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We reconsider the problem of transverse momentum broadening of a highly energetic parton suffering
multiple scatterings in dense colored media, such as the thermal quark-gluon plasma or large nuclei. In the
framework of Molière’s theory of multiple scattering we rederive a simple analytic formula, to be used in jet
quenching phenomenology, that accounts for both the multiple soft and hard Rutherford scattering regimes.
Further, we discuss the sensitivity of momentum broadening to modeling of the nonperturbative infrared
sector by presenting a detailed analytic and numerical comparison between the two widely used models in
phenomenology: the Hard Thermal Loop and the Gyulassy-Wang potentials. We show that for the relevant
values of the parameters the nonuniversal, model dependent contributions are negligible at LHC, RHIC and
EIC energies, thus consolidating the predictive power of jet quenching theory.
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I. INTRODUCTION

The propagation of highly energetic partons in a dense
QCD medium is affected by multiple collisions with
medium constituents that cause their transverse momentum
distribution to broaden. In addition, medium-induced gluon
emissions can be triggered by these random kicks leading
to the formation of a parton cascade.
The latter is the main mechanism of parton energy loss in

large QCD media [1,2] and its theoretical description has
drawn a lot of attention in the last two decades. However,
most analytic results used in phenomenology were obtained
in certain kinematic limits [3–8] and a solid and quanti-
tative understanding of in-medium jet modifications, as
measured in experiment, requires further theoretical control
over the full kinematic range of the transverse momentum
dynamics. This is currently of particular importance as the
field moves toward highly precise comparisons between
data and theoretical predictions.
In the present manuscript we study the single particle

momentum broadening distribution for the case of an

energetic parton propagating through a homogeneous
plasma brick of length L. A complementary study of the
medium induced radiation mechanism, following a similar
scheme to the one present in this paper, is discussed in
[9,10] for the transverse momentum dependent gluon
spectrum and in [11–13] for its integrated version.
Although substantial effort has been put into studying

momentum broadening in increasingly more realistic and
complex scenarios [14–24], theoretical uncertainties in the
simplistic setup considered here remain to be understood.
The origin of these ambiguities is mainly associated to the
infrared (IR) modeling of the parton-medium interaction. In
addition, it is common in phenomenological studies to take
the broadening distribution in some limiting form such as
the Gaussian approximation that applies to the multiple soft
scattering regime. Even though the latter does not capture
the correct physics in the whole range of transverse
momenta, its simple analytical form makes it suitable for
theoretical calculations, e.g., [25,26], together with a
straightforward implementation in jet quenching Monte-
Carlo event generators, where a given momentum broad-
ening probability has to be sampled [27–29].
The goal of this paper is twofold. First, we revisit the

theory of multiple scattering by Molière [30,31] which
provides a more accurate description of the broadening
distribution over the full range in transverse momentum. In
particular, the Gaussian behavior and the power-law
Coulomb tail, pertaining to Rutherford scattering, are
reproduced at small and large transverse momentum,
respectively. On the other hand, we systematically study

*joaolourenco.henriques@usc.es
†mehtartani@bnl.gov
‡ontoso@bnl.gov
§konrad.tywoniuk@uib.no

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 054047 (2021)

2470-0010=2021=104(5)=054047(12) 054047-1 Published by the American Physical Society

https://orcid.org/0000-0003-4286-4555
https://orcid.org/0000-0001-5677-0010
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.054047&domain=pdf&date_stamp=2021-09-29
https://doi.org/10.1103/PhysRevD.104.054047
https://doi.org/10.1103/PhysRevD.104.054047
https://doi.org/10.1103/PhysRevD.104.054047
https://doi.org/10.1103/PhysRevD.104.054047
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the role of nonperturbative modeling on the momentum
broadening probability distribution. We show that, for
realistic values of the parameters, resulting nonuniversal
power corrections are negligible.
This paper is structured as follows. Section II introduces

the kinetic theory formulation of the momentum broad-
ening probability distribution, along with the two medium
models to be explored. Next, Sec. III reviews Molière’s
systematic approach to multiple scattering theory applied to
momentum broadening. In Sec. IV we explore the depend-
ence of the broadening distribution on IR modeling. In
addition, we discuss our findings in the parameter space
explored by LHC, RHIC and the upcoming EIC in Sec. V.
We summarize our results and discuss possible future
directions in Sec. VI. Complementary material is presented
in Appendices A–D.

II. KINETIC DESCRIPTION OF MOMENTUM
BROADENING

The probability for a highly energetic parton traversing a
dense QCD medium to acquire a transverse momentum k
from multiple scattering during a time L is denoted by
Pðk; LÞ. Its time evolution can be formulated in kinetic
theory and is given by [32,33]

∂
∂LPðk; LÞ ¼ CR

Z
q
γðqÞ½Pðk − q; LÞ − Pðk; LÞ�; ð1Þ

where γðqÞ is the collision rate and is related to the in-
medium elastic scattering cross section to be discussed
shortly. CR is the parton color factor in representation R,
i.e., CR ¼ CF ¼ ðN2

c − 1Þ=ð2NcÞ and CR ¼ CA ¼ Nc for a
quark and a gluon, respectively. Here and throughout we
used the shorthand notation

R
q≡

R
d2q=ð2πÞ2 for trans-

verse momentum integration, and
R
x≡

R
d2x for transverse

coordinate space integrals.
Physically, Eq. (1) has a simple interpretation: in an

infinitesimal time step δt, the probability for a parton to end
up with momentum k at Lþ δt equals the probability of
starting with momentum k − q and acquiring momentum q
during δt. In addition, one must subtract the probability of
already starting with momentum k and diffusing to some
other momentum mode. This structure ensures the unitarity
of P and, consequently, its probabilistic interpretation. We
remind the reader that the previous result is only valid in the
strict eikonal limit, where the acquired transverse momen-
tum is much smaller than the parton energy.
Turning to the collision rate γðqÞ, a closed expression

exists in two distinct scenarios. In the case of a medium
formed by static scattering centers with Yukawa-type
interactions, γðqÞ is given by the so-called Gyulassy-
Wang (GW) model [34]

