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Abstract

Background: SNP arrays, short- and long-read genome sequencing are genome-wide high-throughput technologies
that may be used to assay copy number variants (CNVs) in a personal genome. Each of these technologies comes with
its own limitations and biases, many of which are well-known, but not all of them are thoroughly quantified.

Results: We assembled an ensemble of public datasets of published CNV calls and raw data for the well-studied
Genome in a Bottle individual NA12878. This assembly represents a variety of methods and pipelines used for CNV
calling from array, short- and long-read technologies. We then performed cross-technology comparisons regarding
their ability to call CNVs. Different from other studies, we refrained from using the golden standard. Instead, we
attempted to validate the CNV calls by the raw data of each technology.

Conclusions: Our study confirms that long-read platforms enable recalling CNVs in genomic regions inaccessible to
arrays or short reads. We also found that the reproducibility of a CNV by different pipelines within each technology is
strongly linked to other CNV evidence measures. Importantly, the three technologies show distinct public database
frequency profiles, which differ depending on what technology the database was built on.
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Background
Copy number variants (CNVs) are a subtype of structural
variants in a genome, that are characterized by a change
in the amount of genomic material through either a loss
or a gain of DNA in case of a deletion or a duplication,
respectively. CNVs are often defined as spanning at least
50 basepairs and have been shown to play important roles
in disease and complex traits [1, 2].
SNP arrays have been used for large-scale cohort-wide

CNV ascertainment [3, 4] since their introduction in the
early 2000s [5–7]. The main principle behind CNV detec-
tion from SNP data is the use of probe intensity values,
normalized against a reference, as a proxy for the total
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allele copy number. It is well recognized that the effect of
an array platform as well as CNV caller and its param-
eter choice is substantial and results in low concordance
between platforms and callers. High false positive rates
and varying sensitivity are well-documented challenges
for array-based CNV calling. [4, 8–10].
Short-read sequencing technology has seen a rapid

development in the last decade [11–13]. Tools that lever-
age short-read data for calling CNVs use four methods:
read depth, discordant read pairs, split reads and assem-
bly [13] as well as various hybrids of these methods
[14–16]. Compared to arrays, short reads enable a better
digital estimation of copy numbers and improve the res-
olution for small variants (<1 kilobase). Moreover, they
are not limited or biased by a probe design. Despite
these advantages, short reads present a challenge for
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CNV calling due to their length, which, together with the
complexity of the variant content, lead to wildly varying
performance of callers [17–21].
Long-read genome sequencing offers both single base-

pair resolution andmultiple kilobase-long reads, that span
many variants in full length [22], is amplification-free, and
allows to reduce sequence coverage bias [23]. The algo-
rithms designed to call CNVs from long reads utilize both
intra- and inter-read signatures, as well as de novo genome
assembly [24]. The known weaknesses of long-read tech-
nologies include elevated error rates (up to 20%) as well as
challenges with CNVs that exceed the length of the reads
in size [25]. Lastly, there is room for improvement for the
algorithms and formats which are in use in the maturing
long-read field [26, 27].
In this study we ask howCNV calling compares between

the three technologies - arrays, short reads and long
reads. Given that the existing benchmarking sets are still
incomplete [28], we aim at performing the technology
comparisons independent of a reference.
Previous efforts towards the characterization of CNV

sets with different technologies can be roughly divided
into direct comparisons of two or more data types and
multi-source integration, in which various data types are
combined and contrasted to varying extent. Studies of
the first kind typically perform pairwise comparisons of
two technologies, relying on different CNV validation
strategies, ranging from the use of a published refer-
ence [29], to genotypes from population cohorts [30], and
assays in short- or long-read data [31]. To our knowl-
edge, a systematic comparison of all three technologies,
that does not rely on any (potentially incomplete) refer-
ence and includes cross-technology validation, is lacking.
Multi-source integration studies compare multiple tech-
nologies to a multi-source compiled reference, using var-
ious orthogonal evidence for validation, such as: matches
to known events in the Database of Genomic Variants
(DGV) [32]; support from hybrid assembly results [33];
additional sequencing and genotyping in short-reads [34]
or raw PacBio reads, short-read depth coverage and other
orthogonal techniques [28]. These studies are on the
bleeding edge of the field and are too resource-demanding
for most projects, which makes it hard to relate their
findings to individual single-technology datasets.
We compared array as well as short- and long-read tech-

nologies in their ability to discover CNVs in the human
genome. To this end, we assembled a comprehensive set
of datasets for the Genome in a Bottle individual of
Northern European ancestry NA12878 [35] of both raw
genomic data and published CNV calls for each of the
three selected technologies. Our data collection was fur-
thermore selected in such way that it could represent
a wide range of platforms and CNV calling pipelines
for each technology. This then enabled us to assess and

quantify the previously identified biases for these tech-
nologies. We present a thorough unbiased comparison of
genomic loci with CNV calls for each of the three tech-
nologies and highlight their most important features. As
such, this will help to interpret existing CNV databases in
a better context as well as inform future studies involving
large-scale CNV assays.

