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Abstract. We study a system of nonlinear wave equations of the Kirchhoff-Carrier type
containing a variant of the Balakrishnan-Taylor damping in nonlinear terms. By the lin-
earization method together with the Faedo-Galerkin method, we prove the local existence
and uniqueness of a weak solution. On the other hand, by constructing a suitable Lyapunov
functional, a sufficient condition is also established to obtain the exponential decay of weak
solutions.
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Taylor term; Faedo-Galerkin method; local existence; exponential decay
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1. INTRODUCTION

We consider the initial-boundary value problem for the system of nonlinear wave
equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms

(11) Ut — Aumxt — M1 (tv <ux(t); uzt(t»)uzz = fl (:I:v ta Uy Vy Ugy Uy Ut Ut);

Vgt — ,LLQ(tv H’U(t)”Q, ||v1(t)|‘2)vl’l’ = fQ(xvta U, U, Ug, Vg, Ut, Ut),
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0<xz<1,0<t<T, associated with the Robin-Dirichlet conditions
(1.2) u(0,t) = u(l,t) = v(1,t) = v;(0,t) — Cv(0,¢) =0
and initial conditions

(1.3)  (u(=,0),v(z,0)) = (tdo(x), 00(2)), (ue(x,0),vi(x,0)) = (t1(x), 01 (),

where A > 0, ¢ > 0 are given constants and @, ¥;, i, fi (i = 1,2) are given functions
satisfying conditions, which will be specified later. In (1.1), the nonlinear terms
i1 (1 G (8), e (6))), a2, (D)2, ||vz< )I?) depend on the integrals <um<t) e (£)) =
fol Uy (7, ) uge (2, 1) dz, [0 (t)]|? = fo (z,t)dz and |jv.(t)]|? = fo (z,t)d.

The system (1.1) is regarded as the combination between the wave equation of the
Kirchhoff-Carrier type and that with the Balakrishnan-Taylor damping, in which a
related case of (1.1); was proposed by Balakrishnan and Taylor in 1989, see [1]. They
established the following new model for flight structures with viscous and nonlinear

nonlocal damping in the one dimensional case

L 2(N+n) /L
/ UgUgt AT / Ugp Uzt dx) Ugy = 0,
0 0

where u = wu(z,t) represents the transversal deflection of an extensible beam of

(1-4) oust + Elugrpes — Clgat

EA ,

length 2L > 0 in the rest position, ¢ > 0 is the mass density, £ is Young’s modulus
of elasticity, I is the cross-sectional moment of inertia, H is the axial force (either
traction or compression), A is the cross-sectional area, ¢ > 0 is the coefficient of
viscous damping, 7 > 0 is the Balakrishnan-Taylor damping coefficient, 0 < 7 < 1,
0<n< % and N € N. Equation (1.4) seems to be related to the panel flutter
equation and spillover problem, we refer the reader to [2] for more information.
Since then, the equation with the Balakrishnan-Taylor damping was studied in many
papers in which the properties of the solution such as stability, decay and blow-up
in time are considered, see [3]-[6], [8], [9], [12]-[17], [20]-[22], [27], [31], [32], [35] and
references therein. Some authors were interested in the effects of time-varying delay,
which appear in many applications to science because physical, chemical, biological,
thermal, and economical phenomena naturally not only depend on the present state
but also on some past occurrences, see examples in [17], [20], [21].

In 2011, Emmrich and Thalhammer considered a class of integro-differential equa-
tions with applications in nonlinear elastodynamics. They proposed a general model
for the description of nonlinear extensible beams incorporating the weak, viscous,
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strong and Balakrishnan-Taylor damping as follows (see [8], equation (1.1))

(1.5) gy + aA%u + Eu + kuy — MNAug + pA2uy

q—2
- (,34-7/ |Vul? dx+5‘/ VuVu, dz /VuVut dx)Au:h
Q Q Q

in Q x (0,00), where  C R™ is a bounded domain. The constants have physical
meaning: « > 0 is the elasticity coefficient, v > 0 is the extensibility coefficient, A > 0
is the viscous damping coefficient, g > 0 is the strong damping coefficient, § > 0
is the Balakrishnan-Taylor damping coefficient, 8 € R is the axial force coefficient
(8 > 0 means traction or 5 < 0 compression), x € R is the weak damping coefficient
(although without the sign condition), £ € R is source coefficient and the exponent ¢
belongs to [2,00). In [12], Tavares et al. worked with an alternative expression of the
Balakrishnan-Taylor term

(1.6) B, u) = /Q VuVuy de = — /Q (Au)u; da

to study the well-posedness and long-time dynamics of the class of extensible beams
with the Balakrishnan-Taylor and frictional damping

(1.7) wge + A%u— (6—1—7/ |Vu|2da:+5|<1>(u,ut)|q2<I>(u,ut)>Au+/@ut+f(u) = h,
Q

in Q x R, where  is a bounded domain in R™ with the smooth boundary I" = 0€).
In [27], the authors proved the existence and uniqueness of the initial-boundary value
problem
(1.8)
et — AMtgar — p(t, (Ua (), wae (1)), ()12, [[ua ()] tos
= f(z,t,u, ug, U, (g (), uze (1)), [|u(®)|?, |ue(H)]?), 0<z<1,0<t<T,
u(0,t) = u(1,t) =0,

u(z,0) = to(x), u(z,0) = u1(x),

where p, f, g, 1 are given functions, A > 0 is a given constant. When u =
B(|lug(t)]1?) + o((usz(t), uz(t))) and f = —Ajuy + f(u) + F(x,t), they put suitable
hypotheses and sufficient conditions for the nonlinear Balakrishnan-Taylor damping
o((uy(t), uge(t))) to get the exponential decay of solution. When f = 0 and p
depends only on |[v(¢)||? and |lv.(t)||?, equation (1.8); reduces to the equation of the
Kirchhoff-Carrier type, describing nonlinear vibrations of an elastic string, which
were studied in [7], [25], [34].
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In [19], Jamil and Fetecau studied a mathematical model describing helical flows of
the Maxwell fluid in an annular region between two infinite coaxial circular cylinders
of radii 1 and R > 1 below

1 1
)\utt—i—utzu(um—l——uz——Qu), l<x <R, t>0,

T T

1
)\vtt—f—vt:l/(vm—i—gvm), l<x <R, t>0,

(1.9) wo(1,8) — u(1,t) = Lo, w10 = 91, >0,
u [

u(R,t) = v(R,t) =0, t>0,
u(z,0) = u(x,0) =0, l<ax<R,
v(z,0) = v(z,0) = 0, 1<z <R,

where A\, u, v, f, and g are given constants. The authors obtained an exact solution
for this problem by means of finite Hankel transforms and presented it in the series
form in terms of Bessel functions Jy(x), Yy(z), Ji(z), Y1(x), J2(z) and Y2(x), satis-
fying all imposed initial and boundary conditions. Other works on helical flows for
ordinary and fractional derivative models can be found in [28], [18] and [33]. Some
recent works focus on studying the porous elastic systems with nonlinear damping,
see [11], [10], [24], [29] and references therein. It seems that the first research about
the system of equations of the Kirchhoff type with the Balakrishnan-Taylor damping
is given in [26], where its model is described as

Ut — (a + b||Vul]? + J/ VuVuy dx) Au
Q
¢
+/ g1(t — s)Au(s)ds = fi(u,v), t>0, z €,
0