γGWðqÞ ¼ g4n
ðq2 þ μ2Þ2 ; ð2Þ

where n represents the density of scattering centers and μ is
the (GW) screening mass. When the QCD medium is in
thermal equilibrium, γðqÞ can be computed with Hard
Thermal Loop theory (HTL) resulting in [35]

γHTLðqÞ ¼ g2m2
DT

q2ðq2 þm2
DÞ

; ð3Þ

where g is the strong coupling and mD corresponds to the
Debye mass whose temperature (T) dependence is given, at
leading order in g, by m2

DðTÞ ¼ ð1þ nf
6
Þg2T2, where nf is

the number of active light flavors. While the UV behavior is
common to both models, i.e., q−4, the main difference is in
the way the IR Coulomb divergence is regulated. In the limit
q → 0 we have, γGWðqÞ → const. while γHTLðqÞ → q−2.
The possibility of mapping μ and mD together with other
differences and similarities between these two models for
γðqÞ, commonly used in phenomenology, will be discussed
in Sec. IV.
Defining Sðx; LÞ as the Fourier transform of Pðk; LÞ,

Sðx; LÞ ¼
Z
q
Pðq; LÞeiq·x; ð4Þ

Eq. (1) becomes local in position space

∂
∂LSðx; LÞ ¼ −vðxÞSðx; LÞ; ð5Þ

and can be easily solved to give

Sðx; LÞ ¼ e−
R

L

0
dsvðx;sÞ ¼ e−vðxÞL; ð6Þ

where in the last step we assumed that the medium is a
homogeneous brick of length L and defined the so-called
dipole cross section [36] as

vðxÞ≡ CR

Z
q
ð1 − eiq·xÞγðqÞ: ð7Þ

Explicit formulas for vðxÞ in the GW and HTL models can
be obtained using the integrals computed in Appendix B.
They read

vGWðxÞ ¼ q̂0
μ2

ð1 − μjxjK1ðμjxjÞÞ; ð8Þ

and

vHTLðxÞ ¼ 2q̂0
m2

D

�
K0ðmDjxjÞ þ log

�
mDjxj
2

�
þ γE

�
; ð9Þ
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where

q̂0 ¼
�
4πα2sCRn for GW

αsCRm2
DT for HTL

; ð10Þ

is the bare jet quenching transport parameter and
αs ¼ g2=ð4πÞ.
Finally, by Fourier transforming Eq. (6) back into

momentum space, the probability for a parton to acquire
transverse momentum k reads

Pðk; LÞ ¼
Z
x
ðSðx; LÞ − Sð∞; LÞÞe−ix·k; ð11Þ

where we subtract the no-broadening contribution that
would result in a δð2ÞðkÞ term that does not contribute at
finite k (see [37]). This term only vanishes when
vð∞Þ ¼ þ∞. From Eqs. (8) and (9), we observe that neither
GW nor HTL satisfy this condition, but rather saturate at
large jxj. Regarding the normalization of the probability
distribution given by Eq. (11), it is easy to verify, using
vð0Þ ¼ 0, that

R
k Pðk; LÞ ¼ 1 − expð−vð∞ÞLÞ.

To the best of our knowledge, a closed analytic form for
Eq. (11) when using either GW or HTL expressions for
vðxÞ does not exist. It is the goal of the next section to
achieve an analytic representation of the transverse momen-
tum probability distribution, Pðk; LÞ, by combining an
expansion of Eq. (11) in universal and model dependent
terms together with Molière’s theory [30,31] of multiple
scattering.

III. PðkÞ-DISTRIBUTION FROM MOLIÈRE’S
THEORY OF MULTIPLE SCATTERING

Adopting the small dipole size approximation, Eq. (8)
[Eq. (9)] can be expanded to linear order in μ2x2 (m2

Dx
2),

which we refer to as the leading power (LP) contribution
to SðxÞ. The choice of this terminology is motivated by the
desire of distinguishing between universal power correc-
tions of the form ðQ2

s0x
2Þn (with Q2

s0 ≡ q̂0L [13], see
Appendix B) and nonperturbative power corrections of the
form ðμ2x2Þn (ðm2

Dx
2Þn), which we refer to as next-to-

leading power terms. To leading power (LP), we obtain

vGWðxÞ ¼ q̂0
4
x2 log

�
4e1−2γE

x2μ2

�
þOðx4μ2Þ; ð12Þ

and

vHTLðxÞ ¼ q̂0
4
x2 log

�
4e2−2γE

x2m2
D

�
þOðx4m2

DÞ: ð13Þ

We see that, at this level of accuracy, it is possible to relate
the GW and HTL parameters by defining the following
physical scale [38],

μ2� ¼
8<
:

μ2

4
e−1þ2γE for the GW model

m2
D
4
e−2þ2γE for the HTL model

: ð14Þ

More concretely, this approximation leads to

SLPðxÞ ¼ exp
�
−
1

4
Q2

s0x
2 log

1

x2μ2�

�
þOðx2μ2�Þ: ð15Þ

Given the physical scale defined in Eq. (14), this con-
tribution is model independent. The possibility of expand-
ing Eqs. (8) and (9) up to next-to-leading power order is
explored in Sec. IV. To obtain an analytic form of Pðk; LÞ
from Eq. (15) additional assumptions concerning the
parton’s energy have to be adopted.
At very high energy, i.e., k2 ≫ Q2

s0, the dipole’s trans-
verse size is given by jxj ∼ 1=jkj ≪ 1=Qs0. Then, SLPðxÞ
can be expanded to linear order

