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THE RIBES-ZALESSKII PROPERTY
OF SOME ONE RELATOR GROUPS

Gilbert Mantika, Narcisse Temate-Tangang, and Daniel Tieudjo

Abstract. The profinite topology on any abstract group G, is one such that
the fundamental system of neighborhoods of the identity is given by all its
subgroups of finite index. We say that a group G has the Ribes-Zalesskii
property of rank k, or is RZk with k a natural number, if any product
H1H2 · · ·Hk of finitely generated subgroups H1, H2, · · · , Hk is closed in the
profinite topology on G. And a group is said to have the Ribes-Zalesskii
property or is RZ if it is RZk for any natural number k. In this paper we
characterize groups which are RZ2. Consequently, we obtain condition under
which a free product with amalgamation of two RZ2 groups is RZ2. After
observing that the Baumslag-Solitar groups BS(m,n) are RZ2 and clearly
RZ if m = n, we establish some suitable properties on the RZ2 property for
the case when m = −n. Finally, since any group BS(m,n) can be viewed as
a HNN-extension, then we point out the Ribes-Zalesskii property of rank two
on some HNN-extensions.

1. Introduction and results

Properties of the profinite topology were studied by M. Hall in [10]. A finitely
generated subgroup H of a free group F is closed in the profinite topology of
F if H is the intersection of subgroups of finite index that contain H. This is
equivalent to the statement that for any finitely generated subgroup H of a free
group F , and any element g ∈ F \H, there exist a normal subgroup N of finite
index in F such that g /∈ HN . In connection with the result of Hall, some authors
introduced the Ribes-Zalesskii property of rank k on an abstract group. An abstract
group G satisfies the Ribes-Zalesskii property of rank k, or is RZk with k a natural
number, if for any finitely generated subgroups H1, H2, · · · , Hk and any element
g ∈ G \H1H2 · · ·Hk, there exist a normal subgroup N of finite index in G such
that g /∈ H1H2 · · ·HkN . A group is said to have the Ribes-Zalesskii property or is
RZ if it is RZk for any natural number k. It is clear that finite groups and finitely
generated abelian groups are RZ. See [6]. Also, a direct product of groups which
are RZ is RZ. See [7]. Using the link between the profinite topology and finitely
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approximable groups, C. Rosendal characterized countable discrete groups which
are RZ. See [25].
RZ0 means residually finite. Conditions under which a group G is RZ0 or RZ1 were
established and some examples of groups RZ0 and RZ1 were given. See [9, 12, 13, 15].
It is easy to see that for any natural number k, RZk+1 implies RZk. But the inverse
is not true. For example F2 × F2 cited by C. Rosendal in [26] is RZ0 but not RZ1,
where F2 is the free group of rank 2.
The original motivation for the study of the property RZ goes back to a problem
posed by J. Rhodes on the existence of an algorithm to compute the closure of
subset of finite semigroup. See [20]. Recently, M. Doucha and M. Malicki in [8]
showed that the RZ2 and RZ3 properties form the lower and upper group theoretic
bounds for finite appoximability of actions on triangle-free graphs and Kn-free
graphs, n ≥ 3.
Other authors have investigated on finding conditions under which the free construc-
tions of groups inherit the RZk property of all the group factors. N.S. Romanovskii
[24] has proved that the free product of groups which are RZ1 is also RZ1. Further,
T. Coulbois [7] has proved that the free product of RZ groups is also RZ. Also,
Ribes and Zalesskii have proved that, when C is a variety of finite groups closed
under extensions, the free product of groups which are RZ2 is also RZ2 relatively
to C. See [22].
But for a free product with amalgamation G = (G1 ∗G2;A = B,ϕ) (denoted also
G = G1 ∗

A=B
G2) of groups G1 and G2 with amalgamated isomorphic subgroups

A ≤ G1 and B ≤ G2, a similar statement is not always true. Examples of free
product with amalgamation of two RZ1 groups which is not RZ1 were given in the
works of E. Rips [23] and R. Allenby and D. Doniz [1].
Moldavanskii and Uskova [18] proved that under some conditions, free products
with amalgamation of two RZ1 groups is RZ1. Specifically, they proved

Proposition 1.1 ([18, Theorem 3]). The group G = (G1 ∗G2;A = B,ϕ) where A
is a normal subgroup of G1, B is a normal subgroup of G2 and groups A and B
satisfy the maximum conditions for subgroups, is RZ1 if the groups G1 and G2 are
RZ1.

In this paper we characterize groups which are RZ2. We prove

Theorem 1.1. Let G be a group and let U be a finitely generated subgroup contained
in the center Z(G) of G. G is RZ2 if and only if the factor group G/Un is RZ2
for any nonzero natural number n.

From this result, we obtain a result similar to that of Moldavanskii and Uskova for
the property RZ2 of groups with amalgamation. The case where the free factors in a
free product amalgamated by a finite subgroup are RZ was studied by T. Coulbois
in his thesis. See [6]. In this paper, we investigate the case where the amalgamated
subgroup can be infinite. That is

Corollary 1.1. Let G = G1 ∗
A=B

G2 be a free product of groups G1 and G2 with
amalgamated subgroups A ≤ G1 and B ≤ G2. If A and B are finitely generated
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subgroups contained in the centers Z(G1) and Z(G2) of G1 and G2 respectively,
and groups G1 and G2 are RZ2, then G is RZ2.

