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KYBERNET IKA — VOLUME 5 8 ( 2 0 2 2 ) , NUMBER 1 , PAGES 4 3 – 6 3

ON THE T -CONDITIONALITY OF T -POWER BASED
IMPLICATIONS

Zuming Peng

It is well known that, in forward inference in fuzzy logic, the generalized modus ponens
is guaranteed by a functional inequality called the law of T -conditionality. In this paper, the
T -conditionality for T -power based implications is deeply studied and the concise necessary
and sufficient conditions for a power based implication IT being T -conditional are obtained.
Moreover, the sufficient conditions under which a power based implication IT is T ∗-conditional
are discussed, this discussions give an ideas to construct a t-norm T ∗ such that the power based
implication IT is T ∗-conditional.

Keywords: T -power based implications, T -conditionality, t-norms, generalized modus po-
nens

Classification: 03E72, 03B52

1. INTRODUCTION

Fuzzy implications are the generalization of the classical (Boolean) implications on the
unit interval [0, 1]. They are mainly used in fuzzy logic systems [7, 29, 32]. In the
fields of decision theory [8, 11, 12], image processing [13], data mining [25, 31], fuzzy
DI-subsethood measure [5], etc., they are also used with an essential role. In view of
its wide application, various fuzzy implications have been proposed up to now by many
authors (see for instance, [1, 2, 3, 9, 15, 23, 29, 30]).

In [18], motivated by the famous example related to tomatoes in [21], a novel ad-
ditional property called invariance property for fuzzy implications was introduced. Al-
though this property is not usually required on fuzzy implications, it is closely related
to approximate reasoning. As many of the most usual fuzzy implications do not have
this property, thus, in the same paper, a new class of fuzzy implications named T -power
based implications was introduced. Subsequent research shows that most of the members
of T -power based implications have invariance property [19]. Additionally, an in-depth
analysis of all binary operators satisfying invariance property with respect to powers of
a continuous t-norm was performed in [20, 22].

Fuzzy implications are mainly used in fuzzy logic systems to model fuzzy condition-
als, and to perform fuzzy inference processes through generalized modus ponens and
generalized modus tollens rules [4, 6, 7, 10, 32]. It is well known that the generalized
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modus ponens can be implemented by a scheme enabled by a functional inequality called
the law of T -conditionality (T -conditionality for short) [3], also known as modus ponens
inequality [26]. Hence, the T -conditionality for many kinds of implication functions has
been extensively studied (see for instance, [1, 16, 17, 23, 24, 26, 27, 28]). Recently, Li
et al. [16] have studied the T -conditionality for T -power based implications. The main
contributions of [16] are as follows:

Theorem 1.1. (Qin and Xie [16], Theorem 3.10) Let T ] = (〈a]j , b
]
j , T

]
j 〉)j∈J be a con-

tinuous t-norm and T = (〈ai, bi, Ti〉)i∈I a continuous t-norm.

(i) If b]j < 1 for all j ∈ J , then IT is a T ]-conditional if and only if T = TM .

(ii) If there exists a j0 ∈ J satisfying b]j0 = 1, then IT is a T ]-conditional if and only
if the following two statements are true.

(a) Every open generating interval (ai, bi) of T satisfies the condition that (ai, bi)

⊆ (a]j0 , 1).

(b) For every open generating interval (ai, bi) of T and its corresponding summand Ti,
it holds that

ti(
x−ai

bi−ai
)

ti(
y−ai

bi−ai
)
≤ a]j0 + (1− a]j0) · IT ]

j0

(
x− a]j0
1− a]j0

,
y − a]j0
1− a]j0

) (1)

for all x, y ∈ [ai, bi] such that x > y, where ti is an additive generator of Ti.

Corollary 1.2. (Qin and Xie [16], Corollary 3.11) Let T ] = (〈a]j , b
]
j , T

]
j 〉)j∈J be a

continuous t-norm.

(i) If b]j < 1 for all j ∈ J , then IT
]

is a T ]-conditional if and only if T ] = TM .

(ii) If there exists a j0 ∈ J satisfying b]j0 = 1, then IT
]

is a T ]-conditional if and only

if T ]
j0

is a nilpotent t-norm such that T ] = (〈a]j0 , 1, T
]
j0
〉) and

α

β
≤ a]j0 + (1− a]j0) · t−1j0

(β − α) (2)

for all α, β ∈ [0, 1] with β > α, where tj0 is the normalized additive generator of

T ]
j0

.

Although Theorem 1.1 (ii) gives a necessary and sufficient condition on the T -
conditionality for a power based implication, inequation (1) is merely an elaboration
of inequation IT (x, y) ≤ IT ](x, y) for all x, y ∈ [0, 1] with x > y. Note that IT (x, y) ≤
IT ](x, y) ⇔ T ](x, IT (x, y)) ≤ y for all x, y ∈ [0, 1] with x > y. This indicates that
inequality (1) is another display of the definition on T -conditionlity for the power based
implications. Hence, there still exists a problem to solve: Given a continuous t-norm
T , how do we construct a t-norm T ∗ such that the power based implication IT is T ∗-
conditional.
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In addition, inequation (2) is too complicated to use.
In view of the above considerations, it is necessary to continue to investigate the

T -conditionality for T -power based implications.
The paper is organized as follows. In Section 2, some concepts and results are recalled.

In Section 3, new results on the T -conditionality for T -power based implications are
given. Finally, the paper ends with a section devoted to the conclusions.

2. PRELIMINARIES

For convenience, in this section, the definitions and results to be used in the rest of the
paper are outlined.

