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EMPIRICAL ANALYSIS OF CURRENT STATUS DATA
FOR ADDITIVE HAZARDS MODEL WITH AUXILIARY
COVARIATES

Jianling Zhang, Mei Yang and Xiuqing Zhou

In practice, it often occurs that some covariates of interest are not measured because of
various reasons, but there may exist some auxiliary information available. In this case, an issue
of interest is how to make use of the available auxiliary information for statistical analysis.
This paper discusses statistical inference problems in the context of current status data arising
from an additive hazards model with auxiliary covariates. An empirical log-likelihood ratio
statistic for the regression parameter vector is defined and its limiting distribution is shown to
be a standard chi-squared distribution. A profile empirical log-likelihood ratio statistic for a
sub-vector of the parameters and its asymptotic distribution are also studied. To assess the
finite sample performance of the proposed methods, simulation studies are implemented and
simulation results show that the methods work well.

Keywords: current status data, auxiliary covariates, additive hazards model, empirical
likelihood

Classification: 62E20, 62N01

1. INTRODUCTION

Current status data, also called as case I interval-censored data, means that the fail-
ure time T is unobservable, but it can be determined to lie below or above a random
monitoring time C. Such data plays an important role in many fields including clinical
medicine, econometrics, reliability studies and so on (Jewell and van der Laan [5], Huang
[4], Rossini and Tsiatis [18]). In practice, both failure times and monitoring times can
depend on some covariates. For such current status data, how to model it and make
accurate inference for the unknown parameters in the model is particularly of interest
to methodology researchers. Many procedures have been developed for current status
failure time data under various models when covariate information is completely known.
An extensive review of models for current status data can be found in Chapter 5 of
Sun[19]. A popular choice is the Cox proportional hazards model, for which Huang [4]
gave a profile likelihood approach for parameter estimation, and Wang et al. [20] pro-
posed an EM algorithm under some conditions. Some authors considered analyzing the
current status data by using the additive hazards model.(e. g. McKeague and Sasieni
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[12], Lin et al. [4], Zhang et al. [21], Chen and Sun [2], Lu and Song [10], and so on), and
their estimation method is based on the efficient score, which is used as an estimating
equation in deriving parameter estimates.

However, due to budget constraints or other technique reasons, covariate informa-
tion may only be collected in a randomly selected subset from the whole study cohort in
biomedical studies. This subset is referred to as the validation set, and only subjects in it
could provide true covariates. Meanwhile, to compensate the missing covariate informa-
tion, some convenient information related to the true covariates is obtained by applying
a cheaper substitute technique to all the study subjects. Such auxiliary information is
referred to as auxiliary covariates.

In this paper, we consider the additive hazards model for current status data in sit-
uations when covariates are fully available only on some of the study subjects but are
missing and compensated with auxiliary information on the others. To make statistical
inference for unknown parameters, methods based on empirical likelihood will be ap-
plied. Empirical likelihood was introduced by Owen ([14, 15]) for a mean vector for i.i.d.
observations, and has been extended to a wide range of applications. Zhao and Hsu [24]
studied the additive risk models with right censoring; Zhou [26] considered empirical
likelihood analysis for the accelerated failure time model; Zhang and Zhao [23] devel-
oped two empirical likelihood inference approaches for linear transformation models with
interval-censored data; Liu et al. [9] gave empirical likelihood for the additive hazards
model with current status data. However, it seems that there does not exist method
for empirical analysis of current status data arising from the additive hazards model in
the presence of auxiliary covariates. Therefore, this paper applies empirical likelihood
to study the additive hazards model of current status data with auxiliary covariates.

The remainder of this paper is organized as follows. We begin in Section 2 with
introducing some notations and models that will be used throughout the paper. In
Section 3, we introduce the empirical likelihood method to the additive hazards model
with current status data. We define an empirical log-likelihood ratio statistic for the
unknown regression parameter vector, and show that its limiting distribution is a chi-
squared distribution. A profile empirical log-likelihood ratio statistic for a sub-vector
of the parameters and its asymptotic distribution are also proposed in Section 3. In
Section 4, we conduct simulation studies to evaluate the performance of the proposed
empirical likelihood methods. Some discussions are given in Section 5, and proof details
are presented in Section 6.

