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Abstract. In 2005, İ. Tok fuzzified the notion of the topological entropy R.A.Adler
et al. (1965) using the notion of fuzzy compactness of C. L.Chang (1968). In the present
paper, we have proposed a new definition of the fuzzy topological entropy of fuzzy contin-
uous mapping, namely weakly fuzzy topological entropy based on the notion of weak fuzzy
compactness due to R.Lowen (1976) along with its several properties. We have shown that
the topological entropy R.A.Adler et al. (1965) of continuous mapping ψ : (X, τ )→ (X, τ ),
where (X, τ ) is compact, is equal to the weakly fuzzy topological entropy of ψ : (X,ω(τ ))→
(X,ω(τ )). We have also established an example that shows that the fuzzy topological en-
tropy of İ. Tok (2005) cannot give such a bridge result to the topological entropy of Adler et
al. (1965). Moreover, our definition of the weakly fuzzy topological entropy can be applied
to find the topological entropy (namely weakly fuzzy topological entropy hw(ψ)) of the
mapping ψ : X → X (where X is either compact or weakly fuzzy compact), whereas the
topological entropy ha(ψ) of Adler does not exist for the mapping ψ : X → X (where X
is non-compact weakly fuzzy compact). Finally, a product theorem for the weakly fuzzy
topological entropy has been established.

Keywords: weakly fuzzy compact; weakly fuzzy compact topological dynamical system;
weakly fuzzy topological entropy

MSC 2020 : 54A40, 37B99

1. Introduction

The topological entropy initiated by Adler et al. (see [1]) becomes a mature field

in the ergodic theory, especially in the theory of dynamical systems. The topological

entropy of Adler et al. (see [1]) was defined for a compact topological dynamical

system. Then Bowen in [4] generalized the concept for non-compact spaces, but it is

metric-dependent. In 2009, Liu et al. (see [17]) defined the notion of the topological

entropy for arbitrary dynamical system. The contributions of Cánovas and Rodriguez
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(see [6]), Goodwyn (see [14], [15]), Kwietniak and Oprocha (see [16]), Bowen (see [3]),

Cánovas and López (see [7]) and Thomas (see [27]) in the flow of the research works

related to the topological entropy are worth to be mentioned.

In the fuzzy mathematics, the notions of the entropy of the fuzzy partitions and

the entropy of the fuzzy process were initiated and studied by Dumitrescu (see [9],

[10], [11]) and Dumitrescu and Barbu (see [13]). They also defined and investi-

gated the concept of the fuzzy dynamical system in [9], [12], [13] in terms of the

fuzzy measure space and the fuzzy measure preserving transformation and in this

settings, the entropy was studied. The notion of the entropy of the fuzzy dynamical

system was also studied by Markechová (see [20]–[23]) and Riečan and Markechová

(see [26]). The notion of the topological entropy of the fuzzified dynamical system

was introduced by Cánovas and Kupka in [5]. In Cánovas and Kupka’s approach,

they started with a compact metric space and a continuous self-mapping and so

their definition of the entropy is metric-dependent. In 2005, Tok (see [28]) fuzzified

the concept of the topological entropy for the fuzzy compact topological spaces and

the concept was generalized for the arbitrary fuzzy topological spaces by Afsan and

Basu, see [2]. The notions of the fuzzy topological entropy of Tok; Afsan and Basu

were metric-independent.

Tok in [28] used the notion of the fuzzy compactness due to Chang (see [8]) to

introduce the concept of the fuzzy topological entropy. But the fuzzy compactness

fails to satisfy the important parallel properties like the compactness of the ordinary

topology and thus the most intersecting properties of the topological entropy are not

found in the investigation of Tok (see [28]). On the other hand, Lowen’s definition

of the weak fuzzy compactness (see [18]) satisfies all the desired properties which

are possessed by the compactness in an ordinary topological space. Lowen in [18]

showed that the compactness of a topological space (X, τ) implies the weakly fuzzy

compactness of the fuzzy topological space (X,ω(τ)), but not its fuzzy compactness.

So no bridge result between purely topological notions and fuzzy ones could be

achieved using the fuzzy topological entropy of Tok, see [28]. In the present paper,

in Section 3, we have established a new definition of the fuzzy topological entropy,

namely weakly fuzzy topological entropy for weakly fuzzy compact topological spaces

that can enable us to remove this serious limitation of the fuzzy topological entropy

of Tok, see [28]. Our new definition of the fuzzy topological entropy is also metric-

independent.

To compare our new definition of the weakly fuzzy topological entropy with the

topological entropy, we note that the definition of the weakly fuzzy topological en-

tropy can be applied to find the topological entropy (namely weakly fuzzy topological

entropy hw(ψ)) of the mapping ψ : X → X (where X is either compact or weakly

fuzzy compact), but the topological entropy ha(ψ) of Adler does not exist for the

222



mapping ψ : X → X (where X is non-compact weakly fuzzy compact). In fact,

Adler’s definition of the topological entropy is applicable only for a compact topo-

logical space (X, τ) and for a continuous mapping ψ : (X, τ) → (X, τ), i.e. for a

compact topological dynamical system (X,ψ). And our definition of the topological

entropy (weakly fuzzy topological entropy) can be applied to a weakly fuzzy compact

topological space (X, δ) and a fuzzy continuous mapping ψ : (X, δ) → (X, δ), i.e. to a

weakly fuzzy compact topological dynamical system (X,ψ). Thus, Adler’s definition

of the topological entropy cannot be applied to a non-compact weakly fuzzy compact

topological dynamical system (X,ψ) to calculate topological entropy ha(ψ) of the

mapping ψ, but using the definition of the weakly fuzzy topological entropy of (X,ψ),

we can calculate the weakly fuzzy topological entropy hw(ψ) of ψ. Again, if (X, τ)

is a compact topological space, Lowen in [18] showed that (X,ω(τ)) is a weakly

fuzzy compact topological space. And if the mapping ψ : (X, τ) → (X, τ) is a con-

tinuous mapping, then the mapping ψ : (X,ω(τ)) → (X,ω(τ)) is fuzzy continuous.

