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INTRINSIC CHARACTERIZATION OF DISTAL SPACF.s 

M. Kosina, P. Pták

Introduction. This part brings axiome required on

D c ex.ti, � X in order .l) be a collection of all uni-

formly discrete families of subsets oť X for a uniformity. 

A pair ( X, J)) where J) c: � U,f2, 1' satisfies those 

axioms is called a diatal space. Given a distal space 

( X , 1)) , we conatruct the coarsest uniformity U on X a

mong those which induce l> • The space obtained is called 

distally coarseo It is sht")Wn the equivalence between the 

category of distal spaces (with distally continuous mappings) 

and the categor;y of distally coarse spaces. Some equivalent 

cnnditinns on a unifnrm space to be distally coarse are gi

ven (e.g. ( X, 1.l) is distally coarse iff U has a base 

c�nsisting nf finite-dimensional coverings). 

Investigat ions implici tly using the not ion of dis tali

ty has been done by JoRo Isbell (5J ,in connection: with the 

dimension theory of uniform spaces) aoo by z. Frolík [4J 

(in connection with refin.emente of the category of uniform 

spaces). The last author also kindly brought to our attent-

inn the questions examined here • 

.Notions and results. A qu,;siunifo:rmi ty U on a se.t X 

:ls a family of COVer'ings of X forming a filter in the refine

ment ordering (s·ee C 5] ). )( with U 1s a QUAsiuniform spsce. 

Gi ven a covering !t. s: 'U. and a set A c: X., St ( A , X ) deno-

tes the union of all X. � X meeting A • A family 
"' 
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.( A oG ( cc:, c l 1 ot eubsets of X 1a called uni:f'ormly dis-

crete of order X if St ( Ace , �) n A/J = ; provided 

that «. =, (/> • Such a family is called uniformly discrete 

if i t is uni:f'o rmly discret e of an or der !t s U • 

Theorem 1. Let ( X , 1L ) be a cpasiuniform sp ace. De

no te by d.CU) the collection of all uni:rormly discrete fa

milies of subsets r,f )( • The following assertions hold: 

� 1 If i A , B l e of.. ( U ) then A " 8 == 91 

312, 
The family cL (U) is cloáed under formation 

o:f the distal combin.9tions. It means, if K � .({ A: l °' íi !1 i�•·· 
""' 

.•. ,{\c,l ac., CE 1 "1- }} is a finite family of elemente belong-

ing to ci (U) then -l C0 I 7 c J } belongs to d. (U) provi

ded th:lt, given .>< E C
1;, 

, 'V-' e C
-a;_ 

, 't, + ť'!l , there exist 

a, � , ◄ , Jk, 6 ,n.. and some oc.-1 oe,!2 e I k , oC, 1 =4= oe,2. 
au ch that .x e A� , 1t- E: A� 

1 !l 

Proof: Let C 'J., 11) be a quasiuni:8orm space. If 

� C
't' 

\ � f:. J J is a diatal comhination of -{ A! \ oe, e I""- i , 

� � � � m, and if ,( A d- I °' � I4 J is discrete of order 

re"'-e 1L then .( Cr I 7 � J i is discrete of order 
"" 

r. �•- . So, 32 1s fulfilled. ZJ„ 1s trivial. 
k:- 1 .1111, 

-, 

Before getting into the furt.her theorems let us take use 

of the following convention. Given a family -{ Aot. I oC €" 1 1

of pairwise disjoint sets, we will wri te A = U A °' and .cel 
call a covering O., associated with .f Aoe \ ac E: I J if 
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ll =- ,{ A ac. Id-- e: I J where Ao(,, • < X - A ) v A «. • 

Thg,rem 2. Suppose that D c: � et.f2,, X fultila the 

conditiona �1 1 UJ2 • Then there exista a cpasiunitormity 

1L ( D ) such that D is exactly the collectiom of all 

U ( D) -dis-crete f'amilies of subsete of X and, for e-

very U' wi th the preceding property, lť is finer than. 

