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KYBERNETIKA — VOLUME 57 (2021), NUMBER 4, PAGES 628-646

INTERMITTENT ESTIMATION FOR FINITE ALPHABET
FINITARILY MARKOVIAN PROCESSES
WITH EXPONENTIAL TAILS

GUszTAV MORVAI AND BENJAMIN WEISS

We give some estimation schemes for the conditional distribution and conditional expectation
of the the next output following the observation of the first n outputs of a stationary process
where the random variables may take finitely many possible values. Our schemes are universal
in the class of finitarily Markovian processes that have an exponential rate for the tail of the
look back time distribution. In addition explicit rates are given. A necessary restriction is that
the scheme proposes an estimate only at certain stopping times, but these have density one so
that one rarely fails to give an estimate.

Keywords: nonparametric estimation, stationary processes

Classification: 62G05, 60G25, 60G10

1. INTRODUCTION

In this note we are concerned with the problem of how to best utilize partial information
about an unknown stationary process in trying to estimate the conditional distribution
of the next output, given that we have observed the first n outputs of the process. Our
goal is to obtain explicit bounds for the rate of convergence to zero of the error in our
estimation scheme that would be valid for almost any sequence of outputs. The kind
of processes that we are interested are best exemplified by binary renewal processes.
These are included in the wider class finitarily Markovian (FM) processes over a finite
alphabet. To describe this class we need the notion of a memory word w. A word w
of length k in the alphabet of the state space of our process is called a memory word
if given that the current k£ outputs constitutes the word w the conditional distribution
of the next output is completely determined independently of the rest of the past (a
formal definition is given in the next section). A process is FM if with probability one
the current outputs for some k form a memory word ( cf. [I9, 20]). Any process with
at least one renewal state has such memory words, and if the process is ergodic it is
necessarily FM. We have shown in some earlier works [22] 26], 27, 28] how to use this
information to get good estimation schemes for binary renewal processes, but in that
case there is prior knowledge of the set of memory words and we would like to extend
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the class of processes and to relax this assumption. We will replace it by an assumption
on the tail of the distribution of the look back time. For FM processes one defines
the look back time, 7, as a function of the entire past {X,,n < 0} to be the minimal
k so that {X_;...X_2X_1} is a memory word. We will only assume that the tail of
the distribution of 7 decays exponentially fast - but that otherwise we have no specific
knowledge of a sufficient set of memory words.

Even if one would be satisfied with a non quantitative result there is no universal
scheme for estimating the conditional distribution of the next output at all time instants
in the class of all FM process. This is because there may be infinitely many memory
words and the first time a memory word is encountered no meaningful estimation can
be made, cf. [31]. It is for this reason intermittent estimation has been introduced.
Here the idea is to estimate only along a sequence of carefully chosen stopping times.
More precisely one defines a sequence of stopping times {A\ < Ao+ < A, < ---}
and then gives an estimate for the conditional distribution of X 41 given the values of
{X;:0 <4<\, }. Our assumptions will enable us to show that the sequence of stopping
times has density one so that we will be giving an estimate ”almost all” of the time. In
[31] it was shown that a universal scheme for estimating the conditional distribution of
the next output does not exist for the class of stationary ergodic processes. He based his
proof on a random walk along the Cantor diagonal. The same technique can be applied
to prove this for the class of all FM processes. (In fact his counterexample is FM over
a ternary alphabet. His powerful technique, the encoding of a countable Markov chain,
was used in [2, B] and [I5] where the counterexamples are in fact binary FM.) We will
sharpen this result by combining his techniques in [31] with those in [5] and [I5].

In section 2 we will describe in detail the class of FM processes. Im section 3 we
will define exactly what is intermittent estimation, the stopping times that we need use,
define the stopping times and show that they have density one. In section 4 we will
give the scheme for estimating the conditional distribution of the next symbol, while in
section 5 we suppose that there is a real valued function of the basic states and give a
scheme for estimating its conditional expectation given the first n outputs. Finally in
the last section we will give our sharpened version of the results in [31] and [15].

For further reading on the topics cf. [2, [3 24] 28] 30} 32] 34, 35] and [29].

