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Introduction
The main reason for the development of new ther-
apeutic strategies in MG is the need for more spe-
cific and more effective drugs in particular in 
so-called refractory or difficult-to-treat/treatment 
resistant autoimmune myasthenia gravis.1,2 The 
inability to achieve sufficient clinical improvement 
with minimal symptom expression or remission of 
myasthenic symptoms despite adequate dosing 
and sufficient treatment duration of standard 
immunomodulatory treatment in all MG patients 
poses a challenge for both patients and treating 
neurologists, and illustrates the need for new ther-
apeutic strategies. The recent awareness of the 
unmet needs in MG has in part been driven by 
studies of new pharmacotherapies in which 
patients with MG not fully responding to standard 
immunosuppressive treatment were recruited.3,4 

Standard previous treatment included corticoster-
oids in combination with azathioprine or other 
immunosuppressants such as cyclosporine A, 
mycophenolate mofetil, tacrolimus or methotrex-
ate, given in an adequate dose and over a suffi-
ciently long time period.5 The aim of this review is 
to present the spectrum of emerging new immu-
notherapies in MG.

The spectrum of upcoming immunotherapies with 
a more specific action on the immune system 
includes T-cell directed monoclonal antibodies 
that block the subsequent intracellular cascade 
associated with T-cell activation, monoclonal anti-
bodies directed against key B-cell molecules, and 
monoclonal antibodies directed at the fragment 
crystallizable neonatal receptor (FcRn), as well as 
inhibition of distinct elements of the complement 
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system (shown in the Figure 1 and in the Table 1). 
Some of these drugs have been recruited from the 
therapeutic arsenal recently developed for treat-
ment of other autoimmune or neoplastic diseases.6 
In the last few years, several clinical studies have 
been conducted to study safety, tolerability and 
efficacy of the new substances in MG, some trials 
are still ongoing or planned (see Table 1). In order 
to understand which new therapeutic agents 
should be considered as most promising in future 
MG therapy, it seems appropriate to briefly 
describe key aspects of the MG pathophysiology. 
The review aims at giving an overview on recent 
developments in the field of new therapeutic sub-
stances in MG to elucidate their mechanisms of 
action, describe ongoing studies and briefly list 
some of the challenges.

Pathophysiology of myasthenia gravis
MG is a prototypic autoimmune disease in which 
several types of autoantibodies (abs) directed 
against distinct proteins of the neuromuscular 
endplate have been identified. MG can be divided 
into seropositive MG with abs directed either 
against the nicotinergic acetylcholine receptor 

(AChR), muscle tyrosine kinase (MuSK) or low 
density lipoprotein receptor type 4 (LRP4), and 
seronegative MG where no such antibodies are 
detected by available methods. The pathophysio-
logical relevance of several other muscle antibod-
ies that may be detected in some MG patients, 
including abs against agrin, cortactin, collQ, ace-
tylcholinesterase (AChE), Kv1.4, titin and ryano-
dine receptor has not been delineated so far.7–9 In 
up to 80% of patients with generalized MG, abs 
against the nicotinergic type of AChR are present, 
whereas abs directed against MuSK or LRP4 are 
detectable in about 6% and 2% of the generalized 
MG-patients only, with population variation.10

Role and function of specific antibodies
The different types of ab act differently at the 
neuromuscular endplate, determining different 
types of immunopathology, and in turn also the 
response to treatment. This is in particular true 
for AChR-ab and MuSK-ab positive MG. The 
determination of IgG subclass type for the patho-
genic abs may have implications for treatment 
strategies. AChR-abs which belong to subclass 
IgG1, IgG2, or IgG3 induce internalization and 

Figure 1.  New immunotherapies in myasthenia gravis.
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degradation of AChR by crosslinking the recep-
tors in the postsynaptic region. An important 
effector mechanism, in particular of IgG1 and 
IgG3 AChR-abs, is complement activation lead-
ing to destruction of neuromuscular endplate 
structures by the membrane attack complex 
(MAC), and including loss of postsynaptic fold-
ing, reduction of AChRs in the membrane and an 
increase of the intersynaptic distance, altogether 
impairing neuromuscular transmission.7–9,11 A 
third, but less important mechanism is direct ab-
blockade of the AChR. AChR-abs are mainly 
generated by long-lived plasma cells.7–9 Clinically, 
AChR-ab positive MG is subtyped as pure ocular 
versus generalized MG with or without bulbar 
involvement and with early onset or late onset 
(before or after age 50 years), and with or without 
thymoma.5

