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It is challenging to construct explicit and controllable models that realize de Sitter solutions in string
compactifications. This difficulty is the main motivation for the refined de Sitter conjecture and the trans-
Planckian censorship conjecture which forbid stable de Sitter solutions but allow metastable, unstable and
rolling solutions in a theory consistent with quantum gravity. Inspired by this, we first study a toy de Sitter no-
scale supergravitymodel and show that for particular choices ofparameters it canbeconsistentwith the refined
deSitterconjectureandthetrans-Planckiancensorshipconjecture.Thenwemodify themodelbyaddingrolling
dynamics and show that the theory can become stable along the imaginary direction,where it would otherwise
be unstable. We extend the model to multifield rolling and de Sitter fields, finding the parameter spacewhere
theycanbecompatiblewith therefineddeSitterconjecture.Themodifiedmodelswithrollingfieldscanbeused
to construct quintessence models to accommodate the accelerating expansion of the Universe.
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I. INTRODUCTION AND MOTIVATION

In recent years, the search for de Sitter (dS) solutions in
superstring and supergravity theories has intensified1 due to
two pivotal observations. The first one is the discovery of the
accelerating expansion of the Universe due to nonvanishing
vacuum energy [10,11]. The second one is the observational
support for inflationary cosmology [12]. According to the
latter observation, it appears that the Universe underwent an
early epoch of near-exponential quasi-de Sitter expansion
driven by an inflaton field energy that was large in
comparison with the electroweak scale of the Standard
Model, but still hierarchically smaller than the Planck scale.
Nevertheless, it has been challenging to construct

explicit and controllable models that realize de Sitter
solutions in string compactifications [13–28]. This diffi-
culty is the main motivation for the proposal of the refined
de Sitter conjecture (RdSC), [29,30] (see also [31]). In
particular, the RdSC constrains the scalar potential of the
low energy effective field theory (EFT) and rules out the
existence of dS minima, nevertheless, dS maxima are
allowed. Namely, the scalar potential V of a consistent
EFT must satisfy either

j∇Vj ≥ c
MP

V; ð1Þ

or

min ð∇i∇jVÞ ≤ −
c0

M2
P
V; ð2Þ

where the constants c, c0 are order one positive constants. In
our work we refer respectively to Eqs. (1) and (2) as the first
and second de Sitter criteria. They are referred with that
terminology in the literature or also with the name
conjectures. Eqs. (1) and (2) imply that stable de Sitter
vacua do not exist, however, unstable vacua or rolling dS
solutions can exist. On the other hand, the trans-Planckian
censorship conjecture (TCC) [32], another swampland
conjecture related to dS background, puts an upper bound
on the lifetime, τ, of a dS solution. In particular, besides
unstable and rolling dS solutions, it allows for metastable
dS minima with limited lifetime. If we call Hf, the Hubble

rate at the end of dS phase, given by Hf ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=3M2

P

p
, then

the TCC implies

τ <
1

Hf
ln
MP

Hf
: ð3Þ

Hereafter we work in Planck units, hence MP ¼ 1. If the
above bound, Eq. (3), is applied to the scalar potential, V,
then dS extrema are forbidden in asymptotic regions
of moduli space; however similar to the first dS criteria,
Eq. (1), rolling dS solutions are allowed for a fixed value of
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c ¼ ffiffiffiffiffiffiffiffi
2=3

p
. On the other hand, in the bulk of moduli space,

the TCC allows dS critical points (both minima and dS
maxima) as long as their lifetime is bounded.
Some studies indicate that within the swampland program

there is web of conjectures instead of a list of conjectures,
i.e., the conjectures are related to each other (see for instance
[33]). As already pointed out, the TCC implies the RdSC in
the asymptotic region of themoduli space. Besides, the TCC
fixes the universal order one constant of the RdSC bound of
Eq. (1). Furthermore, there is an interesting coincidence
between the TCC lifetime of a dS solution and the scram-
bling time of a black hole [32]. The upper bound on the
lifetime, indicates that the dS vacuum is not a thermal state.
Namely, there is not enough time for the perturbations to get
thermalized with the state. The TCC condition can also be
seen as a bound on the growth rate of the entropy [34–36].
The latter in particular indicates a deep connection between
the TCC and a principle of quantum gravity. We recall that
the dS state is a statewith finite entropy and, depending on its
natural scale (its Hubble rate), there is a bound on how fast it
can be saturated with microstates. There are indications [37]
that the UV/IR decoupling limit of effective field theories
(without gravity) might not be working in the presence of
gravity. In this sense, the TCC bound offers a way to test the
IR cutoff (the Hubble scale) and the UV cutoff (the Planck
scale) of a theory. This is because the TCC is a concrete
example of theUV/IRnondecoupling effects, hence offering
a way to understand a theory in terms of a principle of
quantum gravity. All these arguments lead us to apply the
TCC besides the RdSC in our present bottom-up study.
Although a priori there is no no-go theorem, it is not clear

whether string theory admits dS solutions. The RdSC
belongs to the swampland programme that aims at determin-
ing the list of criteria an EFTmust admit to be embedded in a
theory of quantum gravity. Namely, not every quantum field
theory admits an ultraviolet completion when quantum
gravity is considered. For bottom-up model building, the
list of swampland conjectures helps to construct consistent
models that can possibly descend from string theory.
In [38], and then in [39] for particular cases, de Sitter no-

scale models have been constructed by building de Sitter
plateaus from the combination of Minkowski solutions.
These scenarios have been then subsequently and exten-
sively applied to construct inflation models, [40–43]. No-
scale supergravity models avoid technical problems of
generic supergravity theories and thus are useful for
making realistic calculable models. One may wonder if
no-scale supergravity models which have dS vacua admit
the swampland conjectures and thus can be derived from
strings or not, in which case belonging to the swampland.
Recently in [44] the RdSC were rephrased in the context of
N ¼ 1 supergravity chiral multiplets. In particular for a
positive potential V > 0 the first criterion of RdSC, Eq. (1),
implies

