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1  |  INTRODUC TION

There is a growing concern that future ecosystem-disturbance dy-
namics will exceed ecological tipping points and cause nonlinear 
shifts in ecosystem states. Examples of non-linear shifts in ecosystem 

states include regime shifts from tropical forest to savannas (Senf & 
Seidl, 2018), from coral-dominated to algae-dominated coral reefs 
(Nyström & Folke, 2001), and eutrophication and acidification pro-
cesses in shallow lake ecosystems (Spears et al., 2017). Such regime 
shifts can have major local and global impacts with consequences for 
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Abstract
1.	 Vegetation memory describes the effect of antecedent environmental and eco-

logical conditions on the present ecosystem state and has been proposed as an 
important proxy for vegetation resilience. In particular, strong vegetation mem-
ory has been identified in dryland regions, but the factors underlying the spatial 
patterns of vegetation memory remain unknown.

2.	 We aim to map the components and drivers of vegetation memory in dryland 
regions using state-of-the-art climate reanalysis data and refined approaches to 
identify vegetation-memory characteristics across dryland regions worldwide.

3.	 Using a framework which distinguishes between intrinsic and extrinsic ecologi-
cal memory, we show that (i) intrinsic memory is a much stronger component 
than extrinsic memory in the majority of dryland regions and (ii) climate reanaly-
sis datasets change the detection of extrinsic vegetation memory in some global 
dryland regions.

4.	 Synthesis. Our study offers a global picture of the vegetation response to two 
climate variables using satellite data, information which is potentially relevant 
for mapping components and properties of vegetation responses worldwide. 
However, the large differences in the spatial patterns in intrinsic vegetation 
memory in our study compared to previous analyses show the overall sensi-
tivity of this component to the initial choice of extrinsic predictor variables. 
As a result, we caution against using the oversimplified link between intrinsic 
vegetation-memory and vegetation recovery rates at large spatial scales.
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ecosystem functioning and human well-being (Côté & Darling, 2010; 
Genkai-Kato, 2007; Scheffer & Carpenter, 2003).

Ecological resilience, the ability of a system to withstand distur-
bance and maintain its general functioning, is an important property 
to safeguard against such regime shifts (Holling,  1973). Ecological 
resilience has been incorporated into the objectives of numer-
ous agencies influential at the global policy level (e.g. Convention 
on Biological Diversity, 2020), and is a key focus within several of 
the United Nations Sustainable Development Goals (Sustainable 
Development Goals, 2020).

Although ecological resilience has been prevalent in the global 
change literature (Côté & Darling,  2010; Cumming et al.,  2015; 
Neubert & Caswell,  1997), universal baseline metrics on which to 
assess and compare resilience in different ecosystems are yet to 
be established (Standish et al., 2014). Consequently, it is impossible 
to make reliable assessments of resilience and compare ecosystem 
components through time and space (Pimm et al.,  2019). Indeed, 
although several metrics of resilience have been proposed (i.e. re-
sistance to perturbation, recovery rate from a disturbance and ro-
bustness) based on ecological theory (Grafton et al., 2019; Hodgson 
et al., 2015), a challenge that follows is how to operationalise these 
metrics with empirical data.

Remote sensing has been proposed to act as a useful tool to map 
components of resilience to climate variability at large spatial scales 
by combining data of both ecological response (e.g. vegetation in-
dices) and predictor (e.g. climate) variables. For example, studies of 
vegetation responses to climate variability using remote-sensing 
techniques have identified localised patterns of vegetation sensi-
tivity (Seddon et al., 2016), lagged-vegetation response to climatic 
anomalies (Liu et al., 2018; Vicente-Serrano et al., 2013), vegetation 
resistance (an inverse proxy of how easily the system is perturbed 
where an easily perturbed system exhibits low resilience) and en-
gineering resilience (a proxy for how quickly a perturbed system 
returns to its pre-disturbance state) (De Keersmaecker et al., 2015).

One important feature of studies which use remote-sensing data 
to map components of ecological resilience worldwide is the quan-
tification of vegetation memory. Vegetation memory describes the 
effect of antecedent environmental and ecological conditions on the 
present ecosystem state. Ogle et al.  (2015) expanded on this defi-
nition by identifying the following three important characteristics 
of vegetation memory (Ogle et al.,  2015): (1) memory length—the 
extent of time through which past conditions significantly affect the 
current state of vegetation; (2) memory strength—the magnitude of 
the effect that past events/conditions have on the current state of 
vegetation and (3) temporal patterns—the variation in relative im-
pacts of antecedent conditions at different points in time. Here, we 
investigate memory length and memory strength aspects. Note that 
under this framework, vegetation memory does not quantify veg-
etation response to explicitly considered perturbation events, but 
instead aims to identify the effects of cumulative environmental 
conditions on vegetation (Kannenberg et al., 2020).