It is then easy to see that if G1 and G2 are two RZ2 groups, and a and b are
elements in G1 and G2 respectively with a ∈ Z(A) and b ∈ Z(B), then the group
G = G1 ∗

a=b
G2 is also RZ2.

Also, we recall the class of two-generator one-relator groups, called the Baumslag-So-
litar groups, given by the presentation BS(m,n) =

〈
a, b | a−1bma = bn

〉
where m

and n are nonzero integers. This class of groups deeply studied by G. Baumslag and
Solitar [4], were introduced to point out a class of finitely generated non-hopfian
groups. Some residual properties of BS(m,n) were studied [2, 3].

It is easily seen using the results of [21, 27]

Proposition 1.2. For any nonzero integer n, group BS(n, n) is RZ.

Since for |m| = n the group BS(m,n) is RZ0 and RZ1 (see [16]), then the case
where m = −n is also for interest. Thus we investigate this case. We obtain

Theorem 1.2. Let n be a nonzero natural number. If H1 and H2 are two finitely
generated subgroups of BS(n,−n) contained in the free factors of BS(n,−n), then
the product H1H2 is closed in the profinite topology on BS(n,−n).

Also, any Baumslag-Solitar group BS(m,n) =
〈
a, b | a−1bma = bn

〉
can be seen

as an HNN-extension with associated subgroups 〈bm〉 and 〈bn〉. So, we also focus on
Ribes-Zalesskii’s property of rank k of some HNN-extensions. Let K be a finitely
generated abelian group and let A, B be finitely generated isomorphic subgroups
of K. Since finitely generated abelian groups are RZ, it follows immediately that if
A = B = K, then the HNN-extension G =

〈
K, t | t−1At = B

〉
is RZ as a finitely

generated abelian group.
But if A 6= B in the HNN-extension G =

〈
K, t | t−1At = B

〉
, then G is not RZ1.

See [17, Lemma 1]. Thus, G is not RZk for any natural number k ≥ 1.
Using the result of G. Baumslag and M. Tretkoff that can be reformulated as

Proposition 1.3 ([2, Theorem 3.1]). Let A be RZ0 and let H,K be isomorphic
finite subgroups of A. Then the HNN-extension G =

〈
A, t | t−1Ht = K

〉
is RZ0.

It comes that if a group K is RZ and particularly RZ0, A and B isomorphic
finite normal subgroups of K, then the HNN-extension G =

〈
K, t | t−1At = B

〉
is

RZ0. As in the proof of ([17, Lemma 2]), it can be pointed out a free product of
RZ groups as a finite subgroup of finite index of G. Now, since any virtually RZ
group is also RZ (see [7]), we obtain easily

Proposition 1.4. Let K be RZ, and let A and B be isomorphic finite normal
subgroups of K. Then, the HNN-extension G =

〈
K, t | t−1At = B

〉
is RZ.

From which we get by adding Theorem 1.1

Corollary 1.2. Let K be a group and let A and B be isomorphic finitely gene-
rated subgroups of Z(K), the center of K. Let G =

〈
K, t | t−1At = B,ϕ

〉
be an

HNN-extension with ϕ(a) = t−1at for any a ∈ A. If K is RZ2 and contains a
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finitely generated subgroup of finite index U in both A and B such that ϕ(u) = u
for any u ∈ U , then G is RZ2.

2. Preliminaries

In this section we collect some notions, basic properties and facts about free
products of groups with amalgamation, HNN-extensions and finitely generated
groups. For more details see [14].
Let us recall some notions concerned with the construction of a free product G =
(G1 ∗G2, A = B,ϕ) of groups G1 and G2 with amalgamated subgroups A ≤ G1 and
B ≤ G2 where ϕ : A→ B is an isomorphism. The group G = (G1 ∗G2, A = B,ϕ)
can also be written as G = G1 ∗

ϕ
A=B

G2 or simply as G = G1 ∗
A=B

G2 when there is

no confusion. An element g in G can be written in a form g = g1g2 · · · gr (r > 1)
where for any i = 1, 2, . . . , r element gi belongs to one of the free factor G1 or G2,
and if r > 1 any successive gi and gi+1 do not belong to the same factor G1 or
G2 (nor to the amalgamated subgroups A and B). We say that g is written in a
reduced form. In general, an element of the group G = G1 ∗

A=B
G2 can have more

than one reduced form. But any two reduced forms of an element g have the same
number of components, which we will call the length of the element g and denote
by l(g).
About HNN-extensions, let G be a group and let A and B be its subgroups with
ϕ : A → B an isomorphism. Let 〈t〉 be the infinite cyclic group generated by a
new element t. The HNN-extension G? of G relative to A, B and ϕ is the factor
group G ∗ 〈t〉 /N , where N is the normal closure of the set {t−1at(ϕ(a))−1, a ∈ A}.
The group G is called the basis of G?, t is its stable letter, and A and B are the
associated subgroups. The notation G? =

〈
G, t; t−1at = ϕ(a), a ∈ A

〉
is used.

Concerning finitely generated groups, it is not hard to obtain the following results.

