fawcett 2006).  

 

 

Figure 3.3: The Diagram of Machine Learning-based Urban Expansion Modeling 
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3.4 Results and Discussion 

In this study, five machine learning models are applied to the same case study to 

assess their capability for modeling and predicting urban growth. For each model, first, 

the sampling strategy based on all the developed land cells and a different number of 

undeveloped land cells randomly selected over the whole study area is selected. The 

sample dataset is selected from the training dataset, 2001-2006 period, and the 

performance of the models based on the sampling is evaluated over a testing dataset, 

2006-2011 period. For all the models, considering all the developed and different 

amounts of undeveloped land cells in the 2001-2006 period for the training dataset, 

increasing the undeveloped land cells in the sample increases the overall accuracy. 

However, this means better model accuracy for predicting undeveloped land cells and 

worsen the accuracy for predicting developed land cells. Then, the models are configured 

considering their effective hyperparameters for the best performance, lowest complexity, 

and least run time of the algorithms. At the same time, the number of needed 

hyperparameters and the need for data preparation are important. A variety of goodness-

of-fit metrices are applied to evaluate the models over the 2006-2011 and 2011-2016 

periods. The number of FN and FP land cells in prediction is important as well, as a high 

accuracy may not show the performance of the model due to a large number of land cells. 

Table 3.3 presents the performance obtained for the models from the cross-tabulation of 

the overlay analysis of reference and predicted urban development map of Mecklenburg 

County, NC for 2011 and 2016. As presented all the goodness-of-fit metrices show 

acceptable values for all the models, due to the lower number of developed cells in the 
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study period than the whole land cells in the study area. Therefore, there should be other 

criteria to compare the models. Also, the performance of all the models decreased for 

2011-2016 compared to the 2006-2011 period. Table 3.4 summarizes the comparison of 

the methods from the perspective of accuracy, the number of hyperparameters to be 

configured, run time, and the need for data preparation. Also, Table 3.5 compares the 

models by the number of TN, TP, FN, and FP land cells for the prediction of 2011 and 

2016. 

For the CART model, as the testing accuracy and precision are high when the 

minimum number of records in a leaf node equals 1, the minimum number of records in a 

parent node equals 2, the maximum number of splits equals 20000, and the number of 

undeveloped cells is twice of the developed cells in the training dataset, and both values 

are highly acceptable, this sampling strategy is selected for further analysis of CART-

based urban expansion modeling in the study area. By changing the hyperparameters of 

CART simultaneously, it is realized that a higher amount of the maximum number of 

splits leads to better results, however changing the minimum number of records in a leaf 

node and the minimum number of records in a parent node does not change the 

performance dramatically. The highest performance of the model is achieved by the 

maximum number of splits equal to 10000, where a higher number does not change the 

results. To prevent the model to be complex the minimum number of records in a leaf 

node and the minimum number of records in a parent node is set to 1 and 2, respectively. 

With this regulation, the training accuracy equals 1.00 and the testing accuracy equals 
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0.96. The CART algorithm is fast, and it needs no data preparation. The number of FN 

and FP is relatively low.  

For the RF model, as the testing accuracy and precision are high when the number 

of trees, k, equals 1000, the number of input variables selected at each node split, m, 

equals 1, and the number of undeveloped cells is three of the developed cells in the 

training dataset, and both values are highly acceptable, this sampling strategy is selected 

for further analysis of RF-based urban expansion modeling in the study area. It is realized 

that a higher amount of k and a lower amount of m leads to better results, and the best-

tuned hyperparameters for the RF model obtained 1 and 206 for m and k, respectively. 

The training accuracy equals 1.00 and the testing accuracy equals 0.99. The algorithm is 

fast, and it needs no data preparation. The number of FN and FP for both validation 

periods is lower than the other methods.  

For the SVM model, as the testing accuracy and precision are high when the 

balanced sampling method is selected as the sampling strategy, in which all the 

developed land cells and the same number of undeveloped land cells selected randomly, 

this sampling method is utilized to train the SVM-based urban expansion model in all the 

remaining experiments. To improve the prediction accuracy, the model is configured by 

regulating parameter c and applying different RBF kernel’s parameter. The penalty 

parameter equal to 1, and the value of 2 for the kernel’s parameter leads to the highest 

accuracy and precision. The training accuracy equals 0.98 and the testing accuracy equals 

0.96. The SVM algorithm is slow and takes a long time to deliver the results. It needs hot 
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encoding of the categorical variables and scaling the continuous variables of input data. 

The number of FN and FP is relatively low for this method.  

For the LR model, as the testing accuracy and precision are high when iteration 

equals 1000, the inverse of regularization strength equal values of 1, the solver equal to 

lbfgs, and the tolerance for stopping criteria values of 0.1 and the number of undeveloped 

cells is twice of the developed cells in the training dataset, and both values are highly 

acceptable, this sampling strategy is selected for further analysis of LR-based urban 

expansion modeling in the study area. The best-tuned hyperparameters for the LR model 

are the maximum iteration equal values of 500, the inverse of regularization strength 

equals 2, the solver equal to lbfgs, and the tolerance for stopping criteria values of 0.001, 

however, in this model changing the hyperparameters did not change the accuracy 

meaningfully. The training accuracy equals 0.92 and the testing accuracy equals 0.95 

which shows the underfitting problem in this model. The algorithm is fast, and it needs 

hot encoding and scaling of data. The number of FN and FP is lower than the other 

methods, which demonstrates that LR is not as good as other methods for the aim of 

urban expansion modeling. 

For the ANN model, as the testing accuracy and precision are high when the 

optimizer is set to bfgs, the activation function is set to Relu, the number of hidden layers 

is set to 100, the number of neurons in each layer is set to 2 to reach the highest accuracy, 

and a learning rate for each network weight is set to 0.1 and the maximum iteration is set 

to 1000 and the number of undeveloped cells is four times of the developed cells in the 

training dataset, and both values are highly acceptable, this sampling strategy is selected 
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for further analysis of ANN-based urban expansion modeling in the study area. The best-

tuned hyperparameters for the ANN model are the optimizer is set to Adam, the 

activation function is set to Relu, the number of hidden layers is set to 60, the number of 

neurons in each layer is set to 2, a learning rate for each network weight is set to 0.01, 

and the maximum iteration is set to 1000 to reach the highest accuracy. Training accuracy 

equals 1.00 and the testing accuracy equals 0.98. The algorithm is fast, and it needs hot 

encoding and scaling of data. The number of FN and FP is lower than the LR model but 

higher than the other three models.  