Additionally, vegetation memory can occur as a result of both 
‘intrinsic’ (e.g. internal vegetation dynamics affecting the recovery 

rate) and ‘extrinsic’ forcing (e.g. a lagged response to climate vari-
ables) (Ogle et al.,  2015). Indeed, it has been suggested that the 
strength of the intrinsic vegetation memory, identified using an 
autoregressive model in which the previous time step's vegetation 
metric is used as a predictor alongside current climate variables (e.g. 
temperature, precipitation), can be used as an indicator for the re-
covery rate (i.e. engineering resilience). Because ecological theory 
indicates that increased autocorrelation occurs in models in which 
an ecological state variable is increasingly placed under stress and 
approaching a threshold (Scheffer et al.,  2009), reduced recovery 
rate (i.e. a stronger intrinsic memory as indicated by an increased 
autoregressive coefficient) may be a proxy of reduced resilience. 
Indeed, although one study has extended such analyses to investi-
gate the changing strength of autocorrelation signals along individ-
ual time series (e.g. Liu et al., 2019), the most common approach in 
remote-sensing analysis has been to use a space-for-time approach, 
in which the autocorrelation of the time series is incorporated into 
some kind of model at the level of the individual pixel to assess 
changing patterns of resilience across a region, for example, in trop-
ical forests (Papagiannopoulou et al., 2017; Verbesselt et al., 2016), 
Mediterranean forests (Gazol et al., 2018) and global drylands (De 
Keersmaecker et al., 2015).

However, although theoretical simulations may predict reduced 
recovery rates as a result of reduced ecosystem resilience, it is un-
clear if the simple approximation of using the first-order autoregres-
sion (AR1) coefficient can be universally applied at a global scale. 
While the AR1 coefficient may be applicable for identifying engi-
neering resilience in some settings, this relies on the assumption that 
all other extrinsic variables have been accounted for. If not, then the 
autocorrelation coefficient used to identify intrinsic memory has 
the potential to mask the effect of other extrinsic forcing variables. 
For example, one recent study showed that some regions that ex-
hibited high memory-effect coefficients in previous studies could 
be better explained by varying the length of extrinsic memory (Liu 
et al., 2018). As a result, the underlying applicability of this metric as 
proxy for ecological resilience must be considered before it can be 
implemented more broadly.

One region of particular relevance for such studies are global 
drylands. Global drylands, defined as areas in which crop produc-
tion is limited by water availability (Adeel et al., 2005; Millennium 
Ecosystem Assessment, 2005b), are commonly observed to exhibit 
strong intrinsic memory coefficients, and are therefore assumed to 
exhibit low engineering resilience (De Keersmaecker et al.,  2015). 
Additionally, these systems function as important carbon pools (Tian 
et al., 2017) and may be prone to locally facilitated regime shifts (Xu 
et al., 2015). Thus, bolstering the ecosystem resilience of these re-
gions is essential in securing the reliability of agricultural landscapes 
for local and global communities.

Here, we investigate the factors influencing vegetation memory 
in global dryland regions. Specifically, we combine a state-of-the-
art climate reanalysis product and satellite-based global vegetation 
indices to extend previous analyses of vegetation memory in dry-
lands in terms of (1) spatial and temporal coverage, (2) consistency, 
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(3) accuracy and (4) climatological variables at a global scale. 
Specifically, we investigate (i) the relative importance of extrinsic 
factors and intrinsic-vegetation memory for determining the vege-
tation response in dryland regions; (ii) the length of extrinsic mem-
ory (i.e. the time period in which past external factors influence the 
current system state) and (iii) the strength of this memory (i.e. the 
magnitude of the vegetation memory coefficients and whether this 
coefficient is positive or negative). Using this information, we then 
consider our findings in the context of understanding patterns of 
ecological resilience worldwide and investigate capability of distin-
guishing extrinsic from intrinsic vegetation memory.

2  |  MATERIAL S AND METHODS

Dryland regions were identified following the Millennium Ecosystem 
Assessment (Millennium Ecosystem Assessment,  2005b) which 
classifies any region as a dryland which exhibits aridity index 
(long-term mean ratio of mean annual precipitation to mean an-
nual evapotranspiration) values below 0.65 (Millennium Ecosystem 
Assessment, 2005a).

2.1  |  Datasets

We used GIMMS NDVI 3g data to identify vegetation response in 
global dryland regions between January 1982 and December 2015. 
NDVI is a compound vegetation index made up from reflectance in 
the red and near-infrared reflectance bands. It is highly correlated 
with vegetation cover (Harris et al., 2014; Tian et al., 2017), produc-
tivity (Gamon et al., 1995) and photosynthetic performance (Gamon 
et al.,  1995; Pettorelli et al.,  2005). The GIMMS dataset provides 
bi-weekly (Stow et al., 2004) NDVI snapshots on a 0.083° × 0.083° 
(Liu et al., 2018) (~9.27 km × 9.27 km) resolution at global scale. We 
subsequently built monthly maximum composites to minimise the 
impacts of cloudy periods (Stow et al., 2004). While NDVI records 
tend to saturate in regions of high biomass and thus high NDVI val-
ues (Huete et al., 2002), these issues are unlikely to affect dryland 
regions.

For independent climate data, we used the European Centre for 
Medium-range Weather Forecast's (ECMWF's) ReAnalysis 5 (ERA5) 
(Balsamo et al., 2015; ECMWF, 2018a). ERA5 is created using the 
ECMWF's integrated forecasting system and a large volume of sat-
ellite and ground-based data from a wide variety of data providers 
through the use of data assimilation (ECMWF, 2018b). ERA5 ben-
efits from recent methodological advancements in data assimila-
tion, incorporating a wide range and high volume of weather station 
observations and improved understanding of physical processes 
within the integrated-forecasting system (ECMWF, 2018b, 2018c). 
It has been demonstrated to outperform independent satellite ob-
servations over land (Tang et al., 2021) and marks a substantial im-
provement over previous reanalyses (Martens et al.,  2020; Tarek 
et al., 2020).