Proposition 2.1. Let G be a group and let N be a normal subgroup of G.
(1) If H is a finitely generated subgroup, then the subgroup H = HN/N of G/N

is. Particularly, if G is a finitely generated, then G/N is.
(2) If N and G/N are finitely generated, then the group G is.

Proof. Consider the canonical epimorphism π : G −→ G/N .
(1) Let H be subgroup and let X be its finitely generated subset. Then

H = HN/N = π(H) = π(〈X〉) = 〈π(X)〉. Thus the subgroup HN/N is fini-
tely generated.

(2) Since G/N is finitely generated, there exist elements g1, g2, . . . , gr in G such
that G/N = 〈g1, g2, . . . , gr〉, where each gi (1 ≤ i ≤ r) represents the image by π of
element gi in G/N . Consider g ∈ G such that g = g1

s1g2
s2 · · · grsr where the sk are

integers. Then g = gs1
1 g

s2
2 · · · g

sr
r , and there exists n ∈ N with g = gs1

1 g
s2
2 · · · gsrr n;

that is g ∈ 〈g1, g2, . . . , gr〉N . Finally G = 〈g1, g2, . . . , gr〉N is finitely generated
since N is. �

Proposition 2.2. Any quotient of a RZ2 group by a finitely generated normal
subgroup is also RZ2.
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Proof. Let G be a RZ2 group and let N be a finitely generated normal subgroup
of the group G. We shall prove that the factor group G/N is RZ2.
Consider two finitely generated subgroups H1 = H1/N and H2 = H2/N of G/N ,
where H1 and H2 are subgroups containing N . Let g be an element of G such that
g ∈ G/N and g /∈ H1 H2. It is clear that g /∈ H1H2. Using Proposition 2.1, it is
also clear that subgroups H1 and H2 are finitely generated. Therefore, since G is
RZ2, there exists a normal subgroup M of finite index in G such that g /∈ H1H2M .
Consequently we have g /∈ H1 H2 M where M = MN/N . If, on contrary g ∈ H1
H2 M , then g = h1 h2 t with h1 ∈ H1, h2 ∈ H2 and t ∈ MN . And then there
exist m ∈ M and n ∈ N such that g = h1h2mn = h1h2(mnm−1)m. Now, since
N � G and N ≤ H2, it is obvious that h = h2(mnm−1) ∈ H2. But this implies
that g = h1hm ∈ H1H2M which contradicts the fact that g /∈ H1H2M . So g /∈ H1
H2 M , with M a normal subgroup of finite index in G/N . Thus, the factor group
G/N is RZ2 as required. �

Proposition 2.3. Let G be a group and let A be a finitely generated subgroup in
G. If A is contained in Z(G) the center of G, then for any nonzero natural number
t, the subset At = {at, a ∈ A} of G is a normal subgroup of finite index in A.

Proof. Assume that the subgroup A is contained in Z(G). Then A is a finitely
generated abelian group. Therefore A is equal to a direct sum

⊕
i≤lAi, where each

Ai is cyclic. For i ≤ l, let ai be a generator of Ai. So,

A = 〈a1, a2, . . . , al〉

is generated by the elements a1, a2, . . . , al. Let t be a nonzero natural number.
On one hand, since Z(G) is commutative, it is obvious that At = {at, a ∈ A} is a
normal subgroup of A.
On the other hand the factor group

A/At =
〈
a1, a2, . . . , al | a1

t = 1, a2
t = 1, . . . , alt = 1

〉
is finitely generated where ai = aiA

t for any i ∈ {1, 2, · · · , l}. Also, the group A/At
is commutative, so it can be written as At =

〈
a1 | a1

t = 1
〉
×
〈
a2 | a2

t = 1
〉
× · · · ×〈

al | alt = 1
〉
. Finally, since the order of each group

〈
ai | ait = 1

〉
, i ∈ {1, 2, · · · , l}

is at most t, it follows that the order of A/At is finite. �

3. Proof of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1. Since the subgroup U ≤ Z(G) is finitely generated, it
comes that for any nonzero natural number t, the subgroup U t ≤ G is normal and
finitely generated. Thus, if G is RZ2, then using Proposition 2.2 the factor group
G/U t(t ≥ 1) is.

Conversely, suppose that any factor group G/U t(t ≥ 1) is RZ2. Let prove that
G is RZ2. To do it, let H1 and H2 be two finitely generated subgroups of G, and
let g be an element in G such that g /∈ H1H2.
We need to determine a normal subgroup N of finite index in G (N �f G) such



40 G. MANTIKA, N. TEMATE-TANGANG AND D. TIEUDJO

that g /∈ H1H2N . Consider for any nonzero natural number t, the factor group
G/U t and the canonical epimorphism

ϑt : G −→ G/U t .