Thus, if ((X, τ), ψ) is a compact topological dynamical system, then ((X,ω(τ)), ψ)

is a weakly fuzzy compact topological dynamical system. Thus, using the defi-

nition of the weakly fuzzy topological entropy, we can calculate the weakly fuzzy

topological entropy hw(ψ) of ψ with hw(ψ) = ha(ψ) (Theorem 3.3). Thus, the

definition of the weakly fuzzy topological entropy can be applied to a compact dy-

namical topological system (X,ψ) and a weakly compact dynamical system (X,ψ)

both to find the weakly fuzzy topological entropy hw(ψ), but Adler’s definition of

the topological entropy ha(ψ) is applicable only to a compact topological dynami-

cal system, but not to a non-compact weakly fuzzy compact topological dynamical

system.

We have achieved several important properties of the weakly fuzzy topological

entropy in Section 3. We have also established a product theorem (Theorem 3.6) for

the weakly fuzzy topological entropy.

2. Preliminaries

Throughout this paper, the symbol I is used for the unit closed interval [0, 1]

and the symbols N, Z, Z+ and Z
− stand for the set of all natural numbers, the set

of all integers, the set of all positive integers and the set of all negative integers,

respectively.

Definition 2.1 ([30]). Let X be a nonempty set. Then any function with do-

main X and codomain I is called a fuzzy subset of X and the set of all fuzzy subsets

of X is denoted by IX .
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The support of a fuzzy set A is the set {x ∈ X : A(x) > 0} and is denoted by

supp(A). A fuzzy set with only nonzero value p ∈ (0, 1] at only one element x ∈ X

is called a fuzzy point and is denoted by xp and the set of all fuzzy points of a

set X is denoted by Pt(X). For any two fuzzy sets A, B of X , A 6 B if and only

if A(x) 6 B(x) for all x ∈ X . A fuzzy point xλ is said to be “in a fuzzy set A”

(denoted by xλ ∈ A) if xλ 6 A, i.e. if λ 6 A(x). The constant fuzzy set of X with

value ε ∈ [0, 1] is denoted by ε. A fuzzy set A is said to be quasi-coincident with B

(written as Aq̂B, see [24]) if A(x) +B(x) > 1 for some x ∈ X . A fuzzy set A is said

not to be quasi-coincident with B (written as Aq̄B, see [24]) if A(x) +B(x) 6 1 for

all x ∈ X .

Let µ, ν ∈ IX . Then their join µ ∨ ν ∈ IX and meet µ ∧ ν ∈ IX are defined

by (µ ∨ ν)(x) = max{µ(x), ν(x)} and (µ ∨ ν)(x) = min{µ(x), ν(x)} for all x ∈ X ,

respectively. The general definitions of the notions of the join and the meet were

introduced by Chang in [8] to initiate the notion of the fuzzy topology.

Let {µα ∈ IX : α ∈ ∆} be an arbitrary family of fuzzy sets of X . Then their

join
∨

α∈∆

µα(= ∨{µα : α ∈ ∆}) ∈ IX and meet
∧

α∈∆

µα(= ∧{µα : α ∈ ∆}) ∈ IX

are defined by
(

∨

α∈∆

µα

)

(x) = sup{µα(x) : α ∈ ∆} and
(

∧

α∈∆

µα

)

(x) = inf{µα(x) :

α ∈ ∆} for all x ∈ X , respectively. The complement of a fuzzy set µ ∈ IX is denoted

by µ′ ∈ IX and is defined by µ′(x) = 1− µ(x) for all x ∈ X .

Definition 2.2 ([8]). A family δ of fuzzy subsets of X is called a fuzzy topology

on X if

(i) 0
¯
, 1
¯
∈ δ,

(ii) µ ∧ ν ∈ δ for all µ, ν ∈ δ,

(iii) ∨{µ ∈ δ0} ∈ δ for any subfamily δ0 of δ.

The pair (X, δ) is called a fuzzy topological space. The members of δ are called

fuzzy open sets and their complements are called fuzzy closed sets of (X, δ).

Throughout the paper, spaces (X, δ) and (Y, σ) (or simply X and Y ) represent

nonempty fuzzy topological spaces due to Chang, see [8]. A fuzzy open set A of X is

called fuzzy quasi-neighborhood (see [24]) (or fuzzy neighbourhood, see [8]) of a fuzzy

point xλ if xλq̂A (or xλ ∈ A). The collection of all fuzzy quasi-neighborhoods (or

fuzzy quasi-neighborhoods) of a fuzzy point xλ is denoted byQ(X, xλ) (orN (X, xλ)).

A collection Σ of fuzzy subsets of X is called a fuzzy cover of a fuzzy subset η

of X if ∨{A : A ∈ Σ} > η. A fuzzy cover Σ of η = 1
¯
is known as a fuzzy cover of

the fuzzy topological space X . If the members of a fuzzy cover Σ of a fuzzy subset η

of X are fuzzy open (or fuzzy closed), then the cover Σ is called a fuzzy open cover

(or fuzzy closed cover) of η.
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Definition 2.3 ([8]). A fuzzy subset η of a fuzzy topological space X is said to

be fuzzy compact (= fuzzy quasi-compact, see [18]) if every fuzzy cover of η by fuzzy

open sets of X has a finite subcover of η. If 1
¯
is fuzzy compact subset of X , X is

called a fuzzy compact space.

Originally, Lowen in [18] introduced another notion of fuzzy compactness of a

fuzzy subset in fuzzy topological spaces and the notion of weakly fuzzy compactness

of the whole space. In the present paper, we have renamed a fuzzy compact subset of

Lowen as weakly fuzzy compact subset to differentiate it from fuzzy compact subset

of Chang.