Vgt — <a + b Vo2 + 0/ VoV, dx> Av
Q

(1.10) t
+/ g2(t — 5)Av(s)ds = fa(u,v), t>0, v €Q,
0
u(z,0) = uo(z), u(z,0) = ui(x), x € Q,
v(x,0) = vo(x), ve(x,0) = vy (x), x € Q,
u(z,t) = v(z,t) =0, (z,t) € T x [0,00),

where 2 is a bounded domain in R™ with a smooth boundary I'. By the energy
method, Mu and Ma in [26] obtained an arbitrary decay of solutions according to
the relaxation functions. To the best of our knowledge, the system of equations
of the Kirchhoff-Carrier type with the Balakrishnan-Taylor damping (1.1) has not
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been extensively studied. Motivated by the above articles, we survey the unique
existence and exponential decay of weak solutions of the problem (1.1). Our plan in
this paper is as follows. In Section 2, we present some preliminaries. In Section 3,
by applying the linearization method together with the Faedo-Galerkin method and
the weak compact method, we prove the local existence and the uniqueness of a
weak solution (Theorem 3.7). In Section 4, by constructing a suitable Lyapunov
functional, we prove a condition sufficient to obtain the exponential decay of weak
solutions (Theorem 4.2). The results obtained here are a relative generalization
of [24], [27] and [34] by improving and developing these previous works essentially.

2. PRELIMINARIES

First, we put Q = (0,1), Qr = Q x (0,7), T > 0 and denote the usual function
spaces used in this paper by the notations LP = LP(Q), H™ = H™(2). Let (-, -) be
either the scalar product in L? or the dual pairing of a continuous linear functional
and an element of a function space. The notation ||-|| stands for the norm in L? and
we denote by ||-||x the norm in the Banach space X. We call X’ the dual space of X.

We denote by LP(0,7;X), 1 < p < oo, the Banach space of real functions u:
(0,T7) — X, measurable and such that |lu|zr,7;x) < oo with

T 1/p
(/ huizar) ™ it1<p<os
0

ess sup ||u(t)|| x if p = o0.
0<t<T

On H! = H'(Q), we use the norm

[l = VI[vl1? + [lvz 1.

lullzeo,rx) =

We put
(2.1) V={ve H: v(l) =0},
(2.2) a(u,v) = /0 Ug (2)vg (x) dz + Cu(0)v(0) Vu,ve V.

The set V is a closed subspace of H! and on V, the three norms ||v|| g1, ||v.|| and

||v]|le = /a(v,v) are equivalent.
We state the following lemmas, the proofs of which are straightforward, and hence
we omit the details.

Lemma 2.1. The imbedding H' < C°(Q) is compact and for all v € H*,

||UHCO(§) < \@HU”HI
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Lemma 2.2. Let ( > 0. Then the imbedding V — C°(Q) is compact and for all
v eV,

ol oy < llvell < llvlla,

1
EIIUHH1 <]l < flvlla < V1 +Clvll

Lemma 2.3. Let ¢ > 0. Then the symmetric bilinear form a(-,-) defined by (2.2)
is continuous on V x V and coercive on V. Furthermore,
(i) la(u,v)] < (1 4+ Olluelllve| for all u,v €V,
(i) a(v,v) = ||vg||* for allv € V.

Lemma 2.4. Let ¢ > 0. Then there exists a Hilbert orthonormal base {$;} of L?
consisting of the eigenfunctions ¢; corresponding to the eigenvalue S\j such that

0<5\1<5\2<<5\J<, IIIIIS\JZOO7
j—ro0

a(@;,v) = 5\j<g5j,v> YwevV, j=1,2,...

Furthermore, the sequence {@; 5\;1/ 2} is also a Hilbert orthonormal basis of V' with
respect to the scalar product a(-, ).
On the other hand, we also have that ¢; satisfy the boundary value problems

{ —AG; =X in (0,1),
3c(0) = C3;(0) = &;(1) =0, & € C®(Q).

Proof. The proof of Lemma 2.4 can be found in [30], page 87, Theorem 7.7
with H = L? and a(-,-) is defined by (2.2). O

3. THE EXISTENCE AND UNIQUENESS THEOREM

Considering T™* > 0 fixed, we make the following assumptions:

(Hy) o, @ € HY N H?, 5o € VN H2, 5 € V, s — Ciio = 0,

(Hz) w1 € CH([0,T%] x R), pz € C*([0,T*] x R%), and there exist positive constants
M1k, fos such that pq (t,y) = p1. for all (¢,y) € [0,7*] x R and pa(t, y, 2) = pa«
for all (t,y,2) € [0,T*] x RZ,

(H3) fi € C1([0,1] x [0,T*] x RY), i=1,2.
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Let A > 0, ¢ > 0. For every T € (0,T*], we say that (u,v) is a weak solution of
the problem (1.1)—(1.3) if
(u,v) € Wr = {(u,v) € L=(0,T; (H) N H?) x (V N H?)):
(u',v'") € L=(0,T; (H} N H?) x V),
u” € L*(0,T; H}) N L*(0,T; L?), v € L>(0,T; L?)}
and (u,v) satisfies the variational problem
{ (" (), ) + Mu(t), o) + pa[u] () ua(t), ou) = (f1[u, v](1), ¢),
(0"(1), §) + palvl(t)a(v(t), ©) = (f2lu, v](t), $)

for all (p,p) € H} x V and a.e. t € (0,T), together with the initial conditions

(3.2) (u(0),u(0)) = (i, @), (v(0),'(0)) = (o, Bn),

where
(3.3)

(3.1)

pa[ul(t) = pa (¢, (ua (L), u (1)),
p2lv](t) = pa(t, o)1, o2 (t)]%),
filu,v](z,t) = fi(z, t,ulz, t), v(x, t), ug(x, t), vy (2, t),u' (x,t), 0" (2, 1), i=1,2.

For each M > 0 given, we set the constants Ky = K (f1, f2), Ky = I?M(/,Ll,/j/g) as
(3.4)

2 2 8
Ky = Ku(fr, f2) Z I filleran) = ZZ |Difillco(an)s
j=1 j=1i=0

2
Ky = KM (k1 p2) Z \Mj”cl(Ag&))

2 3
= ||‘LL1HCO(A§\/1I)) + ; HDiM1||CO(A§\/11)) + HM2HCO(AS\?) + z_; ||DiM2HCO(A§V2[>)’

where
||fjHCO(AM) = sup |fj(x7tay1a"'7y6)|v j:172a
z,t,,Y1,.,Y6) EAM
HMcho Ay = Sup |M1(t7y)|7
U pealy
”MQ”CO A@y = sup |M2(t7yaz)|7
(3.5) (Ay) (63,2 € AD)

Am :[ ) ] [OvT ] X [_M’ M]G’
A(l) =[0,T%] x [—MQ,MQ],
A =[0, 77 x [0, M?]2.
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For each T € (0,T*], we put
(3.6) Vi = {(u,v) € L=(0,T; (HL N H?) x (VN H?)):
(u',v') € L>®(0,T; (Hy N H?) x V), (u”,v") € L*(0,T; Hy x L?)};
it is a Banach space with respect to the norm
(3.7) ([ (w, v)[lvy = max{]|(u, U)HL°°(O,T;(H10H2)><(VF1H2))7
0
H(U,aU,)HLDC(O,T;(HgmH?)xv)a ||(U"aU”)||L2(0,T;ngL2)}~

For every M > 0, we put

(3.8) W(M,T) ={(u,v) € Vr: [|(u,v)[lvy <M},
Wi (M, T) = {(u,v) € W(M,T): (u,v") € L>®(0,T; L* x L*)}.

