
Journal of Theoretical Probability
https://doi.org/10.1007/s10959-020-01063-4

Graph Constructions for the Contact Process with a
Prescribed Critical Rate

Stein Andreas Bethuelsen1 · Gabriel Baptista da Silva2 · Daniel Valesin2

Received: 4 May 2020 / Revised: 17 November 2020 / Accepted: 20 November 2020
© The Author(s) 2021, corrected publication 2021

Abstract
We construct graphs (trees of bounded degree) on which the contact process has
critical rate (which will be the same for both global and local survival) equal to any
prescribed value between zero and λc(Z), the critical rate of the one-dimensional
contact process. We exhibit both graphs in which the process at this target critical
value survives (locally) and graphs where it dies out (globally).

Keywords Contact process · Phase transition · Interacting particle systems · Critical
value

Mathematics Subject Classification 82C22 · 60K35

1 Introduction

This paper exhibits a range of examples concerning phase transitions of the contact
process. Our work can be seen as a complement to the previous works by Madras et
al. [15], and by Salzano and Schonmann [18,19], where the same line of inquiry was
pursued.

The contact process describes a class of interacting particle systems which serve
as a model for the spread of epidemics on a graph. It was introduced by Harris [6].
It is defined on a graph G with uniformly bounded degrees by the following rules
for a continuous-time Markov dynamics: vertices can be healthy (state 0) or infected
(state 1); infected vertices recover with rate one and transmit the infection to each
healthy neighbor with rate λ > 0. The above description of the dynamics expresses
(on graphs of uniformly bounded degree) aMarkov pre-generator on a dense subspace
of the space of real-valued functions on the space of configurations, endowed with the

B Gabriel Baptista da Silva
g.da.silva@rug.nl

1 Department of Mathematics, University of Bergen, Bergen, Norway

2 Bernoulli Institute, University of Groningen, Groningen, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10959-020-01063-4&domain=pdf
http://orcid.org/0000-0003-2123-1580


Journal of Theoretical Probability

topology of the supremumnorm. The closure of this pre-generator is a Feller generator,
making the contact process a Feller process. See Chapter 1 of [12] for more details.

We denote by (ξ A
G,λ;t : t ≥ 0) the contact process on G = (V , E) with infection

rate λ and initially infected set A ⊂ V (as explained in Sect. 1.3, we will occasionally
omit or change aspects of this notation). With a conventional abuse of notation, we
treat ξ A

G,λ;t as either an element of {0, 1}V or as a subset of V (the set of infected
vertices). We refer the reader to [12,13] for an introduction to this process, including
all the statements made without further explicit reference in this introduction.

The contact process has as absorbing state the configuration in which all individuals
are healthy; we denote this state by ∅. We define the probability of survival (of the
infection)

ζG,λ(A) := P

(
ξ A
G,λ;t �= ∅ for all t

)
, A ⊂ V .

Due to an elementary monotonicity property of the process, this quantity is non-
decreasing in λ, G and A (for the latter two, take the partial order given by graph and
set inclusion, respectively). Moreover, if G is connected, then for any λ, ζG,λ(A) is
either equal to zero for all finite A (in which case the process with parameter λ on
G is said to die out) or nonzero for any finite and non-empty A (the process is then
said to survive or to survive globally). We then define the critical threshold for global
survival as

λ
glob
c (G) := inf

{
λ : ζG,λ(A) > 0 for all (any) finite and non-empty A

}
.

Next, define the probability of local survival

βG,λ(A, v) := P

(
lim sup
t→∞

ξ A
G,λ;t (v) = 1

)
, A ⊂ V , v ∈ V .

It is readily seen that βG,λ(A, v) ≤ ζG,λ(A). Moreover, βG,λ(A, v) is non-decreasing
in λ,G, A, and if G is connected, then for fixed λ we either have βG,λ(A, v) = 0 for
all choices of (finite, non-empty) A and v, or βG,λ(A, v) > 0 for all such choices.
In the latter case, we say that the process survives locally (in other sources, it is said
in this case that the process survives strongly, or is recurrent). We define the critical
threshold for local survival as

λlocc (G) := inf
{
λ : βG,λ(A, v) > 0 for all(any) v and finite A �= ∅

}
.

