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Abstract 

We argue for a foundational epistemic claim and a hypothesis about the production 

and uses of mathematical epidemiological models, exploring the consequences for 

our political and socio-economic lives. First, in order to make the best use of 

scientific models, we need to understand why models are not truly representational 

of our world, but are already pitched towards various uses. Second, we need to 

understand the implicit power relations in numbers and models in public policy, and, 

thus, the implications for good governance if numbers and models are used as the 

exclusive drivers of decision making.  
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Introduction  

This essay was inspired by the profusion of epidemiological models appearing in the 

public space since the onset of COVID-19. Most of them claimed to be aimed at 

predicting the mortality of the disease as it spreads “naturally” or against a variety of 

interventions that societies and governments could impose (Ferguson 2020; 

University of Washington Institute for Health Metrics and Evaluation 2020; Lourenço 

2020; James 2020; Binny 2020; Public Health Agency of Sweden 2020). When facing 

a disease so new as COVID-19, the scenarios that these models could provide were 

highly influential. At the same time, predictions arising from different models 

diverged so widely and spurred such intense discussion that a public debate 

emerged, in media and in academic journals, around the benefits and costs of the 

use of models (McCoy 2020; Daalder 2020; Kottasová 2020; Sayburn 2020; Rhodes, 

Lancaster and Rosengarten 2020). Such diversity and contestation in the public 

space could allow political decision makers to ignore or dismiss the science and 

contribute to undermining trust in scientific insights.  

Constructing mathematical models to predict the spread of an infectious disease 

within a population is not a new practice (Ross 1911; Kermack and McKendrick 

1927). Mathematical techniques to explain and predict disease trends were part and 

parcel of a biological, evolutionary, and ecological perspective on the infectious 

agent which emerged in the early twentieth century to contrast the older medical 

approach focused on disease control (Mendelsohn 1998; Honingsbaum 2020). 

Although mathematical models have been used for decades towards a variety of 
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purposes,1 tensions between mathematically- and medically-trained 

epidemiologists, regarding what constitutes more robust knowledge and which 

approach has greater objectivity and value, persist (Amsterdamska 2005).  

Controversy around the decisions made by policymakers made based on 

modelers’ predictions is also not new. In the US in 1976, prediction and 

extrapolating assumptions of a swine influenza epidemic and mortality based on the 

1918 epidemic led to an unprecedented mass immunization effort (Dehner 2012 pp. 

2–6).2 But the killer never came, and the vaccine had a serious side-effect: a 

neurological condition called Guillain-Barré syndrome. An investigation into 

decision-making that resulted in these outcomes stated, devastatingly, that the 

swine flu program was characterized by “overconfidence by specialists in theories 

spun from meagre evidence” and “failure to address uncertainties in such a way as 

to prepare for reconsideration” (Neustadt 1978).3 In the early 2000s, a major 

controversy emerged around the unusually large outbreak of the foot-and-mouth 

epidemic affecting British agriculture. This epidemic zoonosis came on the heels of 

the major crisis caused by bovine encephalopathy (BSE) and the associated human 

Creutzfeld-Jacob disease in the UK. Taking the leadership out of the hands of the 

Ministry of Agriculture, Fisheries and Food and into the newly established Science 

Advisory Group for Emergencies (SAGE) was supposed to place decision-making on a 

 
1 For example: to understand and compare the disease spread; to compare the effects of 
prevention and control procedures such as screening (testing), tracing the infected and their 
contacts, and immunization; and to refine the prevention strategies e.g. to find the optimal 
time of immunization (Hethcote 1989).   
2 The prediction was based on a very simple calculation: in 1918 the death rate was ca 500k, 
but since the population had doubled, and thus one might expect a death rate of 1 million.  
3 However Silverstein (1981) was less critical of the role of experts.  
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more “scientific” footing. The rapidly developed models were the basis of the 

decision to undertake widespread preemptive culling of many animals. Post-foot-

and-mouth, modelers got a key role in SAGE; indeed, Neil Ferguson headed the 

modelling in both foot-and-mouth epidemic and early stages of COVID-19 in the 

United Kingdom (Millstone 2001; Ford 2020).  This continuity between the two big 

crises could lead us to think that using mathematical modelling in foot-and-mouth 

was an undisputed success. Yet early on models were criticized for the poor quality 

of data and modelers seen as lacking the first-hand experience of the disease and its 

social impact (Campbell & Lee 2003; Kitching et al 2006; Mansley et al 2011).  