Results
Characterization of CNV calls in NA12878 with arrays, long
and short reads using a read-depth based score
In this study we investigated and contrasted specific char-
acteristics of CNV calls, derived from three different tech-
nologies - SNP arrays, short-read and long-read sequenc-
ing. To this end we assembled a large set of CNV calls
for the well-studied NIST Genome in A Bottle individual
of Northern European ancestry NA12878 [35]. For each
of the three technologies we compiled callsets including
published CNV calls, consensus calls and calls we made
in-house from the public data for this individual (Table 1
and Supplementary file 1). This allowed us to construct a
balanced representation of a broad range of CNV calling
methods and platforms. Of note, for long-read technology
we were able to include both raw [36] and error-corrected
reads [34]. We then further collapsed redundant calls for
each technology into CNV regions (CNVRs) using the
outermost breakpoints to define the new start and end
coordinates (Fig. 1A and Supplementary file 2).
As short reads have been extensively examined with

respect to their capacity to call CNVs (and other types
of structural variants) [54], we focused our investigations
on array and long-read technologies, and included short
reads into comparisons in order to make it possible to
relate our results to those of existing benchmarks. How-
ever, due to the known high false positive rates in CNV
calls from short reads [13], we only included those calls
that passed the default quality criteria of each respective
method in the short-read CNV datasets. In contrast, for
arrays and long reads, we retained all calls in the data, bin-
ning and filtering them by various quality metrics in the
analyses performed in this study.
Since each method and callset reports different types of

score metrics, and some lack a score altogether, we sought
to annotate all CNV calls with a common scoring scheme.
To this end we used duphold [55], a tool that, given a
short-read alignment, provides a read depth fold change
(DFC) score between each CNV locus and its immediate
flanking regions. For CNVRs, the DFC is the median value
of the constituting CNV calls. We then annotated each
CNV call (and CNVR) as either High Quality (HQ) or
Low Quality (LQ) using the DFC score thresholds recom-
mended by the duphold tool developer (Fig. 1C). We refer
to the SVIM caller [45] quality score as long-read intrin-
sic quality score and use it for binning long-read CNVRs
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Table 1 Summary of the CNV datasets and non-redundant CNVRs for each technology (length >500bp)

Source CNV calling tools Method summary Ref. Del.(n) Dup.(n) Del./Dup.

CNV regions, array merge - CNVR 666 533 1.25

Illumina arrays1 PennCNV,
cnvPartition [37],
Nexus [38]

I, AR [4] 93 222 126 37 0.74 6

Affymetrix SNP 6.0 PennCNV [39],
Birdsuite [40]

I, AR [7] 73 36 2.03

CytoScan HD apt-copynumber-cyto
[41]

I, AR our data 105 25 4.2

HapMap II genotypes GADA [42], custom I, genotyping [43] 460 360 1.28

CNV regions, long reads merge - CNVR 74156 23959 3.1

ECR/RR PacBio CNVs2 PBHoney [44]-v1.3.1,
cm-v1.3.1/v1.3.2,
assembly

intra-read discordance,
soft-clipped/unmapped
tails

[34] 1925 NA NA

ECR PacBio RR PacBio
Oxford Nanopore

SVIM [45] inter-/intra-alignment
signatures clustered
classified

[34] [36]
[46]

1235
4265
71179

799
22718
1436

1.54 0.19
49.56

CNV regions, short
reads

merge - CNVR 12932 309 41.85

Published CNVs, >30x svclassify [47] SVM classifier [47] 2502 NA NA

Published CNVs, 50x MetaSV [48] ensemble of RP, SR, RD,
JM, soft-clipped tails3

[48] 11748 NA NA

1000genomes III, >7x BreakDancer [49],
CNVnator [50], Delly
[14], VariationHunter
[51], GenomeSTRiP
[52]

RP, SR, RD,
population-scale
genotyping

[12] 921 6 153.5

Delly RP, SR 2611 122 21.4

Illumina Platinum, >30x GRIDSS [16] genome-wide assembly,
RP, SR

[53] 2278 181 12.58

Manta [15] local assembly, RP, SR 2581 137 18.83

1Selected platforms: CytoSNP850, Omni25, Omni5, OmniExpress; I, intensity; AR, allelic ratio
2ECR, Error-corrected reads; RR, Raw reads; v, blasr version; cm, custom method
3RP, read pairs; SR, split reads; RD, read depth; JM, junction mapping
Bold indicates the aggregated CNV regions based on all listed datasets for each respective technology

(CNVRs with score <1, CNVRs with 1 ≤ score<5 and
CNVRs with score ≥ 5).
As was expected, most pipelines tended to call more

deletions than duplications (Table 1), with the largest
difference between deletions and duplications being for
short reads [56] and a more balanced representation in
arrays (mostly due to the balanced set of CNV genotypes
from the HapMap Consortium [43]). Interestingly, for
long reads, the callsets based on raw reads showed varying
and highly unbalanced ratios of deletions to duplications,
while callset from the error-corrected PacBio reads had
this ratio closer to one.
Furthermore, we found that for long-read CNVs, the

intrinsic quality score agreed well, both with within-
technology support (Fig. 1B.) and the DFC score (HQ,
LQ, Suppl. Fig. S1). The SVIM caller reported much less
CNVs (and more CNVs with higher scores) for the error-
corrected PacBio reads [57] than for both raw PacBio

[36] and Nanopore reads [46]. The two raw long-read
datasets produced high numbers of CNV calls with a
very low score (<1), which mainly fell into the size of
<20Kb and were only supported by a single dataset. The
effect of long-read error correction has been studied pri-
marily with regards to its effect on downstream de novo
genome assembly [58]. Pendleton and colleagues [34]
reported counts for overlaps of deletions and mobile ele-
ment insertions between raw and error-corrected PacBio
reads (Suppl. Fig. 6 in [34]), but a thorough investigation
of the impact of error correction on calling of struc-
tural variants is still missing. Several studies have assessed
the effect of error correction on alignment rates, finding
results to depend on the error-correcting method used
[59]. This would in turn likely carry over to the accuracy
of downstream CNV calling.
To further study the impact of array design on a