The contact process has been initially studied on Z
d ; there it holds that the two

critical values coincide; we will denote their common value by λc(Z
d). It was proved

in [3] that the process on Z
d at the critical rate dies out. Results for the contact process

on the infinite regular tree with offspring number d ≥ 2 (denotedT
d ) were obtained in

the 1990s, notably in [10,11,17]. There it holds that 0 < λ
glob
c (Td) < λlocc (Td) < ∞,

and moreover, the process at the lower critical value dies out, and the process at the
upper critical value survives globally but not locally. More recently, results for the
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contact process on random trees have gained interest. In particular, [2,7] completely
characterize the existence of a subcritical regime for the process on Galton–Watson
trees (see also [16]).

The main result of this paper concerns the set of values that the critical rates
λ
glob
c (G), λlocc (G) can attain, as G ranges over any locally finite graph, and also

whether the critical contact process can survive for these possible values of the critical
rate. Let us make some preliminary comments in this direction:

1. On a finite graph G, the contact process dies out regardless of λ, that is, we have
λ
glob
c (G) = λlocc (G) = ∞.

2. On an infinite graph G, we necessarily have λ
glob
c (G) ≤ λlocc (G) ≤ λc(Z). This

follows from monotonicity: G contains a copy of N inside it (since G is locally
finite), and it is known that λc(N) = λc(Z); see, for instance, Corollary 2.5 in [1].

3. There are infinite graphs for which the critical rate for local (hence also global)
survival is arbitrarily small, such as high-dimensional lattices and high-degree
regular trees, see [5, equation (1.14)] and [17, Theorem 2.2]

4. There are also infinite graphs for which the critical rate for local (hence also global)
survival is equal to zero, such as Galton–Watson trees with sufficiently heavy-tailed
offspring distributions, see [17, page 2112].

5. An example was given in [19] of a graph G with λlocc (G) = λ
glob
c (G) = λc(Z) and

so that the contact process with this critical rate survives locally. This is the “desert-
and-oasis” example in page 863 of that paper, which is based on a construction of
[15] pertaining to a contact process with inhomogeneous rates.

6. In pages 859–862 of [19], the authors fix d ≥ 2, then fix an arbitrary λ

withλ
glob
c (Td) < λ < λlocc (Td), and construct a graphG forwhichλ = λ

glob
c (G) <

λlocc (G). The class of examples obtained in this way therefore shows that

∀λ ∈
∞⋃
d=2

(λ
glob
c (Td), λlocc (Td)) ∃G : λ = λ

glob
c (G) < λlocc (G). (1)

We now state our main result:

Theorem 1 (a) For any λ ∈ (0, λc(Z)) there exists a tree G of bounded degree for
which λ

glob
c (G) = λlocc (G) = λ and the contact process on G with rate λ survives

locally.
(b) Foranyλ ∈ (0, λc(Z)) there exists a treeG of boundeddegree such thatλglobc (G) =

λlocc (G) = λ and the contact process on G with rate λ dies out.

Together with [19], the above theorem provides a full answer to the question of
which values λ > 0 can occur simultaneously as λlocc (G) and λ

glob
c (G) for some

locally finite connected graph G. Indeed, the case λ = λc(Z) was covered in [19] and,
as noted in Comment 2., for every infinite graph G one has λc(G) ≤ λc(N) = λc(Z).

Although the construction we give here is very similar to the one in [19] (and [15])
mentioned above, it has novel aspects that free us from being restricted to having λc(Z)

as the critical rate. In essence, the graph we construct consists of an infinite half-line to
which we append, in very sparse locations (say, a1 � · · · � ai � · · · ), regular trees
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with large (but fixed) degree, truncated at height hi . In terms of the aforementioned
examples of [15,19], the half-line is the “desert” and the trees are the “oases.” This
means that, for λ within a certain controlled range [inside the interval (0, λc(Z))],
the contact process stays active for a very long time in the trees, but is very unlikely
to cross the line segments in between them in any single attempt. The locations and
heights are chosen in a way that is increasingly sensitive to the value of λ, so that a
certain target value can be guaranteed to be critical for global and local survival.

We should mention that in case one does not insist in obtaining graphs of bounded
degree in the statement of Theorem 1, then the oasis structures could be taken as stars
of increasing degree instead of trees of increasing height.1 Taking stars rather than trees
would indeed simplify some of our proofs somewhat. Moreover, even keeping degrees
bounded, other structures would also work instead of trees, such as high-dimensional
hypercubes. We have chosen to use trees because some estimates and coupling results
were readily available for the contact process on trees in Ref. [4].