Indeed, many of the features of the foot-and-mouth crisis—contestations around 

expertise, or the way that media first built up and then destroyed models and 

modelling—re-emerged in COVID-19 (Bickerstaff 2004, Nerlich 2007).4  

Yet while modelling infectious diseases and indeed epidemics is not new, 

modelling pandemic outbreaks of human infectious diseases remains a relatively 

novel undertaking. Not available in the influenza pandemics of 1918, 1957 or 1968, 

the first time that it was applied to guide international emergency responses was in 

the early 2000s. Thincreased interest in influenza virus over the past decade, around 

the outbreaks of highly infectious H5N1 (avian) influenza converged with the 

availability of advanced computational technology and methods (Hatchett 2007). 

They were first applied in the H1N1 pandemic of 2009 (Lee 2013). These models 

were deemed useful for highlighting gaps in data, characterizing the role of the so-

called “non-pharmaceutical interventions” (measures such as social distancing, 

 
4 On re-emergence of the debate in 2020 see Adams (2020).   
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shown to be so important in the 2020 pandemic), prioritizing populations for 

vaccination, and also as a heuristic for decision-makers. Yet some of the objections 

raised around modelling in 2009 emerged again in 2020: the mismatch between 

expectations and interpretations from the policy side versus the uncertainties and 

implicit assumptions on the side of model developers. 

While in 2009 epidemiological models were “not generated, shared or 

disseminated in time” (Lee 2013 p. 1014), in the COVID-19 pandemic the sheer 

speed of production, variety, public impact and discussion of mathematical models 

has been astounding. Many of these models were directly released to the public, 

few were subject to formal peer review before release and many did not have the 

detail necessary to evaluate the assumptions involved. Some, at least, influenced 

policy, directly or indirectly, depending on their source and whether they were 

centrally requested or simply proffered in the hope of influencing public opinion 

and, ultimately, policy.  Worries that they may have done so to the exclusion of 

other kinds of information and detriment of public decisions have been voiced 

(Sridhar 2020).  

Graphical representations of models were shared through regular and social 

media. Sometimes taken out of the context and divorced from the detail on model 

limitations and aims, their message was simplified and sometimes changed. At the 

same time, whether these models did indeed influence political leaders’ choice of 
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the epidemiological strategy (as they decided between “herd immunity”, versions of 

suppression such as “flattening the curve” and elimination) is not well understood .5  

To contextualize and discuss the ensuing problems, this article consists of three 

main sections. The first (epistemology/philosophy of science) is an overview of the 

mathematical models in science – their purpose, use, and epistemological 

limitations, ending with a short examination of the epidemiological (mathematical) 

models. In the second part we place mathematical models in the contemporary 

media ecology and discuss them in relation to the new publishing practices in an 

online era and with regard to the rhetorical power of the number. In the third part 

we propose recommendations that scientists and communicators should try to 

follow in making and communicating models.  

On objectivity, data, systems and models 

To understand science/scientific information, one needs to break through the 

shielding rhetoric of “objectivity” – a culture of relating to the world, which in the 

nineteenth century was meant to replace the dominance of subjectivity (Daston 

2007). Although the goal of the culture of objectivity has always been to remove the 

subjective human as much as possible – for instance through the mechanical means 

of representation, measurement and calculation; by using cameras, digital 

calculators and computers instead of the eye, hand and brain  –  complete 

 
5 In December 2020 the Prime Minister of New Zealand explained how the epidemiological 
models combined with the knowledge of national healthcare capacities led to the switch 
from the widely publicized “flattening the curve” to elimination strategy in March/April 2020 
(Perry 2020). To our knowledge other international political leaders have not offered 
comparable insights into their strategy choices. On epidemiological strategies used to tackle 
covid-19 internationally, see Allen et al (2020).  
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objectivity has proven an illusion (Rose 1983; Daston 2007). Scientific problems are 

always pursued with a degree of perspectivity (Giere 2010; Saltelli 2020a). We 

“measure” an earthquake, but we know that our measurement of its intensity is 

built upon various assumptions and abstractions (Chang 2004).  

Hence even data are in the final instance partly constructions, and not mere 

observed facts of nature (Fleck [1935]1979; Latour 1979; Kaiser 1991). That does not 

imply total malleability, nor a necessary multiplicity of viewpoints. In science there is 

a widespread intersubjective consensus on virtually all data; science “functions” not 

because it is objective, but because its data, assumptions and abstractions are 

intersubjectively shared among its practitioners. Data are reflective of reality but 

that reflection depends on multiple assumptions and methodological considerations. 