Definition 2.1. (Baczyński and Jayaram [3], Definition 1.1.1) A function I : [0, 1]2 →
[0, 1] is called a fuzzy implication if it satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the
following conditions:

if x1 < x2, then I(x1, y) ≥ I(x2, y), i. e., I(·, y) is decreasing, (I1)
if y1 < y2, then I(x, y1) ≤ I(x, y2), i. e., I(x, ·) is increasing, (I2)
I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0. (I3)

The set of all fuzzy implications will be denoted by FI.

Definition 2.2. (Klement et al. [14], Definition 1.1) An associative, commutative and
increasing function T : [0, 1]2 → [0, 1] is called a t-norm if it satisfies T (x, 1) = x for all
x ∈ [0, 1].

The following are the four basic t-norms TM , TP , TL, TD given by, respectively:

TM (x, y) = min(x, y), TP (x, y) = xy, TL(x, y) = max(x+ y − 1, 0),

TD(x, y) =

{
min(x, y), if x = 1 or y = 1,

0, otherwise.

Definition 2.3. (Baczyński and Jayaram [3], Definition 2.1.2.) A t-norm T is called

• continuous if it is continuous in both the arguments;

• strict, if it is continuous and strictly monotone;

• Archimedean, if for all x, y ∈ (0, 1) there exists an n ∈ N such that x
(n)
T < y,

where
x
(1)
T = x, x

(n)
T = T (x, x

(n−1)
T ) for all n ≥ 2,

with the convention x
(0)
T = 1;

• nilpotent, if it is continuous and for each x ∈ (0, 1), there exists an n ∈ N such

that x
(n)
T = 0.

Remark 2.4. (Baczyński and Jayaram [3], Remark 2.1.4) If a t-norm T is strict or
nilpotent, then it is Archimedean. Conversely, every continuous Archimedean t-norm is
strict or nilpotent.
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Theorem 2.5. (Baczyński and Jayaram [3], Theorem 2.1.5) For a function T : [0, 1]2 →
[0, 1] the following statements are equivalent:

(i) T is a continuous Archimedean t-norm.

(ii) T has a continuous additive generator, i. e., there exists a continuous, strictly
decreasing function t : [0, 1]→ [0,∞] with t(1) = 0, which is uniquely determined
up to a positive multiplicative constant, such that

T (x, y) = t−1(min(t(x) + t(y), t(0))), x, y ∈ [0, 1].

Remark 2.6. (Baczyński and Jayaram [3], Remark 2.1.7)

(i) T is a strict t-norm if and only if each continuous additive generator t of T satisfies
t(0) =∞.

(ii) T is a nilpotent t-norm if and only if each continuous additive generator t of T
satisfies t(0) <∞.

Theorem 2.7. (Klement et al. [14], Theorem 3.23) Let t : [0, 1]→ [0,∞] be a strictly
decreasing function with t(1) = 0 such that t(x) + t(y) ∈ Ran(t) ∪ [t(0+),∞] for all
(x, y) ∈ [0, 1]2. The following function T : [0, 1]2 → [0, 1] is a t-norm:

T (x, y) = t−1(min(t(x) + t(y), t(0))), x, y ∈ [0, 1].

Theorem 2.8. (Klement et al. [14], Theorem 3.43) Let A be an index set and (Ti)i∈A
a family of t-norms, let {(ai, bi)}i∈A be a family of non-empty, pairwise disjoint open
subintervals of [0, 1]. Then the following function T : [0, 1]2 → [0, 1] is a t-norm:

T (x, y) =

{
ai + (bi − ai) · Ti( x−ai

bi−ai
, y−ai

bi−ai
), if x, y ∈ [ai, bi],

min(x, y), otherwise.
(3)

Definition 2.9. (Klement et al. [14], Definition 3.44) Let A be an index set and
(Ti)i∈A a family of t-norms, and let {(ai, bi)}i∈A be a family of non-empty, pairwise
disjoint open subintervals of [0, 1].

(i) The t-norm T defined by (3) is called the ordinal sum of t-norms, also known
as the ordinal sum of the summands 〈ai, bi, Ti〉, i ∈ A. In this case we write
T = (〈ai, bi, Ti〉)i∈A.

(ii) T = (〈ai, bi, Ti〉)i∈A is said to be trivial if A = {1}, a1 = 0 and b1 = 1.

(iii) T = (〈ai, bi, Ti〉)i∈A is called an ordinal sum of continuous Archimedean t-norms
if Ti is a continuous Archimedean t-norm for all i ∈ A.

Theorem 2.10. (Klement et al. [14], Theorem 5.11) For a function T : [0, 1]2 → [0, 1]
the following statements are equivalent:

(i) T is a continuous t-norm.
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(ii) T is uniquely representable as an ordinal sum of continuous Archimedean t-norms,
i.e, there exist a uniquely determined (finite or countably infinite) index set A, a
family of uniquely determined pairwise disjoint open subintervals {(ai, bi)}i∈A of
[0, 1] and a family of uniquely determined continuous Archimedean t-norms (Ti)i∈A
such that

T = (〈ai, bi, Ti〉)i∈A.

Remark 2.11. For a continuous t-norm T , if T 6= TM , then it is either a continuous
Archimedean t-norm or a non-trivial ordinal sum of continuous Archimedean t-norms.

Definition 2.12. (Klement et al. [14], Massanet et al. [18]) Let T be a continuous
t-norm. For each x ∈ [0, 1], nth roots and rational powers of x with respect to T are
defined by

x
( 1
n )

T = sup{z ∈ [0, 1]|z(n) ≤ x}, x
(m

n )

T =
(
x
( 1
n )

T

)(m)

T
,

where m, n are positive integers.

Definition 2.13. (Massanet et al. [18], Definition 4) A binary operator I : [0, 1]2 →
[0, 1] is said to be a T -power based implication if there exists a continuous t-norm T
such that

I(x, y) = sup{r ∈ [0, 1]|y(r)T ≥ x}, for all x, y ∈ [0, 1]. (4)

If I is a T -power based implication, then it will be denoted by IT .

