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Because edge modification problems are computationally difficult for most target graph 
classes, considerable attention has been devoted to inclusion-minimal edge modifications, 
which are usually polynomial-time computable and which can serve as an approximation 
of minimum cardinality edge modifications, albeit with no guarantee on the cardinality 
of the resulting modification set. Over the past fifteen years, the primary design approach 
used for inclusion-minimal edge modification algorithms is based on a specific incremental 
scheme. Unfortunately, nothing guarantees that the set E of edge modifications of a 
graph G that can be obtained in this specific way spans all the inclusion-minimal edge 
modifications of G . Here, we focus on edge modification problems into the class of chordal 
graphs and we show that for this the set E may not even contain any solution of minimum 
size and may not even contain a solution close to the minimum; in fact, we show that 
it may not contain a solution better than within an �(n) factor of the minimum. These 
results show strong limitations on the use of the current favored algorithmic approach to 
inclusion-minimal edge modification in heuristics for computing a minimum cardinality 
edge modification. They suggest that further developments might be better using other 
approaches.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Edge modification problems have been widely studied, both because they ask a very natural theoretic question (how close 
is a graph to satisfying a given property?) and because they have proven quite useful for solving real-world problems [1–4]. 
Editing a graph, which is the most general of the edge modification problems, consists of modifying its edge set (adding 
some and deleting others) in order to obtain a graph in a target class. The particular cases where only additions of edges 
or only deletions of edges are allowed are called the completion problem and the deletion problem respectively. Ideally, 
in any edge modification problem, one would like to compute the minimum number of modifications necessary to reach 
the target class. Unfortunately, most editing problems are difficult, even when the target class is very simple, such as 
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threshold graphs [5] or the disjoint union of cliques [6].2 Edge modification problems also usually remain difficult when 
only one kind of operation (addition or deletion) is allowed. As usual, there are several approaches that have been used 
to deal with this computational difficulty, such as parameterized complexity [7–10], approximation algorithms [11] and 
heuristics [12,13,1,14,2].

For edge modification problems, the most flourishing of these approaches, in terms of the amount of work it has at-
tracted, is the heuristic approach, probably because these heuristics are based on a theoretically well-founded relaxation of 
the problem: instead of asking for a set of modifications that has minimum cardinality, one can simply ask for a set of mod-
ifications that is minimal for inclusion. The immediate benefit of this is that, in most cases, this relaxation of the problem 
is polynomial-time solvable. As a counterpart, this approach does not give any guarantee on the number of modifications 
output by the algorithm relative to the minimum possible. This is not necessarily overly limiting as inclusion-minimal solu-
tions are not bad, at least in the sense that they do not contain a better sub-solution, i.e. a proper subset of modifications 
that also reaches the target class. Moreover, inclusion-minimal algorithms often have a nice property which is exploited in 
practice: they often make choices during execution that, instead of being made deterministically, can be made randomly, 
thereby leading to a different solution each time the algorithm is run. Then, running the algorithm several times and keep-
ing the best solution, one can hope that the resulting best solution is good enough, i.e. the number of modifications it 
contains is not much bigger than the minimum possible.

It turns out that in many cases the inclusion-minimal algorithms that have been developed are incremental [12,15,13,16–
22,14]: vertices of the graph are added to a solution graph one by one, and for each added vertex x, the algorithm computes 
an inclusion-minimal set of modifications Mx incident to x so that the new graph belongs to the target class. The rationale 
for using this incremental scheme, which we refer to as the local incremental approach, is that when the target graph class 
has the hereditary property and is stable under the addition of one universal vertex or one isolated vertex, which is most 
often the case for the classes considered in the literature, the solution at the end of the local incremental algorithm is 
guaranteed to be inclusion-minimal for the whole graph. To this purpose, the locality condition, which requires that the 
modifications performed are incident to the newly added vertex x, is important. Indeed, for chordal completion for example, 
if the added edges are not incident to the new vertex x, the obtained completion may not be minimal for inclusion, even if 
the number of added edges is minimum. Moreover, computing a minimum cardinality chordal completion of a chordal graph 
G plus a new vertex x is NP-hard [23], while computing an inclusion-minimal (and actually even a minimum cardinality) 
set of edges incident to x that results in a chordal graph can be done in polynomial time [13]. Therefore, another reason for 
using the local incremental approach is that it makes computations tractable, usually in low polynomial complexities, and 
simplifies the design of algorithms. In addition, it is naturally compatible with the randomized heuristic approach mentioned 
above: there are usually several possible choices for an inclusion-minimal set of modifications at each incremental step, and 
there is also a choice to be made for the order in which vertices are processed. Making these choices randomly provides 
a different solution at the end of each execution of the algorithm, which, as explained above, is interesting for heuristic 
purposes. This local incremental approach was first introduced for modifying graphs into interval graphs [15,12] and chordal 
graphs [13] and has since then been used many times for interval graphs themselves [21,19] and for other target graph 
classes such as split graphs [18], comparability graphs [16], trivially perfect graphs [17], cographs [14,20] and permutation 
graphs [22]. It has become such a common practice that for most of these classes, the local incremental approach is the 
only approach currently available for solving the inclusion-minimal modification problem.

Nevertheless, this local incremental approach raises a concern, which is the subject of this article. The concern is that 
the solutions that can be obtained using the local incremental approach are restricted, in the sense that the set E of such 
solutions does not necessarily contain all inclusion-minimal modifications of the input graph (see [17], for examples). This 
raises an immediate question: does the set E contain at least some good-enough solutions? More precisely, one might ask 
whether E always contains a minimum solution, or at least a solution that is not very far from the minimum, say within 
a constant factor. These are precisely the questions we address here in the particular case where the target is the class 
of chordal graphs. Rephrased in more algorithmic terms, we ask whether, for any input graph, there exists a choice of the 
processing order of the vertices and a choice of inclusion-minimal modification set at each incremental step such that the 
resulting inclusion-minimal chordal modification of the input graph at the end of the incremental scheme is minimum or 
within a constant factor of the minimum. To this regard, let us mention that it has been shown that, under some complexity 
hypothesis, there does not exist any deterministic polynomial-time algorithm that achieves a constant3 factor approximation 
for the minimum cardinality chordal completion problem [24]. Nevertheless, this does not imply that the answer to the 
question we ask is negative in the case of chordal completion. Indeed, there may exist choices for the local incremental 
approach that guarantee the resulting completion to be within a constant factor from the minimum, but it may still be 
impossible to perform such choices in polynomial-time with a deterministic algorithm (there are �(n!) possible orders on 
the vertices of the input graph). Conversely, if there do not exist suitable choices for the local incremental approach, a 
poynomial-time approximation algorithm within a constant factor may still exist using a different approach.