Definition 2.4 ([18]). A fuzzy subset η of a fuzzy topological space X is said

to be weakly fuzzy compact (originally, fuzzy compact, see [18]) if for every fuzzy

cover Σ of η by fuzzy open sets of X and for every ε > 0, there exists a finite

subfamily {Ai : i = 1, 2, . . . , n} of Σ such that
n
∨

i=1

Ai > η − ε. If 1
¯
is a weakly fuzzy

compact subset of X , X is called a weakly fuzzy compact space.

Definition 2.5 ([25]). Let X and Y be two ordinary sets and ψ : X → Y be an

ordinary mapping. Let A be a fuzzy set of X . Then ψ(A) is defined by

ψ(A)(y) =

{

sup{A(x) : ψ(x) = y} if ψ−1(y) 6= ∅,

0 if ψ−1(y) = ∅.

Clearly, ψ(A) is a fuzzy set of Y . And for a fuzzy set B of Y , ψ−1(B) is defined by

ψ−1(B)(x) = B(ψ(x)). Clearly, ψ−1(B) is a fuzzy set of X .

Definition 2.6 ([8]). A mapping ψ : X → Y is fuzzy continuous if ψ−1(U) is

fuzzy open in Y for each fuzzy open set U inX . A bijective fuzzy continuous mapping

ψ : X → Y is called fuzzy homeomorphism if ψ−1 is also fuzzy continuous.

Following the theorem of Ming and Ming (see [25]) gives some characterizations

of fuzzy continuous functions.

Theorem 2.1 ([25]). For a mapping ψ : X → Y , following conditions are equiv-

alent:

(i) ψ is fuzzy continuous,

(ii) ψ−1(V ) is fuzzy closed in Y for each fuzzy open set V in X ,

(iii) for every fuzzy point xλ ∈ Pt(X) and every V ∈ Q(Y, ψ(xλ)) there exists

U ∈ Q(X, xλ) such that ψ(U) 6 V ,

(iv) for every fuzzy point xλ ∈ Pt(X) and every V ∈ N (Y, ψ(xλ)) there exists

U ∈ N (X, xλ) such that ψ(U) 6 V .
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Let Σ and Ω be two fuzzy open covers of a fuzzy topological space X . Define their

join by Σ ∨ Ω = {U ∧ V : U ∈ Σ, V ∈ Ω}. Clearly, the join Σ ∨ Ω is a fuzzy open

cover of X . It is well-known that Ω is called a refinement of Σ (denoted by Σ ≺ Ω)

if for each V ∈ Ω there exists U ∈ Σ such that V 6 U . In this paper, the cardinality

of a family Ω of fuzzy subsets or ordinary subsets of X is denoted by |Ω|. The join

of covers of topological space X is defined in an analogous way.

In a compact topological space X , the concept of the topological entropy of a

continuous self-mapping ψ : X → X was defined by Adler et al. (see [1]). The pair

(X,ψ) is called a compact topological dynamical system.

Definition 2.7 ([1]). Let (X,ψ) be a compact topological dynamical system

and Σ be an open cover of X . Let Na(Σ) = min{|Ω| : Ω ⊂ Σ and Σ is a cover of X}.

Let Ha(Σ) = logNa(Σ). Then the limit

ha(ψ,Σ) = lim
n→∞

1

n
Ha(∨{ψ

−i(Σ): i = 0, 1, 2, . . . , n− 1})

exists. The quantity ha(ψ) = sup{ha(ψ,Σ): Σ is an open cover of X} is called the

topological entropy of the continuous mapping ψ.

If X is a fuzzy compact space and ψ : X → Y is a fuzzy continuous mapping, then

the pair (X,ψ) is called a fuzzy compact topological dynamical system. For a fuzzy

compact dynamical system, Tok in [28] defined the notion of the fuzzy topological

entropy.

Definition 2.8 ([28]). Let (X,ψ) be a fuzzy compact topological dynamical

system and Σ be a fuzzy open cover of X . Let Nt(Σ) = min{|Ω| : Ω ⊂ Σ and Σ is

a cover of X}. Since X is fuzzy compact, Nt(Σ) is a positive integer. Let Ht(Σ) =

logNt(Σ). Then Tok (see [28]) showed that

ht(ψ,Σ) = lim
n→∞

1

n
Ht(∨{ψ

−i(Σ): i = 0, 1, 2, . . . , n− 1})

exists. The quantity ht(ψ) = sup{ht(ψ,Σ): Σ is a fuzzy open cover of X} is called

the fuzzy topological entropy of the fuzzy continuous function ψ.

Afsan and Basu in [2] introduced the notion of the fuzzy topological entropy for a

fuzzy continuous self-mapping ψ : X → X , where X is an arbitrary fuzzy topological

space, in terms of the fuzzy compact subsets of X .

Definition 2.9 ([2]). Let X be a fuzzy topological space, Σ be a fuzzy open

cover of X and C(X,ψ) = {K is a nonempty fuzzy compact subset of X such that

ψ(K) 6 K}. For each K ∈ C(X,ψ), let N⋆(Σ,K) = min{|Ω| : Ω ⊂ Σ, K 6 ∨Ω}.

Let H⋆(Σ,K) = logN⋆(Σ,K). Then the quantity

h⋆(ψ,Σ,K) = lim
n→∞

1

n
H⋆(∨{ψ−i(Σ): i = 0, 1, 2, . . . , n− 1},K)
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is called the fuzzy topological entropy of ψ on K relative to Σ,

h⋆(ψ,K) = sup{h⋆(ψ,Σ,K) : Σ is a fuzzy open cover of X}

is called the fuzzy topological entropy of ψ on K and

h⋆(ψ) = sup{h⋆(ψ,K) : K ∈ C(X,ψ)}

is called the fuzzy topological entropy of ψ.