Proposition 2.14. (Massanet et al. [18], Proposition 5) Let T be a continuous t-norm
and IT its power based implication defined by (4).

(i) If T = TM , then IT (x, y) =

{
1, if x ≤ y,
0, if x > y,

is the Rescher implication IRS .

(ii) If T is an Archimedean t-norm with additive generator t, then

IT (x, y) =

{
1, if x ≤ y,
t(x)
t(y) , if x > y,

with the convention that a
∞ = 0 for all a ∈ [0, 1].

(iii) If T is an ordinal sum t-norm of the form T = (〈ai, bi, Ti〉)i∈A, where Ti is an
Archimedean t-norm with additive generator ti for all i ∈ A, then

IT (x, y) =


1, if x ≤ y,
ti(

x−ai
bi−ai

)

ti(
y−ai
bi−ai

)
, if x > y and x, y ∈ [ai, bi],

0, otherwise.
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3. NEW RESULTS ON T -CONDITIONALITY OF T -POWER BASED
IMPLICATIONS

A fuzzy implication I is T -conditional [3] if there exists a t-norm T such that

T (x, I(x, y)) ≤ y for all x, y ∈ [0, 1]. (TC)

From Theorem 1.1 (i) it is easy to see that the power based implication ITM satisfies
(TC) with respect to any t-norm T . Hence, in the paper, only the T -conditionality
for IT in which T is a continuous Archimedean t-norm, or a non-trivial ordinal sum of
continuous Archimedean t-norms, is discussed.

Considering that the two t-norms of the power-based implication IT and the T -
conditionality may not be same, the study on T -conditionality for the power-based
implication IT is carried out from the following two aspects: one is that the pair (IT , T )
satisfies (TC), the other is that the pair (IT , T ∗) satisfies (TC), where T ∗ is a t-norm
different from T in general.

3.1. New results of IT satisfying (TC) with t-norm T

In this sub-section, in view of the complexity of inequation (2), we give two new results
on the pair (IT , T ) satisfying (TC).

Proposition 3.1. (Qin and Xie [16], Corollary 3.11 (ii)) Let T be a continuous Archime-
dean t-norm and IT its power based implication. If the pair (IT , T ) satisfies (TC), then
T is a nilpotent t-norm.

Theorem 3.2. Let T be a nilpotent t-norm with continuous additive generator t. Then
the pair (IT , T ) satisfies (TC) if and only if

t(p)

1− p
≥ t(0) for all p ∈ [0, 1).

P r o o f . (Sufficiency) Let x, y ∈ [0, 1] with x > y, and let t(x)
t(y) = p1. Obviously,

t(x) < t(y) ≤ t(0), and p1 ∈ [0, 1).

Assume that t(p)
1−p ≥ t(0) for all p ∈ [0, 1), then t(p1)

1−p1
≥ t(0), i. e.,

t
(

t(x)
t(y)

)
1− t(x)

t(y)

≥ t(0) ≥ t(y).

Hence

t

(
t(x)

t(y)

)
≥ t(y)− t(x).

Thus

t(x) + t

(
t(x)

t(y)

)
≥ t(y).
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Case 1: If t(x) + t
(

t(x)
t(y)

)
≥ t(0), then

T (x, IT (x, y)) = t−1
(

min

(
t(x) + t

(
t(x)

t(y)

)
, t(0)

))
= 0 ≤ y.

Case 2: If t(x) + t
(

t(x)
t(y)

)
< t(0), note that t(x) + t

(
t(x)
t(y)

)
≥ t(y), then

T (x, IT (x, y)) = t−1
(
t(x) + t

(
t(x)

t(y)

))
≤ y.

Hence, for all x, y ∈ [0, 1] with x > y, we get

T (x, IT (x, y)) = t−1
(

min

(
t(x) + t

(
t(x)

t(y)

)
, t(0)

))
≤ y.

Therefore, the pair (IT , T ) satisfies (TC).

(Necessity) Let the pair (IT , T ) satisfy (TC). Suppose that there exists a p0 ∈ (0, 1)
such that

t(p0)

1− p0
< t(0).

Since t is a continuous, strictly monotonous function, then there exists a y0 ∈ (0, 1)
such that

t(p0)

1− p0
< t(y0) < t(0). (5)

On the other hand, by the continuity of t, there exists an x0 ∈ (0, 1) such that
t(x0)
t(y0)

= p0.

From p0 < 1 we get x0 > y0. From (5) we have

t
(

t(x0)
t(y0)

)
1− t(x0)

t(y0)

< t(y0).

Hence

t(x0) + t

(
t(x0)

t(y0)

)
< t(y0) < t(0),

i. e.,

t−1
(
t(x0) + t

(
t(x0)

t(y0)

))
> y0,

then

T (x0, I
T (x0, y0)) = t−1

(
min

(
t(x0) + t

(
t(x0)

t(y0)

)
, t(0)

))
= t−1

(
t(x0) + t

(
t(x0)

t(y0)

))
> y0,

a contradiction to the fact that the pair (IT , T ) satisfies (TC). �



50 Z. PENG

To show the application of Theorem 3.2, two examples are given.

Example 3.3. Consider the nilpotent t-norm TL, an additive generator of it is t(x) =
1− x, x ∈ [0, 1]. From Proposition 2.14 we get

ITL(x, y) =

{
1, if 0 ≤ x ≤ y ≤ 1,
1−x
1−y , if 0 ≤ y < x ≤ 1.

Since t(x)
1−x = 1 ≥ 1 = t(0) for all x ∈ [0, 1), then the pair (ITL , TL) satisfies (TC) by

Theorem 3.2.

Example 3.4. Consider a nilpotent t-norm T with the following continuous additive
generator

t(x) =

{
1− 1.5x, if 0 ≤ x ≤ 0.5,

0.5− 0.5x, if 0.5 < x ≤ 1.