Our results. We consider three kinds of edge modification problems for the class of chordal graphs: pure completion (only 
additions of edges are allowed), pure deletion (only deletions of edges are allowed) and general editing (both additions 

2 Graph terms are defined in Section 2.
3 However, there exists a deterministic polynomial-time approximation algorithm for the problem within a small but non-constant factor [11].
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Table 1
Summary (with forward references to proofs)

Type of Modification Does the set of How bad can the best
incremental solutions incremental solution
include a minimum be relative to the
cardinality solution? minimum cardinality?

Pure Completion No (Theorem 2) �(n) (Theorem 2)
Pure Deletion Yes (Theorem 4) 1 (Theorem 4)
General Editing No (Theorem 6) �(n) (Theorem 6)

and deletions of edges are allowed). We show very different behaviors for these three problems with regard to the local 
incremental approach.

For chordal deletion, we show that for any inclusion-minimal chordal deletion H of the input graph G , there exists an 
order on the vertices of G and at each incremental step a choice of an inclusion-minimal set of deletions such that the 
solution obtained at the end is exactly H . This means that for chordal deletion, the set of solutions that can be obtained by 
the local incremental approach is not restricted and contains all inclusion-minimal deletions of the input graph. Therefore, 
the questions of (1) the existence of a randomized polynomial-time algorithm based on the local incremental approach 
that has an asymptotically non-null probability to discover a minimum cardinality deletion (note that deterministically 
computing a minimum deletion is NP-hard [25]) and (2) the existence of a deterministic polynomial-time algorithm based 
on this approach that guarantees a constant factor approximation, are open. Note however that our results do not imply 
that such algorithms do exist, only that it is possible they exist.

At the other extreme, we show that for both chordal completion and chordal editing there exist graphs for which the 
set of local incremental inclusion-minimal solutions do not contain any of minimum cardinality. Even worse, the number of 
modifications in the best local incremental inclusion-minimal solutions is sometimes �(n) times larger than the number in a 
minimum cardinality solution. This shows that it is not possible to design an algorithm, either randomized or deterministic, 
that follows the local incremental approach and that guarantees an approximation ratio in the worst case better than O (n).

Overall, our results, which are summarized in Table 1, show some intrinsic and very sharp limitations of the local 
incremental approach for chordal edge-modification problems, which is currently the main algorithmic approach used for 
minimal edge-modification into classic graph classes, not only for chordal graphs. Interestingly, in the case of chordal graphs, 
these limitations appear very different depending on the type of edge modification considered. Therefore, our results call 
for a systematic study of the set of local incremental solutions for other graph classes and probably for a shift in the current 
algorithmic approach to minimal edge modifications into classic graph classes.

Outline of the paper. The paper is organized as follows. Section 2 provides an overview of the terminology. Section 3
introduces a family of graphs called fat-cycles and proves several key properties about local incremental inclusion-minimal 
solutions to the chordal modification of fat-cycles. Results for chordal graph completion (restricting the solution to adding 
edges) and chordal graph deletion (restricting the solution to deleting edges) when there are no restrictions on the structure 
of G are given in Sections 4 and 5 respectively. The more general case of incremental chordal graph editing is addressed in 
Section 6. Finally, Section 7 discusses future directions.

2. Preliminaries

All graphs considered here are finite and simple, meaning that they are undirected, unweighted, and do not include 
multiple edges or self-loops. We use G to represent an arbitrary graph, V its vertex set and E (or EG ) its edge set. We will 
also use the notation G = (V , E) and let n represent the cardinality |V |. An edge between vertices x and y will be denoted 
by (x, y) or equivalently (y, x). The open neighborhood of x is denoted by N(x) (or NG(x)) and its closed neighborhood by 
N[x] = N(x) ∪ {x}. The sub-graph of G induced by the set of vertices X ⊆ V is denoted by G[X] = (X, {(x, y) ∈ E | x, y ∈ X}).

A clique K ⊆ V is a set of vertices that are pairwise adjacent. A simplicial vertex is a vertex x whose neighborhood N(x)
is a clique. A chord of a cycle is an edge that joins two non-consecutive vertices in the cycle. A chordal graph G = (V , E) is a 
graph in which every cycle of length four or more has a chord.

Definition 1 (editing, completion, deletion). A chordal editing H of a graph G = (V , EG) is a chordal graph H = (V , E H ) on the 
same vertex set as G . The difference between EG and E H , represented by MG,H = E H�EG , is called the modification set. 
Where the graphs G and H are clear, we will simply use M to represent the modification set. Two standard variations on 
chordal editings are defined as follows.

• A chordal completion of G is a chordal editing H in which the modification set M ∩ EG = ∅. In the case of chordal 
completions, the edges in M are called fill edges.

• A chordal deletion of G is a chordal editing H for which the modification set M ⊆ EG .
3
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Table 2
Minimum Cardinality for Each Type of editing

Graph (reference) G1 in Fig. 2 G2 in Fig. 3 G3 in Fig. 4
(Theorem 1) (Theorem 3) (Theorem 5)

Pure Completion 3 �(n) �(n)

Pure Deletion �(n) 1 �(n)

General editing 3 1 6

Definition 2 (inclusion-minimal, minimum). An inclusion-minimal editing (completion/deletion) H of G is one for which its 
modification set MG,H is minimal for inclusion among all chordal editings (completions/deletions) of G . In other words, no 
proper subset of MG,H yields a chordal modification of G .

A minimum editing (completion/deletion) Hopt of G is one for which its modification set MG,Hopt has minimum cardinal-
ity among all chordal editings (completions/deletions) of G .