Afsan and Basu in [2] also achieved the following result.

Theorem 2.2 ([2]). Let (X,ψ) be a fuzzy compact topological dynamical system.

Then h⋆(ψ) = ht(ψ).

3. Weakly fuzzy topological entropy

In this section, we have established a new definition of the fuzzy topological en-

tropy, namely weakly fuzzy topological entropy for the weakly fuzzy compact dy-

namical system (X,ψ) along with its several properties. The new definition of the

fuzzy topological entropy is metric-independent. In Theorem 3.3, we have achieved

a bridge result between the weakly fuzzy topological entropy and the topological en-

tropy of Adler el al. (see [1]). Then with the help of Example 3.1, we have shown that

such a bridge result between the fuzzy topological entropy of Tok (see [28]) and the

topological entropy of Adler el al. (see [1]) is not possible. We have also established

a product theorem of the weakly fuzzy topological entropies in Theorem 3.6.

Definition 3.1. Let (X, δ) be a fuzzy topological space and ψ : (X, δ) → (X, δ)

be a fuzzy continuous mapping. Then the pair (X,ψ) is called a fuzzy topological

dynamical system. If X is weakly fuzzy compact, (X,ψ) is called a weakly fuzzy

compact topological dynamical system.

Since every fuzzy compact space (see [8]) is weakly fuzzy compact (see [18]), fuzzy

compact topological dynamical systems (see [2]) are weakly fuzzy compact topolog-

ical dynamical systems.

Definition 3.2. Let (X,ψ) be a weakly fuzzy compact topological dynamical

system and Σ be a fuzzy open cover of X and ε > 0. Let Nw(Σ, ε) = min
{

|Ω| : Ω is

a finite subfamily of Σ such that
∨

µ∈Ω

µ > 1− ε
}

. Then Hw(Σ, ε) = logNw(Σ, ε) is

called the weakly fuzzy topological ε-entropy of Σ.
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Lemma 3.1. Let (X,ψ) be a weakly fuzzy compact topological dynamical system,

ε > 0 and Σ and Ω be fuzzy open covers of X . Then the following statements hold:

(a) Hw(Σ, ε) > 0;

(b) Ω ≺ Σ implies Hw(Ω, ε) 6 Hw(Σ, ε);

(c) Hw(Σ ∨ Ω, , ε) 6 Hw(Σ, ε) +Hw(Ω, ε);

(d) Hw(ψ
−1(Σ), ε) 6 Hw(Σ, ε). If ψ is bijective, the equality holds.

(e) If ψ is a homeomorphism, Hw(ψ(Σ), ε) = Hw(Σ, ε).

P r o o f. (a) Obvious.

(b) It is sufficient to show Nw(Ω, ε) 6 Nw(Σ, ε) to achieve this result. Let

Nw(Σ, ε) = n. Let Σn = {Ui : i = 1, 2, . . . , n} be a finite subfamily of Σ such

that
n
∨

i=1

Ui > 1− ε. Since Ω ≺ Σ, for each i = 1, 2, . . . , n, there exists Vi ∈ Ω

such that Ui 6 Vi. Then Ωn = {Vi : i = 1, 2, . . . , n} is a subfamily of Ω such that
n
∨

i=1

Vi > 1− ε. So Nw(Ω, ε) 6 n. Hence Nw(Ω, ε) 6 Nw(Σ, ε).

(c) It is sufficient to show Nw(Σ ∨ Ω, ε) 6 Nw(Σ, ε) · Nw(Ω, ε) to achieve this

result. Let Nw(Σ, ε) = m and Nw(Ω, ε) = n. Let Σm = {Ui : i = 1, 2, . . . ,m}

and Ωn = {Vi : i = 1, 2, . . . , n} be respective subfamilies of Σ and Ω such that
m
∨

i=1

Ui > 1− ε and
n
∨

j=1

Vj > 1− ε. Consider the subfamily
⊗

mn

= {Wij = Ui ∧ Vj : i =

1, 2, . . . ,m; j = 1, 2, . . . , n} of Σ∨Ω. Then
m
∨

i=1

n
∨

j=1

Wij =
( m
∨

i=1

Ui

)

∧
( n
∨

j=1

Vj

)

> 1− ε.

So Nw(Σ ∨ Ω), ε) 6 mn. Hence Nw(Σ ∨Ω, ε)) 6 Nw(Σ, ε) ·Nw(Ω, ε).

(d) Since Σ covers X , ∨{U : U ∈ Σ} = 1
¯
. Then ∨{ψ−1(U)(x) : U ∈ Σ} =

∨{U(ψ(x)) : U ∈ Σ} = 1 for each x ∈ X and so ψ−1(Σ) covers X . Let Nw(Σ, ε) = n.

Let Σn = {Ui : i = 1, 2, . . . , n} be a subfamily of Σ such that
n
∨

i=1

Ui > 1− ε. Now

since ψ is fuzzy continuous, {ψ−1(Ui) : i = 1, 2, . . . , n} is a subfamily of the cover

ψ−1(Σ) of X . We claim that
n
∨

i=1

ψ−1(Ui) > 1− ε. Let x ∈ X . Then Ui(ψ(x)) > 1−ε

for some i ∈ {1, 2, . . . , n} and so ψ−1(Ui)(x) = Ui(ψ(x)) > 1−ε. Thus
n
∨

i=1

ψ−1(Ui) >

1− ε. Hence Nw(ψ
−1(Σ), ε) 6 n = Nw(Σ, ε) and so Hw(ψ

−1(Σ), ε) 6 Hw(Σ, ε).

The second part can be obtained applying the result of the first part on the

mapping ψ−1.