Data appear to us in ways we are interested – and which we sometimes can 

measure - in order to understand a certain segment of reality. They are the 

epistemic priors upon which (virtually) all our theoretical understandings in science 

are built and justified.  

We use data to represent the phenomena we study. Phenomena are the 

relatively stable or fixed features of reality that typically are believed to display 

causal mechanisms, and are themselves believed to be causally related to other 

phenomena (Kaiser 1995, 1996). Our scientific theories are about phenomena. In 

this way we construct systems as representations of the world as abstractions from 

the data with all the limitations discussed above. A system is simply a collection of 

entities which interact with each other by a number of relationships (generally 

simplified from the many relationships that might exist), and which includes one or 
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several phenomena (von Bertalanffy 1968 pp. 30–53.).  Even when systems are in 

reality ‘open’, they tend to be described as ‘closed’, where all the interactions 

outside the system are excluded.  A system can be expressed in various ways, as a 

mathematical structure, as a graphic figure, or as a mechanical machine.  

An example of a system can be the set of tectonic plates and their movement on 

the seafloor, comprising, among others, the phenomena of drift, earthquakes, 

volcano eruptions, transform faults, magnetic reversals, and pole wandering. A 

simpler example of a system could be mobility and migration among people, 

consisting of a stratified set of people, places, and crisis events like hunger, war, or 

political unrest. The crisis events are the phenomena that trigger causal mechanisms 

in the system. All systems are in a very basic sense already a model of reality. Any 

such system is taken to represent certain features of reality by way of a similarity 

relationship. They resemble what they are supposed to depict in salient ways, but 

never in all respects, and they initially stay close to the ensemble of the available 

data. They are like maps in relation to a landscape. They are constructed with a 

certain viewpoint in mind, given our observations and given that simplification 

ignores potential minor interactions that might indeed matter. They generally 

assume a closed rather than open construct. Sometimes it may be hard even to 

detect how data are included in these constructions of a system.  

However, when scientists talk about modelling, they typically go a step further. A 

model is a mediator between phenomena (reality) and theory (abstraction) 

(Chadarevian 2004; Gelfert 2016). Historically many models were physical, three-

dimensional objects, even living cells and animals, used for different purposes 
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(Chadarevian 2004). One important use is testing: engineers use down-scaled 

physical ship models to test their properties in turbulent waters. Medical scientists 

use animal models, i.e. real animals representing certain human properties, to test 

toxicity or other medical conditions. Organoids or three-dimensional stem-cell 

grown cell-structures representing human organs are used to test treatment of 

diseases. But there are numerous other relevant purposes where models can help. 

Wooden, wax, or computer models of the body historically solved the problem of 

the difficult and problematic access to human embryos and bodies while also 

providing pedagogical tools more vivid than the flat images (Maerker 2011). Models 

can guide field studies and help develop theory. Sometimes their role as predictive 

tool is stressed (Levins 1966). 

A scientific model nowadays is usually a mathematical model. It is constructed on 

the basis of a given data set. The data set describes one or several phenomena. 

These are then the main categories of a system, which we want to explore further in 

specific respects. A model depicts the relationships in the system as dynamic or 

static functions, differential equations, or complex functions, such that one can 

move forward or backward (in time and/or space) in relation to the given 

observations.  We want to understand the dynamics of a system and therefore we 

construct a scientific model. Some state this representation function as an 

isomorphism between model and target system (Bailer-Jones. 2003), but below we 

shall follow others who see this as an incomplete characterisation of models (Giere 

2004, 2010; Knuuttila 2005). Ultimately “a model is an abstract representation of a 

system or a process” (Turner 2015). 
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There is an epistemic functionality between the input and output of a model: we 

need comprehensive and reliable input (data and parameters of the system) in order 

to have a chance to generate reliable output. However, even with good input we do 

not always get the good or intended output, since we can only construct models 

over segments of reality (systems). 

A general rule in model construction is to start with an initial reflection on the 

framework of the model:  

(i) Clearly define the purpose and the scope of the model,  

(ii) Define the inherent limits of the available information and 

measurements that go into the model construction, and  

(iii) Consider the possible consequences of model error on the output and its 

usability.  