MuSK is a key molecule with regard to AChR 
clustering.7–9 MuSK abs disrupt the interaction of 
LRP4 with MuSK, required for clustering of the 
AChR. These abs can induce the dispersion of 
preformed agrin-independent AChR clusters.11 
Thus, the molecular structure underlying the 
endplate region becomes severely disturbed. 
MuSK abs are of subclass IgG4, and unable to 
activate complement. They are thought to be pro-
duced by short-lived plasma blasts which is in 
accord with the better response to rituximab in 
MuSK-ab positive than in AChR-ab positive 
MG.6,12 LRP4 abs belong to the complement 
activating IgG1 and IgG3 subclass, and can dis-
rupt agrin-LRP4 signaling in the postsynaptic 
membrane.7,9,11,13

In seronegative MG there is in some patients evi-
dence for IgG1 antibodies directed against clus-
tered AChR capable to activate complement and 
correlating with complement deposits in patients’ 
thymus tissue and with typical electrophysiologi-
cal MG features.14,15 Intercostal muscle biopsies 
in seronegative MG revealed complement depos-
its activated by IgG1.16

Mechanisms of action of therapeutic agents 
in MG
MG treatments act at various steps of the immune 
cascade. Main mechanisms of action include 
reduction of T- and B-cell proliferation (steroids, 
azathioprine, mycophenolate mofetil), reduction of 
T-cell proliferation (cyclosporine A, tacrolimus, 
methotrexate), depletion of short-living B-cells 

(rituximab), depletion of long-living B-cells (bort-
ezomib), complement-inhibition (eculizumab, 
ravulizumab, zilucoplan).6 Plasma exchange and 
immunoadsorption aim at rapid elimination of 
pathogenic abs and complement, and IvIG inhibit 
complement activation and pathogenic abs.5,17 
Thymectomy is a standard procedure in early onset 
AChR-ab positive MG under age of 50. Its efficacy 
regarding long-term improvement has been dem-
onstrated by a randomized study in which 126 
patients, 66 treated by thymectomy and steroids 
and 60 treated by steroids only were included, and 
also in several real-life, uncontrolled studies.5,10,18 It 
is of crucial importance to remove surgically all 
thymic tissue. Thymectomy is now often performed 
by an endoscopic procedure.5 In MuSK-antibody 
positive myasthenia gravis thymectomy apparently 
does not seem to lead to clinical improvement.19

Difficult to treat or refractory MG
The definition of difficult to treat or refractory 
MG is still under debate, but there is some con-
sensus that main characteristics are persistent 
impairment in activities of daily living; at least 
one imminent or apparent myasthenic crisis per 
year (not related to lack of compliance, infection, 
or use of drugs that induce MG deterioration), a 
regular need for plasma exchange or IVIg; or per-
sistent major side effects of MG treatment. This 
should occur despite adequate standard treat-
ment including thymectomy if indicated, acetyl-
choline esterase (AChE) inhibitors at maximum 
tolerable doses, corticosteroids in an acceptable 
dose; and use of at least two standard immuno-
suppressants in a sufficient dose for ⩾1  year.1,2