(e) Applying the second part of (d) on the mapping ψ−1, we get the result. �

Theorem 3.1. Let (X,ψ) be a weakly fuzzy compact topological dynamical sys-

tem, ε > 0 and Σ be a fuzzy open cover of X . Then

lim
n→∞

1

n
Hw(∨{ψ

−i(Σ): i = 0, 1, 2, . . . , n− 1}, ε)

exists.
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P r o o f. Consider the sequence {xn : n ∈ N}, xn = Hw(∨{ψ−i(Σ): i = 0, 1,

2, . . . , n − 1}, ε) of positive real numbers. Then the sequence {xn/n : n ∈ N} is

convergent if xm+n 6 xm + xn for all m,n ∈ N, see [29].

By Lemma 3.1,

xm+n = Hw( ∨ {ψ−i(Σ): i = 0, 1, . . . ,m+ n− 1}, ε)

= Hw( ∨ {ψ−i(Σ): i = 0, 1, . . . ,m− 1}

∨ (∨{ψ−j(Σ): i = m,m+ 1, . . . ,m+ n− 1}), ε)

6 Hw( ∨ {ψ−i(Σ): i = 0, 1, . . . ,m− 1}, ε)

+Hw(∨{ψ
−j(Σ): i = m,m+ 1, . . . ,m+ n− 1}, ε)

6 Hw( ∨ {ψ−i(Σ): i = 0, 1, . . . ,m− 1}, ε)

+Hw(ψ
−m(∨{ψ−j(Σ): j = 0, 1, . . . , n− 1}), ε)

6 Hw( ∨ {ψ−i(Σ): i = 0, 1, . . . ,m− 1}, ε)

+Hw(∨{ψ
−j(Σ): j = 0, 1, . . . , n− 1}, ε).

So xm+n 6 xm + xn for all m,n ∈ N. �

Definition 3.3. Let (X,ψ) be a weakly fuzzy compact topological dynamical

system, ε > 0 and Σ be a fuzzy open cover of X . Then

hw(ψ,Σ, ε) = lim
n→∞

1

n
Hw(∨{ψ

−i(Σ): i = 0, 1, 2, . . . , n− 1}, ε)

is called the weakly fuzzy topological ε-entropy of ψ relative to Σ and

hw(ψ, ε) = sup{hw(ψ,Σ): Σ is a fuzzy open cover ofX}

is called the weakly fuzzy topological ε-entropy of ψ. And

hw(ψ) = sup{hw(ψ, ε) : ε > 0}

is called the weakly fuzzy topological entropy of ψ.

The following theorem shows that for a fuzzy compact dynamical system, the

weakly fuzzy topological entropy is equal to the fuzzy topological entropy of both

Tok (see [28]) and Afsan and Basu (see [2]).

Theorem 3.2. If (X,ψ) is a fuzzy compact topological dynamical system, then

hw(ψ) = ht(ψ) = h⋆(ψ).
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P r o o f. The equality of ht(ψ) and h
⋆(ψ) was established in [2]. So we shall only

show hw(ψ) = ht(ψ). Since X is fuzzy compact, it is also weakly fuzzy compact.

Let Σ be a fuzzy open cover of X such that Nt(Σ) = k. Let ε > 0. Then there

exists a minimal subfamily {Ui : i = 1, 2, . . . , k} of Σ such that
k
∨

i=1

Ui = 1
¯
> 1− ε.

So Nw(Σ, ε) 6 k = Nt(Σ). Then hw(ψ,Σ, ε) 6 ht(ψ,Σ) 6 ht(ψ) for any fuzzy open

cover Σ of X and for any ε > 0 and so hw(ψ) 6 ht(ψ).

Now suppose Ω be a fuzzy open cover of X . Since X is fuzzy compact, there

exists a minimal subfamily {Vj : j = 1, 2, . . . ,m} of Ω such that
m
∨

j=1

Vj = 1
¯
. Then

for each i ∈ {1, 2, . . . ,m} there exists xi ∈ X and εi > 0 such that (∨{Vj : j =

1, 2, . . . ,m, j 6= i})(xi) < 1 − εi < 1
¯
. Thus, Nw(Σ, εi) = m = Nt(Σ) and so

ht(ψ,Ω) = hw(ψ,Ω, εi) 6 hw(ψ, εi) 6 hw(ψ) for all fuzzy open covers Ω of X .

Therefore ht(ψ) 6 hw(ψ). �

Let (X, τ) be a given topological space and τR = {]r,∞[ : r ∈ R} ∪ {∅}. Consider

the space I = [0, 1] with the subtopology τR|I and ω(τ) = {µ ∈ XI : µ is continuous}.

Lowen in [19] showed that ω(τ) is a fuzzy topology on X .

Using Theorem 2.1, we shall show the following lemma.

Lemma 3.2. Let (X, τ) be a compact topological space and ψ : (X, τ) → (X, τ)

be a continuous mapping. Then ψ : (X,ω(τ)) → (X,ω(τ)), the fuzzy mapping

induced by the ordinary mapping ψ : (X, τ) → (X, τ), is fuzzy continuous.

P r o o f. Let xλ ∈ Pt(X) and µ ∈ N (X,ψ(xλ)). Then the continuity of µ :

(X, τ) → I ensures that V = {y ∈ X : µ(y) > λ} is open in (X, τ) containing ψ(x).

Since ψ : (X, τ) → (X, τ) is continuous, there exists a set U ∈ τ containing x such

that ψ(U) ⊂ V .

We define ̺ : τ → [0, 1] by ̺(U) = {λ} and ̺(X −U) = {0}. Then ̺ ∈ N (X, xλ).

We claim that ψ(̺) 6 µ. Let y ∈ X . First suppose ψ−1(y) = ∅, then ψ(̺)(y) = 0.

So ψ(̺)(y) 6 µ(y) for all y ∈ X with ψ−1(y) = ∅. Now let ψ−1(y) 6= ∅. Then either

ψ−1(y) ∩ U = ∅ or ψ−1(y) ∩ U 6= ∅.