Now, we establish the following recurrent sequence {(tm,, vy)}. The first term is
chosen as (ug,v9) = (0,0); suppose that

(39) (umflvvmfl) € Wl(Mv T)v

then we associate (1.1)—(1.3) with the following problem.
Find (um, vm) € Wi (M, T) (m > 1) which satisfies the linear variational problem

<’U;;L (t)7 &> + H2m (t)a(vm (t)7 &) = <F2m (t)a SE>

for all (p,9) € H} x V and a.e. t € (0,T), together with the initial conditions

(3.10) { (win (1)) + Mt (1), 00) + Him (8) (mar (1), 02) = (Fim (t), 0,

(3.11) (um(0),up,(0)) = (@, @1), (v (0),5,(0)) = (o, 71),
where
(312)  pum(t)

H2m (t)
Fim ((E, t)

pa[tm—1](t) = pa (t, (Vum -1 (t), Vg, (1)),

p2lvm-1](t) = p2(t, [vm—1 @), [Vom-—1(0)]1%),
filtm—1, vm-1](t)
filx, t, wm—1 (2, )

s VUm—1(2,1), Vm_1(z,t), Vom-1(z, 1),
ul, g (@, t), vl (z,t), i=1,2.

Then we have the following theorem.

Theorem 3.1. Let (H;)—(Hsz) hold. Then there exist constants M, T > 0 such
that, for (ug,v9) = (0,0), there exists a recurrent sequence {(Um,vm)} C Wi (M, T)
defined by (3.9)—(3.12).
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Proof. The proof of Theorem 3.1 consists of three steps.
Step 1. The Faedo-Galerkin approximation. Let {¢,} be a basis of Hj formed

by the eigenfunction ¢; of the operator —A = —88—22 such that —Ag; = Aj;,
¢ € HENnC>=([0,1]), pj(x) = V2sin(jnz), \j = (jn)%, i =1,2,..., and let {@,} be
the basis of V' as in Lemma 2.4. Put
k k
(3.13) WP () =Y s v () =Y d(0F,
j=1 j=1

where the coefficients c(k)( t), dg,]f; (t) satisfy the system of linear differential equations

(i) (1), 05 + Masmn (£), 970) + p1m () (Wika (), 0jz) = (Fum (1), 05),
(3.14) G (t), 37) + nam (a0 (8), 35) = (Fam (1), 55),
(utn) (0), 1 (0)) = (fok, @r), (v (0), 58 (0)) = (Bor, Dux),

1 < j <k, in which

(3.15)
k
(o, i) = Y _ (4", 88 p; — (dio, @1) strongly in (HE N H?) x (Hi N H?),
j=1
k ~
(Tor: T11) = 3@, B35 — (0, 51) strongly in (V.1 H?) x V.

Jj=1

The system of (3.14) and (3.15) can be rewritten in the form

ERE) + MNE) (1) + Mg (D) (8) = (Fum (1), 05),
Aoy (6) + Njpizm (0] (8) = (Fam (1), 35),

(ch)(0), i) (0)) = (af, &),

(4 (0), d%)(0)) = w(’” B9y, 1<j<h

Using Banach’s contraction principle, it is not difficult to prove that the sys-
tem (3.16) has a unique solution W )( t), dgf; (t), 1 < j < k, on the interval [0, T].
Step 2. A priori estimate. We put

(3.16)

(3.17) LY () = Il (O + 1057 012 + 1Sk @11 + o5 @117 + M Aag) (@)1
+ i () (Jufen (D17 + 1Ay (0)]1)
+ 2 (O (of) ()17 + | A0 (0)]%)

) (#)
w2 [ (RN + 180 )17 as
+2/ [[i$F) () ||2ds+/ [ (5)]| ds.
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Then, it follows from (3.14), (3.17) that
(3.18) SU(t) = S(0) + 2(F1m (0), Adior + Adixg) + 2(Fom (0), Adigr)

200 (0) (Ao, Aiiny) + 2 / i (3) [ A0 (5) 2 ds
+ / (8 (uEL()]2 + 10 ()] + 2(Aul (5), A (s))) ds
4 [ D E + 800 5)[2) ds
0
2 / (Fim (), 62 (5)) + (Fam (5), 59 (s))) s

2| (), At (5) A (5)) + (Bl (), Ao (5))) s
— (Fyn(t), A (1) + A (1)) — 2(Fan(8), Ao (1)
— 21 (8){Au®) (1), A ( / [50(s)]1? ds
= SF)(0) + 2(Fim (0), Adigr + Adiak) + 2(Fam(0), Ador)
+ 201m (0)(Adgr, Alyg) + ilj.
O

First, we need the folowing lemma whose proof is easy, hence we omit the details.

Lemma 3.2. We have

(M) lam (D] < Kar, i =1,2,

Wi (O] < Wi (M, 8),

P (1)) < Kpg (1 +4M2),

Em(a:, ] < Kpy,i=1,2,

[Fim (O] < @m(M, 1), i = 1,2,

\Fzm(t)ll < | Fim (0 )H +VTEm((1+4M)VT +2M), i = 1,2,

[
=

(iv
(v
(vi)

)
)
(iii) |
) |
) |
|

a(1+ M+ M|Vay, (D)),

\Ilm(M ):
2 m(L+4M + [, (I + v (0)])

) =K
m(M,t) = K
satisfy

(vil) W,,(M,"), ®,(M,-) € L*(0,T),

(viid) [[Wn (M, )|l z20,m) < Kar((1+ M2)VT + M?),
() 19 (M. )20y < Kar((1+4M)VT +21M).
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Using Lemma 3.2 we estimate the terms I; on the right-hand side of (3.18) as
follows. Put A\, = min{\, u1«, ttox }, by the inequality

(3.19) S (1) = 1l @11 + 105 (1)1
+ A (lAal) (@)1 + [[uf2 @I + [ Aul) ()]
+ [0 @I1E + lavs? (@)]1%)

we estimate I, I, I3, Iy, I5, respectively, as

t 2R—M t
(3:20) =2 [ (o)l aa ()P ds < 52 [ 505
0 * 0
t
= [ () (B + |20l 6)[ + 200 (5), A (5)) ds
0
) t
< — | (M, s)SP (s)ds,
A Jo
t 7 2 t
b= [ & N2 + 1800 as < L s as
0 * 0
t t
I =2 [ (Fun(s),af(5) + (Fan(s), o) () ds < 2TKE + [ 50 (),
0 0
t
I =2 [ (B (5) Bulf) () + A8 (5) + (B (5), Aol () ds
0
t

<2 /(IIF{ S AuD S+ A ($)1) + 1 () [ [ AvS (s)]]) ds

cofZ [

¢
—/ m(M, s ds+/ ®,, (M, 5)S") () ds.
0

Estimate of Ig. By Lemma 3.2(v) and the inequality 2ab < ga® + 6b® for all
a,b >0, we get

(3.21) Is = — 2(Fin(t), Au®) (1) + AalF) (1))
2

2/ 5= 1 Fum @Iy 5527 ()

1 12
< Zgk) il 2
<55 (1) + ~ [ Fim (8]

1o 24 5 24, )
< gsm (t) + A—||F1m(0)|| + /\—TKM((l +4MVT + 2M)?.
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Estimate of I7. Similarly,

(3.22) Ir = = 2(Fym(t), Aol (1))

A 6
< G IAvR O + 1 Fm @)

1 12 12
< 655,’? (t) + )\—HFQm(O)HQ + )\—TKJQW((l +4M)VT + 2M)2.