2. MODELS AND NOTATIONS

Consider a failure time study that consists of n independent subjects. Let Ti denote the
failure time of the i-th member and suppose that there exists a vector of covariates Zi(t),
which may depend on time t. For the relationship between Ti and Zi(t), in the following,
we assume that given the history of covariates up to time t, the hazard function of Ti
has form

λT (t|Zi(s), s ≤ t) = λ0(t) + β′0Zi(t), (1)

where λ0(t) denotes an unknown marginal baseline hazard function, and β0 is a p-
dimensional vector of unknown regression parameters. That is, Ti follows the additive
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hazards model (Lin and Ying [7]). In current status data, Ti is not observed directly.
Instead, each subject will be observed only once at time Ci, and only Ci and δi = I(Ti ≥
Ci) are obtained. We assume that Ci is independent of Zi and Ti.

In the following, we assume that covariate vector Zi(t) may be missing, but a vector
of auxiliary covariates, which is denoted by Xi(t), is observed for each subject. The
relationship between Xi(t) and Zi(t) is unspecified, but we assume that conditional on
Zi(t), Xi(t) provides no additional information to the regression model, that is,

λT (t|Zi(t), Xi(t)) = λT (t|Zi(t)).

Let V denote a simple random subset of {1, 2, . . . , n} which stands for the subjects whose
true covariates Zi(t) are known, and V̄ = {1, 2, . . . , n} \ V is the complement of V . The
set V is usually referred to as validation set. Let nv and nv̄ denote the sizes of V and
V̄ respectively. For simplicity, we also assume that for each subject, all components of
its covariate vector Zi(t) are either known or missing together. That means for each
subject i ∈ V , we have (Ci, δi, Zi(t), Xi(t)) observed, and for each subject i ∈ V̄ , we
have (Ci, δi, Xi(t)) observed only. Some comments will be given in Discussion for the
situation where missing happens to only some components of Zi(t).

Define Ni(t) = I(Ci ≤ min(t, Ti)) and Yi(t) = I(Ci ≥ t). Then Ni(t) is a counting
process with intensity process

λi(t|Zi(s), s ≤ t) = e−Λ0(t)e−β
′
0Z
∗
i (t)λc(t)

, λc0(t)e−β
′
0Z
∗
i (t) (2)

(Lin et al. [6]), where λc(t) denotes hazard function of event {Ci = t}, Λ0(t) =∫ t
0
λ0(s) ds, λc0(t) = λc(t)e−Λ0(t) and Z∗i (t) =

∫ t
0
Zi(s) ds. Equation (2) says that

λi(t|Zi(s), s ≤ t) satisfies Cox proportional hazards model with relative risk function
e−β

′
0Z
∗
i (t). But it is apparent that e−β

′
0Z
∗
i (t) is not available for our situation because

of the missing of Zi(t). Then following Prentice [16], we consider the intensity process
conditional on Xi(t) rather than on Zi(t), and the induced intensity process is written
as

λ̃i(t) = λc0(t)E
{
e−β

′
0Z
∗
i (t)|Yi(t) = 1, Xi(t)

}
.

It is easy to see that this is still a proportional hazard model with relative risk function

φi(t, β0) , E
{
e−β

′
0Z
∗
i (t)|Yi(t) = 1, Xi(t)

}
.

Define

Φi(t, β) = φi(t, β)I(i ∈ V̄ ) + ϕi(t, β)I(i ∈ V )

with ϕi(t, β) = e−β
′Z∗i (t). For j = 0, 1 and 2, let a⊗j denote 1, a and aa′ respectively. To

estimate β0, motivated by the efficient estimation procedure of Martinussen and Scheike
[11], Chen et al. [1] proposed to use empirical efficient score function

U(β,Λ0) =

n∑
i=1

∫ τ

0

(
Φ

(1)
i (t, β)

Φi(t, β)
− S1(t, β)

S0(t, β)

)(
pi(t, β)

1− pi(t, β)
dN∗i (t)− dNi(t)

)
, (3)
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where f (l)(t, β) stands for the l-order partial derivative of function f(t, β) with respect
to β, and

N∗i (t) = (1− δi)I(Ci ≤ t),
pi(t, β) = exp(−Λ0(t))Φi(t, β),

Sj(t, β) =

n∑
i=1

Yi(t)
pi(t, β)

1− pi(t, β)

(
Φ

(1)
i (t, β)

Φi(t, β)

)⊗j
,

j = 0, 1, 2.