SLPðxÞjjxj≪1=Qs0
¼ 1 −

1

4
Q2

s0x
2 log

1

x2μ2�
þOðx4Q4

s0Þ: ð16Þ

The zeroth order term can be neglected as it does not
contribute to the Pðk; LÞ distribution. Thus, SLPðxÞ is
proportional to the dipole cross section, i.e., it is dominated
by single hard (SH) scattering contributions. In this case,
PSHðk; LÞ reads

PSHðk; LÞ ¼ −
1

4
Q2

s0

Z
x
e−ix·kx2 log

1

x2μ2�

¼ 1

4
Q2

s0∇⃗2
k
4π

k2
¼ 4π

Q2
s0

k4
; ð17Þ

where used the fact that for k2 ≫ μ2�
Z
x
e−ix·k log

1

x2μ2�
¼ 4π

k2
: ð18Þ

The momentum broadening probability distribution given
by Eq. (17) captures the expected Coulomb-like 1=k4

behavior at high momentum transfers.
The scale at which multiple scattering (MS) becomes

important is encoded in the medium opacity parameter
χ ∼Q2

0s=μ
2� ∼ L=lmfp, where lmfp is the in-medium mean

free path. When χ ≪ 1, the medium is dilute and therefore
single (rare) hard scattering events, as discussed above,
dominate the contribution to Pðk; LÞ. Conversely, when
χ ≫ 1, the medium is densely populated and multiple soft
scatterings become the relevant mechanism for momentum
transfer.
In the k2 ≪ Q2

s0 regime, the logarithm in Eq. (15) is
slowly varying with x and can be regulated by a large
momentum scale Q2 ∼Q2

s0, so that taking into account all
orders in Q2

s ∼Q2
s0 logðQ2=μ2Þ one obtains a Gaussian

representation of momentum broadening
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PMSðk; LÞ ¼
Z
x
e−

1
4
x2Q2

se−ix·k ¼ 4π

Q2
s
e
−k2

Q2
s ; ð19Þ

where the super-script refers to multiple scattering (MS).
As mentioned in the introduction, Eq. (19) is the preferred
option in widely used and successful jet quenching
Monte Carlo event generators such as the Hybrid model
[28] or the newly developed code by the Saclay group [29].
Despite the widespread phenomenological application of
Eq. (19), it fails to accurately describe the hard 1=k4 tail of
Pðk; LÞ, thus missing the physics associated with single
hard scattering events [see Eq. (17)] [40]. The importance
of such contributions has been recently studied numerically
in [41,42].
In this work, we propose to use an efficient expansion

scheme developed by Molière in 1948 [30] in order to
provide a simple, analytic formula that encodes the correct
behavior of Pðk; LÞ from small to large k. Molière’s
approach is based on expanding vðxÞ around the multiple
soft scattering approximation vMSðxÞ. This is achieved by
splitting the Coulomb logarithm into two pieces: a large,
but constant, logarithm and a small, x2-dependent term
which is treated perturbatively. Using this scheme, the
leading power (LP) dipole cross section can be written as

vLPðxÞ ¼ q̂0x2

4
log

Q2

μ2�
þ q̂0x2

4
log

1

x2Q2

≡ vMSðxÞ þ δvðxÞ; ð20Þ

where Q2 is known as matching scale, vMSðxÞ corresponds
to the cross section entering Eq. (19) and δvðxÞ can be
considered a perturbation as long as Q2 ≫ μ2�, such that

log 1
x2Q2 ≪ log Q2

μ2�
. This decomposition leads to the follow-

ing definitions of the relevant scales in the problem

Q2
s ≡ hk2ityp ¼ q̂0L log

Q2

μ2�
; ð21Þ

where Q2 can be taken to be proportional to Q2
s , i.e.,

Q2 ¼ aQ2
s : ð22Þ

Here a is a free parameter to be determined for each set of
medium parameters [43]. Given a value of a, by inserting
Eq. (22) in Eq. (21), one obtains the following transcen-
dental equation

Q2
s ¼ q̂0L log

aQ2
s

μ2�
; ð23Þ

where the choice a ¼ 1 corresponds to Moilère’s pre-
scription [30]. We also define the effective transport
coefficient q̂ as

q̂ ¼ hk2ityp
L

¼ q̂0 log
aQ2

s

μ2�
: ð24Þ

Using Eq. (20), one can expand Eq. (11) (at LP accuracy)
around the MS solution in powers of δvðxÞ as

PLPðk; LÞ ¼
XZ
x;n

e−ix·ke−
1
4
x2Q2

s
ð−1ÞnQ2n

s0

4nn!
x2nlogn

1

x2Q2

≡ Pð0Þ þ Pð1Þ þ Pð2Þ þ � � � ; ð25Þ

where we integrate over x and sum over n, from n ¼ 0 to
infinity. Notice that we still have

R
k P

LPðk; LÞ ¼ 1, since all
terms in Eq. (25), apart from the (0) term, vanish after
integrating over k and x. Formally, the series representation
introduced above is asymptotically divergent. Nevertheless,
a very good approximation of the exact solution can be
obtained when the series is truncated before it diverges at
n < nmax ∼Q2

s0=μ
2�. For a broader discussion on the origin

of this truncation, we refer the reader to [44], where
Molière’s expansion was explored in the Color Glass
Condensate framework.
In order to recast Eq. (25) in a more compact form we

define the dimensionless expansion parameter

λ≡ q̂0
q̂

¼ 1

logðQ2=μ2�Þ
≪ 1: ð26Þ

This allows us to rewrite Eq. (25) as

ð4πÞ−1Q2
sPðk; LÞ≡ fðx; λÞ ¼

X∞
n¼0

λnfðnÞðxÞ; ð27Þ

where x≡ k2=Q2
s .