Clearly, editing is a generalization of both completion and deletion, as a completion or a deletion of a graph G is also 
an editing of G . In the case of chordal graphs, this generalization is strict in the sense that the minimum size of a chordal 
editing may be negligible compared to both the minimum size of a chordal completion and the minimum size of a chordal 
deletion (Column G3 of Table 2). On the other hand, chordal completion and chordal deletion are incomparable in the sense 
that there are graphs for which the minimum size of a chordal completion is negligible compared to the minimum size of 
a chordal deletion (Column G1 of Table 2), and vice versa (Column G2 of Table 2).

As explained previously, our goal is to determine the worst case performance of chordal edge modification algorithms 
using the main approach currently available to solve inclusion-minimal edge modification problems into graph classes that 
have the hereditary property. In the remainder of this article, we refer to this algorithmic approach as the local incremental 
approach. It is formally defined as follows.

Definition 3 (local incremental approach). The local incremental approach to finding a chordal editing (completion/deletion) of 
a graph G = (V , EG) processes the vertices in some specified order x1, x2, ..., xn , determining a series of disjoint modification 
sets M1, M2, . . . , Mn at each incremental step such that M1 = ∅ and the two following properties are satisfied for all i ≥ 2, 
using notations V i = {x1, . . . , xi} and graph G ′

i = (V i, EG[V i ]� 
⋃

1≤ j≤i−1 M j):

1. all modifications in Mi are incident to xi , i.e. Mi ⊆ {xi} × V i−1, and
2. Mi is an inclusion-minimal set of modifications such that the graph Hi = (V i, EG ′

i
�Mi) is chordal.

The set M = ⋃
1≤i≤n Mi is the modification set output for G and Hn = (V , EG�M) is the corresponding inclusion-minimal 

chordal editing (completion/deletion) of G .

3. Fat cycles

In this section we introduce a family of graphs that will provide the basis for the extreme examples in subsequent 
sections.

Definition 4 (fat cycle, thin clique, thick clique). A fat cycle is a graph G defined by a circular sequence4 K0, K1, . . . K p−1 of 
non-empty cliques such that for any i ∈ �0, p − 1� and any x ∈ Ki , the neighbors of x outside Ki are exactly the vertices in 
Ki−1 ∪ Ki+1. The cliques in a fat cycle are characterized based on their cardinality.

• A thin clique Ki has only one vertex, that is |Ki | = 1.
• A thick clique Ki has more than one vertex, that is |Ki | > 1.

In the remainder of this section we prove properties about chordal editings, completions, and deletions of sufficiently 
large fat cycles (at least four cliques) that have at least two thin cliques.

Lemma 1 (fat cycle editing in the presence of 2 thin cliques). Let G be a fat cycle defined by the circular sequence K0, K1, . . . K p−1
where p ≥ 4, and suppose K0 = {a} and Kl = {b} for 2 ≤ l ≤ p − 1 are two thin cliques. Let μ = min{|Ki | | i ∈ �1, l − 1�}. In any 
editing H of G such that one of the two following mutually-exclusive conditions holds (see Fig. 1 for an illustration):

1. (a, b) ∈ E H and l ≥ 3, or
2. (a, b) /∈ E H and there exists a path from b to a in H[Kl, . . . , K p−1, K0]

4 This means that all indices in the sequence are taken modulo p.
4
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Fig. 1. (a). Condition 1 of Lemma 1: (a, b) ∈ E H and l ≥ 3. (b). Condition 2 of Lemma 1: (a, b) /∈ E H and there exists a path Pba from b to a in 
H[Kl, . . . , K p−1, K0].

the modification set MG,H contains at least μ distinct modifications, each of which is incident on a vertex in 
⋃

i∈�1,l−1� Ki .

Proof. If (a, b) /∈ E H (Condition 2 of the lemma), let Pba be a chordless path from b to a in H[Kl, . . . , K p−1, K0] and let 
Pba = b, a otherwise, i.e. if (a, b) ∈ E H (Condition 1 of the lemma). By definition of μ, for any i ∈ �1, l − 1�, Ki contains 
at least μ distinct vertices, which we denote by xi

j , for j ∈ �1, μ�. For any j ∈ �1, μ�, consider the vertex set defined by 
C j = Pba ∪ {x1

j , . . . , x
l−1
j }. Observe that if (a, b) /∈ E H , then Pba contains at least three vertices and hence C j has at least 

four vertices. On the other hand, if (a, b) ∈ E H but l ≥ 3, then C j also has at least four vertices since there are at least two 
cliques K1 and K2 between K0 and Kl .

As H is chordal, C j does not induce a cycle in H , regardless of the choice of 1 ≤ j ≤ μ. But since Pba is an induced path 
of H , it follows that H contains at least one modification of G among the vertices in C j that is not between two vertices 
in Pba . This modification is therefore incident to some vertex in P j = {x1

j , . . . , x
l−1
j }. As this holds for all j ∈ �1, μ� and the 

vertices in P j and P j′ are distinct for j �= j′ , it follows that H contains at least μ modifications that are incident to at least 
one vertex of 

⋃
i∈�1,l−1� Ki . �

Lemma 1 gives a general characterization of modification sets of a fat cycle G that has two thin cliques. The characteri-
zation is based on the presence or absence of an edge between the two thin cliques in the resulting chordal editing H . The 
result holds regardless of whether H is a pure completion, pure deletion, or editing. The next two corollaries to Lemma 1
refine the characterization based on the relative location of the two thin cliques.

Corollary 1 (fat cycle editing, consecutive thin cliques). Let G be a fat cycle defined by the circular sequence K0, K1, . . . , K p−1 where 
p ≥ 4 and suppose K0 = {a} and K p−1 = {b} are two (consecutive) thin cliques in G. Let μ = min{|Ki| | i ∈ �1, p − 2�}. Then

1. One of the minimum chordal editings of G = (V , EG) is the graph Hopt = (V , EG� MG,Hopt ) with MG,Hopt = {(a, b)}, and
2. Any chordal editing H = (V , EG� MG,H ) of G for which (a, b) /∈ MG,H has cardinality |MG,H | ≥ μ. In other words, if the edge 

(a, b) is not deleted in H, then there are at least μ modifications in MG,H .