CNV calls profile, we compared the density of array
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Fig. 1 Defining and describing the CNVRs in terms of within-technology support, read depth fold change evidence, size and long-read intrinsic
score distribution. A. CNVRs are defined by outermost upstream and downstream breakpoints for a set of CNVs of the same type. The
within-technology support is defined as “single” when a CNVR is derived from a single CNV call of one of the datasets and otherwise as “multi”;
B. Distribution of long-read CNVRs according to their length and the long-reads score bins (in grey, green and beige) and within-technology
support (x-axis); C. For each CNV call a read depth fold change (DFC) score cutoff is used to define high quality (HQ) deletion (top) and duplication
(bottom) with respect to support for a given CNV in a chosen short-read alignment. CNV calls that do not meet the defined DFC score thresholds are
defined as low quality (LQ); D. Density plot (counts) for deletions (indicated with negative values on the x-axis) and duplications (positive values on
the x-axis), across CNV call sizes (x-axis ticks), DFC score-based quality bins (left and right panel) with arrays shown in red, short reads in blue and
long reads in grey, green and beige (for the long-read score binning as in B). The “long-read score <1” (lr. <1 in gray) category is omitted in the right
panel for scaling purposes. Technologies: array - array, lr - long reads, sr - short reads

probes within the CNVRs of each technology. The array-
derived CNVRs, on average, spanned more probes in all
chip designs considered (Suppl. Fig. S2A), compared to
those from the two sequencing technologies. In all three
technologies, the CNVRs with higher within-technology
support systematically spanned more probes along the
genome than those CNVRs, supported by only one dataset
(singletons). If CNVRs with more within-technology sup-
port are systematically longer than singleton CNVRs,
that would explain why they also span more probes.
This was the case for array-derived CNVRs (median
length of 9.8Kb of the multi-supported vs. 3Kb of single-
ton CNVR, P-value < 2.2e-16, Wilcoxon-rank test), while
the opposite held true for both long reads (2.54Kb vs.
3.35Kb, P-value=0.04) and short reads (0.34Kb vs. 0.41Kb,

P-value=9.3e-14). This means that, while being on aver-
age shorter in basepair length, CNVRs based on the two
sequencing technologies with better within-technology
support, spanned regions with higher array probe density
than singleton CNVRs did.
Next, we studied the percentage of CNVRs that had

zero array probe coverage in a selected subset of array
chips (Suppl. Fig. S2B). For array CNVRs, this percent-
age was notably larger for singleton CNVRs. In other
words, CNVRs supported by only one chip design (sin-
gletons) typically covered regions where the other chip
designs had no probes. On the contrary, CNVRs with
support from multiple data sources based on long-reads
more often were completely void of array probes in com-
parison to singleton CNVRs. This demonstrates that the
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long-read based CNVRs - and especially those with sup-
port from multiple callsets - often are in regions avoided
when designing chips. Short-read CNVRs had nearly
identical profiles in all chip designs (except Omni5) and
showed the highest percentage of calls not covered by any
probes, consistent with the larger number of shorter calls
in the short-read datasets (Fig. 1D).

Impact of quality scores on the definition and composition
of CNV loci based on calls from all technologies
To assess the concordance of CNVRs detected between
technologies we constructed a non-redundant set of
genomic loci across all three technologies, hereafter
labelled CNV loci, representing the union of CNVRs

(from all technologies) at a given locus (Fig. 2A). To
facilitate comparisons of the quality of constituting
CNVRs on these CNV loci, we created three gradually
more stringent long-read CNVR sets filtered by intrin-
sic quality scores, which resulted in slightly different
CNV loci (Fig. 2A). We complemented it by creating
CNV loci for only High Quality (HQ) CNVRs for each
technology and intrinsic quality score >1 (above1_HQ),
representing a more stringent filtering strategy (Fig. 2A
and Suppl. Fig. S3). We then used the resulting CNV
loci to assess the between-technology support for each
locus, either counting or explicitly listing the technologies
with CNVRs present within the locus (Fig. 2B, C, E and
Suppl. Fig. S3).