From Proposition 2.14 we get

IT (x, y) =


1, if 0 ≤ x ≤ y ≤ 1,
2−3x
2−3y , if 0 ≤ y < x ≤ 0.5,
1−x
2−3y , if 0 ≤ y ≤ 0.5 < x ≤ 1,
1−x
1−y , if 0.5 < y < x ≤ 1.

Taking x = 0.25, since t(x)
1−x = 5

6 < 1 = t(0), then the pair (IT , T ) does not satisfy (TC)
by Theorem 3.2.

Proposition 3.5. Let t-norm T = (〈ai, bi, Ti〉)i∈A be non-trivial and IT its power based
implication, where A is an index set, (Ti)i∈A is a family of continuous Archimedean t-
norms, and {(ai, bi)}i∈A be a family of non-empty, pairwise disjoint open subintervals of
[0, 1]. Then the pair (IT , T ) satisfies (TC) if and only if the following three items hold:

(i) A = {1}, a1 ∈ (0, 1) and b1 = 1.

(ii) T1 is a nilpotent t-norm.

(iii) t1(p)
1−p ≥ t1(0) for all p ∈ [0, 1), where t1 is an additive generator of t-norm T1.

P r o o f . (Necessity) Although (i) and (ii) are obtained by Corollary 1.2, the reasoning
is difficult to understand. Hence, we give a proof of (i) and (ii) in the following.

Let the pair (IT , T ) satisfy (TC).

(i) Suppose that b1 < 1. Taking y1 ∈ (a1, b1) and assume that t1 is an additive generator
of T1.

Since b1 > a1 ≥ 0, then 0 < b1 < 1. Thus

t1(
y1 − a1
b1 − a1

) > b1 · t1(
y1 − a1
b1 − a1

).
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By the continuity of t1, there exists an x1 ∈ (a1, b1) such that

t1(
y1 − a1
b1 − a1

) > t1(
x1 − a1
b1 − a1

) > b1 · t1(
y1 − a1
b1 − a1

). (6)

From (6) we get

x1 > y1, and IT (x1, y1) =
t1(x1−a1

b1−a1
)

t1(y1−a1

b1−a1
)
> b1.

Therefore,
T (x1, I

T (x1, y1)) = min(x1, I
T (x1, y1)) = x1 > y1.

A contradiction to the fact that the pair (IT , T ) satisfies (TC).
From b1 = 1 it is easy to obtain that A = {1} and a1 > 0.

(ii) From (i) we get T = (〈a1, 1, T1〉), a1 ∈ (0, 1).
Suppose that T1 is a strict t-norm with an additive generator t1. Then

2t1( 1
2 )

1− a1
<∞ = t1(0).

By the continuity of t1, there exists a y0 ∈ (a1, 1) such that

2t1( 1
2 )

1− a1
< t1(

y0 − a1
1− a1

),

i. e.,

t1(
1

2
) <

1− a1
2
· t1(

y0 − a1
1− a1

). (7)

Let x0 = a1 + (1− a1) · t−11 ( 1+a1

2 · t1(y0−a1

1−a1
)). Since 1+a1

2 < 1, then

x0 > a1 + (1− a1) · t−11

(
t1(

y0 − a1
1− a1

)

)
= y0.

Thus

IT (x0, y0) =
t1(x0−a1

1−a1
)

t1(y0−a1

1−a1
)

=
1 + a1

2
> a1.

Therefore,

T (x0, I
T (x0, y0)) = T (x0,

1 + a1

2
)

= a1 + (1− a1) · T1(
x0 − a1

1− a1
,

1+a1
2
− a1

1− a1
)

= a1 + (1− a1) · t−1
1

(
t1(

x0 − a1

1− a1
) + t1(

1

2
)

)
= a1 + (1− a1) · t−1

1

(
1 + a1

2
· t1(

y0 − a1

1− a1
) + t1(

1

2
)

)
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> a1 + (1− a1) · t−11

(
1+a1

2 · t1(y0−a1

1−a1
) + 1−a1

2 · t1(y0−a1

1−a1
)
)
dby (7)

= a1 + (1− a1) · t−11

(
t1(y0−a1

1−a1
)
)

= y0.
A contradiction to the fact that the pair (IT , T ) satisfies (TC).

(iii) The proof is analogous to the proof of necessity for Theorem 3.2.

(Sufficiency) Analogous to the proof of sufficiency for Theorem 3.2. �

Table 1 summarizes the T -conditionality of IT with respect to t-norm T .

t-norm T Implication IT (TC)

T = TM IRS
√

T is strict I∗ ×

T is a nilpotent t-norm with continuous additive
I∗

√
generator t such that t(p)

1−p
≥ t(0) for all p ∈ [0, 1)

T is a nilpotent t-norm with continuous additive

I∗ ×generator t, there exists a p ∈ [0, 1) such that
t(p)
1−p

< t(0)

T = (〈a1, 1, T1〉), a1 ∈ (0, 1)
I?

√
T1 is a nilpotent t-norm with continuous additive

generator t1 such that t1(p)
1−p

≥ t1(0) for all p ∈ [0, 1)

T = (〈a1, 1, T1〉), a1 ∈ (0, 1)
I? ×T1 is a t-norm with continuous additive

generator t1, there exists a p ∈ [0, 1) such that
t1(p)
1−p

< t1(0)

T = (〈ai, bi, Ti〉)i∈A, ∃ bi < 1 I• ×

Tab. 1. the T -conditionality of IT with respect to T .

Note.

(i) I∗(x, y) =

{
1, if x ≤ y,
t(x)
t(y)

, if x > y.