Among the models, RF showed the highest performance, the lowest number of 

hyperparameters to be set, a low run time, and no need for data preparation. For RF, the 

number of FN and FP is low relative to other models. Obviously, the RF model is 

superior to DT, SVM, LR, and ANN. However, DT model has remarkable characteristics, 

which make it considerable for urban growth studies. DT has the lowest run time and 

needs no data preparation, but the number of FP and FN is high compare to the RF 

method. Among the models, SVM has the highest run time, and it needs a long time to 

show the results. For the SVM model, although the accuracy is high, the number of FN 

and the number of FP are higher than the RF and DT models’. LR shows the lowest 

performance and the number of hyperparameters to be set is relatively high. The 

performance of the ANN model is high, though it needs the highest number of 

hyperparameters to be set and the number of FN and the number of FP are higher than the 

RF and DT models’. 
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Table 3.3: The Performance Obtained for the Models From the Cross-tabulation of the Overlay 

Analysis of Actual and Predicted Urban Development Map of Mecklenburg County, NC 

 
Models Period Testing 

accuracy 

Precision NPR Sensitivity Specificity F-

score 

MCC Kappa AUC 

CART 
2006-2011 0.98 0.99 0.96 0.97 0.99 0.98 0.96 0.96 0.98 

2011-2016 0.95 1.00 0.87 0.93 1.00 0.97 0.90 0.90 0.97 

RF 
2006-2011 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 

2011-2016 0.99 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.99 

SVM 
2006-2011 0.97 0.98 0.95 0.97 0.97 0.98 0.94 0.94 0.97 

2011-2016 0.95 0.97 0.92 0.96 0.94 0.96 0.89 0.89 0.95 

LR 
2006-2011 0.96 0.98 0.92 0.95 0.97 0.97 0.91 0.91 0.96 

2011-2016 0.96 1.00 0.89 0.94 1.00 0.97 0.92 0.91 0.97 

ANN 
2006-2011 0.98 0.98 0.98 0.99 0.97 0.98 0.96 0.96 0.98 

2011-2016 0.98 0.98 0.98 0.99 0.96 0.98 0.95 0.95 0.97 

 

 

Table 3.4: Comparison of the Methods Concerning the Average Accuracy, the Number of 

Hyperparameters, Run Time, and the Need for Data Preparation 

 
Models Average accuracy The number of 

hyperparameters 

Run time (Second) Data preparation 

CART 0.96 3 43 No 

RF 0.98 2 1249 No 

SVM 0.96 3 21,485 Hot encoding and scaling 

LR 0.96 4 209 Hot encoding and scaling 

ANN 0.98 5 298 Hot encoding and scaling 

 

 

As mentioned before, CART and RF are able to estimate predictor variables' 

importance. Figure 3.4 and Figure 3.5 show the importance of the predictor variables 

using these methods. Both CART and RF models demonstrated that proximity to 

highways, city centers, and uptown are the most important factors for urban growth, 

while proximity to greenspaces and population density are the least important in this case 

study. The CART, however, identifies ‘proximity to the urban area’ as an additional 

factor for urban expansion. However, these two models exhibit almost the same most and 

least essential predictor variables, they identify different magnitudes for the variables in 

this estimation. 
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Table 3.5: Comparison of the Methods Concerning the Number of FN and the Number of FP 

Predicted Land Cells for 2011 and 2016 

 

Models 
2011 2016 

TN TP FN FP TN TP FN FP 

CART 566805 971144 25519 5762 487640 1008914 71336 1340 

RF 589329 969557 2995 7349 553370 1001870 5606 8384 

SVM 566787 959277 26737 17958 514718 980273 45382 30386 

LR 542556 957461 49768 19445 499067 1008411 59909 1843 

NN 580783 957543 11541 19363 545133 988927 13843 21327 

 
 

Figure 3.4: Predictor Variables Importance Based on CART Model 

 

 

 
 

Figure 3.5: Predictor Variables Importance Based on RF Model 
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3.5 Conclusion 

In this research, five machine learning models, including RF, CART, SVM, LR, 

and ANN were assessed and compared for urban growth modeling and prediction in 

Mecklenburg County, NC, USA over the 2001-2016 period. 16 predictor variables were 

extracted for including distance to CBD, suburb towns, the nearest highway, the nearest 

major road, the nearest streets, the nearest railway, the nearest urban area. the nearest 

greenspaces, and the nearest water bodies (km), number of developed cells in a 5×5 

neighborhood, number of potential lands for development in a 5×5 neighborhood, the 

most frequent LULC type in a 5×5 neighborhood, LULC type, slope, elevation, and 

population density. The importance of predictor variables was analyzed by CART and RF 

methods and as the result, proximity to urban areas, highways, city centers, and uptown 

are the most critical variables and proximity to green spaces and population density are 

the least important variables. 

The models were trained, and the performances were evaluated using training 

accuracy, testing accuracy, precision, NPR, sensitivity, specificity, F-score, MCC, Kappa 

statistics, and AUC.  According to this case study, all five models exhibit reasonably 

good performances based on the evaluation metrices; however, the RF model showed the 

highest predictive capability compared with other models due to the lower number of FN 

and FP. The RF model, with an accuracy equal to 0.99, is a promising method for urban 

expansion modeling and prediction. In addition, the models were compared concerning 

the number of hyperparameters that they require, their run time, and the need for data 

preparation in the modeling process. It is found that RF requires low training time and 
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requires a low number of hyperparameters to be regularized compared to other ML 

models. RF does not need data preparation like scaling and hot encoding. As well, RF 

resulted in a lower number of FT and FN in the study area. The number of FP and FN 

land cells for each model shows the effectiveness of them for predicting developed and 

undeveloped land cells.  

However, in the cases that the dataset is enormous, and time is of the essence, DT 

method is suggested. In confronting large datasets SVM needs a long time to deliver the 

results and requires a computer system with large memory. Because of the difficulties of 

ANN with generalization and overfitting the data, its results may not be reliable for 

predicting future patterns. LR is not suggested for urban expansion modeling as it is not 

as accurate as other methods, and it has difficulty with non-linear datasets and non-

normal distributions and is less effective in modeling spatial-temporal data.  

The results of this study may be useful for decision-makers and planners in urban 

growth studies as it is always a need for new ways to enhance urban development 

predictions for effective planning and determination of future policies of urban 

development.
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CHAPTER IV 

A SCENARIO-BASED SIMULATION OF URBAN GROWTH BY COUPLING 

RANDOM FOREST AND CELLULAR AUTOMATA3    

4.1 Introduction  

Worldwide the urban systems are expanding at a faster rate than population 

growth (Angel et al.; Sultana "Land Use and Transportation"). Such rapid urban 

development patterns are often subject to central debates of land-use/land-cover (LULC) 

change in urban, suburban, and surrounding rural areas and the LULC researchers have 

criticized this inefficient use of land resources and energy which leads to environmental 

costs (Camagni et al.; Sultana et al.). Land-cover is an important factor of environmental 

activities, particularly in terms of hydrological processes (Lindh; J. D. Wickham et al. 

"Ageography of Ecosystem Vulnerability"; Williams), natural resources (Masri; Yankson 

and Gough), and regional and global warming (Alcoforado and Andrade; Stone Jr The 

City and the Coming Climate: Climate Change in the Places We Live). With the 

expansion of urban systems, land-covers making up the natural environment such as 

forests, wetlands, and farmlands have been replaced by urban land-uses. As a result, 

impervious surfaces such as roads, sidewalks, parking lots, and airports, that are covered 

by water-resistant materials, change the hydrological system and deteriorate water quality

 

 

3 Karimi, F., Sultana, S. (2021). A Scenario-Based Simulation of Urban Growth by Coupling 

Random Forest and Cellular Automata. Cities. In review. 
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(Arnold Jr and Gibbons; Tong and Chen), as well this conversion causes an increase in 

land surface temperature (Brovkin et al.), pollution (Shukla and Parikh), and 

deforestation and agricultural land loss (Zhou and Wang).  While the compact urban form 

has been adopted for sustainable planning practices in the developed world, including in 

the United States, since the 1990s, the empirical evidence suggests that there are more 

low-density and decentralized development than intensification and efficient expansion 

(Jantz et al.; Sultana and Weber "Journey-to-Work Patterns in the Age of Sprawl: 

Evidence from Two Midsize Southern Metropolitan Areas"; Weber and Sultana; Zhao et 

al.)(Jantz et al., 2004; Sultana and Weber, 2007; Weber and Sultana, 2008; Zhao et al. 