KIJ̄∂IV∂ J̄V
V2

≥ c2=2; ð4Þ

where KIJ̄ is the inverse of the Kähler metric and I runs
over all scalar components of chiral superfields. In this
paper we use the proposal of [44], which offers an escape to
Eq. (4), for models with de Sitter vacua by modifying the
theory with the addition of rolling dynamics. This proposal
adds an exponential dependence on the rolling field to the
original scalar potential, V0, such that the full scalar
potential becomes V̂ ¼ eλχV0, with λ constant. Then V̂
can be consistent with Eq. (4) (with the appropriate
replacement V → V̂) for some choice of parameters.
Using the above approach, we find that the modification
of adding a rolling dynamics, opens up the region where the
models survive the swamp. We also find that for some cases
these theories can be used for quintessence [45].
The paper is organized as follows: in Sec. IIwe present the

statement of the refined de Sitter conjecture in the context of
[44], then we identify the necessary conditions for the α-
supergravity/no-scale supergravity theories to satisfy Eq. (2)
and the trans-Planckian conjecture, Eq. (3). In Sec. III we
studyhowaddinganexponential factor to theα-supergravity/
no-scalemodelswidens theparameter space tobecompatible
with Eqs. (1) and (2). In Sec. IVwe studymultifield models,
containing more than one rolling field or more than one de
Sitter field. InSec.Vwetalkabouthowthemodelswepresent
can be used as quintessencemodels. In Sec. VIwe conclude.

II. NO-SCALE MODELS WITH UNSTABLE
DS VACUA

A. No-scale de Sitter models

Stable supergravity theories parametrizing a symmetric
geometry [46,47] have provided the basis to construct a
broad class of superconformal inflationary models with a
universal observational prediction for the spectral index of
ns ¼ 1–2=N and r ¼ 12=N2, as favored by the Planck data
[48], where N is the N-folds necessary for inflation. This
class of models has been generalized through the intro-
duction of the parameter α, inversely proportional to the
curvature of the inflaton Kähler manifold in the limit of
sufficiently large curvature (α small). As mentioned in the
introduction, a construction of this kind of models as a
deformation of no-scale models was constructed by build-
ing de Sitter plateaus from the combination of Minkowski
solutions [38,39]. These models have been then further
developed and analyzed in [40–43] using the following
Kähler potential and superpotential

K ¼ −3
XN
i¼1

αi lnðϕi þ ϕ̄iÞ; ð5Þ

W ¼ a

�YN
i¼1

ϕniþ
i −

YN
i¼1

ϕni−
i

�
; ð6Þ
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where i runs over N no-scale chiral superfields, αi > 0, a is
an arbitrary constant and

ni� ¼ 3

2

�
αi �

ri
s

�
for

XN
i¼1

r2i ¼ 1; s2 ¼
XN
j¼1

r2j
αj

: ð7Þ

The scalar potential

V ¼ eGðX − 3Þ; X ¼ GiKi|̄G|̄; ð8Þ
where Ki|̄ is the inverse Kähler metric and G¼Kþ lnjWj2;
has an extremum, ∇V ¼ 0, along the real direction (i.e.,
ϕi ¼ ϕ̄i) and becomes a constant in that direction [40]

V ¼ 3a222−3
P

N
i¼1

αi : ð9Þ
In [40] it was noted that in order to render the theory stable
a quartic term could be added to the Kähler potential in the
following way

K ¼ −3
X3
i

αi ln ½ϕi þ ϕ̄i þ biðϕi − ϕ̄iÞ4�; ð10Þ

such that the imaginary direction is stabilized and hence the
full potential (that is when taking into account real and

imaginary terms) can remain de Sitter and hence bounded
from below.

B. Refined de Sitter conjecture in no-scale models

The potential of Eq. (9) is positive and hence it is a dS
solution, being constant along the real direction, cannot
satisfy the first criterion of RdSC, Eq. (1), since the
constant c appearing there cannot be zero. In the following,
we study a simple single field no-scale model and show
that the instability along the imaginary direction makes
the model compatible with the second criterion of RdSC
(2). The Kähler potential and the superpotential of the
model are

K ¼ −3 α lnðϕþ ϕ̄Þ;
W ¼ aðϕnþ − ϕn−Þ; ð11Þ

where α > 0 and n�¼3=2ðα� ffiffiffi
α

p Þ. The scalar potential is

V ¼ a2ðϕþ ϕ̄Þ−3αjϕnþ − ϕn−j2ðX − 3Þ; ð12Þ

where

X ¼ GiKi|̄G|̄ ¼
½−ðϕn− − ϕnþÞ þ ðϕþϕ̄Þ

3α ðn−ϕn−−1 − nþϕnþ−1Þ�½−ðϕ̄n− − ϕ̄nþÞ þ ðϕþϕ̄Þ
3α ðn−ϕ̄n−−1 − nþϕ̄nþ−1Þ�

3αðϕn− − ϕnþÞðϕ̄n− − ϕ̄nþÞ : ð13Þ

We compute the eigenvalues of the squared mass terms of
the scalar field ϕ using the following expression for the
Hessian

H ¼
�
Kjl̄∇i∇l̄V Klm̄gm̄i∇l∇jV

Kil̄gjm̄∇l̄∇m̄V Kil̄∇l̄∇jV

�
; ð14Þ

where ∇i∇jV ¼ ∂i∂jV − Γk
ij∂kV and the Christoffel sym-

bols are

Γϕ
ϕϕ ¼ Γϕ̄

ϕ̄ ϕ̄
¼ −

2

ϕþ ϕ̄
: ð15Þ

In general Vi can be simply calculated from

∂iV ¼ Vi ¼ eG½GiðX − 3Þ þ Xi�; ð16Þ

for our case it reduces to

∂iV ¼ −3½a2ð−1þ 3αÞϕ−2−3ð ffiffi
α

p þαÞ=2

× ϕ̄−1−3ð ffiffi
α

p þαÞ=2ðϕ − ϕ̄Þðϕþ ϕ̄Þ1−3α�; ð17Þ

which vanishes for

ϕ ¼ ϕ̄; ð18Þ

making evident that the no-scale potential V is flat along
the real direction. The first panel of Fig. 1 shows this scalar
potential for α ¼ 1, where we compare it to the case when
the imaginary direction of ϕ has been stabilized using
Eq. (10), second panel of Fig. 1. The Hessian, Eq. (14) for
ϕ̄ ¼ ϕ acquires a simple form because we have just one
pair of fields and hence Kϕϕ̄∇ϕ̄∇ϕV ¼ Kϕ̄ϕ∇ϕ∇ϕ̄V. Also
the elements above and below the diagonal are equal when
ϕ̄ ¼ ϕ, as expected from the form of the potential hence
producing one zero eigenvalue. The nonzero eigenvalue
then is just the trace of the Hessian,2 corresponding to the
squared mass along the imaginary direction of ϕ

m2
Imϕ¼

22−3αa2

α
ϕ−3

ffiffi
α

p ½αð−1þϕ3
ffiffi
α

p Þ2−ð1þϕ3
ffiffi
α

p Þ2�: ð19Þ

It is well known that for α ≤ 1 there is an instability for
any field value (e.g., [42]), while for α > 1 the nonzero
eigenvalue is negative for