One major advantage of using climate reanalysis products to 
understand vegetation memory is that they enable the study of re-
sponses at higher temporal resolution and consistency than previ-
ous studies. For example, the CRU3.0 dataset is less well suited for 
dryland regions because it contains large areas of the globe where 
precipitation time-series data must be replaced with mean values 
(Macias-Fauria et al., 2014), resulting in large areas of missing data 
when such regions are masked out (Liu et al.,  2018). Reanalysis 
products have been widely used to shed light on physical processes 
(ECMWF,  2018d; Tarek et al.,  2020) which are highly influential 
in determining vegetation memory properties. For our analyses, 
we selected two main ecosystem drivers: soil moisture and air 
temperature.

Soil Moisture (Qsoil) was used as a proxy of local water regimes 
given that water-dependent vegetation memory is likely to rely on 
water availability to root systems (Ogle et al., 2015). Qsoil metrics 
were included to take into account that precipitation events may 
be subject to further soil processes such as pore connectivity for 
precipitated water to be available to plant roots (Smith et al., 2017). 
Therefore, we anticipated that soil moisture would serve as a more 
direct proxy of local water regimes compared to the drought indices 
used in previous studies.

ERA5 includes four distinct layers in the soil for the calculation 
of Qsoil indices: (1) Soil Moisture (0–7 cm) (Qsoil1), (2) Soil Moisture 
(7–28 cm) (Qsoil2), (3) Soil Moisture (28–100 cm) (Qsoil3) and (4) Soil 
Moisture (100–255 cm) (Qsoil4). Typical drought indices (e.g. SPEI) 
do not allow for this additional distinction. Within ERA5, unfrozen 
ground water (�) across all four soil layers (k) is defined as:

with Rk being the root fraction of soil layer k which is a fixed metric 
according to Land-Cover Classification Systems (LCCSs), and the state-
ment max

[

fliq;k�k ,�pwp
]

 calculating the amount of unfrozen soil water 
in soil layer k. fliq;k is a parametrised function of soil temperature; �pwp 
denotes the permanent wilting point according to soil texture. For a 
more in-depth explanation of how Qsoil is calculated within ERA5, 
see the IFS Documentation CY45R1 Chapter 4 Physical Processes 
(ECMWF, 2018d).

Air Temperature was used as an additional predictor in this study 
given its links to vegetation sensitivity (Seddon et al., 2016), tree-ring 
growth (Esper et al., 2015) and global primary production (Prince & 
Goward, 1995), in addition to severe drought events with possible 
large consequences to local vegetation (Allen et al., 2010). Within 
this study, we used Air Temperature (at 2 m above ground) (Tair) as 
contained within the ERA5 dataset, due to the demonstrated impact 
of Tair on different aspects of plant physiology and plant morphol-
ogy which may manifest in vegetation memory.

ERA5 data are available for hourly intervals (which we averaged 
to monthly means) from 1950 to present day at a 30 km × 30 km 
spatial resolution of global coverage making the resolution of ERA5 
and AVHRR-based GIMMS NDVI 3g incompatible. We resolved 
this issue by statistically downscaling ERA5 data using kriging (see 

(1)� =

∑4

k=1

(

Rk ×max
[

fliq;k�k , �pwp
])
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Supporting Information: ‘Statistical Downscaling’). Upon publication 
of ERA5-Land climate reanalysis (Sabater, 2021) data at 9 km × 9 km 
spatial resolution (which matches the resolution of the NDVI data), 
we also used this higher-resolution dataset to compare results (see 
Supporting Information: ‘ERA5-Land Results’). Using native ERA5-
Land data in our analyses made virtually no change to the estimated 
vegetation-memory model coefficients. Consequently, we present 
here our vegetation-memory coefficients obtained via downscaled 
ERA5 data since our analyses proved to be robust to the downscal-
ing implementation.

Methodology used here to obtain ERA5(-Land) data and statis-
tical interpolation thereof has been made available by Kusch and 
Davy (2022).

2.2  |  Statistical approach

We extracted data for each variable (NDVI, Tair, Qsoil) and used lin-
ear detrending to avoid effects of changing abiotic conditions over 
long time-series (De Keersmaecker et al.,  2015). Note that recent 
work by Verbesselt et al. (2016) tested several methods for detrend-
ing time series to identify autocorrelation components, including 
methods accounted for varying seasonality and nonlinear trends. 
They showed that different detrending methodology of remote 
sensing data may lead to qualitatively similar results with highly 
flexible methods outperforming others in settings of time-varying 
amplitude/phase of time series. To ensure robustness of our model 
algorithm to the effect of different detrending approaches, we 
executed additive and multiplicative detrending for a representa-
tive, latitudinally stratified sample across the totality of our study 
region. While estimates of vegetation memory model components 
did change numerically respective to detrending methods, their in-
terpretation as we present it in the following remained unaltered 
for each detrending method used (see Supporting Information: 
‘Detrending Comparison’).

Following detrending, we standardised the NDVI time series to 
z-scores to obtain deviations of monthly means/monthly anomalies 
(De Keersmaecker et al., 2015):

with i  indexing individual, detrended data records. This resulted in a 
final set of monthly time series of vegetation dynamics expressed as 
divergences from seasonal trends across the study regions. Lagged 
effects were calculated as (1) NDVIt−1 (to identify intrinsic vegeta-
tion memory) using z-score NDVI data and (2) cumulative lags of 
detrended Qsoil/Tair data (to identify extrinsic Qsoil/Tair-driven 
memory) with lags ranging from 0 (instantaneous effects) to annual 
effects (aggregated over 12 months of detrended Qsoil/Tair records) 
in steps of 1 month at a time. These cumulative lag values are subse-
quently standardised to z-scores using the same approach as shown 
in Equation 2.