Proof. Since G is not chordal, MG,Hopt contains only one modification, and the resulting graph Hopt is clearly chordal, it 
follows that Hopt is a minimum chordal editing of G , proving Part 1. Since p − 1 ≥ 3, Part 2 follows immediately from 
Condition 1 of Lemma 1 with K0 = {a} and Kl = K p−1 = {b}. �

Note that, because a deletion is a particular editing, the statement of Corollary 1 remains true when changing the term 
editing to the term deletion. However, because this statement involves an edge deletion, this result does not apply to chordal 
completions of fat cycles.

Corollary 2 (fat cycle editing, non-consecutive thin cliques). Let G be a fat cycle defined by the circular sequence K0, K1, . . . , K p−1
where p ≥ 4 and suppose K0 = {a} and Kl = {b} for 2 ≤ l ≤ p − 2 are two thin cliques in G. Let μ1 = min{|Ki| | i ∈ {1, . . . , l − 1}}, 
μ2 = min{|Ki| | i ∈ {l +1, . . . , p −1}}, and μ = min{μ1, μ2}. Any chordal editing H = (V , EG� MG,H ) of G for which (a, b) /∈ MG,H

has cardinality |MG,H | ≥ μ. In other words, if the edge (a, b) is not a fill edge in H, then there are at least μ modifications in MG,H .

Proof. Note that since (a, b) /∈ MG,H and since (a, b) /∈ EG , then (a, b) /∈ E H . Now if there exists a path from b to a in 
H[Kl, . . . , K p−1, K0], then by Condition 2 of Lemma 1 it must be that |MG,H | ≥ μ1 ≥ μ. On the other hand, if there does 
not exist any path from b to a in H[Kl, . . . , K p−1, K0], since each of the cliques Kl+1, . . . , K p−1 contains at least μ2 vertices, 
then G[Kl, . . . , K p−1, K0] contains at least μ2 paths from b to a such that the internal vertices of any two distinct paths are 
5
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Fig. 2. Graph G1 is shown in black. It is a fat cycle {a}, Rab, {b}, Rbc, {c}, Rac . Each of the thick cliques Rab , Rbc , and Rac has (n − 3)/3 vertices. When n ≥ 15, 
G1 admits a unique minimum chordal editing that adds the three fill edges shown in red. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

pairwise disjoint. It follows that MG,H must contain at least μ2 deletions of edges, at least one for each path, and hence 
|MG,H | ≥ μ2 ≥ μ in this case as well. �
4. Incremental chordal completion

In this section we address the effectiveness of the local incremental approach to chordal completion. We begin by 
showing that there are graphs that have a unique minimum chordal completion that is �(n) better than any other inclusion-
minimal chordal completion of the same graph.

Theorem 1. For any n ≥ 15, the graph G1 depicted in Fig. 2 has a unique minimum chordal editing which consists of the three fill edges 
in Mopt = {(a, b), (b, c), (a, c)}. Furthermore, any chordal editing of G1 that does not contain all three fill edges in Mopt has cardinality 
at least (n − 3)/3 = �(n).

Proof. Clearly the graph Hopt = (V , EG1� Mopt), where Mopt = {(a, b), (b, c), (a, c)}, is chordal. Moreover, since n ≥ 15, then 
(n − 3)/3 ≥ 4 and therefore the truth of the first sentence of the statement of the theorem will follow from the truth of the 
second sentence, which we will now prove.

First, let μ = |Rab| = |Rbc| = |Rac | = (n − 3)/3, and H = (V , EG1� MG1,H ) be a chordal editing of G1 = (V , EG1 ) that 
does not include, without loss of generality, the edge (a, b). Now consider two possibilities: either there is a path from b
to a in H[{b} ∪ Rbc ∪ {c} ∪ Rac ∪ {a}], or there is no such path. We will show that in either case MG1,H contains at least 
μ = �(n) modifications, thereby proving the theorem. If the path exists in H , then Condition 2 of Lemma 1 holds, and 
hence |MG1,H | ≥ μ. If, on the other hand, there is no such path, then the modification set MG1,H must break all such paths 
in G1. Label the vertices Rbc = {x1

b, x2
b, . . . , xμ

b } and Rac = {x1
c , x2

c , . . . , x
μ
c } and consider the μ paths from b to a defined by 

P j = b, x j
b, c, x

j
c , a, for 1 ≤ j ≤ μ. The only way to break the path P j is to delete at least one of its edges. Since the paths 

P j are pairwise disjoint relative to their sets of edges, it follows that at least μ edges must be deleted, one for each path. 
Hence, we have again that MG1,H includes at least μ distinct modifications. The theorem follows. �

Since the optimal editing of G1 is a pure completion, Theorem 1 applies to completions as well. That is, we can say that, 
when n ≥ 15, the graph G1 depicted in Fig. 2 has a unique minimum chordal completion, which consists of the three edges 
in Mopt , and moreover all other inclusion-minimal completions of G1 have cardinality �(n). The next result shows that the 
unique minimum chordal completion of G1 cannot be obtained, or even approached to within a factor better than �(n)

by the local incremental approach, which is the purpose of this section. Note that Theorem 2 is stated in terms of editing 
instead of completion because we will use it in a more general context in the sequel. But since completion is a particular 
case of editing, it implies the same result for chordal completion.

Theorem 2. It is impossible to obtain the unique minimum editing of the graph G1 using the local incremental approach. Furthermore, 
all inclusion-minimal editings of G1 that can be obtained by the local incremental approach have cardinality at least �(n), as compared 
to |Mopt | = 3.

Proof. First, note that it follows from Theorem 1 that the unique minimum completion of G1 has the modification set 
Mopt = {(a, b), (a, c), (b, c)}. By way of contradiction, assume x1, x2, · · · , xn is a sequence of the vertices in V that produces 
the fill edges Mopt incrementally and without loss of generality, assume a comes before b and b comes before c in the 
sequence. Observe that the only chordless cycles in G1 of length greater than 3 go through all of a, b, and c. Thus, in an 
inclusion-minimal incremental approach no fill edge can be added before c is processed. But then the local incremental 
6
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Fig. 3. Graph G2 is shown in black. It is a fat cycle {a}, {b}, Rb, Ra . The thick cliques Ra and Rb each have (n − 2)/2 vertices, where n ≥ 6. For x ∈ Ra and 
y ∈ Rb , (x, y) ∈ EG2 . When n ≥ 6, G2 admits a unique minimum editing that deletes the edge (a, b).

approach will never add the fill edge (a, b) using the given sequence. This is a contradiction since the unique minimum 
completion of G1 includes the edge (a, b).

