
Zpravodaj Československého sdružení uživatelů TeXu

CSTUG editorial board
CSTUG, Charles University, Prague, March 1996, Questions and Answers
with Prof. Donald E. Knuth

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 6 (1996), No. 4, 215–239

Persistent URL: http://dml.cz/dmlcz/149769

Terms of use:
© Československé sdružení uživatelů TeXu, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/149769
http://dml.cz

CSTUG, Charles University,
Prague, March 1996
Questions and Answers with
Prof. Donald E. Knuth

Dr. Karel Horák:
[Introductory remarks in Czech, then English.]

I’m very glad to have such a happy occasion to introduce you, Pro-
fessor Knuth, to our audience, who are mostly members of CSTUG, the
Czech/Slovak TEX User Group, but also some academicians from Prague
because this session is organized by CSTUG and the Mathematics Faculty
of Charles University. We are very happy to have you here, and I would
be happy, on behalf of Charles University, to give you a special medal.
[wide applause]

DEK: [surprised] Thank you very much.

Prof. Ivan Netuka: Professor Knuth, dear colleagues, dear friends,
ladies and gentlemen. I feel really very much honored having the op-
portunity to greet Professor Donald Knuth, as well as most of you here
sitting in this guildhall, on behalf of the Dean of the Faculty of Mathe-
matics and Physics of Charles University, Professor Bedřich Sedlák.

As far as I know, Professor Knuth has come to Prague for the first
time. Despite this fact, he has been known here, not only among all
mathematicians, all computer scientists, but also many physicists, and
even to people having nothing to do with our subjects. People here are
fully aware of the significance of Donald Knuth’s [. . .] treatise, The Art
of Computer Programming. Many of us have had the opportunity to be
pleased by reading the charming booklet devoted to Surreal Numbers.
We know—and here I am going to fall [stumbled]—that Donald Knuth’s
favorite way to describe computer science is to say that it is the study
of algorithms. We share his opinion that the study of algorithms has
opened up a fertile vein of interesting new mathematical problems and
that it provides a stimulus for many areas of mathematics which have
been suffering from a lack of new ideas.

215

My personal experience—the personal experience of a mathemati-
cian—says that, for every mathematician, there exists a personality who
[has] brought an extraordinarily great service to his field. Here we have
a rare case where, in that statement, the order of the quantifiers may be
reversed, maybe: There exists a personality who [has] brought a great
service, an extraordinarily great service, to every mathematician. Here
is my one-line proof: Donald Knuth—TEX.

Professor Knuth, in acknowledgement of your achievements in com-
puter science, in mathematics, as well as in computerized typography,
which has given the whole of the community an excellent tool for present-
ing scientific results, the Faculty of Mathematics and Physics of Charles
University [has] decided that you be awarded the Faculty’s Memorial
Medal. I am happy to make that presentation now. [wide prolonged
applause]

Obrázek 1: The Seal of Charles University

DEK: Well, this is a quite beautiful medal; I hope you can come and
look at it. “Universitas Carolina Pragensis”—so we all speak Latin;
maybe I should speak Latin today. [laughter]

216

I don’t know much about the Czech language, but I’ve tried to learn
some of it. On many doors this week I see the word “Sem”. [laughter]
And then as I came up to this lecture hall today, there were many other
signs that said “TEX”. [laughter] So I thought we could have an espe-
cially powerful version of TEX [writes ‘SemTEX’ on the blackboard; more
laughter] but perhaps it’s dangerous; I don’t know. . . .

This morning I have no prepared lecture, but I want to say just what
you want to hear, so I want to answer your questions. This is a tradition
that I maintained in California: The very last session of every class that
I taught at Stanford was devoted to questions and answers. I told the
students they didn’t have to come to that class if they didn’t want to,
but if they came I would answer any question that they hoped to have
answered when they signed up for the class. I actually borrowed this
tradition from Professor [Richard] Feynmann at Caltech. And I decided
I would do it in my classes, too; it’s a wonderful idea that I recommend
to all professors—to have open-ended question and answer sessions.

I’ve recently made some home pages on the World Wide Web that
you can get via
http://www-cs-faculty.stanford.edu/~knuth
and there on those pages I have the answers to all frequently asked
questions. But today, you can ask me the unfrequently asked questions.
[laughter] By the way, I’ll tell you one more joke and then we’ll get
started. Do you know what the home page is of OJ—O.J. Simpson—in
the United States? It’s “http colon slash slash slash backslash slash
escape”. [laughter]

Now, please ask me questions. [pause]
Well, if there are no further questions, . . . [laughter]. You may ask in
Czech, and then someone will translate.

?: Maybe a question to start [with]. I learned TEX carefully, and I had
a problem when someone asked me to take the integral with tilde accent.
I found that maybe there isn’t one with TEX because you can’t specify
an italic correction to boxes.

DEK: The italic correction is . . . With each character there’s a limited
amount of information that goes in the data structure for each charac-
ter, and so we have [drawing on blackboard] the height, the depth, the
width, and the italic correction. But those are the only numbers that
are allowed, and in mathematics mode, the italic correction is used in a

217

http://www-cs-faculty.stanford.edu/~knuth

different way from outside of mathematics. In mathematics mode, the
italic correction is actually used for subscripts; it’s the amount by which
you would bring the subscript to the left—otherwise, it would typeset
“P sub n” (Pn) like this: Pn.

The italic correction on the integral sign might even be another case
because the large operators use the italic correction to cover the spacing
between the lower limit and the upper limit. Anyway, there’s only one
number in there. If you want a special construction that demands many
more numbers, the only way I know is to make a special macro for that.
I would carry the information somewhere up in the TEX level, not in the
inside, not with the character. You would have to build a structure that
has this information in it. I don’t know how general a solution you need,
but certainly if you said the . . . I can’t even remember the name now
. . . my goodness, how do you get the . . . like the same mechanism by
which someone would take an equal sign and then put something over
it, like this. It’s defined in plain TEX by a macro . . .

?: It’s something like \mathord and upper limits . . . [he means
\buildrel]

DEK: I would build it up out of the primitives, but if you had different
integral signs, you would probably have to allow the person who specified
the font to . . .