(ii) I?(x, y) =


1, if x ≤ y,
t1(

x−a1
1−a1

)

t1(
y−a1
1−a1

)
, if x > y and x, y ∈ [a1, 1],

0, otherwise.

(iii) I•(x, y) =


1, if x ≤ y,
ti(

x−ai
bi−ai

)

ti(
y−ai
bi−ai

)
, if x > y and x, y ∈ [ai, bi], i ∈ A,

0, otherwise.
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3.2. Characterizations of IT satisfying (TC) with t-norm T ∗

Proposition 3.1 tells us that the pair (IT , T ) does not satisfy (TC) when T is a strict
t-norm, as it poses two problems: Does there exist a t-norm T ∗ such that the pair
(IT , T ∗) satisfies (TC) when T is a strict t-norm? Can we construct a t-norm T ∗ such
that the pair (IT , T ∗) satisfies (TC)?

Example 3.6. Let T be a strict t-norm with additive generator t(x) = 1
x −1, x ∈ [0, 1],

and IT its power based implication, i. e.,

IT (x, y) =

{
1, if x ≤ y,
(1−x)y
(1−y)x , if x > y.

Consider the product t-norm TP . Let x, y ∈ [0, 1] with x > y. Since

TP
(
x, IT (x, y)

)
= x · (1− x)y

(1− y)x
=

(1− x)

(1− y)
· y < y,

then the pair (IT , TP ) satisfies (TC).

Remark 3.7. Although T is strict, Example 3.6 shows that there may exist a t-norm
T ∗ such that the pair (IT , T ∗) satisfies (TC).

In the following, we present the sufficient conditions under which there exist at least
one t-norm T ∗ different from T such that the pair (IT , T ∗) satisfies (TC). That is, we
give an idea to construct a t-norm T ∗ different from T such that (IT , T ∗) satisfies (TC).
The construction is based on t-norms generated by Theorem 3.23 in [14]. The t-norm
T ∗ is not necessarily continuous.

First, we study the case where T is a continuous Archimedean t-norm.

Theorem 3.8. Let T be a continuous Archimedean t-norm with additive generator t
and IT its power based implication. Letm ∈ [t(0),∞]. If there exists a strictly increasing
function ψ : [0,m]→ [0,∞] with ψ(0) = 0 such that

ψ(t(x)) + ψ(t(y)) ∈ Ran(ψ ◦ t) ∪ [ψ(t(0+)),∞] for all x, y ∈ [0, 1],

sup
a∈[0,t(0)]

(ψ(a)− ψ(ka)) ≤ ψ(t(k)) for all k ∈ (0, 1),

then there exists a t-norm T ∗ given as

T ∗(x, y) = t∗−1(min(t∗(x) + t∗(y), t∗(0))), x, y ∈ [0, 1],

such that the pair (IT , T ∗) satisfies (TC), where t∗(x) = ψ(t(x)), x ∈ [0, 1].

P r o o f . First, let us prove that T ∗ is a t-norm.
Let x, y ∈ [0, 1]. Since t is an additive generator of continuous Archimedean t-norm

T , then t is a continuous, strictly decreasing function with t(1) = 0.
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Assume that ψ : [0,m] → [0,∞] is a strictly increasing function with ψ(0) = 0 such
that

ψ(t(x)) + ψ(t(y)) ∈ Ran(ψ ◦ t) ∪ [ψ(t(0+)),∞] for all x, y ∈ [0, 1].

Let t∗ : [0, 1]→ [0,∞] be a function given by

t∗(x) = ψ(t(x)), x ∈ [0, 1].

Obviously, t∗ is a strictly decreasing function with

t∗(x) + t∗(y) ∈ Ran(t∗) ∪ [t∗(0+),∞]

for all x, y ∈ [0, 1]. Note that t∗(1) = 0. Thus the following function

T ∗(x, y) = t∗−1(min(t∗(x) + t∗(y), t∗(0))), x, y ∈ [0, 1],

is a t-norm by Theorem 2.7.
Assume that sup

a∈[0,t(0)]
(ψ(a)− ψ(ka)) ≤ ψ(t(k)) for all k ∈ [0, 1], then

ψ(a)− ψ(ka) ≤ ψ(t(k)) for all k ∈ (0, 1), a ∈ [0, t(0)].

Hence

ψ(a) ≤ ψ(ka) + ψ(t(k)) for all k ∈ (0, 1), a ∈ [0, t(0)]. (8)

Let x, y ∈ [0, 1] with x > y. From Proposition 2.14 (ii) we get

IT (x, y) =
t(x)

t(y)
,

then

T ∗(x, IT (x, y)) = t∗−1
(

min

(
t∗(x) + t∗

(
t(x)

t(y)

)
, t∗(0)

))
.

If t∗(x) + t∗
(

t(x)
t(y)

)
≥ t∗(0), then T ∗(x, IT (x, y)) = t∗−1(t∗(0)) = 0 ≤ y.

If t∗(x) + t∗
(

t(x)
t(y)

)
< t∗(0). Let t(x)

t(y) = k, t(y) = a. Then

x = t−1(ka), k ∈ (0, 1) and a ∈ (0, t(0)].

Therefore

t∗(x) + t∗
(
t(x)

t(y)

)
= t∗

(
t−1(ka)

)
+ t∗(k)

= t∗
(
t−1(ka)

)
+ t∗

(
t−1(t(k))

)
.