In order to estimate the term Is = —2u1m(t)<Au$f,) (t),Aug,]f) (t)), we need the
following lemma.

Lemma 3.3. The term ||u1m(t)Au£,]f) (t)||? is estimated as

o [t
(323)  llpam (A (O < 22 (0) Ao > + T / 7, (M, )S{(s) ds.
* JO

Proof. First, we need to estimate H%(ulm(t)Augf) (t))||- By Lemma 3.2 (ii)
and the inequality (3.19), we obtain

(329) |2 (2D )] < 0 (YA O] + i (1) AGD ()]
< (M (1A W] + [ Aa (1))

D)
</ 5T (M. 1) S (t).

The formula
Ly
11 (8) 5 () = 11 (0) A, + / 2 ()2 (5)) ds
0

implies that

325)  lian @201 < (1870 + [ |2 m a0 o] )

oT [t
< 2 (O) Dok | + 2 / W2, (M, $)S® (s) ds.
* 0

Lemma 3.3 is proved completely. O
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Using Lemma 3.3, the term I3 is estimated as

(3.26)  Is = — 2p1m ()(AuP (1), AulP (1))
Aot 6
< gI\AUSf) @) + /\—Ilmm(t)Au%’f) OllE

127
AZ

X

12 t
S (t) + )\_Hﬂlm(O)AftOkHQ + / 2 (M, s)SH (s) ds.
* 0

1
6

Finally, we estimate Iy = fot ||i}$,lf)(s)||2ds as follows. Equation (3.14)2 can be

rewritten as
(B0 (1), 83) = p2m (£) (A0 (8), 85) = (P (), 85), 1< <k
Then, it follows after replacing ¢; with Hk) (t) and integrating that
t
(3.27) Iy = / [ (s)]|? ds
0
t t
<2 [ i AP )P ds +2 [ [Fan(s)]ds
0 0
_ t
< 2Ky / Sk (s)ds + 2T K3,.
0

It follows from (3.18), (3.20), (3.21), (3.22), (3.26) and (3.27) that

t
(3.28) SM(t) < Sy + VT D1 (M) + / M (M, 8)S$) (s) ds,
0
where
(3.29) Sk = 255(0) + 4(F1,,(0), Aoy, + Adigy,)

+ 4<F2m (0), A@0k> + 4,LL1m(O) <A’l~l,0k, Aﬂ1k>
24 N
+ /\—(|\M1m(0)AU0k||2 + 2] F1n (0)12 + [ Fam (0)]%),

Di(M) = 8(1 + %((1 FAMWT + 2M)2) VT K2,

*

6
+ (L 4AMWVT™ + 2M) K,
24T

4
Nm (M, t) = Do(M) + 2®,,(M,t) + )\—\I/m(M, t) + 3z U2 (M, 1),
3+ 4M?2\ ~
Dy(M) =2+2(2+ %)KM.
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On the other hand, the functions Fj,, (z,0) = fi(x,0, @ (), Vo(x), Goz (), Doz (),
1 (2), 01(x)), pim(0) = p1(0, (loke, Gikz)) and pom(0) = ua(0, [|Tol?, [[00x]|?) are
independent of m and the constant gm,k is also independent of m, because

(3.30) Sk = 2l@kl® + 2[| 01k l1* + 2[| G |* + 20|01kl + 2| At ||
+ 2111 (0) ([ Gioka |I* + || Adiok[|*) + 2p20m (0) ([| D0k I3 + | Aok ||?)
+ 4(F1m(0), Ao, + Atig) + 4(Fom(0), Abok) + 4p01m (0) (Ao, Alg)

24 ~
+ 3 (lam (0) Adior |* + 2[| Fipn (0 + | Fom (0)])-

By means of the convergences in (3.15), there exists a constant M > 0, independent
of k and m, such that

- 1
(3.31) Sk < 5M2 Vm, ke N.

Now, we need the following lemmas.

Lemma 3.4. We have
() %(M ) € LY(0,T),
(ii) fo 77m(M75) ds < 77M(T)7
where
(3.32)
i (T) = TDo(M) + 2VT Ky (1 + AMNT + 2M)

4 ~ 24T
+ )\—\/TKM((l + M*)VT + M?) + 2

K2,((1 + M)VT + M?)2.

Lemma 3.5. For every T € (0,7*] and § > 0, we put

1 Ku(l+4M2 1

(333) Tu(6.T) = (3+ 5 + %)TJT VIR (1 + M2WVT + M2),
K 2

em,(M,a,t):3+l+KM(1+4M )+ Vo (M, 1)

) L
Then
T
(3.34) / O (M, 6,8) dt < Tus (6,T).
0
The proofs of these lemmas are easy, hence we omit the details. O
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Lemma 3.6. For every T € (0,7%] and 6 > 0, we put

(3.35) i 9) = (2+ 2 202) VDG T expra .7
where
(3.36) Dy (8,T) = 8TK3 + (17T + §)M*K3,.

Let § > 0 be such that

14+ 2v2
V2

Then, we can choose T € (0,T*] such that
(i) (3M? + VTD1(M)) exp(n (T)) < M?,
(11) kJT(é) < 1.

(3.37) (2 + )M%?M\/S <1.

Proof. The proof of Lemma 3.6 is easy, because

lim (MTQ + \/TDl(M)) exp(nm (T)) = %2 < M?

T—04 2
and 5 .
. _ 2 -
i k() = (2+ Voo \/R)M Kuve < 1.

By (3.28), (3.31) and Lemma 3.6 (i)—(ii) we obtain
¢
(3.38) SE(0) < M exp-ma() + [ (95 (5)ds.
0
Using Gronwall’s lemma, we deduce from Lemma 3.4 (ii) and (3.38) that
¢
(3.39) S () < M? exp(—nar(T)) exp (/ Nm (M, s) ds)
0
< M? exp(—nu (T)) exp(nu (T)) < M*
for all ¢t € [0,T] and for all m and k. Therefore, we have
(3.40) (ul® vy e W(M,T) ¥Ym and k.
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Step 3. Limit process. From (3.40), we deduce the existence of a subsequence of
{(uﬁ,’f ), vgf))} denoted identicallly and such that

(k)

W vE) = (U, vm)  in L0, T; (HE N H?) x (V N H?)) weak*,
(5.41) @R oy = (ul, vl in L0, T; (HE N H?) x V) weak*,

@R 55y = (u” v in L2(0,T; HY x L?) weak,

(U, V) € W(M,T).

Passing to limit in (3.14), we have (uy,, v,) satisfying (3.10)—(3.12) in L2(0,T). On
the other hand, it follows from (3.10) and (3.41)4 that

ulty = MU, + fi1m () Aty + Fupn € L0, T L?),
UZI = /JQm(t)A'Um + Fom € LOO(()’T; LQ)’

hence (tm, vm) € W1(M,T) and the proof of Theorem 3.1 is complete. O

We note that

(3.42)  Wi(T) = {(u,v) € L=(0,T; Hy x V): o/ € L>(0,T; L*) N L*(0,T; HY),
v’ € L=(0,T; L?)}

is a Banach space with respect to the norm (see Lions [23])

(3.43) [ (w, ) lw, () = Null oo go,m3) + IvllLoeo,vy + 14| oo 0,7:2)

+ HU,HLz(o,T;Hg) + 10" Loe (0,751.2) -

We use the result obtained in Theorem 3.1 and the compact imbedding theorems
to prove the existence and uniqueness of a weak solution of the problem (1.1)—(1.3).
Hence, we get the main result in this section as follows.

