
Journal of Pure and Applied Algebra 225 (2021) 106687
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Construction of the circle in UniMath

Marc Bezem a,∗, Ulrik Buchholtz b, Daniel R. Grayson c,1, Michael Shulman d

a Department of Informatics, University of Bergen, Norway
b Department of Mathematics, Technical University of Darmstadt, Germany
c Department of Mathematics, University of Illinois at Urbana-Champaign, United States of America
d Department of Mathematics, University of San Diego, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 October 2019
Received in revised form 18
November 2020
Available online 11 January 2021
Communicated by E. Riehl

MSC:
03B15; 03B70; 55U35; 03G30

We show that the type TZ of Z-torsors has the dependent universal property of the
circle, which characterizes it up to a unique homotopy equivalence. The construction
uses Voevodsky’s Univalence Axiom and propositional truncation, yielding a stand-
alone construction of the circle not using higher inductive types.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction . 2
2. Precise formulation and discussion . 3

2.1. Preview of the type of Z-torsors . 3
2.2. The type of circles . 4
2.3. TZ is a circle . 6

3. Auxiliary results . 7
3.1. Identifying elements in members of families of types . 7
3.2. Dependent elimination for propositional truncation . 9
3.3. The integers . 10
3.4. Some induction principles for the integers . 10

4. Main results . 12
4.1. Recursion in TZ . 13
4.2. Induction in TZ . 14

5. Interpretation in higher toposes . 17
6. Conclusion and future research . 20

Acknowledgements . 20

* Corresponding author.
E-mail addresses: marc.bezem@uib.no (M. Bezem), ulrikbuchholtz@gmail.com (U. Buchholtz),

danielrichardgrayson@gmail.com (D.R. Grayson), shulman@sandiego.edu (M. Shulman).
URLs: https://www.ae-info.org/ae/Member/Bezem_Marc (M. Bezem),

https://www2.mathematik.tu-darmstadt.de/~buchholtz/ (U. Buchholtz), http://dangrayson.com/ (D.R. Grayson),
http://www.sandiego.edu/~shulman/ (M. Shulman).
1 Current address: 2409 S. Vine St., Urbana, Illinois 61801, USA.
https://doi.org/10.1016/j.jpaa.2021.106687
0022-4049/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpaa.2021.106687
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpaa.2021.106687&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:marc.bezem@uib.no
mailto:ulrikbuchholtz@gmail.com
mailto:danielrichardgrayson@gmail.com
mailto:shulman@sandiego.edu
https://www.ae-info.org/ae/Member/Bezem_Marc
https://www2.mathematik.tu-darmstadt.de/~buchholtz/
http://dangrayson.com/
http://www.sandiego.edu/~shulman/
https://doi.org/10.1016/j.jpaa.2021.106687
http://creativecommons.org/licenses/by/4.0/

2 M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687
References . 20

1. Introduction

In the standard set-theoretic foundations of mathematics, the sets have elements, which are themselves
sets. A set has no additional structure connecting its various elements to each other. An equation between
two sets is always a proposition, and equality between two elements of a set is independent of the ambient
set. By contrast, in homotopy type theory and in Voevodsky’s univalent foundations, the types are the
fundamental objects, serving to classify the objects of mathematics. They have elements. Equations are
used only to compare two elements of the same type, and the equations are not always propositions. Types
thus behave much like spaces, viewed from the point of view of homotopy theory, due to the promotion of
isomorphisms between objects of the same type to equalities (true equations), together with the intuition
that an equality between two objects of the same type is like a path between two points in the same space.

Synthetic homotopy theory is the study of the homotopy theoretic properties of types. It is a fruitful
one, because it turns out that many of the most basic results of standard homotopy theory have true
analogues for types. This is true even though the framework is based purely on logical principles, rather
than implemented like traditional homotopy theory in terms of topological spaces and continuous maps or
combinatorial structures such as simplicial sets and fibrant replacement.

In standard homotopy theory it is well known that the classifying space of the group Z of integers is
homotopy equivalent to the circle. We aim to reproduce that result in synthetic homotopy theory in a way
that doesn’t presuppose the existence of a circle.

The traditional algebraic notion of Z-torsor yields a category whose objects are the Z-torsors. Moreover,
this category is a groupoid (all arrows are isomorphisms), and one specific object—namely Z itself—is the
trivial Z-torsor, whose automorphism group is Z, and to which every other object is merely isomorphic. In
univalent type theory, this category is thus completely captured by the type TZ of all Z-torsors, which is
a connected pointed 1-type whose fundamental group is Z; we may call it the classifying type of Z. In this
paper we show that TZ behaves the way a circle ought to behave, by establishing that maps from it to other
types (or families of types) are freely determined by the destinations of the base point and the canonical
loop at the base point (corresponding to the element 1 of Z). The proof is constructive, in that it does not
appeal to the axiom of choice or the law of the excluded middle.

There are various types equivalent to the type of Z-torsors, and thus they also provide constructions
of circles: all one needs is a connected pointed type whose automorphism groups are isomorphic to Z. For
example, if one arising from geometry is desired, one may consider the type consisting of all frieze patterns
in a Euclidean plane2 formed from a linear collection of evenly spaced copies of the letter F .

· · ·FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF · · ·

We have formalized the result in UniMath, a name which refers both to Voevodsky’s (univalent) foun-
dation of mathematics based on a formal type theoretic language and to a particular repository [21] of
formalized proofs, initiated by him, encoded in the language of the proof assistant Coq. See [20] for an
overview by Voevodsky of it.

The other standard way to construct a circle in type theory uses higher inductive types, where one posits
a new type S1, an element pt : S1, a path � : pt = pt, an induction principle (for defining functions from it),
and nothing more. Adding higher inductive types to the system would give another construction of the circle,

2 We say a Euclidean plane instead of the Euclidean plane to indicate that the type is actually the type of pairs consisting of a
Euclidean plane and such a frieze pattern in it.

M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687 3
equivalent to the one described above. Voevodsky chose not to include higher inductive types, nor inductive
types,3 in UniMath for two chief reasons. Firstly, it was (and still is) not clear how to specify precisely
what a definition of a higher inductive type consists of: see [3,5] for two approaches. Secondly, Voevodsky
planned to prove consistency of UniMath in a series of papers4 and realized that adding inductive types and
higher inductive types to the system would dramatically increase the length of the series and the burden of
writing them; as it was, he died before completing the project. At his death the series was well underway
but far from complete: [16,12,13,17,18,14,19]. His approach in the series is to interpret each of the basic
constructions of the formal system as a traditional mathematical construction: a context is interpreted as a
fibrant simplicial set, a type in a context is interpreted as a fibration of fibrant simplicial sets, an element
of a type in a context is interpreted as a section of such a fibration, and so on.

More recent work [1,2], unpublished but formalized, has established the initiality principle for the type
theory used in UniMath, which Voevodsky had emphasized as a crucial unproven step. That, together with
the simplicial set model described in [4], may arguably be regarded as establishing the consistency result
that Voevodsky sought.

We turn now to the content of this paper.
As a prerequisite we require, of the reader, a working knowledge of homotopy type theory as described

in, for example, the first four chapters of [11]. In the next Section 2, more precisely in Eq. (2.6), we give a
precise formulation of the main result.

Preparing for the proof of the main result, we give in Section 3 some auxiliary results that are not in
the first four chapters of [11]. The full proof of the main result can be found in Section 4, more precisely
in Section 4.2. In Section 5 we discuss the interpretation of the main result in higher toposes, before we
conclude in Section 6.

2. Precise formulation and discussion

2.1. Preview of the type of Z-torsors

Recall that for a group G, a G-torsor consists of a nonempty set X and a left action of G on it that
is free and transitive. This means that for all x, y ∈ X there is a unique g ∈ G such that g · x = y. Any
element x0 ∈ X yields a bijection e : G → X given by g �→ g · x0. If the operation in the group G is written
additively, we’ll echo that by writing the torsor operation additively: g + x.

In the case where G is Z, then since Z is a free group with one generator, an action of Z on a set X is
completely determined by the action of the integer 1—it is a bijection X

∼=−→ X which we denote by f . Fixing
x0 ∈ X, the corresponding bijection e : Z → X then satisfies e(s(n)) = (1 +n) +x0 = 1 +(n +x0) = f(e(n))
for all integers n. So the following diagram commutes.

Z Z

X X

s

∼=

e ∼= e ∼=

f

Conversely, we get a unique Z-torsor from any pair (X, f), where X is a nonempty set and f : X → X

is a function, such that there merely exists a bijection e that makes the diagram above commute, by

3 UniMath accepts just a few specific types and type formers that can be introduced as inductive types, namely: the finite types
of cardinality at most 2, the natural numbers, binary coproducts, sums of families of types, and identity types.
4 Early work [4] with Kapulkin and Lumsdaine to establish consistency left him unsatisfied, so he embarked on his own series of

papers, to be realized with more details exposed.