2. CLASSES OF PROCESSES

First let us fix the notation. Let {X,,}2° ___ be a stationary and ergodic time series
taking values from a finite alphabet X. We will use heavily in this paper that the
alphabet is finite. Note that all stationary time series {X,,}52 , can be thought to be a
two sided time series, that is, {X,,}52 _ .. For notational convenience, let

X =Xm,. ., Xn),
where m < n. Note that if m > n then X is the empty string.

0.) and p(y|2° ;) denote the distribution P(X°, = 2%, ) and the
conditional distribution P(X; = y|X°, = 2°,), respectively.
An important notion is that of a memory word which is defined as follows (cf.
4, 19, 20, 21)).

For convenience let p(x°
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Definition 2.1. We say that the empty word () with length zero is a memory word if
foralli>1,ally € X, all 29i+1 € X'’ such that p(29i+1,y) >0:

p(y) = P(y|zgi+1)~

For k > 1 we say that ng+1 is a memory word if p(w?, ;) > 0 and for all i > 1, all
y € X, all z:,]jﬂ.ﬂ € X such that p(z:£7i+1,w9k+1,y) >0:

—k
p(y|wgk+1) = P(y|2_k_i+1, wgk+1)~

Note that the empty word is a memory word if and only if the stationary stochatic
process is independent and identically distributed. For more on memory words cf. [25]

Define the set W), of those memory words w? 41 with length k, that is,
Wi = {wgkﬂ e X" w9k+1 is a memory word}.

Note that Wy can contain at most the empty word in which case the stationary process
is independent.

Example 2.2. Consider an independent and identically distributed process on a finite
alphabet. Assume that every letter in the alphabet has positive probability. Then any
word with any length is a memory word, including the empty word.

Example 2.3. Consider an independent and identically distributed process on a finite
alphabet. Then the empty word is a memory word. Furthermore, any word with pos-
itive length is a memory word if it contains no letter which has probability zero. In
other words, the memory words are the empty word and any word which has positive
probability.

Example 2.4. Consider the Markov chain with state space S = {0, 1,2} and transition
probabilities
P(My=1|M, =0) = P(My = 2|M;, =1) = 1,

P(My =0|M; =2) = P(My =1|M; =2)=0.5.
This yields a stationary and ergodic process {M,,}52 _ . Define

Zn = I{ag,=1)-

Then {Z,}5° _ . is a stationary and ergodic binary Markov chain with order 2. Now we
examine the memory words of process {Z,}°2 _ . The empty word is not a memory
word of the process {Z,}52 __ since the process is not independent. Thus W is the
empty set. ’0’ is not a memory word of process {Z,}52 _ . The only word with length
one which is a memory word of process {Z,,}2° _ __ is ’1’. The memory words with length
two are the ’01’, the 10" and the '00’. Note that the word ’11” appears in the {Z,, }22
process with probability zero. Thus '11’ is not a memory word. Since process {Z,,}22 _
is a Markov chain with order two, any word with length at least two, which has positive
probability, is a memory word.

— 00
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Define the set of all memory words W as

wOwe

k=0
Definition 2.5. A stationary and ergodic process {X,,} is said to be finitarily Marko-
vian if
P(30<k<oo: X%, eW) =1
Definition 2.6. Define the look back time 7(X™_ ) at time n as
T(X" ) =inf{t>0 : X .., € W}

Note that the stationary and ergodic process { X, } is finitarily Markovian if and only
if
P(r(X°%) <o0)=1.

The class of finitarily Markovian processes includes of course all finite order Markov
chains but also many other processes such as the finitarily determined processes of
Kalikow, Katznelson and Weiss [7], which serve to represent all isomorphism classes of
zero entropy processes. For some concrete examples that are not Markovian consider
the following example:

Example 2.7. Let {M,,} be any stationary and ergodic first order Markov chain with
finite or countably infinite state space S. Let s € S be an arbitrary state with P(M; =
s) > 0. Now let
Xn = I{M”:s]v

By Shields [33] Chapter 1.2.c.1, the binary time series {X,,} is stationary and ergodic.
It is also finitarily Markovian. Indeed, the conditional probability P(X; = 1]X° ) does
not depend on values beyond the first (going backwards) occurrence of one in X°
which identifies the first (going backwards) occurrence of state s in the Markov chain
{M,}. The resulting time series {X,,} is not a Markov chain of any order in general.
Indeed, consider the Markov chain {M,} with state space S = {0,1,2} and transition
probabilities

P(My =1|M; =0)=P(My =2|M; =1) =1,

P(M; =0|M; =2) = P(Ms =1|M; =2) =0.5.