2We note that with the substitutions of ζ ¼ 2ϕ, λ1 ¼ 2−n−a and
λ2 ¼ 2−nþa, we recover the result of Eq. 23 of [42].
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� ffiffiffi
α

p
− 1

1þ ffiffiffi
α

p
� 1

3
ffiffi
α

p
< ϕ <

�
1þ ffiffiffi

α
pffiffiffi

α
p

− 1

� 1
3
ffiffi
α

p
: ð20Þ

In order to turn the imaginary component into canonical
form, we need to stabilize the flat real direction. It can be
done, for instance, through modifying the Kähler potential
(see [43] for a review) of the model Eq. (11) by

K ¼ −3α ln

�
ϕþ ϕ̄þ ðϕþ ϕ̄ − 2bÞ4

L

�
; ð21Þ

which stabilizes the real component to ϕ̄ ¼ ϕ ¼ b, and
provides a way to work only with one canonical field, σ,
proportional to the imaginary direction (see Appendix A):

σ ¼
ffiffiffiffiffiffiffi
3α

2b2

r
y: ð22Þ

The theory of Eq. (11) can be extended to include more
fields and stabilize the real directions with the same
procedure. With the addition of Eq. (21) the scalar potential
has the same form of Eq. (12). Note that when fixing the
real part to b all the dependence inversely proportional to L

in Eq. (21) vanishes from the potential and their subsequent
derivatives, as can be seen from Eq. (12), the form of the
first derivative, Eq. (17), and of the second derivatives of V,

∂i∂ |̄V¼Vi|̄

¼eG½G|̄ðGiðX−3ÞþXiÞþGi|̄ðX−3ÞþXi|̄þGiX|̄�;
∂i∂jV¼Vij

¼eG½GjðGiðX−3ÞþXiÞþGijðX−3ÞþXijþGiXj�:
ð23Þ

It is clear from these expressions that up to the second
derivatives in ϕ or ϕ̄, G (e.g., Gij) and X preserve the
property of the Kähler potential in Eq. (21) to reduce to
Eq. (11) when ϕ̄ ¼ ϕ ¼ b. In the third panel of Fig. 1 we
compare V as a function of Vðxþ iσÞ to the model
described by Eq. (73) where the real direction has not
been fixed (first panel) and to the case where the imaginary
direction has been stabilized (left panel). We have chosen to
plot Vðxþ iσÞ as we can clearly see the behavior when
ϕ ¼ ϕ̄ ¼ b. In Fig. 2 we plot the potential V as a function
of σ for values of α which are perfect squares modulo 9,

FIG. 1. First row: comparison of the scalar potential, VðϕÞ (left) of Eq. (12), to the potential VðϕÞ but with
K ¼ −3

P
3
i αi ln ðϕi þ ϕ̄i þ biðϕi − ϕ̄iÞ4Þ, Eq. (10), which stabilizes the imaginary direction. Second row: the potential Vðxþ iσÞ

for x and the canonical field σ. The direction x gets fixed to b in order to work with a canonical field, σ. For all cases we used α ¼ 1.
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where we can see the transitions from maxima to minima:
values for α ≤ 1 give de Sitter maxima, while values for
α > 1 de Sitter minima.
For the case of having α ¼ n2

9
, n an integer, using

Eq. (19), then the second criterion of the RdSC, Eq. (2),
can be written as −m2

Im½ϕ�=V − c0 ≥ 0 or equivalently

½ 9n2 − 1�b2n þ ½18n2 þ 2 − 3c0�bn þ 9
n2 − 1 ≥ 0. For n > 3 we

find that this bound can be satisfied for b such that

a−<bn<aþ with a�¼ 9þn2−3c0n2=2�n2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2−3c0=2Þð18=n2−3c0=2Þ

p
n2−9

when c0 ≤ 12
n2 <

4
3
. For n < 3 instead it can be satisfied for

all values of b if 4
3
≤ c0 ≤ 12

n2. Finally for the special case
n ¼ 3, the bound is satisfied for all values of b if c0 ≤ 4

3
.

C. Trans-Planckian conjecture in no-scale
de Sitter models

The TCC implies that a de Sitter phase has a limited
lifetime. In the case of a potential with de Sitter maximum,
the field can sit on that critical point if the negative
curvature, second derivative of the scalar potential, is
bounded from below. Specifically, close to a local maxi-
mum if there is field range 0 < σ < Δσ where
jV 00j ≤ jV 00jmax, defining V 00 ≡ ∂2

σV, the TCC is satisfied
if either of the following conditions are satisfied [32]

Δσ <

2
3
ffiffi
π

p ðV0VminÞ3=4 ln1=2
ffiffiffiffiffiffiffi
3

Vmin

q
2
3
VðσÞ − jV 00jmax ln

2
ffiffiffiffiffiffiffi
3

Vmin

q ; ð24Þ

jV 00jmax

Vmin
≥
2

3

1

ln2
ffiffiffiffiffiffiffi
3

Vmin

q : ð25Þ

In the above equations jV 00jmax, is the maximum curva-
ture and Vmin is the minimum value for the potential in that
field range. The second inequality is similar to the second
criterion, RdSC (2), with a prediction for c0 up to a

logarithmic correction and thus it is a milder constraint.
For the dS no-scale model we are considering and for the
single field range, the inequality Eq. (24) implies that

2

3
ffiffiffi
π

p ðV0VminÞ3=4ln1=2
ffiffiffiffiffiffiffiffiffi
3

Vmin

s

−
�
2

3
Vmin − jV 00jmaxln

2

ffiffiffiffiffiffiffiffiffi
3

Vmin

s �
σ > 0: ð26Þ

For α ≤ 1 the expression in the square bracket is negative
and the bound is satisfied for any value of σ. In order to see
that, we note Vmin ≤ V0 and jV 00jmax ≥ jV 00