Fig. 2 Definition of CNV loci, their composition and percentage span by CNVRs. A. CNV loci are defined by outermost breakpoints for a set of CNVRs
of the same type. Depending on the CNVRs included in each technology, the resulting CNV loci boundaries will vary; left to right: all technologies
CNVRs included, long-read CNVR filtered by intrinsic score >5 (boundary has changed because one long-read CNVR is no longer included due to its
low score, indicated by hollow rectangle), long-read CNVR filtered by intrinsic score >1 and only HQ CNVRs included for all three technologies
(boundary has changed again since now also an LQ array CNVR is not included, hollow top rectangle); B. Histogram of CNVR counts (using CNV loci
for long-read score > 1 set as representative) binned by size (x-axis) and a list of supporting technologies for array, long-read and short-read,
respectively; C. The between-technology support is defined as the number of technologies having a CNVR in the given CNVL (one, two or three);
D. To compare sizes of constituting CNVRs for each CNV locus, the percentage span of CNV locus is calculated for each technology CNVR, e.g., length
CNVR/length CNV locus × 100; E. Same CNVRs as in panel B, but visualized as proportions rather than counts. Color legend shared with panel B
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The percentage of CNV loci private to long reads varies
with the choice of long-read intrinsic quality score cut-
off, due to abundant low-score calls (Fig. 1B). Short reads
show the highest percentage of private CNVRs. On the
contrary, the array calls tend to agree with at least one
other technology, but even more often with CNVRs from
both long and short reads. Comparing the various quality
CNV loci (Suppl. Fig. S3), it is notable that the propor-
tion of CNV loci exclusively shared between array and
long-read CNVRs is high when considering an unfiltered
long-read dataset (Suppl. Fig. S3, left-most pie chart on
top). Once a long-read score filtering is applied, it drops to
a low percentage. At least a fraction of these could be com-
mon low-quality CNV calls, shared between long-read
and array CNVRs. Once removed from the long reads,
they shift to the “private” category for arrays (Suppl. Fig.
S3, array “above1” panel). Further indirectly supporting
this notion is the fact that the majority of “private” array
calls disappear when further setting a requirement for
only HQ calls from each technology (Suppl. Fig. S3, array
“above1_HQ” panel).
The percentage of span of a CNV locus by CNVRs

in each technology is another indirect quality indication
(Fig. 2D and Suppl. Fig. S4). In a bona fide CNV locus,
the breakpoints of CNVRs from different technologies
would be relatively close and, consequently, CNVRs will
be spanning most - or a high percentage - of their corre-
sponding CNV locus (examples of bona fide deletion and
duplication on Suppl. Fig. S5 and Suppl. Fig. S6, respec-
tively). At the other end of the spectrum,more challenging
genomic regions contain repeats that cause problematic
mapping of reads and resulting erroneous calls. Such
regions are known to be problematic for all technolo-
gies [8, 54] and have poor coverage in many array chips
designs. Thus, the resulting CNVRs will vary much more
in their breakpoints and number as well as in the dis-
tance between them. This can be observed for very large
CNV loci (>500Kb) that tend to have a low percentage of
overlap between the constituting CNVRs, meaning that
these loci are likely driven by a single CNVR. We expect
they could be artefacts in one of the sequencing technolo-
gies, because array-based calls are more robust for very
large calls. We examined eight large CNV loci from the
“long-read score >1” category that were found in all three
technologies and had low percentage spans by constitu-
tive CNVRs. In seven of the eight cases we found that
they were driven by a large low quality CNVR from short
reads, and were gone in the more stringent “above1_HQ”
CNV loci set. The remaining CNV locus of these eight
was driven by a high-quality array deletion CNVR and
was also supported by the visible Log R Ratio distribu-
tion shift below zero in the array signal data (as expected
for a bona fide deletion call). More generally, removing
low quality (LQ) CNVs for all technologies, resulted in a

much-reduced number of loci with a low percentage span
(Suppl. Fig. S4C).

Technology-specific support for CNVRs is consistent with
other quality cues
In the first sections of this paper we used quality labels,
High Quality (HQ) and Low Quality (LQ), defined by a
short-read depth fold change (DFC) score (Fig. 1C). We
extended on this by systematically investigating the sup-
port in each technology raw data for every single CNVR,
regardless of its origin (Fig. 3A).
For each CNVR, we sought to see if it is supported

across technologies (arrays, short reads, long reads). For
this, we picked one dataset to represent each technol-
ogy and assayed its raw data. For the given CNVR we
analyzed if it is supported by the chosen raw data set
(Fig. 3A). For array raw data, we calculated the intensity
shift in the CNVR region relative to its flanks. For short-
read data, we calculated the depth fold change (DFC).
For long-read data, we used the VaPoR method [60] that
aligns the long reads to a reference as well as to a refer-
ence modified in accordance with a predicted CNV (e.g.,
with a segment removed for a called deletion). We then
used the call from the VaPoR tool to determine which
has more support (the reference or the modified refer-
ence). For each CNVR we then got a number (for arrays
and short reads) or a genotype call with the highest like-
lihood (for long reads) (Fig. 3A and Supplementary file
3), which we further interpreted as supporting evidence
(genotypes 1/1 and 0/1) or the lack of supporting evidence
from the long reads (genotype 0/0 or no assigned geno-
type). This allowed us to study if a CNVR well-supported
by short reads is also well-supported by long reads etc.
The most useful way we found to perform this com-
parison was to divide the CNVRs into high-quality and
low-quality groups based on one technology and to study
the distribution of continuous scores.

Short-read and array data evidence In Fig. 3 panel B
we summarized our findings for CNVRs from all three
technologies (indicated by different color lines). They are
grouped into low and high quality based on their sup-
port in short-read data. CNVRs with little support (LQ)
in short-read data were found to also have little support
in array data as the distribution of array-based scores is
shifted to the left (low scores) in the low-quality panel. The
same holds true for CNVRs called by all three technolo-
gies (lines with the different colors).