The fact that all completions of G1 that can be obtained incrementally have cardinality at least �(n) follows immediately 
from the second sentence in the statement of Theorem 1. �
5. Incremental chordal deletion

In this section we turn our attention to the effectiveness of the local incremental approach to chordal deletion. As we 
will see, the results for chordal deletion are substantially different than those for chordal completion. We begin, however, 
with a result that is similar to that of Theorem 1.

Theorem 3. For any n ≥ 6, the graph G2 depicted on Fig. 3 has a unique minimum chordal editing, which consists of deleting the single 
edge in Mopt = {(a, b)}. Furthermore, all the other inclusion-minimal editings of G2 have cardinality �(n).

Proof. Since the fat cycle {a}, {b}, Rb, Ra satisfies the premise for Corollary 1, it follows from Part 1 that Hopt =
(V , EG2� Mopt) with Mopt = {(a, b)} is a minimum chordal editing of G2. Moreover, Part 2 of Corollary 1 guarantees that 
any other inclusion-minimal editing H of G2 has |MG2,H | ≥ |Ra| = (n − 2)/2 = �(n), since |Ra| = |Rb| = min{|Ra|, |Rb|}. The 
uniqueness of Mopt follows. �

Since the optimal editing for G2 is a deletion, Theorem 3 applies to deletions as well. That is, we can say that any graph 
G2 that has the structure depicted in Fig. 3 has a unique minimum chordal deletion, which consists of deleting the single 
edge (a, b), and moreover all the other inclusion-minimal deletions of G2 have cardinality �(n). We already used this result 
to fill in column G2 of Table 2 and we will use it in the next section in the more general context of chordal editing.

We now come back to the main purpose of this section and we show that, unlike the negative result about chordal 
completion that we obtained in the previous section, for any graph G it is in fact possible to produce a minimum chordal 
deletion of G using the local incremental approach. The result follows from the fact that every inclusion-minimal chordal 
deletion of a graph can be produced using the local incremental approach, which is stated by the following lemma.

Lemma 2. For any inclusion-minimal chordal deletion H = (V , EG�MG,H ) of a graph G = (V , EG), there exists an order 
x1, x2, . . . , xn of the vertices in V and choices for inclusion-minimal deletion sets Mi at each incremental step i, such that the re-
sulting modification set M = ⋃

1≤i≤n Mi is precisely MG,H .

Proof. Consider a reverse perfect elimination ordering π of the vertices of H , i.e. an order x1, x2, . . . , xn such that for all 
i ∈ �1, n�, xi is simplicial in H[x1, x2, . . . , xi]. It is well known since [26] that a graph is chordal if and only if it admits 
such an ordering. To prove the theorem, it is sufficient to prove that for all i ∈ �2, n�, NH[x1,...,xi ](xi) is an inclusion-minimal 
deletion of the neighborhood NG[x1,...,xi](xi) making H[x1, . . . , xi−1, xi] chordal, i.e. the modification set defined by H at step 
i satisfies the constraints of the local incremental approach. This is what we do now.

Assume for the sake of contradiction that this is not true for all i ∈ �2, n� and consider the smallest index l such that 
this does not hold, i.e. NH[x1,...,xl](xl) is not an inclusion-minimal chordal deletion of the neighborhood of NG[x1,...,xl](xl). 
As NH[x1,...,xl](xl) is clearly a chordal deletion of the neighborhood of xl (H is chordal, which is a hereditary property), it 
follows that the reason why the property is not satisfied for index l is that NH[x1,...,xl](xl) is a deletion of the neighborhood 
NG[x1,...,xl](xl) but is not inclusion-minimal. Then, consider a modified neighborhood Nl � NH[x1,...,xl](xl) for x at step l that 
is obtained from an inclusion-minimal deletion of the neighborhood of x.5

5 Note that the inclusion relationship between the set of deleted edges and the neighborhood obtained is reversed: if the set of deleted edges defining 
Nl is included in the one defining N , then Nl contains N .
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Now, consider the graph H ′ defined by E H ′ = E H ∪ (Nl \ NH[x1,...,xl](xl)). Since Nl is obtained by deleting some edges in 
G , and so are the neighborhoods at all other incremental steps, by definition, then H ′ is obtained from G by only deleting 
edges. Moreover, since Nl � NH[x1,...,xl](xl), H ′ is a deletion of G which is strictly included in the one giving H . We will now 
show that H ′ is chordal, which will give an immediate contradiction with the fact that H is an inclusion-minimal chordal 
deletion of G .

To prove that H ′ is chordal, we exhibit a reverse perfect elimination ordering of its vertices, denoted σ . As we 
noted above, by definition, H ′[x1, x2, . . . , xl] is chordal and thus admits a reverse perfect elimination ordering denoted 
σl = xσl(1), xσl(2), . . . , xσl(l) . The beginning of σ is exactly σl and the rest of σ is defined as being the same as π . More 
explicitly, we have

σ = xσl(1), xσl(2), . . . , xσl(l), xl+1, xl+2, . . . , xn.

In order to show that σ is a reverse perfect elimination ordering, we must show that for any i ≥ l + 1, xi is simpli-
cial in H ′[xσl(1), xσl(1), . . . , xσl(l), xl+1, . . . , xi] = H ′[x1, x2, . . . , xi]. Note that the only difference between H ′[x1, x2, . . . , xi] and 
H[x1, x2, . . . , xi] is that H does not contain the edges of Nl \ NH[x1,...,xl](xl), while H ′ does. Therefore, H ′ contains all the 
edges of H plus some others and these others are not incident to xi . It follows that, since the neighborhood of xi is a clique 
in H[x1, x2, . . . , xi], so it is in H ′[x1, x2, . . . , xi]. This shows that σ is a reverse perfect elimination ordering and therefore 
that H ′ is a chordal graph.