The leading order (0) term in λ reads

fð0Þ ¼ ð4πÞ−1Q2
sI1ðxÞ ¼ e−x; ð28Þ

while the next-to-leading order (1) term yields [30]

λfð1Þ ¼ −
1

16π
Q2

s0Q
2
s

Z
x
e−ix·ke−

1
4
Q2

sx2x2 log
1

x2Q2

¼ Q4
s

16π
λ∇⃗2

k

Z
x
e−ix·ke−

1
4
Q2

sx2 log
1

x2Q2

¼ λQ2
s

4π

∂
∂x x

∂
∂x I2ðx; aÞ

¼ λΔxe−xðEiðxÞ − logð4xaÞÞ; ð29Þ

where I1ðxÞ and I2ðx; aÞ are given in Appendix A and Ei is
the exponential integral function [45].Herewe introduced the
reduced Laplacian operator Δx ≡ ∂xðx∂xÞ. Combining the
results for fð0Þ and fð1Þ, we obtain one of the main results of
this paper (originally derived by Molière [30]):
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Pð0Þþð1Þðk; LÞ ¼ 4π

Q2
s
e−xf1 − λðex − 2þ ð1 − xÞðEiðxÞ − logð4xaÞÞÞg; x≡ k2

Q2
s
: ð30Þ

Let us now verify that the above result reproduces the
expected asymptotic behavior at small and large transverse
momentum.
The (0) contribution matches exactly the MS solution

from Eq. (19), and thus its limiting behavior is easy to
analyze. At large momentum transfers, k2 ≫ Q2

s ,
Pð0Þðk; LÞ decays exponentially with k, while if k2 ≪
Q2

s it becomes independent of k. More importantly, the
Gaussian profile implies that the typical momentum trans-
verse acquired due to momentum broadening hk2ityp ∼Q2

s .

Therefore, Pð0Þðk; LÞ correctly captures the physics asso-
ciated to multiple soft scattering at scales k2 ≲Q2

s .
For the (1) term, we use two limiting forms of the Ei

function. That is, when x → ∞, EiðxÞ ≈ exð1=xþ 1=x2 þ
2=x3Þ so that the large k behavior of the (1) term reads

Pð1Þðk; LÞjk2≫Q2
s
¼ 4π

Q2
s0

k4
þO

�
Q4

s0

k6

�
: ð31Þ

This result matches Eq. (17) and therefore the (1) term
successfully encodes the hard 1=k4 tail of the full Pðk; LÞ
distribution. As a consequence, it is physically preferable
for phenomenological applications to use Eq. (30) instead
of Eq. (19). On the other end, x → 0, EiðxÞ ≈ γE þ log x
and then

Pð1Þðk; LÞjk2≪Q2
s
¼ 4πλ

Q2
s
log 4ae1−γE ; ð32Þ

which, up to a small constant logarithm, corresponds to the
MS result [Eq. (19)] in this kinematic limit, suppressed by a
power of λ. This is analogous to the small energy limit
behavior obtained in [11–13] for the gluon emission
spectrum.
In Fig. 1, we evaluate Eq. (27) at (0), (1) order and their

sum ð0Þ þ ð1Þ. These curves are compared to the exact
numerical solution of Eq. (11) when plugging the GW
dipole cross section given by Eq. (8). A small value of the
expansion parameter λ is chosen on purpose such that this
figure represents a proof-of-concept of the proposed
scheme in its regime of validity. In the multiple scattering
regime, i.e., at small-k⊥, the (0) contribution dominates
over the (1) term as expected from our asymptotic analysis.
Nevertheless, the ð0Þ þ ð1Þ curve shows a small discrep-
ancy, to be quantified in what follows, with respect to the
full GW result. The situation is improved at large-k⊥, where
the (1) contribution correctly captures the power-law tail
completely absent in the (0) scenario. This figure demon-
strates how a purely analytic, two terms expansion given by

Eq. (30) exhibits an excellent agreement with the numeri-
cally obtained Pðk; LÞ using GW/HTL models for vðxÞ.
The natural question arises as to what is the value of the

λ-parameter at which the expansion fails to reproduce the
GW result. This problem, together with the role of higher
orders, is tackled in Fig. 2. In the top panel we observe how

FIG. 1. Momentum broadening probability distribution at
different orders in Molière’s-expansion (see Eq. (25) compared
to the exact result for GW [see Eq. (8)] with λ ¼ 0.1 correspond-
ing to (Q2

s0 ¼ 30 GeV2,m2
D ¼ 0.13 GeV2). In this and following

figures kT ≡ jkj.

FIG. 2. Top: ratio between the ð0Þ þ ð1Þ result and the exact
GW varying the expansion parameter λ [see Eq. (26)].
Bottom: same as top panel but for the ð0Þ þ ð1Þ þ ð2Þ result.
λ ¼ 0.15, 0.2, 0.25 corresponds to (Q2

s0 ¼ 4 GeV2, m2
D ¼

0.3 GeV2), (Q2
s0 ¼ 4 GeV2, m2

D ¼ 0.5 GeV2), and (Q2
s0 ¼

1.5 GeV2, m2
D ¼ 1 GeV2) respectively.
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the performance of the ð0Þ þ ð1Þ truncation is degraded
when increasing λ both at low and large k. This result is
expected as the larger λ gets, the less precise is to consider
δvðxÞ as perturbative contribution in Eq. (20). The relevant
values of λ for current and future colliders will be discussed
in Sec. V. As shown in the bottom panel of Fig. 2 this
discrepancy can be alleviated by adding extra terms in the
expansion. In particular, when adding the (2) [see Eq. (25)]
contribution for λ ¼ 0.1 we find a ratio to the exact GW
result close to one in the whole interval in k. Unfortunately,
we were not able to find yet a general analytic expression
for the nth term in the series, thus higher orders have to be
computed numerically.