Long-read and array data evidence In Fig. 3 panel C all
CNVRs are considered for each technology, and grouped
by support in the chosen long-read dataset, based on
long reads support for the reference (“discordant”) or
the modified reference (“concordant”). We then for each
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Fig. 3 Cross-technology support relation to quality cues. A. Cross-technology data evidence collection. For each CNVR in arrays, long- and short
read set, the raw data in all three technologies is assayed for evidence of support. Array signal in the probes within CNVR is compared to the flanking
regions, resulting in a distance metric; Read depth fold change score is used as evidence for the short-read data; Long-read data is assayed as shown
on the dot plots, for evidence of genotypes. B. Normalized density plot with the array-based support score on x-axis (the score represents the
distance between LRR distribution of the probes in the CNV versus flanking regions, the larger the distance, the more support for a CNV), split by
DFC score bins (High and Low Quality) and colored by technologies; C. The violin plots showing distribution of array-based support score for CNVRs
grouped by support derived from assaying the long-read data, with “concordant” group denoting CNVRs, for which the long reads indicated
concordance with the presence of the variant, while for the “discordant” group the was no such support from the long-read data

CNVR retrieved how well it is supported by the cho-
sen array dataset (Supplementary file 4). We find that the
CNVRs based on short-read or long-read technologies
show agreement between array and long-read support. In
other words, CNVRs labelled as “concordant” with the
presence of the CNV from the chosen long-read dataset
also have higher support in the array data, and the other
way around. However, for CNVRs called by arrays (left-
most panel), there is no such pattern. Indeed, the array-
based CNVRs tend to have higher support in the array
dataset regardless of the status in the long-read evidence,
pointing towards array-specific properties of these calls.

Short-read and long-read data evidence Finally, we
looked at the distribution of the short-read based
DFC score within the support label groups (concor-
dant/discordant) derived from long reads for each CNVR
(Suppl. Fig. S7A). There were no duplications in arrays

that were supported by long-read data evidence. The dele-
tions that were supported by the long-read data in most
cases had DFC scores below 1 (support for a reduced read
depth in short-read data within the given CNVR). Con-
sistently with that, deletions, as well as duplications, that
were not supported by long-read data had a clear peak in
DFC score around 1 (no read depth fold change in either
direction in short-read data). These observations held true
for CNVRs originating from all three technologies.
Interestingly, there was a substantial fraction of dele-

tions in the long-read “discordant” group that was sup-
ported by the short-read data (DFC score shifted below 1
- reduced read depth), most prominently for array dele-
tions. We conclude that the CNVRs (regardless of their
technology of origin) that are supported by long-read data
are also likely to be strongly supported by short-read data.
The opposite trend only held true for duplications, but not
for deletions.
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Short-read data evidence and other quality metrics To
follow up, we investigated how DFC score relates to other
quality metrics. In order to do so, we first studied how this
score is distributed, specifically in the long-read CNVRs,
binned on basis of their intrinsic quality score (Suppl. Fig.
S7B). We observed a very consistent trend in which the
vast majority of low-scored long-read CNVRs lacked sup-
port in short-reads (no read depth fold change detected).
The more stringent the score filtering was, the larger the
fraction of CNVRs that showed short-read data support.
This effect was observed for both deletions and dupli-
cations, but more pronounced for deletions. Next, we
investigated the between-technology concordance group-
ing and observed that CNV loci identified by a single
technology tended to be less supported by short-read data
(Suppl. Fig. S7C). Again, the more technologies supported
a CNV locus, the more likely it was to observe stronger
short-read support. This was very consistent across tech-
nologies and valid for both deletions and duplications,
with the exception of private short-read based deletions.
These tended to have a higher support based on DFC
score in the selected representative short-read dataset.
For an overview of all the evidence we collected for

each technology, we extracted a subset of CNVRs that
possessed intrinsic scores, i.e., from datasets in which
we called CNVs in-house from array (PennCNV score)
and short-reads (GRIDSS score). We found that the indi-
rect quality categorization obtained through grouping
by within-technology support (single/multi) was in good
concordance with all considered metrics (Suppl. Fig. S8).
This means that CNVRs that were detected in multiple
datasets within each technology tended to have higher
scores than singleton CNVRs across all metrics and all
technologies.

Public database frequencies of CNVs
We aimed to explore whether we could observe any biases
in public CNV database frequencies, using our multi-
technology CNVR collection. We wondered if a CNVR
that is supported by several datasets within a technology,
would, for example, be more likely to have a higher fre-
quency in a database, than a CNVR that is only supported
by a single dataset (singleton)? Furthermore, could this
behavior change, if a different public database is used to
retrieve the CNV frequencies?
We therefore selected commonly used and relatively

large databases, ranging from a database that contains a
large fraction of CNVs derived from array-based stud-
ies (the Database of Genomic Variants (DGV) [32], to
purely short-read based databases (gnomAD (GD) [61]
and Ira M. Hall lab database (IMH) [62]), as well as the
Deciphering Developmental Disorders (DDD) [63] con-
trols database, containing both short-read based (deep
whole-exome sequencing) and array-based (aCGH) calls.