This yields a stationary and ergodic Markov chain {M,,}, cf. Example 1.2.8 in Shields
[33]. Clearly, the resulting time series

Xn = I{n, =0y

will not be Markov of any order. The conditional probability P(X; = 0/X°_ ) depends
on whether until the first (going backwards) occurrence of one you see even or odd
number of zeros. These examples include all stationary and ergodic binary renewal
processes with finite expected inter-arrival times, a basic class for many applications.
(A stationary and ergodic binary renewal process is defined as a stationary and ergodic
binary process such that the times between occurrences of ones are independent and
identically distributed with finite expectation, cf. Chapter I.2.c.1 in Shields [33]).
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In the previous example any word with positive probability which contains at least
one zero is a memory word and determines not only the conditional distribution of X3
given the past, but also the conditional distribution of X{° given the past. This need not
be the case. For a simple example of such a process we first recall a general construction
of stationary processes. Let (€2, 3, P) be a probability space and T : Q — € a measurable
transformation such that for all A C Q one has P(T~1(A)) = P(A). Then if X, is a
any random variable defined on (€2, 3, P) a stationary process is defined by setting for
all n: X, (w) = Xo(T"(w)).

Example 2.8. Let now {2 be the unit circle R/Z with Lebesgue measure and for some
irrational 0 < a < 1/2 define T'(w) = w + «, where the addition is modulo 1. Let
X be the indicator function of the interval I = [0,1/2) and define the process X,, by
Xn(w) = Xo(w + na). The values of X,, for —N < n < 0 determine small intervals
that are obtained by intersecting the intervals of the form [na,1/2 + na). Since « is
irrational these endpoints form a dense subset of R/Z. In order to determine the value
of X;(w) we need to know whether w + « belongs to I or not. If we know the values of
X, for —N < n < 0 then most of the small intervals determined by these values will be
such that when we rotate the interval by « the interval will be either entirely in I or in
its complement and so the value of X (w) will be determined. There are only two such
small intervals that contain the endpoints of I — « and for any w in one of these two
small intervals the values of X9 n do not determine the value of X;. It follows that the
set of points for which X° n does not determine the value of X; has measure which tends
to zero as N tends to infinity and this shows that the process is finitarily Markovian.

However, in order to determine the entire future we need to know whether w + na
belongs to I or not for all n > 1. No finite number of observations in the past will
completely determine the value of w so that the memory words that determine X; do
not determine the complete future. For more on these kinds of examples see [1].

This process has zero entropy but can be easily modified as follows to get a positive
entropy process with the same features. One prepares two independent i.i.d. processes
Y., and Z,, independent of the X,, process, such that P(Y,, = 0) = 1/3 and P(Y,, =
2) = 2/3 while P(Z, =0) = 2/3 and P(Z, = 2) = 1/3. Now define a new process U,
by setting U, = X,, + Y, when X,,_; =0 and U,, = X,, + Z,, when X,,_; = 1. In this
new process the parity is exactly the original X,, process and the memory words for that
process are also memory words for this one which clearly has positive entropy.

We note that Morvai and Weiss [16] proved that there is no classification rule for
discriminating the class of finitarily Markovian processes from other ergodic processes.

For more on finitarily Markovian processes and intermittent estimation we refer the
interested reader to [9, [1T], 12} (13| [15] 17, 18] 14} 22 23].

Throughout in this paper we will assume that the stationary and ergodic process
{X,} is finitarily Markovian. (This implies that the look back time will be finite almost
surely.)

Now we define the subclass of finitarily Markovian processes for which the tail dis-
tribution of the look back time vanishes exponentially fast.
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Definition 2.9. Let 0 < R < 1 be arbitrary. A stationary and ergodic process {X,,} is
in FMEXPTAIL(R) if it is finitarily Markovian and for some 0 < p < R,

P(r(X0) > n) < p"
eventually.

Example 2.10. All stationary and ergodic Markov chains with any finite order are in
the class (oo gy FMEXPTAIL(R).