To assess the relative importance of intrinsic memory and ex-
trinsic climate forcing, we used a linear modelling approach (e.g. 
De Keersmaecker et al., 2015). Our vegetation-memory models are 
based on the following specification:

with NDVIt and the Autoregressive NDVI Coefficient (NDVIt−1) being 
standardised NDVI anomalies at time step t and t − 1, respectively; 
Qsoilk;m denoting Qsoil data at depth level k (translating to Qsoil1–
Qsoil4) and cumulative lag values of lag m, and Tairn denoting Tair data 
as the cumulative lag values of lag n. As such, Equation 3 represents a 
model framework in which models were run for all unique combina-
tions of m and n but never considering multiple values of either m or n 
in the same model.

We used Principal Component Analysis (PCA) regression 
to limit the effects of collinearity in our predictor variables. 
Subsequently, we performed model selection to identify the cu-
mulative soil moisture and air temperature lags which present the 
most explanatory power through comparison of the model Akaike 
Information Criterion (AIC) values (lowest AIC indicates best 
model performance). The regression coefficients from the PCA 
regression were then back-transformed to represent PCA input-
variable effects (see formula 1) using PCA loadings and PCA model 
coefficient (see Supporting Information: ‘Model Workflow and 
Interpretation’). This results in a proxy of Qsoil- and Tair-memory 
length of local vegetation.

2.2.1  |  Model comparisons

To reduce computational requirements in the downscaling process 
(i.e. downscaling all four Qsoil levels for our pre-selected study re-
gions and only the most biologically important Qsoil layer globally), 
we employed model comparison to determine which soil moisture 
layer has the greatest influence on vegetation anomalies. To do so, 
we executed the models specified in Equation 3 with k (Qsoil layer) 
ranging from 1 to 4, m (Qsoil lag length) ranging from 0 to 12 and 
n (Tair lag length) fixed to 0 in an effort to reduce computational 
demand. We then compared the absolute values of soil moisture 
coefficients (�Qsoil) across all pixels within each model output using 
Mann–Whitney U-tests for a set of five pre-selected study regions 
(i.e. South-Eastern Europe, the Caatinga [N-E Brazil], Australia, 
the contiguous US and the Sahel region) which exhibited marked 
patterns of strong vegetation memory in contemporary stud-
ies (De Keersmaecker et al., 2015, 2017; Liu et al., 2018; Seddon 
et al., 2016; Vicente-Serrano et al., 2013). Across all pre-selected 
study regions (South-West Europe, Australia, Caatinga, the con-
tiguous US and the Sahel region), Qsoil1 (soil moisture in a band of 
0–7 cm depth) was identified as the most meaningful out of all the 
soil moisture variables. Therefore, we carried out the global analy-
sis using only Qsoil1 input out of the four available soil moisture 
parameters within ERA5.

(2)Anomalyi =
Detrendedi−Detrendedmonth

SDDetrended,month

(3)NDVIt =�0+�t−1×NDVIt−1+�Qsoil ×Qsoilk;m+�Tair ×Tairn
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2.2.2  |  Variance partitioning

To assess the relative importance of intrinsic and extrinsic vegeta-
tion memory components in driving the system's response to distur-
bances, we used variance partitioning on each pixel in our study. In 
this procedure, we determined the relative importance contained in 
the vegetation memory model predictors NDVIt−1 (intrinsic memory), 
Qsoilk;m (extrinsic soil moisture memory of layer k and cumulative lag m)  
and Tairn (extrinsic air temperature memory at cumulative lag n ) using 
a partial regression approach (see Supporting Information: ‘Variance 
Partitioning’). This allowed us to map the relative importance of com-
ponents of vegetation memory, and spatial inspection of which vari-
ables best explain NDVI anomalies.

3  |  RESULTS

3.1  |  Vegetation-memory properties

According to R2 scores, our vegetation-memory models performed 
best across parts of Saudi-Arabia, around the Gulf of Mexico, the 
Caatinga, South Africa, the Horn of Africa, parts of Argentina, 
Morocco and northern Algeria, and Australia (see Figure 1).

The highest intrinsic vegetation memory coefficients (i.e. �t−1, in-
trinsic memory strength) were found across Australia, South Africa, 
Texas, and Algeria/Morocco and weakest across the Sahara Desert, 
and the Russian steppe (see Figure 2a). The patterns of intrinsic vegeta-
tion memory strength (Figure 2a) are mostly mirrored by the strength 
in the extrinsic vegetation memory linked to soil moisture (�Qsoil, 
Figure 2b). Strong positive effects of soil moisture are most prevalent 
across Australia, South Africa, west of the Gulf of Mexico, the Horn 
of Africa and the Caatinga. However, extrinsic soil-moisture memory 

coefficients were negative in some areas, typically in areas of low 
intrinsic-vegetation memory such as the northern regions of drylands 
in the Russian steppe, the Sahara desert, north-eastern China, south 
Saudi-Arabia and parts of the south-western contiguous United States.