IV. SENSITIVITY TO IR MODELING UP TO
NEXT-TO-LEADING POWER ORDER
REMOVE [VIA A TWIST EXPANSION]:

GW AND HTL COMPARISON

In the previous section, as a first step toward an analytic
expression for Pðk; LÞ that encompasses the main physical
mechanisms, we have expanded the dipole cross-section to
leading power order [see Eq. (15)]. In order to assess the
sensitivity of transverse momentum broadening to the non-
perturbative infrared structure of a given model for γðqÞ,
going beyond the leading power (LP) term is mandatory. In
what follows, we fix the hard scale of the problem Qs0 such
that we are only sensitive to the dependence of this
expansion with respect to the infrared regulator μ�.
Consequently, these additional terms are expected to modify
the low momentum regime of Pðk; LÞ. Hence, this will be
the explored region in the figures of this section. At this
point, we would like to emphasize that the expansion in
universal and nonuniversal terms is intrinsically different
from the Molière one introduced in the previous section. In
short, the former explores the infrared sector through
nonuniversal contributions, while the latter is a perturbative
expansion with model independent terms.
A systematic study of these nonuniversal contributions is

so far missing in the literature. In turn, GW and HTL
models are typically treated as two independent descrip-
tions of the QCD medium, thus ignoring the fact that they
can be mapped onto one another at LP accuracy. The
common practice in jet quenching phenomenology of
treating these models as if they were unrelated can be
problematic given that: (i) in the absence of a map between
the different IR regulators to the physical Debye mass, any
comparison between results assuming different models is
meaningless, (ii) a quantitative and controlled understand-
ing of the role of nonperturbative physics at the infrared
scale cannot be reached.
The importance of mapping the IR scales involved in

GW and HTL becomes apparent in Fig. 3 where the value
of mD is fixed and the corresponding value for μ, to be
plugged in Eq. (8), is obtained using Eq. (14). The
momentum broadening probability distribution computed

with these two medium models only shows significant
differences at small-k⊥ for values of m2

D larger than
∼1 GeV2. Hence, once the appropriate matching between
mD and μ is considered, the use of these two in-medium
elastic scattering cross-sections leads to discrepancies
≤10% in the infrared sector [46]. This result is in agreement
with previous calculations where the mapping was used
[13,47].
To characterize the sensitivity of transverse momentum

broadening to infrared physics, we proceed to expand vðxÞ
as given by Eq. (8) (Eq. (9) up to next-to-leading power
(NLP) order, such that vðxÞ takes the form

vLPþNLPðxÞ ¼ q̂0x2

4
log

�
1

μ2�x2

�
þ q̂0x4μ2�

c1
log

�
c2
μ4�x4

�

≡ vLPðxÞ þ vNLPðxÞ; ð33Þ

where c1 and c2 are model dependent constants given in
Appendix C for the GWand HTL models. We would like to
point out that Eq. (33) is an explicit manifestation of the
fact that NLP corrections are nonuniversal, since there is no
self-consistent way of mapping different models to some
functional form representing what would be measured in
experiment. In fact, even using the LP map introduced in
Eq. (14), we clearly observe that universality is not
regained (i.e., c1 and c2 are truly model dependent).
Nonetheless, using such a map allows us to directly gauge
the order of magnitude of the model dependent contribu-
tions to Pðk; LÞ.
The implications of considering the LP or NLP approx-

imations to GW/HTL potentials instead of the full result are
shown in Fig. 4. Regarding the leading power term, it fails to
reproduce the full result accurately for relatively small values
of mD, similar to those explored in current colliders as will

FIG. 3. Ratio between PHTLðk; LÞ and PGWðk; LÞ as a function
of the Debye mass m2

D for Q2
s0 ¼ 4.8 GeV2 (same value used in

the other plots of this section).
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be discussed in the next section. Two comments are in order
concerning the next-to-leading power term. First, focusing
on the HTL case, its magnitude is remarkably small. This is
an important aspect as it indicates a close to minimal
sensitivity to nonperturbative assumptions. Second, when
turning to the GW case this difference with respect to the LP
is significantly more pronounced. The underlying reason is
that the map betweenmD and μ through the physical mass μ�
is valid only at LP order. Therefore, when extending its
applicability to NLP, more severe deviations between GW
and HTL are deemed to occur.
Further, it is possible to combine the next-to-leading

power expansion of the dipole cross section [see Eq. (33)]
with Molière’s scheme, by shifting the expansion point
vMSðxÞ → vMSðxÞ þ vNLPðxÞ and continue treating δvðxÞ
[see Eq. (20)] as a perturbation around it. In this way, the
λ-expansion enables the description ofP for all k, while it is
possible to explore the dependence on IR modeling via the
expansion beyond the LP contribution.
The first nontrivial term in Eq. (25) is thus promoted (to

linear order in μ2� [48]) to the following simple expression,

Pð1ÞþδNLPðk; LÞ ¼ λΔxI2ðx; aÞ

−
32λμ2�
c1Q2

s
Δ2

xI2

�
x;

μ2�ffiffiffiffiffi
c2

p
Q2

s

�
: ð34Þ

Equation (34) is no longer a function of solely Q2=μ2� (i.e.,
λ), but also depends on the IR regulator alone and on the
constants c1 and c2; this is an explicit example of the
nonuniversality attribute we have associated to these terms.
The role of the NLP contribution in Molière’s expan-

sion at first (1) order is displayed in Fig. 5 for both GW

(top) and HTL (bottom) potentials. In all cases, the
inclusion of the NLP term has an effect smaller than
5% being this contribution larger when increasing mD, as
expected. This fact confirms the mild infrared dependence
in our description of Pðk; LÞ. Further, the NLP contribu-
tion enhances the value of Pðk; LÞ at small-k⊥ thus
reducing the discrepancy with the full GW/HTL result
observed in Figs. 1 and 2.