Example 2.11. Consider the Markov chain {M,} with countably infinite state space
S =1{0,1,2,...} and transition probabilities

1 n+1

1 n+1
P(M1:0|M0:TL):].— (2>
where n € S. This yields a stationary and ergodic first order Markov chain {M,,}.
Define Z,, = Itar,20y- Then {Z,} is a stationary and ergodic binary process which is
not Markov of any finite order but it is in (. poy FMEXPTAIL(R). In fact, the
resulting process {Z,} is a renewal process with renewal state ‘0.

Example 2.12. Let 0 < R <1 and 0 < ¢ < R be arbitrary. First we define a Markov-
chain which serves as the technical tool for construction of our erexample. Let the state
space S be the non-negative integers. From state 0 the process certainly passes to state
1 and then to state 2, at the following epoch. From each state s > 2, the Markov
chain passes either to state 0 with probability 1 — g or to state s + 1 with probability q.
This construction yields a stationary and ergodic Markov chain {M;} with stationary
distribution

1 1—g¢q

2+ 2. 3-2g

and 1

P(M=1i)= 5 2qqqi_2 for i > 2.
We will define a binary process {X;} which we denote as X; = f(M;) where f is a
binary valued function of the state space S. Let f(0) =0, f(1) =0, and f(s) =1 for
all even states s. The values f(s) for the odd states s > 3 can be chosen arbitrarily.
The resulting process is stationary and ergodic binary finitarily Markovian (any word

with positive probability which contains the sequence 001 is a memory word) and is in
FMEXPTAIL(R). Cf. the proof of Theorem [6.1]

Example 2.13. Consider the Markov chain {M,,} with countably infinite state space
S =1{0,1,2,...} and transition probabilities
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and for n =2,3,... let

3
+1
P(M; =n+1|My =n) = (Z+2) ,

n+1\°
P(M;=0My=n)=1-— .
R =

This yields a stationary and ergodic first order Markov chain {M,}. Define Z, =
Itar,>23- Then {Z,} is a stationary and ergodic binary process which is not Markov of
any finite order, it is finitarily Markovian (FM) but it is not in . oy FMEXPTAIL(R).

3. INTERMITTENT SCHEMES AND STOPPING TIMES

An intermittent scheme with respect to a class of processes consists of two parts. A
sequence of stopping times which are almost surely finite and strictly increasing A\; <
Ag++o < Ap < -+ for any process in the class and a sequence of real-valued U(X{)\")—
measurable functions {h,}. Such schemes are called intermittent because the estimator
hy, is defined only for sequences of the form (Xg,..., Xy, ). ( hy, gives estimate only
where the stopping time A, stops.) Often, we will use the notation h(Xé‘") instead of
hy or hy, (XO)‘") for the sake of notational convenience. Note that if A,, = n almost surely
for all n then h,, depends solely on XJ and we are in the usual sequential estimation
settings. In this paper the class of processes we will consider is the FMEXPTAIL(R)
for some 0 < R < 1. (For other cases cf. e.g. [9, [11] 29].)

The purpose of this section is to define the sequence of stopping times {\,} on which
we will later estimate different quantities intermittently.

Let ¢ > 0 be arbitrary. For n =1,2,... put
kn, = max{|clog(n)|,1}.
Note that all logarithms in this paper are to base 2.
Let 0 < v < 1 be arbitrary. Define
5= 2422,
(Note that Ji, grows roughly as n'=7.)

We will assume that
clog(|X]) < 7.

Define ((gk’m) = m. Define C{k’m) as

m

(k;m) _ . xt _
1 —max{t<m.Xt_k+1—Xm_k+1 .
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Define Cék’m) as

gék’m) = max {t < ka’m) D G Xﬂ}—k*‘l} :
In general, let Ci(k’m) be defined as

Ci(k’m) = max {t < Cl(flm) P X{ 1= Xnn;—kﬂ} .

Note that Ci(k’m) is the ith occurrence of the word (seen at position m with length
k) X7%_ .., going backwards in the negative direction. Note that Ci(k’m) is finite with

m
probability one by the Poincaré recurrence theorem for stationary processes.

Define the stopping times A, as follows. Let A\g = 0. Define
— . (ktt)
Alfmm{t>0 L0 < ke <t (I zkth}.