1.1 Open Questions

Let us first mention that we believe the ideas we develop in this paper allow for graph
constructions that lead to replacing the union in (1) by the full interval (0, λc(Z)), but
we do not work out the details here.

We will now briefly discuss questions that we consider interesting and that would
be further developments to our result.

Question 1 Can one construct a locally finite connected graphG forwhichλ
glob
c (G) =

λlocc (G) and the contact process on G dies out locally but survives globally?

Question 2 What is the set of pairs (λ1, λ2) ∈ [0, λc(Z)]2 that can occur as
(λ

glob
c (G), λlocc (G)) for some graph G?

Question 3 Fix any (finite or infinite) sequence of values 0 < λ1 < λ2 < · · · < λc(Z).
Is there a graph G for which the function λ �→ ζG,λ(A) (for any A) is discontinuous
at λi for each i? It is conceivable that, by glueing together graphs obtained from
Theorem 1, each with a different critical value, one would find and affirmative answer
to this question. See the proof of Theorem 3.2.1 in [19] for an instance where glueing
graphs can produce this kind of discontinuity.

1 Some care must be taken before one considers the contact process on graphs with unbounded degrees.
The standard construction, as described in [12,13], is valid on graphs with bounded degree; in the absence of
this condition, the assumptions required to define a Feller semigroup from a pre-generator may fail to hold.
However, for the alternate graph outlined here (which alternates line segments of increasing length with
stars of increasing degree), and the contact process started from configurations with finitely many infected
vertices, there are no problems with constructing the process. Indeed, in that case it can be constructed more
simply as a continuous-timeMarkov chain on a countable state space (namely the collection of finite sets of
vertices), and the structure of the graph makes it easy to see that explosion does not occur (by considering
the time it takes for the infection to cross each line segment). Since the alternate graph is not the focus of
this work, we omit further details.
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1.2 Organization of the Paper

In the rest of this introduction, we explain the notation we use and the graphical con-
struction of the contact process. In Sect. 2, we state Theorem 2, which allows us to
augment graphs in a way that is favorable for the contact process with rate λ and unfa-
vorable for the process with rate λ′ < λ, where λ is some prescribed infection rate.
Using this theorem, we give in that section the proof of Theorem 1; the remainder of
the paper is dedicated to the proof of Theorem 2. Section 3 gathers some preliminary
results about the contact process on line segments and trees. Section 4 contains the
key definitions of our graph augmentation construction, and states key results (Propo-
sitions 2, 3 and 4), which together readily give the proof of Theorem 4. Section 5 and
Appendix are more technical and contain the proofs of the three key propositions (as
well as several auxiliary results).

1.3 Notation and Graphical Construction

Let us first detail the notation we use for graphs. Let G = (V , E) be an unoriented
graph with set of vertices V and set of edges E . We say two vertices are neighbors
if there is an edge containing both. The degree of a vertex v, denotes degG(v), is the
number of neighbors of v. All graphs we consider are locally finite, meaning that all
their vertices have finite degree. Finally, graph distance in G between vertices u and v

is denoted distG(u, v).
Next, we recall the graphical construction of the contact process. Here we consider

a standard monotone coupling of contact processes on the same graph with different
infection rates. This is implemented by endowing transmission arrows with numerical
labels, as we now explain. Fix a graph G and also λ > 0. We take a family of
independent Poisson point processes:

• for each v ∈ V , a Poisson point process Dv on [0,∞) with intensity equal to
Lebesgue measure; if t ∈ Du , we say there is a recovery mark at u at time t ;

• for each ordered pair (u, v) ∈ V 2 such that {u, v} ∈ E , a Poisson process D(u,v)

on [0,∞)2 with intensity equal to Lebesgue measure; if (t, �) ∈ D(u,v), we say
there is a transmission arrow with label � at time t from u to v.

Given λ > 0 and u, v ∈ V and 0 ≤ s < t , a λ-infection path from (u, s) to (v, t) is a
right-continuous function γ : [s, t] → V satisfying γ (s) = u, γ (t) = v,

r /∈ Dγ (r) for all r , and

whenever γ (r−) �= γ (r) there is � ≤ λ such that (r , �) ∈ D(γ (r−),γ (r)).

That is, a λ-infection path cannot touch recovery marks and can traverse transmission
arrows with label smaller than or equal to λ.