l.lCD) 6 

Proof: Denote by U ( D) the quasiuniformi ty on X 

such tha t a subbase for U ( D ) consiats of all coverings 

associated with the families .( A� I oc. e I 1 E D • 

Of course, D c d.. ( U CD)) • We have to show that 

d. CU ( D)) c:: D • For, let .{ C ,y I 'f e: J l e d. ( U < D ) )

be a family discrete of order � =- (l,-1 " 0,2 A •·· "· O, m.. 
where <l .fl, are the coverings associated wi th 

�� Aot:. 
I «. � I I . We will prove tmit { C

7 
l Te J l is a di-

..., ""' stal cnmbination of K= -{-{ A
oc, 

I oe, e 1
.., 

l, ... , ..f A� \ oe.. € I"'}} • 

Take .,c e C
t:; 

, � e C
t; 

and denote by L the se"; of all 
1 2 

·-", , '1 !:: At, � m, such that :,c belongs to some A! •
Obviously, L 1s nonvoid and for every � e L there ex-

Jt is.ts exactly one «.. C �) such that � e A oc CAt.) • There-

tore , St ( � ., X ) = ., r;, L ( ( X - A• ) v A! ( .k) ) ( reaem-

ber the convention: AJ. ::=. U A! ). For every Jt, E L 
rLE I

,._ 

Jr, Jt, put Bk = A - A� c 1,, > .. Then X - St ( \)( , X ) �

= X - lit. �L
e X - B_,.) = w

._ 
B.aa • Since 1f- E X - St ( � , X >

we bave a k. e L such that 1f,,, c B_., • Thua "t- e A; far 
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some (!, ;p oc(.4-) and therefore· d, (U (D)) • J) .. UCD) 

is clearly the coarsest such quPsiuniformity. The i:roof is 

complete. 

The pair ( JC.D) 

subset of ��X 

where X is a set and D is the 

with the properties: 3J
1 , $2 is 

called a quasidista·l space. A mapping g,: CX,J>
1

) � (Y, J>,2 ) 

between quasidistal spaces 1s said to be distally continu

ous; if' -t t.J_;t ( A
°"

) \ oc. e: I J E ..D1 whenever

.f A cie l oc. E 1 l E ])2. • Let us denote by QJ)� the ca-

tegory nf quasidistal spaces with the distally continuous 

�pings. 

Theorem ; • A mapping <;: (X, J>1 ) -�)I. ( Y, ]).2. ) is 

distally continuous if and only ifc;>:(X,l.L(l>))---+ (Y,U(J))) 

is uniformly continuous. So, the category G. ])� is iso

morphic to the full subcategory of Q 1.tml..f of distallY? 

coarse qussiuniform spaces-s-paces ( X,lL) with U.(d.(U)).= 

=U . 

Proof': Suppose eg ; (X, ])1 ) � ( ·Y, :D2 ) is distall.y 

continuous. If' (l, is the covefing associated with 
-l A

o(, 
f °' E 1 J E: .D 2. then cp-1 (a) is associa ted

with i f 1( A�I oc E: I ! � :O 1 • The remaining part of Theo
rem, is easy. 

A cpasidistal epice ( X, D) is a distal space i:t' it 

has tbis additional property 2)
'3 

, If -{ Ad/. \ oe, & I l e l) 

then there exi sts a iť B °" J oc.. E l l e D such tha:t 

&c,e ::, A
d:. 

'f'or every cc:. e I and { A«- I oe. � I J u 

v { )( - B } E D . The family · l. 8  c( \ ce; E 1 } is call ed
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a distal neighbourhood ot .( A� I «, a 1 l 

Theorem 4. If' ( X , U ) is a wm.f'orm space then 

( X , ol (U) ) is a; distal space. If' ( X , ]) ) :is a distal spa-

ce then ( X, 11. ( D)) ie a uniform apace. A base for U C.D) 

cnnsists of sll coverings -{ X oc I oc. e I l satisfying 

the follnwing: There exist a cavering -< A ee, l oC. e; I i and 

seta I1, I 2., ••• , lm., such that I = "'-Y,,, I� and such

. tbat for every � , -1 � � � m., , the fami.ly- ,{ Ac,; I d.. e; � 

belongs to l) and .( X CJG I oc:. e IAe. l- is a distal neighbour-

. hood o'f -{ Aoe. I cc: s I .lt. l .. 