Case 1. Assume that there exist a nonzero natural number t0 such that ϑt0(g) /∈
ϑt0(H1) ϑt0(H2) in G/U t0 . Since H1 and H2 are finitely generated, it follows using
Proposition 2.1 that ϑt0(H1) and ϑt0(H2) are finitely generated. Now the group
G/U t0 is RZ2. Therefore there exists N �f G/U

t0 such that ϑt0(g) /∈ ϑt0(H1)
ϑt0(H2) N . Let N be the preimage of N by ϑt0 . Clearly, g /∈ H1H2N . Thus G is
RZ2.
Case 2. Assume now that for any nonzero natural number t we have ϑt(g) ∈ ϑt(H1)
ϑt(H2) in G/U t. We need to prove that this case is not possible.
For t = 1, ϑ1(g) = ϑ1(a)ϑ1(b) with a ∈ H1 and b ∈ H2. That is gU = abU and
then g = abu with u ∈ U . Let y = ab. Then, we have g = yu.
For any t ≥ 2, ϑt(g) = ϑt(at)ϑt(bt), where at ∈ H1 and bt ∈ H2; that is g = atbtut
with the elements at, bt and ut fixed respectively in H1, H2 and U t. Therefore for
any t ≥ 2 we have g = ata

−1abb−1btut = htyktut, where ht = ata
−1 ∈ H1 and

kt = b−1bt ∈ H2. Thus,
u = y−1htyktut .(3.1)

Set S =
〈
{y−1htykt | ht ∈ H1, kt ∈ H2, t ≥ 2}

〉
be the subgroup generated by

the elements of the form y−1htykt, with ht ∈ H1 and kt ∈ H2, (t ≥ 2). Since
y−1htykt = uu−1

t ∈ U , then S is a subgroup of U . Also, for s = y−1htykt(t ≥ 2),
we have s−1 = k−1

t y−1h−1
t y ∈ S; and it follows that kts−1 = y−1h−1

t y. From
U ≤ Z(G) and s−1 ∈ U , we obtain kts

−1 = s−1kt = y−1h−1
t y. The equality

s−1 = y−1h−1
t yk−1

t then arises. Finally, y−1hεtt yk
εt
t ∈ S with εt = ±1. Thus:

(y−1h
εt1
t1 yk

εt1
t1 )(y−1h

εt2
t2 yk

εt2
t2 ) = (y−1h

εt1
t1 y)(kεt1t1 × y

−1h
εt2
t2 yk

εt2
t2 )

= (y−1h
εt1
t1 y)(y−1h

εt2
t2 yk

εt2
t2 × k

εt1
t1 ) , since

y−1h
εt2
t2 yk

εt2
t2 ∈ Z(G) = y−1h

εt1
t1 yy

−1h
εt2
t2 yk

εt2
t2 k

εt1
t1

= y−1h
εt1
t1 h

εt2
t2 yk

εt2
t2 k

εt1
t1 , εti = ±1 .

It comes then that the elements of S have the form:
y−1h

εt1
t1 . . . h

εtn
tn yk

εtn
tn . . . k

εt1
t1 , εti = ±1, i = 1, . . . , n .(3.2)

Subcase (a) Suppose that u belongs to subgroup S. So, from (3.2), we have
u = y−1h

εt1
t1 · · ·h

εtn
tn yk

εtn
tn . . . k

εt1
t1 ; that is yu = h

εt1
t1 . . . h

εtn
tn yk

εtn
tn . . . k

εt1
t1 = h

εt1
t1 . . .

h
εtn
tn abk

εtn
tn . . . k

εt1
t1 .

Then, since hεt1t1 . . . h
εtn
tn a ∈ H1 and bk

εtn
tn . . . k

εt1
t1 ∈ H2, it follows that g = yu ∈

H1H2, and this result contradicts the assertion g /∈ H1H2.
Subcase (b) Now u /∈ S. On one hand, since the group U is commutative and
finitely generated, it possesses the maximal property for groups, that is, each of its
subgroups is finitely generated. Thus, S is finitely generated. On the other hand,
U as a commutative and finitely generated group is RZ1. Therefore, U possesses a
normal subgroup M of finite index such that u /∈ SM .
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Also, since M �f U , all the elements of the factor group U/M have finite order.
Let U0 be the finite set of representative classes modulo M in U . For any g ∈ U0,
there exists a natural number rg such that grg ∈ M . Also, for any g ∈ U , there
exist g0 ∈ U0 such that gg−1

0 ∈M . Thus, (gg−1
0 )rg0 = grg0 (grg0

0 )−1 belongs to M ,
and it follows that grg0 also belongs to M . Let t′ be the least common multiple of
the rg, with g ∈ U0. We have gt′ ∈M for any g ∈ U , and then U t

′ ⊆M . If t′ = 1,
then any g ∈ U belongs to M . Particularly, u ∈M , and it contradicts the fact that
u /∈M since u /∈ SM . So t′ ≥ 2, and u = y−1ht′ykt′ut′ . Now, y−1ht′ykt′ ∈ S and
ut′ ∈ U t

′ ⊆M , thus u ∈ SM , which is again not possible.
Finally, Case 2 is not possible as required, and we get only Case 1. Thus, the
group G is RZ2, and the theorem is completely demonstrated. �

We are now ready to prove Corollary 1.1.