4 M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687
transporting the structure of Z as a trivial Z-torsor along e, thereby expressing e as an isomorphism
of Z-torsors. Independence of the structure on X from the choice of e is established by observing that
n + x0 = fn(x0) for all n ∈ Z. Alternatively, one could use the existence of e to show that f is a bijection
and X is nonempty, define an action of Z on X by setting n + x := fn(x) for any n ∈ Z, and then use the
existence of e again to show that the action is free and transitive.

With the above considerations in mind, and recalling that, in the presence of univalence, isomorphisms
correspond to identities, we consider pairs (X, f) of type

∑
X:U (X → X) and introduce the pointed type of

Z-torsors by adopting the following definitions (cf. Definition 4.1).

TZ :≡
∑

(X,f)

‖(Z, s) = (X, f)‖

pt :≡ ((Z, s), |refl(Z,s)|) : TZ

We claim that the type pt =TZ pt is equivalent to Z. To see that, begin by observing that every function
f : Z → Z commuting with s is propositionally equal to sf(0). The first projection acting on p : pt =TZ pt
gives a path pr1(p) : Z = Z such that the corresponding transport function pr1(p)∗ : Z → Z is a bijection
commuting with s. We evaluate this bijection at 0. Let ev0(p) :≡ pr1(p)∗(0) for all p : pt =TZ pt, then
ev0 : (pt =TZ pt) → Z. Combining these observations and using the univalence axiom, one proves that ev0
is an equivalence.

Since Z is a set, it follows that the underlying set of the fundamental group of (TZ, pt) is equivalent to
Z, and with a bit more work, that the fundamental group of (TZ, pt) is isomorphic to Z. However, we do
not need this fact here.

We define 1 :≡ s(0). The preimage of 1 under the equivalence ev0 is a natural generating path of
pt =TZ pt, so we define � :≡ ev−1

0 (1), which we call the loop of TZ. Alternatively, we could have obtained
� directly from s : Z � Z by applying the univalence axiom (with some easy add-ons, e.g., proving that s
commutes with itself).

2.2. The type of circles

In order to explain our main result, that TZ behaves like the circle understood as a higher inductive
type with constructors pt : TZ and � : pt = pt, we introduce, following [10], the type of circle algebras,
consisting of a type together with a point and a loop at that point.

S-Alg :≡
∑
C:U

∑
c:C

c = c.

The type of fibered circle algebras over a circle algebra C ≡ (C, c, s) is defined to be the dependent version
thereof.

S-Fib-Alg(C) :≡
∑

A:C→U

∑
a:A(c)

a =A
s a.

As explained and proved in [10, Thm. 50], given a circle algebra C ≡ (C, c, s), there are various equivalent
ways to state that it behaves like the circle, including5:

Homotopy initiality The type of algebra homomorphisms from C to any other circle algebra A ≡ (A, a, p)
is contractible, where this type of algebra homomorphisms is

5 The dependent universal property is not discussed in [10], however, it is easily seen to be equivalent to the induction principle.

M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687 5
S-hom(C,A) :≡
∑

f :C→A

∑
r:f(c)=a

apf (s) =Ã
r p, (2.1)

where Ã(y) :≡ (y = y) for y : A. We recall the basics of paths over a path, and the accompanying
operations, in Section 3.1 below. (The type S-hom(C, A) is equivalent to the type

∑
f :C→A

(f(c), apf (s)) = (a, p),

where the pairs are regarded as elements of
∑

y:A Ã(y).)
Universal property For any type A : U , the map that evaluates a function f : C → A at c and s,

(C → A) →
∑
a:A

a = a, f �→ (f(c), apf (s)), (2.2)

is an equivalence.
Induction principle Any fibered circle algebra A ≡ (A, a, p) over C has an algebra section, where the type

of algebra sections is

S-sect(A) :≡
∑

f :
∏

z:C A(z)

∑
r:f(c)=a

apdf (s) =Ã
r p, (2.3)

where Ã(y) :≡ (y =A
s y) for y : A(c). (Here apd is as defined in [11, 2.3]; the type S-sect(A) is equivalent

to the type

∑
f :
∏

z:C A(z)

(f(c), apdf (s)) = (a, p),

where the pairs are regarded as elements of
∑

y:A(c) Ã(y).)
Dependent universal property For any type family A : C → U , the map that evaluates a function f :∏

z:C A(z) at c and s,

(∏
z:C

A(z)
)

→
∑

a:A(c)

a =A
s a, f �→ (f(c), apdf (s)), (2.4)

has a section.

From the equivalence of the types encoding the four principles above, it also follows that the type of induction
terms for C,

∏
A:C→U

∏
a:A(c)

∏
p:a=A

s a

S-sect(A, a, p), (2.5)

which is equivalent to the type of sections of (2.4) for all families A, is a proposition.
The type of circles, then, is the subtype of S-Alg corresponding to any of these definitions. As in [11,

Sec. 9.8], we can prove a structure identity principle for circle algebras and circles, viz., for circle algebras
C ≡ (C, c, s) and C′ ≡ (C ′, c′, s′), the canonical function

(C =S-Alg C′) →
∑

′

∑
′

(apf (s) =C̃′

r s′) × isEquiv(f),

f :C→C r:f(c)=c

6 M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687
pt

a

A(pt)

r

pt

a

A(pt)

r

pt

a

A(pt)

r

p

�

apdf (�)

p

�

apdf (�)

· · · · · ·

· · · · · ·

TZ

A

f

Fig. 1. A visualization of circle induction principle.

where C̃ ′(y) :≡ (y = y) for y : C ′, is an equivalence. By homotopy initiality for circles, it then follows
straightforwardly that the type of circles is a proposition, i.e., independently of whether there are any
circles, any two circles are uniquely identifiable.

2.3. TZ is a circle

With this in hand, we can outline our route to proving that the circle algebra (TZ, pt, �) is a circle.
As a warm-up, we first prove in Section 4.1 the recursion principle, which states that, given a type A, an

element a of A and a path p : a =A a, one can construct a function f : TZ → A with a path r : f(pt) = a

such that apf (�) =Ã
r p, or, equivalently, apf (�) = r∗(p ∗r−1). This construction was formalized by Grayson

in 2014, see [21, Circle.v].6 This however only proves weak initiality, or equivalently, only gives a section of
the evaluation map in (2.2).

In Section 4.2 we then prove the induction principle, in which A is not a type but a type family over
TZ. On the basis of Grayson’s construction of the recursion principle, Shulman sketched an approach to the
induction principle, see [8]. Independently of this, but also departing from Grayson’s proof of the recursion
principle, Buchholtz and Bezem found the construction presented in this paper, which has subsequently
been formalized by Grayson [21, Circle2.v, Theorem circle_induction] in UniMath.

Spelling out the induction principle, we have to construct a function of the following type:

∏
A:TZ→U

∏
a:A(pt)

∏
p:a=A

�a

∑
f :
∏

z:TZ A(z)

∑
r:f(pt)=a

apdf (�) =Ã
r p (2.6)

(Recall that Ã(y) ≡ (y =A
� y) for y : A(pt).)

The type in Eq. (2.6) is illustrated in Fig. 1. We think of TZ as a circle (and prove that it is), but we
illustrate it (and objects depending on it) as periodically recurring, in order to make clearer diagrams. We
draw the type family A as a periodic fibration over this circle, and the goal is then to produce from the point
a and the path p over �, the section f , the path r, and a final element inhabiting the type apdf (�) =Ã

r p,
which corresponds to filling the inside of the curvilinear quadrilateral in Fig. 1. (This will be made precise
in course of the argument below, in terms of compositions of paths over paths.)

Our construction uses the propositional truncation operation ‖_‖, as in [11, 6.9], but we do not require
that the dependent eliminator witnessing the induction principle of ‖_‖ computes judgmentally on the point
constructor |_| : X → ‖X‖. In the UniMath formalization, propositional truncation is constructed as (the
propositional resizing of)

6 Our construction here uses the same basic idea but manages the computations involved in establishing the induction principle
differently.

M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687 7
‖X‖ :≡
∏

P :Prop
((X → P) → P), (2.7)

where Prop is the type of all propositions (in a chosen universe). Using this construction, the corresponding
non-dependent eliminator will compute judgmentally on the point constructor, but the dependent eliminator
will not. As we explain below, this has the consequence that in UniMath, the non-dependent circle eliminator
that we construct for TZ will then compute judgmentally on pt, but the dependent one will not.