Proofl The first part of the theorem may be eásily pro

ved by rm sna of the star-refinement p·roperty of uniform apa,

ces. To prove the secnnd, take a covering a, associated 

wi th a, family .( A"' I oc:. es: I J e D • We ha ve a distal 

neighbnurhood of -t Ad. l « € I � , say { Boe. J ac e 1 3 . 

It is easily- seen that the covering � n ':J where 33 is 

associa ted wi th .( Bcie I oe: 4:: I 1 and � is associsted -

wi th -ť A , X - B } 1s a star-refinement of a, •

Let 33 ( I> ) be the set of all c overinga in <p.1estion. 

The system j, ( D) is a base for a quAsiuniformi ty U' •

.First, U' is finer thsn U (]) ) • Let Q, be the cover-

ing assoc.iated wi th 1- Ac<. I cc E I ! E ::D • If 

.( Bce I cc. e l 1 is a distal neighbourhoo d o'f -{ At:I(. l oe e I l

and if < Coc. J c,(,. e I l is a distal neighbourhood o'f 

.f Boe l oe • I l . then .( C, I ex. e I J v { X - A i 1a a 

covering belrmging to 1.L' which refines <l, o 
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The unitnrmi ty 1L ( D ) 1s finer than 11 • Take a co-

vering .( X� I .oe, et I 1 , .ta· (.]) ) and, accc,rding to 

the theorem, a covering -t A d, I «. e I l • · Put !t._ =

= .()( oc; I oc. e I
1t, 

J v.( x.- Ak I .

Since .(. Ae1:, 1 cG e l 1 is a covering o-t X then 

refines the cnvering .( X
oe. 

\ oe. � l l • By ea-

sy cnmputation, the coverings X_.,

the pn,of is complete. 

belong to 11 ( D ) and 

Let us denote by Jlú,.;t the cstegory tJf distal spa-

ces and distally continuous mappings and by, d.r 11mlt'--+ D<bt.

the natura,l functor which assigns to each uniformity the in

duced distali-cyo Theorem 4 implies that the category � 

is isomorphic to the full subcategory of 1.lmlA' of distal- · 

ly coarse uniform spaceso 

For the further use we need to introduce some subspaces 

of trn ell-infini ty spaces. The ell-infinit y space 1.,- ( I) , 

for any set l , is the metrie space whose pointa are the 

real-valued bounded :functions on I wi th the dia tan.ce 

f ( � ., g.-) .- � 1-f - 9-- I • Denote by H ( I ) the set of all

,f E 1.,_CI) with f (O, T) é: ,f and with st most one ex. e l 

such that -f ( oc) > O • The symbol � , oc. e I denotes the 

element of H (I) such that f Coe..)::::: '1 and -f ( �) =- O when

ever cc. + (3 •

Statement l: It < X „ l>) is a diatal space and it 
.( Boe l � e l J · is a diatai neighbourhoc,d n� -( A

d(. 
I et � I} � . .D 

then there exists a diatally continuous mapping 
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<f : ( X,]))--+ d. CHCI)) such that Boe. => li_.., {;;/' ) ::J A oc

frr every oe e I and moreover, c, ( X - S ) c: � OJ • 

The proof' of this statement is easy. It may be obtain

ed f'rom the metrization lemma for unif'orm spaces and from

Theorem 4 ( see also C 4 l). The direct Jr oof may be got by a 

modification of' the Urysolln 's procedure. 