In most places, the value of λ will be clear from the context, so we simply speak

of infection paths rather than λ-infection paths. We write (u, s)
λ� (v, t) (sometimes

omitting λ) either if (u, s) = (v, t) or if there is a λ-infection path from (u, s) to (v, t).
More generally, for S1, S2 ⊂ V × [0,∞), we write S1 � S2 if there is an infection
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path from (u, s) to (v, t), for some (u, s) ∈ S1, (v, t) ∈ S2 (we write S � (v, t)
instead of S � {(v, t)}, and similarly for (u, s) � S). Given A ⊂ V , setting

ξ A
G,λ;t (v) := 1{A × {0} λ� (v, t)}, t ≥ 0, v ∈ V ,

where 1 denotes the indicator function; we obtain that ξ A
G,λ;t is a contact process with

parameter λ, started with vertices in A infected and vertices in V \A healthy. Note that
this construction readily gives the monotone relation

A ⊂ A′, G subgraph of G ′, λ ≤ λ′ �⇒ ξ A
G,λ;t ≤ ξ A′

G ′,λ′;t , t ≥ 0.

In case we are considering the contact process (ξ A
G,λ;t : t ≥ 0) on a graph G and G ′ is

a subgraph of G, we sometimes refer to (ξ A
G ′,λ;t : t ≥ 0) as the process confined to G ′.

Finally, we write

ξ̄ A
G,λ(v) :=

∫ ∞

0
ξ A
G,λ;t (v) dt, v ∈ V ,

that is, ξ̄ A
G,λ(v) is the total amount of time that v is infected in

(
ξ A
G,λ;t : t ≥ 0

)
.

2 Proof of Main Result

Our graph construction will be given by recursively applying a graph augmentation
procedure, with each step taking as input a rooted graph (a tree with bounded degree)
and a prescribed value of the infection rate. The result that allows us to take each step
is the following.

Theorem 2 For any λ ∈ (0, λc(Z)) there exist cλ > 0 and d = dλ ∈ N satisfying the
following. Let (G, o) = ((V , E), o) be a rooted tree with degrees bounded by d + 1,
and degG(o) = 1. Then, there existsH = H((G, o), λ) ∈ N such that for any h ≥ H,
there exists a rooted tree (G̃, õ) = (G̃h, õh) with vertices Ṽ and edges Ẽ having G as
a subgraph, with degrees satisfying

degG̃(v) = degG(v) for all v ∈ V \{o},
degG̃(o) = 2, degG̃(õ) = 1,

degG̃(v) ≤ d + 1 forall v ∈ Ṽ \V ,

and such that the contact process on G̃ satisfies the following properties. For all λ′ ≥
λ, A ⊂ V and t > 0,

P

(
ξ̄ A
G̃,λ′(õ) > h | ξ̄ A

G,λ′(o) > t
)

> 1 − exp{−cλ · t} − 1

h
, (2)
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and, for all v ∈ V ,

P

(
ξ̄ A
G̃,λ′(v) > h | ξ̄ A

G,λ′(o) > t
)

> 1 − exp{−cλ · t} − 1

h
. (3)

Moreover, for all λ′ < λ there exists H′ = H′((G, o), λ, λ′) such that

P

(
ξ̄ A
G̃,λ′(õ) > 0

)
< exp

{
−d

√
h
}

for any A ⊂ V and h ≥ H′. (4)

Proof of Theorem 1(a) Given a rooted tree (G, o) and λ > 0, for each h ≥
H((G, o), λ), we denote by Gh((G, o), λ) the rooted graph (G̃, õ) corresponding
to (G, o), λ, h as in Theorem 2.

Fix λ ∈ (0, λc(Z)). Also fix an increasing sequence (λ′
n) with λ′

n ↗ λ. We will
define an increasing sequence of graphs (Gn) by applying Theorem 2 repeatedly. We
let G0 be a graph consisting of a single vertex (its root), o0. Once (Gn, on) is defined,
fix

hn+1 ≥ max
(
H((Gn, on), λ), c−1

λ (n + 3) log 2, 2n+3
)

(5)

and let (Gn+1, on+1) := Ghn+1((Gn, on), λ). Increasing hn+1 if necessary, by (4) we
can also assume that

P

(
ξ̄ A
Gn+1,λ

′
n+1

(on+1) = 0
)

> 1 − 1

n
for any A ⊂ Gn . (6)

Note that (Gn)n∈N = (Vn, En)n∈N is an increasing sequence of graphs in the sense
that both (Vn)n∈N and (En)n∈N are increasing sequences of sets. Therefore, we can
define G∞ = (V∞, E∞) where V∞ = ∪Vn and E∞ = ∪En .