0j, therefore

2

3
Vmin − jV 00jmaxln

2

ffiffiffiffiffiffiffiffiffi
3

Vmin

s
<

2

3
V0 − jV 00

0jln2
ffiffiffiffiffiffi
3

V0

s

¼ 23−3αa2
�
1 −

b−3
ffiffi
α

p

2α
ðð1þ b3

ffiffi
α

p Þ2 − αð1 − b3
ffiffi
α

p Þ2Þ

× ln2ð21−3α
2 aÞ

�
; ð27Þ

where in the second line we have used Eq. (19) which can
be written in the form

V 00jσ¼0 ¼ −22−3αa2
b−3

ffiffi
α

p

α

× ½ð1þ b3
ffiffi
α

p Þ2 − αð1 − b3
ffiffi
α

p Þ2�: ð28Þ

For α < 1 the above expression is negative for values of b
that make the potential unstable. For α ¼ 1, the above

expression is negative for a <
ffiffiffi
2

p
e

−1ffiffi
2

p
or a >

ffiffiffi
2

p
e

1ffiffi
2

p
inde-

pendently of b, as can be seen from the left panel of Fig. 3.
We recall that for all phenomenological purposes a ≪ 1.
For α > 1, the analytical computation is involved as can be
seen from the right panel of Fig. 3. Numerical inspection

FIG. 2. The scalar potential, VðσÞ, of Eq. (12) with the Kähler potential of Eq. (21) with the stabilization for hRe½ϕ�i ¼ b ¼ 1, as a
function of the canonical field σ ¼ ffiffiffiffiffiffiffiffiffiffi

3α=2
p

y=b. We have chosen values of α which are perfect squares modulo 9. Values for α ≤ 1, left,
give de Sitter maxima, while values for α > 1, right, can admit de Sitter minima.
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then give us for this case the values of σ and b that are
compatible with the TCC bound, Eq. (26). The TCC
conjecture also allows the existence of de Sitter potentials
with metastable minima as long as these minima are not
positive or if positive by allowing quantum tunneling. This
allows sufficiently short-lived transient quasi-dS like
phases. We note that potentials with negative minima could
be constructed from the kind of models of the right-side
panel of Fig. 2, with addition of other fields that render the
minima negative.

III. NO-SCALE MODELS WITH ROLLING
DYNAMICS

In this section, we first add a rolling field to our minimal
model, then we obtain the conditions for finding extrema,
point out in which cases there can be a stable minimum,
without the addition of a quartic term in the Kähler
potential. Then we point out in which cases instead we
can be in agreement with the first criterion of the
RdSC, Eq. (1).
Following the approach proposed in [44], we modify the

Kähler potential and the superpotential of our basic dS no-
scale model as follows

K̂ ¼ K −
XN
m¼1

qm lnðχm þ χ̄mÞ; ð29Þ

Ŵ ¼ W
YM
m¼1

ðc0;m þ c1;mχ
−pm;1=2
m þ c2mχ

−pm;2=2
m þ � � �Þ: ð30Þ

Here m runs over the number of rolling chiral superfields,
qm > 0, ck;m are arbitrary constants and the powers pm;k

satisfy pm;k < 0. The function invariant under Kähler
transformations Ĝ ¼ K̂ þ ln jŴj2 of the modified model
is given by

Ĝ ¼ Gþ
XM
m¼1

�
ln
jc0m þ c1mχ

−p1
m=2

m þ c2mχ
−p2

m=2
m þ � � � j2

ðχm þ χ̄mÞqm
�

≡Gþ G̃; ð31Þ

where additional chiral superfields χm are included to
provide an escape to the RdSC for positive scalar poten-
tials, Eq. (4). The addition of these chiral superfields solves
at the same time the instability of K at Im ϕ ¼ 0, for which
V has a maximum, Eq. (5) without additional quartic terms.
The scalar potential for this model can be written then as
follows

V̂ ¼ eĜ
� XNþM;NþM

I¼1;J̄¼1

ĜIK̂
IJ̄ĜJ̄ − 3

�

¼ eĜ
� XN;N

i¼1;|̄¼1

ĜiK̂
i|̄Ĝ|̄ − 3

�
þ eĜ

� XM;M

m¼1;n̄¼1

ĜmK̂
mn̄Ĝn̄

�

¼ eG̃ðV þ X̂eGÞ; ð32Þ

where I ¼ i, m runs over all chiral superfields, indices
i; j ¼ 1;…; N are for the de Sitter fields, indices m; n ¼
1;…;M are devoted to the rolling fields, K̂IJ̄ is the inverse
of the Kähler metric (which is block diagonal) K̂IJ̄ ¼
∂I∂ J̄K̂ and ĜI ¼ ∂IĜ, analogously for its Hermitian
conjugate. The parameter X̂ is defined as

X̂ ≡ ĜmK̂
mn̄Ĝn̄ ¼ G̃mK̂

mn̄G̃n̄; ð33Þ

where the expression after the equal sign follows from the
decomposition in Eq. (31) and Ĝm ¼ G̃m since only G̃
depends on the “rolling” fields χ. For the rest of this section
we assume just one rolling field χ. The potential V̂ is
minimal in the χ plane for Im½χ� ¼ 0, therefore we consider
only the real part of the scalar field

FIG. 3. Evaluation of the TCC for α ¼ 1, left plot, and α ¼ 25=9, right plot. The blue regions indicate values of b and σ which are
compatible with the TCC bound when V > 0. The orange region indicates values for which V < 0. For both plots we have used a ¼ 0.1.
Note that for the case of α ¼ 1 the value of b can extend for all values along the real line.
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γ ¼ X̂jV̂Re½χ� : ð34Þ

The extremization condition of the new scalar potential,
V̂, is

∂iV̂ ¼ eG̃ð∂iV þ γ∂ieGÞ
¼ eG̃ð∂iV þ γ∂iðeKjWj2ÞÞ ¼ 0: ð35Þ

This equation can be satisfied in two ways. One way is
requiring both terms to cancel independently, since
∂ īV ¼ 0 and ∂ {̄V ¼ 0 are the conditions for the minimum
of the original theory this can be easily satisfied and hence
the term ∂iðeKjWj2Þ should be satisfied independently. The
other way is to achieve a cancellation with both terms.
In the case of finding solutions where W ¼ 0, the

solutions for ∂iV, Eq. (16), can be written as follows

∂iV ¼ eKW̄|̄½K|̄lðWlKi þWiKl þWliÞ þ K|̄l
iWl�

¼ 0: ð36Þ

When the addition of the rolling field does not change the
minima of the no-scale field in the supersymmetry breaking
vacuum, then the no-scale field is stabilized and the only
dynamics comes from the rolling field, as it has been
emphasized in [44]. For the second term in Eq. (35) we
have