Statement 2: For a dis.tal space ( X , J> ) the anif'or-

Ility u.,D) is the coarsest uniformity among those which 

makes every distally continuous mapping front (X,]) ) into 

H <X) unitnrmly continuous. 

Proof: Denote by lJ.' the described uniformity. Firat, 

1L „ is f'iner than tJ ( b ) , If' a,, ia the covering asaoeia- · 

ted wi th .(, �� I <:iG, € I l e .D and if' -f Boe. I ce c I J

is a distal neighbourhood of' .( A°' I oc. e I J then the cover-

1 ng -{ B oe, 1 «- E. I � v -{ X - A 1 bel ongs to 11 ' and 

refines a, • 

" The unifnrmi ty U (]) ) is finer than U • Observe 
"" 

that in H< X) , uniform coverings of the type J,,;'-:'f ::P�

where every �Je, is uni:fnrmly discrete f'amily f'orm a base 

tor unif nrm coverings of H ( X") 

Now, to introduce the unif'orm complexea is necessary.

Given an sbstract s1mplic1al complex K°" ,the unif'orm comp-

lex K is a subapa ce o f' 1.,00 ( Ka.. ) whose po ints are thoae
nnn-negat i ve functions f' on the verticea of K Q, such that ,
for aome simplex � of K� , -f(lll") = O f'or all vertice:i 1r
not in t. and � . -f ( nJ' ) = ,f • The dimension or a simplex 1e,r E' .o 
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�ne le ss: than the number nf verticea,, the dimension of a

c'1mplex (abstract or uni:torm) 1s the least upper bouo.d in

.f O, '1 , �,.,, oo j of the dimensions of its simplexes. For 

uniform c,.,mplexes, the dimension in the sense above is the 

same as the big uniform dimension A (f«r detaile con-

cerning uniform complexes cnnsult [5]). 

Statement l: For each set 1 , H ( I } 

mensional uniform complex. 

The proof 1s eviderrt.

1s a ene-di-

Statement 4: An:r closed subspace of a pm-duct ot tini

te-dimensional compl�es is an inverse limit ot finite-di

mensi�nal subspaces. 

!he proof is evident.

Recall that a co vering X ot '/t. is called fini te-di

mensicmal if, for some natural number m. , every .x e X 

belongs to st most m, elemente ot �. . 

Theorem 5. Gi ven a unif mm i ty U on X , the follmu

ing conditions are equivalent: 

( i) U is distally coarse 

(iil U has a base consisting of finite-dimensional cover

ings 

( 111) ( X , U ) is a subspaee ot a product of fini te-dimen

sional complexes 

(iv) The completion of (X„ U) is an inverse limit� ti

nite-dimensional uniform complexes. 

Proof: (1) implies (11): It follawa immediately fro• 
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( ii ) icpli es� (i): Let .( X oc. \ o<. e I J be a f'inite-dimen-

sional covering. Take a atrict strinkage t1l .( Xce f oc E I J

i.e. 1 
a unif'orm covering .( Z oe. I ot .e I· l. such that 

St ( z °' , l!J ) c X oc. tcr some unitorm co vering ':J • Ot 

cour se, ..( Z D' I o<, c I i is also fini te-dimensional. 

Theref�re there exists a unif'orm covering 1P which refi

nes .( Z
oe 

I°' e I J and it is a fini te union of unif'ormly 

discrete s ubcollections (see [5], P• 67). It is clear that 

a strl.table uni:f'orm neighbourhood of � refines .( Xoe. l « E 

e I J Now, the proof of this implication f'ollows 

from Theorem 4o 

(i) implies ( iii): It follows from Statement 2 and 3.

(111) implies (iv): It follows from Statement 4 because if'

<. X, U ) is a subspace of a c,.,ciplete space '2L then the 

c"'mpletion of ( X, U ) is a closed subspace fJf QJ.. • 

Civ) impliea (ii): This is trivial. 