If the underlying type theory has propositional truncation with a dependent eliminator that computes
judgmentally on the point constructor, as in [11, 6.9], then our construction for the induction principle in
Eq. (2.6) simplifies. Its application to A, a, p of appropriate types is a triple (f, r, q) where f is a section
of A and r : f(pt) = a. In this case, f(pt) ≡ a, but in general we won’t have r ≡ refla. However, the type
apdf (�) =Ã

r̄ p makes sense for all r̄ : a = a, and we’ll have that r = refla, so we may transport q to obtain

an element of type apdf (�) =Ã
refla

p. This type is judgmentally equal to apdf (�) = p.
In a type theory where higher inductive types are admitted, one can introduce a circle S1 as a higher

inductive type, as in [11, 6.1], and this will easily be shown to be equivalent to TZ, without relying on
the results of our paper. The equivalence can be established by observing that TZ and S1 are pointed
connected types with loop spaces equivalent to Z. (For the interested reader: apply [11, Lemma 7.6.2] with
n = −2 to reduce to action on paths. Then use connectedness to strengthen this result from embeddings
to equivalences. Finally, again using connectedness, reduce to the loop spaces of the respective points, and
show they are equivalent to Z and thus to each other.) The induction principle Eq. (2.6) for TZ then follows
directly.

The reader may wonder whether our result can be generalized to higher spheres. The answer is no. One
can construct models of type theory with univalent universes and propositional resizing (viz., essentially
of UniMath) that do not have higher inductive types, not even suspensions. We can take any model and
restrict the nth universe, n = 0, 1, . . . , to consist of homotopy n-types: the new zeroth universe U ′

0 consists
of the sets of the old universe U0, the new universe U ′

1 consists of the groupoids of U1 (hence including U ′
0),

etc. This construction keeps all the propositions, so it preserves propositional resizing. By our construction,
U ′

1 will contain a circle TZ, but it cannot contain the 2-sphere (the suspension of the circle), as this is not
a groupoid. Because the 2-sphere in topology is not an n-type for any n, the new model will not contain
a 2-sphere. The restricted model also shows that one cannot construct a circle in the lowest universe in
UniMath.

3. Auxiliary results

In this section we present some additional results that are needed in the sequel.

3.1. Identifying elements in members of families of types

All proofs in this subsection are by (nested) induction as indicated in the text, and can moreover be
found in [21, PathsOver.v].

Let A : U , B : A → U , ai : A, bi : B(ai) for i = 1, 2, and p : a1 = a2. We are interested in identifications
of b1 and b2 relative to this data. We cannot in general form the type b1 = b2 as their types may be different.
There are several ways to solve this problem. One of them is to transport b1 along p and form an identity
type in B(a2). Another way would be to consider identifications (a1, b1) = (a2, b2) in

∑
x:A B(x) and require

that the action of the first projection on such identifications is equal to p. These two ways are equivalent.
The former way is easier to work with and will be the one we choose here.

Definition 3.1. Let A : U , B : A → U , ai : A, bi : B(ai) for i = 1, 2, and p : a1 = a2. Define the transport
function trpB,p : B(a1) → B(a2) by induction on p, setting trpB,refl (b1) :≡ b1. This is indeed well-typed
a1

8 M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687
since B(a1) ≡ B(a2) in this case. Now define the type b1 =B
p b2 as trpB,p(b1) = b2. An element of b1 =B

p b2
is called a path from b1 to b2 over p. Note that (b1 =B

refla1
b2) ≡ (b1 =B(a1) b2).

Many of the operations on paths have their counterpart for paths over paths. We define the unit path
over a path, composition of paths over paths, and reversal of paths over paths.

Definition 3.2. Let A : U , B : A → U , ai : A, bi : B(ai) for i = 1, 2, 3, and pi : ai = ai+1 for i = 1, 2. We
define:
(1) Unit reflb1 : b1 =B

refla1
b1;

(2) Composition of paths over paths ∗o : b1 =B
p1

b2 → b2 =B
p2

b3 → b1 =B
p1∗p2

b3, defined by induction first
on p2 and then on r : b2 = b3, by setting q ∗o reflb2 :≡ q for all q : b1 =B

p1
b2;

(3) Reversal of paths over paths (_)−o : b1 =B
p1

b2 → b2 =B
(p1)−1 b1, defined by induction first on p1 and then

on r : b1 = b2, by setting refl−o
b1

:≡ reflb1 .

These operations on paths over paths satisfy many of the laws satisfied by the corresponding operations
on paths, after some modification. We illustrate the modification required to treat composition. Suppose we
have elements ai : A for 1 ≤ i ≤ 4, paths pi : ai = ai+1 for 1 ≤ i ≤ 3, elements bi : B(ai) for 1 ≤ i ≤ 4, and
paths qi : bi =B

pi
bi+1 over pi for 1 ≤ i ≤ 3. Then we the following two paths over paths.

q1 ∗o (q2 ∗o q3) : b1 =B
p1∗(p2∗p3) b4

(q1 ∗o q2) ∗o q3 : b1 =B
(p1∗p2)∗p3

b4

Since they are of different types, they cannot be compared directly, but there is an equivalence ε of type (
b1 =B

p1∗(p2∗p3) b4

)
�

(
b1 =B

(p1∗p2)∗p3
b4

)
constructed from the associativity law for paths of type p1 ∗ (p2 ∗

p3) = (p1∗p2) ∗p3. The associativity law for composition of paths over paths is an easily constructed identity
of type ε(q1 ∗o (q2 ∗o q3)) = (q1 ∗o q2) ∗o q3. For more information we refer the reader to the repositories with
formalized proofs [21, Circle2.v].

In the rest of this section we work in a context with A : U , B : A → U , ai : A, bi : B(ai) for i = 1, 2, 3,
pi : ai = ai+1 for i = 1, 2,

Lemma 3.3. For every q : b1 =B
p1

b2, the function

q ∗o (_) : (b2 =B
p2

b3) → (b1 =B
p1∗p2

b3)

is an equivalence.

The proof is by induction on first p1, and then q, and finally p2. Then conclude by reflexivity.
If p = q, then we can transport paths over p to paths over q.

Definition 3.4. For every p, q : a1 = a2 and 2-dimensional path α : p = q, transport along α induces an
equivalence cpα : (b1 =B

p b2) � (b1 =B
q b2). The function cpα is called change path, and is defined by

induction on α, setting cpreflp
:≡ idb1=B

p b2 .

Lemma 3.5. For every p, q, r : a1 = a2 and 2-paths α : p = q, β : q = r, we have cpα∗β = cpβ ◦ cpα.

The proof is by induction on β (for right-recursive composition).

Lemma 3.6. For every p, q : a1 = a2 and 2-path α : p = q, taking α− :≡ ap(_)−1(α), we have (cpα(p̂))−o =
cpα−(p̂−o) for every p̂ : b1 =B

p b2.

M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687 9
The proof is by induction on α.

Lemma 3.7. For every p : a1 = a2 define ι(p) : p−1 ∗ p = refla2 by induction on p, by setting ι(refla1) :≡
reflrefla1

. Then we have cpι(p)(p̂−o ∗o p̂) = reflb2 for every p̂ : b1 =B
p b2.

Lemma 3.8. For every p : a1 = a2 define γ(p) : refla1 ∗ p = p by induction on p, setting γ(refla1) :≡ reflrefla1
.

Then we have cpγ(p)(reflb1 ∗op̂) = p̂ for every p̂ : b1 =B
p b2.

The proof is in both cases by induction on first p, and then on p̂.

Definition 3.9. For every p, p′ : a1 = a2, q, q′ : a2 = a3 and 2-paths α : p = p′, β : q = q′, define
ap∗(α, β) : (p ∗ q) = (p′ ∗ q′) by induction first on β and then on q, setting ap∗(α, reflrefla2

) :≡ α. (This is
well-typed for right-recursive composition.)

Lemma 3.10. For every p, p′ : a1 = a2, q, q′ : a2 = a3 and 2-paths α : p = p′, β : q = q′, we have
cpap∗(α,β)(p̂ ∗o q̂) = cpα(p̂) ∗o cpβ(q̂), for every p̂ : b1 =B

p b2 and q̂ : b2 =B
q b3.

The proof is by induction first on β, then on q, and finally on q̂.

3.2. Dependent elimination for propositional truncation

One extra piece of knowledge we need is the dependent elimination principle for propositional truncation,
mentioned in [11, 6.9], and qualified as ‘not really useful’.7 We use this principle in Lemma 4.2, and it plays
an essential role in the proof of the induction principle for TZ.

Recall that we assume the presence of a propositional truncation operation ‖_‖ (mapping each universe to
the propositions therein) equipped with maps |_| : X → ‖X‖ exhibiting ‖_‖ as a reflection into propositions,
i.e., for any proposition P , precomposition with |_| induces an equivalence (‖X‖ → P) � (X → P). If the
inverse map sends g : X → P to ḡ : ‖X‖ → P such that ḡ(|x|) ≡ g(x) for all x : X, then we say
the propositional truncation operation satisfies the judgmental computation rule for the non-dependent
eliminator (JNE). This can be achieved either by having ‖_‖ defined as a higher inductive type or using
the impredicative encoding (2.7), as we verify below.

Lemma 3.11. If A is a type and B(x) is a family of propositions indexed by the elements x of ‖A‖, and we
are given g :

∏
a:A B(|a|), then there is a function f :

∏
x:‖A‖ B(x).