?: I have a solution, but it is not a TEX solution: I used METAFONT to
produce special characters, which have the [. . .]

DEK: Yes, using METAFONT would be the ideal way to get the correct
artistic effect, but then everyone else has to get your METAFONT code
and compile your font. Just by a combination of boxes and glue, you
should be able to position the characters that you have. You could just
make a \vbox [drawing on blackboard] or a \vcenter of something or
other, and then you build the \hbox of . . . with a kern and then a tilde
or so on. Otherwise, I don’t know any simple way of doing exactly
that balancing because it’s complicated by the visual proportions of the
spacing with integral signs—it gets really complicated to handle all cases.

My general philosophy with TEX was to try to have a system that
covers 99% of all cases easily [laughter]; and I knew there would always
be a residual number. But I felt that this residual would only be needed
by the people who really care about their papers, and then if they’re

218

only spending 1% of the time on this, then they would enjoy feeling that
they had contributed something special by adding their little signature,
their special character to it. So, I didn’t try to do everything automati-
cally. I still believe that it’s worthwhile thinking about how to do more
automatically, but I don’t believe you ever get all the way there.

Dr. Karel Horák: I would be very interested in your way of think-
ing—when you started thinking about making TEX and the typesetting
system—when you realized that you also needed to produce some letters,
to have not only TEX but also METAFONT. Because—I don’t know too
much about all types [typefaces] of digital typography—but I think there
weren’t very many types which you could use with TEX, so probably you
started thinking about METAFONT, about something like that, from the
first?

DEK: Exactly.
I have to erase this beautiful calligraphy [laughter]. It’s too late now;

well, whoever did it can do it again later, but I need the board. It’s
gorgeous, although this should really be a different “A”. [laughter]

Let’s go back to April 1977. [writes on board] I sat down at a com-
puter terminal and started writing a memorandum to myself about what
I thought would be a good language for typesetting. And in May 1977, I
began working on fonts. This was going to be my sabbatical year, where
I would do no teaching through the end of 1977, and the beginning of
1978. I thought that I would write a typesetting system just for myself
and my secretary. [laughter] I had no idea that I would ever be see-
ing TEX on, for example, the tram signs in Brno [laughter] or by the
churches of the city, and so on. It was just for my own purposes, and I
had one year to do it. And I thought it would be easy. So, in May of
1977, I went to Xerox PARC, the place where the ideas of mouses and
windows and interfaces and so on were being worked on, and I knew that
they were playing with splines for letterforms. I saw Butler Lampson at
a computer terminal, and he was adjusting splines around the edges of
letters that he had magnified; so I thought, “good, I’ll make an arrange-
ment to work at Xerox PARC during my sabbatical year, and use their
cameras and make the type.”

I knew from the beginning that I wanted the type to be captured in a
purely mathematical form; I wanted to have something that would adapt
to technology as it kept changing, so that I would have a permanent

219

mathematical description of the letters. Unfortunately, Xerox said, “Yes,
you’re welcome to use our equipment, but then we will own the designs,
they will be the property of Xerox.” I didn’t want any of this work to
be proprietary; I didn’t want people to have to pay to use it. . . . A
mathematical formula is just numbers—why shouldn’t everybody own
these numbers?

So instead, I worked only at Stanford, at the Artificial Intelligence
Laboratory, with the very primitive equipment there. We did have televi-
sion cameras, and my publisher, Addison-Wesley, was very helpful—they
sent me the original press-printed proofs of my book, from which The
Art of Computer Programming had been made. The process in the 60s
that I wanted to emulate was interesting: They would first print with
metal type, Monotype, onto good paper, one copy. They made one copy
with the metal, then they photographed that copy and printed from
the photograph. They gave me that original copy from which they had
made the original photographs. So I could try putting the TV camera
on that, and go from the TV camera to a computer screen to copy the
letters. At that time, we could connect our display terminals to televi-
sion and movies on television; people were looking at the titles of movies,
and capturing the frames from the movies and then making type. They
would keep waiting for more episodes of Star Trek or something so that
we would have the whole alphabet; eventually we would get a title with
the letter “x” in it. That’s how we were trying to get type by means of
television at the time.

I thought it would be easy, but immediately I noticed that if I turned
the brightness control a very little bit, the letters would get much thicker.
There was a tremendous variation, so that what I would see on my
TV screen had absolutely no consistency between a letter that I did
on Monday and a letter that I did on Tuesday, the following day. One
letter would be fat and one letter would be thin, but it would be the
same letter because the brightness sensitivity was extremely crude. This
is still true now: If you look at a scanner and you change the threshold
between black and white, a small change in the threshold changes the
character of the letter drastically. So I couldn’t use TV.

For the next attempt, my wife made photographs of the pages and
then we took our projector at home and projected them down a long
hallway. On the wall I would try to copy what the letters were. But at
that point I realized that the people who had designed these typefaces

220

actually had ideas in their mind when they were doing the design. There
was some logic behind the letters. For example, you have the letter ‘m’,
you have the letter ‘n’, you have an ‘i’ and an ‘l’, and I noticed that
the ‘m’ was 15 units, the ‘n’ was 10 units, and the ‘i’ was 5 units. Aha!
A pattern! The ‘l’ was 5 units, the ‘f’ was 5 units, the ‘fi’ ligature was
10 units. So, if you cut off the tops of these letters, you would see an
exact rhythm of 5 units between stems. Great—there were regularities
in the design! That’s when it occurred to me that maybe I shouldn’t
just try to copy the letterforms, but I should somehow try to capture
the intelligence, the logic, behind those letterforms. And then I could
do my bold font with the same logic as the regular font.

The truth therefore is that in May 1977 I didn’t know what to do
about fonts; June 1977 is when I started to have the idea of METAFONT.