For every CNVR, we checked its overlap (at least at 50%
of its length) with CNVs in each database. In case overlap
was observed, we retrieved the frequency of the respective
CNV in that database.
We found that CNVRs with support in multiple datasets

tended to be present in public databases more often
than singletons (Fig. 4A). This was observed for almost
all technologies in all databases, except in the case of
short-read based CNVRs. Here the singleton CNVRs were
more often present in the DDD database than the multi-
supported ones. Among the four databases considered,
the DDD database had the lowest percentage of CNVRs
matching all three technologies, while the DGV database
had the highest percentage.
The database frequency profiles were most similar for

the two sequencing technologies (Fig. 4B). The largest dif-
ferences between singleton and multi-supported CNVR
frequencies were observed for the short-read based
databases - GD and IMH. The array-based CNVRs exhib-
ited a very different (and sometimes reverted) pattern of
database frequencies as well as their relation to within-
technology support.
Overall, long-read CNVRs were detected less often in

the public databases than CNVRs coming from the other
two technologies and those that were detected had lower
frequencies compared to the short-read CNVRs.
In terms of between-technology concordance, CNV loci

that were detected by all three technologies had the high-
est percentage of multi-supported CNVRs (Fig. 4C) - that
is, these CNVRs are also supported by multiple datasets
within each technology. On the other hand, private CNV
loci were dominated by singleton CNVRs for array and
short reads, but not for long reads. CNVRs based on
long reads had a substantially higher percentage of CNV
loci with multiple within-technology support across all
categories of between-technology support.

Discussion
To the best of our knowledge, this is the first study that
explicitly cross-assays CNV calls based on array, short-
and long-read data, investigating possible signals in the
raw data for each of the technologies. By including a
variety of published and in-house generated CNV calls
our analysis encompasses a wide representation of popu-
lar CNV calling platforms and analysis pipelines for each
technology. This allowed us to focus on technological
rather than methodological differences between datasets.
We defined a number of simple but informative metrics,
such as within- and between-technology support, long-
read score and short-read depth fold change score bins,
which we then used to quantify and compare the evidence
found in the raw data from each technology.
Having studied the within- and between-technology

support for CNVs, we wanted to further understand what
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Fig. 4 CNV presence and frequencies in public databases. Within and between technology support. A. Percentage of CNVRs present (at 50%
overlap) in public databases; B. Frequencies of CNVRs in public databases (at 50% overlap). DGV - Database of Genomic Variants, DDD - Deciphering
Developmental Disorders database, GD - gnomAD and IMH - Ira M. Hall lab database; C. Relation of between-technology (x-axis) and
within-technology (color fill) support

genomic features might underlie the difference between
the support from the respective data for each technology.
One of themost relevant genomic features for CNV call-

ing is the presence of repeats at the breakpoints, especially
segmental duplications [64], which influence the mappa-
bility (Suppl. Fig. S9, top panel). We found that among the
three technologies, short-read CNVs showed the largest
differences in coverage by segmental duplications at the
breakpoints among the within-technology support cate-
gories (Suppl Fig. S8, lower panel), e.g., more supported
CNVs tended to have lower segmental duplication cov-
erage than less supported ones. This tendency was much
less pronounced but still visible for the long-read CNVs
and not at all for arrays.
On the other hand, CNVs with higher within-

technology support tended to have flanking repeats
around breakpoints for both short- and long-read
sequencing technologies more often than less supported
CNVs (Suppl. Fig S9, top panel).
Finally, we noted that in loci with no flanking repeats,

long-read derived CNVs had significantly higher GC-
content around the breakpoints than short-read ones
(mean 0.56 vs. 0.51, Wilcoxon-rank test, P-value=9.5e-06,
Suppl. Fig. S10). This supports the notion that long reads
can be more efficiently anchored due to the possibility of
spanning more unique subsequences in the genome, than
short reads or array probes.

We observed that array calls often tended to agree with
one or both sequencing technologies. Li and colleagues
[31] performed deep analysis of array- and NGS-based
CNV calling in 254 individuals, limited to losses in genic
regions. They found less than 30% overlap between the
two deletion sets they studied, while almost all array-
based deletions had lower read depth in the NGS data.
Moreover, 88% of those deletions had sequence support at
the breakpoints, when checking the direct support from
the reads, similar to our own observations. We expanded
this idea by performing a reciprocal assessment of array
data support for the sequencing-based calls, both for
deletions and duplications.
Zhou and colleagues [29] compared different strate-

gies at low-coverage short-read WGS in the CNV detec-
tion capabilities of 17 published array platforms, using
the 1000 genomes project CNV set as a golden stan-
dard. They found that short-read based WGS strategies
detected drastically more reference CNVs and exhibited
smaller percentages of CNVs that were not validated by
reference overlap. The choice of the sequencing-based ref-
erence in this study is likely to introduce a bias in favor
of short reads, which should be kept in mind when inter-
preting the results. We tried to avoid this by not using any
“golden standard” but rather defining the CNV loci origi-
nating from all three technologies, with varying inclusion
criteria based on carefully selected quality indicators.
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We also observed that long-read data allows us to call
CNVs in genomic regions which, due to repeats and
problems with mappability, are less accessible to arrays
and short reads. This leads to a distinctive profile of
CNV calls derived from long-read data. Similar conclu-
sions were drawn by Couldrey and colleagues [30], when
they compared a PacBio-based set of CNVs to short-
read variants. They noted an inherent difference in the
detection scope of the two technologies, with fewer calls
and a shift in size distribution towards the calling of
shorter regions in PacBio. Next to this, there was an
overall low overlap between the CNVs from the two
technologies. Our investigation of the public database
frequency profiles further demonstrated that short-read
CNV frequencies correlate with long-read CNV frequen-
cies to a varying extent, depending on the database
used.
To tackle a heterogeneous assembly of fifteen CNV