In next section, to address this issue, a empirical likelihood-based confidence region
will be developed.

3. EMPIRICAL LIKELIHOOD PROCEDURE

In this section, we present an empirical likelihood procedure for obtaining confidence
region and making inference about β in model (1). We first define compensated counting
processes Mi(t) and M∗i (t) as

Mi(t) = Ni(t)−
∫ t

0

Yi(s)pi(s, β0) dΛc(s),

M∗i (t) = N∗i (t)−
∫ t

0

Yi(s)(1− pi(s, β0)) dΛc(s).

Obviously, both Mi(t) and M∗i (t) are martingales. Let

Wi(β) =

∫ τ

0

(
Φ

(1)
i (t, β)

Φi(t, β)
− S1(t, β)

S0(t, β)

)(
pi(t, β)

1− pi(t, β)
dM∗i (t)− dMi(t)

)
,

then E(Wi(β)) = 0 if and only if β = β0 and U(β,Λ0) defined in (3) can be rewritten as

U(β,Λ0) =

n∑
i=1

Wi(β). (4)

Define

Wni(β) =

∫ τ

0

(
Φ̂

(1)
i (t, β)

Φ̂i(t, β)
− Ŝ1(t, β)

Ŝ0(t, β)

)(
p̂i(t, β)

1− p̂i(t, β)
dM∗i (t)− dMi(t)

)

where Λ̂0 be an estimate of Λ0, Λ̂0 can refer to Zhu et al. [25], Φi replaced by

Φ̂i(t, β) = φ̂i(t, β)I(i ∈ V̄ ) + ϕi(t, β)I(i ∈ V ),

and

φ̂i(t, β) =

∑
j∈V Yj(t)Q

(
B−1(Xj −Xi)

)
ϕj(t, β)∑

j∈V Yj(t)Q (B−1(Xj −Xi))
,
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where B is a positive-definite matrix with elements possibly depending on n, and Q is a
kernel function with bandwidth matrix B. It can be seen that Û(β, Λ̂0) =

∑n
i=1Wni(β)

holds true because

Û(β0, Λ̂0) =

n∑
i=1

∫ τ

0

(
Φ̂

(1)
i (t, β0)

Φ̂i(t, β0)
− Ŝ1(t, β0)

Ŝ0(t, β0)

)(
p̂i(t, β0)

1− p̂i(t, β0)
dN∗i (t)− dNi(t)

)

=

n∑
i=1

∫ τ

0

(
Φ̂

(1)
i (t, β0)

Φ̂i(t, β0)
− Ŝ1(t, β0)

Ŝ0(t, β0)

)[
p̂i(t, β0)

1− p̂i(t, β0)
dM∗i (t)− dMi(t)

+

(
p̂i(t, β0)

1− p̂i(t, β0)

(
e−Λ̂0 − e−Λ0

e−Λ̂0

)
Yi(t)dΛc(t)

)]

=

n∑
i=1

∫ τ

0

(
Φ̂

(1)
i (t, β0)

Φ̂i(t, β0)
− Ŝ1(t, β0)

Ŝ0(t, β0)

)(
p̂i(t, β0)

1− p̂i(t, β0)
dM∗i (t)− dMi(t)

)
where Λ̂0 be an estimate of Λ0.

Consider the empirical likelihood function:

L(β0) = sup

{
n∏
i=1

qi :

n∑
i=1

qi = 1,

n∑
i=1

qiWi(β0) = 0, qi ≥ 0

}

and thus the estimated empirical likelihood function:

Ln(β0) = sup

{
n∏
i=1

qi :

n∑
i=1

qi = 1,

n∑
i=1

qiWni(β0) = 0, qi ≥ 0

}
(5)

for β0, where q= (q1, q2, . . . , qn)′ denotes the probability vector.
For without any restriction, the natural estimator of q is given by (1/n, 1/n, . . . , 1/n)′.