Theorem 3.7. Let (Hy)—(Hs) hold. Then
(i) the problem (1.1)—(1.3) has a unique weak solution (u,v) € W1(M,T), where
the constants M > 0 and T > 0 are chosen as in Theorem 3.1.
Furthermore,
(ii) the linear recurrent sequence {(um,vm)} defined by (3.9)—(3.12) converges to
the weak solution (u, v) of the problem (1.1)—(1.3) strongly in the space W1 (T)
and we have the estimate

(3.44) | (s vm) — (w,0)lw, 7y < Crky VmeN,

where the constant kr = kr(0) € [0,1) is defined as in Lemma 3.6 and Cr is a
constant independent of m.
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Proof. (a) Existence of the solution. We prove that {(um,vm)} is a Cauchy
sequence in W1 (7). Let wy, = tmt1 — Um and Wy, = Vi1 — U, Then (W, Wy,)
satisfies the variational problem
(3.45)

(wy, (1), ) + Mwy,,. (1), ) + :Ul,m-i-l(t) (Wina (t), Px)

= (B1,m+1(t) = pm () (A (1), ) + (Frm41(t) — Fim(t),0) Vo € Hg,
(@3, (£), @) + p2.m+1(t)a(@m(t), §)

= (p2m+1(t) = pam (£))(Avm (1), @) + (Fom+1(t) — Fam(t),9) Vo€V,
wm(0) = wp,,(0) = W (0) = W, (0) =0,

where

(3:46)  Fimy1(t) = Fim(t) = filum, vm](t) = filum—1,0m-1](t), i=1,2,
m41(8) = pam () = pa[um](t) = pafum—1](2),
pr2,m+1(8) = pam () = palom] () — po[vm—1](#)-

4

Taking (¢, ®) = (wh,(t), w,,(t)) in (3.45), after integrating in ¢ we get
(347)  Sp(t) = / (s st (5) [10ma ()2 + 1 s (5) [T () [2) ds
2 / (Frms1(5) — Fum(s), why ()
- (Fomi1(5) = Fom (5), Wy (5))) ds
+2 / (1,41 (5) = 1 (5)) (Dt (8), iy () ds
+2 / (2, 41(5) = f12m()) (D (), W (5)) dis
=J1+ o+ J3+ Jy,
where
(3.48) S (1) = [ ()] + [T (1)
111,11 (Dl (DI + pi2, 41 (1) | (]2
2 / e (3)]1? ds

and all the integrals on the right-hand side of (3.47) are estimated as follows.
Integral J1. By Lemma 3.2 and the inequality

(3.49) S (t) 2 llwn, (O + (@ 01 + s (wma (O + [T ()17
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with p. = min{ g1, to«}, we obtain

(3.50) Ji = /O (15,41 () Wiz ()7 + 8 41 (8) [T (5)]17) ds

t
< ui (U1 (M, 5) + Kpr(1 4 4M?))S,,(s) ds.
* JO

Integral Jo. By (Hs) it is clear that

1E5m41(8) = Fim ()

< Kt AV Ol + 21 VBs ()] + 1 ()] + [T DI
<2 pt (Vs O] + [VBra ()] + ey ()] + [T ()]
< 2KMH(wm—lawm—l)HWl(T)-

Hence

t
(3.51) Jy =2 / (Frms1(5) = Fim(8), w(5))

+ (Famy1(8) = Fam (s), W, (s))) ds
< 2/0(||F1,m+1(8) = Fim(s)[[[w), (s)]l

B ni1(5) = Fonn() [ ()] s
t
< VK (W1, Ton—1) v / VS () ds
< STRY s T )iy + [ Simls)

Integrals Js, Jy. By the inequalities

1,m1 (8) = 1 ()] < Kar[(Vtt (£), Vi, (8) = (Vm—1(t), Vi, 1 (1))]
< Kt ([ Vwm—1 (1 Val, ()] + V-1 ()| Ve, _, (5)])
< ME (|| Vwm-1(t)] + [ Vwp, 1 ()]
< MEp([[(wim—1, Trn—1) lwy () + [Vl 1 (1))
and
l2,m+1(t) = pam ()| < KMQ”Um(t)HQ — vm—1 O IPI+ NVom O = [[Vom—1(®)]1?])
< 2MI~(M(||wm,1(t)|| + || V-1 (1))
<AM K || (Win—1, Win—1) lw, (1)
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we obtain that
t
(352) Jy=2 / (1. s1(5) — fiam(8) (At (5), w0y (5)) ds
0
t
<Ry / (1@t Bl ) + [V ()]l () | s
t
— 2Ry / (W1, Do)l 2y 1 (5)]] s
0
t
L oM2Ry / IV, (3)] () ] ds
0
TR s, T, + [ )17
conrt Ry [ IVut o1 as + 5 [t as
0 0
- 1 t
< (T+5)M4K]2w||(wm,1,Wm,1)||%V1(T)-l— (1+ 5)/0 Sm(s)ds
and
t
(3.53) Ji=2 / (2, 11(5) — 2m(5)) (A (5), W (5)) ds
0
t
< 8M2 Rt (w1, B ) / ()] s
0
t
< 16TM4K12\4||(wm_1,Em_l)”%VI(T) —I—/ S (s)ds.
0

Combining (3.47), (3.50)—(3.53), we obtain

t
(3.54) Sm(t) < Dar (8, T) | (wim—1, Wm—1) I3, () +/0 Om (M, 6, 5)Sm(s)ds,

where 0,,(M,,t), Dp(8,T) are as in (3.33) and (3.36).
Using Gronwall’s lemma, we deduce from (3.33), (3.34) and (3.54) that

355) Sul) < Dy D w1, )l oy o[ 6 (01,0,5)ds )
Dar (8, )| (w1, Wm—1) 3, () exp@ (5 7).
Hence, we deduce from (3.43) and (3.55) that

(3.56) (@ W) w7y < R (O) (w1, Wm—1)l[wy () Ym €N,
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where the constant k7 = k7 (d) € [0,1) is defined as in Lemma 3.6, which implies
that

M
1—kr

(3.57) | (Umtps Vimap) = (Um, Vm) |l (1) < k' Vmand p e N.

It follows that {(um,vm)} is a Cauchy sequence in Wi(T). Then there exists
(u,v) € Wi(T') such that

(3.58) (U, Um) = (u,v) strongly in W1 (T).

On the other hand, (um,v,) € W(M,T), thus there exists a subsequence
{(tm;,Vm;)} of {(tm,vm)} such that

( ) — (u,v) in L°°(0,T; (H} N H?) x (VN H?)) weak*,
(U, s Vg, ) = (u'0")  in L2°(0, T (H N H?) x V) weak*,
( )=
(

We note that
(3.60) (| Fi — filu, o]l Lo 0,1:22) < 2K M [[(Um—1,Vm—1) — (w, ) lw, (1), @ =1,2.
Hence, we deduce from (3.58) and (3.60) that
(3.61) Fyp — filu,v] strongly in L>(0,T; L?), i=1,2.
We also note that
1 (®) = (0] < MErt (V1 (8) = Fu@)]| + 1V, (1) — T (B)]).
Therefore,

|l pe1m — M1[u]||L2(o,T) < MI?M(\/THum—l - U||Loo(o,T,Hg) + ||u;n71 - U'||L2(0,T,H$))
< (1 + VT)ME || (w1, vm-1) — (u,0)||lw, () = O,
which implies that
(3.62) fim — 1 [u] strongly in L2(0,T).
We also have
1120m — pr2[0] | e (0,7) < AME g ]| (=1, 0m—1) — (u,0)[lwy () — 0,
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hence
(3.63) Ham — tz[v] strongly in L°°(0,T).