Define
)\2:min{t>>\1 :0<kt<t,§(l’zz7t) Zkt—1}~

In general, define
. (ke,t)
Ao =min{ £> Ay 10 < ke <50 =0 1)

Note that the event{\, = t} is measurable with respect to o(X(}). Roughly, A, is the
smallest t > A,,_; such that one can find Jj, occurrences of Xtt_ ky 1 1D the data segment

Xé_l. By Theorem Ay, is finite with probability one.

Theorem 3.1. Let {X,,} be a stationary and ergodic finitarily Markovian time series
taking values from the finite alphabet X'. Assume that 0 <y < 1, 0 < ¢, and

clog(|X[) <.
Then
N
R ;I{CS’;:'”)ZMA} =1
almost surely, the stopping times A, are finite with probability one and

An
lim — =1
n—oo n

almost surely.

Proof. Let 0 < e be arbitrary. By Lemma [7.1]in the Appendix (Theorem 2 in [I0]),

_ (k0
lim sup k—log e ) < g

n—00 n Jkn -
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almost surely where H is the entropy rate of the process. (The entropy rate of the
stationary and ergodic process {X,,} is defined as H = limg_, f%E(log(p(ngH))).)
Since H < log(|X]|) we get that

(0 <, gknllon( D+

eventually almost surely. Now

g, 2kn(X+e) [2L”] okn (l0g(| X |)+e)

IN

(2<H> log(n) | 1) gclog(n)(log(| X |)+e)

< p=rtelog(XDte) 4 pellog(|X])+e)
which is eventually less than n — clog(n) provided 0 < ¢ < m. Since € was
arbitrary and by assumption, for some sufficiently small € > 0

v

0<e< ——,
“ log([X]) + e

so we get that
G =k 12 —n

eventually almost surely. That is,

-z omy =1

eventually almost surely. Now by Maker’s generalized ergodic theorem (rediscovered by
Breiman, cf. Theorem 1 in Maker [§] or Theorem 12 in Algoet [1])

N
. 1 n
MmN Z:l I{gfr’;’i'o)*’“nJrlZ*n}(T w)=1
almost surely, where T" denotes the left shift. Thus
LN
Wy 2 Tt @) =

almost surely. Now it is immediate that the stopping times A,, are finite with probability
one and

A
lim =2 =1
n—oo N
almost surely. The proof of Theorem [3.1] is complete. O

Note that in Theorem [3.1] we used that the alphabet is finite.
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4. ESTIMATING THE CONDITIONAL DISTRIBUTION
Define the empirical conditional probability ﬁ(w\Xé‘”) as

Z“]kkn I
i=1 H{X {kxn,kn)ﬂzw}

pla|Xgn) =

Roughly, ﬁ(az\X()\") is the ratio of the number of times the letter = follows the J,

occurrences of Xi:fkX 41 to kan-
Theorem 4.1. Let {X,,} be a stationary and ergodic finitarily Markovian time series
taking values from the finite alphabet X. Assume that 0 <y < 1, 0 < ¢, and

clog(|X]) < 7.

Assume that the process {X,,} is in FMEXPTAIL(2-'/¢). Assume furthermore that

€n > 0 and
i _ fgn,fk-m
E e 2 < o0.

m=1

Then for the stopping times A,
An

lim — =1
n—,oo N

almost surely and for the estimator p(x|X)™)

ma [5(2]X3") = P(Xx, 41 = 2X0")| < ex,

eventually almost surely.

Proof. By Theorem [3.1
. A
lim — =1
n—oo M
almost surely.

For a fixed m put 7, = max{7(X™_), kn}. Now for i > 0 define

Z0m ™ () = I

ngnm,m>+1:w}'

Clearly, for fixed m and x, {Zi("m’m) (x)}52, are conditionally independent and identically
distributed given X, ;. Apply Hoeffding’s inequality for sums of independent and
identically distributed bounded random variables (cf. Theorem 2 in [6]) to get that

d

Ik g (777n7m)
A
ZZ:I J;C (x) N P(Z(gnyn,m)<l_)|):7_n )

> Gmenr?—an)

2
cm Tk

< 2e”

m
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Now by the union bound

(e | 2t 27 (@)
rzeX

= - (25" (@)|X7)
k

m

> EerTan+1>

2
€mIkm

<2|X|e”