By section 2.3 of Owen [13], we obtain the following empirical likelihood ratio

R(β0) = sup

{
n∏
i=1

nqi :

n∑
i=1

qi = 1,

n∑
i=1

qiWni(β0) = 0, qi ≥ 0

}

for β0. Using the lagrange multiplier method, we first define

G =

n∑
i=1

log(nqi)− nλ′
n∑
i=1

qiWni(β0) + γ
( n∑
i=1

qi − 1
)
,

where λ, γ are Lagrange multipliers. Setting to zero the partial derivative of G with
respect to qi gives

∂G

∂qi
=

1

qi
− nλ′Wni(β0) + γ = 0.

Therefore,
n∑
i=1

qi
∂G

∂qi
= n− n

n∑
i=1

λ′qiWni(β0) + γ

n∑
i=1

qi = 0.
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We get the result

qi =
1

n

1

1 + λ′Wni(β0)
,

where the p-dimensional multiplier vector λ satisfies

1

n

n∑
i=1

Wni(β0)

1 + λ′Wni(β0)
= 0.

Then, the empirical log-likelihood ratio statistic is

l̂(β0) = −2 ln R(β0) = 2

n∑
i=1

ln { 1 + λ′Wni(β0) } .

In practice, one can calculate l̂(β0) directly through R(β0) using the restricted maxi-
mization instead of calculating λ first.

It is apparent that one can easily develop a confidence region for β0 based on l̂(β0) if
its distribution is known. Let

Π(β0) = E (Wi(β0)W ′i (β0)) ,

Πn(β0) =
1

n

n∑
i=1

Wi(β0)W ′i (β0),

Π̂n(β0) =
1

n

n∑
i=1

Wni(β0)W ′ni(β0).

To derive asymptotic distribution of l̂(β0), we need the following regularity conditions.

Condition 1. The longest follow-up time τ is finite, and the covariate vectors Zi(t)’s
are uniformly bounded such that ‖ Zi(t) ‖≤ C1 for some positive constant C1, where
‖ · ‖ denotes the Euclidean norm.

Condition 2.
∫ t

0
λc(s) ds <∞ holds for any 0 < t <∞.

Condition 3. Λ̂0(t)− Λ0(t) = op(n
−1/4) holds for any 0 < t <∞.

Condition 4. The matrix Π(β0) is positive definite.

The following theorem states the result for the limiting distribution of l̂(β0).

Theorem 1. Under Conditions 1 – 4, empirical log-likelihood ratio statistic l̂(β0) con-
verges in distribution to χ2(p), where χ2(p) is the standard chi-square distribution with
p degree of freedom.
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Using Theorem 1, an asymptotic 100(1− α)% confidence region for β0 is given by

R1 = {β : l̂(β) ≤ χ2
α(p)}.

It is known that in general, one is often more interested in constructing confidence re-
gions for a subvector of β. Rewrite β as β = (β(1)′ , β(2)′)′, where β(1) is the q-dimensional
(q < p) parameter vector we are interested in, and β(2) is nuisance parameter vector.
For linear transformation models with interval-censored data and nuisance parameters,
Zhang and Zhao [23] proposed a profile empirical likelihood method. Similar to their
method, we propose a profile empirical likelihood for β1 as

l̃(β(1)) = inf
β(2)∈Rp−q

l̂(β).

Let β
(1)
0 denote the true value of β(1). The following theorem gives the asymptotic

distribution of l̃(β
(1)
0 ).

Theorem 2. Assume that Conditions 1 – 4 hold true, then as n → ∞, the limiting

distribution of l̃(β
(1)
0 ) is the standard chi-square distribution with q degree of freedom.

Theorem 2 suggests that an asymptotic 100(1 − α)% confidence region for β
(1)
0 can

be obtained as
R2 = {β(1) : l̃(β(1)) ≤ χ2

α(q) } .

4. NUMERICAL STUDIES

In this section, a series of simulation studies are conducted to evaluate the performance
of the empirical likelihood procedure proposed in this paper. For comparison, the con-
fidence region based on the estimation equation method proposed in Feng et al. [3] is
also computed.