∂iðeKjWj2Þ ¼ eKW̄ðWKi þWiÞ; ð37Þ

for which we have two solutions for a vanishing term

W ¼ 0 or DiW ¼ Ki þ
Wi

W
¼ 0; ð38Þ

analogously for their Hermitian counterparts. The first
solution in Eq. (38) can be satisfied in general, while
the second solution just holds for certain values of α. We
choose the first one, so we have at the extrema

YN
i¼1

ϕniþ
i ¼

YN
i¼1

ϕni−
i ;

YN
i¼1

ϕ̄niþ
i ¼

YN
i¼1

; ϕ̄ni−
i ; ð39Þ

where nontrivial solutions (for which niþ ≠ ni−) exist, as
we will see in the next sections, hence

∂ {̄ðeKjWj2ÞjQN
i¼1

ϕ̄
niþ
i ¼

Q
N
i¼1

ϕ̄
ni−
i

¼ 0;

∂iðeKjWj2ÞjQN
i¼1

ϕ
niþ
i ¼

Q
N
i¼1

ϕ
ni−
i

¼ 0: ð40Þ

Finally, we note that the evaluation of V̂ at the extrema for
the no-scale fields implies

KIJ̄∂IV̂∂ J̄V̂

V̂2
¼ K̂mn̄∂mV̂∂ n̄V̂

V̂2

����
V̂ext

¼ γ; ð41Þ

where we have used ∂iV̂ ¼ 0. We observe that the rolling
behavior in this no-scale supergravity puts the model out of
the swamp given that 2γ ≥ c2. It is interesting to note, as the
superpotential is vanishing in the vacuum, that we get a
supersymmetry breaking vacuum with positive vacuum
energy for any value of γ. This can be seen by expanding
the scalar potential V̂ into pieces of the original model and
the pieces coming from the rolling field

V̂ ¼ eG̃eKjWj2ðX − 3þ γÞ

¼ eG̃eK
�XN

i¼1

jDiWj2 þ ðγ − 3ÞjWj2
�
; ð42Þ

from which it follows that at the extrema of the complete
model the dependence on γ disappears when W ¼ 0

V̂ ¼ eG̃
�
eK

XN
i¼1

jDiWj2
�����

ext

: ð43Þ

A. The minimal model

In this section we study the minimal model including a
no-scale chiral superfield plus a rolling superfield.

1. Existence of extrema

We start with the simplest example including one no-
scale chiral superfield and one rolling chiral superfield. The
Kähler and the superpotential are as follows

K̂ ¼ −3α lnðϕþ ϕ̄Þ − q lnðχ þ χ̄Þ;
Ŵ ¼ aðϕnþ − ϕn−Þχ−p=2; ð44Þ

where α; q > 0; p < 0, a is an arbitrary constant and
n� ¼ 3=2ðα� ffiffiffi

α
p Þ. The full scalar potential, V̂, is as in

Eq. (32), V, the no-scale potential is given in Eq. (12) and
G̃ is

G̃ ¼ ln ½ð2 Re½χ�Þ−qjχj−p�; ð45Þ

For the second term Eq. (35) the extremization conditions
of Eq. (40), for the nontrivial solution (that is ni− ≠ niþ),
and for an arbitrary value of α reduce to

ϕjext ¼ ϕ̄jext ¼ 1; ð46Þ

which is in agreement with the condition for finding the
extrema of the original theory, Eq. (18), but restricts the set
of possible values for the extrema. If we instead consider
the Kähler potential of Eq. (21), this can automatically fix
ϕ ¼ ϕ̄ ¼ 1 by choosing b ¼ 1 as explained in Sec. II.
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2. Stability condition

We study the stability of the vacuum by considering the Hessian matrix

H ¼
�
KJL̄∇I∇L̄V̂ KLM̄gM̄I∇L∇JV̂

KIL̄gJM̄∇L̄∇M̄V̂ KIL̄∇L̄∇JV̂;

�
; ð47Þ

where I ¼ ϕ; χ and V̂IJ ¼ ∇I∇JV̂ ¼ ∂I∂JV̂ − ΓK
IJ∂KV̂. For the no-scale extremization where ∂ϕV ¼ 0 and eG ∼ jWj2 ¼ 0

we find that

V̂ϕχ jmin ¼ ð∂χeG̃Þð∂ϕVÞ þ γeG̃eGðGϕGχÞ ¼ 0; ð48Þ

similarly for any other mixed component and its Hermitian conjugate. The no-scale components do not mix with the rolling
field, thus the mixed Christoffel symbols are vanishing. Therefore, we can write the Hessian matrix as

Hjϕ¼ϕ̄¼1 ¼

2
666664

K̂ϕϕ̄V̂ϕϕ̄ 0 K̂ϕϕ̄gϕ̄ϕV̂ϕϕ 0

0 K̂χχ̄V̂χχ̄ 0 K̂χχ̄gχ̄χV̂χχ

K̂ϕϕ̄gϕ̄ϕV̂ϕ̄ ϕ̄ 0 K̂ϕϕ̄V̂ϕ̄ϕ 0

0 K̂χχ̄gχ̄χV̂ χ̄ χ̄ 0 K̂χχ̄V̂ χ̄χ

3
777775

�����������
ϕ¼ϕ̄¼1

; ð49Þ

from which we can see that it is equivalent to look for the
eigenvalues, which need to be positive for the stability of
the scalar potential, of the following block-diagonal matrix

H ¼
�
Hϕ 0

0 Hχ

�
: ð50Þ

Each of the blocks in Eq. (50) contain only information
from one field:

det½Hϕ� ¼ det

�
Kϕϕ̄

� V̂ϕϕ̄ V̂ϕϕ

V̂ϕ̄ ϕ̄ V̂ϕ̄ϕ

��
;

det½Hχ � ¼ det

�
Kχχ̄

�
V̂χχ̄ V̂χχ

V̂ χ̄ χ̄ V̂ χ̄χ

��
; ð51Þ

also, due to having only one field in each sector, and
K̂ϕϕ̄ ¼ Kϕϕ̄, K̂χχ̄ ¼ Kχχ̄ , the factor of the Kähler metric
factors out. We therefore can look independently for the
eigenvalues of the submatrices Hϕ and Hχ . The second
derivatives of the scalar potential, Eq. (32), at the local
extrema are given as follows