In addition to variations in extrinsic soil-moisture memory strength, 
we also observed variations in the length of extrinsic soil-moisture mem-
ory worldwide (as exemplified by lag length, m , see Figure 3a). These 
values range from fast-responding vegetation (i.e. soil-moisture memory 
length close to 0 months) to regions of slow response (i.e. soil-moisture 
memory length close to 12 months). While clear global patterns of soil-
moisture memory lags are difficult to establish, we did find a clear west–
east gradient of soil-moisture-memory length across both Australia and 
North America. Additionally, soil-moisture-memory length in Eurasia 
and Africa increases from north to south. Finally, areas of negative soil-
moisture-memory strength are almost exclusively characterised by soil-
moisture-memory lags of zero months (i.e. instantaneous responses).

Air-temperature-memory coefficients (�Tair, extrinsic memory 
strength) show large, negative effects across many dryland regions 
(i.e. dryland vegetation performance is diminished by warmer tem-
peratures) including South Africa, the Caatinga, parts of Australia 
and Kazakhstan (Figure 2c). However, there are also areas with pos-
itive air-temperature-memory coefficients, across Algeria, parts of 
the Mongolian steppe, parts of Australia as well as Polish and Turkish 
drylands. The patterns related to the length of the air-temperature-
memory tend to be highly localised (n, see Figure 3b).

3.2  |  Relative importance of vegetation-
memory components

Although there are clear spatial patterns in the different components 
of vegetation memory, in general, the relative strength of the intrinsic 

F I G U R E  1  Adjusted R2 of the final models: coefficient of determination of final models following model selection among the set of 
candidate models established by Equation 3 (with soil layer k fixed at 1). The final model per pixel is hereafter used to report vegetation 
memory coefficients for global drylands worldwide
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F I G U R E  2  Vegetation memory strength: Vegetation memory strength for (a) intrinsic memory (�t−1); (b) extrinsic soil moisture 
memory (�Qsoil), and (c) extrinsic air temperature memory (�Tair). Note that negative values for intrinsic vegetation memory signify negative 
autocorrelation of z-score ndvi values. See Table S1 in Supporting Information for coefficient interpretations

Air temperature (Memory Coefficient, )(c)

Intrinsic vegetation memory (AR1 Coefficient, )  (a)

Soil moisture (0-7cm) (Memory Coefficient, ) (b)
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memory coefficient (�t−1) is much greater than either of the extrinsic 
memory coefficients (�Qsoil and �Tair). Overall, model coefficients are 
largest for intrinsic vegetation memory (�t−1), followed by soil-moisture 
memory (�Qsoil), then air-temperature memory (�Tair ) thus identifying a 

hierarchy of importance of these parameters in shaping the vegetation 
performance/NDVI values of local dryland vegetation through time and 
space (Figure 4). Here, intrinsic vegetation memory and soil-moisture 
effects control most of the global dryland vegetation performance.

F I G U R E  3  Vegetation memory length: Vegetation memory length for (a) extrinsic soil moisture memory (m), and (b) extrinsic air 
temperature memory (n). Note that colour palette between all have been synchronised to make the outputs of regions comparable

Soil moisture (0-7cm) (Lag Length, ) (a)

Air temperature (Lag Length, ) (b)

F I G U R E  4  Vegetation-memory 
strength magnitude: Relative strength of 
the three vegetation memory coefficients 
(�t−1, �Qsoil, �Tair) as determined by the 
absolute values of the model coefficients 
in Equation 3 and visualised in Figure 2



8  |   Journal of Ecology KUSCH et al.

Similarly, although patterns of intrinsic and extrinsic vegetation-
memory strength are strikingly analogous in terms of their spatial 
patterns (see Figure 2), variance partitioning indicates most of the in-
formation is contained within intrinsic vegetation memory (NDVIt−1), 
with the coefficient representing Qsoil1 memory (and shared infor-
mation between the two variables) constituting almost all of the re-
maining explained variance in the models (Figure 5).

As such, almost all explanatory power of our vegetation-memory 
models is contained within NDVIt−1 and Qsoil1 data. However, the 
comparatively high values of variance shared between these two 
variables show the difficulties in distinguishing intrinsic from extrin-
sic vegetation memory. This is also confirmed by the clear overlap of 
spatial patterns (Figure 2).

4  |  DISCUSSION

Our approach builds on previous studies which have identified 
components of vegetation memory using satellite data (e.g. De 
Keersmaecker et al.,  2015; Liu et al.,  2018; Seddon et al.,  2016; 
Vicente-Serrano et al.,  2013), using climate reanalysis data (ERA5 
using statistical downscaling). In addition, we attempted to iso-
late the intrinsic- and extrinsic-memory effects for global drylands 
worldwide and found similar overall results when higher resolution 
mechanistic downscaling was used (see Supporting Information).

4.1  |  Patterns of vegetation memory in 
global drylands

One key observation from this study is that the NDVIt−1 coefficient 
(�t−1) dominates in terms of the variance explained in our models 
across large parts of the Earth's surface. This result occurred in spite 
of the fact that our models incorporated the use of climate reanalysis 

data. One interpretation from these results is that, overall, global 
dryland regions are characterised by strong intrinsic vegetation 
memory, and that this effect is—in general—much stronger than any 
extrinsic memory identified as a result of ERA5 soil moisture or tem-
perature variability (Figures 4 and 5).