I spent the summer of 1977 in China, and I left my students in
California; I told them to implement TEX while I was gone. [laughter] I
thought it would be very easy; I would come home and they would have
TEX working, and then I could do the fonts. But when I got back, I
realized that I had given them an impossible task. They actually had
gotten enough of TEX running to typeset one character on one page, and
it was a heroic achievement, because my specifications were very vague.
I thought the specifications were precise, but nobody understands how
imprecise a specification is until they try to explain it to a computer.
And write the program.

When I was not in China—in June, the first part of July, and Septem-
ber, October, November—I spent most of my time making fonts. And
I had to, because there was no existing way to get a font that would
be the same on different equipment. Plenty of good fonts existed, but
they were designed specifically for each manufacturer’s device. There
was no font that would go to two devices. And the people at Xe-
rox PARC—primarily John Warnock—were still developing their ideas;
they eventually founded Adobe Systems about 1980 or so. Now, with
the help of many great designers, they have many beautiful fonts. But
that came later, about two or three years after I had an urgent need for
device-independent type.

My lecture to the American Math Society was scheduled for January
1978. The transcript of the lecture that I gave, the Gibbs Lecture to the
Society, shows the work that I did with fonts in 1977. It was a much
longer task than I ever believed possible. I thought it would be simple

221

to make something that looked good—it was maybe six years before I
had anything that I really was satisfied with.

So, the first big ideas were to get fonts that would be machine inde-
pendent and work on many different computers, including future ones
that had not been invented, by having everything defined in mathemat-
ics. The second idea was to try to record the intelligence of the design.
I was not simply copying a shape, I also would specify that if part of the
shape changes, the other should change in a logical way. My goal was
to understand the designer’s intention, and not just copy the outcome
of the intention.

Well, I didn’t have TEX running until May of 1978—I didn’t have
TEX—I drew the fonts first. For the article, “Mathematical Typogra-
phy”, my talk to the American Math Society,1 I made individual letters
about 4cm high and I pasted each one on a big sheet of paper and took
a photograph of that.

That’s a long answer. I hope I answered the question.

Dr. Karel Horák: I have another question about this system; it is,
when you started to learn typography, you had some knowledge before,
or you started in the process, learning more and more? Because my
experience with The TEXbook, and [that of] others also, is that there
is very much about typography. You can learn a lot about typography,
much more than some people who are doing typesetting on the profes-
sional level, using those windows mouse systems. They never can learn
from the books which are supplied with those systems.

DEK: Thank you. So, what was my background before 1977? When I
was in secondary school—like gymnasium—I had a part-time job setting
type (so-called) on what was known as a mimeograph machine. I’m not
sure what would be the equivalent here. On a mimeograph you had a
sort of blue gelatinous material. The typewriter typed into it and it
made a hole. I would also use a light table, and special pens, and try to
make music or designs on the mimeograph stencil. I had a summer job
where I would type, and then I would use my stylus to inscribe pictures
on the gel. So I knew a little bit about typography. This was not fine
printing, of course; it was very amateurish, but at least it gave me some
idea that there was a process of printing that I could understand. After

1Bull. (N.S.) Amer. Math. Soc. 1 (1979), pages 337–372; republished in TEX and
METAFONT: New Directions in Typesetting, Bedford, MA: Digital Press, 1979.

222

making the stencils, I would run the machine, and cut the paper, and so
on. I was doing this as a student.

Later, my father had a printing press in the basement of our house,
and he did work for the schools of Milwaukee; this was to save money
from going to the professional places. He would work for some architects
that were friends of ours, to make their specification documents. Also
in the schools, there would be a program for a concert, or graduation
ceremony, something like that, printing tickets for football games . . . he
would do this in our basement. He started with a mimeograph machine,
then he upgraded to something called a VariTyper, which was marvelous,
because it had proportional spacing—some letters were wider than oth-
ers; the fonts were terrible, but we had this machine, and I learned how
to use it.

Still later, I started writing books, The Art of Computer Program-
ming. So, by 1977, I had been proofreading thousands of pages of galley
proofs. I certainly was looking at type. And you might say I was getting
ink in my blood.

But I also knew that engineers often make the mistake of not looking
at the traditions of the past. They think that they’ll start everything
over from scratch, and I knew that that was terrible. So actually, right
during April and May of 1977, when I was thinking about starting my
sabbatical year of typesetting, I took a trip with the Stanford Library
Associates, a group of book lovers from Stanford. We visited places in
Sacramento, California, where people had special printing presses. We
stopped at a typographic museum, which had a page from a Gutenberg
Bible, and so on. Everywhere we went on this tour, I looked intently at
all the letters that I saw. And I saw people’s collections of what they
felt was the finest printing.

At Stanford Library there is a wonderful collection of typographic
materials donated by a man named Gunst, who spent a lifetime collecting
fine printing. As soon as I got back from the library trip, I knew about
the Gunst collection, so I spent May and June reading the works of
Goudy and Zapf and everything I could find, back through history. First
of all, it was fascinating, it was wonderful, but I also wanted to make sure
that I could capture as well as possible the knowledge of past generations
in computer form.

The general idea I had at that time was the following. At the be-
ginning, when I was young, we had computers that could deal only with

223

numbers. Then we had computers that knew about numbers and capital
letters, uppercase letters. So this greatly increased our ability to express
ourselves. Even in Volume 1 of The Art of Computer Programming when
I designed my MIX computer, I never expected that computers could do
lowercase letters. [laughter] The Pascal language was developed approx-
imately 1968, 1969; Pascal originally used only uppercase letters, and
parentheses, commas, digits, altogether 64 characters.

Next, in the early 1970s, we had lowercase letters as well, and com-
puters could make documents that looked almost like a typewriter. And
then along came software like the eqn system of UNIX, which would
make documents that approached printing. You probably know that
troff and the eqn system for mathematics were developed at Bell Labs.
This was an extension of a program that began at MIT in 1959 or 1960,
and it developed through a sequence of about five levels of improvement,
finally to eqn in 1975.