In our simulations, covariate vectors Z ′is are generated from Bernouli distribution
B(1, 0.5), and failure times T ′is are drawn independently from model (1) with λ0(t) = 2.
To generate current status data, we assume observation times C ′is satisfy proportional
hazard model with hazard function given by

λC(t) = λ0C(t) exp(γ′0Zi),

and λ0C(t) is set to be 1, 2 and 4 to make right-censored ratio (CR for short) be
33.3%, 50%, and 66.7% respectively when β0 = γ0 = 0. Auxiliary covariate Xi is defined
as Xi = Zi+ei, where e′is are generated from normal distribution N(0, σ2), and σ = 0.1
is chosen here. For each i, let % stands for the probability that Zi is observed, that is,
i ∈ V holds with probability % and i ∈ V̄ holds with probability 1 − %. We set % to be
0.3, 0.5, and 1 in different simulations. Gaussian function Q(u) = (2π)−

1
2 exp(−u2/2) is

used as kernel and the bandwidth is set as b = 2n
−1/3
v σ̂Z , where σ̂Z denotes the sample

standard deviation of Zi in validation set with sample size nv.We consider β0 = −0.5, 0
or 0.5, γ0 = −0.1, 0, 0.1 to show the performance of our method under different models.
For each set of parameters, we generate n = 200 independent subjects and each study
is repeated 1000 times.
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Simulation results are listed in tables 1 – 6, including the 95% empirical coverage
probabilities(CP), Bias, empirical standard errors(SE) and mean errors(ME) of the es-
timation equation method(EE) and that of our empirical likelihood method(EL) under
various cases. In order to show the simulation results more clearly, according to tables
1 – 3, we draw a line chart as shown in Fig.1 and the order of horizontal axis is of non-
sense. In Fig.1, blue line and orange line respectively represent 95% empirical CP of EE
and EL. And for convenient comparison, a horizontal line of 95% is drew as red line.

CR=33.3% CR=50% CR=66.7%
γ β EE EL EE EL EE EL
-0.1 -0.5 91.0% 95.4% 90.0% 94.8% 89.9% 95.3%

0 94.1% 93.8% 94.4% 95.4% 95.4% 95.5%
0.5 95.4% 94.4% 95.2% 93.9% 97.0% 95.4%

0 -0.5 92.1% 94.3% 91.4% 93.0% 89.8% 92.4%
0 96.8% 95.7% 94.1% 92.8% 93.1% 92.6%

0.5 95.8% 92.8% 96.2% 93.8% 95.4% 93.8%

0.1 -0.5 92.6% 93.6% 92.4% 92.5% 91.5% 93.4%
0 94.5% 92.5% 94.8% 94.6% 96.1% 95.1%

0.5 96.3% 94.0% 96.3% 94.5% 95.7% 93.6%

Tab. 1. Simulation results of empirical CP with % = 30%.

CR=33.3% CR=50% CR=66.7%
γ β EE EL EE EL EE EL
-0.1 -0.5 89.6% 94.9% 90.8% 94.2% 88.3% 94.0%

0 93.4% 94.9% 93.9% 95.8% 93.7% 93.9%
0.5 96.0% 93.9% 96.7% 95.8% 95.7% 94.4%

0 -0.5 90.5% 93.0% 91.6% 94.9% 89.8% 94.0%
0 95.1% 94.8% 94.1% 93.6% 95.2% 95.8%

0.5 95.6% 93.9% 96.6% 94.5% 95.0% 93.6%

0.1 -0.5 93.0% 93.1% 91.9% 93.4% 89.8% 93.4%
0 95.4% 93.8% 95.6% 93.5% 95.7% 92.7%

0.5 96.5% 94.7% 95.4% 93.6% 94.9% 93.9%

Tab. 2. Simulation results of empirical CP with % = 50%.