Proof. The function g induces a function h : A →
∑

x:‖A‖ B(x) by setting h(a) :≡ (|a|, g(a)). Since the
codomain of h is a proposition, we get an induced map ‖A‖ →

∑
x:‖A‖ B(x), which is automatically a

section of pr1 :
∑

x:‖A‖ B(x) → ‖A‖. By the equivalence between sections of first projections and dependent
functions, we then get the required f . �

Note that the resulting function f automatically satisfies f(|a|) = g(a), for each a : A, since each type
B(|a|) is a proposition. If we can achieve a judgmental equality here, then we say that the propositional
truncation operation satisfies the judgmental computation rule for the dependent eliminator (JDE).

Recall that in UniMath, ‖A‖ :≡
∏

P :Prop((A → P) → P), and the function |_| : A → ‖A‖ is defined
by |a|(P, f) :≡ f(a) for all P : Prop, f : A → P , and a : A. Thus we naturally get a recursion principle:
if P : Prop, then any g : A → P defines an f : ‖A‖ → P by setting f(x) :≡ x(P, g). Clearly f satisfies
f(|a|) ≡ |a|(P, g) ≡ g(a), for all a : A.

7 The dependent elimination principle appears to be used later in [11, Lemma 7.3.3], though.

10 M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687
For induction the situation is different: if B : ‖A‖ → Prop, then from any g :
∏

a:A B(|a|) we can construct
a function f :

∏
x:‖A‖ B(x), as in the proof of Lemma 3.11. Unwinding the proof, there will be a transport

involved in converting the section to a dependent function, and we won’t have f(|a|) ≡ g(a), as the path of
type |a| = |a| coming from the proof that ‖A‖ is a proposition need not be the path given by reflexivity.

There are several other ways of defining f , but none we are aware of satisfies the computation rule
f(|a|) ≡ g(a). It is currently unknown whether it is possible to define in UniMath a propositional truncation
with an induction principle that satisfies the computation rule.

3.3. The integers

For convenience we give a direct inductive definition of the set of integers, and we give an alternative
induction principle in Section 3.4. Thus we get a set of integers Z, a constant 0 : Z, and a successor function
s : Z → Z that is an equivalence.

Definition 3.12. Let Z be the inductive type with the following three constructors:
(1) zero : Z for the integer number zero, 0 :≡ zero ;
(2) pos : N → Z for positive integers, 1 :≡ pos(0), . . . ;
(3) neg : N → Z for negative integers, −1 :≡ neg(0),

The embedding function i : N → Z is defined by induction, setting i(0) :≡ zero, i(S(n)) :≡ pos(n). Like
the type N, the type Z is a set with decidable equality and ordering relations, and we denote its elements
often in the usual way as . . . , −1, 0, 1,

One well-known equivalence is negation − : Z → Z, also called complement, inductively defined by setting
− zero :≡ zero, − pos(n) :≡ neg(n), − neg(n) :≡ pos(n). Negation is its own inverse.

The successor function s : Z → Z is defined inductively setting s(zero) :≡ pos(0), s(pos(n)) :≡ pos(S(n)),
s(neg(n)) :≡ −i(n). For example, we have s(−1) ≡ s(neg(0)) ≡ −i(0) ≡ zero ≡ 0. Denoting the successor
function on N by S, by induction on n : N one proves s(i(n)) = i(S(n)), so that one can say that s extends
S on the i-image of N. From now on we will identify i(n) : Z with n, and −i(n) : Z with −n, for all n : N.

The successor function s is an equivalence. The inverse s−1 of s is called the predecessor function. We
denote the n-fold iteration of s as sn, and the n-fold iteration of s−1 as s−n.

Addition of integers is defined inductively by setting z + zero :≡ z, z + pos(n) :≡ sn+1(z), z + neg(n) :≡
s−(n+1)(z). From addition and unary − one can define a binary substraction function setting z−y :≡ z+(−y).

Recall the equivalence ev0 : (pt =TZ pt) → Z from Section 2.1, which sends p to pr1(p)∗(0). We have
reflpt : pt =TZ pt, as well as the operations of path reversal and path composition as defined in [11, 2.1]. These
satisfy the laws as stated and proved in [11, Lemma 2.1.4], equipping pt =TZ pt with a group structure.
The equivalence ev0 maps reflpt via idZ : Z → Z to 0. As explained above, ev0 maps any p : pt =TZ pt via
sk : Z → Z to some k : Z. Since (sk)−1 = s−k and sk ◦ sl = sk+l, ev0 transports path reversal and path
composition to negation and addition, respectively. This means that the entire group structure of pt =TZ pt
is transported to the usual group structure on Z, including all the proofs of the group laws in Z. (The fact
that we do not have to reprove the group laws is one of the benefits of the univalent approach.)

3.4. Some induction principles for the integers

The definition of Z yields the following induction principle. Given P : Z → U , to construct elements
h(z) : P (z) for every z : Z, it suffices to give h(0) : P (0) and functions f :

∏
n:N(P (n) → P (n + 1)) and

g :
∏

n:N(P (−n) → P (−n − 1)), as illustrated in Fig. 2.
The function h :

∏
z:Z(P (z)) defined in this way satisfies h(n + 1) ≡ f(n, h(n)) and h(−n − 1) ≡

g(n, h(−n)) for all n : N.

M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687 11
−2 −1 0 1 2

f f fg g g
P

Z

· · ·

· · ·

· · ·

· · ·

Fig. 2. Asymmetric integer induction principle.

−2 −1 0 1 2

∼
f

∼
f

∼
f

∼
f

∼
f

∼
f

P

Z

· · ·

· · ·

· · ·

· · ·

Fig. 3. Symmetric integer induction principle.

It is possible to give a more symmetric, but less general induction principle, if we assume that the
functions are equivalences. In that case we can reorient the g’s to point in the same direction as the f ’s,
allowing us to combine them into a single family f :

∏
z:Z P (z) � P (z + 1) of equivalences, as illustrated in

Fig. 3.
We shall need that in this case, giving an element h :

∏
z:Z P (z) together with identities of type h(z+1) =

fz(h(z)) for all z : Z is equivalent to giving the single element h(0). We formulate this precisely as follows.

Theorem 3.13. Let P : Z → U and f :
∏

z:Z P (z) � P (z + 1). The function

ϕ :
(∑

h:
∏

z:Z P (z)

∏
z:Z

h(z + 1) = fz(h(z))
)

→ P (0)

that sends (h, q) to h(0) is an equivalence.

See [21, AffineLine.v, Definition ZBi-Recursion_weq] for the formalization of the proof, and see [21,
AffineLine.v, Definition ZTorsorRecursion_weq] for the formalization of a version for arbitrary Z-torsors.

Proof. We prove that the fiber over any p : P (0) is contractible. We simplify notations a bit by leaving
out the types of h and q. The fiber

∑
(h,q) h(0) = p consists of triples (h, q, r) with r : h(0) = p. By case

distinction, h can (equivalently) be split in three parts (h−, h0, h+) with h0 : P (0), h+ :
∏

n:N P (n +1), and
h− :

∏
n:N P (−n − 1). Since h(0) = p only depends on h0 the pair (h0, r) with r : h0 = p contracts away, so

we’re left with the type

ϕ−1(p) � ψ+(p) × ψ−(p),

where ψ+(p) and ψ−(p) are defined as follows.

ψ+(p) :≡
∑

h+:
∏

n:N P (n+1)

(
(h+(0) = f0(p)) ×

∏
n:N

h+(n + 1) = fn(h+(n))
)

ψ−(p) :≡
∑

h−:
∏

n:N P (−n−1)

(
(h−(0) = f−1

−1 (p)) ×
∏
n:N

h−(n + 1) = f−1
−n−2(h−(n))

)

The type ϕ−1(p) is contractible, because ψ+(p) and ψ−(p) are contractible. They are contractible because
each specifies a certain function, namely h+ or h−, specifies that this function has a certain value at 0, and

12 M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687
prescribes the value of the function at all successors. Such a specification is unique by the universal property
(induction) of N. �

Let us spell out the inverse function produced in the proof. It maps p : P (0) to a pair whose first
component is the function that takes z : Z to fz(p) : P (z), where

f0(p) ≡ p,

fn+1(p) ≡ fn(fn(p)), for n : N,

f−n−1(p) ≡ f−1
−n−1(f−n(p)), for n : N.

4. Main results

In this section, pairs (X, f) will be of type
∑

X:U (X → X). Moreover, nested pairs will be written as tu-
ples. With these notational simplifications, we rephrase some definitions from Section 2.1. The formalization
of Section 4.1 can be found in [21, Circle.v], and that of Section 4.2 can be found in [21, Circle2.v].

Definition 4.1. The pointed type of Z-torsors is defined by

TZ :≡
∑

(X,f)

‖(Z, s) = (X, f)‖,

pt :≡ (Z, s, |refl(Z,s)|) : TZ.