This initial consideration provides guidance and will help specify the system’s 

boundaries as well as the model components, i.e. the state variables, and their 

relationship to each other. In mathematical models, it will clarify whether we are 

dealing with an analytical or numerical model. Differential equations in numerical 

models can help representing non-linear complex systems by providing state 

approximations.  

It is essential to realize, then, that models are not true or false (Oreskes et al. 

1994), not even in the sense of being closer to the real system of the world studied. 

They are only better or worse in relation to the purpose they are designed for. This is 

also in line with the post-normal science framework (Funtowicz 1993) which 
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stressed quality, perceived as fit-for-purpose, as the arbiter of good science. Thus, 

the characteristic model definition rests on a pragmatic relation, put forward by 

Ronald Giere (2004, 2010), here adapted from Knuuttila:  

A scientist F uses a model M to represent features of system S for the 

purpose of P  (Knuuttila 2005). 

This multi-functionality of models is in one sense an advantage of models. At the 

same time, their versatility is also a serious restriction in the sense that the choice of 

function determines the qualities of the model.  

There are interesting and consequential trade-offs to be made in model 

construction. Levins (1966) observed a principal trade-off between generality, 

precision, and realism. One may sacrifice generality for the sake of realism and 

apparent precision, and thus calibrate the model so that it closely resembles all the 

data we have of the target system.6 But doing so will make it less applicable for 

other localized systems. Or, alternatively, one may aim at generality and precision 

but sacrifice realism. Here we may be content with a good average result fitting a 

larger family of systems, but no single one fitting precisely. Finally, one may sacrifice 

predictive power to realism and generality. This is often the case when qualitative 

results are good enough for the given purpose. “Many theoretical models fall into 

this category, and they make very general predictions that are not directly applicable 

to a particular place or set of measurements”. See also Figure 1.  

 

 
6 We follow Turner and Gardner (2015) in this presentation of the trade-offs.  
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[INSERT FIGURE 1 HERE] 

 

There are, other tradeoffs as well. Complex models are seen as more accurate 

and simple ones as more general. A lack of detail is seen as causing systematic bias 

in predictions—but adding detail to a model does not guarantee an increase in 

reliability unless the added processes are essential, well understood, and reliably 

estimated (Turner 2015, p. 70). O’Neill’s conjecture was that there may be an 

optimal balance between model complexity and model error (Figure 2).  

 

[INSERT FIGURE 2 HERE] 

 

Our systematic point then is that model utility is crucially dependent on the 

uncertainty trade-offs in their construction. Uncertainties are built up from data 

collection, onwards via scale, scope and boundaries of target systems, to parameter 

selection and design functionality of the model.  Communicating these trade-offs 

and uncertainties is a moral imperative when handing models to potential users of 

them. This is especially true when these models are to be used for predictive 

purposes; with highly complex target systems, or systems with largely unchartered 

causal interactions, the predictive value rapidly decreases even if the model 

accurately depicts current processes. 

 

Epidemiological models used during a pandemic  
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Epidemiological models are mathematical models: systems of differential equations 

used to describe how disease spreads in a population. In their simplest form they 

describe the spread of an infectious agent through direct contact by dividing the 

population into separate classes which change with time: Susceptible class (those 

who can be infected but aren’t yet); Infective class (those transmitting the disease to 

others), and Removed class – those who died or acquired immunity. These SIR 

models purport to predict the rate at which the susceptible class moves into the 

infectious, and then the infectious into the removed. And while these rates depend 

on the biological properties of both the infectious agent, the process, and the host 

(the properties of the microbe; mode of transmission; length of incubation/latent 

period; susceptibility and resistance), they are also a function of a range of 

behavioral, social, cultural and material/technological factors.  

In epidemiological models, some of the above variability is reflected in 

differentiating between best and worst scenarios (and various other cases in 

between). One can do this by e.g. changing the statistically mean number of 

infections from a given source (”basic reproduction number”) R0 e.g. from 1.4 to 2.8 

people infected7, which then represents a global average for a population (Holmes & 

Masuda 2015). But calculating this rate is beset with some methodological 

difficulties and implicit abstractions or idealizations: “one needs to assume that 

every pair of individuals has the same chance of interacting at any given time. In 

fact, interaction rates depend on pairs of individuals—people living in the same city 

are more likely to interact than those living in different cities” (Holmes 2015, p. 2). 

 
7 This was the estimated range of R0 for the 1918 swine flu epidemic (Coburn 2009).  



 Page 15 

Typically, the calculation of R0 assumes a totally susceptible and openly interacting 

population which may not be true, based also on behavior patterns and variance in 

individual immune responses.  