V. RELEVANCE FOR PHENOMENOLOGY AT
CURRENT AND FUTURE COLLIDERS

Up to now, we have performed a theory guided selection
of the parameters involved in the description of the medium
in order to highlight the relevant region of interest. That is,
in Sec. III we have deliberately chosen small values of λ as
required by Molière’s scheme or large values of mD in
Sec. IV to better illustrate the contribution of next-to-
leading power terms.
In what follows, we turn our attention to more realistic

scenarios such as the ones being currently explored by LHC
and RHIC together with the upcoming EIC. The relevant
parameters for these three colliders are provided in Table I.
For a given value of the medium length, L, and its temper-
ature, all parameters in this table are uniquely determined.
More concretely, mD is obtained through the leading order

FIG. 4. Ratio of the leading power (LP) (solid) and next-to-
leading power (NLP) expansions to the full GW (top) and HTL
(bottom) potentials for different m2

D. Notice that the orange,
dashed line in the top panel fully overlaps with the reference
black line.

FIG. 5. Impact of the NLP term in Molière’s scheme at (1) order
[using Eq. (33)] for GW (top) and HTL (bottom) potentials for
different m2

D.

TABLE I. Relevant parameters for the three different setups.

Collider T [MeV] m2
D [GeV2] Q2

s [GeV2] q̂ [GeV2=fm] λ

LHC 300 0.54 23.16 4.63 0.17
RHIC 220 0.29 8.56 1.71 0.18

Collider μ [MeV] μ2� [GeV2] Q2
s [GeV2] q̂ [GeV2=fm] λ

EIC 200 0.01 1.75 0.35 0.2
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HTL formula mentioned in Sec. II and Q2
s is given by

Eq. (23) where q̂0 ¼ 18πα2sT3, where we take αs ¼ 1=π. In
all three cases, we take the length of the medium to be
L ¼ 5 fm roughly corresponding to the radius of both Pb
and Au nuclei. For RHIC and LHC, we use the temperature
estimates TRHIC ¼ 220 MeV and TLHC ¼ 300 MeV, corre-
sponding to an indicative average temperature for each setup
in accordance with the values found in, e.g., [49–51]. We
also assume the medium can be described by the HTL
model. Turning to the EIC case, the characteristic scale of the
medium explored by the partonic probe is no longer the
temperature, but the nucleon size that can be approximated
as 1=ΛQCD. This provides a natural value for the infra-red
regulator in the GW model, i.e., μ ¼ ΛQCD ¼ 200 MeV.
Regarding q̂0L, we make use of the Color Glass Condensate
effective field theory to estimate its value following [52],
leading to q̂0L ¼ 0.35 GeV2. Note that this is in the ballpark
of the value used in [53]. We consider in what follows quark
jets with CR ¼ CF ¼ 4

3
.

The results for Pbþ Pb collisions at LHC energies are
shown in Fig. 6. Regarding the large-k⊥ region, the
inability of the leading order term to capture the behavior
of both GW and HTL models becomes apparent in the top
panel. In contrast, the ð0Þ þ ð1Þ and ð0Þ þ ð1Þ þ ð2Þ con-
tributions deliver a distribution identical to the GW result
up to 5% degree of accuracy for k⊥ > 20 GeV. This
statement also applies to HTL because the difference
among these models is negligible in this region, as shown
in the middle panel. In the infrared sector, k⊥ < 1 GeV, we
observe deviations of order 20% which can be improved
with higher order terms, although this sector’s contribution
to physical observables is typically negligible. Around the

peak of the distribution, the disagreement between ð0Þ þ
ð1Þ þ ð2Þ order with GW is of the order of 20%. This result
could be improved by adding higher order terms in
Molière’s expansion [see Eq. (25)].
Turning to RHIC energies, similar features to those at

LHC are observed at large transverse momentum as shown
in Fig. 7. An important remark concerning the small-k⊥
sector is a slight increment of the GW vs HTL disparity
with respect to the LHC case, despite probing a smallermD,
see Table I. The underlying reason is that the value of mD
has to be sufficiently separated from the hard scale in the
problem. That is, the larger the value of the ratioQs0=mD is,
the smaller the sensitivity to the infrared, model-dependent
contributions. Indeed, this ratio is 20% bigger at LHC than
RHIC, thus explaining the mild differences between GW
and HTL for these two experiments.
Finally, the future Electron-Ion Collider at Brookhaven

National Lab [54] will open a new avenue to study
modifications in jet observables when compared to had-
ronic colliders. The reason is that highly energetic partons
will not encounter a thermalized QGP at the EIC, but
rather a dense gluonic system. Multiple interactions with
this over-occupied gluon state naturally leads to transverse
momentum broadening. Its probability distribution is
displayed in Fig. 8, where we have assumed eþ Au to
be the collision system, and the prospected top energy for
this machine and the GW model is employed. We would
like to point out that, in this case, we obtain that the
relevant hard scale is Q2

s ¼ 1.75 GeV2. At the same time,
the average transverse momentum received from the cold
medium is shifted toward smaller values when compared
to RHIC and LHC. This experiment will probe the largest
value of λ and, therefore, the application of Molière’s
scheme is less successful than for the LHC and RHIC
setups. Nevertheless, the evolution of λ as one changes the
experimental setup is slow and therefore this method is
suitable for semiquantitative exploratory studies.