After integrating both sides with respect to the conditioning we get that

Tem 77 (Nm,m)
Zi: Zz ($) m m
P (Iglea;(( L T — P(Z™™ ()| X)) > em
Tk
<2|Xle” 2

which is summable by assumption and so by the Borel-Cantelli lemma, eventually almost
surely,

J| T
Yt Z ¥ )(95)

K3

; = P(Z5" " (@)|X ™)
k

max
rzeX

< €.

m

Since, by assumption, for some 0 < p < 2~1/¢

P(r(X° ) >n) < p"
eventually, by stationarity for large enough n,

P(r(X" ) > ky)

P(r(X°) > k)

< P(r(X2,) > [clog(n)])
< plelesm)]
< plelos(n)—1
9(clog(n) log(p))
g -
p
n(clog(p))
g -
p
1

)

and the right hand side is summable. Applying the Borel-Cantelli lemma we get
T(X") < ky

eventually almost surely.

Now, almost surely, there exists N(w) such that for n > N(w), for each n there is an m
such that A\, = m,
Nm = km
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and for all x € X J .
Yty 2 )

~ X)\n —
Pz Xgm) T
Thus
mae [§(r]X3) = P(X, 11 = 2]X37)| < e,
eventually almost surely. The proof of Theorem is complete. (|

Since for 21/¢ < n

Jk;n _ "2 kn(lcfw)"

lclog(n)|(1—v)

(clog(n)—=1)(1=~)

v

_a=v q_
— nlY

v

2
we have immediately the following corollary.

Corollary 4.2. Let {X,,} be a stationary and ergodic finitarily Markovian time series
taking values from the finite alphabet X'. Assume that 0 <y < 1, 0 < ¢, and

clog(|X]) < 7.

Assume that the process {X,,} is in FMEXPTAIL(2'/¢). Let € > 0, § > 0 such that
26 +~v < 1. Put €, = -5. Then for the stopping times \,, ,

lim 2 — 1 (1)

n—o00 M

almost surely and for the estimator p(z|X)™)
€
(An)

max [H(z|Xg") = P(Xx, 41 = 2]X3")| < —
reX

eventually almost surely.

5. ESTIMATING THE CONDITIONAL EXPECTATION
Fix an arbitrary real valued function
s: X =R

We will estimate the the conditional expectation for s(X). Define the empirical condi-
tional expectation E(z|X)") as

E(Xg") = ) s(2)p(z|Xy™).

reX

E (Xé‘") is the empirical conditional expectation with respect to the empirical conditional
distribution p(-|X3™).
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Theorem 5.1. Let {X,,} be a stationary and ergodic finitarily Markovian time series
taking values from the finite alphabet X. Assume that 0 <~y < 1, 0 < ¢, and

clog(|&X]) <.

Assume that the process {X,,} is in FMEXPTAIL(271/¢). Assume furthermore that
€m > 0 and

> €m Tk
d e <o
m=1
Then for the stopping times A, ,
A
lim — =1
n—oo N

almost surely and for the estimator E(X7")
[BOG) = Bls(, )X < 1 ma[s(@)len,
eventually almost surely.

Proof. By Theorem [4.1]

almost surely and

< | - (D rnn - )
reX zeX
< X ‘A XAW' —PX = X)\'”'
<[ ma () ma [ X37) — P, 0 = 21X37)
< |¥|max|s(z)len,.
The proof of Theorem is complete. O

Corollary 5.2. Let {X,,} be a stationary and ergodic finitarily Markovian time series
taking values from the finite alphabet X'. Assume that 0 <y < 1, 0 < ¢, and

clog(|X]) < 7.

Assume that the process {X,,} is in FMEXPTAIL(2-'/¢). Let ¢ > 0, § > 0 such that
26 +v < 1. Put €, = -5. Then for the stopping times Ay,

A
lim =2 =1
n—,oo N

almost surely and for the estimator E(X7")

BOG) = Bl X07)] < ¥ ma ) 5

eventually almost surely.
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6. THE JUSTIFICATION OF INTERMITTENT ESTIMATION

The next result is an improved, stronger version of the one in Morvai and Weiss [15].
The technique that will be used in the proof, namely the encoding of a countable Markov
chain, originates from Ryabko [3I]. Note that all stationary and ergodic Markov chains
with any finite order are in the class (. poy FMEXPTAIL(R).