Furthermore, the probability of an infection given some appropriate contact 

between individuals is highly uncertain, given that this implies knowledge about the 

previous number of potentially contagious events between infected and non-

infected people, and where the number of infected people without disease 

symptoms usually is unknown. There are also interdependencies to be aware of. If R0 

<1, then the total number of infections W is independent of the population size N, 

while when R0 >1 then W is proportional to N, i.e. only a finite fraction of N can be 

infected. In principle, there are both spatial and temporal variations in contagious 

events which introduce basic uncertainties in the calculation of R0. This uncertainty 

about the correct R0 rate is then usually communicated by modelers as variation in 

the predicted outcomes, and with stochastic simulations one may partially 

compensate for the lack of knowledge of basic parameters of agent or contagion 

behavior. Yet, in order to know what trust to put in these predictions, we would 

need to know the scope and scale of the model, the data that went into it, and the 

assumptions built into it, for instance about the transmission types.  

The calculation of the basic reproduction number is the basis for calculating Reff, 

i.e. the rate of effective infections given a number of countermeasures to contain 

infections but also variations and constraints in people’s reactions to containment 

measures, elementary unknowns of the prevalence of the virus in the population 

and the reliability of various testing kits, the indicator of stringency of measures, 
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under- or over-reporting of health care units due to external factors. How many 

super-spreaders do we work into the system, and what is their effect? With a 

different Reff and an identical R0 one may hope to see how one country’s counter-

measures are more effective than another country’s interventions. With good data 

this could be a good use of an epidemiological model. But it does not follow that 

even a good Reff is a reliable predictor of future infections. We can see the function 

of scope and scale of data as the crucial restricting element of predictive utility, 

together with the in practice unrealistic assumption that the targeted system of Reff 

is a closed system – in reality, it is always open. 

We need to understand the gross abstraction from reality that every model 

needs to build upon. Even a more elaborated agent-based model is not populated by 

real people (Snijders 2010); it is populated by types and network characteristics, as 

friendships and collaborations, risk-takers and risk-avoiders, and / or rule-compliers 

and rule-breakers, or infected, non-infected, immunized, and in treatment.8 To gain 

more realism, one would also have to add spatial and temporal differentiations, 

while all these further specifications lead to a culmination of uncertainties, given 

that accurate measurements of all of them is unrealistic. Again, we see the trade-off 

between realism and generality. 

There are many unknowns in such model building, and in this sense, they usually 

cannot adequately represent the state of knowledge. Indeed, one of the major uses 

of models is to point out where new data is needed. They can be used to suggest 

 
8 Cf. also the interesting COVD-19 typology suggested recently (Lam 2021). 
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how the disease might evolve. They can also force explicit statement of assumptions 

about the biological and socioeconomic mechanisms which influence disease spread. 

Yet what happens in the times of a crisis is that various possible uses are mixed and 

under-communicated. The inbuilt uncertainties disappear and sensitivity analyses 

are rarely included in times of crisis (Saltelli et al 2008). 

In conclusion, models always represent a high degree of inbuilt uncertainty, and 

some models, as e.g. models with non-linearity, exhibit huge inherent uncertainties, 

relevant in many contexts. All of this constrains significantly model reliability as 

predictive and even as explanatory tool. Typically, we will be confronted with a 

diverse set of models, built on different assumptions, and predicting different 

outcomes, and without the enabling information to make critical use of them. When 

data sets are poor, and knowledge of the causal dynamics of the target system is 

highly restricted and hypothetical, then complex mathematical models rarely can 

help us out of the conundrum of urgent complex decision making.  

 

Epidemiological models and the novel practices and tools of science 

communication  

In the COVID-19 pandemic, mathematical models seemed to appear with breath-

taking speed and were fed to the policy maker and general public. There are 

assumedly multiple explanations for this overload of model outputs. Some of them 

may be sociological, political and also psychological: competing between scientists 

for access to power, securing research funding for the future, improving the impact 
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accounting now in operation in much science policy; and sometimes requests by 

governments. Clearly, policy makers needed to have a sense of the likely path of the 

pandemic though it might have sufficed to heed the warnings of the People’s 

Republic of China’s experience, showing that the approximate R0 in a naïve 

population would overburden healthcare systems.9  While full papers may have 

explained the range of possible scenarios and assumptions, media and politicians 

often appeared not to adequately understand this aspect of modelling.10  These 

models were used by both scientists and politicians to argue for how many lives 

have or have not been saved as if they described reality and in the absence of any 

counterfactual being possible. With all the uncertainty removed in the process, the 

expected (normal) divergences in models’ predictions now appear as contradictory 

signals from a community that the public and the decision-makers perceive as 

scientific experts and from whom they seek guidance in the midst of the crisis.  