The variables X, Y, Z will be used for elements of TZ, as well as, by an abuse of notation, for their the first
components. The equivalence ev0 is defined by

ev0 : (pt =TZ pt) → Z

p �→ pr1(p)∗(0).

The loop of TZ is defined as � :≡ ev−1
0 (1), satisfying pr1(�)∗ = s.

The type TZ is equivalent to the more traditionally defined type of Z-torsors, but is more parsimonious.8
(Traditionally, a Z-torsor is defined as a nonempty set upon which the group Z acts freely and transitively.)
Another way to think of it is as the type of Cayley diagrams for Z with respect to the generator 1.

We remark that the pointed type TZ is connected, that is, ‖pt = Z‖ for all Z : TZ.

Lemma 4.2. If P (Z) is a proposition for all Z : TZ, then P (pt) implies that P (Z) holds for all Z : TZ.

Proof. Let P (Z) be a proposition for all Z : TZ, and assume we have a proof p : P (pt). Let (X, f, t) : TZ,
then t : ‖(Z, s) = (X, f)‖. Since P (X, f, t) is a proposition, it suffices by Lemma 3.11 to prove P (X, f, |e|)
for all e : (Z, s) = (X, f). By induction on e we reduce the task to proving P (Z, s, |refl(Z,s)|), which is the
same as P (pt), so p provides the proof. �

The proof q :
∏

Z:TZ P (Z) constructed above has the property that q(pt) ≡ p if the computation rule for
the induction principle for propositional truncation holds.

8 Our formalization, however, uses the traditional definition.

M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687 13
∑
(X,f,t):TZ

∑
a′:A

∑
h:X→a=a′

∏
x:X

h(f(x)) = p ∗ h(x) A

TZ

pr1�

pr2

cp
�cp

Fig. 4. Mapping torsors to A.

Recall that the aim of this section is to show that TZ satisfies the induction principle Eq. (2.6) for the
circle. The recursion principle is the non-dependent version of the induction principle, namely that there is
a function of the following type:

∏
A:U

∏
a:A

∏
p:a=Aa

∑
f :TZ→A

∑
r:f(pt)=a

apf (�) =Ã
r p. (4.1)

Although the same method works to derive both the recursion and the induction principles, we opt to
do the recursion principle first, as it is slightly simpler, and prepares the way for the more complicated
induction principle.

4.1. Recursion in TZ

Fix A : U , a : A and p : a =A a. We want to construct a function f from TZ to A that maps pt to a, as
witnessed by some r : f(pt) = a, such that apf (�) =Ã

r p. As mentioned in Section 2.3, the last requirement
is equivalent to apf (�) = r ∗ (p ∗ r−1). This is because trpÃ,r−1(p) = r ∗ (p ∗ r−1), which in turns follows
from the groupoid law p = refl ∗ p upon induction on r.

All input data is present in p and its type. When defining types and functions depending on the input
data, we use p in various denotations to express this dependence.

To be able to apply Lemma 4.2, we need to find a suitable proposition. The idea is to find a corre-
spondence9 from TZ to A whose first projection is an equivalence, thereby yielding a map from TZ to A,
cf. Fig. 4.

Definition 4.3. For every (X, f), define

Qp(X, f) :≡
∑
a′:A

∑
h:X→a=a′

∏
x:X

h(f(x)) = p ∗ h(x).

Lemma 4.4. The type Qp(X, f) is contractible for all (X, f, t) : TZ.

Proof. By Lemma 4.2 it suffices to prove that Qp(Z, s) is contractible. Note that Qp(Z, s) is the total space
of the family Rp : A → U defined by

Rp(a′) :≡
∑

h:Z→a=a′

∏
z:Z

h(z + 1) = p ∗ h(z).

Note furthermore that
∑

a′:A a = a′ is contractible with center (a, refla). Thus, to show that Qp(Z, s) is
contractible, it suffices to define an equivalence

ϕa′ :
(∑

h:Z→a=a′

∏
z:Z

h(z + 1) = p ∗ h(z)
)

∼−→ (a = a′)

9 A correspondence (or span) from a type T to a type T ′ is a type C with projections pr1 : C → T and pr2 : C → T ′.

14 M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687
for each a′ : A. The intention is now to invoke Theorem 3.13. Indeed, let us define the constant type family
Pa′(z) :≡ (a = a′) over Z. Also, define fa′(z) : Pa′(z) → Pa′(z + 1) by fa′(z)(q) :≡ p ∗ q for all z : Z and
q : a = a′. Then each fa′(z) is an equivalence (with inverse q �→ p−1 ∗ q). Thus, applying Theorem 3.13
shows that ϕa′ is an equivalence, where ϕa′(h, q) :≡ h(0). �

A relevant observation at this point is that Qp(X, f) does not depend on t : ‖(Z, s) = (X, f)‖. This
means that we actually apply in the proof above the non-dependent version of Lemma 4.2, for which the
computation rule holds also in UniMath. For Z ≡ (X, f, t) : TZ, let 	cp(Z) denote the center of contractibility
of Qp(X, f) as constructed in the proof above. We introduce the notation (cp(Z), ̃cp(Z), ̂cp(Z)) :≡ 	cp(Z)
for its components. The value of 	cp(pt) can be uncovered by a careful analysis of the steps of the proof.
First, the center of

∑
a′:A a = a′ is (a, refla). This center is pulled back by ϕa to a center (a, c) of Qp(Z, s),

where c is the center of ϕ−1
a (refla) coming from the proof that ϕa is an equivalence. The latter proof is the

above instance of Theorem 3.13. Unraveling this instance, and using the remark at the end of the proof of
Theorem 3.13, tells us that c is a pair (h, q) with h(z) ≡ pz for all z : Z. Indeed, ϕa(h, q) = h(0) ≡ refla.
Moreover, q has type

∏
z:Z h(z + 1) = p ∗ h(z). Wrapping up, 	cp(pt) = (a, h, q), with judgmental equality

if (JNE) holds.
The analysis in the previous paragraph means we have achieved one of our goals, namely that the function

cp from TZ to A maps pt to a, definitionally if (JNE) holds. In any case, let r :≡ c̃p(pt, 0)−1 : cp(pt) = a,
which reduces under (JNE) to refla. We will now deal with the other goal, namely that cp acting on � yields
r ∗ (p ∗ r−1).

Lemma 4.5. For all X, Y : TZ, e : X = Y and x : X we have apcp(e) = c̃p(X, x)−1 ∗ c̃p(Y, ̃e(x)), where
ẽ :≡ pr1(e)∗ : X → Y .

Proof. By using induction on e we only have to check the case where X ≡ Y and e ≡ reflX . In this case
apcp(e) is reflcp(X). On the right-hand side we get ẽ(x) ≡ x, and hence this side simplifies to a reflexivity
path of the correct type, as c̃p(X, x) has type a = cp(X). �

We apply the above lemma with X ≡ Y ≡ pt and e ≡ � : pt = pt. Then we have ẽ(z) = s(z) = z + 1.
Note that ĉp(pt, 0) : c̃p(pt, 1) = p ∗ c̃p(pt, 0). Hence, taking z :≡ 0 in Lemma 4.5, it follows that

apcp(�) = c̃p(pt, 0)−1 ∗ c̃p(pt, 1) = r ∗ (p ∗ r−1).

This means we have achieved our second goal as well, and we’ve produced an element of the type (4.1).

4.2. Induction in TZ

Fix A : TZ → U , a : A(pt), and p : a =A
� a. On the basis of this input data, we will construct a function

f of type
∏

Z:TZA(Z) that maps pt to a, as witnessed by some r : f(pt) = a, such that apdf (�) =Ã
r p. We

follow the pattern of the non-dependent case in Section 4.1, but keep in mind that A is now not constant
and p is a path over a path. We make extensive use of the functions and lemmas from Section 3.1.

The following lemma follows from the fact that Z is a set and s : Z → Z is an equivalence.

Lemma 4.6. Suppose q : (Z, s) = (X, f). Then X is a set and f : X → X is an equivalence. Morever, with
q̃ :≡ pr1(q)∗ the equivalence induced by q, we have fn(x) = (q̃ ◦ sn ◦ q̃−1)(x) = q̃(q̃−1(x) + n), for all n : Z
and x : X.

Note that for fixed x : X the expression q̃−1(x) + n can be seen as the function shifting n : Z by q̃−1(x)
positions, indeed an equivalence. Hence fn(x) as a function of n is an equivalence from Z to X. Recall that
we may denote fn(x) by n + x, as X is a Z-torsor via f .

M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687 15
Definition 4.7. For every Z :≡ (X, f, t) : TZ and x : X, define sZx : pt =TZ Z by the equivalence ex(n) :≡
fn(x) using the univalence axiom. Indeed, f ◦ ex = ex ◦ s, as both functions map n to fn+1(x).