Recall that we pointed out earlier that H ′ is obtained by deleting some edges from G and that the set of edges of 
H ′ strictly contains that of H . This is a contradiction of the fact that H is an inclusion minimal chordal deletion of G . We 
therefore conclude that for all i ∈ �2, n�, NH[x1,...,xi ](xi) is an inclusion-minimal deletion of the neighborhood NG[x1,...,xi−1](xi)

of xi in H[x1, . . . , xi−1] + xi , which achieves the proof of the lemma. �
Lemma 2 gives us the following result for minimum chordal deletions.

Theorem 4. For every minimum chordal deletion Hopt = (V , EG� Mopt
G,H ) of a graph G = (V , EG) there is an ordering of the vertices 

in V and a set of inclusion-minimal incremental choices M2, . . . , Mn that produces Hopt .

Proof. The theorem follows immediately from Lemma 2. �
With Theorem 4 we have shown that for every graph G , there exists a choice of the order in which to process the 

vertices of G and a choice of an inclusion-minimal set of deletions at each step so that the resulting chordal deletion of G
has minimum cardinality. This is in contrast to Theorem 2, which showed that there are some graphs for which there do 
not exist any such choices that result in a chordal completion of G whose cardinality is within a factor smaller than �(n) of 
the minimum. However, note that the positive result we obtained for deletion does not provide any algorithm to determine 
the choices that will result in a minimum chordal deletion. Moreover, recall that making these choices deterministically in 
polynomial time is out of reach, unless P = NP, since the problem is NP-hard. Nevertheless, this result suggests exploring 
two exciting possibilities. The first is the possibility of designing an algorithm that is able to choose at random an inclusion-
minimal set of deletions at each step of the local incremental approach. Starting with a random order of the vertices of G , 
this would give a non-null probability of discovering a minimum chordal deletion of G , which would be very nice for the 
heuristic approach. A second possibility is to deterministically, and in polynomial time, determine an order of the vertices 
and choices of deletions at each step such that the resulting inclusion-minimal chordal deletion of G is guaranteed to have 
a cardinality within a constant ratio of the minimum.

6. Incremental chordal editing

Graphs G1 and G2 introduced in previous sections are examples of graphs where the best chordal editing is a pure 
chordal completion and a pure chordal deletion, respectively. Then the question naturally arises as to whether there are 
graphs for which the best chordal editing requires both adding fill edges and deleting other edges? The graph G3 shown in 
Fig. 4 is such a graph, as stated by Theorem 5 below. Moreover, for G3 the number of modifications obtained in the best 
pure completion and the best pure deletion are both �(n) times larger than the number needed for a chordal editing.

Theorem 5. For any n ≥ 42, the graph G3 depicted in Fig. 4 has a unique minimum chordal editing, which consists of the six modifica-
tions in Mopt = {(a1, b1), (b1, c1), (a1, c1), (a1, a2), (b1, b2), (c1, c2)}. Furthermore, any chordal editing of G3 that does not contain 
one or more of the modifications in Mopt has cardinality �(n).

Proof. We denote the vertices of four induced sub-graphs as follows:

• V 1 = {a1, b1, c1} ∪ Ra1b1 ∪ Rb1c1 ∪ Ra1c1 ,
• Va = {a1, a2} ∪ Ra1 ∪ Ra2 ,
8
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Fig. 4. Graph G3 is shown in black. The fat cycle {a1}, Ra1b1 , {b1}, Rb1c1 , {c1}, Ra1c1 is combined with three fat cycles {x1}, {x2}, Rx2 , Rx1 for x ∈ {a, b, c}. Each 
of the thick cliques has (n − 6)/9 vertices. When n ≥ 42, G3 admits a unique minimum editing with the 3 deleted edges and 3 fill edges shown in red.

• Vb = {b1, b2} ∪ Rb1 ∪ Rb2 , and
• V c = {c1, c2} ∪ Rc1 ∪ Rc2 .

Note that G3[V 1] induces the graph G1, which by Theorem 1 has a unique minimum editing with modification set Mopt
1 =

{(a1, b1), (b1, c1), (a1, c1)}. Likewise, each G3[Vt], t ∈ {a, b, c}, induces the graph G2, which by Theorem 3 has a unique 
minimum editing with modification set Mopt

t = {(t1, t2)}. Also observe that any two of the sets V 1, Va, Vb and V c do not 
share a pair of vertices: pairwise, their intersections contain at most one vertex. It follows that any chordal editing of G3
contains at least 6 modifications, as it must contain a chordal editing of each of the four induced graphs, whose set of 
modifications are always pairwise disjoint. Moreover, as the minimum editing of each of the four induced sub-graphs is 
unique, if there exists a chordal editing of G3 containing exactly 6 modifications, then it is necessarily the one obtained 
from the union of the minimum editing of each of the four induced graphs, i.e. the editing whose set of modifications 
is Mopt = Mopt

1 ∪ Mopt
a ∪ Mopt

b ∪ Mopt
c . Finally, observe that the modification set Mopt indeed yields a chordal graph, which 

proves the first sentence of the statement of the theorem.
Consider now a chordal editing H = (V , EG�MG,H ) that does not contain one of the edges in Mopt . Note that since 

chordality is hereditary, it suffices to consider the impact of missing the modifications in each induced sub-graph separately. 
If a modification in Hopt [V 1] is missing, then by Theorem 1 MG,H , must include �(|V 1|) = �(n) modifications. And if a 
modification in Hopt [Vt] for t ∈ {a, b, c} is missing, then by Theorem 3, MG,H must include �(|Vt |) = �(n) modifications. 
Thus, the second sentence in the theorem is true. �

Note that we already used Theorem 5 to fill in column G3 of Table 2. We now use it to answer the question of whether 
a minimum chordal editing can always be obtained in an incremental way. As for pure completion, the answer is negative. 
Actually, the graph G1 depicted in Fig. 2, for which we proved in Section 4 that it is impossible to obtain its unique 
minimum chordal completion by the local incremental approach (Theorem 2), already answers this question. As the unique 
minimum chordal editing of graph G1 is the same as its unique minimum completion (see Theorem 1), then it cannot be 
obtained by the local incremental approach. Theorem 2 even proved that any chordal editing of G1 that can be obtained by 
the local incremental approach has a cardinality that is a factor of at least �(n) of the minimum.