B-cell directed therapies
B-cells play a decisive role in the pathogenesis of 
MG. Therefore, therapeutic approaches targeting 
key molecules of B-cells, mainly CD 19 and CD 
20, are expected to be effective in MG. Rituximab 
is a chimeric monoclonal antibody against the B 
cell surface antigen CD20. This drug depletes 
CD20 positive B- cells for 6–12 months, mainly 
due to apoptosis and receptor down-regulation. 
Immune effects include reduction of antigen 
presentation, reduced cytokine production, T-cell 
and macrophage activation, as well as upregula-
tion of Treg cells.6,12 Rituximab for MG is not 
regarded as off-label in many countries and has 
been administered to patients with AChR-ab and 
MuSK-ab positive MG in the last 15 years.4–6 
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Several observational studies indicate that both 
MuSK-ab positive and AChR-ab positive patients 
profit from regular administration of rituxi-
mab.20–26 The drug seems in some patients to be 
effective even at low doses of 250 to 500 mg given 
every 6–9 months.4,27,28 Evidence from prospec-
tive and controlled studies for a positive effect of 
rituximab in MG is still lacking. The phase II 
Beat-MG trial failed to prove efficacy, in particu-
lar a steroid sparing effect, of rituximab in a larger 
cohort of MG patients, probable related to the 
baseline criteria of patients included into the 
study, to the study design, and drug-related 
mechanisms.7,29 Nevertheless patients with 
MuSK-ab positive MG appear to have better out-
comes with rituximab than their counterparts 
with AChR-ab positive MG.22,30,31

Inebilizumab is an i.v. administered humanized 
IgG kappa monoclonal ab targeting the CD19 sur-
face antigen on B-cells. In contrast to rituximab, 
inebilizumab depletes a broad spectrum of B cells 
including plasmablasts and some plasma cells. A 
placebo-controlled trial in NMO spectrum disease 
showed positive effects with less relapses in the 
treatment group suggesting that inebilizumab 
might become a B-cell directed treatment option 
also in MG.31,32 A multicenter study evaluating 
inebilizumab in AchR-ab and MuSK-ab positive 
myasthenia gravis is ongoing.33

Obinutuzumab, an anti-CD 20 monoclonal ab 
leading mainly to direct cell death of B-cells, was 
administered to a single patient with chronic lym-
phatic leukemia and treatment resistant MG, 
leading to substantial improvement of myasthenic 
symptoms.34

B-cell proliferation and survival are regulated by 
B-cell activating factor/a proliferation-inducing 
ligand (BAFF/APRIL), B-cell activating factor 
receptor (BAFF-R), B-cell maturation antigen 
(BCMA), and transmembrane activation and cal-
cium modulator and cyclophilin ligand (CAML) 
interactor (TACI).35 A phase II study on telitacic-
ept (TACI-Ig fusion protein) in MG is ongoing 
(NCT04302103).36 Telitacicept (RC18) acts by 
binding to two cell-signaling molecules, 
B-lymphocyte stimulator (BLyS) and a proliferat-
ing-inducing ligand (APRIL). By only affecting 
mature B cells, telitacicept has minimal impact on 
early and memory B cells, which are important for 
an adequate body immune function.35 Belimumab, 
a human monoclonal IgG1λ ab directed against 

B-lymphocyte stimulator (called BLyS, BAFF or 
TNFSF13B), induces a reduction in B-cell differ-
entiation and thereby leads to a reduced number 
of circulating CD 19 cells.37 However, this drug 
did not show a significant positive effect as adjunc-
tive treatment in a randomized and placebo-con-
trolled study of generalized MG.38 Further B-cell 
directed therapies are under development or have 
already been approved for other B-cell mediated 
autoimmune diseases.35,37

Plasma cell directed therapies
Based on experimental studies, the proteasome 
inhibitor bortezomib should be promising as a 
new therapeutic agent in MG as this drug 
induces cell death and reduction of plasma cells, 
T-cell activation and proliferation, and secre-
tion of TNF-α, IL-1β, and IL-6.39 Bortezomib 
is a selective reversible inhibitor of the 26 s pro-
teasome, effective in the elimination of malig-
nant plasma cells in multiple myeloma, and in 
particular in the depletion of short-lived and 
long-lived B-cells and plasma cells.40 Plasma 
cells produce the pathogenic antibodies in MG. 
In a few cases, bortezomib 1.3 mg/m2 body sur-
face s.c. four times within 2 weeks led to 
improvement of severe, refractory MG.41 An 
open trial of bortezomib in autoimmune disease 
including MG was stopped due to recruitment 
problems.42