V̂ϕϕ ¼ eG̃ð∂ϕ∂ϕVÞ þ γeĜðKϕϕ þGϕGϕÞ − Γϕ
ϕϕ∂ϕV̂

¼ eG̃ð2−3α × 6a2Þ;
V̂ϕϕ̄ ¼ eG̃ð∂ϕ∂ϕ̄VÞ þ γeĜðKϕϕ̄ þGϕGϕ̄Þ

¼ eG̃ð−2−3α × 6a2 þ 2−3α × 9γαa2Þ;
V̂ϕ̄ ϕ̄ ¼ eG̃ð∂ϕ̄∂ϕ̄VÞ þ γeĜðKϕ̄ ϕ̄ þ Gϕ̄Gϕ̄Þ − Γϕ̄

ϕ̄ ϕ̄
∂ϕ̄V̂

¼ eG̃ð2−3α × 6a2Þ; ð52Þ

where eG̃ is given in Eq. (45) and the Christoffel symbols in
Eq. (15). We note that eĜGϕGϕ̄ ≠ 0. Finally, the eigenval-
ues of the Hessian Hϕ at ϕ ¼ ϕ̄ are

λ1 ¼ eG̃
4

3α
½9 × 2−3αa2αγ� ¼ 3 × eG̃ × 22−3αa2γ;

λ2 ¼ eG̃
4

3α
½3 × 2−3αa2ð−4þ 3αγÞ�

¼ eG̃ × 22−3αa2
�
−
4

α
þ 3γ

�
: ð53Þ

Therefore, the stability condition for having a de Sitter
minimum implies

3αγ > 4: ð54Þ

This shows that adding a rolling dynamics, without adding
a quartic term in the Kähler metric to stabilize the
imaginary part, Eq. (10), also provides a way to stabilize
the potential. In case presented in this section, the eigen-
values of λ1 and λ2, Eq. (53) can be both positive for
suitable values of α and γ.

3. Assertion of the refined de Sitter conjecture

Now we check whether the modified no-scale model
obeys the first criterion of RdSC, Eq. (1), or not. We first
compute the parameter γ, from Eq. (33)
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γ ¼ GχKχχ̄Gχ̄ jImχ¼0

¼ 1

qjχj2
�
q2jχj2 þ

�
p
2

�
2

jχ þ χ̄j2 þ qpðχ þ χ̄Þ2
�����

Imχ¼0

¼ ðpþ qÞ2
q

; ð55Þ

where

Gχ ¼ −
p
2χ

−
q

χ þ χ̄
; and Gχ̄ ¼ −

p
2χ̄

−
q

χ þ χ̄
; ð56Þ

and Kχχ̄ is the inverse of the Kähler metric

Kχχ̄ ¼
q

ðχ þ χ̄Þ2 : ð57Þ

The first criterion of RdSC, Eq. (1), in the form of Eq. (4), is
satisfied if

ffiffiffi
2

p ðpþ qÞffiffiffi
q

p ≥ c ¼ Oð1Þ: ð58Þ

Along the real direction, we have

eG̃ ¼ jχχ̄j−p=2ðχ þ χ̄Þ−q ¼ ðReχÞ−ðpþqÞ ¼ e
ffiffiffiffi
2γ

p
χc ; ð59Þ

where χc is the canonically normalized rolling scalar field.
Finally, we note that if the first criterion is violated, the
second criterion of the RdSC, Eq. (2), can be satisfied if
there is an instability. In fact, the second mass eigenvalue is
negative for 3αγ < 4. Given that V̂ ¼ 12a2 × 2−3αe

ffiffiffiffi
2γ

p
χc in

the real field direction, the second criterion of the RdSC,
Eq. (2), requires that

3αγ ≤ 4 − αc0: ð60Þ

Since we computed the Hessian for noncanonical fields, but
kept the Kähler metric in Eq. (47) we can evaluate the
second criterion, Eq. (2), involving the fields ϕ and χ,
without the need of using canonical fields.

4. Superpotential with two terms in the expansion
of the rolling field

Now we modify the superpotential Eq. (44) of the
minimal model to take the following form

W ¼ ðϕnþ − ϕn−Þða1χ−p1=2 þ a2χ−p2=2Þ: ð61Þ

From Eq. (31) we compute

eG̃ ¼ ðχ þ χ̄Þ−qja1χ−p1=2 þ a2χ−p2=2j2; ð62Þ

where

Gχ ¼ −
p1 þ q
2χ

−
ðp2 − p1Þa2

2χða1χðp2−p1Þ=2 þ a2Þ
; ð63Þ

to finally get

γ ¼ ðp1 þ qÞ2
q

þ a2ðp2 − p1Þ
q

�
a2ðp2 − p1Þ

a1χðp2−p1Þ=2 þ a2
þ 2ðp1 þ qÞ

�

×
1

a1χðp2−p1Þ=2 þ a2
: ð64Þ

From Eq. (64) we observe that as far as
ffiffiffiffiffi
2γ

p
≥ c the RdSC,

in the form of Eq. (4), can be satisfied.

IV. NONMINIMAL NO-SCALE MODELS

A. 2 + 1 model

Next, we consider a no-scale supergravity with dS
vacuum generated by two chiral superfields ϕi and add
one rolling superfield χ, we refer to this construction as the
2þ 1 model. The Kähler and the superpotential are as
follows

K ¼ −3α1 lnðϕ1 þ ϕ̄1Þ − 3α2 lnðϕ2 þ ϕ̄2Þ
− q lnðχ þ χ̄Þ; ð65Þ

W ¼ aðϕn1þ
1 ϕn2þ

2 − ϕn1−
1 ϕn2−

2 Þχ−p=2; ð66Þ

where αi; q > 0; p < 0, a is an arbitrary constant and
ni� are given in Eq. (7). From Eq. (39) and demanding
niþ ≠ ni−, we have

ϕr1
1 ϕ

r2
2 ¼ ϕ̄r1

1 ϕ̄
r2
2 ¼ 1; ð67Þ

where r1, r2 are arbitrary constants satisfying r21 þ r22 ¼ 1.
We note that we cannot have both ∂1W and ∂2W simulta-
neously vanishing as supersymmetry is spontaneously
broken and the scalar potential is lifted. However, one of
them can vanish for special case of r1 ¼ 0 and r2 ¼ 1, or
vice versa. Moreover, we observe that the above solution
Eq. (67) satisfies Eq. (36). Similar to the minimal model,
the Hessian matrix can be brought to a block diagonal form,
Eq. (50), where now