datasets for the same individual, we adopted the simplest
aggregation strategy, namely, collapsing all overlapping
CNV segments to the outermost breakpoints, separately
for deletions and duplications. While this strategy creates
a tractable set of non-redundant CNV loci, it is also sus-
ceptible to creating large artefact CNV regions, driven in
most cases by a single lower quality call. One way to con-
trol for this is to be able to categorize CNV calls into likely
high and low quality, before collapsing redundant CNVs
in each locus. To this end we used the read depth fold
change score, calculated by comparing the read depth of
the CNV locus to that in the flanking regions. We used
this and other quality metrics to bin CNV sets by qual-
ity and thus creating several versions of aggregated CNV
regions and loci, ranging from loci more likely to have
artefacts to those less likely to have them due to stringent
quality cutoffs.
The caveat of using the read depth score from short-

read alignment is that the evidence itself is then subject
to the biases of the short-read technology. The use of dif-
ferent technologies allows to pinpoint these biases, which
then would be expected to be observed only for short-read
CNVs - exactly as we have seen with short-read CNVs
being more often supported by read depth fold change
scores, regardless of other quality categories. The two
other metrics - array-based score and long-read support -
were collected across all technologies datasets to provide
additional angle on the quality, independent of the DFC
score.
Finally, while the within- and between-technology sup-

port metrics allowed us to slice the dataset in meaningful
ways, they are also subject to biases. For each technol-
ogy, repeatedly called CNV regions can be both true calls
with clear evidence in the raw data as well as common
artefacts (such as many CNV calls in the vicinity of cen-
tromeres and telomeres), which warrants caution in the

results interpretation. Additional details, such as the span
of a CNV locus by the segments that constitute it, pres-
ence of both deletion and duplication calls within the same
locus, assembly support from short or long reads, orthog-
onal technology data or validation by pedigree data may
help to further delineate the more likely bona fide calls
from artefacts.
The study design developed here allowed us to over-

come the limitations of an incomplete or lacking “golden
standard”. Moreover, given a range of emerging technolo-
gies, our design can be further extended to include new
types of evidence. At the same time, our results can be
readily interpreted in the context of the existing bench-
marking studies on the same individual, providing a useful
link for relative comparison between technologies. Other
practical aspects, such as cost-effectiveness, availability
or required computational resources will of course need
to be taken into consideration and might have different
weight depending on the study.

Conclusions
Our results confirm that long reads call CNVs in regions
not easily accessible to short reads or arrays, while
short reads have the highest proportion of small pri-
vate CNV calls (500bp-1Kb). The reproducibility of a
CNV by different pipelines within each technology is
strongly linked to all other support metrics studied
here. Importantly, all three technologies show distinct
public database frequency profiles, which also differ
depending on what technology the database was pri-
marily built on. Our study provides an unbiased com-
parison of the three technologies and both a method
and a data collection that can be further explored and
expanded on.

Methods
Data collection
We assembled five datasets for arrays, four datasets for
long reads and six datasets for short reads, respectively,
either using CNV calls already published or performing
the CNV calling from the (mostly public) raw data in-
house. All datasets are provided in the Supplementary
file 1.

Genome annotations
The following annotations were obtained from UCSC
Table Browser for human genome build hg19:

• Segmental duplications (Repeats/ Segmental Dups/
genomicSuperDups)

• Centromeres and telomeres (Mapping and
Sequencing/Chromosome Band)

• Mappability (Mapping and Sequencing/
wgEncodeCrgMapabilityAlign100mer.bw)
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ENCODE Blacklisted region hg19 was obtained from
[65]. The segmental duplication track was merged to
collapse complex nested segmental duplication loci into
larger contiguous segmental duplication regions (merged
segDups).

Data preprocessing
All CNV calls, alignment files and genome annotation
have been done in, obtained or lifted over to UCSC hg19
genome build. PennCNV [39] was run with defaults on
the raw array intensity files for the chips in the multi-array
set and Affymetrix SNP6.0 data. As the published calls on
multiple array did not have a copynumber annotation, two
methods to add this information were used:

• The CNVRs were matched against three other array
sets with percentage overlap selected so that no
CNVR is annotated with two types (e.g., deletion and
duplication), which was at the 70% reciprocal overlap.
For the CNVs that met this criterion, a type was
added from cognate overlapping segment with
known copynumber;

• all CNVRs were mapped back to each chip and
attempted to validate with PennCNV validate script.
If validated, the copynumber was assigned to the
cognate CNVR, otherwise left unknown.

• Only the copynumber-annotated subsets of CNVRs
were taken forward for further analysis.

CNV calls from raw and polished PacBio reads as
well as Nonopore reads were obtained with SVIM
[45] (ngmlr aligner option) and only the deletions and
duplications (interspersed and tandem) >500 bp were
taken forward for analysis. Sv-callers [66] was run
on the short-read alignment with defaults and only
calls that passed the default quality requirements and
>500 bp were taken forward. GRIDSS [16] developer
R script was used to interpret the breakpoints from
GRIDSS. Finally, each dataset was filtered against telom-
eres and centromeres as well as ENCODE blacklisted
regions.

Quality binning across platforms
Since each technology and each caller has its own score
and more than half of the published callsets have no
scores, we sought to add a scoring scheme that would
be uniform for all technologies. To this end we used
duphold [55], which, given a short reads alignment, cal-
culates a depth fold change for a variant locus versus
flanking regions. We annotated all callsets with duphold
fold change scores and used suggested values of DHFFC <
0.7 and DHBFC > 1.3 to define a High Quality (HQ) dele-
tion and duplication respectively. This provided a uniform
scoring across technologies and a labelling of each CNV
as either HQ or LQ.