More precisely we will show that if for some 0 < R < 1 an intermittent scheme is
consistent for all stationary and ergodic binary time series in FM EX PT AIL(R) then for
some stationary and ergodic binary Markov-chain with some finite order { A, 41 > A\, +1}
happens for infinitely many n with some positive probability.

However, note that if the goal is to estimate merely for the class of all binary Markov
chains with some finite order one can choose A,, = n. Indeed, one can estimate the order
of the Markov chain (cf. e.g. [I7, 2I] and [25] ) and using this estimated order count
frequencies of blocks. Eventually almost surely the estimated order will coincide with
the real order and there are only finitely many words with that length and the frequency
counts for these finitely many words will tend to the real conditional probabilities, almost
surely. Cf. [17, 21), 25] and [19].

Theorem 6.1. Consider the binary alphabet {0,1}. Let 0 < R < 1 be arbitrary. For
any sequence of stopping times {\,} such that for all stationary and ergodic finitarily
Markovian binary time series {X,,} in FMEXPTAIL(R) the stopping times A, are
almost surely finite and Ay < Ag--- < A, < --- and for all stationary and ergodic binary
Markov-chains with arbitrary finite order, eventually almost surely A,4+1 = Ap + 1,
and for any sequence of estimators {h,(Xo,..., X, )} there is a stationary and ergodic
finitarily Markovian binary time series {X,,} in FMEXPTAIL(R) such that

P <limsuphn(Xo,...,X>\n) — P(Xy, +1 =1Xo,...,X),)| > O) > 0.

n—0o0

Proof. The proof mainly follows the footsteps of Ryabko [31], Gyorfi, Morvai, Yakowitz
[5] and especially Morvai and Weiss [15] with alterations where necessary.

Let 0 < ¢ < R be arbitrary. First we define a Markov-chain which serves as the technical
tool for construction of our counterexample. Let the state space S be the non-negative
integers. From state 0 the process certainly passes to state 1 and then to state 2. From
each state s > 2, the Markov chain passes either to state 0 with probability 1 — q or to
state s+ 1 with probability ¢q. This construction yields a stationary and ergodic Markov
chain {M;} with stationary distribution

1 1-—-
P(M=0)=P(M=1)= — =1
2+—1_q 3—2q
and 1
P(M:’Z,): 3_2qqq172 fOI'ZZQ

Let v denote the first positive time of occurrence of state 2k :

Y =min{i > 0: M; = 2k}.
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Note that if My = 0 then M; < 2k for 0 < ¢ < . For each 0 < j < oo we will
define a binary-valued Markov-chain {X i(] )} with some finite order, which we denote as
Xi(J) = fU(M;) where fU) will be a {0,1} valued function of the state space S. We
will also define a process {X;} which we denote as X; = £(°)(M;) where f(*) is also a
binary valued function of the state space S, and the time series {X;} will serve as the
stationary unpredictable process. For all 0 < j < oo, let f()(0) = 0, fU)(1) = 0, and
f@(s) =1 for all even states s. Note that so far we have only defined fU) partially.
We will define the values for the remaining states later on. A feature of this definition
of fU)(-) is that whenever x¥ = O,Xfﬁl = O,XfQQ = 1 we know that M,, = 0 and
vice versa.

Now it is easy to see that if for a certain 0 < j < oo, there is an index K; such that
fY (i) =1 for all i > K then the defined process {Xflj)} is a binary Markov-chain with
order not greater than K; + 1.

Now let f(O(2k 4+ 1) = 1 for all & > 1 and so the function f(© is fully defined.
Since f©)(i) is eventually 1, the defined process {Xi(o)} is a stationary ergodic binary
Markov-chain with some finite order.

For function f) and index 2k, if f(j)(i) is defined for all 0 < ¢ < 2k, then it is easy to
see that if My = 0 (that is, f@) (M) =0, f@ (M) =0, fU (M) = 1) then M; < 2k
for 0 <7 < ¥ and the mapping

M* = (fO (M), O (My,)
is invertible. If we let A,, operate on process {Xi(j )}, define
Aj(k) ={Mo = 0,9y = )\n(Xéj),ij), ...) for some n}.