Proof of Corollary 1.1. Suppose that all the assumptions of the corollary are
satisfied. Since A = B coincides with the center of the amalgamated group G (see
[14, Corollary 4.5]), to prove that G is RZ2, we prove that G/At is RZ2 for any
nonzero natural number t and conclude using Theorem 1.1. To do it, let t be a
nonzero natural number and let H1 and H2 be two finitely generated subgroups of
G/At. Let g be an element of G/At such that g /∈ H1 H2.
We need to determine N �f G/A

t such that g /∈ H1 H2 N . We recall by Proposi-
tion 2.3 that the subgroups At and Bt are normal with finite index in A and B in
respectively. Since A/At and B/Bt are finite and isomorphic, the canonical homo-
morphisms G1 −→ G1/A

t and G2 −→ G2/B
t can be extented to the epimorphism

G −→ G1/A
t ∗
A/At=B/Bt

G2/B
t with kernel At = Bt. See ([19, Theorem 1.1]). This

situation can be illustrated by the following diagram

G1 //

��

G1 ∗
A=B

G2

��

G2oo

��
G1/A

t // G1/A
t ∗
A/At=B/Bt

G2/B
t

G2/B
too

Let G(t) = G1/A
t ∗
A/At=B/Bt

G2/B
t. It is clear that the groups G/At and G(t)

are isomorphic.
Now, using the fact that the subgroups At and Bt have finite index respectively
in A and B which are finitely generated, it follows by ([6, Proposition 1.1]) that
At and Bt are finitely generated. Thus, by Proposition 2.2 the groups G1/A

t and
G2/B

t are RZ2. Also, the groups A/At and B/Bt are finite; thus, the group G(t)
is RZ2 (see [6, Theorem 5.2]), and G/At is. Since G/At is RZ2 for any arbitrary
nonzero natural number t, we conclude by Theorem 1.1 that G is RZ2. Hence
Corollary 1.1 is demonstrated. �
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4. Proof of Theorem 1.2

We recall a result of P. Stebe which will be used in some statement of the proof
of the Theorem 1.2. It states that for any element h of a free group F and for any
nonzero integer n, there exists a normal subgroup N of finite index in F such that
N ∩ 〈h〉 = 〈hn〉 (see [28]). We establish

Lemma 4.1. Let n be a nonzero natural number. For any finitely generated
subgroups H1 and H2 of BS(n,−n) =

〈
a, b | a−1bna = b−n

〉
, and any normal

subgroup U of finite index in 〈bn〉 such that (〈bn〉∩H1)U 6= 〈bn〉 and (〈bn〉∩H2)U 6=
〈bn〉, there exists a normal subgroup N of finite index in BS(n,−n) satisfying
N ∩〈bn〉 = U , (N 〈bn〉)∩NH1 = N(〈bn〉∩H1) and (N 〈bn〉)∩NH2 = N(〈bn〉∩H2).

Proof. Let H1 and H2 be two finitely generated subgroups of BS(n,−n), and let
U be a normal subgroup of finite index t in 〈bn〉 satisfying all the assumptions in
the lemma. Consider c1, · · · , ct a system of left cosets representatives of U in 〈bn〉
where c1 = 1.
Since BS(n,−n) is RZ1 and U is finitely generated as a finite index subgroup of the
finitely generated group 〈bn〉, there exists N1 �f BS(n,−n) such that ci /∈ N1U
for any i = 2, . . . , t. Also, there exists i ∈ {2, 3, . . . , t} such that ci /∈ H1U . Indeed:
assume in contrary that for any i ∈ {2, 3, . . . , t} ci ∈ H1U ; that is ci = hiui with
hi ∈ H1 and ui ∈ U . Therefore hi = ciu

−1
i ∈ H1 ∩ 〈bn〉 for any i ∈ {2, 3, . . . , t}.

Thus, ci belongs to the subgroup (H1 ∩ 〈bn〉)U of 〈bn〉 for any i ∈ {1, 2, . . . , t}.
Consequently, it follows that (H1∩〈bn〉)U = 〈bn〉 and this contradicts the hypothesis
〈bn〉 6= (H1∩〈bn〉)U . So, there exists i ∈ {2, 3, . . . , t} such that ci /∈ H1U . Similarly,
there exists j ∈ {2, 3, dots, t} such that cj /∈ H2U .

It is easy to see that the groups H1U and H2U are finitely generated in BS(n,−n)
and so, again using the fact that BS(n,−n) is RZ1, there exist normal subgroups
N2i and N3j of finite index in BS(n,−n) such that ci /∈ N2iH1U and cj /∈ N3jH2U .
Set I = {i ∈ {2, . . . , t}, ci /∈ H1U} and J = {i ∈ {2, . . . , t}, ci /∈ H2U}. Thus,
N2 =

⋂
i∈I
N2i and N3 =

⋂
i∈J

N3i are normal subgroups of finite index in BS(n,−n)

as finite intersections of normal subgroups of finite index in BS(n,−n). Therefore,
ci /∈ N2H1U for any i ∈ I and cj /∈ N3H2U for any j ∈ J . Let:

N = N1U ∩N2U ∩N3U .

For any l ∈ {1, 2, 3}, Nl is a normal subgroup of finite index in BS(n,−n), and
NlU is. Consequently, N is also a normal subgroup of finite index in BS(n,−n).

It is obvious that U ⊆ N∩〈bn〉. Conversely, let g ∈ N∩〈bn〉. There exist n1 ∈ N1
and u ∈ U such that g = n1u. If g /∈ U , then there exist i ∈ {2, 3, . . . , t} and ci
in 〈bn〉 such that gU = ciU . Thus ci ∈ gU = n1uU = n1U , and this implies that
ci ∈ N1U , but it contradicts the assumption that ci /∈ N1U for any i ∈ {2, 3, . . . , t}.
So g ∈ U and U = N ∩ 〈bn〉.