TAK-079 is a monoclonal ab against CD38 
expressed on plasma cells, T and NK-cells and 
represents a potential drug in MG therapy. A phase 
II study in AChR- and MuSK-ab positive MG 
patients has started in 2020 (NCT04159805).37,43 
Daratumumab, another CD 38 ab, is approved 
for multiple myeloma and may represent an alter-
native drug to reduce plasma cell activity in MG.6

Complement inhibitors
The complement system represents an important 
part of the innate immune system. In autoim-
mune complement-mediated diseases, specific 
autoantibodies activate complement which leads 
to damage of distinct tissue-specific structures, 
for example, the neuromuscular endplate in 
AChR-antibody positive MG. Complement 
inhibitors like eculizimab, ravulizumab and zilu-
coplan may reduce terminal complement/MAC 
activation in MG by blocking C5 and in case of 
zilucoplan also C6.44

https://journals.sagepub.com/home/tan


C Schneider-Gold and NE Gilhus

journals.sagepub.com/home/tan	 7

Eculizumab is a monoclonal antibody directed 
against C5, and previously established as therapy 
of complement-mediated disorders like hemolytic 
uremic syndrome and paroxysmal nocturnal 
hemoglobinuria. After the REGAIN study had 
shown rapid and functionally important improve-
ment in refractory AChR-ab positive MG, also 
other complement inhibitors have been consid-
ered as a therapeutic option in MG.3 REGAIN 
showed efficacy of eculizumab (n = 62) vs pla-
cebo for secondary endpoints including the 
Quantitative Myasthenia gravis Score (QMG)), 
MG-Quol 15, proportion of patients with at least 
a 3-point reduction in the MG-ADL score, but 
not for the primary MG-ADL endpoint 
(p = 0.069). Most patients improved during the 
first 12 weeks and remained stable during treat-
ment with 1200 mg eculizumab every 2 weeks till 
week 130 in the open label extension study.3,45 
Rates of exacerbations, rescue therapies and hos-
pitalization were significantly lower in the eculi-
zumab group compared to the placebo group.3,45

Ravulizumab is a humanized monoclonal ab func-
tionally similar to eculizumab. Ravulizumab has a 
prolonged half-life due to enhanced FcRn binding 
and is administered iv every 8 weeks. Currently, a 
phase 3 study on ravulizumab in MG is ongoing.46

Zilucoplan is a short 35 kDa macrocyclic peptide 
which binds to C5, blocks C5 cleavage into C5a 
and C5b, and prevents therefore binding of C5b 
to C6 thereby inhibiting the activation of MAC. 
In a randomized, double-blind, placebo-con-
trolled phase 2 clinical trial, 44 AChR-ab–positive 
patients with generalized MG and mean baseline 
Quantitative Myasthenia Gravis (QMG) score of 
18.8 were randomized to a daily s.c. self-injection 
of placebo (n = 15), 0.1 mg/kg zilucoplan 
(n = 15), or 0.3 mg/kg zilucoplan (n = 14) for 
12 weeks.46 Zilucoplan 0.3 mg/kg resulted in a 
mean reduction from baseline of 6.0 points in the 
QMG score and 3.4 points in the MG ADL score. 
Near-complete complement inhibition appeared 
superior to submaximal inhibition.47

Further complement inhibiting substances may 
be transferred from other indications to the MG 
field in the future.

FcRn antagonists
Fragment crystallizable neonatal receptor (FcRn) is 
a MHC-like receptor that binds albumin and IgG 

and protects IgG from its lysosomal degradation 
by transporting it back to the cell surface to 
reenter the circulation (IgG recycling). This 
mechanism extends IgG life span, in particular 
that of IgG3, and is more effective in increasing 
the IgG serum concentration than IgG produc-
tion. In ab-mediated diseases, this physiologic 
mechanism maintains disease activity by preserv-
ing autoantibodies. IgG recycling contributes to a 
delay or lack of therapeutic efficacy of immu-
nomodulators acting at upstream levels of the 
immune cascade. In turn, inhibition of FcRn 
appears to be a promising mechanism to prevent 
antibody-mediated effects in autoimmune dis-
ease. The extent of IgG recycling is related to the 
functional status of FcRn.48,49