Applying Theorem 3.13, we will need two auxiliary results about the paths spt
x , one for x = 0 and the

other for the (symmetric) induction step. In Definition 4.7, if Z ≡ pt and x = 0, we get e0 = id. Applying
the univalence axiom gives thus the first result.

Lemma 4.8. There is a path γ0 : reflpt = spt
0 .

For the second result, note that prefixing sZx by � amounts to precomposing the equivalence ex with s.
We have (ex ◦s)(n) = ex(n +1) = fn+1(x) = fn(f(x)) = ef(x)(n), so ex ◦s = e1+x. Applying the univalence
axiom we get:

Lemma 4.9. For every Z :≡ (X, f, t) : TZ and x : X, we have a path δZx : � ∗ sZx = sZ1+x.

Now we are ready to derive the induction principle using the same technique as for the recursion principle.
We reuse notations as much as possible, but take care that all types are different.

Definition 4.10. For every Z :≡ (X, f, t) : TZ, define

Qp(Z) :≡
∑

a′:A(Z)

∑
h:
∏

x:X a=A
sZx

a′

∏
x:X

h(f(x)) = cpδZx
(p ∗o h(x)),

where δZx comes from Lemma 4.9.

Note that, unlike the Qp from Definition 4.3, this version depends crucially on the t-component of Z
through both sZ and δZ .

Lemma 4.11. For every Z : TZ, the type Qp(Z) is contractible.

Proof. By Lemma 4.2 it suffices to prove that Qp(pt) is contractible. We have Qp(pt) ≡
∑

a′:A(pt) R(a′) for
R : A(pt) → U defined by

Rp(a′) :≡
∑

h:
∏

z:Z a=A

s
pt
z

a′

∏
z:Z

h(z + 1) = cpδpt
z

(p ∗o h(z)).

We show that
∑

a′:A(pt)(a =A
spt
0

a′) is contractible. Let refla be the reflexivity path at a over reflpt. Note

that
∑

a′:A(pt)(a =A
reflpt

a′) ≡
∑

a′:A(pt)(a = a′) is contractible with center (a, refla). By Lemma 4.8∑
a′:A(pt)(a =A

spt
0

a′) is contractible with center (a, cpγ0
(refla)).

Thus, to show that Qp(pt) is contractible, it suffices to define an equivalence

ϕa′ : Rp(a′)
∼−→ (a =A

spt
0

a′)

for each a′ : A(pt). We again invoke Theorem 3.13, this time with the family Pa′ : Z → U given by
Pa′(z) :≡ (a =A

spt
z

a′) and the equivalences fa′ :
∏

z:Z Pa′(z) � Pa′(z + 1) given by fa′(z) :≡ cpδpt
z

(p ∗o (_)).
Thus, applying Theorem 3.13 shows that ϕa′ is an equivalence, where ϕa′(h, q) :≡ h(0). �

To simplify notations, we will now use variables X, Y : TZ, and also write X, Y : U for the underlying
types.

16 M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687
Let 	cp(X) denote the center of contraction of Qp(X) for X : TZ. Again, we write (cp(X), ̃cp(X), ̂cp(X)) :≡
	cp(X) for the components, where

cp :
∏

X:TZ

A(X),

c̃p :
∏

X:TZ

∏
x:X

a =A
sXx

cp(X),

ĉp :
∏

X:TZ

∏
x:X

c̃p(X, 1 + x) = cpδXx
(p ∗o c̃p(X,x)).

In particular, q :≡ c̃p(pt, 0) : a =A
spt
0

cp(pt), so we can define r :≡ cp(γ−1
0)−(q−o) : cp(pt) = a (re-

call Lemma 3.6).
We now proceed to establish that apdcp(�) =Ã

r p. Again we work be elaborating apdcp(�).

Lemma 4.12. For all X, Y : TZ, e : X = Y and x : X we have a path εe,x : (sXx)−1 ∗ sYẽ(x) = e, where
ẽ :≡ pr1(e)∗ : X → Y .

Proof. By induction on e it suffices to give εreflX ,x : (sXx)−1 ∗ sXx = reflX , since pr1(reflX)∗(x) ≡ x. Hence
we set εreflX ,x :≡ ι(sXx), with ι as in Lemma 3.7. �
Lemma 4.13. For all X, Y : TZ, e : X = Y and x : X we have apdcp(e) = cpεe,x(c̃p(X, x)−o ∗o c̃p(Y, ̃e(x))),
where ẽ is as above.

Proof. Induction on e reduces the proof to the case e ≡ reflX : X = X, which follows from Lemma 3.7
and Lemma 4.12. It remains to check that the general statement of the lemma is well-typed. We have the
following paths over paths.

apdcp(e) : cp(X) =A
e cp(Y)

c̃p(Y, ẽ(x)) : a =A
sYẽ(x)

cp(Y)

c̃p(X,x)−o : cp(X) =A
(sXx)−1 a

c̃p(X,x)−o ∗o cp(Y, ẽ(x)) : cp(X) =A
(sXx)−1∗sYẽ(x)

cp(Y)

In order to make ends meet between the first and the fourth typing we invoke Lemma 4.12 and Defini-
tion 3.4. �

We’re now ready to calculate apdcp(�). A great simplification is obtained by using that TZ is a groupoid:
all 2-paths having the same endpoints are equal. Hence the functions cpα only depend on the path-type of
α. Also, as cprefl is the identity, so is any cpα when the endpoints of α are definitionally equal. We make
extensive use of this simplification.

Abbreviate s0 :≡ spt
0 , s1 :≡ spt

1 , then ε�,0 : s−1
0 ∗ s1 = �. We split the latter identity in a sequence of

identities:

s−1
0 ∗ s1

α= reflpt ∗(� ∗ s0)
β= reflpt ∗(� ∗ reflpt)

γ= �

Here α :≡ ap∗((γ−1
0)−, δ−1

0) and β :≡ ap∗(reflreflpt , ap∗(refl�, γ−1
0)) are constructed with ap∗ so as to enable

the application of Lemma 3.10. Also, for γ we may take γ(�) from Lemma 3.8. We now calculate, recalling
that r ≡ cp −1 −(q−o) and q ≡ c̃p(pt, 0):
(γ0)

M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687 17
apdcp(�) = cpε�,0

(
c̃p(pt, 0)−o ∗o c̃p(pt, 1)

)
= cpα∗β∗γ

(
q−o ∗o cpδ0(p ∗o q)

)

= cpγ

(
cpβ

(
cpα

(
q−o ∗o cpδ0(p ∗o q)

)))

= cpγ

(
cpβ

(
r ∗o cpδ−1

0

(
cpδ0(p ∗o q)

)))

= cpγ

(
cpβ

(
r ∗o (p ∗o q)

))

= cpγ

(
r ∗o

(
p ∗o cpγ−1

0
(q)

))

= cpγ

(
r ∗o

(
p ∗o r

−1))

To conclude that apdcp(�) =Ã
r p, we only need a final auxiliary lemma that describes what happens when

we transport p backwards along r in the family Ã.

Lemma 4.14. For any X : U , B : X → U , x : X, b, c : B(x), s : x = x, r : b =B
reflx

c, and q : c =B
s c we have

trpB̃,r−1(q) = cpγ(s)(r ∗o (q ∗o r
−1)),

where B̃(y) :≡ (y =B
s y) for y : B(x), and γ(s) is as in Lemma 3.8.

The proof is by induction on r, followed by an appeal to Lemma 3.8.
If (JDE), and not just (JNE), holds, then we see that cp(pt) ≡ a, and r = refla, since 	cP (pt) reduces to

ϕ−1
a (a, cpγ0

(refla)), which is a triple (a, h, q), where h(0) = cpγ0
(refla).

5. Interpretation in higher toposes

Voevodsky’s pioneering work [4] constructed interpretations of the rules of univalent foundations (but
not the entire formal system [15]) in the Quillen model category of simplicial sets, which is a presentation
of the fundamental (∞, 1)-topos of ∞-groupoids. After a decade of further work, this interpretation has
now been extended to include a class of model categories presenting all (∞, 1)-toposes by Shulman [7], and
made into an interpretation of the entire formal system by Brunerie, de Boer, Lumsdaine, and Mörtberg [2].
Thus, we can now say conclusively that the result of our paper yields a theorem about all (∞, 1)-toposes.

However, this theorem requires a bit of unpacking to make it look familiar to higher topos theorists. In
particular, since all (∞, 1)-toposes are cocomplete, the more usual way to define an internal “circle object”
in such a topos would be as a (homotopy) colimit: specifically, the coequalizer of two copies of the identity
map of the terminal object (corresponding to the presentation of a circle as a cell complex with one 0-cell and
one 1-cell). The natural theorem to expect would then be that this circle object is a classifier for Z-torsors.