Finally, passing to limit in (3.10)—(3.12) as m = m; — oo, it implies from (3.58),
(3.59), (3.61), (3.62) and (3.63) that there exists (u,v) € W(M,T) satisfying the
system

(3.64) { (W (t), ) + Mug (1), a) + p[u](t)(ua(t), pa) = (f1[u, v](t), ¥),
W"(t), @) + pelv](t)a(v(t), @) = {f2[u,v](t), ®)

for all (p,p) € H} x V and the initial conditions

(3.65) (u(0), 4/ (0)) = (tio, @),
(v(0),v'(0)) = (%o, 1).

Furthermore, from the assumptions (Hz) and (Hs) we obtain from (3.59)4 and
(3.64), that

(3.66) '’ = ANAU + pa [u]Au + filu,v] € L*°(0,T; L?),
' v :ﬂZ[v]Av+f2[uav] € LOO(OvT;LQ)'

Thus, we have (u,v) € W1(M,T). The existence proof is completed.

(b) Uniqueness of the solution. Let (u,v), (4, 0) € W1 (M, T) be two weak solutions
of the problem (1.1)—(1.3). Then (w,w) = (u — 4,v — D) satisfies the variational
problem

(3.67) @"(t), @) + p2(t)a(®(t), 9)

= (Fy(t) - F>(1), ®) ) — B2(D)(AD(t), 5) V@ eV,
w(0) = w'(0) = w(0) = w'(0) =0,
where
pa(t) = paful(t),  pa(t) = mlal(t),
(3.68) p2(t) = p2[v](t), fiz(t) = p2[0](2),
. Fl(t):fl[uav](t)v Fl(t):fl[ﬂaf)](t)v
F2(t):f2[uav](t)v ﬁ2(t):f2[ﬂaf)](t)'
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We take (¢, @) = (w'(t),w'(t)) in (3.67) and integrate with respect to ¢ to get

(3.69)  Z(t) =2 / (Fi(s) — Fy(s), 0/ (5)) + (Fo(s) — Fi(s),0(s))) ds
+ / (1 () [wa ()2 + b (5)[(5)]2) dis
2 / (1 (5) — T (8){ANa(s), ' (5)) dis
+2 / (2(5) — Tia(5)) (A (), T (5)) ds,

where
(3.70)

Z() = [/ (O] + [T 02 + (&) [ ()] + (B [T + 27 / i (5) 2 ds.
Put
(3.71) H(s) = Har + %MI?Mnu;;(s)H,

where fi, = min{1, p1., g2, } and Hys is a constant defined by

16V2K 2+4v2 M2K . 2 .
(3.72)  Hu = :/CTMjLz( \/ﬁ_f+ )\M>M2KM+[L—(2+5M2)KM.

Then it follows from (3.69) that

(3.73) Z(t)g/() H(s)Z(s)ds.

We remark that by «” € L?(0,T; H}), we obtain H € L?(0,T).
It follows from (3.73) that

t
(374) Z2(t) < ”HH%z(O’T)/O Z2(S) ds.

By Gronwall’s lemma, we deduce Z(t) =0, i.e., u — 4 = v — ¥ = 0. Theorem 3.7
is proved completely. Il

258



4. EXPONENTIAL DECAY OF SOLUTIONS

This section investigates the decay of the solution of the problem (1.1)—(1.3) cor-
responding to ¢ = 0,
= — MNu + fi(u,v) + Fi(z,t),
fa(@, tyu, v, Uy, Vg, ur, v1) = — Aovy + fo(u,v) + Fo(z,t),
p(t, (ua(t), et (1)) = p + 0 ((ua(t), uai(t))),
pa(t, @)1 lva (D7) = p2(llva(B)]%).

Then, the problem (1.1)—(1.3) becomes the problem

fl(x7tau7v7ux7vxautavt

—_ — — ~—

Ut — Mgzt — (M* + 0’(<’U,x (t); Ugt (t)>))uxx + Ay

= fi(u,v) + Fi(z,t), 0<z<1,t>0,
(4.1) v — p2([[ve(®)||?)vez + Aove = folu,v) + Fa(x,t), 0<x<1,t>0,
uw(0,t) = u(1,t) = v,(0,t) = v(1,¢) =0,
(u(x,0), ue(x,0)) = (to(x), 1 (z)),
(v(z,0),ve(,0)) = (vo(x), 01(x)),

where A > 0, \; > 0, p, > 0 are given constants and o, ps, fi(u,v), F;(x,t), 4;, 0;,
wi, fi (i =1,2) are given functions.

By the same method as in the proof of Theorem 3.1, equation (4.1) has a weak
solution u(z,t) such that

(4.2) (u,v) € C([0,T]; (HE N H?) x V)nCY([0,T); H} x L?)
NL>®(0,T; (Hy N H?) x (VN H?)),
(u',v") € C([0,T]; Hy x L*) N L>(0,T; (Hy N H?) x V),
(u",v") € L>=(0,T; H* N HY) x L*(0,T; L?)

for T' > 0 small enough.
We make the following assumptions.

(Hy) o € C'(R) and there exists a positive constant o, < p. such that
(i) o(y) > —o, for all y € R,
(ii) yo(y) >0 for ally € R, y # 0.

(H3) p2 € C(Ry) and there exist positive constants 3, . such that
(i) pa(y )>u§>0forally>0
(i1) yua(y) = X« fo u2(z)dz for all y >

(H4) There exist F € CQ([RQ, R) and the constants o, 3, di, di > 0 with o > 2,
8 > 2 such that
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(i) g—i(u,v) = fi(u,v), ‘?d—f(u,v) = fa(u,v) for all (u,v) € R
(i) wfi(u,v) +vfa(u,v) < diF(u,v) for all (u,v) € R?,
(iil) F(u,v) < di(|u|® + [v|?) for all (u,v) € R
(Hs) Fi, Fy € L>=(Ry; L?) N LY (R, ; L?) and there exist two constants Cp, o > 0
such that | F1(¢)]|? + || F2(t)||* < Co exp(—~ot) for all t > 0.
(He) p > max{2,d1,d1/x«} and o /ps < 1 —dy/p.