2020). Hence, predicting future environmental outcomes for supporting sustainable 

development requires being able to develop simulation models to analyze where and how 

the conversion has happened and predict the alternative spatial pattern of urban expansion 

(Hersperger et al.; Kamusoko and Gamba). The visualization and quantification of the 

simulations can enable planners and decision-makers to explore various plans, predict 

possible environmental impacts, and seek optimal land-use patterns (Karimi et al. "An 

Enhanced Support Vector Machine Model for Urban Expansion Prediction"). 

In recent years, urban growth models integrated with geographic information 

system (GIS) and remote sensing have emerged to generate spatially explicit simulations. 

Such simulations present applicable information about locations, types, range, quantity, 

and land conversion density that will probably occur (Jiang and Yao). Cellular automata 

(CA), a relatively simple model, is a spatial dynamic modeling method that has been 

widely applied to simulate convoluted urban dynamics and predicting spatial patterns of 
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urban development (Batty and Xie; Batty et al.; Berberoğlu et al.; Clarke et al.; Deep and 

Saklani; Li and Yeh "Calibration of Cellular Automata by Using Neural Networks for the 

Simulation of Complex Urban Systems"; Santé et al.). The advantage of CA is that it 

models very complex behaviors and global structures from some simple rules. CA 

requires a grid of cells as a window that changes the state of the center cell as the model 

iterates (Clarke et al.). The changes are determined by the rules that define a set of 

neighborhood conditions to be fulfilled (O'Sullivan). CA model not only can predict 

future urban development, but it can also explore development alternatives by integrating 

different sustainable elements and policies to the model for planning sustainable urban 

areas and forecasting the consequences of plans and policies (Li and Yeh "Calibration of 

Cellular Automata by Using Neural Networks for the Simulation of Complex Urban 

Systems"). However, CA has been criticized for its seeming inability to define transition 

rules for producing a realistic simulation of urban areas which are open and non-linear 

complex systems involving spatial and sectoral interactions (Batty et al.). Moreover, CA 

concentrates on the simulation of spatial patterns rather than on the spatiotemporal urban 

growth analysis and has deficiency of employing socio-economic and demographic 

variables (Z. Hu and C.P.  Lo).  

Definition of proper transition rules can well model the temporal and spatial 

complexities of urban systems and urban growth by incorporating various models such as 

artificial neural network (ANN) (Li and Yeh "Calibration of Cellular Automata by Using 

Neural Networks for the Simulation of Complex Urban Systems"; Li and Yeh "Neural-

Network-Based Cellular Automata for Simulating Multiple Land Use Changes Using 
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Gis"), agent-based model (Tian et al.), logistic regression (J.J. Arsanjani et al.) and 

support vector machine (SVM) (Feng et al.; Yang et al.) in CA model. However, logistic 

regression is considered a generalized linear model (Yang et al.), in which it fails to 

model the non-linear, complicated, and self-organized change patterns and processes that 

are often characterized by (Liu et al.). In addition to linearity, logistic equations cannot 

provide explicit rules (Wu and Martin). Artificial neural networks (ANN) can handle 

nonlinear relationships, but its black-box approach makes it crucial to understand the 

meanings of its parameter values; also, the difficulty of regulating ANN models, leads to 

overfitting the dataset (Li and Yeh "Neural-Network-Based Cellular Automata for 

Simulating Multiple Land Use Changes Using Gis"). SVM is non-linear, but it generally 

requires more training time, especially for large datasets (Resler et al.). Moreover, it is 

sometimes challenging to handle complex relationships.  

Random forest (RF), a powerful machine learning algorithm, provides levels of 

performance superior to conventional and other machine learning methods. It retrieves 

explicit rules for easier understanding and implementation and can recognize patterns 

through the training process and simulate development plans (Kamusoko and Gamba). 

RF method can handle the uncertainties of spatial data, runs efficiently on large datasets 

of both continuous and categorical variables, gives estimates of the importance of 

variables, requires less training time compared to other machine learning methods, and 

requires a low number of hyperparameters to be regularized (Breiman "Random Forests"; 

Rodriguez-Galiano et al.). Also, the RF method handles spatiotemporal data with non-

normal distributions and non-linear relationships, prevents overfitting, produces an 
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internal unbiased estimate of the generalization error, and ensures good generalization 

performance, is almost robust to outliers and noise, and is computationally light and fast 

(Breiman "Random Forests"; Rodriguez-Galiano et al.). RF can deal with the difficulties 

and uncertainties in defining the transition rules for CA as it can estimate development 

probability at each iteration of the CA simulation. RF may be the best way to reveal 

complex processes of urban systems. RF can simultaneously be calibrating with CA 

during the rule-induction process. Nevertheless, the existing studies (Xu et al.) which 

used RF to define transition rules for CA did not regularize the hyperparameters 

simultaneously with various configurations and did not simulate developmental 

alternatives. 

As the simulation of development alternatives is advantageous for urban and 

regional planning to prevent existing problems from happening again in the future, this 

study develops a RF-CA model to simulate three different urban development scenarios 

for the planning of sustainable urban development. The simulated urban development 

patterns are evaluated by using a cost indicator to find which type of development 

scenario can better fulfill the sustainability criteria. Besides, still several problems need to 

be addressed to improve the effectiveness of urban growth modeling. While most of the 

urban growth models assume that the rate of expansion is constant for all periods (Brown 

et al.) and their transition function retains similar properties over the whole study period, 

the rate of development is not constant in some study areas in long term due to the 

dynamics of economic, social, and political driving forces (Li and Yeh "Data Mining of 

Cellular Automata’s Transition Rules"). Consequently, this assumption may result in 
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poor and unreliable predictions in these cases. The reliability and performance of the 

proposed model are tested to see if it can discover the knowledge to model and predict 

urban growth in such a case study. Also, despite the previous studies (e.g., (Li and Yeh 

"Data Mining of Cellular Automata’s Transition Rules"))  that used the constant value of 

iterations for simulation using the CA model, in this study, the value of iterations is 

calculated in the process of training the RF-CA model. This helps the process to be fast 

and saves processing time. 

The proposed model incorporates different data sampling strategies, predictor 

variables, various configurations of RF-CA, and constraints in Mecklenburg County, 

North Carolina (NC), USA in which the current urban growth trend is not acceptable for 

sustainable development (Sustain Charlotte). For this purpose, first, the most effective 

sampling method is selected to create an appropriate training dataset by testing several 

sampling strategies. Second, the significance of the predictor variables is investigated 

using RF to extract the most and the least significant predictor variables. Third, the most 

efficient configuration of the RF-CA-based model is developed by regulating RF and CA 

parameters simultaneously. Fourth, the accuracy, reliability, and predictability of the 

model are assessed by pertinent evaluation metrics. Fifth, the model is used to simulate 

the urban expansion in 2021 and 2026. Finally, different urban development scenarios are 

incorporated into the model using constraints and stochastic variables, and the simulated 

patterns are evaluated to find which type of development scenario can better fulfill the 

criteria of sustainability. The paper is structured as follows; section 2 briefly introduces 

RF-CA urban growth modeling approach. Section 3 presents a case study. Section 4 
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presents the implementation. Section 5 discusses the outcomes of the implemented 

approach, and finally, the paper concludes with a summary and some suggestions for 

future works. 