From t∗(x) = ψ(t(x)), x ∈ [0, 1] we get ψ(x) = t∗(t−1(x)), x ∈ Ran(t). Then

t∗(x) + t∗
(
t(x)

t(y)

)
= ψ(ka) + ψ(t(k))

≥ ψ(a) dby (8)

= ψ(t(y))

= t∗(y).
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Hence

T ∗(x, IT (x, y)) = t∗−1
(
t∗(x) + t∗

(
t(x)

t(y)

))
≤ y,

i. e., the pair (IT , T ∗) satisfies (TC). �

Corollary 3.9. Let T be a continuous Archimedean t-norm with additive generator t
and IT its power based implication. Let m ∈ [t(0),∞]. If there exists a continuous,
strictly increasing function ψ : [0,m]→ [0,∞] with ψ(0) = 0 such that

sup
a∈[0,t(0)]

ψ−1(ψ(a)− ψ(ka)) ≤ t(k) for all k ∈ (0, 1),

then there exists a continuous Archimedean t-norm T ∗ with additive generator t∗(x) =
ψ(t(x)), x ∈ [0, 1] such that the pair (IT , T ∗) satisfies (TC).

To show the application of Corollary 3.9, two examples are given.

Example 3.10. Let T be a continuous Archimedean t-norm with additive generator
t(x) = 1

x − 1, x ∈ [0, 1] and IT its power based implication, i. e.,

IT (x, y) =

{
1, if x ≤ y,
(1−x)y
(1−y)x , if x > y.

Consider the following function

ψ(x) =
x

1 + x
, x ∈ [0,∞],

it is continuous, strictly increasing, and ψ(0) = 0. By calculations, we get

ψ−1(x) =
x

1− x
, x ∈ [0, 1],

t∗(x) = ψ(t(x)) = 1− x, x ∈ [0, 1].

Therefore, T ∗ = TL, and T ∗ corresponds to the Lukasiewicz t-norm.
Let k ∈ (0, 1). Since

sup
a∈[0,t(0)]

ψ−1(ψ(a)− ψ(ka)) = sup
a∈[0,∞]

a
1+a −

ak
1+ak

1− ( a
1+a −

ak
1+ak )

= sup
a∈[0,∞]

1− k
1
a + ka+ 2k

=
1− k

2
√
k + 2k

≤ 1− k
k

= t(k).

Then the pair (IT , TL) satisfies (TC) by Corollary 3.9.
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Example 3.11. Let T be a nilpotent t-norm with continuous additive generator t(x) =
(1− x)2, x ∈ [0, 1] and IT its power based implication. Since

t(x)

1− x
= 1− x < t(0) for all x ∈ [0, 1),

then the pair (IT , T ) does not satisfy (TC) by Theorem 3.2.
Consider the following function

ψ(x) =

√
x

4
, x ∈ [0,∞].

Obviously, it is a continuous, strictly increasing function with ψ(0) = 0.
By calculations, we get ψ−1(x) = 16x2, x ∈ [0,∞], t∗(x) = 1−x

4 , x ∈ [0, 1]. Therefore,
T ∗ = TL. Let k ∈ (0, 1). Since

sup
a∈[0,t(0)]

ψ−1(ψ(a)− ψ(ka)) = sup
a∈[0,1]

ψ−1
(√

a

4
(1−

√
k)

)
= (1−

√
k)2

≤ (1− k)2

= t(k).

Then the pair (IT , TL) satisfies (TC) by Corollary 3.9.
In fact, let x, y ∈ [0, 1] with x > y, we have x+ y2 ≤ 1 + y. Since

(1− x)2

(1− y)2
≤ 1 + y − x⇔ (1− x)2 ≤ (1 + y − x)(1− y)2

⇔ 1− 2x+ x2 ≤ 1 + y − x− 2y − 2y2 + 2xy + y2 + y3 − xy2

⇔ −x+ x2 ≤ −y − y2 + 2xy + y3 − xy2

⇔ x2 + y2 − 2xy − x+ y + xy2 − y3 ≤ 0

⇔ (x− y)2 − (x− y) + y2(x− y) ≤ 0

⇔ (x− y)− 1 + y2 ≤ 0

⇔ x+ y2 ≤ 1 + y,

then

TL(x, IT (x, y)) = max

(
x+

(1− x)2

(1− y)2
− 1, 0

)
≤ y,

that is, the pair (IT , TL) satisfies TC.

Corollary 3.12. Let ψ : [0,∞] → [0,∞] be a continuous, strictly increasing function
with ψ(0) = 0. If sup

a∈[0,∞]

ψ−1(ψ(a) − ψ(ka)) < ∞, k ∈ (0, 1), then there exists a strict

t-norm T with additive generator

t(x) = sup
a∈[0,∞]

ψ−1(ψ(a)− ψ(ax)), x ∈ [0, 1],
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and a t-norm T ∗ with additive generator t∗(x) = ψ(t(x)), x ∈ [0, 1] such that the pair
(IT , T ∗) satisfies (TC), where IT is a power based implication of t-norm T .

P r o o f . Obviously by Corollary 3.9, �

Example 3.13. Consider a function defined by

ψ(x) = arctan(x), x ∈ [0,∞].

It is continuous, strictly increasing with ψ(0) = 0. By calculations, we get

ψ−1(x) = tan(x), x ∈ [0,
π

2
].

Let k ∈ (0, 1). Then

sup
a∈[0,∞]

ψ−1(ψ(a)− ψ(ka)) = sup
a∈[0,∞]

a− ak
1 + a2k

= sup
a∈[0,∞]

1− k
1
a + ka

=
1

2

(
1√
k
−
√
k

)
<∞.

Taking

t(x) =
1

2

(
1√
x
−
√
x

)
, x ∈ [0, 1].

Then

t∗(x) = ψ(t(x)) = arctan

(
1

2

(
1√
x
−
√
x

))
, x ∈ [0, 1].

Let T be a t-norm with additive generator t and IT its power based implication. Let
T ∗ be a t-norm with additive generator t∗. Then the pair (IT , T ∗) satisfies (TC) by
Corollary 3.12.

In the case that T is a non-trivial ordinal sum of continuous Archimedean t-norms,
it is not an easy task to find t-norm T ∗ such that (IT , T ∗) satisfies (TC). Here, only the
case T = (〈a, 1, T1〉), a ∈ (0, 1) is studied.