Example 4.1. Below we give an example of the functions o, us satisfying as-
sumptions (Hz), (H,),

—0xY .
if y <O, S
(4.3) oy = y—1 p2(y) = poe +y™ ",
(o +y[" ")y if y >0,

where o, > 0, p2. > 0; 71, 79 > 2 are constants.
First, we construct the Lyapunov functional

(4.4) L(t) = E(t) +0y(t), t=0,
where 6 > 0 will be chosen later and

(5) B = 5 (WO + I OI) + 50« 0)(0) + 5 (05 0)(0) + 5 a0

Ll !
w3 mEd= [ Fun.own)a

1 ’ 2 / 2
= 5 @I + 1))

“(5-3) <<g*u’><t> (g% )(0) + ol (D]

s (012 1
+/ H2(z) dz) +—1(t),
0 p

(4.6) MQZONWU@%HUMWU»+%MAWF+

where

A
2

Az

lu@)II* + 5 oI,

t
(g ')(t) = / ot — 8)||u'(3)]]? ds,
t
(g% 0')(t) = / gt — )10/ ()] s
0
with g(t) = 2;\6_2Et, k, A are constants with k > 0, 0 < A\ < A\, = min{\;, A2}, and
(47)  I(t) = (g %)) + (g % 0')(t) + o ua(D)]?

llva (£)112 1
—|—/ pa(z) dz —p/ Flu(z,t),v(z,t))dz, t>=0.
0 0
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Then we have the following theorem.

Theorem 4.2. Assume that (Hz)—(Hg) hold. Let (fig, %) € (HiNH?)x (VNH?),
(@1,91) € (Hg N H?) x V such that I(0) > 0 and the initial energy E(0) satisfy

(4.8) " = fix —pdi(RE™% + RI7?) > 0,

where R? = 2pE./((p—2)ii.), B = (B(0) + z0)exp(o), 0 = [ (IFa(t)] +
(|F1(t)]]) dt, e = min{ i, piox }. Then, any global weak solut1on of the problem ( 1)
is exponentially decaying, i.e., there exist positive constants C, ¥ such that

49) O + 1V O + lua @) + va(®)]* < Cexp(=7t) Yt >0.
First, to prove the theorem we need the following lemmas.

Lemma 4.3. The energy functional E(t) defined by (4.5) satisfies
@) ') < (IR @1+ [1F201) + 3(F @ + [ E2@OD Al O + [l (@112),
(i) E'(t) < =A@ = (A = A = ge) ([ @O + [ (O1%) = k(g = u)(t) +
(g v)(®) + ger (IFL @) + [1F2(0)]1%)
for allt > 0, €1 > 0, where A, = min{\1, A2}.
Proof. Multiplying (4.1); by u/(z,t), (4.2)2 by v/(z, t) and integrating over [0, 1],
we get
(410)  E'(t) = = Mu@®l = (= Nl[w' @)1 = (2 = Nl (®)]
— k(g +u)(t) + (g% 0)(1) = (ua(t), ul, (£)) 0 ((ua (t), (1))
+ (Fu(8), /(1)) + (F2(1),0' (1)
On the other hand,

(111) (F (0, 00) < SIRO] + SR @),
(Ba(0), 0/ (1) < G IF(0)] + 3 I B0 1))

As (ug(8),ul,(£)yo ((ug (¢),ul,(¢))) > 0, it follows from (4.10) and (4.11) that

» Y »

Lemma 4.3 (i) holds. Similarly,

1

(4.12) (Fu(t), (1)) < 2_51”F1(t)”2 + %HMQH%

1 €
(Ea(t),0' (1) < 31 ®I? + SO Ve >0,
1

and it follows from (4.10) and (4.12) that Lemma 4.3 (ii) holds.
Lemma 4.3 is proved. ([
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Lemma 4.4. Assume that (Hz)—(Hg), 1(0) > 0 and (4.8) hold. Then I(t) > 0 for
allt > 0.

Proof. By the continuity of I(¢) and I(0) > 0, there exists 77 > 0 such that
(4.13) I(t) = I(u(t),v(t)) >0 Vte 0,1,

which implies

(4.14)
llva (8112
B@) > 501 + WO + (5= 3) (mlu@P+ [ ) )
> SO + 10O + E22 (@ + Jeall) ve € 0.7,

where [i, = min{ i, fiox}-
Combining Lemma 4.3 (i) and (4.14) and using Gronwall’s inequality, we get

2p 2pF, ~
4.15) [Juz(8)||? + [Jv2()]|? € —=—=—E() < ——— = R? Vte|0,11],
(4.15) [lua (D[] + [loa (@) ~ o (t) - 20 [0, 71]
[/ ()] + [[o'(1)|1> < 2E(t) < 2E. vt e [0,T1],

where E, is as in (4.8). Hence, it follows from (Hy) (iii) and (4.15) that

I + [l (8)11%)
I + oa(D)]772)
% (lua (1 + [lv (8)]%)
<pdi(RY + RI7?) (Jus ()11 + o (8)]]).

Thus,
(4.17)  I(t) = (g* u)(t) + (g % V) (E) + pullua(t)]®

llve (8)11 1
+/0 w2 (z) dz—p/O F(u(z,t),v(z,t)) dz

> (g% u)(t) + (9% 0)(8) + pallua () + pzellve (2]
= pdi(R27% + RI?)(lua () + [lva (1)) -
> (g u)(t) + (g% 0) (&) + 0" (JuaO)* + o2 ()]*) = 0 ¥Vt € [0, T4,

where n* = i, — pdi (R*2 + R?™?) and Ji, = min{p., pi2.} as in (4.8).
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Now, we prove that I(¢) > 0 for all ¢ > 0. We put T, = sup{7 > 0: I(¢) > 0 for
all t € [0,T)}. If T < oo then, by the continuity of I(t), we have I(T) > 0.

In case of I(Tw) > 0, by the same arguments as above, we can deduce that there
exists Tho > Too such that I(t) > 0 for all ¢ € [0, Tx]. We obtain a contradiction to
the definition of T.

In case of I(Tw) = 0, it follows from (4.17) that

0=1(Ts) > (g% u')(Too) + (9% ) (Toc) + 1" (Jua(Too) I* + [|lva(Too)|*) > 0.

Therefore

uToe) = v(Too) =0, (g% u)(Too) = (9% ') (Te) = 0.
By the fact that the function s — g(Tw — s)||u’(s)||? is continuous on [0, Ts] and
9(Too — 8) > 0 for all s € [0, Tw], we have

(g% )(Too) = / " G(T - s (s)]Pds = 0,

which implies that ||u'(s)|| = 0 for all s € [0,T]. It means that u is a constant
function on [0, Tw]. Then u(0) = u(Tw) = 0.

Similarly, v(0) = v(Ts) = 0. It leads to I(0) = 0. We get a contradiction with
I(0) > 0. Consequently, T, = 00, i.e. I(t) >0 for all £ > 0.

Lemma 4.4 is proved completely. (I

Lemma 4.5. Assume that (Hy)—(Hg) hold. Let I(0) > 0 and (4.8) hold. Put

(4.18) Ey(t) = (g u) (1) + (gxv) (1) + [/ O + |V (O + [Jua (1)

llve ()11
—l—/o pa(z)dz + I(¢).
Then there exist positive constants 31, 82 such that
(4.19) G1E1(t) < L(t) < BoE1(t) VE=0
for ¢ is small enough.