Remarkso 

A. For uniform spaces and for proximi ty spaces we can in

troduc e the notions of projecti ve generation and inductive

gene,ration (see (2J, P• 679). The same notions can be in

tr„duced for dlsta,l spac:es: aa well. One cen prove that the

natural :f"unetor preserves inductive generation and need

not preserve projective generation. In this connection the

follnwing question aeems to be of interest:

Prpble5& Find two uniformi ti es on a set X , aay U 1 ,

U
1 , so that d.(U1). olCU

2_
> but d,(U1A U

2.
) =+: ol CU1).

Here I\ is the greatest lower bound in the lattice ot
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uniformi ties. Por the same for proximity spaces,see(lJ, (3), [6]. 

Is the distali ty d. 'U. 

miaed by the proximi ty ,fa, 'U 

of a space 'U, already deter

and by the collection ot all 

unitnrmly discrete families .{ X °" I oe, • I J each X .c ia 

a one-point set? No. Let X be an uncountable set. Let 

'U�= C X, U ) have a base consisting of all parti tiona 

wi th gt most countable many elemente and let '2l2 =- C .,K, U)

have a base consisting of all partitions as above with at

most cardinali ty greater than � 
0 

„ These uniformitiea 1t1 , 

1/12 
have the same properties in qµestion but ol. U1 =f=

• cL 'U..2. •

The following question: was important in the axiomatic 

develnpment of distal spaces. Let { X oc. I oc. e I J be a � 

tem of subsets ot X 7 each Xoe. can be wri tten ail a dia

joint uninn of two nonvoid subseta Xo "1 oc. u X.: • Suppoae

that for each system of upper indexes ,{ -1,cc: I « e I J ,

"'oe 
� E -{ O, -1· J the system { X

ce. 
I oc. s I l is uniformly disc-

rete. Is then { X Gt. I 0C e I J uniformly discrete?

A sketch of the counterexample {by P. Simon) c; Let X 

be a disjoint union, of X�, 1k., e N and let ever,y X� con-
� . 

. sist, ot 2: disjoint subsets, X .k-i, , C4lf.bL X.9t..;, = 2 ( 2 - '1) •
Divide all X .k-i, into two disjoint subsets, BQ X� -i, , 

, 1 and X Jk i- , and denote x.:_ = . U � x:"' , X!=-. _U 1't. X�.;, •
,t,: ",···, !2. -1.o-1, ... ,2 

For the illuatration a picture: 
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io o o o 

o o o o ':, 

o 
o o o o L. 8 

o o 

o o o 

t
< 8 0 

o o o o 

o o 
X 

o o x"
.1 f4JX1

First, there existe a covering 'J oť X having the 

pri,pertiee: 

a. If Y °' , Y /& e. 'J , «-- + (3

b. For all Yoc. E 3 it holde 

1) Y°' c x„ for some ,Pt; � N 

11) � � - 2.

111) Y" - x
.-.11 

+ i for every Je, -i, e N 

iv) � - x.:, + i ,

., 
c. If Jt.. e N , a, e -{ O, � j , 1 '= L, j .::: Q arx, -i, + -a,

.. 
� 

then there 1s Y°' � 'J such that Y« n x_:.é, · =I- 9 and 
,4-a, 

Y"' n X Aa.j. =I= I .

In.the following picture. two pointa are connected with 

tbe line 1f:t the correeponding two-point set belonge to 

'J • 
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Let A dennte the syatem of all collections 'fn such 

that for every At,, -1.1 exactly one half. nf X..Qz. -i, belonga 

to m . Given ,m E A 'define a covering �ffl, as toll-

ows: 

i) X
,m, 

-< '!1

11) For every � e X , st ( � , X m, ) 

moe t one set belonging to lfYl , 

. 111) If % is a covering, Xm � � -< � 

meets at

then 

there is a set Zr tt % which meets at lest two sets .belong• 

1ng to lfYl • 

N„w, the sys.tem -ť Xm I m, e A 1 forms a subbase ftr a

unif "rm i -ey 1L on the set X atld, in this uniformity, eve-

ry 'ln 6 A 18.:a unifnrmly dis:crete collection. It remains 

to show that -{ X
.-,

-i, I lt, c N ·, 1 � -t. � 2.91. l 1s. not uni

formly diacrete but 1t ia not because every covering X e lJ. 

containe a two-pt,1ilt set ( pro tlf by induction). 

