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CANONICAL PARTITIOW RELATIONS AND POINT CHARACTER 

OF l .. - 5P ACES 

V. Reidl

troduction and basi.c notiol}.�--� The &overing 1,t, of a metrie 

spaee (X,f) i-s called uniform if there exists €. >O such 

that f'or .every "'� X there is U E u., so that the e.-ball 

BE Cx l = { 1 i ť C."'-1 �) < f. � is eontained in U • We say tbat 

the eove:rillg I\L is C -bounded if � U < c.. for every 

U €. 1:! • We sa:y that the c.overing is bounded 1f i t is 

C -boun(led fe:r some · c. > o • We say that the point character

of � metr.i.c sp-ac.e (X,f} 1s bigger than -'-- ( pc. (X, ť) > oe. \ 

if the-re exists c >Osuch that for every c -bounded um.form 

c-0ve-ring U o.f X ther� exis ts a point x E. X which 1 con

tained at leas-t in ci.. memhers of 'U. • Tpe question of the 

exis tenee of spa·ces wi th arb.i trary large point character was 

answered affirmatively in [P] and [S,], v,here point character 

of �gQ- spaces was 1nvestigated. Here we prove an analogous 

result for l� -spaces. We use combinatorial lemma proved in [B], 

ts : 

Def : The mapping r: [l/]IN -> v (\Ul� lV\) is �alled canon

ical if there exists tE {o,1, l ,.- ""'} and 1-fa .. �ái�--- �a,�""'

such that for every A = {o..", a.i,• .. � .... � , B =- { ,(,◄, 1 
-'-1 · . .  ..e,."'}

(a..<- ... ��-, .eA .c. .e,l. .. -< , .... ) fl., � e. C v"J� � (A\ 4'f ft a) � (a..j,.. a.i,> t < e; ..... �J•)

From resul ts proved in L 8 J i t follows the consequent
Lemma z For every cardinal number °" and a positive integer rvv 

there exists a cardinal number (l,.,.. such that the followill8 

holds : for every mapping �: [6,.],..., -> G-. there exists X c /3,_} 
(jt-)\X\=�� such that the mapping f/[)(J� i.s canonical.



!O

Theerem : For every cardibal number .,1.. there exists cardinal 

nU.I:1ber B such that �c 1_.(/3) ��- (\v'e make.no attempt here 

to find a smallest ť, wi th above mentioned property.) 

Proof : Put ( f,)_ satisfy (*}) and denote by T

the following subset of 1.,. (ť.,) 
. ) 

{ " [ 1'� lT == �I X\{ \ K. € � J 
(where X� denotes the characteristic tunction of a set K) 

k, t. (6) is a linear space i t suffices to prove that for 

every -1 -bounded uniform cover 'U. of L. (�) there exists 

lfo €.. �� ( t?>) so that 'f, is contained at least in ,... sets o:! 'U.-. 

As CU. 1s uniform, there exists E::,, O such that for every 

·-LE. t ◄ ( �) there is V 12 ·'U. so that Bf ()t..) c. U • Let US take

now M se large thet A. c::: \ and put 
T,.., -::; t � X 1e. i K.� raJ,..,

J cT 

Choose f : T,... -, U so that for every )( E T,.... 1 'B E. (><) c f<.,c) 

Now identity the elementi of 1� and "'--element subsets of � 

and apply the Lemma to the mappingf • We get the exist

enxe of a set X c '3,,._ se that the mapping t restricted to 

the set [X]
"' 

1s canonical. The corresponding number t must 

be positive ae from L-=-0 it follows [)(l
"'

c.u fcr some U�r'\A.., 
and 1 t is a contradiction. as d,..:cv-- [x 1

""' 
= 2 while do,.:- U 4 1 

2 'CL < -- - < ,,� <. 2�. �o(.<.. i.6<+1 (. . .  - <:. c...._

Su.ch an 'i exists becau�e \X\ � d..+ >..C 
So we have 'I c [.)I. Jh\. '= T..,. c.. T c .e.,.

Moreover for � ťť � 'I 
1 

'f � 'f we have -fL'f) tf' llf') 
and 

where 
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Let US fix a 'foE-'f ; we have fo E f C.\f) for every f � y

As l'il -=d.• the theorem is proved. 

Many _thanks �o J. Pel�t,who _tur��-my att��tio� _____ .

to t�e problea, tar valaable diecaa•�••· 
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