So I knew that it was possible, all of a sudden, to get better and
better documents from computers, looking almost like real books. When
contemplating TEX I said, “Oh! Now it’s time to go all the way. Let’s not
try to approach the best books, let’s march all the way to the end—let’s
do it!” So my goal was to have a system that would make the best books
that had ever been made, except, of course, when handmade additions
of gold leaf and such things are added. [laughter] Why not? It was time
to seek the standard for the solution to all the problems, to obtain the
very best, and not just to approach better and better the real thing.
That’s why I read all the other works that I could, so that I would not
miss any of the ideas. While reading every book I could find in the
Gunst collection, to see what they could tell me about typesetting and
about letterforms, I tried to say, “Well, how does that apply, how could
I teach that to a computer?” Of course, I didn’t succeed in everything,
but I tried to find the powerful primitives that would support most of
the ideas that have grown up over hundreds of years.

Now, of course, we have many more years of experience, so we can
see how it is possible to go through even many more subtle refine-
ments that I couldn’t possibly have foreseen in 1980. Well, my project
took more than one year, and I had more than one user at the end.
The subsequent evolution is described in my paper called “The Errors

224

of TEX”, and the complete story after 1978 is told in that paper.2

In 1980, I was fortunate to meet many of the world leaders in ty-
pography. They could teach me, could fill in many of the gaps in my
knowledge. Artisans and craftsmen usually don’t write down what they
know. They just do it. And so you can’t find everything in books; I
had to learn from a different kind of people. And with respect to type,
the interesting thing is that there were two levels: There was the type
designer, who would draw, and then there was the punchcutter, who
would cut the punches. And the type designer would sometimes write
a book, but the punchcutter would not write a book. I learned about
optical illusions—what our eye thinks is there is not what’s really on the
page. And so the punchcutter would not actually follow the drawings
perfectly, but the punchcutter would distort the drawings in such a way
that after the printing process was done and after you looked at the
letter at the right size, what you saw was what the designer drew. But
the punchcutter knew the tricks of making the right distortions.

Some of these tricks are not necessary any more on our laser printers.
Some of them were only for the old kind of type. But other tricks were
important, to avoid blots of ink on the page and things like that. After
I had done my first work on METAFONT, I brought Richard Southall to
Stanford; he had been working at Reading University with the people
who essentially are the punchcutters. He gave me the extra knowledge
that I needed to know. For example, when stems are supposed to look
exactly the same, some of them are a little bit thinner, like the inside
of a ‘p’—you don’t want it to be quite as thick, you want it to be a
little thinner; then, after you have the rest of the letter there, the light-
ened stem will look like it was correct. Richard taught me that kind of
requirement. I learned similar things from Matthew Carter, Hermann
Zapf, Chuck Bigelow, Gerard Unger, and others.

But we had very primitive equipment in those days, so that the fonts
that we could actually generate at low resolution did not look profes-
sional. They were just cheap approximations of the fine type. Stanford
could not afford an expensive typesetting machine that would realize our
designs at the time. Now I’m so happy that we have machines like the

2Software—Practice and Experience 19 (1989), pages 607–681. Reprinted with
additional material in Literate Programming (CSLI Publications, Stanford, 1992, and
Cambridge University Press), pages 243–339.

225

LaserJet 4, which make my type look the way I always wanted it to look,
on an inexpensive machine.

?: Now that PostScript is becoming so widely used, do you think it is
a good replacement for METAFONT—I mean, good enough? Right now,
we can use TEX and PostScript . . .

DEK: The question is, is PostScript a good enough replacement for
METAFONT?

I believe that the available PostScript fonts are quite excellent quality,
even though they don’t use all of the refinements in METAFONT. They
capture the artwork of top-quality designs. The multiple master fonts
have only two or three parameters, while Computer Modern has more
than sixty parameters; even with only two or three it’s still quite good.
The Myriad and Minion fonts are excellent.

I’m working now with people at Adobe, so that we can more easily
substitute their multiple master fonts for the fonts of public-domain TEX
documents. The goal is to make the PDF files smaller. The Acrobat
system has PDF files which are much larger—they’re ten times as big as
dvi files, but if you didn’t have to download the fonts, they would only
be three times as large as the dvi files. PDF formats allow us search
commands and quite good electronic documents. So I’m trying to make
it easier to substitute the multiple master fonts. They still aren’t quite
general enough. I certainly like the quality there.

Adobe’s font artists, like Carol Twombly and Robert Slimbach, are
great; I was just an amateur. My designs as they now appear are good
enough for me to use in my own books without embarrassment, but I
wouldn’t mind using the other ones. Yes, I like very much the fonts that
other designers are doing.

Asking an artist to become enough of a mathematician to understand
how to write a font with 60 parameters is too much. Computer scien-
tists understand parameters, the rest of the world doesn’t. Most people
didn’t even know the word ‘parameters’ until five years ago—it’s still a
mysterious word. To a computer person, the most natural thing when
you’re automating something is to try to show how you would change
your program according to different specifications. But this is not a
natural concept to most people. Most people like to work from a given
set of specifications and then answer that design problem. They don’t
want to give an answer to all possible design specifications that they

226

might be given and explain how they would vary their solution to each
specification. To a computer scientist, on the other hand, it’s easy to
understand this kind of correspondence between variation of parameters
and variation of programs.

In the back?

Láďa Lhotka: I have a problem for you. [question about structured
programming]

DEK: I was talking with Tony Hoare, who was editor of a series of
books for Oxford University Press. I had a discussion with him in ap-
proximately . . . 1980; I’m trying to remember the exact time, maybe
1979, yes, 1979, perhaps when I visited Newcastle? I don’t recall exactly
the date now. He said to me that I should publish my program for TEX.3

As I was writing TEX I was using for the second time in my life
ideas called “structured programming”, which were revolutionizing the
way computer programming was done in the middle 70s. I was teaching
classes and I was aware that people were using structured programming,
but I hadn’t written a large computer program since 1971. In 1976 I
wrote my first structured program; it was fairly good sized—maybe, I
don’t know, 50,000 lines of code, something like that. (That’s another
story I can tell you about sometime.) This gave me some experience
with writing a program that was fairly easy to read. Then when I started
writing TEX in this period (I began the implementation of TEX in Oc-
tober of 1977, and I finished it in May 78), it was consciously done with
structured programming ideas.