It is worth pointing out that such a situation is not limited to graphs whose minimum chordal editings are also minimum 
chordal completions. Even in the case where the minimum chordal editing of the graph requires both the addition of fill 
edges and the deletion of other edges, it may happen that the minimum chordal editing cannot be obtained using an 
incremental approach. The theorem below illustrates this with the graph G3 depicted in Fig. 4.

Theorem 6. It is impossible to obtain the unique minimum chordal editing Hopt = (V , EG3� Mopt) of the graph G3 using the local 
incremental approach. Moreover, all inclusion-minimal editings of G3 that can be obtained by the local incremental approach have 
cardinality at least �(n), as compared to |Mopt | = 6.

Proof. Note that it follows from Theorem 5 that the unique minimum completion of G3 has the modification set Mopt , and 
that {(a1, b1), (b1, c1), (a1, c1)} ⊂ Mopt . Then, the arguments in the proof of Theorem 2 still apply here and show that it is 
impossible that all these three modifications can be obtained together by the local incremental approach. The fact that all 
editings of G3 that can be obtained by this approach have cardinality at least �(n) follows immediately from the second 
sentence in the statement of Theorem 5. �

In the remainder of this section, we turn to a new question slightly different from those considered so far. This question 
comes from the fact that there exists an algorithm [13] that computes an inclusion-minimal chordal editing (with both 
9
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Fig. 5. Graph G4 is shown in black. Fat cycles {a}, Ra, Rb, {b} and {d}, {c}, {e}, Rde are combined with two fat cycles {x}, Rxy , {y}, Q xy , for x, y = a, c and 
x, y = b, d. Each of the thick cliques has (n − 5)/7 vertices. When n ≥ 26, G4 admits a unique minimum editing with the 3 deleted edges and 2 fill edges 
shown in red.

added and deleted edges) of a graph by the local incremental approach. Nevertheless, it proceeds in a way which contains 
an additional restriction compared to the general local incremental approach as we define it here. At each step of the 
incremental algorithm, when considering vertex xi , [13] computes two inclusion-minimal editings of the neighborhood of 
xi : one that is a pure completion and one that is a pure deletion. Then, the algorithm chooses one of them and moves 
to the next step. We call this approach the step-wise-uniform approach. It is a particular case of the local incremental 
approach to editing. Clearly, the step-wise-uniform approach has the capability of producing an inclusion-minimal editing 
that has both fill edges and edges to be deleted. The question naturally arises then of whether this restricted approach can 
compute editings of cardinality as small as the smallest ones that can be obtained by the more general local incremental 
approach, or whether there is a gain in using both additions and deletions in the same incremental step. We answer this 
question by exhibiting the graph G4 depicted in Fig. 5. A minimum chordal editing of G4 can be obtained by the local 
incremental approach, but all the chordal editings that can be obtained by the step-wise-uniform approach have a number 
of modifications that is at least �(n) times the minimum (Theorem 8 below). First, we show that the graph G4 has a unique 
minimum editing.

Theorem 7. For any n ≥ 26, the graph G4 depicted on Fig. 5 has a unique minimum chordal editing, which consists of the 2 fill edges 
and 3 edges to be deleted in Mopt = {(a, c), (b, d), (a, b), (c, d), (c, e)}. Furthermore, any chordal editing of G4 that omits any of the 
modifications in Mopt has cardinality at least 3 + (n − 5)/7 = �(n).

Proof. We denote the vertices of four induced sub-graphs of G4 as follows:

• V 1 = {a, b} ∪ Ra ∪ Rb ,
• V 2 = {a, c} ∪ Rac ∪ Q ac ,
• V 3 = {b, d} ∪ Rbd ∪ Q bd , and
• V 4 = {c, d, e} ∪ Rde .

First, observe that any two of the sets V i and V j , i �= j do not share a pair of vertices; in other words their intersection 
V i ∩ V j contains at most one vertex. Also observe that none of the induced subgraphs G[V i ] is chordal. This implies that 
any chordal editing of G4 contains at least one modification involving a pair of vertices from each V i and that these 
modifications are distinct from each other. Therefore, any chordal editing H = (V , EG4� MG4,H ) of G4 has |MG4,H | ≥ 4. 
Moreover, we will show by contradiction that no chordal editing of G4 has only four edges it its modification set.

Suppose H = (V , EG4� MG4,H ) is a chordal editing of G4 such that |MG4,H | = 4. Since chordality is a hereditary property, 
necessarily, MG4,H has exactly one modification in each of the induced graphs G[V i]. Note that G4[V 1] induces the graph G2, 
which by Theorem 3 has a unique minimum editing with modification set Mopt

1 = {(a, b)}. Furthermore, from Corollary 2, 
each of G[V 2] and G[V 3] has a unique editing of cardinality 1, which consists of adding the fill edges (a, c) and (b, d), 
respectively. It follows that if |MG4,H | = 4, then {(a, b), (a, c), (b, d)} ⊂ MG4,H . From Lemma 1 applied to G[V 4] with K0 = {d}
and Kl = {e}, any editing of G[V 4] that does not delete both edges (c, d) and (c, e) has cardinality at least |Rde | ≥ 3. Since 
deleting only edge (c, d) or only edge (c, e) gives two distinct editings of G[V 4] of cardinality 1, it follows that these are 
the only editings of G[V 4] of cardinality 1. But neither of these two single edge modifications gives a chordal graph when 
associated with the three previous modifications, namely {(a, b), (a, c), (b, d)}, a contradiction. It follows that no chordal 
editing of G4 has only 4 modifications.