4.2 Random Forest-Cellular Automata (RF-CA) Model 

CA is a bottom-up and discrete dynamic model developed to examine the logical 

nature of self-reproducing systems (White and Engelen). This model has the ability to 

simulate intricate global patterns by applying local interactions and transition rules which 

decide how a cell change under some conditions (Clarke et al.). In CA, space is 

tessellated into regular cells, and the state of each cell is specified by the state of the 

neighboring cells and some transition rules. The state of each cell is updated in discrete 

time steps (Liu et al.). The transition rules for classic and simple CA are neighborhood-

based as the transition potential of a central cell is specified by the number of developed 

land cells in the neighborhood (Batty). However, the neighborhood-based factor cannot 

address the complex dynamics of urban development. More factors should be integrated 

into the CA model to improve simulation performance using transition probabilities of 

mathematical and machine learning models (Shafizadeh-Moghadam et al.). Defining 

random variables is essential for addressing the stochastic nature and uncertainties in the 

convoluted process of urban expansion which makes the simulation more realistic (White 

and Engelen) and produces fractals that are common in actual land-use patterns. Also, 

various planning objectives as constraints based on study area features can be 

incorporated to regulate development patterns in line with urban policies (Li and Yeh 

"Neural-Network-Based Cellular Automata for Simulating Multiple Land Use Changes 
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Using Gis"). Thus, in the CA model, discrete steps repeat, and in each iteration, all the 

cells alter their state as a function of their state, the state of the neighboring cells, defined 

transition rules, stochastic variables, and constraints simultaneously, and finally by 

comparing the state of each cell with a threshold (Batty and Xie; Wu and Martin). 

RF is a tree-based ensemble model and uses bootstrap aggregated sampling to 

construct plenty of decision trees (DTs) for modeling and prediction (Breiman "Random 

Forests"). Thus, a RF model has greater stability than a DT model, which leads to higher 

accuracy and being robust facing little variations in input data (Breiman "Random 

Forests"). The algorithm split the input dataset into homogenous subsets by using a 

random subset of predictor variables and choose a training sample to build the model. 

Then, to evaluate the performance of the model, the RF model uses the subsets that are 

not in the training sample named out-of-bag (OOB) sample dataset (Breiman "Bagging 

Predictors"; Dietterich). Tree-based methods need to select suitable variables that 

maximize dissimilarity between classes. A CART-based RF model uses the Gini Index 

for this purpose. RF estimates the importance of predictor variables during the model 

construction. To evaluate the significance of each variable, RF changes one of the input 

random variables while keeping the others fixed, and it measures the OOB error increase 

and Gini Index decrease (Breiman "Random Forests"), which is an implication of the 

significance of that variable. The RF model only requires defining two parameters for 

building a prediction model, the number of DT in the model (k) and the number of 

predictor variables (m) randomly selected at each node to make the tree grow. Thus, the 
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most frequent value for the total number of k trees will be the value allocated to each 

example.  

In this study, the RF model is proposed as the decision function to construct non-

linear transition rules for the CA simulations. Thus, in each iteration of the simulation, 

the state of a cell is estimated based on a random variable, the output from the RF model, 

neighborhood effect, constraints, and a threshold value (equation 1) (Yang et al.): 

 

 

Ὓȟ ρ ÌÏÇ‎ ὖͅὙὊ Џȟ Б ὧέὲίȟ
ὝὬὶὩίὬέὰὨȟὈὩὺὩὰέὴὩὨ

     ὝὬὶὩίὬέὰὨ ȟὟὲὨὩὺὩὰέὴὩὨ
 (1) 

 

 

In this equation, the first term is the random variable which helps to generate a 

more realistic pattern by adding uncertainty. Various values of parameter a can be used to 

explore possible urban forms due to uncertainties, and parameter γ is a random variable 

between 0 and 1(White and Engelen). Higher values of parameter a can lead to more 

dispersed urban areas in the simulation and setting it to 1 presents a small amount of 

uncertainty in the simulation (Li and Yeh "Calibration of Cellular Automata by Using 

Neural Networks for the Simulation of Complex Urban Systems"). This term is always 

greater or equal to 1 and in the case of an equal to 1, the uncertainty term will be between 

1 and 4 (Mustafa et al.). The second term is the urban development probability of cell i, 

which is retrieved from the RF model and is a value between 0 and 1. The third term is 

the influence of neighborhood and is the total number of urban cells within the 5×5 

Moore’s neighborhood of cell i over 25 in iteration t (Shafizadeh-Moghadam et al.). 

Implementing CA with varying neighborhood sizes Shafizadeh-Moghadam et al. found 
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that a 5×5 window had the best accuracy among other neighborhood sizes. The fourth 

term indicates the constraint in the modeling process. Some layers which values of the 

land cells are between 0 and 1 can be used to outline constraints to urban land 

development using GIS spatial data such as excluding water bodies from the process. The 

neighborhood variable is dynamically updated during the simulation. The updated 

variable is the inputs of the model at each loop. At each iteration, the result of equation 1 

for each cell is compared with a predefined threshold to determine if the development has 

occurred or not. If the state of a cell is greater than the threshold value, it will be 

converted to a developed land cell (Li and Yeh "Calibration of Cellular Automata by 

Using Neural Networks for the Simulation of Complex Urban Systems"). The simulation 

of urban development is conducted by running the model iteratively until the 

accumulated mismatch between the actual and simulated urban development reaches the 

minimum amount. 

4.3 Case Study 

North Carolina has been the fastest-growing state in the United States since 2010, 

and a large segment (66%) of its population resides in urban areas (North Carolina State 

Data Center).  The proposed model has been applied and tested in Mecklenburg County, 

home of the city of Charlotte—the third fastest-growing city in the United States, located 

in southwestern NC, USA (Figure 4.1). According to the U.S. Census Bureau "The 

Census Bureau’s Population Estimates Program ", the population of this county was 

514,831, 700,802, and 923,202 in 1990, 2000, and 2010, respectively, and the estimated 

population of it was 1,100,000 in 2019, making it the most populous county in North 
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Carolina and the first county in the Carolinas exceeding 1 million in population. The total 

area of this county is about 141400 ha, of which 56% was developed urban area and 44% 

was the natural area in 2001 (MRLC). The developed urban area has been grown to 60% 

in 2006, 62% in 2011, and 64% in 2016. Additionally, the city of Charlotte in 

Mecklenburg County, the major city and commercial hub of North Carolina and the 

American South (Graves and Smith; Sultana "Edge Cities in the Era of Megaprojects"), is 

characterized by low density and dispersed urban growth patterns (Shoemaker et al.).   