Let us now prove that (N 〈bn〉)∩NH1 = N(〈bn〉∩H1). On one hand, it is easy to
see that (N 〈bn〉)∩NH1 ⊇ N(〈bn〉∩H1). On the other hand, let g ∈ (N 〈bn〉)∩NH1.

Then g = kb1 = k′h1, where k, k′ ∈ N , b1 ∈ 〈bn〉 and h1 ∈ H1. Since 〈bn〉 =
t⋃
i=1

ciU
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(ci ∈ 〈bn〉), there exist j ∈ {1, 2, . . . , t} and u ∈ U such that b1 = cju. Thus
cj = k−1k′h1u

−1 ∈ NH1U . Since U ⊆ H1U implies UH1U = H1U , we have
NH1U ⊆ N2UH1U ⊆ N2H1U . Recalling that ci /∈ N2H1U for any ci /∈ H1U , we
obtain cj ∈ H1U since cj ∈ N2H1U . Therefore, there exist h′1 ∈ H1 and u′ ∈ U
satisfying cj = h′1u

′. From U ≤ 〈bn〉, we have h′1 = cju
′−1 ∈ 〈bn〉. Consequently,

h′1 ∈ 〈bn〉 ∩H1 and then
g = kb1 = kcju = kh′1u

′u = k(h′1u′uh′−1
1 )h′1.

Furthermore U ≤ N and N � BS(n,−n), so that h′1u′uh′−1
1 ∈ N . Therefore

kh′1u
′uh′−1

1 ∈ N and then g ∈ N(〈bn〉∩H1). Thus, (N 〈bn〉)∩NH1 ⊆ N(〈bn〉∩H1)
and we get the equality (N 〈bn〉) ∩NH1 = N(〈bn〉 ∩H1).
We prove similarly that (N 〈bn〉) ∩ NH2 = N(〈bn〉 ∩ H2). Hence, the lemma is
proven. �

Proof of Theorem 1.2. Let us recall that in the group BS(n,−n) = 〈b〉 ∗
bn=c

BS(1,−1), the subgroups 〈b〉 and BS(1,−1) =
〈
a, c | a−1ca = c−1〉 are the free

factors. Let H1 and H2 be two finitely generated subgroups of BS(n,−n) contained
in the free factors, and let g ∈ BS(n,−n)\H1H2. In order to prove that the product
H1H2 is closed in the profinite topology of BS(n,−n), we need to determine a
normal subgroup N of finite index in BS(n,−n) such that g /∈ H1H2N .
Case 1. Assume that H1 and H2 are subgroups of 〈b〉.
Since the group 〈b〉 is commutative, it comes that H1H2 is an infinite cyclic
group. Also, BS(n,−n) is RZ1 and g ∈ BS(n,−n) \ H1H2. Thus, there exists
M �f BS(n,−n) such that g /∈ H1H2M . That is, the set H1H2 is closed in the
profinite topology of BS(n,−n).
Case 2. Next, consider that H1 and H2 are subgroups of BS(1,−1).
Subcase (a) Suppose that g ∈ BS(1,−1). Since the group BS(1,−1) is polycyclic,
it is RZ2. Thus, there exists a subgroup M �f BS(1,−1) such that g /∈ H1H2M .
Let the factor groups H1 = H1/H1 ∩M , H2 = H2/H2 ∩M and BS(1,−1) =
BS(1,−1)/M be considered modulo M . By Proposition 2.1 (1), H1 and H2 are
finitely generated subgroups of BS(1,−1). Let g be the class of g modulo M in
BS(1,−1); then g /∈ H1 H2 in BS(1,−1). Also, since M ∩ 〈c〉 is generated by one
element as a subgroup of a one generated group, there exists a natural number
t such that M ∩ 〈c〉 = 〈ct〉 = 〈bnt〉. Therefore, by the result of P. Stebe cited
previously, there exists L�f 〈b〉 satisfying L ∩ 〈bn〉 = 〈bnt〉 = M ∩ 〈c〉.
Set 〈bn〉 = 〈bn〉 /(L ∩ 〈bn〉) and 〈c〉 = 〈c〉 /(M ∩ 〈c〉) respectively subgroups of
〈b〉 = 〈b〉 /L and BS(1,−1). Clearly, the canonical epimorphisms 〈b〉 −→ 〈b〉 and
BS(1,−1) −→ BS(1,−1) induce an epimorphism π : BS(n,−n) −→ BS(n,−n) =
〈b〉 ∗

bn=c
BS(1,−1). Since the groups 〈b〉 and BS(1,−1) are finite, it comes that

the group BS(n,−n) is a free product of finite groups amalgamated by finite
subgroups. Now, using the fact that Since 〈b〉 and BS(1,−1) are finite, they are
RZ2. Thus BS(n,−n) is RZ2 as a free product of RZ2 groups amalgamated by
finite subgroups. See [6, Theorem 5.3]. Also in BS(n,−n), we have g /∈ H1 H2.
Consequently, there exists a normal subgroup N of finite index in BS(n,−n) such
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that g /∈ H1 H2 N . Taking N to be the preimage of N via π, we have g /∈ H1H2N
as desired. Again the set H1H2 is closed in the profinite topology of BS(n,−n).
Subcase (b) Suppose that g /∈ BS(1,−1). Let g = g1g2 · · · gr (r > 1) be a reduced
form of g in the amalgamated free product of groups BS(n,−n) = 〈b〉 ∗

bn=c
BS(1,−1).