For the former case, clearly, ψ(̺)(y) 6 µ(y). So, let z ∈ U such that ψ(z) = y.

Then ψ(̺)(y) = sup{̺(z) : ψ(z) = y} = λ. Again y = ψ(x) ∈ ψ(U) ⊂ V . Then

µ(y) > λ and so ψ(̺)(y) 6 µ(y). Thus, ψ(̺)(y) 6 µ(y) for all y ∈ Y and so ψ(̺) 6 µ.

Hence, by Theorem 2.1, ψ : (X,ω(τ)) → (X,ω(τ)) is fuzzy continuous. �

Now we shall establish a bridge result between the weakly fuzzy topological entropy

and the topological entropy of Adler, see [1].

Theorem 3.3. Let (X, τ) be a compact topological space and ψ : (X, τ) → (X, τ)

be a continuous mapping. Then hw(ψ) = ha(ψ), where ha(ψ) is the topological
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entropy of the continuous mapping ψ : (X, τ) → (X, τ) due to Adler (see [1]) and

hw(ψ) is the weakly fuzzy topological entropy of the fuzzy continuous mapping ψ :

(X,ω(τ)) → (X,ω(τ)).

P r o o f. Lowen in [18] proved that fuzzy topological space (X,ω(τ)) is weakly

fuzzy compact if and only if topological space (X, τ) is compact.

First, let Σω be any fuzzy open cover for X . Then ∨{µ : µ ∈ Σω} = 1
¯
. Let

ε ∈ (0, 1). Define Uµ = {(x, r) ∈ X× [0, 1] : µ(x) > r−ε}. Then Uµ is an open set of

X × [0, 1] with ∨{Uµ : µ ∈ Σω} ⊃ X × [0, 1]. The compactness of X × [0, 1] ensures

the existence of a finite (minimum) number of fuzzy open sets µ1, µ2, . . . , µn ∈ Σω

such that
⋃

{Uµi
: i = 1, 2, . . . , n} ⊃ X × [0, 1].

Now we define the projection mapping πX : X×[0, 1] → X defined by πX(x, t) = x

for all (x, t) ∈ X × [0, 1]. Then {πX(Uµi
) : i = 1, 2, . . . , n} is a minimal subcover of

Σ = {πX(Uµ) : µ ∈ Σω} of X , i.e. Na(Σ) = n.

Again, {µ1, µ2, . . . , µn} is a subfamily (which may not be minimal) of Σω with
n
∨

i=1

µi > 1− ε. Therefore Nw(Σω, ε) 6 n = Na(Σ). So Hw(Σω, ε) 6 Ha(Σ).

Hence, hw(ψ,Σω, ε) 6 ha(ψ,Σ) 6 ha(ψ). Therefore {hw(ψ,Σω, ε) : Σω is a fuzzy

open cover of X} is bounded above by ha(ψ). Therefore hw(ψ, ε) 6 ha(ψ) and so

hw(ψ) 6 ha(ψ).

Now, let Σ be any open cover for X . Then Σω = {χU : U ∈ Σ} is a fuzzy open

cover for X . Since (X,ω(τ)) is weakly fuzzy compact, this cover has a finite minimal

subfamily {χUi
: i = 1, 2, . . . , n} such that ∨{χUi

: i = 1, 2, . . . , nε} = 1
¯
> 1− ε for

each given ε > 0, i.e. Nw(Σω, ε) = nε. Again, {Ui : i = 1, 2, . . . , nε} is a subfamily

(which may not be minimal) of Σω with
nε
⋃

i=1

µi = X . Therefore Na(Σ) 6 Nw(Σω, ε)

and so Ha(Σ) 6 Hw(Σω, ε). Hence ha(ψ,Σ) 6 hw(ψ,Σω , ε) 6 hw(ψ, ε) 6 hw(ψ).

Thus ha(ψ) 6 hw(ψ). �

Theorem 3.3 shows that the weakly fuzzy topological entropy is a “good extension”

of the topological entropy of Adler (see [1]) in the sense that if ψ : (X, τ) → (X, τ)

is a continuous mapping, then its topological entropy due to Adler (see [1]) is equal

to the weakly fuzzy topological entropy of ψ : (X,ω(τ)) → (X,ω(τ)). Now we shall

give an example that shows that the fuzzy topological entropy of Tok (see [28]) is

not a “good extension” of the topological entropy of Adler (see [1]) in the above

sense.

E x am p l e 3.1. Let X = [0, 1] be the topological space with usual topology τ .

Suppose ψ : (X, τ) → (X, τ) be the identity mapping. Then evidently, (X,ψ) is a

compact topological dynamical system and ha(ψ) = 0. Lowen in [18] showed that

(X,ω(τ)) is not fuzzy compact (= fuzzy quasi-compact) due to Chang and so the
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definition of Tok (see [28]) fails to calculate the fuzzy topological entropy of the fuzzy

continuous mapping ψ : (X,ω(τ)) → (X,ω(τ)). Thus, the fuzzy topological entropy

of Tok (see [28]) is not a “good extension” of the topological entropy of Adler, see [1].

Again, since Theorem 3.3 implies that hw(ψ) = ha(ψ) = 0, this example also

shows that the result hw(ψ) = ht(ψ) in not true in general for a fuzzy non-compact

topological dynamical system.

Now we shall set an example which shows that the concepts of the weakly fuzzy

topological entropy and the fuzzy topological entropy of Afsan and Basu (see [2]) are

not equivalent.

E x am p l e 3.2. Let X = [0, 1] with the usual topology τ . Then (X,ω(τ)) is

weakly fuzzy compact. We define µn ∈ IX for each n ∈ N by µn(x) = 1 − n−1

for all x ∈ X . Since µn ∈ IX is continuous when I is given, the subtopology τR|I ,

µn ∈ ω(τ) for each n ∈ N. Then clearly, Ω0 = {µn : n ∈ N} is a cover of 1
¯
by the

fuzzy open sets of the fuzzy topological space (X,ω(τ)) without having any finite

subcover. So (X,ω(τ)) is not fuzzy compact.