Drugs targeting FcRn lead to reduction of FcRn 
expression and availability with inhibition of 
FcRn function. This leads to increased degrada-
tion of endogenous IgG including pathogenic 
autoantibodies. FcRn inhibitors bind to FcRn 
with high affinity and lead to selective reduction 
of serum IgG, preferentially of IgG 3 and to a 
lesser extent of IgG4, but also to some albumin 
reduction. The effects of FcRn inhibition are 
reversible and related to dose. The IgG reduction 
is typically up to 70%–90% of what is obtained by 
plasma exchange. FcRn inhibition has no effects 
on other components of the immune system, in 
particular no influence on B-cells and plasma 
cells.4 A few FcRn inhibitors have already been 
evaluated in clinical trials in MG:

Efgartigimod is a humanized anti-FcRn-IgG1 Fc 
fragment. In the phase III ADAPT study, a single 
dose of efgartigimod 10 mg/kg body weight i.v. 
reduced serum IgG and AChR abs by up to 50% 
within the first 2 weeks, correlating with signifi-
cant clinical improvement.50 Continuous treat-
ment reduced serum IgG and AChR abs by a 
maximum of 75%. The AChR-ab and IgG reduc-
tion correlated with the extent and duration of 
clinical improvement. Two-thirds of the patients 
showed significant improvement of MG-ADL as 
compared to placebo. In the MG group without 
detectable antibodies, 9/19 patients showed ADL 
and QMG response compared to only 4 patients 
in the placebo group. An ongoing study examines 
whether efgartigimod given subcutaneously has 
the same beneficial effect.51

Rozanolixizumab, a human anti FcRn IgG4 ab, 
was shown to reduce plasma IgG by 75%–90% 
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when 50 mg or 150 mg/kg doses were adminis-
tered in a phase 2 trial in MG, but the drug did 
not induce clinically significant improvement of 
the QMG) as primary endpoint but of secondary 
endpoints (MG ADL, MGC-Score).52 This might 
be attributed to the design of the trial. Nipocalimab 
is a human deglycosylated IgG1 anti-FcRn mono-
clonal ab that binds with picomolar affinity to 
FcRn at both endosomal pH 6.0 and extracellular 
pH 7.6.6,49 It seems to be safe in pregnant women. 
A phase II trial in AChR- and MuSK ab positive 
MG is ongoing (NCT03772587).53 The results of 
another FcRn-inhibitor phase II study, in which 
batoclimab (RVT-1401) was evaluated in MG, 
have not been published so far.54

T-cell directed treatments
Iscalimab, an anti-CD40 monoclonal ab, 
expressed on B-cells, T-cells, and antigen-pre-
senting cells leads to blockade of T cell depend-
ent ab responses and reduction of germinal cell 
formation.37 A randomized, placebo-controlled 
phase II study (NCT NCT02565576) in AChR- 
and MuSK ab positive generalized MG showed 
no significant improvement, but good safety.55

Since in MG T-cells induce B-cell proliferation 
and differentiation into plasma cells via cytokines, 
drugs inhibiting cytokines or T-cells may be 
another valuable treatment option in MG. T-cell 
directed treatment strategies include tocilizumab, 
an anti-IL-6 receptor ab binding to IL-6R and 
thereby inhibiting the inflammatory cascade. 
Tocilizumab was shown to have beneficial effects 
in some MG patients refractory to rituximab.56 
Satralizumab is a pharmacologically optimized 
IL6-R inhibitor with a prolonged half-time due to 
enhanced ab recycling. It is administered subcu-
taneously. Satralizumab binds membrane-bound 
or soluble IL-6R and has recently been approved 
for NMO spectrum disease on the basis of a phase 
III study.57 A phase III study of satralizumab in 
AChR-ab positive MG is currently recruiting.58 
Brodalumab, an anti-IL-17/Il-17RA monoclonal 
ab which inhibits autoaggressive T- lymphocytes, 
represents another drug addressing the cytokine 
pathway and might be effective in MG.6 Further 
candidates are secukinumab inhibiting the  IL-17- 
and rontalizumab inhibiting the INF-alpha path-
ways and abatacept, a fusion protein consisting of 
the Fc part of IgG1 and the extracellular domain 
of human cytotoxic T-lymphocyte-associated 
antigen 4 (CTLA4), which can bind to CD 