A second key finding of our study is represented by the strength 
of extrinsic vegetation memory (coefficients �Qsoil and �Tair) which 
varies considerably across regions, although never reaching the 
same magnitude as the intrinsic NDVIt−1 coefficient. We found that 
soil-moisture memory exerts a much greater effect on dryland veg-
etation than air temperature, with global dryland vegetation broadly 
responding as would be expected: positively to wetter conditions (i.e. 
positive �Qsoil) and negatively to neutral to elevated air temperatures.

Counterintuitively, our study identified several areas in which 
positive soil-moisture anomalies lead to a decrease in vegetation 
productivity (negative NDVI anomalies) captured in negative values 
of �Qsoil. These effects coincide with response times (m) of 1 month 
and faster. One possible explanation for this finding is that posi-
tive soil-moisture anomalies in these regions, coupled with severe 
downpour and flooding events, can lead to a decrease in vegetation 
performance in certain vegetation communities (Broich et al., 2018). 
Note, however, that the negative coefficients of soil-moisture 
memory are far smaller in extent and magnitude than their positive 
counterparts. Additionally, our analysis revealed that global dryland 
vegetation performance can react to positive air temperature anom-
alies in one of two ways: (1) negatively at different time lags or (2) 
positively at long time lags captured as negative and positive values 
�Tair, respectively. This may be indicative of different physiological 
strategies and capabilities of dealing with increased heat-stress 
(Wang et al.,  2016). This result may also reflect lower data qual-
ity during rainfall events, with cloudiness screening images during 
higher rainfall events. However, dryland regions tend to exhibit low 
cloudiness and cloudiness has been demonstrated to not bias the 
monthly NDVI product (Calvet & Barbu, 2015). Note that our models 

F I G U R E  5  Vegetation memory 
variance partitioning: Variance in 
anomalies of NDVI explained by model 
parameter across global dryland raster 
cells. Variances portrayed here have 
been limited to 95% quantiles of their 
respective ranges. Solid bars beyond 
boxplot whiskers represent outlier data 
points beyond the 95% range depicted 
by the boxplot and whiskers (McGill et 
al., 1978; Wickham, 2016)
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did not differentiate between memory during different seasons thus 
potentially suffering from masking of the strength of the memory 
coefficients with opposing signs (Wen et al., 2019). Future vegeta-
tion memory model development may benefit from including inter-
seasonal distinction of memory worldwide.

Patterns of extrinsic-memory length (m and n) also vary con-
siderably within and between regions. One example of this is the 
east–west gradient in soil-moisture memory length (m) across 
Australia, with shorter responses in the east and longer responses 
in the west. Other regions exerting short vegetation memory to 
soil-moisture anomalies are located in south and east Africa as well 
as the Caatinga and parts of Argentina, while longer soil-moisture 
memory is especially present throughout the Sahel region. Similar to 
extrinsic-memory strength, these patterns are likely a consequence 
factors including (but not limited to) (1) local antecedent disturbance 
regimes (Yin et al., 2015), (2) plant function (Nielsen et al., 2019), (3) 
life-history strategies (Adier et al., 2014; Archibald et al., 2019) and 
(4) soil properties (Smith et al., 2017; Wan et al., 2016).

To investigate the effect of different life-history strategies and 
plant functional types on vegetation memory components, we in-
vestigated the west-to-east gradients of extrinsic soil moisture 
memory lags across Australia (see Figures 3b and 7). The drylands 
across Australia as defined by the Sustainable Development goals 
(Sustainable Development Goals, 2020) include forest and grassland 
(World Wildlife Fund, 2020). Previous work using tree-ring data in-
dicates that cumulative antecedent conditions contribute to changes 
in tree resistance and recovery (Lloret et al., 2011). Indeed, at least 
some of the variation in patterns of the soil-moisture memory lag 
can be explained by major differences in land-cover between forests 
and grasslands. For example, we extracted values of soil-moisture 
memory lags (m) across Australia and assigned them either to a forest 
or grassland category based on an ecoregion mask (World Wildlife 
Fund, 2020) (Figure 6).

Forest soil moisture memory lags do indeed show a higher pro-
portion of samples with a lag of 2 and 12 months (the maximum cu-
mulative lag length allowed in our model framework) which indicates 
a longer response time in forest ecosystems than in grasslands where 

such a spike is absent. However, both forest and grasslands also re-
spond to cumulative soil moisture pressures at time-frames smaller 
than 3 months. Further studies of these regions at higher spatial res-
olutions which meaningfully link vegetation-plot data to remotely 
sensed data are needed to uncover the underlying processes that 
enable the overall patterns in vegetation memory we have observed.

Vegetation-memory patterns may additionally be affected by 
anthropogenic influence on the vegetation response. For example, 
Abel et al. (2021) estimated trends in vegetation-rainfall sensitivity 
(inferred from calculating a moving-window relationship between 
NDVI and globally gridded precipitation data for the past 15 years) in 
global drylands and showed that negative trends in this relationship 
were best explained population changes (estimated from modelled 
census data in 2010, extrapolated and then interpolated between 
2000 and 2015). In contrast, positive trends in this relationship were 
best explained by a combination of changing climatic conditions, and 
by the intensification and expansion of human land management. 
Since our study incorporated the use of monthly vegetation and cli-
mate time series, it was not possible to incorporate such effects in 
our approach. Accounting for such anthropogenic effects ought to 
be a priority moving into future studies.