FIG. 6. Top: momentum broadening probability distribution at
different orders in Molière’s expansion, see Eq. (25), compared to
the exact result for GW and HTL potentials at LHC conditions.
Middle: ratio between GW and HTL results. Bottom: ratio
between ð0Þ þ ð1Þ (orange) and ð0Þ þ ð1Þ þ ð2Þ (purple) trunca-
tions with respect to the GW result.

FIG. 7. Same as Fig. 6 but for RHIC.

JOÃO BARATA et al. PHYS. REV. D 104, 054047 (2021)

054047-8



The role played by the nonperturbative contributions at
RHIC, LHC and EIC energies its suppressed when com-
pared to the deviations due to the (1) expansion, as was
shown in the previous section. Therefore, we refrain from
providing the numerical results obtained when considering
these contributions.

VI. CONCLUSIONS AND OUTLOOK

The work presented in this manuscript follows the current
(and future) global effort toward a more precise quantitative
description of jet quenching effects [11–13,47,49]. In
particular, we have: (i) rederived a description of the single
particle momentum broadening distribution, first introduced
by Molière, that is able to reproduce the Gaussian behavior
at small-k⊥ together with the power-law tail through a simple
analytic expression, i.e., Eq. (30); (ii) explored the impact of
nonperturbative modeling of the dipole cross section on the
broadening distribution; (iii) studied the applicability of
Molière’s scattering theory for the description of single
particle momentum broadening at the current experimental
conditions explored by LHC, RHIC and the foreseen EIC.
Although the major analytic result of this paper [i.e.,

Eq. (30)] has been known for over 70 years, its application
to phenomenological studies in jet quenching has, to a large
extent, been ignored. This is particularly surprising given
the widespread usage of the multiple soft scattering para-
metrization [i.e., Eq. (19)] that is known to fail to describe
the hard sector, as we have shown both analytically and
numerically for meaningful parameter selections. It should
be noted that Molière’s proposal, if restricted only to the
first two leading terms whose expressions are known
analytically, requires a pronounced hierarchy between
the hard and soft scales of the problem in order to converge
to the exact result when considering GW/HTL potentials.

In particular, we found that such a separation is reasonably
satisfied at current LHC and RHIC conditions, but is far
from being achieved at the expected EIC setup.
Another important finding of this work is that non-

perturbative contributions, intrinsically associated to the
description of the infrared structure of in-medium scatter-
ing, are found to be quantitatively small. However, we
(again) emphasize that to achieve a meaningful comparison
between medium models, matching to a physical set of
parameters at leading power (LP) accuracy is required. For
the three physically interesting cases explored in Sec. V,
nonperturbative contributions are highly suppressed com-
pared to the ones obtained from Molière’s scheme.
The present results are of relevance for jet quenching

phenomenology and have, for example, been recently
applied to computing the nuclear modification factor
RAA [55]. Interesting future studies could focus on the
impact of the single hard scattering tail on jet substructure
observables such as the groomed opening angle [25] or the
transverse momentum of the hardest splitting in the jet tree
[56], and be further related to the presence of Molière
scattering centers in the quark gluon plasma [19,57].
As mentioned in Sec. III, Eq. (30) can be readily

employed in any Monte Carlo event generator that includes
jet quenching effects. In addition, the formalism described
in this paper can also be applied to small-x physics [58]. A
possibility would be to use Molière’s scheme to construct
the unintegrated gluon distribution needed for particle
production in pþ A [44,59].
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APPENDIX A: TYPICAL INTEGRALS
APPEARING AT (1) ORDER IN

MOLIÈRE’S THEORY

In this Appendix we compute the following Fourier
transforms

I1 ¼
Z
x
e−ix·ke−

1
4
Q2

sx2 ; ðA1Þ

and

I2 ¼
Z
x
e−ix·ke−

1
4
Q2

sx2 log
1

Q2x2
: ðA2Þ

Equation (A1) is a straightforward to compute (x≡ k2=Q2
s)

I1ðxÞ ¼
4π

Q2
s
e−x: ðA3Þ

Equation (A2) makes use of the following integral repre-
sentation of the logarithm

log
1

x2Q2
¼ −lim

ϵ→0

Z
∞

ϵ

dt
t
ðe−t − e−x

2Q2tÞ: ðA4Þ

I2 can then be rewritten in terms of two Gaussian integrals
(using a ¼ Q2=Q2

s)

I2 ¼ −I1
Z

∞

ϵ

dt
t
e−t þ

Z
∞

ϵ

dt
t

Z
x
e−ix·ke−

1
4
ð1þ4atÞQ2

sx2

¼ −I1
Z

∞

ϵ

dt
t
e−t þ 4π

Q2

Z
∞

ϵ

dt
tð1þ 4atÞ e

− k2

ð1þ4atÞQ2
s : ðA5Þ

Performing the change of variables uþ x ¼ x=ð1þ 4atÞ,
the last integral in Eq. (A5) yields

−e−x
Z

−4axϵ

−x

du
u
e−u ¼ e−x½EiðxÞ − Eið4axϵÞ� ðA6Þ

Taking ϵ → 0, the first term in Eq. (A5) and the last term in
Eq. (A6) (after factoring out I1) combine to give

−
Z

∞

ϵ

dt
t
e−t − Eið4axϵÞ ¼ EiðϵÞ − Eið4axϵÞ

¼ − log 4axþOðϵÞ; ðA7Þ

where we used that EiðϵÞ ≃ γE þ log ϵ, with γE ¼ 0.577ð2Þ
the Euler-Mascheroni constant. Finally, we obtain