Fig. 5 exhibits an editing Hopt = (V , EG� Mopt) of G4 with only five modifications, which is then a minimum cardinality 
editing of G4. We will now show the second part of the statement of Theorem 7 holds, which will then imply that Hopt is 
the unique minimum cardinality editing of G4 (indeed, note that since n ≥ 26, then 3 + (n − 5)/7 ≥ 6).
10
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To this purpose, let us consider an editing H = (V , EG4� MG4,H ) of G4 that omits a modification in Mopt , and consider 
the cardinality of MG4,H when one or more of the edges in Mopt is missing. We begin by observing that it must be that 
{(a, b), (a, c), (b, d)} ⊂ MG4,H , since otherwise |MG4,H | ≥ 3 + (n − 5)/7:

• If (a, b) /∈ MG4,H , then by Theorem 3 and the fact that chordality is hereditary, |MG4,H ∩ (V 1 × V 1)| ≥ (n − 5)/7 and 
so |MG4,H | ≥ 3 + (n − 5)/7, since, as explained above, each of V 2, V 3, V 4 contains at least one modification, which are 
pairwise distinct.

• If (a, c) /∈ MG4,H or (b, d) /∈ MG4,H , then by Corollary 2 and the fact that chordality is hereditary, |MG4,H ∩ (V 2 × V 2)| ≥
(n − 5)/7 or |MG4,H ∩ (V 3 × V 3)| ≥ (n − 5)/7, and again |MG4,H | ≥ 3 + (n − 5)/7.

Consider now if (c, d) /∈ MG4,H . Since {(a, b), (a, c), (b, d)} ⊂ MG4,H , but (c, d) /∈ MG4,H , it must be that H has a path 
P = a, c, d, b from a to b and Condition 2 of Lemma 1 holds for the fat cycle that is {b}, Rb, Ra, {a}, {c}, {d} with K0 = {b}
and Kl = {a}. Thus, by Lemma 1, MG4,H contains at least min{Ka, Kb} = (n − 5)/7 modifications incident to some ver-
tices of Ka ∪ Kb and since {(a, b), (a, c), (b, d)} ⊂ MG4,H , then MG4,H ≥ 3 + (n − 5)/7. Consequently, it must be that 
{(a, b), (a, c), (b, d), (c, d)} ⊂ MG4,H . Now the same argument can be used to show that by Lemma 1, if (c, e) /∈ MG4,H , 
then |MG4,H | ≥ 3 + (n − 5)/7. This proves the second part of the statement of Theorem 7 and since 3 + (n − 5)/7 ≥ 6 this 
implies that Hopt is the unique minimum editing of G4. �
Theorem 8. It is impossible to obtain the unique minimum chordal editing Hopt = (V , EG4� Mopt) of the graph G4 using a step-wise-
uniform inclusion-minimal incremental approach, while it is possible to obtain Hopt if the modification set at each step can include both 
fill edges and edges to be deleted. Moreover, all editings of G4 that can be obtained using a step-wise-uniform incremental approach 
have cardinality �(n), as compared to |Mopt | = 5.

Proof. To see that it is possible to obtain Hopt incrementally with non-uniform modification set choices, consider an incre-
mental sequence of vertices consistent with the following order of the cliques in G4.

{b}, Rb, Ra, {a}, Rac, Q ac, {c}, Rbd, Q bd, {d}, Rde, {e}
Then the modification set can be built by:

• deleting edge (a, b) when vertex a is processed,
• adding fill edge (a, c) when vertex c is processed,
• adding fill edge (b, d) and deleting (c, d) when vertex d is processed, and
• deleting edge (c, e) when vertex e is processed.

These inclusion-minimal choices build Hopt incrementally. Note, however, that the modification set when d is processed 
includes both a fill edge and an edge to be deleted.

We prove the remainder of the theorem by showing that any chordal editing H = (V , EG4� MG4,H ) obtained using step-
wise-uniform, inclusion-minimal choices omits at least one of the modifications in Mopt , which, from Theorem 7, implies 
that |MG4,H | = �(n). Let H be an editing obtained using step-wise-uniform, inclusion-minimal choices and consider the last 
vertex α to be processed among those in {a, b, c, d}. Note that the modifications involving α in Mopt include both an edge 
addition and an edge deletion. Before α is processed, none of the adjacencies involving α can have been modified since α
was not yet inserted in the graph. Similarly, after α is processed, since their two endpoints have been inserted, none of the 
adjacencies involving α can be changed anymore. Therefore, all the modifications of the adjacencies involving α are done 
exactly when α is processed and since H is step-wise-uniform, it follows that these modifications miss at least one of the 
modifications involving α in Mopt . Thus, from Theorem 7, |MG4,H | = �(n). �
7. Future work

The results in this paper demonstrate that the local incremental approach to chordal editing and chordal completion is 
guaranteed to produce, for some graphs, modification sets that are �(n) times worse than the minimum cardinality chordal 
editing, or chordal completion, for the same graph. This is a very sharp limitation on the quality of the solutions obtained 
by the local incremental approach.

The first crucial question that comes from our work is whether these limitations also hold for other target graph classes 
such as interval graphs, cographs, permutation graphs, comparability graphs, where the local incremental approach is often 
the only currently available approach to inclusion-minimal edge modification. Our results also suggest that developing other 
algorithmic approaches to inclusion-minimal edge modifications, for example not based on an incremental scheme, may be 
a key to substantially improving the quality of heuristic solutions for minimum edge modification problems.

In contrast, however, our results further show that in the case of chordal deletion, the local incremental approach may 
be able to produce good approximations of minimum chordal deletion. This gives rise to compelling questions about devel-
oping provably good approximation algorithms for chordal graph deletion using the local incremental approach. Note that 
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for minimum chordal completion, it is already known that the minimum number k of fill edges can be approximated in 
polynomial time by a factor 8k [11] (i.e. the number of fill edges returned by the algorithm is at most 8k2) but cannot be 
approximated to within a constant factor [24] under the Small Set Expansion conjecture, which is a complexity conjecture 
implying P �= NP.6 At the same time, to the best of our knowledge the question of approximating the minimum number of 
modifications in a chordal editing has not received any attention yet. Here, we showed that this cannot be accomplished to 
any better than �(n) of the optimal using the local incremental approach.

Interestingly, our results also suggest that chordal deletion has a behavior very different from chordal completion and 
chordal editing: it is possible that neither minimum completion nor minimum editing can be approximated to within a 
constant factor while minimum chordal deletion can be. As mentioned previously, the question of whether the latter can be 
accomplished using the local incremental approach is also open.
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