In the rush to communicate models quickly, models are published through public 

releases, blog or preprints rather than going through the customary procedure in 

academic science: submission to a journal, followed by at least one round of peer 

review, and then publication. The critical multi- or transdisciplinary vetting and 

quality assurance of the model as a constructive instrument in science advice to 

policy and government is omitted (Gluckman 2020).  

 
9 Paying close attention to the situation in PRC seems to have formed the basis of Taiwan’s 
successful response (Lin 2020).  
10 So Ferguson et al (2020) or “Imperial study” was often understood to predict 510,000 
deaths from covid-19 unless the government abandoned its current (“herd immunity”) 
strategy.  See e.g. Bostock (2020).  
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Peer review is often seen as the cornerstone of academic science that has 

been around since the first professional journals, such as Philosophical Transactions 

of the Royal Society. Yet historians have shown that the uptake of peer review was 

patchy until relatively recently (Csiszar 2016). In the 1970s and facing a prospect of 

diminished public funding as well as increased oversight by politicians and 

policymakers, American scientists cast “peer review” as the crucial process that 

ensured the credibility of science while at the same time keeping the control in their 

own hands (Baldwin 2018). The dominance of American science and American 

scientific journals then helped this model to spread around the world.  

Yet in recent decades, new modes of direct publication via open-access 

depositories of preprints such as arXiv, bioRxiv and medarXiv, have sprung up. 

Manuscripts placed into these archives become permanent part of the scientific 

record and citable with unique DOI before going through the peer review. These 

depositories laud their publication model as enabling authors “accelerate the speed 

at which science moves forward” (https://www.thelancet.com/preprints). The 

expectation is, however, that the preprints are just temporary substitution for the 

fully reviewed and accordingly revised final version. Indeed publishing preprints is 

meant to informally expand the pool of peer-reviewers with the goal of a well-

validated final version.  

In the pandemic, however, the difference between preprints and final 

versions is blurred. Yet, omission of peer review can have serious consequences. A 

study that compared the mean and range estimates of basic reproduction rate of 

studies published between 23 and 31 January 2020 as preprints (without peer 
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review) with those that did go through peer review found the mean R0 of peer-

reviewed studies lower, and the range of estimated R0 narrower, than that of the 

preprints (Majumder 2020). The same study noted that it is the preprints that are 

“driving discourse related to the ongoing COVID-19 outbreak,” and that it is “likely 

that preprints are also influencing policy making decisions.” (Majumder 2020, p. 

e628). With non-peer reviewed models, which by definition exist a step away from 

“reality”, the danger of pushing the course of intervention in the wrong direction is 

further heightened.  

Finally, publishing preprints is just part of the vast new ecosystem of digital 

communication (Davies 2016. pp. 5–6). Social media, especially Twitter, offers a 

communicative mode that is even more rapid and direct than the online repositories 

(Puschmann 2014). But distilling a model with all of its assumptions and limitations 

into 240 characters is challenging. Models, then, tend to be reduced to the most 

dramatic prediction (the worst-case scenario) and the most vivid graph; as the next 

section will show, it is difficult to overestimate the rhetorical power of numbers.  

Rhetorical power of numbers 

It is crucial to realize the rhetorical power of communicating numbers generated by 

models to decision makers and the general public. Particularly in a crisis, decision 

makers directly base decisions and steps to contain the crisis on available numbers.  