Population growth (U.S. Census Bureau), the development of the transportation 

network specially, the construction of the interstate highways such as I-485 around the 

city of Charlotte (U.S. Census Bureau "Tiger/Line Shapefiles and Tiger/Line Files"), 

together with the economic development (City of Charlotte) have had a tremendous effect 

on urban growth (UNCCharlotte) in this urban area and the county has become 

exemplary of the sprawl debate. As a result, the low-density development has endangered 

the natural environment of Mecklenburg County by loss and fragmentation of the natural 

resource and reduced the quality of life (Shoemaker et al.; Yang). While the continuous 

population growth and urban expansion in this county highlight the importance of urban 

growth modeling to aim at growth management and natural resource protection, the 

different rate of development in the long term in this county (Figure 4.2, 4.3) makes 

serious challenges for prediction and requires specific considerations to develop an 

appropriate and reliable model.  
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Figure 4.1: The Location Map of the Study Area, Mecklenburg County 
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Figure 4.2: The Urban Development in Mecklenburg County in the Study Period (2001-2016) 

 

 

The proposed model is integrated with a GIS for using the spatial data. The spatial 

data of LULC types were collected from the National Land Cover Database (USGS "The 

National Map") at the spatial resolution of 30 meters for the years 2001, 2006, 2011, and 

2016 to constitute regular time steps (5-year period) for temporal mapping and 

simulation. These maps provide beneficial information about the trend of LULC changes 

in the study area. In these LULC maps, the developed urban area and the natural 

environment are classified into land types that are presented in Table 4.1. Vector data of 

transportation networks were gathered from (U.S. Census Bureau "Tiger/Line Shapefiles 

and Tiger/Line Files") and prepared for the study area over the study period. The vector 
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data of urban areas, city centers, green spaces, and water bodies were extracted from 

LULC maps and used to produce the proximity raster maps. Population data were 

collected from (U.S. Census Bureau "The Census Bureau’s Population Estimates 

Program ") at the scale of census tracts for 2000 and 2010. As the census data is not 

available for the study period, a population estimation model is used to approximate 

population density in the study period years from the census data in 2000 and 2010.  

 

  

Figure 4.3: Rate of Development in the Urban Area in Mecklenburg County for 2001-2006, 2006-

2011, and 2011-2016 

 

 
Table 4.1: The Classification of the Developed Urban Area and the Natural Environment 

 
LULC class Description 

Developed urban area developed open spaces, low-intensity, medium-intensity, and 

high-intensity developed 

Natural environment open water, barren land, deciduous forest, evergreen forest, 

mixed forest, shrub and scrub, herbaceous, and hay and pasture 

 

 

In the urban expansion model, the development probability of each cell is 

determined by the predictor variables of that land cell acquired by applying GIS spatial 

analyses. Table 4.2 lists the predictor variables used for urban expansion modeling, 

considering the most common factors used in previous studies (Aburas et al.; Bhatta; Li 

and Yeh "Calibration of Cellular Automata by Using Neural Networks for the Simulation 
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of Complex Urban Systems"; White and Engelen). The target variable is the urban 

development in the study period, obtained from change detection using 2001, 2006, 2011, 

and 2016 LULC maps. Proximity variables were achieved by calculating the Euclidian 

distances to the central business district (CBD), suburb towns, highways, major roads, 

railways, and urban areas. The role of proximity variables in urban development is that a 

closer distance to the major transportation networks and urban areas leads to higher 

development probability and expanding urban areas generate more infrastructure to 

maintain future urban expansion. Neighborhood variables are essential spatial elements 

that emphasize the dynamics of different conversion events. The neighboring land type 

surrounding a land cell affects the process of change. The neighboring variables were 

calculated in the Moore neighborhood of 5×5. Furthermore, most land change replaces 

agricultural lands and open lands with urban areas, which are potential lands for 

development (Karimi et al. "Land Suitability Evaluation for Organic Agriculture of 

Wheat Using Gis and Multicriteria Analysis"). The physical variables affect the 

development probability of land cells through the type of LULC of each land cell and 

terrain features such as slope and elevation that pose constraints to urban development. 

The layer of the slope was generated from the digital elevation model (DEM) which 

represents the elevation. Finally, a population density map outlining the number of 

residents per cell is created as a social variable. All these spatial data were prepared and 

converted to raster format and then to ASCII files using ESRI ArcGIS 10.3 software to 

facilitate the calculation and simulation. The resolution was fixed at a ground resolution 

of 30m2 to match the resolution of the National Land Cover Database maps.  



95 

 

4.4 Implementation 

In this study, an integrated model of RF and CA methods and GIS is developed to 

enhance the reliability of urban expansion modeling and simulation of development 

alternatives in an urban area with varying development rates. In most urban expansion 

studies the assumption is that the rate of urban expansion is constant, thus, the simulation 

of urban development is conducted based on the past development trend and the 

projection from two previous periods. While in some urban areas the rate of urban 

expansion in sequence periods is not constant. In this study, although the study area has 

experienced a varying rate of development, the proposed model assumes that the 

relationship between spatial variables and land change does not change. To train the 

model, 16 data layers of predictor variables for 2001 and the binary classification of the 

LULC map for the target variable in 2006 are prepared. The trained model is evaluated 

using 16 data layers of predictor variables for 2006 and the binary classification of LULC 

map for the target variable in 2011 and also the data layer of predictor variables for 2011 

and the binary classification of LULC map for target variable in 2016. Then, the 

simulated map is compared with the actual map of 2011 using the confusion matrix to 

evaluate the performance of the configured model. 

For the RF model configuration, first, a random sampling strategy is applied to 

produce a proper training dataset. The sampling strategy helps to increases the 

computational performance and improve the prediction accuracy of the model (Karimi et 

al. "An Enhanced Support Vector Machine Model for Urban Expansion Prediction"). 

Comparison of the LULC map of 2001 and 2006 shows that there are enough recently 
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developed cells in this period to create a reliable training dataset by a combination with a 

random sampling of undeveloped land cells. The second step is the configuration of the 

RF model, in which the model hyperparameters are regularized on the training dataset 

(sample dataset of 2001-2006) and the performance is evaluated on the testing dataset 

(whole dataset of 2006-2011 and 2011-2016). In this study, the RF method uses the 

CART algorithm for discovering transition rules. The RF algorithm generates initial large 

and complex trees by splitting the predictor variables into independent groupings based 

on binary decisions. As larger trees tend to overfit the training dataset and results in lower 

performance, the RF model parameters including the number of input variables selected 

at each node split from 1 to 16 and the total number of trees in the model from 1 to 1000 

are adjusted.  

 
Table 4.2: Target and Predictor Variables for Urban Expansion Modeling 

 
Type Variables 

Target variable Developed urban area (1) and undeveloped area (0) 

Proximity predictor variables Distance to CBD (km) 

 Distance to suburb towns (km) 

 Distance to the nearest highway (km) 

 Distance to the nearest major road (km) 

 Distance to the nearest streets (km) 

 Distance to the nearest railway (km) 

 Distance to the nearest urban area (km) 

 Distance to the nearest greenspaces (km) 

 Distance to the nearest water bodies (km) 

Neighboring predictor variables Number of developed cells in a 5×5 neighborhood 

 Number of potential lands for development in a 5×5 neighborhood 

 The most frequent LULC type in a 5×5 neighborhood 

Physical predictor Variables LULC type 

 Slope (%) 

 Elevation (m) 

Social variable Population density 
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By enhancing the number of trees, the generalization error decreases, and 

overfitting is not a problem. Reducing the number of predictor variables decreases the 

robustness of each individual tree of the model, but also reduces the computational 

complexity of the algorithm and the correlation between trees, which enhances the 

accuracy of the model. Therefore, optimization of the hyperparameters k and m leads to 

generalization error minimization. The performance of the RF model for producing the 

transition potential map is tested using Kappa statistics. In addition, the RF model is able 

to determine the most significant predictor variables in the process of urban expansion. 