Furthermore, our vegetation memory modelling framework 
does not account for nonlinear relationships between NDVI time-
series and environmental conditions (e.g. soil moisture and air 
temperature). Previous work focussing on tropical rainforests, 
however, has demonstrated that temporal autocorrelation of NDVI 
time series (i.e. intrinsic vegetation memory) is affected by environ-
mental conditions (Verbesselt et al.,  2016). Therefore, we expect 
that future research on vegetation memory may benefit greatly 
from the adoption nonlinear modelling techniques as has been 
used for understanding climate vegetation dynamics previously by 
Papagiannopoulou et al. (2017). Such consideration for changes in 
temporal autocorrelation on NDVI time series may be further en-
hanced by explicitly accounting for spatial autocorrelation in vege-
tation dynamics so as to identify regions exhibiting critical slowing 
down of recovery rates with more certainty (Scheffer et al., 2015; 
Xu et al., 2015).

F I G U R E  6  Soil moisture memory 
length across australia: Comparison of soil 
moisture memory lag (m in Equation 3) 
for grassland and forest regions across 
Australia. The spatial gradient of the soil 
moisture memory lag reported here is 
shown in Figure 7
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4.2  |  The use of ERA5 data in vegetation 
response studies

One major advantage of using climate reanalysis products to 
understand vegetation memory is that they enable the study of 
responses across temporal periods of finer resolution and with 
a greater spatial coverage compared to previous studies. For ex-
ample, Liu et al. (2018) used the CRU3.0 dataset, which provides 
a gridded dataset based on global weather station data for air 
temperature, precipitation and solar radiation. However, because 
large areas of the Earth's surface do not contain weather stations 
providing consistent time series, many areas (particularly in tropi-
cal regions), in many cases, precipitation values are replaced with 
climatological mean values (Macias-Fauria et al.,  2014). This is a 
problem for analyses based on understanding patterns ecologi-
cal resilience in dryland regions, since the vegetation response to 
climate variability is likely to be an important component, and a 
consequence of this is that large areas of the Earth's surface are 
required to be masked from any analysis. The ERA5 data allowed 
to us to provide an assessment of three vegetation-memory com-
ponents for dryland ecosystems worldwide without encountering 
these issues of temporal gaps in the data (ECMWF, 2018d). In this 
analysis, we used ERA5 data which was statistically downscaled 
to match the NDVI resolution. Indeed, comparison of the results 
with more recent ERA5-Land data based on dynamic models 
shows similar results and demonstrates the capabilities of both 
approaches moving forward.

A second advantage is that the ERA5 data enabled us to incor-
porate the use of soil moisture as a bioclimatic variable to reflect 
water availability in dryland regions. Our expectation was that soil 

moisture would be a better predictor than, for example, the weather 
station inferred SPEI drought index because 1–3 month lagged pre-
cipitation indices have been shown to be a predictor of vegetation 
productivity in dryland regions as a result of soil infiltration pro-
cesses. Since soil moisture availability would represent a more direct 
indicator of the water available to the plant, we expected this to be 
a strong predictor in dryland regions.

However, despite the incorporation of soil moisture data in our 
analysis, the autoregressive parameter (i.e. the indicator of intrinsic 
memory) remained the strongest predictor across large areas of the 
Earth's surface, and in some cases the relative strength of the coeffi-
cient for soil moisture was actually less than that when drought indices 
have been used (e.g. De Keersmaecker et al., 2015). Furthermore, the 
patterns of soil-moisture memory lags we identified do not coincide 
with the precipitation-driven memory lag identified by Liu et al. (2018) 
or the SPEI-informed memory lag by Vicente-Serrano et al.  (2013). 
Such variations in the results between studies suggest that ground-
based validation is required to understand better the differences in 
these approaches of the different datasets, and to determine whether 
ERA5 data provide a useful tool for future research for assessing global 
patterns in vegetation dynamics in response to climate variability.

4.3  |  The use of intrinsic memory as an indicator of 
engineering resilience

Intrinsic vegetation memory, usually identified as autoregressive 
coefficients of vegetation indices (e.g. Seddon et al.,  2016), has 
been used as an indicator of vegetation engineering resilience (i.e. 
recovery speed) (De Keersmaecker et al., 2015; Liu et al., 2018). Our 

F I G U R E  7  Patterns of vegetation memory components across Australia: Comparison of vegetation memory model components across 
Australia. Our study shows homogeneous NDVIt−1 and diffuse extrinsic soil-moisture vegetation-memory patterns as well as a clear west-
to-east gradient in soil-moisture-memory length which matches the west-to-east gradients of intrinsic vegetation memory by Seddon 
et al. (2016) and De Keersmaecker et al. (2015)—see figure S3 in Seddon et al., 2016 and figure 1b in De Keersmaecker et al. (2015)

Soil moisture (0-7cm) (Lag Length, )Intrinsic vegeta�on memory (AR1 Coefficient, )― Soil moisture (0-7cm) (Memory Coefficient, )
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analysis, which involved using ERA5 data to assess the factors influ-
encing vegetation memory in global drylands, reveals some impor-
tant caveats to this assumption for two main reasons.