Hϕ ¼

2
666664

K11̄V̂11̄ K11̄g11̄V̂11 K11̄V̂12̄ K11̄g11̄V̂12

K11̄g11̄V̂ 1̄ 1̄ K11̄V̂ 1̄1 K11̄g11̄V̂ 1̄ 2̄ K11̄V̂ 1̄2

K22̄g22̄V̂21̄ K22̄g22̄V̂21 K22̄V̂22̄ K22̄g22̄V̂22

K22̄g22̄V̂ 2̄ 1̄ K22̄V̂ 2̄1 K22̄g22̄V̂ 2̄ 2̄ K22̄V̂ 2̄2

3
777775;

ð68Þ
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and Hχ is as in Eq. (51), therefore the problem reduces to analyzing the 4 × 4 H1 matrix of Eq. (68). Analogously to

Eq. (52) we need to compute the second order derivatives of V̂ with respect to ϕ1 and ϕ2: V̂ϕiϕj
¼ ∂i∂jeG̃ðV þ γeGÞ ¼

eG̃∂i∂jðV þ γeGÞ. These derivatives are given in the Appendix B. We find that the eigenvalues are given as follows

λ1 ¼ 0;

e−G̃λ2 ¼
12 × 2−3ðα1þα2Þa2ð3r22α1 þ 3r21α2 þ s2α1α2ðγ − 3ÞÞðr22α1 þ r21α2Þ

s4α21α
2
2

; ð69Þ

where s has been defined in Eq. (7), which requires

3r22α1 þ 3r21α2 þ s2α1α2ðγ − 3Þ > 0; ð70Þ

while the other two eigenvalues are of the form

e−G̃λ� ¼ A�
ffiffiffiffi
B

p
; ð71Þ

where A and B are independent of ϕ1 and ϕ2. In Fig. 4 we
plot the possible values of α1 and α2 for the special case of
γ ¼ 2 and c0 ¼ 1 with r1 ¼ r2 ¼ 1ffiffi

2
p that are compatible

either with the RdSC or the stability condition.

B. N + 1 model

We generalize to the case of N de Sitter case plus a
rolling field with the following general Kähler potential and
superpotential

K ¼ −3
XN
i¼1

αi lnðϕi þ ϕ̄iÞ − q lnðχ þ χ̄Þ

¼ K − q lnðχ þ χ̄Þ; ð72Þ

W ¼ a

�YN
i¼1

ϕniþ
i −

YN
i¼1

ϕni−
i

�
χ−p=2 ¼ Wχ−p=2: ð73Þ

In this case, local supersymmetry breaking vacua exist
when for some fields Eq. (39) is satisfied (leading to
W ¼ W̄ ¼ 0), which can be put in the form

YN
i¼1

ϕri
i ¼

YN
i¼1

ϕ̄ri
i ¼ 1; ð74Þ

where r1, r2 are arbitrary constants satisfying
P

N
i¼1 r

2
i ¼ 1.

We note that we cannot have ∂iW simultaneously vanishing
for all i. However, some of them can vanish for special
values of ri. As with the previous examples this solution
automatically satisfies ∂iV ¼ 0, Eq. (36), which requires
ϕ ¼ ϕ̄. The part of the Hessian regarding only ϕi fields
does not mix with that of χi, hence as in the previous case
the total Hessian is block diagonal, Eq. (50), where

Hϕ ¼

2
666664

V̂ϕ1ϕ̄1
V̂ϕ1ϕ̄2

� � � � � � V̂ϕ1ϕN

V̂ϕ2ϕ̄1
V̂ϕ2ϕ̄2

� � � � � � V̂ϕ2ϕN

..

. ..
. ..

. ..
. ..

.

V̂ϕ̄Nϕ1
� � � � � � � � � V̂ϕ̄NϕN

3
777775; ð75Þ

and Hχ is as in Eq. (51), therefore the problem reduces to
analyzing the 2N × 2N Hϕ matrix, which in principle is not
block diagonal itself.

V. APPLICATION TO QUINTESSENCE MODELS

Current data indicates that the universe is dominated by
dark energy, therefore if Eq. (1) is satisfied, this implies that
this cannot be the result of a positive cosmological constant
nor can be described by a state at the minimum of a
potential with positive energy density. In such a case we can
invoke quintessence models, which are described by rolling
fields. It is known that exponential potentials of the form
V ¼ V0eλχ [45] and

VðχÞ ¼ V1eλ1χ þ V2eλ1χ ; ð76Þ

with varying λi parameters [49] that can fit well the
constraints based on supernovae type Ia (SNeIa), cosmic
microwave background (CMB) and baryon acoustic oscil-
lations (BAO) data (see [50] for an alternative conclusion).

Refined Conjecture

Stability

FIG. 4. Parameter space of α1 and α2, for the 2þ 1 model for
the special case of γ ¼ 2 and c0 ¼ 1 with r1 ¼ r2 ¼ 1ffiffi

2
p , that can

be either compatible with the RdSC or the stability condition.
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For the case of one rolling field χ, and hence only one term
in Eq. (76), VðχÞ ¼ V1eλχ , the variable λ is constrained to
be λ ¼ c, which is the constant appearing in Eq. (1), and
must satisfy λ≲ 0.6. In [44] the mechanism that we use in
this work to satisfy the RdSC was applied to uplift a
vacuum to a de Sitter vacuum that could be in agreement
with the RdSC but it was concluded that the breaking of
supersymmetry needed for the de Sitter uplift cannot be
only caused by the quintessence field χ due to the require-
ment γ ¼ c > 3. In the models we present in Sec. III we do
not have such a requirement and hence even our minimal
model with one rolling field plus one de Sitter field could
be used as a quintessence model. In particular our result for
the minimal model for the constraint on γ is compatible
with a value of 0.6.
The potential with two terms, Eq. (76), is in fact a kind of

freezing model associated with scaling solutions [51],
where the field equation of state scales as that of the
background fluid during most of the matter era. Here the
constants λi are constrained to λ1 ≫ 1 and λ2 ≲ 1 [49]. In
the early matter era, the potential is approximated by the
first term in Eq. (76) while at late times the second term. In
[45] it was shown that the potential of Eq. (76) with λ ≈
λ1 ≫

ffiffiffi
3

p
in the early universe and then switches to λ ≈

λ2 ¼ c ¼ 0.6 at some recent point in the past. Together
these two stages approximate the boundary trajectory that
the dark energy equation of state, ωðaÞ ¼ ω0 þ ωað1 − aÞ,
where a is the scale factor normalized as a ¼ 1 today, needs
to satisfy in order to be in agreement with SNeIa, CMB, and
BAO and the RdSC, Eq. (1), as shown in [45]. The no-scale
models that we study in Sec. III can easily accommodate
these requirements. We are aware about the difficulties in
constructing quintessence models in supergravity [52],
where either it is difficult to evade gravitational tests
or having the quintessence/supergravity models behave
like pure cosmological constants. Nevertheless, our
result is encouraging from the viewpoint of making
compatible a supergravity theory with the refined de Sitter
conjecture.3