CR=33.3% CR=50% CR=66.7%
γ β EE EL EE EL EE EL
-0.1 -0.5 90.1% 94.5% 90.7% 94.9% 89.7% 95.2%

0 94.9% 95.8% 94.1% 94.6% 93.5% 94.3%
0.5 95.4% 94.4% 94.6% 94.4% 94.8% 94.7%

0 -0.5 92.4% 94.7% 90.5% 93.8% 89.9% 93.1%
0 93.9% 93.0% 94.6% 94.0% 95.5% 94.2%

0.5 95.9% 95.3% 95.3% 94.2% 95.6% 94.1%
0.1 -0.5 92.3% 94.0% 93.1% 92.7% 91.5% 92.1%

0 94.7% 93.3% 96.0% 94.3% 93.8% 92.9%
0.5 96.6% 93.5% 95.2% 93.5% 96.5% 95.0%

Tab. 3. Simulation results of empirical CP with % = 100%.
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85%
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Empirical CP of EE and EL

EE EL 95%CP

Fig. 1. line chart of 95% empirical CP of EE and EL.

The results show that EL method performs well under all situations we consider here.
Details are as follows:

1. From the line chart plot, the 95% empirical CP line of EL fluctuates around 95%,
but the line of the EE method fluctuates much more intense, and many results of
EE method are much lower than 95%.

2. From concrete results in above tables 1-3, the minimal and maximal empirical CP
of EL is 92.1% and 96.8%, whereas that of EE is 86.1% and 97%, which are both
more far away from 95% than EL. As pointed out by Feng et al.[3] that the EE
could underestimate the variance of the estimated parameters. So it could lead to
lower coverage probabilities. Especially when both γ and β are less than 0, most
of 95% empirical CP of EE are under 90%, which is obviously an awful result.
However, under such situations, empirical CP of EL keeps around 95%.

3. From concrete results in above tables 4-6, the majority of results of EE are more
far away from 0 than EL, whether it is |bias|, SE or ME. Especially, the results of
ME are obviously better than those of EE.

In summary, it is indicates that the EL method performs more stable in different
situations and is more practical than EE.

5. DISCUSSION

This paper discussed regression analysis of case I interval-censored failure time data
arising from the additive hazards model when there exist missing covariates. Moreover,
it has been assumed that some auxiliary covariates have been observed for all subjects.
Corresponding to the estimating equation approach proposed in Chen et al. [1], this
paper developed an empirical likelihood method for deriving the confidence regions for
regression parameters.

The method has the advantages that it does not require any assumption on the
distribution of the latent variables as well as the estimation of the unknown baseline
hazard functions and can be easily implemented. In fact, one could easily obtain β̂ by
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using some Matlab functions. For example, to obtain, one way is to directly minimize
U(β,Λ0), this approaches, one could employ the Matlab functions ‘fminsearch’. Fur-
thermore, the numerical results indicated that the proposed approach works well for
practical situations.

There exist several directions for future research related to the problem discuss here.
One is that, throughout the paper, we are concerned with the current status data(type I
interval censored data) , but in practice, one could face other types of interval-censored
data, such as type II interval censored data, for which it does not seem to exist estimation
procedures similar to the ones proposed above. Thus it is natural to develop some
similar estimation procedures for them. The second one is that, we have assumed that
the censored data is independent, and this may not be true in practice. In fact it is
also straightforward to generalize the approach proposed above to the case where the
censored data is dependent. In this case, we can rewrite the model (2) as

λi(t|Zi(s), s ≤ t) = e−Λ0(t)e−β
′
0Z
∗
i (t)+γ′0Zi(t)λc(t)

, λc0(t)e−β
′
0Z
∗
i (t)+γ′0Zi(t)

where for the Ci, we assume that given Zi, the hazard function of Ci has the form
λC(t|Zi(s), s ≤ t) = λc(t)eγ

′
0Zi(t). Similarly as the preceding sections, one can develop

an inference procedure and establish some limit theories.
Finally, we have assumed that the current status data follow the additive hazards

model. In practice, sometimes this may not be true and it would be useful to develop
similar methods for other models such as the multiplicative hazards model. In the
previous sections, we have assumed that all components of a covariate vector are either
missing or observed together. In fact, the above inference method can be developed to
the case where some components are observed and some components are missing but
only auxiliary information obtained.

6. APPENDIX: PROOFS

To prove Theorem 1, we need the following lemmas.

Lemma 1. Under Conditions 1 – 4, as n → ∞, we have

(i) Π̂n(β0)
P−→ Π(β0) , (ii) Π̃(β0, Λ̂0)

P−→ Π(β0) ,

where “
P−→” means convergence in probability.