Proposition 3.14. Let T = (〈a, 1, T1〉), where a ∈ (0, 1), and T1 is a continuous
Archimedean t-norm with additive generator t1. Let m ∈ [t1(0),∞]. If there exists
a strictly increasing function ψ : [0,m]→ [0,∞] with ψ(0) = 0 such that

ψ(t1(x)) + ψ(t1(y)) ∈ Ran(ψ ◦ t1) ∪ [ψ(t1(0+)),∞] for all x, y ∈ [0, 1],

sup
z∈[0,t1(0)]

(ψ(z)− ψ(kz)) ≤ ψ
(
t1(

k − a
1− a

)

)
for all k ∈ (a, 1),

then there exists a t-norm T ∗1 given as

T ∗1 (x, y) = t∗−11 (min(t∗1(x) + t∗1(y), t∗1(0))), x, y ∈ [0, 1],

where t∗1(x) = ψ(t1(x)), x ∈ [0, 1], such that

(i) the pair (IT , T ∗) satisfies (TC), where T ∗ = (〈a, 1, T ∗1 〉).
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(ii) the pair (IT , T ◦∗) satisfies (TC), where T ◦∗ = (〈0, a, T ◦〉, 〈a, 1, T ∗1 〉) and T ◦ is a
t-norm.

P r o o f . (i) Let t∗1 : [0, 1]→ [0,∞] be a function defined by t∗1(x) = ψ(t1(x)), x ∈ [0, 1].
Obviously, t∗1(1) = ψ(t1(1)) = 0, and t∗1 is a strictly decreasing function.

Define T ∗1 : [0, 1]2 → [0, 1] as T ∗1 (x, y) = t∗−11 (min(t∗1(x) + t∗1(y), t∗1(0))), x, y ∈ [0, 1].
Obviously, T ∗1 is a t-norm.

Define T ∗ : [0, 1]2 → [0, 1] as

T ∗(x, y) =

{
a+ (1− a) · T ∗1 (x−a

1−a ,
y−a
1−a ), if x, y ∈ [a, 1],

min(x, y), otherwise.

Obviously, T ∗ = (〈a, 1, T ∗1 〉), it is an ordinal sum of t-norms.
Let x, y ∈ [0, 1] with x > y. Consider the following cases.
Case 1: y < a. Then IT (x, y) = 0. Hence T ∗(x, IT (x, y)) = 0 ≤ y.

Case 2: y ≥ a. Then IT (x, y) =
t1(

x−a
1−a )

t1(
y−a
1−a )

. Taking z = t1(y−a
1−a ), k =

t1(
x−a
1−a )

t1(
y−a
1−a )

, we get

k ∈ [0, 1), y = a+ (1− a) · t−11 (z), z ∈ [0, t1(0)], and x = a+ (1− a) · t−11 (zk).

Case 2.1: k ≤ a. Then T ∗(x, IT (x, y)) = min(x, k) = k ≤ a ≤ y.
Case 2.2: k > a. Then

T ∗(x, IT (x, y)) = a+ (1− a) · T ∗1 (
x− a
1− a

,
k − a
1− a

)

= a+ (1− a) · t∗−11

(
min

(
t∗1(t−11 (zk)) + t∗1(

k − a
1− a

), t∗1(0)

))
.

If t∗1(t−11 (zk)) + t∗1(k−a
1−a ) ≥ t∗1(0), then T ∗(x, IT (x, y)) = a+ (1− a) · 0 = a ≤ y.

If t∗1(t−11 (zk)) + t∗1(k−a
1−a ) < t∗1(0), then

T ∗(x, IT (x, y)) = a+ (1− a) · t∗−11

(
t∗1(t−11 (zk)) + t∗1(

k − a
1− a

)

)
= a+ (1− a) · t∗−11

(
t∗1(t−11 (zk)) + t∗1(t−11 (t1(

k − a
1− a

)))

)
= a+ (1− a) · t∗−11

(
ψ(zk) + ψ(t1(

k − a
1− a

))

)
.

Since sup
z∈[0,t1(0)]

(ψ(z)−ψ(kz)) ≤ ψ(t1(k−a
1−a )) for all k ∈ (a, 1), then ψ(zk)+ψ(t1(k−a

1−a )) ≥

ψ(z) for z ∈ [0, t1(0)]. Therefore,

T ∗(x, IT (x, y)) ≤ a+ (1− a) · t∗−11 (ψ(z))

= a+ (1− a) · t−11 (z)

= y.

From the above discussion, the pair (IT , T ∗) satisfies (TC).
(ii) Note that T ◦∗(x, y) ≤ T ∗(x, y) for all x, y ∈ [0, 1]. Hence the pair (IT , T ◦∗)

satisfies (TC). �
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Corollary 3.15. Let T = (〈a, 1, T1〉), where a ∈ (0, 1), T1 is a continuous Archimedean
t-norm with an additive generator t1. Let m ∈ [t1(0),∞]. If there exists a continuous,
strictly increasing function ψ : [0,m]→ [0,∞] with ψ(0) = 0 such that

sup
z∈[0,t1(0)]

ψ−1(ψ(z)− ψ(kz)) ≤ t1(
k − a
1− a

) for all k ∈ (a, 1),

then there exists a t-norm T ∗1 with an additive generator t∗1(x) = ψ(t1(x)), x ∈ [0, 1],
such that

(i) the pair (IT , T ∗) satisfies (TC), where T ∗ = (〈a, 1, T ∗1 〉).

(ii) the pair (IT , T ◦∗) satisfies (TC), where T ◦∗ = (〈0, a, T ◦〉, 〈a, 1, T ∗1 〉) and T ◦ is a
t-norm.