Thus as soon as f) (i) is defined for all 0 < i < 2k the set A;(k) is also well defined, it
is measurable with respect to Mab ¥ and depends on state 2k and index j which selects
the process {X,gj )} on which the stopping times {\,} operate.

Let N_; = 1. Notice that Ag(k) is well defined for all k. Now we define f() by induction.
Assume that for 0 < i < j — 1 we have already defined a strictly increasing sequence of
integers N;_1, and functions f(?) which are eventually constant.

Now we define f). Since by assumption {X,(Lj _1)} is a stationary and ergodic binary-
valued Markov process with some finite order, the estimator is assumed to predict even-
tually on this process and there is a Nj_; > N;_5 such that

P(My=0) 11-¢

P(A;j_1(Nj-1)) > 5 =33 2

Now for each 7 < [ < oo define f(l)(Qm + 1) for the segment N,;_» < m < N;_; as
follows, .
fOem+1)=fUY2m+1).

Notice that now A;(N;_1) is well defined and coincides with A;_;(N;_1). We will define
f9(2N;_1 + 1) maliciously. Let

Bf = 4;(N;-) (V{ha(fO M), ... fP My, ) = 5}
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and

By = Ai(N;) (YWhn(f O (M), ... O (Mo,

Jj—1

) <3}

Now notice that the sets B;-r and B do not depend on the future values of f W) (2r+1)
for 7 > Nj_i. One of the two sets Bj+7 B; has at least probability P(A{f:m = isl:qu'
Now we specify fU)(2N;_1 +1). Let f@(2N; 1 +1) =1, I; = B if P(B; ) > P(B]")

and let f)(2N;_1 +1) =0, I; = B if P(B; ) < P(B]").

Because of the construction of {M;}, on event I,

Px$ L =1x{ L x0) )
1

)
YN YNy

FORN; 2+ )PXE) = fDRN o+ )X, X))

j—1

VN,

FON; 1+ 1)P(Myy 1 =2N; 1+ 1M )
= qfY9Y@2N;_1 +1).

The difference of the estimate and the conditional probability is at least £ on set I; and

this event occurs with probability not less than %31__2‘1(].

Now for all N;_; < m define
f9em+1)=1.

In this way, {Xi(j )} is also a stationary and ergodic binary-valued Markov-chain.

Now by induction, we defined all the functions f() for 0 < j < co. Since f(>)(m) =
FO(m) = fU=Y(m) for all 0 < m < 2N,_; so we also defined f(>).

Finally by Fatou’s Lemma,

P(limsup{|hn(X5") — P(Xx, 11 = 1]X5")| > /2})
n—oo

1—9¢q

3—-2¢

> P(limsup I;) > limsup P(I;) >

Jj—o0 j—o0

NG
<

Concerning the conditional probability P(X; = 1|X°_) observe that as soon as one
finds the pattern 001 in the sequence X _ the conditional probability does not depend
on previous values. The probability of the occurence of 001 in the past is one since the
original Markov chain is ergodic and our process is therefore also ergodic. Thus the
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process is finitarily Markovian. Now for n > 8§,

P(r(X%,) > n)

IN

P(r(X°) > n, My =0)
P(r(X° ) >n,My=1)+ P(r(X°,) >n, My >n—3)
(M():O,M,1 >n—
(M():l,M_Q an
3P(Mo Z Tl—3)
o'} l—q Ly
3 X3
i:zn;33_2qq
l-q ,_5 1
"7
—q

)

3)
3)

!

+P(M02n73)

IN 4+ IN +

IN

3
- 3-2q

1—gq n
B-20)1—-qp "

Since 0 < ¢ < R, for arbitrary ¢ < p < R,

P(r(X0.) > n) < p"

eventually. Thus the unpredictable process {X,,} is in FMEXPTAIL(R). The proof
of Theorem is complete. O

7. APPENDIX

The next lemma can be found in Morvai et al. [I0]. Note that the entropy rate of the
stationary and ergodic process {X,} is defined as H = limj—,0c — 1 E(log(p(X% 1))

Lemma 7.1. (Theorem 2 in Morvai et al. [10]) Let {X,} be a stationary and ergodic
process with values in a finite set X and with entropy rate H. Then for arbitrary integers

jk: Z 17
(k,0)
1 !
lim sup Elog <C]’“ ) <H

k—o0 Jk

almost surely.

(Received November 30, 2020)
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