I2ðx; aÞ ¼ I1ðxÞ½EiðxÞ − log 4ax�: ðA8Þ

APPENDIX B: DIPOLE CROSS SECTION IN THE
GW AND HTL MODELS

In this Appendix we compute the following integral

Z
∞

0

du
u

ðu2 þ b2Þðu2 þ a2Þ ð1 − J0ðuxÞÞ; ðB1Þ

which is related to the GW and HTL models by letting
b ¼ a ¼ μ and b ¼ 0, a ¼ mD, respectively [see Eqs. (3),
(2) and (7)]. First we decompose the integrand as follows

Z
∞

0

du
u

ðu2 þ b2Þðu2 þ a2Þ ð1 − J0ðuxÞÞ

¼ 1

ða2 − b2Þ
Z

∞

0

du

×

�
u

ðu2 þ b2Þ −
u

ðu2 þ a2Þ
�
ð1 − J0ðuxÞÞ: ðB2Þ

Recognizing the following integral representation of Bessel
functions

Z
∞

0

du

�
u

ðu2 þ a2Þ
�
J0ðxuÞ ¼ K0ðaxÞ ðB3Þ

and

Z
∞

0

du
u

ðu2 þ b2Þðu2 þ a2Þ ¼
log a2 − logb2

2ða2 − b2Þ ; ðB4Þ

we obtain

Z
∞

0

du
u

ðu2 þ b2Þðu2 þ a2Þ ð1 − J0ðuxÞÞ

¼ 1

ða2 − b2Þ ½K0ðaxÞ − K0ðbxÞ þ loga − log b�: ðB5Þ

There are two special cases that will correspond to the two
models under consideration in the main text. First, a ¼ b

Z
∞

0

du
u

ðu2 þ a2Þ2 ð1 − J0ðuxÞÞ

¼ 1

2a2
½1 − axK1ðaxÞ�: ðB6Þ

Then for b ¼ 0, using the formK0ðbxÞ ≈ − logðbx=2Þ − γE

Z
∞

0

du
1

uðu2 þ a2Þ ð1 − J0ðuxÞÞ

¼ 1

a2
½K0ðaxÞ þ logðax=2Þ þ γE�: ðB7Þ
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APPENDIX C: GW AND HTL MODELS AT
NEXT-TO-LEADING POWER ACCURACY

In this Appendix we give the explicit formulas for the
GWand HTL potentials up to next-to-leading power (NLP)
accuracy. Using the results from Appendix B, we have

vGWðxÞ ¼ q̂0
μ2

ð1 − μjxjK1ðμjxjÞÞ

¼ q̂0x2

4
log

�
4e1−2γE

x2μ2

�

þ q̂0x4μ2

64
log

�
16e5−4γE

x4μ4

�
þOðx6μ4Þ; ðC1Þ

vHTLðxÞ ¼ 2q̂0
m2

D

�
K0ðmDjxjÞ þ log

�
mDjxj
2

�
þ γE

�

¼ q̂0x2

4
log

�
4e2−2γE

x2m2
D

�

þ q̂0x4m2
D

128
log

�
16e6−4γE

x4m4
D

�
þOðx6m4

DÞ: ðC2Þ

Using the map given by Eq. (14), the model dependent
constants appearing in the generalized NLP dipole cross-
section [Eq. (33)], read

cGW1 ¼ 64
μ2

μ2�
; cGW2 ¼ 16e5−4γE

μ4

μ4�
; ðC3Þ

cHTL1 ¼ 128
m2

D

μ2�
; cHTL2 ¼ 16e6−4γE

m4
D

μ4�
: ðC4Þ

APPENDIX D: DETAILS ON THE KINETIC
DESCRIPTION OF MOMENTUM BROADENING

In this Appendix we outline how some of the results
presented in Sec. III can be obtained solely using the kinetic
description of momentum broadening introduced in Sec. II.
In addition, we provide an equivalent formulation of

Molière’s expansion in the form of a generalized diffusion
equation in momentum space.
One can rewrite Eq. (1) using Eq. (7) as

∂
∂LPðk; LÞ ¼ −

Z
q
vðqÞPðk − q; LÞ: ðD1Þ

In the high energy limit, single hard scattering dominates,
which implies that only the first iteration of Eq. (D1)
contributes and thus one can write [32]

PSHðk; LÞ ¼ −
Z
q
vðqÞð2πÞ2δð2Þðk − qÞ; ðD2Þ

which is satisfied by Eq. (17). On the other hand, when
multiple soft scattering dominates, vðxÞ is quadratic in x,
which allows one to write Eq. (D1) as a diffusion equation
with diffusion parameter q̂

∂
∂LPMSðk; LÞ ¼ q̂

4
∇⃗2

kPMSðk; LÞ; ðD3Þ

which can be solved to yield Eq. (19).
Combining the kinetic description of momentum broad-

ening with Molière’s approach leads to an hierarchy of
(trivially) coupled diffusion equations with a source term.
To explicitly see this, we use Eqs. (20) and (25) in Eq. (D1).
The leading order term satisfies Eq. (D3), while higher
order terms satisfy (i ≥ 1)

∂
∂LPðiÞðk; LÞ ¼ Q2

s

4L
∇⃗2

kPðiÞðk; LÞ

þ 4πQ2
s0

L

Z
q

1

q4
Pði−1Þðk − q; LÞ: ðD4Þ

Eq. (D4) can, in principle, be solved order by order using
Green’s method, but, to the best of our knowledge, and
considering the aims of this paper, there is no obvious
advantages over the procedure followed in the main text.
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