B. Th• distally- coarse spaces foriD a reflective subcat egory

of unitorm epsces. Denote again by al, U the reflection of a 
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apace 'l.L • It has for a bE.se the fini te-dimensiomů covei-

inga of 1/t • 

The functor d, preserves subspacee, 1.e., if 'l/,
1 

ia a 

subspace of 'U then cl 1l 1 is a subspaice o� d 'll • It

tnllnwa immediately from this lemma: If 'U
1 

ia a subspace 

of 1l and if X 1 is a m, -dimensional- uniform covering of

IJJ.
1 

then there exista an ITl, + 1 -dimensional uniform cove-

ring X of 'U, such tha t the tra:ce · ot X on 1/J,1 
refims

x
-1 

•

The proof of the lemma is not ditticult. 

For the totally bounded reflection ,fl-0 we have the

formula: ;fl,0 
U = 11, v 1t, 0 t f' 1/J., • (Here t

-f) 
is

the fine co-reflection and the symbol v is that of the 

least upper bound in the lattic.e of unifnrmities on a set.) 

The similar formule for ol , namely d,f/1., = '2l v cL t+" 'lJ, , 

dnes not holdo To exhibit it, note the fnllowing 

Proposi tion 1: For a uniform space f/1. , A ( d f/l ) {2 

= cf ( oL 'U ) where � means the big and d' the small 

unifnrm dimension. 

The prnof can be obtained from The-orem 5, p. 79 in [Sl.

Proposi tion 2: There exieta a uni:f'orm space 'U::: ( X , U.) 

a:uch that the following holde: 

1) X is countable

11) a,f/1., =f; 'll

111) t
.p 

?l is the discrete uniformity. 

Proot: There exiats a separable uniform space 11' aueh 
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thst t, 'li 1a discrete and A 'I/= <t>·. , ó'II' = O ( aee 

[51, p. 79). 'U, la a countable dense subepace e�· 'li' .  

If 'U, is from Propeai tion 2 tben 'U v d, t
., 

� • 'lJ, +

* d.'lL •

This space 'll can be also used to demonstrate tbat

the tnrmula �o 
( 1f ,< ,fl.,o 'li} • ,fl,0

(V') x .p..0 (V') holding 

for each space 'IJ' doea not hold for diatal ref'lection. 

( The prt'>of 1s easy because of the countabili ty rL 1/J, • ) 

Finally, perhsps the most interesting ditference betwe

en "11,0 and d. • • If ,U,= (X, U) is a space such that for 

1/J' = C X , V') , ;fl,0 ( 'Zl ) • ..p,0 
( V ) implies thet V is co ara-

er th:ln U 

space 'W' , 

, then 'U 

<:,: ,ri, o u 

1s proximally f'ine, i.e., for every·

--....... ,f1, o 'l1J' 1s unif'orml:r conti-

nuous if'f' <;g s 'U, ---+ 'NI' is. It was established by M. Hu-

šek that such a, statement dnes not hold for the distal ref

lection. In fact, it was shown that for every space 'li, the-

re i s a space 'U, wi th the properties,

,v ,,,..,, 

1) 'U, ia distally unique. It means, iť 11 =I= 'lL then 
-

d, 1f =I= d., u .

11) U is a Q.Ut'>tient space nf 1/t •

This construction ia in this publication nn the page

113. 

Now, to exhibit a space in question it sufficea to take

tbe space 'lL tor a space 'U , . flJ, is not :t'ineat among tho-

ae unifnrm a.paces having the distaliq d, 'U (use tbat the 

diatally fine apaoea torm a, cere:f'lectift subcategc,ry .r.

1L114lf' ). 
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