The dynamics of R0 is typically key (“flattening the curve”).  Therefore, the 

temptation is big to extend the use of numbers generated from data and models 

even more deeply into areas where the uncertainties are overwhelming. It takes 

courage to withstand such a call to put numbers on the table when they amount to 
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pure guesswork. According to a TV clip on the exchange between Rep. Glenn 

Grothman and Anthony Fauci, the American infectious disease expert and lead 

member of the White House Coronavirus Task Force, Fauci when pressured by the 

politician Grothman in congress on the number of deaths expected for COVID-19 

courageously stated “There is no ‘number-answer’ to your question”. His response 

resembles the answer that in 1976 James Dickson gave to David Mathews (Secretary 

of HEW in the Ford administration) inquiring about the probability of deaths in the 

expected swine flu epidemic: “Unknown!” There is an inherent ambiguity and 

inherent power dynamics to this answer. On the one hand, it preserves scientific 

integrity in not passing mere guesswork as scientific information. Yet on the other 

hand, it hands to politics a clear necessity to prepare for the worst imaginable case, 

else the political price will be too high. This was also Gerald Ford’s conclusion about 

the necessity of preventive vaccination in the 1976 swine-flu episode (which never 

came): “I think you ought to gamble on the side of caution. I would always rather be 

ahead of the curve than behind it” (Neustadt 1978, p. 22).  

This then introduces a conundrum in the process of science advice to politics: The 

most truthful answer may not be the most useful answer! It also illustrates the 

difficulties in practiced co-responsibility. In not giving the number estimate that the 

politician would like, one implicitly may leave it to the politician to prepare for the 

worst case; nobody wants to be blamed for not taking all the necessary 

precautionary steps in spite of being forewarned of a possible pandemic. 

Understanding the political dynamics should be a factor considered by scientists in 

their risk communication. The way to account for this is not to put a number forward 
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that is unwarranted, but to prepare the stage for an adaptive and proportional risk 

management. This communication then has to be clear on the vast uncertainties and 

the values at stake (Funtowicz 1990, 1993), and pave the way for adaptive 

strategies. 

Furthermore: some numbers are available, e.g. number of deaths in other 

countries. One does not need sophisticated models to see the serious spread of the 

infection in the curves that depict infection rates and deaths. Many politicians in the 

West commented that the Italian situation spurred them to action, while their peers 

in South East Asia, SARS fresh in their mind, reacted even earlier to reported 

numbers. In the COVID-19 case, the state of Taiwan, Vietnam and South Korea with 

their early and comprehensive testing had much better data on the infection rate 

than e.g. Italy. What this shows is that numbers indeed are a powerful trigger for 

politics, and in times of an imminent pandemic reporting by numbers may be one of 

the most effective means of science and risk communication, alongside visual means 

such as dramatic photo and film material.  

The accumulation of these data as a curve in a (logarithmic) graph provides 

relatively trustworthy and robust information on our current – and usually past – 

situation. While this cannot uncritically be taken as established facts, this is as good 

as it gets when it comes to quantified information. And this is normally all the 

information that a decision maker really needs. In other words, just using ordinary 

graphical depiction of data, and some household statistics can give us numbers that 

are relatively robust, and mostly sufficient for initial decision making: a version of 

Herbert Simon’s term “satisficing”. In effect, we argue that in times of an imminent 
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crisis or in its earliest stages, simple heuristics may be more effective than 

sophisticated formalized modeling (Todd 2000). 

As a pandemic progresses, the kind of information important for a decision 

maker typically changes. It moves from (i) information on the growth and 

geographical spread of infections, to (ii) information about the time it takes for the 

doubling of infections, to (iii) information about the best estimates of Reff. In 

addition, (in effect qualitative) information is needed about how effective a certain 

cluster of measures is to bring the infections down, and therefore which of the 

measures may be loosened eventually.   

There are, however, some basic concerns linked to the use of numbers in politics, 

particularly the excessive or decisive use of numbers in policy making and as a 

political argument trumping other qualitative or ethical considerations. The much 

acclaimed call for evidence-based (or, better, evidence-informed) politics can be 

suspect in this regard if practiced poorly. Nicolas Rose (1991) in a review article 

discusses how numbers became an important tool for policy during the 18th and 

19th century (cf. also Hacking 1975). They promised to expel subjectivity and 

arbitrariness out of politics in favor of democratic accountability and reason. 

Numbers are still seen to promise a certain objectivity in politics and they leave little 

room for subjective judgement. Rose argues that “democratic power is calculated 

power, calculating power and requiring citizens who calculate about power” (Rose 

1991, p.673).  Quantification, numeracy and statistics became instruments of policy 

making not only for the economy, but basically throughout all areas of state 

authority, including health. No policy seems well-founded unless it rests on reliable 
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information on the state of the population, which for instance presupposes a census 

and other forms of collecting data on people. Yet, all such data collection is already 

inherently biased by values (Douglas 2009). An example is the census question about 

e.g. ethnicity, rather than race, nationality, ancestry, cast or religion. What is 

counted is already value-laden, and so are the measures used. In diversified societies 

the introduction of numbers via statistics represents a means of standardization 

which makes possible stable and coordinated interactions between widely dispersed 

sectors (Porter 1996). The complexity of our experiences is compressed into single 

figures and numbers which makes them appear more objective.  