The whole process of calibrating the RF-CA model and simulating the future patterns is 

presented in Figure 4.4. 

The CA model uses the explicit transition rules derived from RF for the year 2001 

together with the influence of neighborhood, a stochastic disturbance term, constraint 

information, and a threshold value to evaluate how land cells are converted from 2001 

status to 2006 status. For the neighborhood effect, the proportion of neighboring 

developed land cells in 5×5 Moore’s neighborhood is considered. For the stochastic 

variable (1+(-log γ) a), the parameter γ is a random number between 0 and 1, and the 

parameter a, the random disturbance, is set to 1 to present a small amount of uncertainty 

in the simulation. The constraint layer (Figure 4.5) determines areas that are entirely or 

partially protected for development. The simulation process is conducted by running the 

model iteratively and updating the spatial variables dynamically until the simulated map 

of 2006 corresponds to the actual map of 2006. The CA method uses discrete-time to 

renew the status of each cell step by step and there are multiple repetitions for obtaining 
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the results in urban simulation. Indeed, in each iteration of the RF-CA model 

configuration, an updated neighboring layer map is applied. In previous CA-based urban 

growth studies, the number of iterations was determined by a constant number between 

100 and 200 (Li and Yeh "Data Mining of Cellular Automata’s Transition Rules"), or the 

configuration is stopped by the total land consumption in a given period (Yang et al.). 

 

Figure 4.4: The Flowchart of the RF-CA Model for Simulating Urban Development 
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However, in this study, the simulation of urban development is conducted by 

different values for threshold from 50% to 95% and running the model iteratively until 

the accumulated mismatch between the actual and simulated urban development reaches 

the minimum amount. The value of this measure shows the sum of false positive and 

false negative through the confusion matrix (Suthaharan), which should be minimum 

with a balance between these two values. Also, to achieve an efficient model, the 

hyperparameters of the RF-CA model are adjusted by comparing the evaluation of 

various combinations of them. Training accuracy is used to evaluate the model 

performance over the training dataset, and testing accuracy, testing precision, testing 

sensitivity, testing specificity, F-score, Kappa statistics, and Area Under Curve (AUC) 

are used to evaluate the reliability and predictability of the adjusted model over the 

testing dataset for 2011 and 2016. A high value of these metrices demonstrates a higher 

performance and validity (Karimi et al. "Urban Expansion Modeling Using an Enhanced 

Decision Tree Algorithm").  

The final step is to use the configured model to predict urban expansion for 2021 

and 2026 by incorporating environmental constraints retrieved from GIS in the RF-CA 

model to formulate alternative urban development patterns. The environmental constraint 

is used to protect the natural environment and agricultural lands as urban development 

endangers these valuable lands. The model uses environmental constraints to indicate 

whether a land cell can be converted to a developed urban area or not regarding the 

environmental considerations. The environmental constraints can be defined based on the 

exclusion of environmentally sensitive areas and buffer distances to these areas. The 
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development alternatives are current trends, controlled urban development, and 

environmentally sustainable urban development scenarios for both years. In the current 

trend scenario, water bodies are fully protected from development as these land cells 

have not been decreased from 2011 to 2016. The controlled urban development scenario 

ensures a more intense commitment to spatially focused growth and preserving 

agricultural lands and resource conservation. In addition to exclusion of water bodies, 

agricultural lands and forests are partially excluded with the exclusion values of 30% and 

50% respectively and the development is allowed just in a buffer of 200 meters in the 

developed urban area. The third scenario, environmentally sustainable urban 

development, shows a stronger constraint for limited growth and natural resource 

protection. The constraint layer same as the two previous scenarios specifies waterbodies 

as wholly unavailable for development, forests and agricultural lands are partially 

excluded with the exclusion values of 50% and 70% respectively, and the development is 

allowed just in a smaller buffer of 100 meters of the developed urban area.  
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Figure 4.5: Constraint Layer for Exclusions of (a) Current Trends, (b) Controlled Urban 

Development, and (c) Environmentally Sustainable Urban Development Scenarios for 

Mecklenburg County, NC.   

 

 

The conversion of natural or agricultural land into urban land-use imposes 

environmental costs. The constraints in the CA model help the simulation of developing 

land cells to be shifted to suitable sites to decrease the environmental costs. But the 

amount of the environmental cost for simulations should be indicated to assure the 

capability of the models for environment preservation. Thus, a potential environmental 

cost indicator is estimated to assess the alternative development simulations for 

environmentally sustainable development. By considering the natural environment and 

the land conversion from the natural environment to urban land uses, the environmental 

cost index can be written as: 

 

Ὁὅ
В Ὀȟ

ὃ
 

 

 

where EC is the amount of the environmental cost; D is the size of the developed 

sites and A is the size of the natural environment. The index value is normalized by the 
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total area, in which a higher value shows that urban development leads to higher 

environmental costs, such as the loss of considerable proportions of suitable agricultural 

land.  

4.5 Results 

The RF- CA model is applied to Mecklenburg County, NC, USA for the 

simulation of development alternatives. The current development trend is not acceptable 

for sustainable development because of the environmental problems and costs. The 

positive aspect is that the simulation of possible development alternatives is helpful for 

urban planners and practitioners which can support preventing current environmental 

problems from arising again in the future through urban and regional planning. This study 

aims to simulate developmental alternatives under three scenarios. 

First, a sampling approach is implemented to recognize the best training dataset, 

and then the model is assessed on the testing dataset. In this study, all the recently 

developed land cells of the 2001-2006 period and different numbers of undeveloped land 

cells are combined and evaluated for choosing the training dataset. The results of 

employing this sampling approach and the efficiency of different combinations for urban 

expansion modeling in Mecklenburg County for the 2001-2006 period when k equals 

to100 and m equals 1 are shown in Figure 4.6. The figure displays the relationships 

between the sampling points and the prediction error. It reveals the reduction in 

prediction error by enhancing the number of undeveloped land cells in the training 

dataset. The prediction error is 38.2% by using 10% of the recently developed land cells 

from undeveloped lands, and it is reduced to 35.0% and 32.5% by using 20% and 30% of 



103 

 

that data, respectively. The improvement rates are insignificant after the first 30% of the 

data. Therefore, this study used all the recently developed land cells of 2001-2006 and 

30% of undeveloped land cells for further analysis of urban expansion modeling in 

Mecklenburg County and deriving the transition rules.  