One way to obtain such a result from our theorem would be to observe that according to the interpretation
of higher inductive types in higher toposes constructed by [5], the higher inductive S1 is a presentation of
the above homotopy colimit. Since we have shown that our TZ has the same induction principle that S1

has by definition, they must be equivalent. Thus, since our TZ classifies Z-torsors by construction, so does
S1 and hence so does the circle object.

18 M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687
However, a more direct approach is also possible, which avoids discussing higher inductive types at all10:
we can use our theorem to show that the interpretation of TZ in an (∞, 1)-topos has the universal property
of the homotopy colimit that defines a circle object. It will then follow that since it classifies Z-torsors, so
does any other such homotopy colimit.

Theorem 5.1. In any (∞, 1)-topos E , there is a coequalizer diagram 1 ⇒ 1 → TZ.

Proof. Half of the proof takes place inside of type theory and the other half in a model category. However,
the first half has already been done by Sojakova [10], as mentioned in Section 2.2. Her main theorem [10,
Theorem 50] then implies that if a circle algebra C ≡ (C, c, s) satisfies the induction principle, then it is
homotopy-initial in that for any other circle algebra A(A, a, p) the type of circle algebra homomorphisms
(2.1) is contractible, i.e., there is an element of the type

∏
A:S-Alg

isContr
(
S-hom(C,A)

)
.

It follows that our TZ is homotopy-initial in this sense.
For the second half of the proof, suppose we have a Quillen model category E that presents our (∞, 1)-

topos E . We must show that for any object A of E , the diagram of hom-spaces (∞-groupoids)

E (TZ, A) → E (1, A) ⇒ E (1, A)

is a homotopy equalizer, i.e., that the map from E (TZ, A) to the homotopy equalizer of two copies of the
identity map of E (1, A) is an equivalence. It suffices to show that the homotopy fiber of this map over any
point is contractible, which is to say that given any point a : 1 → A and homotopy p : a ∼ a, the space
of maps f : TZ → A equipped with a homotopy r : h(pt) ∼ a and a higher homotopy h(�) ∗ r ∼ r ∗ p is
contractible.

Now, homotopies in the (∞, 1)-category E can always be presented by right homotopies in the model
category E , meaning maps into a path object. Thus, our object A of E with a and p can be presented by an
object of E , which we also denote A, with a point a : 1 → A in E and a right homotopy p : 1 → PA(a,a), where
PA is the path object of A and PA(a,a) is its pullback along (a, a) : 1 → A ×A. Since path objects supply
the interpretation of identity types, this corresponds to a type A with an element a : A and path p : a =A a,
i.e., a circle algebra. By a similar argument, the homotopy fiber that we want to prove contractible is
equivalent to the hom-space E (1, HTZ,A). Thus, it suffices to observe that if B is an object with a point
1 → isContr(B), then B is equivalent to the terminal object (a detailed proof can be found in [9, Lemma
4.1]). �

We should also explain more carefully why our TZ “classifies Z-torsors” in the (∞, 1)-categorical sense.
Importantly, the relevant notion of “Z-torsor” is the “local” topos- and sheaf-theoretic one: an object X of
a slice (∞, 1)-topos E /A is a Z-torsor if and only if there is an effective epimorphism11 p : B � A such
that p∗X is isomorphic over B to Z ×B.

Theorem 5.2. For any object A of an (∞, 1)-topos E , the hom-space E (A, TZ) is naturally equivalent to the
∞-groupoid of Z-torsors in E /A.

10 As of this writing, higher inductive types are not yet included in the work of [2]. Also the models of universes in [7] are not
yet known to be closed under parametrized higher inductive types, although this is not a problem in our situation since S1 is not
parametrized.
11 An effective epimorphism is a morphism that is the quotient of its kernel. In an (∞, 1)-topos the relevant “kernels” are simplicial
objects; see [6, Section 6.2.3].

M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687 19
Proof. Recall that TZ is defined as
∑

X:U
∑

f :X→X‖(Z, s) = (X, f)‖, so that it comes with a sequence of
projections

TZ −→
(∑

X:U
(X → X)

)
−→ U .

We will start by characterizing what U classifies, then
∑

X:U (X → X), then finally TZ.
For the first, the univalence axiom implies that U is an object classifier, in the sense that E (A, U) is

naturally equivalent, by pullback of the canonical map U∗ → U , to a full sub-∞-groupoid of the core of E /A

(the fiberwise “small” objects). This means that for any f, g : A → U , the induced map from the space of
homotopies f ∼ g to the space of equivalences f∗U∗ � g∗U∗ in E /A is an equivalence. This holds because the
former is the space of lifts of (f, g) : A → U×U to the path-object PU , while the latter is (e.g., by [9, Lemma
4.3]) the space of sections of EquivA(f∗U∗, g∗U∗), or equivalently the lifts of (f, g) to EquivU×U (π∗

1U∗, π∗
2U∗),

and the univalence axiom says precisely that PU is equivalent to EquivU×U (π∗
1U∗, π∗

2U∗) over U × U .
Secondly,

∑
X:U (X → X) is the exponential in E /U of U∗ by itself. Thus, by the pullback-stability and

universal property of exponentials, the space of lifts of f : A → U to
∑

X:U (X → X) is equivalent to
the space of endomorphisms of the corresponding object f∗U∗ of E /A. Hence

∑
X:U (X → X) classifies

small objects equipped with an endomorphism, in that E (A,
∑

X:U (X → X)) is naturally equivalent to the
∞-groupoid of small objects of E /A with an endomorphism.

Thirdly, for TZ we need to consider the topos-theoretic interpretation of propositional truncation. We
can ignore its particular construction in UniMath and focus on its universal property, which says that it
is a reflection into propositions, i.e., for any proposition P we have (‖X‖ → P) � (X → P). Interpreted
fiberwise in an (∞, 1)-topos, this says that if we represent a morphism X → A as the first projection from a
dependent sum, (

∑
a:A X(a)) → A, then the corresponding projection (

∑
a:A‖X(a)‖) → A is its reflection

into the sub-(∞, 1)-category of E /A consisting of the monomorphisms, i.e., maps P → A whose diagonal
P → P ×A P is an equivalence. By [6, Example 5.2.8.16 and Corollary 6.5.1.14] (in the case n = −1), the
effective epimorphisms and monomorphisms in an (∞, 1)-topos form a factorization system, and hence in
particular the map X → (

∑
a:A‖X(a)‖) is an effective epimorphism.

Now by the definition of TZ, we have an (effective epimorphism, monomorphism) factorization W �
TZ �

∑
X:U (X → X), where W =

∑
(X,f)(Z, s) = (X, f) is (by arguments like those above) a classifier

for small objects X equipped with an endomorphism f and a specified equivalence to Z respecting the
endomorphisms. In particular, when the universal object-with-endomorphism over

∑
X:U (X → X) is pulled

back to TZ, then there exists an effective epimorphism onto TZ (namely W → TZ) such that when it is
pulled back further along that morphism it becomes equivalent to (Z, s). Thus, this universal object is a
Z-torsor, and hence so is any pullback of it.

Conversely, suppose (X, f) is a Z-torsor in E /A, so there is an effective epimorphism p : B � A

such that p∗(X, f) is equivalent to (Z, s). Since Z is a small object, this implies that X has small fibers,
hence is classified by some map A → U . Moreover, the assumption implies that when the classifying map
A →

∑
X:U (X → X) is composed with p, it lifts to W ; so we have the following diagram:

B W

TZ

A
∑

X:U (X → X)

Thus, since effective epimorphisms and monomorphisms form a factorization system, there is an essentially
unique lift A → TZ. So we have shown that an object-with-endomorphism is a Z-torsor precisely when its

20 M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687
classifying map A →
∑

X:U (X → X) lifts to TZ. Since TZ →
∑

X:U (X → X) is a monomorphism, this
means that TZ classifies Z-torsors. �

Combining Theorems 5.1 and 5.2, we see that any circle object in an (∞, 1)-topos is equivalent to TZ

and hence classifies Z-torsors.

6. Conclusion and future research

We have proved, for any type family A → TZ, the induction principle of the circle for TZ:

indA :
∑

a:A(pt)

(a =A
� a) →

∏
Z:TZ

A(Z),

with indA mapping (a, p) to cp satisfying cp(pt) ≡ a and apdcp(�) = p.
It would be interesting to see whether our method can be generalized from TZ to the type BG of G-

torsors, where G is a free group with a set of generators, S, with decidable equality. Explicitly, we expect
that it is possible in our setting to prove that BG satisfies the induction principle for a higher inductive
type with a point constructor pt : BG and a path constructor �_ : S → (pt =BG pt),

∏
A:BG→U

∏
a:A(pt)

∏
p:
∏

s:S a=A
�s

a

∑
f :
∏

z:BG A(z)

∑
r:f(pt)=a

∏
s:S

apdf (�s) =Ãs
r ps,

where Ãs(y) :≡ (y =A
�s

y) for y : A(pt).