In science, reliable numbers signify a triumph of discovery (the charge of an 

electron, or the number of genes in human DNA), while in politics numbers should 

always be accompanied by a red warning lamp: “is it certain, and are there other 

factors that we need to consider that resist measurement?” The sins of extensive 

uses of cost-benefit analyses in politics should by now be recognized by most people 

(Shrader-Frechette 1992). Yet, the rhetorical power of numbers injected in a policy 

context is not always recognized and contextualized. We certainly do not argue for 

getting rid of numbers in politics altogether. But one needs to embed these numbers 

– and of course models – in their appropriate socio-political context of uncertain 

knowledge and disputed and challenged values.  

One problem seems to arise at this point: when we say that these models have to 

be embedded in the appropriate socio-political context, who is actually doing this, 

whose responsibility is it in the end? Are we making scientists into shadow 

politicians and decision-makers? We certainly do not want to imply this. Rather we 
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argue for a double reflexivity. On the one hand, those working on complex 

quantifications and models may need to control their own enthusiasm, and realize 

that the complexity, uncertainty and implicit value assumptions in their work needs 

the filter of peers (typically from many fields) and competent communicators before 

it is ripe for the space of public discussion of political decision-making (Saltelli 

2020b). In other words, they may have very valuable insights to communicate to the 

scientific community, but these insights need larger support than some selected 

data and advanced model-fit. Decision-makers need the synthesis consensus, not 

the most refined numbers which may change as a crisis evolves anyway. On the 

other hand, our decision-makers need concise evidence-based information, 

preferably in the form of measurable and understandable units. The specific format 

may be dependent on the interface of some special bodies, expert groups or science 

advisors who fill the brokerage function between the science and the politics 

(Gluckman 2021 in press).    

Concluding viewpoints. 

The uncertainties and different functions of models as discussed earlier, the 

different layers of uncertainty, and the context of values and socio-cultural factors 

can help us to design certain ground-rules that should guide model use. We do not 

claim any normative “objectivity” to the following statements, but we put them 

forward in the hope that they, as heuristics, may inspire the kind of critical 

discussion that we surmise is much needed in the science-policy community, and in 

particular in pandemic management: 
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• Before numbers and models enter the policy space (particularly in a 

crisis), and are communicated to the decision makers and the publics, 

one should make sure that they enter an expert circle with all 

appropriate areas of expertise at the table for quality assessment. Tunnel 

views need to be compensated by broad fields of knowledge. These 

should not only include the range of experts in the domain modelled but 

also those coming from social sciences and humanities. Choices on what 

to keep in (what is important in any given context or situation) and what 

to throw out are political (Leigh Starr 1989; Douglas 2009): thus making 

these choices explicit is necessary for transparent decision-making.  

• Parsimony and simplification should be employed with a view to being 

just good enough (“satisficing”)  for the current policy needs; when a 

simple graph with relatively certain data can do the job, then do not 

extend this by controversial or uncertain model calculations and 

spectacular numbers. 

• Whenever a model is deemed adequate for policy purposes, one needs 

to communicate the model’s strength, design and weakness; a sensitivity 

analysis should be routine, inbuilt assumptions and uncertainties need to 

be explicated, and the degree to which robust data are supporting it.  

• While the integration of advanced agent-based behavioural, spatial and 

temporal parameters may add to the realism of a model, and indirectly to 

the explanatory power of it, we need to realize that this greater stress of 
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realism comes at the expense of the generality and predictive power of 

the model.  

While in this paper we have argued for a methodological and epistemological 

examination of models, in particular in relation to their current uses in pandemic 

politics, our fundamental concern has been with the responsibility and ethics of 

science when applied into policy processes. We maintain that these ethical 

dimensions of model use, stemming from fundamental epistemological 

considerations, are not widely recognized or at least openly addressed  in the 

relevant scientific communities. Guidelines, ethical codes, and best practice models 

for this field would be very useful.  
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Fig 1: Schematic representation of Levins’ (1966) tradeoffs; here drawn after 

Turner & Gardner 2015, p. 69. 
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Fig 2. Depiction of the O’Neill conjecture; here drawn after Turner & Gardner 

(2015), p.70 