 

 
 

Figure 4.6: Random Sampling Rate and Prediction Error 

 

 

In order to obtain optimum model performance, different amounts of k and m are 

tested, thus k ranges from 1 to 1000, and m ranges from 1 to 16, using intervals of 1. This 

way a total number of 16000 different RF models are generated. The resulting models are 

assessed using Kappa statistics and the most accurate model is the one with the highest 

Kappa value, the highest k, and the lowest m. Based on the findings presented in Figure 

4.7, it can be realized that a higher amount of k and a lower amount of m leads to better 

results. To achieve the highest Kappa a RF model made up of 206 DTs with 1 split 

variable is adopted. Using the calibrated RF model, the transition potential map of urban 

development occurrence (Figure 4.8) is computed. The probability map displays a 

particular amount of probability between 0 and 1 for every single land cell that will be 

developed.  
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Figure 4.7: The Value of Kappa Statistics with Respect to the Number of Trees (k) and the 

Number of Random Split Variables (m) 

 

 

This method cannot designate the quantity and location of development but 

integrating with the CA model can resolve the problem. Thereafter, the obtained 

probability of development is allocated in the entire map and can be quantified. The CA 

model used the transition potential map derived from RF for the year 2006 together with 

the proportion neighboring developed land cells in 5×5 Moore’s neighborhood, a 

stochastic disturbance term in which γ is a random number between 0 and 1 and the 

parameter a is set to 1, constraint information from Figure 4.5a, and a threshold value to 

evaluate how land cells were converted from 2001 status to 2006 status. The simulation 

process is conducted by different values for threshold (0.6, 0.7, 0.8, and 0.9) and running 

the model iteratively and updating the neighborhood variable dynamically until the 

accumulated mismatch between the simulated map and the actual map reaches the 

minimum amount. As more iterations enhance the danger of adding False Negative land 

cells, the number of iterations was specified precisely. The threshold of 0.8 and 98 and 
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106 iterations led to the least mismatch between actual and simulated map for 2011 and 

2016 maps, respectively. Thus, 100 iterations would be proper for predicting the next 

periods. 

Table 4.3 shows testing accuracy, testing precision, testing sensitivity, testing 

specificity, F-score, MCC, Kappa, and AUC values which are used to evaluate the 

reliability and predictability of the adjusted model over the testing dataset by comparing 

the observed and predicted map of 2011 and 2016 through confusion matrix. The training 

accuracy for simulating the urban growth in 2001-2006 is 100% and the best accuracy is 

99% and 98% in 2006-2011 and 2011-2016 respectively. The values of the evaluation 

metrices are high due to the higher amount of consistent land cells to converted land 

cells, therefore it is necessary to investigate the number of False Negative and False 

Positive land cells. Table 4.4 shows the number of True Negative, True Positive, False 

Negative, and False Positive land cells for 2011 and 2016 for the RF-CA and RF model. 

It shows that integrating the RF model with the CA model reduces the number of False 

Negative land cells in addition to allowing developing different alternative urban 

expansion simulations. Figure 4.9 shows the predicted map of the study area over the 

testing dataset. As it is shown, the mismatched land cells are dispered clusters near 

previous urban environment. 
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Figure 4.8: Transition Potential Map of Mecklenburg County, NC for 2011 
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Table 4.3: The Performance Achieved from the Cross-tabulation of the Overlay Analysis of 

Actual and Predicted Urban Development Map of Mecklenburg County, NC for 2011 and 2016 

 
Period Accuracy Precision NPR Sensitivity Specificity F_S MCC Kappa AUC 

2006-

2011 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.98 0.99 

2011-

2016 0.98 0.99 0.97 0.98 0.98 0.99 0.96 0.96 0.98 

 

 

Table 4.4: The Number of TN, TP, FN, and FP Land Cells for 2011 and 2016 for the RF and RF-

CA Model 

 

Models 
2011 2016 

TN TP FP FN  TN TP FP FN  

RF 589329 969557 2995 7349 553370 1001870 5606 8384 

RF-CA 589278 969983 3046 6923 553258 1002518 5718 7736 

 

 

 

 

Figure 4.9: The Predicted Map of Mecklenburg County, NC for 2011 Consideing True Positive, 

True Negative, False Positive and False Negative Land Cells 

 
 

As shown in Figure 4.3 the amount of urban development in the 2001-2006 

interval is more than 2006-2011 and 2011-2016 intervals and it seems that if the 
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simulation of urban development is only based on the data from 2001-2006 period, the 

simulated urban areas will be larger than the actual urban areas for the next periods with a 

5-year interval. In addition, the geographical setting of this study area is relatively 

complex, with different geomorphologic characteristics (e.g. forests, wetlands, and lakes) 

and some suburban centers (5 towns). However, using the transition rules derived from 

the 2001-2006 dataset, high performance in the simulation of urban development in 

2006-2011 and 2011-2016 was obtained (Table 4.3). This is because of the ability of the 

RF model to realize complex relationships.  

As mentioned before, RF is able to give estimates of the importance of predictor 

variables. Based on the regularized RF model, distance to highways, distance to suburb 

towns and distance to the city center are the most important predictor variables for 

simulation development in this urban area. On the other hand, distance to forests, 

population, and neighboring potential cells are the least important (Figure 4.10). 

 

  
 

Figure 4.10: The Importance of Predictor Variables 
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The RF-CA model is approximately accurate at detecting development as 

reflected by components of the agreement. The reliability and performance of the RF-CA 

model are because of the comparatively accurate RF transition potential maps. Thus, this 

study highlights the potential of the RF-CA model for urban development simulation. 

Figure 4.11 shows the actual urban development under the current trend scenario in 

Mecklenburg County for 2001, 2006, 2011, and 2016 and the predicted urban 

development for 2021 and 2026. The figure shows that urban development will appear 

near current or newly built urban clusters or adjacent to the major roads.  

 

 
 

Figure 4.11: The Predicted Urban Development Map of Mecklenburg County, NC for 2021 and 

2026 
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The configured model is used to predict urban expansion for 2021 and 2026 under 

controlled and environmentally sustainable urban development scenarios by 

incorporating environmental constraints retrieved from GIS in the RF-CA model (Figure 

4.11). The model uses environmental constraints to indicate whether a land cell can be 

converted to a developed urban area or not regarding environmental considerations. It is 

obvious that the controlled and environmentally sustainable urban development scenarios 

decrease the rate of urban expansion into the natural environment in this county. Figure 

4.12 shows the simulated urban development map for 2021 and 2026 under controlled 

development and environmentally sustainable urban development scenarios. The 

transportation network and the urban extent exhibit assurance to focused growth and no 

new major planned developments appear in these scenarios. This means that there is no 

more space in this county for development by considering controlled and 

environmentally sustainable urban development in decision-making. 

The environmental cost index is used to evaluate the performance of simulated 

urban developments under the three scenarios in relation to sustainable development. 

Table 4.4 shows the environmental cost index for simulated urban developments under 

current trends, controlled urban development, and environmentally sustainable urban 

development scenarios for 2021 and 2026. It can easily be seen that the current trends in 

2021 and 2026 are dispersed patterns which reinforces that current trend development in 

Mecklenburg County endangers the natural environment. Table 4.4 shows that the 

controlled and environmentally sustainable urban development scenarios for 2021 and 

2026 are much higher compact. It can also be seen from these maps that merely achieving 
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controlled development will not minimize environmental costs unless more intense 

environmental constraints are also taken into consideration. The third scenario shows the 

effects of more intense environmental constraints. This scenario leads to highly compact 

and less horizontally development which produces low environmental costs. 