Consider the continuous mapping ψ : X → X defined by

ψ(x) =

{

2x if x ∈ [0, 1
2
],

2(1− x) if x ∈ [ 1
2
, 1].

Then evidently, (X,ψ) is a compact topological dynamical system with ha(ψ) = log 2

and hence by Theorem 3.3, hw(ψ) = log 2.

We claim that h⋆(ψ) = 0. Let K be a fuzzy compact set of (X,ω(τ)) with

ψ(K) 6 K, i.e. K ∈ C(X,ψ). Since Ω0 is a fuzzy open cover of K, there exist

finite number of natural numbers n1, n2, . . . , nk ∈ N such that
k
∨

i=1

µni
> K. Let

n0 = max{n1, n2, . . . , nk}. Since µn 6 µm whenever n,m ∈ N and n 6 m, µn0
> K.

Thus, the fuzzy compact set K is covered by the subcover {µn0
} of Ω0 consisting of

single member and so N⋆(Ω0,K) = 1. Hence H⋆(Ω0,K) = 0.

Now let Σ be any fuzzy open cover of (X,ω(τ)). We claim that Σ ≺ Ω0. Suppose

n ∈ N and µn ∈ Ω0. Since ∨{U : U ∈ Σ} = 1
¯
, sup{U(x) : U ∈ Σ} = 1 for all x ∈ X .

So there exists U ∈ Σ such that µn(x) = 1 − n−1 6 U(x) for all x ∈ X and so

Σ ≺ Ω0.

Therefore by Lemma 3.1, H⋆(Σ,K) = 0 for any fuzzy open cover Σ of X . So

by Definition 2.9, h⋆(ψ,Σ,K) = 0 for any fuzzy open cover Σ of X and for any

K ∈ C(X,ψ). Hence by Definition 2.9, h⋆(ψ) = 0.

This example also shows that the fuzzy topological entropy of Afsan and Basu

(see [2]) is not a “good extension” of the topological entropy of Adler, see [1].
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Theorem 3.4. LetX and Y be weakly fuzzy compact topological spaces. Further,

ψ : X → X is fuzzy continuous and ϕ : X → Y is fuzzy homeomorphism. Then

hw(ψ) = hw(ϕψϕ
−1).

P r o o f. Since ϕ is a fuzzy homeomorphism, Σ is a fuzzy open cover of X if and

only if ϕ(Σ) is a fuzzy open cover of Y . By Lemma 3.1,

hw(ϕψϕ
−1, ϕ(Σ), ε) = lim

n→∞

1

n
Hw(∨{(ϕψϕ

−1)−i(ϕ(Σ)): i = 0, 1, 2, . . . , n− 1}, ε)

= lim
n→∞

1

n
Hw(∨{((ϕψ

−iϕ)(Σ)): i = 0, 1, 2, . . . , n− 1}, ε)

= lim
n→∞

1

n
Hw(∨{ψ

−i(Σ) : i = 0, 1, 2, . . . , n− 1}, ε)

= hw(ψ,Σ, ε).

Thus hw(ψ) = hw(ϕψϕ
−1). �

Theorem 3.5. Let (X,ψ) be a weakly fuzzy compact topological dynamical sys-

tem. Then

(a) hw(ψ
k) = k · hw(ψ) if k ∈ Z

+;

(b) hw(ψ
k) = |k| · hw(ψ) if ψ is a fuzzy homeomorphism and k ∈ Z.

P r o o f. (a) Let Σ be a fuzzy open cover of X and ε > 0. Since for any two fuzzy

covers Λ1 and Λ2 of X , ψ
−1(Λ1 ∨ Λ2) = ψ−1(Λ1) ∨ ψ−1(Λ2), we have

Hw(∨{(ψ
k)−i( ∨ {ψ−j(Σ)): j = 0, 1, 2, . . . , k − 1}, i = 0, 1, 2, . . . , n− 1}, ε)

= Hw( ∨ {ψ−i(Σ): i = 0, 1, 2, . . . , nk − 1}, ε).

Let Ω = ∨{ψ−j(Σ): j = 0, 1, 2, . . . , k − 1}. Then

hw(ψ
k,Ω, ε)

= lim
n→∞

1

n
Hw(∨{(ψ

k)−i(Ω): i= 0, 1, 2, . . . , n− 1}, ε)

= lim
n→∞

1

n
Hw(∨{(ψ

k)−i(∨{ψ−j(Σ) : j = 0, 1, 2, . . . , k − 1}) : i= 0, 1, 2, . . . , n− 1}, ε)

= lim
n→∞

1

n
Hw(∨{ψ

−i(Σ): i= 0, 1, 2, . . . , nk − 1}, ε)

= k · lim
n→∞

1

nk
Hw(∨{ψ

−i(Σ): i= 0, 1, 2, . . . , nk − 1}, ε)

= k · hw(ψ,Σ, ε)

for all fuzzy open covers Σ of X and for all ε > 0. Thus, hw(ψ
k, ε) > hw(ψ

k,Ω, ε) =

k · hw(ψ,Σ, ε) for every fuzzy open cover Σ of X and so hw(ψk) > k · hw(ψ).
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Now suppose Σ be a fuzzy open cover of X and ε > 0. Since ∨{ψ−i(Σ):

i = 0, 1, 2, . . . , nk − 1}) is a refinement of ∨{(ψk)−i(Σ): i = 0, 1, 2, . . . , n − 1}),

by Lemma 3.1,

hw(ψ
k,Σ, ε)

= lim
n→∞

1

n
Hw(∨{(ψ

k)−i(∨{ψ−j(Σ): j = 0, 1, 2, . . . , k − 1}) : i = 0, 1, 2, . . . , n− 1}, ε)

6 k · lim
n→∞

1

nk
Hw(∨{ψ

−i(Σ): j = 0, 1, 2, . . . , nk − 1}, ε)

= k · hw(ψ,Σ, ε).