P r o o f . In order to prove (i), it is sufficient to show that Π̂n = Πn + op(1). In fact, for
any a ∈ Rp, we have

a′(Π̂n −Πn)a =
1

n

n∑
i=1

(a′(Wni(β0)−Wi(β0)))2

+
2

n

n∑
i=1

(a′Wi(β0))(a′(Wni(β0)−Wi(β0))).
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Denote (Wni(β0)−Wi(β0)) as γi(β0), and note that

a′γi(β0) = a′
∫ τ

0

Φ
(1)
i (t, β0)

Φi(t, β0)

(
p̂i(t, β0)

1− p̂i(t, β0)
− pi(t, β0)

1− pi(t, β0)

)
dM∗i (t)

+a′
∫ τ

0

(
Ŝ1(t, β0)

Ŝ0(t, β0)
− S1(t, β0)

S0(t, β0)

)
dMi(t)

−a′
∫ τ

0

(
Ŝ1(t, β0)

Ŝ0(t, β0)

p̂i(t, β0)

1− p̂i(t, β0)
− S1(t, β0)

S0(t, β0)

pi(t, β0)

1− pi(t, β0)

)
dM∗i (t).

Under Conditions 1 – 3, it is easy to show that a′γi(β0) = op(1). On the other hand,

n−1
∑n
i=1 a

′Wi(β0) converges to E(a′Wi(β0)) = 0 in probability. Thus we have a′(Π̂n−
Πn)a converges to 0 in probability, so (i) holds. By using the same proof as above, we
can show that result (ii) holds true. This completes the proof of Lemma 1. �

Lemma 2. Under Condition 1 – 4, as n → ∞, we have

1√
n

n∑
i=1

Wni(β0)
D−→ N(0,Π(β0)) ,

where “
D−→” means convergence in distribution.

P r o o f . Note the equation

Û(β0, Λ̂0) =

n∑
i=1

∫ τ

0

(
Φ̂

(1)
i (t, β0)

Φ̂i(t, β0)
− Ŝ1(t, β0)

Ŝ0(t, β0)

)(
p̂i(t, β0)

1− p̂i(t, β0)
dM∗i (t)− dMi(t)

)
,

and then under Condition 4, we can show that

Û(β0, Λ̂0) = U(β0,Λ0) + op(1) (A.1)

holds true by applying Lemma A.1 of Lin and Ying [8]. From the definition of U(β0,Λ0),
it can be easily seen that U(β0,Λ0)/

√
n converges in distribution to a normal variable

with mean zero and covariance matrix Π(β0). Combining this result with equation (A.1),
Lemma 2 follows. �

Based on Lemma 1 and Lemma 2, the proof of Theorem 1 is given below.

P r o o f of Theorem 1: Using Conditions 1 – 2, it is easy to see that E ‖Wni(β0) ‖2<∞.
Applying Lemma 3 in Owen [14], we have that both

max
1≤i≤n

‖Wni(β0)‖ = o(n1/2) (A.2)

and

1

n

n∑
i=1

‖Wni(β0)‖3 = o(n1/2) (A.3)
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hold true with probability 1. Write λ = ρθ, where ρ ≥ 0 is a real number and ‖ θ ‖= 1.
By equations (A.2), (A.3) and an argument similar to that used in Owen [14], we have

‖ λ ‖= ρ = Op(n
−1/2). (A.4)

Combining equations (A.2), (A.3) and (A.4), we have

max
1≤i≤n

|λ′Wni(β0)| = op(1).

Next, we apply the Taylor’s expansions to l̂(β0) = 2
∑n
i=1 ln(1 + λ′Wni(β0)) and∑n

i=1Wni(β)/(1 + λ′Wni(β)), and obtain

l̂(β0) = 2

n∑
i=1

{
λ′Wni(β0)− (λ′Wni(β0))2 +Op

(
(λ′Wni(β0))3

)}
=

(
n−1/2

n∑
i=1

Wni(β0)

)′
Π̂−1
n (β0)

(
n−1/2

n∑
i=1

Wni(β0)

)
+ op(1).

Then Theorem 1 follows from Lammas 1 and 2 immediately. �

The following is the proof of Theorem 2.