 

 

 

Figure 4.12: Simulated Urban Development Map for (a) 2021 and 2026 Under Controlled 

Development Scenario, (b) 2021 and 2026 Under Environmentally Sustainable Urban 

Development Scenario 

 

 

Table 4.5: The Environmental Cost Index for Simulated Urban Developments Under Current 

Trends, Controlled Urban Development, and Environmentally Sustainable Urban Development 

Scenarios for 2021 and 2026 

 

 Predicted year Environmental Cost 

Current trends 2021 4% 

Controlled urban development 2021 2% 

Environmentally sustainable development 2021 0.8% 

Current trends 2026 2.8% 

Controlled urban development 2026 1% 

Environmentally sustainable development 2026 0.6% 
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4.6 Conclusion 

The prediction of future urban development patterns presents helpful information 

for urban planning and environmental management and gives an estimation of the 

potential impacts of urban development. Sustainable urban development plans can be 

expressed to alleviate the negative impacts and control the amount and extent of the 

development before it actually occurs. The RF model is spatially explicit and most 

importantly, allows a much deeper understanding of the predictor variables and the 

formation of the urban spatial pattern. However, this approach can be integrated with the 

CA model to quantify and allocate the development. While CA is unable to define 

transition rules for producing a realistic simulation of urban areas. The integration of RF 

and CA methods substantially overcomes the shortcomings of each method, effectively 

models spatiotemporal urban development patterns, and explicitly describes urban growth 

dynamics in the urban areas with varying rates of development.  

Applying the proposed RF-CA model in Mecklenburg County, NC, USA in 2001-

2016, the results demonstrate that the model can achieve reliable and high accurate 

results and significantly mitigate the adverse effects of the varying rate of development. 

The results show that the precise regulation of the RF-CA model’s parameters and a 

training dataset containing all the recently developed cells and 30% of them from 

undeveloped cells considerably enhances the accuracy and performance of the model. 

The RF analysis of predictor variables shows that the proximity to highways, proximity 

to suburb towns, and proximity to city center are the most significant factors for 

simulation development in this urban area. The current urban development in 
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Mecklenburg County for 2021 and 2026 will appear near current or newly built urban 

clusters or adjacent to the major roads, the controlled and environmentally sustainable 

urban development scenarios for 2021 and 2026 are much higher compact and minimize 

environmental costs.
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CHAPTER V 

CONCLUSION 

The uncontrolled, rapid and low-density urban growth affects the environment, 

economy, and society significantly. Thus, an appropriate insight into how and where 

urban growth occurs and its causes, and consequences is required for urban planners, 

geographers, and practitioners for managing future urban plans, and sustainable 

development. Urban growth models facilitate understanding the dynamic and convoluted 

process of urban expansion, assessing causal factors, and analyzing the consequences of 

policies. This dissertation studied urban growth modeling and prediction using machine 

learning algorithms to model urban expansion patterns effectively and efficiently. An 

introduction to the research problem was provided in Chapter I, where I reviewed the 

existing literature and the concepts.  

Chapter II explored the capabilities of the SVM method, as a powerful machine 

learning algorithm, using three different data sampling methods, regulating, and 

evaluating the model with the emphasis on feature selection. The implementation of the 

developed model in Guilford County, NC, throughout 2001-2011, as a case study, 

demonstrated highly accurate and reliable results. According to the summary of the most 

widely used factors in previous studies conducted by Musa et al., the historical 

spatiotemporal LULC change patterns in the study area, and data availability, 19 

predictor variables were considered including population density, current LULC type of a 

cell, proximity to the city center, urban built area, the nearest highways, major 
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roads,streets, railways, water bodies, green spaces, the number of potential cells for 

expansion, water body cells, forest cells, wetlands cells, barren land cells,  open-space 

developed cells, low-intensity developed cells, medium-intensity developed cells,high-

intensity developed cells in a 3*3 Moore’s neighborhood of each cell. As irrelevant and 

redundant predictor variables affect the modeling results through overfitting and poor 

generalization feature selection process was conducted to determine the most significant 

predictor variables using information gain measure. The result showed, the current LULC 

type was the most significant predictor, following with distance to highways, neighboring 

with medium-intensity developed areas, neighboring with potential lands for urban 

expansion, and distance to water bodies as the next high-ranked predictors. Neighboring 

with forests, neighboring with developed open spaces, neighboring with water bodies, 

neighboring with wetlands, and neighboring with barren lands were the least significant 

predictors.  

A comparative study in which the models were investigated in the same case 

study was addressed in Chapter III, which will enable decision-makers to thoroughly 

understand the performance of the models and their strengths and limitations. This study 

compared five machine learning methods, including DT, RF, SVM, LR, and ANN. The 

models were trained and validated to simulate urban expansion in Mecklenburg County, 

NC, USA over the 2001-2016 period. The results showed that RF is superior to other 

models concerning evaluation metrices, the number of hyperparameters, run time, the 

need for data preparation, and the number of FP and FN land cells in the prediction in this 

case study. The importance of predictor variables was analyzed by CART and RF 
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methods and the analysis recognized proximity to urban areas, highways, city centers, 

and uptown as the most critical variables and proximity to green-spaces and population 

density as the least important variables. 

Developing different urban growth scenarios with the goal of sustainable urban 

growth management were investigated in Chapter IV. Innovative integration of RF and 

CA (RF-CA) is suggested to simulate urban development under three urban growth 

scenarios, including current trends, controlled urban development, and environmentally 

sustainable urban development. While current trends allow the urban fringe to be 

uncontrollably developed, the controlled and environmentally sustainable urban 

development scenarios constrain future developments and reduce the environmental 

implications. A variety of data sampling strategies, predictor variables, and model 

configurations were explored to enhance the accuracy and predictability of the proposed 

model. The model was calibrated using spatiotemporal data of 2001-2016 and was 

applied to simulate future urban developments in 2021 and 2026 for rapidly urbanizing 

Mecklenburg County, NC, USA. The accuracy and reliability of the model were 

evaluated by apposite evaluation metrics, and the simulated urban development patterns 

were examined using a cost indicator from the perspective of sustainable development. 

The results demonstrated that the proposed model is a fast, high-performance, and 

accurate model with low uncertainty; therefore, it can be effectively utilized to evaluate a 

wide range of urban development policies and scenarios and support decision-making to 

achieve the goal of establishing sustainable development in Mecklenburg County. 
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The results from three studies demonstrated that the sampling strategy, the 

regulation of models, and the importance of the predictor variables depend on the case 

study, the study period, and predictor variables. More precisely, the results depend on the 

data. This conclusion raises the data challenge. Past studies mostly have used 

environmental and physical data, and the use of social and economic data due to their 

availability was limited. Collecting urban local and regional planning policies such as 

restricted areas (Alsharif and Pradhan; J. J. Arsanjani et al.), social factors such as income 

and affluence (Echenique et al.; Haase et al.), and economic factors such as housing/land 

prices and rent (Waddell), job availability and job growth (Z. Hu and C. P. Lo), if 

possible, is a future direction. Nowadays social media affects various aspects of human 

life. What people say or how they act in social media may affect urban development, as 

these are people's thoughts and decisions and indirectly affect the economy and society. 

This data can include in modeling and its importance in the modeling can be another 

future direction. The size of the study area is an issue in urban growth modeling and 

prediction, due to lack of memory mostly small study areas were chosen. Selecting a 

large case study such as a state to investigate the models reliability, which needs a 

supercomputer with a large memory, should be addressed in future studies.
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