80- and CD 86-positive cells, thereby inhibiting 
co-stimulation of T cells by antigen-presenting 
cells.6

Chimeric antigen receptor (CAR)-T-cell 
therapy
Phase II trials on CD8 positive CAR-T-cell ther-
apy directed against plasma cells that express the 
B-cell maturation antigen (BCMA) are underway 
in MG after this treatment strategy has been 
approved by the FDA for B-cell-acute lymphatic 
leukemia and B-cell lymphoma.6,59 This treat-
ment principle is regarded as especially promising 
for MuSK ab positive MG.60

Further treatment strategies
Several smaller series of refractory MG patients 
treated by hematopoetic stem cell transplantation 
have been reported. In one series, hematopoetic 
stem cell transplantation was reported to induce a 
remission in seven patients, and they could stop 
all immunosuppressive treatment after 8 months. 
They remained in stable remission at a median 
follow-up time of 40 months.61

With an increased focus on parenteral MG ther-
apy, both intravenous and subcutaneous immu-
noglobulin treatment have emerged as potential 
options for chronic MG therapy.62 Subcutaneous 
immunoglobulins were also shown to be effective 
in mild to moderate exacerbations of myasthenia 
gravis.62,63 These are antibody-unspecific treat-
ments. Antigen-specific immunoabsorption, 
removing only the antibodies against AChR or 
MuSK, is a modification of plasmapheresis.9 It is 
clinically effective, but not superior to ordinary 
plasmapheresis.

Antibodies that selectively eliminate autoantibod-
ies involved in human disease (seldegs) have been 
developed, are effective in experimental disease, 
but have not yet been tried for MG.64 A phase 2 
study on the antisense oligonucleotide monarsen 
against AChR abs in MG showed only modest 
improvement in the QMG score.65 No further tri-
als have followed.

In theory, influencing non-AChR and non-MuSK 
targets in the muscle could improve muscle 
strength in MG. Tirasemtiv activates the troponin 
complex and was reported to improve MG symp-
toms in a few patients.66 CIC-1 chloride channels 

https://journals.sagepub.com/home/tan


C Schneider-Gold and NE Gilhus

journals.sagepub.com/home/tan	 9

in skeletal muscle influence muscle strength and 
can be modified pharmacologically.67 The ultimate 
aim should be to find therapies that are immuno-
logically specific for the disease to be treated or 
even specific for the disease in the individual 
patient to be treated. That would mean to inhibit 
totally the action of the pathogenic antibodies 
against epitopes on AChR, MuSK or LRP4, either 
directly or through interference with the antigen-
specific T cells. Further insight into single B and T 
cells with RNA-sequencing and gene expression 
analysis may elucidate their association to MG in 
detail and guide individually directed therapies.3 A 
further theoretical aim would be to be able to pre-
vent MG by antigen-specific vaccination.

Discussion
The main aim of this review has been to give an 
overview on potential new drugs for MG and to 
elucidate their mechanism of action. With the 
introduction of new drugs the therapeutic options 
in MG have changed, particular for refractory 
MG. With the approval of new and expensive 
substances, cost-benefit questions become prom-
inent, but also potential risks of new versus old 
drugs. New therapeutic strategies and guidelines 
need to be developed by relevant bodies and 
based on all available evidence. Patients’ quality 
of life and burden of disease analyzed more inten-
sively in the last years, should be key elements in 
such evaluations. For the newest drugs, key evi-
dence is still lacking.

Conclusion
There is an increasing spectrum of new drugs 
addressing cellular and molecular targets in MG 
pathogenesis and representing potentially effec-
tive and more selective treatment strategies 
(shown in the Figure 1). Several important clini-
cal studies evaluating these drugs have been con-
ducted in the last few years or are ongoing or 
planned (see Table 1). Further characterization 
of function and pathogenicity of the abs in MG is 
necessary. Increasing knowledge on ab-mediated 
pathophysiological mechanisms will help to 
improve MG therapy and could lead to the devel-
opment of more individualized antigen-directed 
treatment approaches in the future.
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