Remark 3.16. There exists ψ such that the assumptions in Theorem 3.8 and Proposi-
tion 3.14 hold. For instance, consider the following function

ψ(x) =

{
n− t−1(x), if x ∈ (0,m],

0, if x = 0,

where t is a continuous, strictly decreasing function with t(1) = 0, m = t(0) and n ≥ 2.
It is easy to verify that

ψ(t(x)) + ψ(t(y)) ∈ Ran(ψ ◦ t) ∪ [ψ(t(0+)),∞] for all x, y ∈ [0, 1], (9)

sup
z∈[0,t(0)]

(ψ(z)− ψ(kz)) ≤ ψ(t(k)) for all k ∈ (0, 1), (10)

sup
z∈[0,t1(0)]

(ψ(z)− ψ(kz)) ≤ ψ
(
t(
k − a
1− a

)

)
for all k ∈ (a, 1). (11)

Actually, let k ∈ (0, 1). Since n ≥ 2, then

sup
z∈(0,t(0)]

(ψ(z)− ψ(kz)) = sup
z∈[0,t(0)]

(
t−1(kz)− t−1(z)

)
≤ 1.

On the other hand, since ψ(t(k)) = n− k > 1 and

ψ

(
t(
k − a
1− a

)

)
= n− k − a

1− a
> n− 1− a

1− a
= n− k > 1.

Then (10) and (11) hold.
Also, since

ψ(t(x)) =

{
n− x, if x ∈ [0, 1),

0, if x = 1,
(12)

then Ran(ψ ◦ t) ∪ [ψ(t(0+)),∞] = {0} ∪ (n− 1,∞]. Thus (9) holds.
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Note that (12) is an additive generator of the drastic product t-norm TD. Thus we
have the following result.

Theorem 3.17. IT is TD-conditional for any continuous t-norm T .

P r o o f . It suffices to prove that TD(x, IT (x, y)) ≤ y for all x, y ∈ [0, 1] with x > y.
If 1 = x > y, then IT (x, y) = 0. Thus TD(x, IT (x, y)) = 0 ≤ y.
If 1 > x > y, then IT (x, y) < 1, Thus TD(x, IT (x, y)) = 0 ≤ y. �

Theorem 3.17 shows that there exist at least one t-norm TD such that the pair
(IT , TD) satisfies (TC) for all T -power based implications.

Theorem 3.18. Let A be an index set and {(ai, bi)}i∈A a family of non-empty, pairwise
disjoint open subintervals of [0, a], where a ∈ (0, 1). Let {(Ti)i∈A} be a family of t-norms.
Let T = (〈a, 1, T ?〉) and T ◦ = (〈ai, bi, Ti〉, 〈a, 1, T ◦?〉)i∈A be ordinal sum t-norms, where
T ? is a continuous Archimedean t-norm and T ◦? is a t-norm. If the pair (IT

?

, T ◦?)
satisfies (TC), then the pair (IT , T ◦) satisfies (TC).

P r o o f . Let x, y ∈ [0, 1] with x > y and t? be an additive generator of t-norm T ?.
Assume that IT

?

is T ◦?-conditional. Then

T ◦?(x, IT
?

(x, y)) = T ◦?(x,
t?(x)

t?(y)
) < y.

Thus

T ◦?(
x− a
1− a

,
t?(x−a

1−a )

t?(y−a
1−a )

) <
y − a
1− a

for all x, y ∈ [a, 1] with x > y.

Let T • be an ordinal sum t-norms of the form (〈a, 1, T ◦?〉), i. e., T • = (〈a, 1, T ◦?〉).
Since T ◦ ≤ T •, then it suffices to prove that IT is T •-conditional.
If y < a, then IT (x, y) = 0. Thus T •(x, IT (x, y)) = 0 ≤ y.

If y ≥ a and IT (x, y) =
t?( x−a

1−a )

t?( y−a
1−a )

< a, then T •(x, IT (x, y)) ≤ a ≤ y.

If y ≥ a and IT (x, y) =
t?( x−a

1−a )

t?( y−a
1−a )

≥ a, then

T •(x, IT (x, y)) = a+ (1− a) · T ◦?(
x− a
1− a

,
IT (x, y)− a

1− a
).

Since IT (x,y)−a
1−a ≤ IT (x, y), then

T •(x, IT (x, y)) ≤ a+ (1− a) · T ◦?(
x− a
1− a

, IT (x, y))

= a+ (1− a) · T ◦?(
x− a
1− a

,
t?(x−a

1−a )

t?(y−a
1−a )

)

≤ a+ (1− a) · y − a
1− a

= y.

From the above discussions, we get IT is T •-conditional. �
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Corollary 3.19. Let A be an index set and {(ai, bi)}i∈A a family of non-empty, pairwise
disjoint open subintervals of [0, a], where a ∈ (0, 1). Let {(Ti)i∈A} be a family of t-norms.
Let T = (〈a, 1, T ?〉) and T ◦ = (〈ai, bi, Ti〉, 〈a, 1, T ?〉)i∈A be ordinal sum t-norms, where
T ? is a nilpotent t-norm with continuous additive generator t. Then the pair (IT , T ◦)
satisfies (TC) if and only if

t(p)

1− p
≥ t(0) for all p ∈ [0, 1).

P r o o f . Obviously by Theorem 3.18 and Theorem 3.2. �

4. CONCLUSIONS

In this paper, the T -conditionality of the T -power based implications is deeply studied.
The concise necessary and sufficient conditions under which the pair (IT , T ) satisfies
(TC) are obtained. Moreover, we present the sufficiency conditions under which the
pair (IT , T ∗) satisfies (TC) when t-norm T ∗ is different from T . These results show a
clue to construct a t-norm T ∗ such that the pair (IT , T ∗) satisfies (TC). Also, these
results are beneficial to the application of the T -power based implications.
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