First, the spatial patterns demonstrating the relative strength 
of the autoregressive parameter (i.e. intrinsic vegetation memory 
e.g. NDVIt−1) vary considerably across the various studies which 
have quantified the value of intrinsic vegetation memory relative 
to different extrinsic vegetation-memory variables. For example, 
our results revealed relatively high levels of intrinsic vegetation 
memory across Australia, a weak west-to-east gradient of in-
creasing correlation between NDVI anomalies and soil moisture 
anomalies, and a strong west-to-east gradient of response time 
to soil-moisture anomalies (see Figure  6). These results are sim-
ilar to Liu et al.  (2018), but are in contrast to those by Seddon 
et al.  (2016) and De Keersmaecker et al.  (2015), who identified a 
clear west-to-east gradient of intrinsic vegetation memory (AR1 
coefficient) and extrinsic drought-driven memory, respectively. 
While the overall model specifications are similar across these 
three studies, the main differences are in the choice of datasets 
used to represent extrinsic forcing. For example, Liu et al. (2018, 
figure 2a–c) showed how varying the length of the extrinsic lags 
could compensate for some of the variance explained by an AR1 
only model, while Seddon et al.  (2016) and De Keersmaecker 
et al.  (2015) used a combination of satellite-derived vegetation 
and water availability/drought indices calculated from two dif-
ferent sources and which did not account for variable time lags 
(see Figure S3, Seddon et al., 2016, Extended Data Figure 1b, De 
Keersmaecker et al.,  2015). Similar findings are observed across 
the Caatinga region in NE Brazil. Here, Seddon et al. (2016) found 
relatively low intrinsic memory compared to the response in water 
availability, while our study and De Keersmaecker et al.  (2015) 
found intrinsic memory to have a higher overall importance than 
soil moisture in this region. It stands to reason that implementa-
tion of uncertainty metrics for lag selection could further change 
these landscape-scale vegetation memory gradients.

Nevertheless, these examples indicate an important caveat 
with regards to interpreting spatial patterns in the NDVIt−1 coef-
ficient across different analyses, namely, that the relative impor-
tance of this variable in any model will vary strongly depending 
on the input variables used. As a result, interpretations of compo-
nents of vegetation resistance and recovery at large spatial scales 
may be highly sensitive to the original forcing variables used. For 
example, in previous studies, eastern Australia and the Caatinga 
have been interpreted as being resistant to precipitation anoma-
lies, while the high autocorrelation coefficient in western Australia 
may be interpreted as having an overall lower vegetation resilience 
(e.g. De Keersmaecker et al.,  2015). In our study, the west–east 
gradient in this autoregressive parameter does not exist to the 
same extent, and different interpretations arise from the inclusion 
of slightly different variables.

This issue is further compounded by temporal aggregations 
of input variables. By enabling the selection of the optimum soil-
moisture memory-length (i.e. between 0 and 12  months), our 

model had a more flexible approach to the identification of the 
strength of an extrinsic forcing variable compared to those using 
only a fixed time window. This increase in model flexibility may also 
have resulted in different patterns of intrinsic memory being ob-
served. In the Australia example, a west–east gradient is observed 
in extrinsic memory length to soil moisture anomalies in our study 
(Figure  7, right panel), a pattern which resembles the west–east 
gradient in intrinsic memory identified by Seddon et al. (2016) and 
De Keersmaecker et al. (2015). Thus, again, these results suggest a 
compensation effect of the AR1 coefficient in model when a fixed 
(e.g. 1- or 3-month lag) vs. flexible (i.e. 0–12-month lag) extrinsic 
variable is used.

Such effects may be alleviated through a number of recent 
developments in resilience studies, which, instead of using the 
space-for-time approach for mapping autocorrelation, have devel-
oped statistical methods to investigate the changing characteris-
tics of autocorrelation through time. For example, Liu et al. (2019) 
successfully used temporal correlation changes to predict forest 
mortality with remote sensing data after correcting for tempo-
ral variation of other components, including intrinsic stochastic 
noise, long-term trends and the seasonality. This approach is an 
extension of the ‘moving-window’ approaches which have com-
monly been used for addressing reduced resilience over time (e.g. 
Dakos et al., 2008), and which have been applied under a range 
of settings to propose decreases in resilience in Earth system 
time series, such as lake eutrophication (Ortiz et al.,  2020) and 
palaeoclimate time series (Dakos et al., 2008). As remote sensing 
time series become longer, it may become more and more feasi-
ble to assess these changing time series components at a global 
scale. In comparison to a space-for-time approach, such dynamic 
approaches may better reflect the changing sensitivity of various 
ecosystem components as the underlying state variables shift, in 
particular to against a backdrop of changing anthropogenic and 
other climate forcing variables.

Finally, we propose that future vegetation memory research 
may be greatly enhanced by adopting resilience concepts which 
have recently been developed for other ecological applications 
such as the concepts within the demographic resilience proposed 
by Capdevila et al.  (2020). This resilience framework explicitly 
quantifies resistance and recovery of a population or ecosystem 
in response to a discrete perturbation event. Assessing response 
of a system to a discrete perturbation event than cumulative en-
vironmental conditions like we have done may prove successful in 
distinguishing intrinsic from extrinsic vegetation memory compo-
nents in the future.

5  |  CONCLUSIONS

Our vegetation memory revealed patterns of intrinsic and extrinsic 
vegetation memory strength and length across global dryland re-
gions. However, in spite of incorporation of novel climate reanalysis 
data to reveal patterns of vegetation memory at a global scale, we 
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found major differences in the relative strength of intrinsic vegeta-
tion memory compared to previous studies. Thus, our study reveals 
the sensitivity of this variable to the incorporation of other extrinsic 
forcing variables, and the current understanding of intrinsic vegeta-
tion memory as a proxy of engineering resilience/recovery speed 
may be an oversimplification. A critical next step will be to develop 
a more refined selection of variables and localised identification of 
vegetation memory processes.
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