Suppose that r = 1. That is g ∈ 〈b〉 \ 〈bn〉, since g /∈ BS(1,−1). Recall once again
that BS(n,−n) is RZ1. Then there exists M �f BS(n,−n) such that g /∈ 〈bn〉M ,
and the factor group BS(n,−n)/M is finite. Set BS(n,−n) = BS(n,−n)/M ,
〈b〉 = 〈b〉 /(〈b〉 ∩M), BS(1,−1)/(BS(1,−1) ∩M), 〈bn〉 = 〈bn〉 /(〈bn〉 ∩M) and
〈c〉 = 〈c〉 /(〈c〉∩M). Let g be the class of g modulo M . It is clear that in BS(n,−n)
we have g /∈ H1 H2, where H1 = H1/H1 ∩M , H2 = H2/H2 ∩M . Since BS(n,−n)
is finite, it is trivially RZ2. Thus, there exists a normal subgroup N which is also
trivial of finite index in BS(n,−n) and such that g /∈ H1 H2 N . Taking N = M
to be the preimage of N via π, we have g /∈ H1H2N as desired. Therefore, H1H2
is closed in the profinite topology of BS(n,−n).
Suppose that r > 1. Let I and J be the subsets of {1, 2, · · · r} consisting of in-
dices of components of g which belong to 〈b〉 \ 〈bn〉 and BS(1,−1) \ 〈c〉 respec-
tively. Since BS(n,−n) is RZ1, there exists a subgroup M �f BS(n,−n) such
that gi /∈ 〈bn〉M and gj /∈ 〈c〉M for any i ∈ I and any j ∈ J . Considering
BS(n,−n) = BS(n,−n)/M , 〈b〉 = 〈b〉 /(〈b〉 ∩M), BS(1,−1)/(BS(1,−1) ∩M),
〈bn〉 = 〈bn〉 /(〈bn〉 ∩M) and 〈c〉 = 〈c〉 /(〈c〉 ∩M), we have g /∈ BS(1,−1) and
g /∈ H1 H2.
Using again the fact that BS(n,−n) is finite, and then trivially RZ2, we obtain that
there exists a normal subgroup N the trivial subgroup of finite index in BS(n,−n)
such that g /∈ H1 H2 N . Thus, as in the previous case the desired result is obtained.
Case 3. Finally, suppose that H1 ≤ 〈b〉 and H2 ≤ BS(1,−1). Let us recall that
g = g1g2 · · · gr (r > 1) is a reduced form of g in BS(n,−n) = 〈b〉 ∗

bn=c
BS(1,−1).

Subcase (a) Suppose that l(g) = 0. That is g ∈ 〈bn〉 = 〈c〉. It is obvious that
g /∈ (〈bn〉∩H1)(〈c〉∩H2) since g /∈ H1H2. Also, (〈bn〉∩H1)(〈c〉∩H2) can be viewed as
a finitely generated subgroup of 〈c〉, and 〈c〉 is RZ1. Therefore, there exists U �f 〈c〉
such that g /∈ (〈bn〉 ∩H1)(〈c〉 ∩H2)U ; and it comes that (〈bn〉 ∩H1)U 6= 〈bn〉 and
(〈bn〉∩H2)U 6= 〈bn〉. Thus, by Lemma 4.1, there exists a subgroup M�f BS(n,−n)
verifying M ∩ 〈c〉 = U , (M 〈bn〉)∩ (MH1) = M(〈bn〉 ∩H1) and (M 〈c〉)∩ (MH2) =
M(〈c〉 ∩H2). Define the factor group BS(n,−n) == BS(n,−n)/M , where 〈b〉 =
〈b〉 /(M ∩ 〈b〉), BS(1,−1) = BS(1,−1)/(M ∩BS(1,−1)), 〈bn〉 = 〈bn〉 /(M ∩ 〈bn〉)
and 〈c〉 = 〈c〉 /(M ∩ 〈c〉).

Since,
(MH1/M) ∩ (M 〈bn〉 /M) = {gM | g ∈MH1 and g ∈M 〈bn〉}

= {gM | g ∈MH1 ∩M 〈bn〉}
= (MH1 ∩M 〈bn〉)/M
= M(H1 ∩ 〈bn〉)/M ,
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we have H1 ∩ 〈bn〉 = H1 ∩ 〈bn〉 with H1 = H1/(M ∩H1 = MH1/M . Similarly, we
obtain also H2 ∩ 〈c〉 = H2 ∩ 〈c〉, with H2 = H2/(M ∩H2 = MH2/M .
We claim that g /∈ H1 H2. Indeed: if g ∈ H1 H2, then g = h1 h2 with h1 ∈ H1

and h2 ∈ H2. Since g ∈ 〈c〉, H1 ≤ 〈b〉 and H2 ≤ BS(1,−1), then h1 = gh−1
2 ∈

BS(1,−1). Consequently, h1 ∈ H1 ∩ BS(1,−1) ⊆ 〈b〉 ∩ BS(1,−1) = 〈bn〉. Thus
h1 ∈ H1 ∩ 〈bn〉. Similarly, h2 ∈ H2 ∩ 〈c〉, so that g ∈ (H1 ∩ 〈bn〉)(H2 ∩ 〈c〉) =
(H1 ∩ 〈bn〉)(H2 ∩ 〈c〉). Thus g = h1h2m ∈ (H1 ∩ 〈bn〉)(H2 ∩ 〈c〉)M , where m ∈M ,
and it follows that m = h−1