P r o o f of Theorem 2: Rewrite β0 as β0 = (β
(1)′

0 , β
(2)′

0 )′ corresponding to β = (β(1)′ , β(2)′)′.
Assume that β̃(2) satisfies

l̂((β
(1)′

0 , β̃(2))′) = inf
β(2)∈Rp−q

l̂((β
(1)′

0 , β(2)′)′).

To simplify the notation we now write (β
(1)′

0 , β̃(2)′)′ as β̃0. Similar to (5), β̃(2) satisfies
the estimated empirical likelihood function

Ln(β̃0) = sup{
n∏
i=1

hi :

n∑
i=1

hi = 1,

n∑
i=1

hiWni(β̃0) = 0, hi ≥ 0}.

Using the lagrange multiplier method, we get the result

hi =
1

n

1

1 + λ̃(2)′Wni(β̃0)
,

where the p− q-dimensional multiplier vector λ̃(2) satisfies

1

n

n∑
i=1

Wni(β̃0)

1 + λ̃(2)′Wni(β̃0)
= 0.

Using exactly the same arguments as in Lemma1 and Theorem1 of Qin and Lawless [17]
(the conditions can be easily verified), we have

√
n(β̃(2) − β(2)

0 ) = −(Λ′2Π−1(β0)Λ2)−1Λ′2Π−1(β0)n−1/2
n∑
i=1

Wni(β0) + op(1)
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and

√
nλ̃(2) = {I−Π−1(β0)Λ2(Λ′2Π−1(β0)Λ2)−1Λ′2}Π−1(β0)n−1/2

n∑
i=1

Wni(β0) + op(1)

= Sn−1/2
n∑
i=1

Wni(β0) + op(1),

where S =
(
I−Π−1(β0)Λ2(Λ′2Π−1(β0)Λ2)−1Λ′2

)
Π−1(β0), Λ2 =

∑n
i=1 ∂Wi(β0)/∂β(2),

and I is an identity matrix of order p. Following these, the profile empirical log-likelihood
ratio statistic is

l̃(β
(1)
0 ) = 2

n∑
i=1

ln
{

1 + λ̃(2)′Wni(β̃0)
}
.

Next, using a similar Taylor expansion as that used in the proof of Theorem 1, we
obtain

l̃(β
(1)
0 ) = 2

n∑
i=1

ln{1 + λ̃(2)′Wni(β̃0)}

= 2

n∑
i=1

{λ̃(2)′Wni(β̃0)− 1

2
λ̃(2)′Wni(β̃0)Wni(β̃0)′λ̃(2) + op((λ̃

(2)′Wni(β̃0))2)}

= 2

n∑
i=1

λ̃(2)′Wni(β̃0)−
n∑
i=1

λ̃(2)′Wni(β̃0)Wni(β̃0)′λ̃(2) + op(1)

=

n∑
i=1

λ̃(2)′Wni(β̃0) + op(1).

Moreover,
∑n
i=1 λ̃

(2)′Wni(β̃0) can be expanded as

n∑
i=1

λ̃(2)′Wni(β̃0) =

n∑
i=1

λ̃(2)′{Wni(β0) +
∂Wi(β

∗)

∂β(2)
(β̃2 − β(2)

0 )}

= λ̃(2)′
n∑
i=1

Wni(β0) + λ̃(2)′
n∑
i=1

∂Wi(β
∗)

∂β(2)
(β̃2 − β(2)

0 )}

=
[ n∑
i=1

Wni(β0)′/
√
n
]
S
[ n∑
i=1

Wni(β0)/
√
n
]

+ op(1)

because of the fact SΛ2 = 0, where β∗ is on the line segment between β̃0 and β0.
Therefore, we have that

l̃(β
(1)
0 ) =

[ n∑
i=1

Wni(β0)/
√
n
]′
S
[ n∑
i=1

Wni(β0)/
√
n
]

+ op(1).

Using again the approximation adopted in Appendix C of Zhang et al. [22], i. e. Lemma 2

holds and the fact that I −Π−
1
2 (β0)Λ2(Λ′2Π−1(β0)Λ2)−1Λ′2Π−

1
2 (β0) is a symmetric and

idempotent matrix with trace q, we have the desired result. �
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