Professor Hoare was looking for examples of fairly good-sized pro-
grams that people could read. Well, this was frightening. This was a
very scary thing, for a professor of computer science to show someone a
large program. At best, a professor might publish very small routines as
examples of how to write a program. And we could polish those until . . .
well, every example in the literature about such programs had bugs in it.
Tony Hoare was a great pioneer for proving the correctness of programs.
But if you looked at the details . . . I discovered from reading some of the
articles, you know, I could find three bugs in a program that was proved

3“I looked up the record when I returned home and found that my memory was
gravely flawed. Hoare had heard rumors about my work and he wrote to Stanford
suggesting that I keep publication in mind. I replied to his letter on 16 November
1977—much earlier than I remembered.” –D. Knuth

227

correct. [laughter] These were small programs. Now, he says, take my
large program and reveal it to the world, with all its compromises. Of
course, I developed TEX so that it would try to continue a history of
hundreds of years of different ideas. There had to be compromises. So I
was frightened with the idea that I would actually be expected to show
someone my program. But then I also realized how much need there
was for examples of good-sized programs, that could be considered as
reasonable models, not just small programs.

I had learned from a Belgian man (I had met him a few years earlier,
someone from Liège), and he had a system—it’s explained in my paper
on literate programming.4 He sent me a report, which was 150 pages
long, about his system—it was inspired by “The spirit in the machine”.
His 150-page report was very philosophical for the first 99 pages, and on
page 100 he started with an example. That example was the key to me
for this idea of thinking of a program as hypertext, as we would now say
it. He proposed a way of taking a complicated program and breaking
it into small parts. Then, to understand the complicated whole, what
you needed is just to understand the small parts, and to understand the
relationship between those parts and their neighbors.

In February of 1979, I developed a system called DOC and UNDOC . . .
something like the WEB system that came later. DOC was like WEAVE and
UNDOC was like TANGLE, essentially. I played with DOC and UNDOC and
did a mock-up with a small part of TEX. I didn’t use DOC for my own
implementation but I took the inner part called getchar, which is a fairly
complicated part of TEX’s input routine, and I converted it to DOC. This
gave me a little 20-page program that would show the getchar part of
TEX written in DOC. And I showed that to Tony Hoare and to several
other people, especially Luis Trabb Pardo, and got some feedback from
them on the ideas and the format.

Then we had a student at Stanford whose name was Zabala—actually
he’s from Spain and he has two names—but we call him Iñaki; Ignacio is
his name. He took the entire TEX that I’d written in a language called
SAIL (Stanford Artificial Intelligence Language), and he converted it
to Pascal in this DOC format. TEX-in-Pascal was distributed around the
world by 1981, I think. Then in 1982 or 1981, when I was writing TEX82,

4Pierre Arnoul de Marneffe, Holon Programming. Univ. de Liège, Service
d’Informatique (December, 1973).

228

I was able to use his experience and all the feedback he had from users,
and I made the system that became WEB. There was a period of two
weeks when we were trying different names for DOC and UNDOC, and the
winners were TANGLE and WEAVE. At that time, we had about 25 people
in our group that would meet every Friday. And we would play around
with a whole bunch of ideas and this was the reason for most of the
success of TEX and METAFONT.

Another program I wrote at this time was called Blaise, because it
was a preprocessor to Pascal. [laughter]

Dr. Petr Olšák: I have two questions.
What is your opinion of LATEX, as an extension of TEX at the macro

level? I think that TEX was made for the plain TEX philosophy, which
means that the user has read the The TEXbook . . . [laughter] while LATEX
is done with macros, and takes plain TEX as its base. And the second
question: Why is TEX not widely implemented and used in commercial
places. They use only mouse and WYSIWYG-oriented programs.

DEK: The first question was, what do I think about LATEX?
I always wanted to have many different macro packages oriented to

different classes of users, and LATEX is certainly the finest example of
these macro packages. There were many others in the early days. But
Leslie Lamport had the greatest vision as to how to do this. There’s also
AMS-TEX, and the mathematicians used Max Diaz’s macros—I think it
might have been called MaxTEX or something—in the early days before
we had LATEX. Mike Spivak and Leslie Lamport provided very important
feedback to me on how I could improve TEX to support such packages.
I didn’t want to . . . I like the idea of a macro system that can adapt
to special applications. I myself don’t use LATEX because I don’t have
time to read the manual. [laughter] LATEX has more features than I need
myself, in the way I do things. Also, of course, I understand TEX well
enough that it’s easier for me not to use high-level constructions beyond
my control.

But for many people it’s a simpler system, and it automates many of
the things that people feel naturally ought to be automated. For me, the
things that it automates are largely things that I consider are a small
percentage of my total work. It doesn’t bother me that I hand tune my
bibliography, but it bothers other people a lot. I can understand why a
lot of people prefer their way of working.

229

Also, when you’re writing in a system like LATEX you can more easily
follow a discipline that makes it possible for other programs to find
the structure of your document. If you work in plain TEX, you can
be completely unstructured in your approach and you can defeat any
possible process that would try to automatically extract bibliographic
entries and such things from your document. If you restrict yourself to
some kind of a basic structure, then other processes become possible.
So that’s quite valuable. It allows translation into other structures,
languages and so on.

But I use TEX for so many different purposes where it would be much
harder to provide canned routines. LATEX is at a higher level; it’s not
easy to bend it to brand-new applications. Very often I find that, for the
kind of things that I want to do, I wake up in the morning and I think
of a project . . . or my wife comes to me and says, “Don, can you make
the following for me?” So I create ten lines of TEX macros and all of a
sudden I have a new language specifically for that kind of a document.
A lot of my electronic documents don’t look like they have any markup
whatsoever.

Now, your second question, why isn’t TEX used more in commercial
publication? In fact, I was quite pleasantly surprised to see how many
commercial publishers in the Czech Republic are using TEX. Thursday
night, I saw three or four Czech-English dictionaries that were done with
TEX, and you know it’s being used for the new Czech encyclopedia. And
Petr Sojka showed me an avant garde novel that had been typeset with
TEX with some nice tricks of its own very innovative page layout. In
America, it’s used heavily in legal publications, and behind the scenes
in lots of large projects.