Aggregating CNVs within each technology
All sets were first merged to collapse redundant segments
for the replicate and different callers in array sets, mul-
tiple calls in short and long read sets. Importantly, the
dataset CNV sets were first split into HQ and LQ sets and
then merged within each set. This was done to avoid low
quality segments driving artefact CNV regions (CNVRs).
For arrays, however, first the merging was done within
each set and then split to HQ and LQ sets. This is due to
redundant calls in arrays from replicates of the same sam-
ple and redundant calls by different callers from [4]. For
each technology, a master set then was created, for dele-
tions and duplications separately, merging once more, and
annotating in howmany sets a call was present, which rep-
resents the within technology support (“multiple/single”
label and a count of supporting callsets for each CNVR).
For long reads, the intrinsic quality score (SVIM score)
was propagated by calculating a median across all merged
segments.

All-way CNV comparison between the technologies
In order to determine the common CNV loci across the
three master call sets, e.g., aggregated CNVR in three
technologies in high quality and law quality bins (six sets
in total), we repeated the merging procedure with at least
a single basepair overlap, for deletions and duplications
separately. This produced the CNV locus, which then was
used to track the shared CNVRs. To determine the influ-
ence of the intrinsic score filtering in long reads, we create
three sets: all calls, calls with SVIM score >1 (above1)
and calls with SVIM score >5 (above5). In addition, we
created a fourth set with SVIM score >1 and only HQ
CNVRs (above1_HQ). The above-described procedure of
the merging was then repeated for so-defined sets.

Score bins percentage span
In order to study to which extend the CNVRs overlap
between the three technologies, we used a CNV locus
as a reference for each call within, and reported a per-
centage of CNV locus covered for each CNVR, e.g.,
length (CNVR)/length (CNV locus)× 100. When multi-
ple CNVRs from a technology were present in one CNV
locus, we used their total length for percentage cover-
age calculation. Since HQ and LQ regions may overlap
within each technology, we performed these calculations
separately for each quality bin.

Array probe coverage
In order to evaluate the coverage by array probes for all
CNVR sets, we used bedtools (v2.29.2) [67] intersect to
determine all markers falling within a respective CNVR
and then counted the number of markers, reporting zero
for no intersection. For this we used array probe maps
from several chip designs from [4]: Illumina’s OmniEx-
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press, CytoSNP850, Omni25, Omni5 as well as Affymetrix
SNP 6.0 and CytoScan HD

Array-based CNV evidence
To investigate to which extend raw array data support
each given CNVR, we used Affymetrix SNP 6.0 data for
one replica and extracted Log R Ratio values (LRR) for
all probes within a CNVR and 50 probes in flanking
regions immediately up- and downstream (flanks) using
extract_snp_single.py script from SeeCiTe package [68].
We then summarized this data by comparing the LRR
distributions in CNV and flanks by calculating Hellinger
distance (ranging from 0 to 1) between the two dis-
tributions. The larger Hellinger distance reflects a shift
of LRR in CNV from flanks and thus supports a del
or a dup in the locus. Additionally, we calculated the
median of the LRR within a CNV locus, as the evidence
of the shift from the signal values – expected around
-0.5 for a heterozygous deletion and around 0.3 for a
duplication.

Long-read based CNV evidence
For validation of CNVRs with the long read data, we
used an SV validator tailored for PacBio technology called
VaPoR [60]. For a list of SV regions in bed-like format
the tool assays the PacBio read alignment and reports a
number of metrics, among which the genotype of the pro-
posed SV (VaPoR_GT in standard notation of 0/0, 0/1, 1/1
or NA). We consider variant-supporting genotypes 0/1
and 1/1 as “concordant” with the presence of the CNV,
otherwise we label it “discordant”.

Intrinsic scores for long-read based calls
Three of the four datasets for the long reads were pro-
duced by a SV caller SVIM [45], which provides a quality
score, ranging 0 to 100. The score incorporates various
types of support for an SV, but in the latest releases of
the tool, the developers note that the formula puts more
emphasis on the number of the supporting reads above
any other features. The published consensus dataset [34]
is a superset of calls produced using three different variant
detection methods, with varied parameters, resulting in a
total of seven approaches, one of which includes assem-
bly. While there is no score associated with the calls, the
number of approaches supporting each variant (max N=7)
is provided, which we used here as a score and loosely
normalized it to fit the SVIM score.

Intrinsic scores for array-based calls
Since the published array callsets came without a quality
score, we sought to extract scores from the calls we gener-
ated in house, using PennCNV [39] for the multiple array
platform data as well as for the subset of published calls
from [4] that were successfully validated by PennCNV.

Intrinsic scores for short read-based calls
WeusedGRIDSS scores, which were available for CNVRs,
that included CNV calls by GRIDSS. For the compar-
ison with the other intrinsic scores (Supp. Fig. S7) we
normalised the score, dividing it by 100.

Public databases
AnnotSV [69] was used on all CNVR sets to retrieve
the public database matches and frequencies. The four
databases then were selected for the analysis.

Genomic context annotation
AnnotSV [69] was used on all CNVR sets to anno-
tate repeats and GC content in the regions flanking
the CNVRs. Additionally, the percentage covered by
segDups was calculated using bedtools (v2.29.2) [67] on
merged non-redundant segDup track from UCSC. The
average mappability score was produced with a big-
WigAverageOverBed tool over the wgEncodeCrgMapabil-
ityAlign100mer.bw.
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