Acknowledgements

Bezem, Buchholtz, and Grayson acknowledge the support of the Centre for Advanced Study (CAS) at the
Norwegian Academy of Science and Letters in Oslo, Norway, which funded and hosted the research project
Homotopy Type Theory and Univalent Foundations during the academic year 2018/19. Grayson also ac-
knowledges the support of the Air Force Office of Scientific Research, through a grant to Carnegie Mellon
University. Shulman was supported by The United States Air Force Research Laboratory under agreement
number FA9550-15-1-0053. The U.S. Government is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the author and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the United States Air Force Research Laboratory, the U.S.
Government, or Carnegie Mellon University.

References

[1] Guillaume Brunerie, Menno de Boer, Peter LeFanu Lumsdaine, Anders Mortberg, Initiality for Martin-Löf type theory,
A formalization in Agda of the proof, https://github .com /guillaumebrunerie /initiality, 2020.

[2] Guillaume Brunerie, Menno de Boer, Peter LeFanu Lumsdaine, Anders Mortberg, Initiality for Martin-Löf type theory,
Talk at HoTTEST Seminar, Sept. 10, 2020, https://www .youtube .com /watch ?v =1ogUFFUfU _M.

[3] Kuen-Bang (Favonia) Hou, Implementation of higher inductive types in HoTT-Agda, https://github .com /HoTT /HoTT -
Agda /blob /master /core /lib /types /HIT _README .txt.

[4] Chris Kapulkin, Peter LeFanu Lumsdaine, The simplicial model of univalent foundations (after Voevodsky), J. Eur. Math.
Soc. (2012), in press, arXiv :1211 .2851.

[5] Peter LeFanu Lumsdaine, Michael Shulman, Semantics of higher inductive types, Math. Proc. Camb. Philos. Soc. 169 (1)
(2020) 159–208, https://doi .org /10 .1017 /S030500411900015X, arXiv :1705 .07088.

[6] Jacob Lurie, Higher Topos Theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, 2009, arXiv :
math /0608040.

[7] Michael Shulman, All (∞, 1)-toposes have strict univalent universes, 2019.

https://github.com/guillaumebrunerie/initiality
https://www.youtube.com/watch?v=1ogUFFUfU_M
https://github.com/HoTT/HoTT-Agda/blob/master/core/lib/types/HIT_README.txt
https://github.com/HoTT/HoTT-Agda/blob/master/core/lib/types/HIT_README.txt
http://refhub.elsevier.com/S0022-4049(21)00023-2/bib4DED3328F20B5A031FDFB1325D27765Cs1
http://refhub.elsevier.com/S0022-4049(21)00023-2/bib4DED3328F20B5A031FDFB1325D27765Cs1
https://doi.org/10.1017/S030500411900015X
http://refhub.elsevier.com/S0022-4049(21)00023-2/bib3A91AB01F9BE8459E39E6B22AE21B680s1
http://refhub.elsevier.com/S0022-4049(21)00023-2/bib3A91AB01F9BE8459E39E6B22AE21B680s1
http://refhub.elsevier.com/S0022-4049(21)00023-2/bibBFCF9326F30465CBB7D26110AC7A17FAs1

M. Bezem et al. / Journal of Pure and Applied Algebra 225 (2021) 106687 21
[8] Michael Shulman, Proof sketch of circle induction, https://groups .google .com /d /msg /homotopytypetheory /hE1eY -v _
Kes /bdSoAxC9224J.

[9] Michael Shulman, The univalence axiom for elegant Reedy presheaves, Homology, Homotopy, and Applications 17 (2)
(2015) 81–106, https://doi .org /10 .4310 /HHA .2015 .v17 .n2 .a6, arXiv :1307 .6248.

[10] Kristina Sojakova, Higher Inductive Types as Homotopy-Initial Algebras, Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’15, Association for Computing Machinery, Mumbai,
India, 2015, pp. 31–42, arXiv :1402 .0761.

[11] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathematics, Institute for Ad-
vanced Study, 2013, https://homotopytypetheory.org /book.

[12] Vladimir Voevodsky, A C-system defined by a universe category, Theory Appl. Categ. 30 (37) (2015) 1181–1215, arXiv :
1409 .7925, http://www .tac .mta .ca /tac /volumes /30 /37 /30 -37 .pdf.

[13] Vladimir Voevodsky, C-system of a module over a Jf-relative monad, arXiv :1602 .00352.
[14] Vladimir Voevodsky, C-systems defined by universe categories: presheaves, Theory Appl. Categ. 32 (3) (2017) 53–112,

http://www .tac .mta .ca /tac /volumes /32 /3Z32 -03 .pdf.
[15] Vladimir Voevodsky, HoTT is not an interpretation of MLTT into abstract homotopy theory, https://homotopytypetheory.

org /2015 /01 /11 /hott -is -not -an -interpretation -of -mltt -into -abstract -homotopy -theory/, 2015.
[16] Vladimir Voevodsky, Martin-Löf identity types in the C-systems defined by a universe category, arXiv :1505 .06446, 2015.
[17] Vladimir Voevodsky, Products of families of types and (n, A)-structures on C-systems, Theory Appl. Categ. 31 (36) (2016)

1044–1094, http://www .tac .mta .ca /tac /volumes /31 /36 /31 -36 .pdf.
[18] Vladimir Voevodsky, Subsystems and regular quotients of C-systems, in: A Panorama of Mathematics: Pure and Applied;

Conference on Mathematics and Its Applications, Kuwait City, 2014, in: Contemp. Math., vol. 658, Amer. Math. Soc.,
Providence, RI, 2016, pp. 127–137, arXiv :1406 .7413.

[19] Vladimir Voevodsky, The (n, A)-structures on the C-systems defined by universe categories, Theory Appl. Categ.
(ISSN 1201-561X) 32 (4) (2017) 113–121.

[20] Vladimir Voevodsky, Unimath - its present and its future, A talk, with slides and video available at https://www .newton .
ac .uk /seminar /20170710113012301.

[21] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al., UniMath — a computer-checked library of univalent math-
ematics, http://UniMath .org.

https://groups.google.com/d/msg/homotopytypetheory/hE1eY-v_Kes/bdSoAxC9224J
https://groups.google.com/d/msg/homotopytypetheory/hE1eY-v_Kes/bdSoAxC9224J
https://doi.org/10.4310/HHA.2015.v17.n2.a6
http://refhub.elsevier.com/S0022-4049(21)00023-2/bibC9E9B6B67F0504A2EB198EF4BEB713C1s1
http://refhub.elsevier.com/S0022-4049(21)00023-2/bibC9E9B6B67F0504A2EB198EF4BEB713C1s1
http://refhub.elsevier.com/S0022-4049(21)00023-2/bibC9E9B6B67F0504A2EB198EF4BEB713C1s1
https://homotopytypetheory.org/book
http://www.tac.mta.ca/tac/volumes/30/37/30-37.pdf
http://refhub.elsevier.com/S0022-4049(21)00023-2/bib65CDE49B8D011B46AD980F5F06E926C9s1
http://www.tac.mta.ca/tac/volumes/32/3Z32-03.pdf
https://homotopytypetheory.org/2015/01/11/hott-is-not-an-interpretation-of-mltt-into-abstract-homotopy-theory/
https://homotopytypetheory.org/2015/01/11/hott-is-not-an-interpretation-of-mltt-into-abstract-homotopy-theory/
http://refhub.elsevier.com/S0022-4049(21)00023-2/bib6974CE5AC660610B44D9B9FED0FF9548s1
http://www.tac.mta.ca/tac/volumes/31/36/31-36.pdf
http://refhub.elsevier.com/S0022-4049(21)00023-2/bibD67D8AB4F4C10BF22AA353E27879133Cs1
http://refhub.elsevier.com/S0022-4049(21)00023-2/bibD67D8AB4F4C10BF22AA353E27879133Cs1
http://refhub.elsevier.com/S0022-4049(21)00023-2/bibD67D8AB4F4C10BF22AA353E27879133Cs1
http://refhub.elsevier.com/S0022-4049(21)00023-2/bib3A4AC6CB47E6830C34BCF2B07EF6099Cs1
http://refhub.elsevier.com/S0022-4049(21)00023-2/bib3A4AC6CB47E6830C34BCF2B07EF6099Cs1
https://www.newton.ac.uk/seminar/20170710113012301
https://www.newton.ac.uk/seminar/20170710113012301
http://UniMath.org

	Construction of the circle in UniMath
	1 Introduction
	2 Precise formulation and discussion
	2.1 Preview of the type of Z-torsors
	2.2 The type of circles
	2.3 TZ is a circle

	3 Auxiliary results
	3.1 Identifying elements in members of families of types
	3.2 Dependent elimination for propositional truncation
	3.3 The integers
	3.4 Some induction principles for the integers

	4 Main results
	4.1 Recursion in TZ
	4.2 Induction in TZ

	5 Interpretation in higher toposes
	6 Conclusion and future research
	Acknowledgements
	References