I never intended to have a system that would be universal and used
by everybody. I always wanted to write a system that would be used for
just the finest books. [laughter] Just the ones where the people had a
more difficult than ordinary task, or they wanted to go the extra mile to
have excellent typography. I never expected that it would compete with
systems that are for the masses.

I’m not a competitive person, in fact. It made me very happy to think
that I was making a system that would be primarily for mathematics.
As far as I knew, there wasn’t anybody in the world who would feel
offended if I made it easier to typeset mathematics. Printers considered
this to be “penalty copy”, and it was something that they did only

230

grudgingly. They charged a penalty for doing this extra horrible work,
to do mathematics. I never expected that I would be replacing systems
that are used in a newspaper office or anything like that. It turned out
that after I got going, we found we could make improvements . . . in
one experiment we re-typeset two pages of Time magazine, to show how
much better it would be if they had a good line-breaking algorithm. But
I never expected when I began that such magazines would ever use what
I was doing because, well, it was a billion-dollar industry and I didn’t
want to put anyone out of work or anything.

So it was very disturbing to me in the early 80s when I found there
was one man who was very unhappy that I invented TEX, because he
had worked hard to develop a mathematical typesetting system that he
was selling to people, and he was losing customers. So he wrote to the
National Science Foundation in America, saying, “I’m a taxpayer and
you’re using my tax money to put me out of business.” This made me
very unhappy. I thought everything I was doing was for everybody’s
good. And here was a person I’d obviously hurt. But I also thought
that I still should make TEX available to everyone, even though it had
been developed with some help from the government. I don’t think the
government should give money only to things that are purely academic
and not useful.

Yes?

?: I have a question about the usage of your typographic programs in
commercial institutions like DTP studios and so on. I’d like to ask about
using parts of the TEX source. You made clear that the programmers
were free to incorporate parts of the TEX source into their own programs.
There are some remarkable examples of this, do you know.

DEK: That question came up also last summer when I had a question
and answer session at the TUG meeting in Florida.5 I thought it would
be fairly common to have special versions of TEX. I designed TEX so
that it has many hooks inside; you can write extensions and then have
a much more powerful TEX system readily adapted.

I guess I was thinking that every publishing house using TEX would
have an in-house programmer who would develop a special version of
TEX if they wanted to do an edition of the Bible, if they wanted to do
an Arabic-to-Chinese dictionary or something. If they were doing an

5TUGboat 17(1) (1996), pages 7–22.

231

encyclopedia, they could have their own version of TEX that would be
used for this application.

A macro language is Turing-complete—it can do anything—but it’s
certainly silly to try to do everything in a high-level language when
it’s so easy to do it at the lower level. Therefore I built in hooks to
TEX and I implemented parts of TEX as demonstrations of these hooks,
so that a person who read the code could see how to extend TEX to
other things. We anticipated certain kinds of things for chemistry or
for making changebars that would be done in the machine language for
special applications.

Certainly, if I were a publishing house, if I were in the publishing
business myself, I would have probably had ten different versions of TEX
by now for ten different complicated projects that had come in. They
would all look almost the same as TEX, but no one else would have this
program—they wouldn’t need it, they’re not doing exactly the book that
my publishing house was doing.

That was what I thought would occur. And certainly, there was a
point in the middle 80s when there were more than a thousand people in
the world that knew the TEX program, that knew the intricacies of the
TEX program quite well. They had read it, and they would have been
able to make any of these extensions if they wanted. Now I would say
that the number of people with a working knowledge of TEX’s innards is
probably less than a thousand, more than a hundred. It hasn’t developed
to the extent that I expected.

One of the most extensive such revisions is what I saw earlier this
week in Brno—a student whose name is Thanh,6 I think, who has a
system almost done that outputs PDF format instead of dvi format.
If you specify a certain flag saying \PDFon, then the output actually
comes out as a file that an Acrobat reader can immediately read. I
also expected that people would go directly to PostScript; that hasn’t
happened yet as far as I know.

No one has done a special edition of the Bible using TEX in the way
I expected. There were some extensions in Iceland; I don’t remember if
they did it at the higher level—I think they did it mostly at the macro
level, or maybe entirely.

6Han The Thanh; see Petr Sojka, Han The Thanh and Jiří Zlatuška, “The Joy of
TEX2PDF—Acrobatics with an alternative to DVI format”, TUGboat 17(2) (1996).

232

Anyway, I made it possible to do very complicated things. When you
have a special application, I was always expecting that you would want
to have a specially tuned program there because that’s where it’s easiest
to do these powerful things.

?: I want to ask which features of TEX were in the first version—for
example, line-breaking, hyphenation, and macro processing—if all these
things were in the first version?

DEK: The very first version was designed in April 1977. I did have
macros and the algorithm for line-breaking. It wasn’t as well developed;
I didn’t have all the bells and whistles like \parshape at that time,
but from the very beginning, from 1977 on, I knew I would treat the
paragraph as a whole, not just line by line. The hyphenation algorithm
I had in those days was not the one that we use now; it was based on
removing prefixes and suffixes—it was a very peculiar method, but it
seemed to catch about 80% of the hyphens. I worked on that just by
looking at the dictionary: I would say, the word starts with “anti”, then
put a hyphen after the “i”; and similarly at the end of the word. Or
if you have a certain combination of letters in between, in the middle,
there were natural breaks. I liked this better than the troff method,
which had been published. The hyphenation algorithm is described in
the old TEX manual, which you can find in libraries.7

Now, you said the line-breaking, hyphenation, macros, . . . I devel-
oped the macro language in the following way. I took a look at Volume 2
of The Art of Computer Programming and I chose representative parts
of it. I made a mock-up of about five pages of that book, and said, “How
would I like that to look in a computer file?” And that was the whole
source of the design.