So hw(ψ
k,Σ, ε) 6 k · hw(ψ,Σ, ε) for every fuzzy open cover Σ of X and for all

ε > 0. Hence hw(ψ
k,Σ, ε) 6 k · hw(ψ, ε). So hw(ψ) > hw(ψ, ε) > hw(ψ,Σ, ε) >

hw(ψ
k,Σ, ε)k−1 for every fuzzy open cover Σ of X and for all ε > 0. Thus

{hw(ψk,Σ, ε) : Σ is a fuzzy open cover of X and ε > 0} is bounded above by

k · hw(ψ) and so hw(ψk) 6 k · hw(ψ). Therefore, by the first part of the theorem,

hw(ψ
k) = k · hw(ψ).

(b) Let k ∈ Z−. Then −k ∈ Z+ and so by (a), hw(ψ
−k) = −k · hw(ψ). Again by

Lemma 3.1(d), hw(ψ
−k) = hw(ψ

k). Then hw(ψ
k) = −k · hw(ψ) and thus hw(ψk) =

|k| · hw(ψ). �

Theorem 3.6. Let (X,ψ) and (Y, ϕ) be weakly fuzzy compact topological dynam-

ical systems and ψ×ϕ : X × Y → X × Y be the mapping that sends (x, y) ∈ X ×Y

to (ψ(x), ϕ(y)). Then hw(ψ × ϕ) = hw(ψ) + hw(ϕ).

P r o o f. Lowen in [18] proved that X × Y is weakly fuzzy compact. If σ and ̺

are fuzzy topologies on X and Y , respectively, then the fuzzy topology on X × Y

is defined by σ × ̺ = {µ × ν : µ ∈ σ, ν ∈ ̺}, where µ × ν is a fuzzy set on X × Y

defined by (µ× ν)(x, y) = min{µ(x), ν(y)} for all (x, y) ∈ X × Y .

First, we shall establish the fuzzy continuity of ψ × ϕ. Let µ × ν ∈ σ × ̺. Then

µ ∈ σ and ν ∈ ̺. The continuities of ψ and ϕ ensure that ψ−1(µ) ∈ σ and ϕ−1(ν) ∈ ̺

and so ψ−1(µ)×ϕ−1(ν) ∈ σ×̺. We claim that (ψ×ϕ)−1(µ×ν) = ψ−1(µ)×ϕ−1(ν).

In fact, ((ψ × ϕ)−1(µ × ν))(x, y) = (µ× ν)((ψ × ϕ)(x, y)) = (µ × ν)((ψ(x), ϕ(y)) =

min{µ(ψ(x)), ν(ϕ(y))} = min{(ψ−1(µ))(x), (ν−1(ϕ))(y)} = (ψ−1(µ) × ϕ−1(ν))(x, y)

for each (x, y) ∈ X × Y . Therefore ψ × ϕ is fuzzy continuous.

Let Σ be a fuzzy open cover of X × Y and ε > 0. Then the fact

∨{U × V : U × V ∈ Σ} = (∨{U ∈ σ : U × V ∈ Σ for some V ∈ ̺})

× (∨{V ∈ ̺ : U × V ∈ Σ for some U ∈ σ})
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ensures that Σ = {U × V : U ∈ σ, V ∈ ̺} is a fuzzy open cover of X × Y if and

only if ΣX = {U ∈ σ : U × V ∈ Σ for some V ∈ ̺} is a fuzzy open cover of X and

ΣY = {V ∈ ̺ : U × V ∈ Σ for some U ∈ σ} is a fuzzy open cover of Y .

Let Nw(Σ, ε) = mn. Let Σmn = {Ui × Vj : i = 1, 2, . . . ,m; j = 1, 2, . . . , n} be

a finite minimal subfamily of Σ such that
m
∨

i=1

n
∨

j=1

Ui × Vj =
( m
∨

i=1

Ui

)

×
( n
∨

j=1

Vi

)

>

1X×Y − ε. So
m
∨

i=1

Ui > 1X − ε and
n
∨

j=1

Vj > 1Y − ε. Thus Nw(ΣX , ε) 6 m and

Nw(ΣY , ε) 6 n.

Again, if Nw(ΣX , ε) = m and Nw(ΣY , ε) = n, then there exist finite minimal

subfamilies {Ui : i = 1, 2, . . . ,m} ⊂ ΣX and {Vj : j = 1, 2, . . . , n} ⊂ ΣY such that
m
∨

i=1

Ui > 1X − ε and
n
∨

j=1

Vj > 1Y − ε. Then Σmn = {Ui × Vj : i = 1, 2, . . . ,m; j =

1, 2, . . . , n} is a finite subfamily of Σ = ΣX×ΣY such that
m
∨

i=1

n
∨

j=1

Ui×Vj > 1X×Y − ε.

So Nw(Σ, ε) 6 mn.

Therefore Nw(Σ, ε) = Nw(ΣX , ε) · Nw(ΣY , ε). Thus Hw(Σ, ε) = Hw(ΣX , ε) +

Hw(ΣY , ε) which ensures that hw(ψ × ϕ) = hw(ψ) + hw(ϕ). �

R em a r k 3.1. Since the product of two fuzzy compact spaces (= quasi-compact)

is not fuzzy compact, the result of Theorem 3.6 cannot be obtained for the entropies

of Tok (see [28]) or Afsan and Basu (see [2]).

A c k n ow l e d g em e n t . I am grateful to the learned referee for his valuable

comments and suggestions which improved the paper to a great extent.
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