2 h−1
1 g ∈ 〈c〉. Therefore, m ∈ M ∩ 〈c〉 = U so that

g ∈ (H1 ∩ 〈bn〉)(H2 ∩ 〈c〉)U . But this contradicts the assumption that g /∈ (〈bn〉 ∩
H1)(〈c〉∩H2)U . Thus g /∈ H1 H2 in BS(n,−n). Since BS(n,−n) is RZ2 as a finite
group, there exists a subgroup N �f BS(n,−n) such that g /∈ H1 H2 N . And
like in the previous cases, it comes that there exists a subgroup N �f BS(n,−n)
satisfying g /∈ H1H2N . And the set H1H2 is closed in the profinite topology of
BS(n,−n) as desired.
Subcase (b) Suppose that l(g) = 1. That is g ∈ BS(1,−1) \ 〈c〉 (or g ∈ 〈b〉 \ 〈bn〉 ).
I Suppose in addition that g /∈ 〈c〉H2. Since 〈c〉H2 is a finitely generated subgroup
of BS(1,−1) which is RZ2 as a polycylic group, there exists a subgroup M �f

BS(1,−1) such that g /∈ 〈c〉H2M . Thus g /∈ 〈c〉H2 in BS(1,−1) = BS(1,−1)/M ,
where 〈c〉 = 〈c〉 /(〈c〉 ∩M) and H2 = H2/H2 ∩M . Since M ∩ 〈c〉 can be viewed
as a subgroup of 〈b〉, then using the P. Stebe’s result cited previously, there
exists L�f 〈b〉 satisfying L ∩ 〈bn〉 = M ∩ 〈c〉. Now, consider 〈b〉 = 〈b〉 /L, 〈bn〉 =
〈bn〉 /L ∩ 〈bn〉 = 〈c〉 /M ∩ 〈c〉 = 〈c〉, and then BS(n,−n) = 〈b〉 ∗

bn=c
BS(1,−1). In

BS(n,−n), we have H1 = H1/L ∩ H1, H2 = H2/M ∩ H2 and g = gM /∈ 〈c〉H2.
Also, g /∈ H1 H2. Indeed: if g ∈ H1 H2, then g = h1 h2 with h1 ∈ H1 and h2 ∈ H2.
Thus h1 = gh−1

2 ∈ BS(1,−1), and then h1 ∈ H1 ∩ BS(1,−1) ⊆ 〈c〉. It comes
that g = h1h2 ∈ 〈c〉H2, which contradicts the assumption that g /∈ 〈c〉H2. Then
g /∈ H1 H2 in BS(n,−n). Using the fact that groups 〈b〉 and BS(1,−1) are RZ2
as finite groups, we obtain that BS(n,−n) is RZ2 as a free product of RZ2 groups
amalgamated by finite subgroups. And the desired result is obtained like in Case
2 (b).
I Suppose now that g ∈ 〈c〉H2. Hence g = cth2, with t ∈ Z and h2 ∈ H2. From
g /∈ H1H2 we have ct /∈ H1H2. Since l(ct) = 0, so using Case 3 Subcase (a) there
exists N �f BS(n,−n) such that ct /∈ H1H2N . Thus g /∈ H1H2N and the set
H1H2 is closed in the profinite topology of BS(n,−n).
The subcase g ∈ 〈b〉 \ 〈bn〉 is treated similarly, since 〈b〉 as a finitely generated
abelian group is RZ and particularly RZ2.
Subcase (c) Let finally examine the case l(g) ≥ 2, with g = g1g2 . . . gr (r > 2).
Denote again by I and J the set of indices in {1, 2, · · · , r} of components of g
belonging in 〈b〉 \ 〈bn〉 and BS(1,−1)\ 〈c〉 respectively. Since BS(n,−n) is RZ1, the
desired result is obtained like in Case 2 (b) r > 1. That is, the set H1H2 is closed
in the profinite topology of BS(n,−n). And the theorem is demonstrated. �
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5. Proof of Corollary 1.2

Assume that K is RZ2 and contains a finitely generated subgroup U of finite
index in both A and B such that ϕ(u) = u for any u ∈ U . Since U ≤ Z(K)
and t−1ut = u for any u ∈ U , it comes that U ≤ Z(G). By Proposition 2.3,
we have Un ≤f U and consequently Un ≤f A and Un ≤f B, for any nonzero
natural number n. It is then obvious that Un, for any nonzero natural number
n, is finitely generated. Thus, K/Un is RZ2, by Proposition 2.2. Also, since A
and B are isomorphic, so are the finite groups A/Un and B/Un for any nonzero
natural number n. Thus, for any nonzero natural number n the HNN-extension
Gn = G/Un =

〈
K/Un, τ | τ−1A/Unτ = B/Un

〉
is RZ by Proposition 1.4 and

particularly RZ2. Consequently G is RZ2 by Theorem 1.1. So, the corollary is
demonstrated.
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