I stayed up late one night and created TEX. I went through Vol-
ume 2 and fantasized about natural-looking instructions—here I’ll say
“backslash algorithm”, and then I’ll say “algorithm i”, and then I’ll say
“algstep”, you know. This gave me a little file that represented the way
I wanted the input to look for The Art of Computer Programming. The
file also included some mathematical formulas. It was based on the idea
of eqn; the troff language had shown me a way to represent mathematics
that secretaries could learn easily. And that was the design. Then I had
to implement a macro language to support those features.

7TEX and METAFONT: New Directions in Typesetting (cited in footnote 1).

233

The macro language developed during 1978, primarily with the in-
fluence of Terry Winograd. Terry was writing a book on linguistics, a
book on English grammar. He wanted to push macros much harder than
I did, and so I added \xdef and fancier parameters for him.

The hyphenation algorithm we have now was Frank Liang’s Ph.D.
research. He worked with me on the original hyphenation method, and
his experience led him to discover a much better way, which can adapt
to all languages—I mean, to all western languages, which are the ones
that use hyphens.

As far as the spacing in mathematics is concerned, I chose three
standards of excellence of mathematical typesetting. One was Addison-
Wesley books, in particular The Art of Computer Programming. The
people at Addison-Wesley, especially Hans Wolf, their main compositor,
had developed a style that I had always liked best in my textbooks in
college. Secondly, I took Acta Mathematica, from 1910 approximately;
this was a journal in Sweden . . . Mittag-Leffler was the editor, and his
wife was very rich, and they had the highest budget for making quality
mathematics printing. So the typography was especially good in Acta
Mathematica. And the third source was a copy of Indagationes, the
Dutch journal. There’s a long fine tradition of quality printing in the
Netherlands, and I selected an issue from 1950 or thereabouts, where
again I thought that the mathematics was particularly well done.

I took these three sources of excellence and I looked at all the math-
ematics formulas closely. I measured them, using the TV cameras at
Stanford, to find out how far they dropped the subscripts and raised the
superscripts, what styles of type they used, how they balanced fractions,
and everything. I made detailed measurements, and I asked myself,
“What is the smallest number of rules that I need to do what they were
doing?” I learned that I could boil it down into a recursive construction
that uses only seven types of objects in the formulas.

I’m glad to say that three years ago, Acta Mathematica adopted TEX.
And so the circle has closed. Addison-Wesley has certainly adopted TEX,
and I’m not sure about the Dutch yet—I’m going to visit them next
week. [laughter] But anyway, I hope to continue the good old traditions
of quality.

I have to call on people who haven’t spoken. George. . .

Jiří Veselý: I have a question. You are asked every time carefully

234

regarding all suggestions and things like that for improvements. Once I
was asked about the possibility to make a list of all hyphenated words in
the book. I was not able to find in your book a way to do this. I would
like to know something about your philosophy what to include and what
not to include. What would be in that special package, and what would
be in TEX?

DEK: The question is, what is the philosophy that I use to try to say
what should be a basic part of TEX and what should be harder to do
or special, or something like that. Of course, these decisions are all
arbitrary. I think it was important, though, that the decisions were all
made by one person, even though I’m not . . . I certainly make a lot of
mistakes. I tried the best to get input from many sources, but finally
I take central responsibility to keep some unity. Whenever you have a
committee of people designing a system, everyone in the committee has
to feel proud that they have contributed something to the final language.
But then you have a much less unified result because it reflects certain
things that were there to please each person. I wanted to please as many
people as I could but keep unity. So for many years we had a weekly
meeting for about two hours every Friday noon, and we had visitors from
all over the world who would drop in. We would hear their comments
and then we would try to incorporate the ideas that we heard during
that time.

Now you ask specifically about why don’t we have an easy way to
list all the hyphenations that were made in the document. It sounds
like a very nice suggestion, which I don’t recall anyone raising during
those weekly meetings. The words that actually get hyphenated, the
decision to do that is made during the hpack routine, which is part of the
line-breaking algorithm. But the fact that a hyphenation is performed
by hpack doesn’t mean that it’s going to appear in the final document,
because you could discard the box in which this hyphenation was done.

It’s very easy in TEX to typeset something several times and then
choose only one of those for the actual output. So, to get a definitive
representative of the hyphenation, you’d have to catch it in the output
routine, where the discretionary had appeared. This would be easy to
do now in a module specially written for TEX. I would say that right
now, in fact, you could get almost exactly what you want by writing a
filter that says to TEX “Turn on all of the tracing options that cause it to

235

print, to give the page contents.” Then a little filter program would take
the trace information through a UNIX pipe and it would give you the
hyphenated words. It would take an afternoon to write this program,
maybe two afternoons . . . and a morning. [laughter] You could get that
now, but it was not something that I can recall I ever debated whether
or not I should do at the time we were having these weekly discussions
on TEX.

My paper on “The errors of TEX” has the complete record of all the
changes that were made since 1979, with dates, and with references to
the code, exactly where each change appears. And so you can see the
way the evolution was taking place. Often the changes would occur as I
was writing The TEXbook and realizing that some things were very hard
for me to explain. I would change the language so it would be easier to
explain how to use it. This was when we were having our most extensive
meeting with users and other people in the group as sources of ideas; the
part of the language I was writing about was the part that was changing
at the moment.

During 1978, I myself was typesetting Volume 2, and this led natu-
rally to improvements as I was doing the keyboarding. In fact, improve-
ments occurred almost at a steady rate for about 500 pages: Every four
pages I would get another idea how to make TEX a little better. But the
number of ways to improve any complicated system is endless, and it’s
axiomatic that you never have a system that cannot be improved. So
finally, I knew that the best thing I could do would be to make no more
improvements—this would be better than a system that was improving
all the time.

In fact, let me explain. As I was first developing TEX at the Stanford
Artificial Intelligence Laboratory, we had an operating system called
WAITS, which I think is the best that the world has ever seen. Four
system programmers were working full time making improvements to
this operating system. And every day that operating system was getting
better and better. And every day it was breaking down and unusable.