VI. CONCLUSIONS

In this paper, we used the refined de Sitter conjecture
(RdSC) and the trans-Planckian censorship conjecture
(TCC) to constrain the parameter space of some no-scale

supergravity models. Specifically, we have studied a toy
model of one field with no-scale Kähler potential and a
superpotential constructed from two Minkowski endpoints,
which yields a de Sitter scalar potential. It is well known
that for a particular choice of parameters, this model is
unstable along the imaginary direction, that is the second
derivative of the scalar potential is negative. But this is
exactly the kind of model that the RdSC allows and the
TCC can constrain. To check the compatibility with the
RdSC and the TCC we first added a quartic term to
the original Kähler potential to stabilize the real part of
the field, allowing us to work with one canonical field that
is proportional to the imaginary direction. Using this, we
have shown that for some choices of parameters the theory
can be compatible with the RdSC and the TCC. This
analysis can be extended to the case of multifield theories
as well as to cases with metastable de Sitter vacua, where
the imaginary direction can also be modified via a quartic
term in the Kähler potential. We think this kind of analysis
is important as no-scale models with Minkowski/anti–
de Sitter vacua generically appear as low energy limits
of string compactifications, but de Sitter vacua “have
not yet been rigorously shown to be realized in string
theory” [30].
To construct the second class of models we presented in

this paper, for which an effective dS background is obtained
from a rolling potential, we modified the Kähler and
superpotential of the simplest no-scale model we consid-
ered by adding the terms corresponding to the rolling fields.
We found that this modification alleviates the instability
and flatness along the imaginary and the real directions
without the need for quartic terms. The existence of the
rolling direction provides an escape from the swamp as the
first criterion of the RdSC can be satisfied for suitable
values of parameters. Interestingly, we found that the height
of the potential is controlled by the no-scale parameters
while the rolling parameters make the model compatible
with the RdSC. These models could be used to construct
viable cosmological models to accommodate the acceler-
ating expansion of the late Universe.
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APPENDIX A: CANONICAL NORMALIZATION

To evaluate the second criterion of the RdSC, Eq. (2), we
split the complex field ϕ into real and imaginary compo-
nents ϕ ¼ xþ iy, to have

3There is a current debate on the value of the Hubble constant,
[53,54] which may lead to a revolution in cosmology. Solutions
for this tension may even discard quintessence models, [55,56].
Nevertheless, one can obviously not rule out quintessence
models on this basis, as the model realized in nature resolving
the tension has not been established yet. In addition, there may
not even be a need for new physics as potential reconsiderations
of instrument calibration or data analysis may hold a key in
resolving the Hubble tension. For example, Cepheid calibration
reconsiderations can settle on a value in agreement with standard
cosmology [57].
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L ¼ −Kϕϕ̄∂μϕ∂μϕ̄

¼ −
3α

4½Re½ϕ��2 ½ð∂μxÞð∂μxÞ þ ð∂μyÞð∂μyÞ�: ðA1Þ

With the Kähler metric of Eq. (21) we can fix the real part
to b, such that

hRe½ϕ�i ¼ b: ðA2Þ

Then we identify the canonical kinetic term of the fields χ
and σ:

L ¼ −
�

1ffiffiffi
2

p ∂μχ

�
2

−
�

1ffiffiffi
2

p ∂μσ

�
2

; ðA3Þ

we would have

1ffiffiffi
2

p ∂μχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3α

4½Re½ϕ��2
s

∂μx; ðA4Þ

1ffiffiffi
2

p ∂μσ ¼
ffiffiffiffiffiffi
3α

4

r ∂μy

b
→ σ ¼

ffiffiffiffiffiffi
3α

2

r
y
b
: ðA5Þ

But since the real part is fixed and acquires a vev, then our
effective theory will consist in only one field, σ, with
canonical kinetic term L ¼ − 1

2
∂μσ∂μσ.

APPENDIX B: DETAILS OF
STABILITY CONDITIONS

For the 2þ 1 model the second derivatives of V̂ are as
follows

1

eG̃
K1

1V̂
1
1 ¼

1

eG̃
K1

1V̂
1
1 ¼

4 × 2−3ðα1þα2Þa2ð3r22α21 − 2r21α2 þ 3γα1α2r21Þ
s2α21α2

;

1

eG̃
K1

1V̂
11 ¼ 1

eG̃
K1

1V̂11 ¼
4 × 2−3ðα1þα2Þa2ðs2ð2r21α2 − 9r21α1α2 − 3r22α

2
1Þ þ 9r21ðr22α1 þ r21α2ÞÞ

s4α21α2
;

1

eG̃
K1

1V̂
1
2 ¼

1

eG̃
K1

1V̂
2
1 ¼

12 × 2−3ðα1þα2Þa2r1r2ðγ − 1Þϕ1

s2α1ϕ2

;

1

eG̃
K1

1V̂
12 ¼ 1

eG̃
K1

1V̂12 ¼
12 × 2−3ðα1þα2Þa2r1r2ð3r21α2 þ 3r22α1 − 2s2α1α2Þϕ1

s4α21α2ϕ2

;

1

eG̃
K2

2V̂
2
1 ¼

1

eG̃
K2

2V̂
1
2 ¼

12 × 2−3ðα1þα2Þa2r1r2ðγ − 1Þϕ2

s2α2ϕ1

;

1

eG̃
K2

2V̂
21 ¼ 1

eG̃
K2

2V̂21 ¼
12 × 2−3ðα1þα2Þa2r1r2ð3r21α2 þ 3r22α1 − 2s2α1α2Þϕ2

s4α22α1ϕ1

;

1

eG̃
K2

2V̂
22 ¼ 1

eG̃
K2

2V̂22 ¼
4 × 2−3ðα1þα2Þa2ðs2ð2r22α1 − 9r22α2α1 − 3r21α

2
2Þ þ 9r22ðr21α2 þ r22α1ÞÞ
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;

1
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K2
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2
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1
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2
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