Proof. It is easy to see that
(4.20)

L(t) = %(Ilu’(lﬁ)H2 + V' @)

+(3- %) ((9 w ) (1) + (9. 0) () + puallua(0)]* + / O e dz)

+ = I(t) + 0w/ (t), u(t)) + 6v'(t), v(t))

o=

+ 5 Wlua @)1 + Mllu®)* + Ao @)
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From the inequalities
1

(' (), u(®))] < %Ilu'(t)llz + 5w @17,

/ 1 / 2 1 2
/() 00} < 3 I )7 + 5 w0
[lvaz ()12
o (D)2 > — / i2(z) dz

we deduce that

(4.21)

L(t 51 "I "7
(t) = 5 ([N + [l @)11)

loa (1)1

+(3- }3) (<9 w ') (1) + (g% ') (1) + pellua ()2 + /0 ug(z)dz>
1 L 5,

+ 1) = 5 (e O + lua®I?) = 5 U O + 0= )1)

20l + I 0l)

(5 3) (@0 + @0+l + [ Ilvw(t)lQm(z)dz)

WV

2

1 5 5 el
210 = Gl - g [ (e

= 222 @I + O + (5 - =Yg u)(O) + (g (1)

(G35l + (5-2-5) [ O e 1)
1

where we choose 81 = min{3(1 —6),(3 —p "), (3 —p D — 36, (3 —p' =
§/(2u24)),p~ 1} with § is small enough, 0 < § < min{1; (1 —2p~ 1) ps; (1 —2p~ 1) pos }

Similarly, we can prove that
1+6 1 1
@2) L0 < O+ VO + (5 3) ()0 + o))
1 1 S+ X+ X)
(55 m =) lw)l?
11 (14 Ay [le=I 1
+(§_5+2,LLT>/O ,UQ(Z)dZ—l-EI(t)
< B2EA (1),
where 82 = max{3(1+0), (3 —p us + 251+ A+ A1), 3 —p L+ 5(1+ X2)/ (224}
0

Lemma 4.5 is proved completely.
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Lemma 4.6. Assume that (Hz)—(Hg) hold. Let I(0) > 0 and (4.8) hold. Then,
the functional 1 (t) defined by (4.6) satisfies

(423) (O <[ O + VO + %((9 «u)(t) + (g +v)(1))

dipe  di(1—=01)n* €
(oo - Qe BUZOT ey

p p
2
dy 1 dl(]. - (51)77* €9 /'”m(t”
- * T _ - — — d
(X p M2*( p 2 )) 0 pa(z)dz
d161

1
= =0+ (RO + 1))

for alles >0, 6; € (0,1).

Proof. Multiplying (4.1); by u(z,t), (4.1)2 by v(z,t) and integrating over [0, 1],
we obtain

(4.24) V() = [ O + [V (O = pallua ()]
= lue )P ((ua (t), w, (8))) = lva ()1 p2(llva ()]1)
+ (1), u(t)) + (F2(t), v(1))
+ (fi(u(®), v(®)), u(®)) + (fa(u(t), v(t)), v(t)).

By the inequalities
(4.25)  —llus(®)[Po((us (1), ug (1)) < oullua(t)]?,
llve ()]
~lloa @2 p2(loa(®)I?) < —X*/ pe(z) dz,
0
(fr(u(®), v(t), u(t)) + (f2(u(t), v(t)), v(t))
<d /O Flu(z,t), v(z, 1)) dz
di

" ((g w)() + (g 0')(2)

llva (£) 12
bl + [ (s - I(t)),

*(lua @)1 + [lva (B)11%),
(Iluas(lﬁ)Il2 +[lva (B)11)

(||F1( Z + IE@1)

1(t)
(F1 (), u()) + (Fa(t),v(t))

NV

n
9
2
_|_
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for all e > 0, we deduce that
(4.26)

o= (@)1
¥ () < lu' @O + [V O = pollua (O + oullua ()]I* — X*/O p2(z)dz

llva ()l
+ % (<g w ) (1) + (9.0 (8) + pellua (D] + / po(2)dz — 1 @)

+ 6—22(||uac(lﬁ)||2 +lva (D)%) + 2%Q(IIEG)II2 +IE2(0)]1%)

= [/ @)1 + [l &)

+ D (g )0 + g 0)(0) - D210y - 2L

» , 1(t)

dy i, , diy [los @I
- 0 - (o= 2) [ ) a:

+ 6—22(||uac(lﬁ)||2 +lva (D)%) + 2%Q(IIEG)II2 + I E2(0)]1%)

—
=
*
|

<l @I + o' @1 + %((9 wu)(t) + (g% 0')(t))

_dups )HW(QHQ B (X* 3 %> /Ouvw(t)ﬁm(z)d B %I()

( L —22)<|\ux<t>||2+va<t>|\2>+2—;<|\F1<t>|\2+||F2<t>||2>

/_\

<l @I + o' @1 + %((Q*Ul)(t) +(g*0)(1)

(e o - e BOZOIT 2y e
||v Ol d101
(- )/ pa(z)dz = =1 (1)
_ llva (0117
(dﬂ 61)1 -2y / pa(2)dz + 5 (RO + [ Fa0)])

— @) + I @) + %«g cu)(t) + (g + ') (1))
B (lu* g dy fhs 4 dl(]. - 51)77* i E—;)Huz(t)HQ

p p

_ (X* _ % n M12* (d1(1 ;51)77* _ 6_;)) /0”“@'2 pi2(2) dz

d151 1 2 2
_ TI( )+ 2—62(|\F1(t)|| + 12 (@)1).

Hence, Lemma 4.6 is proved by using some simple estimates. (I
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Proof of Theorem 4.2. Now we prove Theorem 4.2. Applying the above lem-
mas, we have

421) LB < —(A—A- 6—21 =)l O + ' )11

- (k- %)((g «)() + (g % 0')(1))

dipe | di(1 =01)n" 2 2
(e o o )l ()]
di 1 di(1-6)p* e /””w<t>'2
5(X* » + MQ*( » 5 )) ; ua(z)dz
5d151 1 1 5 2 2
- I “(=+=)(|F F.
0+ 5 (2 ) IR+ B0

for all 1, e2 > 0, 61 € (0,1), and with ¢ is small enough such that 0 < § <

min{1, (1 — 2/p) ., (1 — 2/p)p2s}-
Because of p > max{di,d1/x+} and o, /u. <1 —di/p, we have

dips di(1—061)n*
(4.28) lim (u*_g*_ 1 (1= 00)n _6_2)
61*}04,,62*}04, p p 2
dip. din*
=y — Oy — e | 010
p
_ dln* dy Ox
= » +N*((1_;)—I>>O
and
. dy 1 sdi(l=061)n* e d  din*
4.29 1 - — G TN 22y, o8 0.
( ) 51—>0_:T?2—>0+(X P + ,LLQ*( P 2 )) X D +p‘u2* >
Therefore, we can choose d; € (0,1) and £2 > 0 such that
dips  di(1=61)n*
(4.30) 01 = 01(01,62) = j1a — 0 — 2 4 it it _ e >0,
p p 2
d 1 /di(1-067)n*
02 = 02(61,52) = X= — — + (M_g)w.
p M2 P 2

Moreover, we can choose €1 > 0, § > 0 small enough so that

(4.31) 93:/\*—Z\—%—5>0, 94:E—%>0,
p

0<d< min{l, (1 — %)u*, (1 — %)uz*}.
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By (4.27), (4.30), (4.31), we get

(4.32)  L'(t) < —B3E1(t) + Cre ! < —%E(t) 4+ Cre ™ < —FL(t) + Cre 0,
2

where (3 = min{03,94,601,692,6d151/p}, 0<7vy< min{ﬂgg/ﬂg,’}/o}, 61 = %(1/61 +
5/52)00.

Therefore, we have

(4.33) c(t) < (£ + G )et = Tae
On the other hand, we have
(4.34) B (t) > min{1, po. (o' (@) + [[0" @)1 + [Jua ()1 + va ()]%)-

Combining (4.33) and (4.34) we get (4.9). Theorem 4.2 is proved completely. O
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