In fact I wrote the first draft of The TEXbook entirely during down-
time. I would take my tablet of paper to the Artificial Intelligence Lab-
oratory in the morning and I would compute as long as I could. Then
the machine would crash, and I would write another chapter. Then the
machine would come up and I could type a little bit and get a little
more done. Then, another hang up; time to write another chapter. Our

236

operating system was always getting better, but I couldn’t get much
computing done.

Then the money ran out; three of the programmers went to Lawrence
Livermore Laboratory and worked on a new operating system there. We
had only one man left to maintain the system, not to make any more
improvements. And it was wonderful! [laughter] That year, I could be
about as productive as anyone in the world.

So I knew that eventually I would have to get to the point where
TEX would not anymore improve. It would be steady and reliable, and
people would understand the warts it had . . . the things that it doesn’t
do.

I still believe it’s best to have a system that is not a moving target.
After a certain point, we need something that is stable, not changing at
all. Of course, if there’s some catastrophic scenario that we don’t want
ever to happen, I still change TEX to avoid potential disasters. But I
don’t put in nice ideas any more.

Of course, there are other people working on extensions to TEX that
will be useful for another generation. And they will also be well advised
at a certain point to say “Now we will stop, and not change our system
any more.” Then there will be a chance for another group later.

Dr. Karel Horák: I’d like to ask about the idea of the italic font in
mathematics. I never saw other textbooks that use different fonts for
italics in text and in mathematics, so I’m asking if it’s your own idea or
if it comes also from these three sources?

DEK: That’s right. I didn’t find in any of the other books the idea of
having a text italic and a math italic. I wanted the math italic to look
as beautiful as possible, and I started with that. But then I found that
the text italic was not as good, so I had METAFONT and it was easy
to get text italic that would look better. If I made the text italic good,
then the math would not position the subscripts and the superscripts as
well.

It’s partly because of what I explained before—TEX has only four
numbers to go with every character. Printers, in fact, in the old days,
had only three numbers; they didn’t have the italic correction. So they
couldn’t do even that much automatically; the better printers adjusted
mathematical spacing by hand. But italic now, the italic fonts of today
by all the font designers are much better than they used to be. We’ve

237

seen a great improvement in italic typography during the last ten, fif-
teen years. In fact, if you read older books you’ll sometimes say, “How
could anybody read this italic?”, or “Why did they accept such peculiar
spacing?”, but it was based on the constraints of metal type. The whole
idea of italic correction was not in any other book, but it was necessary
for me to get the spacing that I wanted.

When I showed type designers mathematical formulas, they could
never understand why mathematicians want italic type in their formu-
las. It seems you’re combining a roman 2 with an italic x. And they
said, “Wouldn’t the positioning be so much simpler if you had a reg-
ular, non-sloped font in mathematics?” And I think it was Jan van
Krimpen, who worked with a Nobel Prize physicist in the Netherlands,
in Haarlem—what was his name?8 I think he was the second person to
receive the Nobel Prize in physics; he died in the 20s—anyway he and
van Krimpen were going to develop a new font for mathematics in the
Netherlands, and it wasn’t going to have italics for mathematics. It was
going to be unified between the Greek letters and other symbols that
mathematicians wanted. But the project stopped because the physicist
died; van Krimpen finished only the Greek, which became fairly well
used.

Several other font designers have visited Stanford. When they looked
at mathematics, they said, “Well, why don’t you use a non-sloping font?”
Hermann Zapf made a proposal to the American Mathematical Society
that we would create a new typeface for mathematics which would in-
clude the Fraktur alphabet, and Greek, and script, and special charac-
ters, as well as ordinary letters. One key idea was that it would not have
sloped characters, so that x would be somehow straight up and down.
Then it should be easier to do the positioning, the balancing. Hermann
created a series of designs, and we had a large committee of mathemati-
cians studying the designs and commenting on them and tuning them.

This font, however, proved to be too radical a change for mathemati-
cians. I’ve seen mathematicians actually writing their documents where
they will write an x slanted twice as much—I mean, they make it look
very italic; it looks like a mathematical letter to them. So after 300
years of seeing italic math in print, it’s something that we feel is right.

8It was H.A. Lorentz. See John Dreyfus, The Work of Jan van Krimpen (London:
Sylvan Press, Museum House, 1952), page 28.

238

There are maybe two dozen books printed, well, maybe more, maybe a
hundred, printed with the AMS Euler font, but most mathematicians
think it’s too different.

I find now that the Euler Fraktur font is used by almost everyone.
In Brno, I saw Euler Roman used as a text font for a beautiful book, a
translation of Durer’s Apocalyse in Czech. I also saw it a few days ago in
some class notes. Once, when I was in Norway, I noticed that everyone’s
workstation was labeled with the workstation’s name in AMS Euler,
because people liked it. It’s a beautiful font, but it hasn’t been used as
the typeface for mathematics in a large number of books.

Dr. Karel Horák: If there are no other questions, I would thank Pro-
fessor Knuth very much for this session. [wide prolonged applause]

DEK: Thank you all for excellent questions.

Dr. Karel Horák: [Closing comments in Czech.]

Vizitky v LATEXu
Josef Barák

Vizitky, čili navštívenky, se staly v posledních letech běžným doplňkem.
Jejich návrhem a výrobou se zabývá mnoho firem. Vizitka navržená fir-
mou je však jednak poměrně drahá (cca 1,50 Kč a více za kus), jednak
si nelze objednat menší sérii než padesát kusů (a pokud ano, je účto-
ván příplatek). Navíc se představa návrháře nemusí vždy zcela shodovat
s představou zákazníka.

Po zvážení všech výše uvedených důvodů jsem se rozhodl, že budu
vizitky sobě i svým známým vyrábět sám. Protože i vizitka by měla
splňovat určitá estetická kritéria a protože se již nějakou dobu zabý-
vám TEXem, přesněji řečeno LATEXem, byla volba vhodného programu
jednoznačná.

Vzhledem k tomu, že mám přístup k Internetu, nejdříve ze všeho jsem
se pídil po vhodném makru, které by výrobu vizitek nějak ulehčilo a zau-
tomatizovalo. Moje snaha byla částečně úspěšná, neboť jsem nalezl balík

239