We will now show that G∞ has the desired properties. Since each Gn is a tree, G∞
is also a tree. The fact that G∞ has bounded degree is an immediate consequence of
the degree conditions given in the end of the statement of Theorem 2.

Let us verify that the contact process with parameter λ on G survives locally. Start
noting that

P

(
ξ̄

{o0}
G0,λ

(o0) > c−1
λ log 4

)
= 4−c−1

λ .

Next, using (3) and (5),

P

(
ξ̄

{o0}
G1,λ

(o1) > h1 | ξ̄
{o0}
G0,λ

(o0) > c−1
λ log 4

)
> 1 − 1

4
− 1

h1
≥ 1

2

and, for n ≥ 1,

P

(
ξ̄

{o0}
Gn+1,λ

(on+1) > hn+1 | ξ̄
{o0}
Gn ,λ

(on) > hn
)

> 1 − exp{−cλhn} − 1

hn+1
> 1 − 1

2n+1
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and similarly,

P

(
ξ̄

{o0}
Gn+1,λ

(o0) > hn+1 | ξ̄
{o0}
Gn ,λ

(on) > hn
)

> 1 − 1

2n+1 .

From this, it follows that

P

(
ξ̄

{o0}
G,λ (o0) = ∞

)
> 0,

so we have local survival at λ.
Now, fix λ′ < λ; let us prove that the contact process on G with parameter λ′ dies

out globally. By our construction of the graph G, survival of the infection implies in
eventually infecting every on . However, by (6), we have for any n such that λ′

n > λ′,

P

(
ξ̄

{o0}
Gn ,λ′(on) = 0

)
≥ P

(
ξ̄

{o0}
Gn ,λ′

n
(on) = 0

)
≥ 1 − n−1.

It follows that on is never infected with high probability and that the process hence
dies out globally. Since this holds for every λ′ < λ we conclude that λ

glob
c (G) =

λlocc (G) = λ. ��
Proof of Theorem 1(b) We fix λ ∈ (0, λc(Z)) and again we will define an increasing
sequence of graphs (Gn) by applying Theorem 2 repeatedly. Only now we take a
decreasing sequence (λ′

n) with λ′
n ↘ λ. Like before we let G0 be a graph consisting

of a single vertex (its root), o0 and, once (Gn, on) is defined, fix

hn+1 ≥ max
(
H((Gn, on), λ

′
n+1), cλn+2(n + 3) log 2, 2n+3

)
(7)

and let (Gn+1, on+1) := Ghn+1((Gn, on), λ′
n+1). Since λ < λn+1, increasing hn+1 if

necessary, by (4) we can assume that

P

(
ξ̄ A
Gn+1,λ

(on+1) = 0
)

> 1 − 1

n
for any A ⊂ Gn . (8)

We then let G∞ be the limiting graph of the sequence (Gn)n∈N, as in (a). From this it
follows that G∞ is a bounded degree tree.

The fact that the contact process with parameter λ on G∞ dies out globally follows
similarly to the last argument in the previous proof. Using (8) gives

P

(
ξ̄

{o0}
G∞,λ(on) �= 0

)
= P

(
ξ̄

{o0}
Gn ,λ

(on) �= 0
)

≤ n−1 ∀n.

The conclusion follows as in 1(a).
Now, fix λ′ > λ, and take n such that λ′

n < λ′. We then note that the event

{
ξ̄

{o0}
Gn ,λ′

n
(on) > hn

}
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has positive probability and that, for each N > n, by (3) and (7),

P

(
ξ̄

{o0}
GN ,λ′

N
(oN ) > hN | ξ̄

{o0}
GN−1,λ

′
n
(oN−1) > hN−1

)
> 1 − 1

2N
,

and

P

(
ξ̄

{o0}
GN ,λ′

N
(o0) > hN | ξ̄

{o0}
GN−1,λ

′
n
(oN−1) > hN−1

)
> 1 − 1

2N
.

From this, local survival at parameter λ′ follows as in part (a). ��

3 Estimates for Line Segments and Trees

This section is devoted to listing bounds for the behavior of the contact process on
finite trees and line segments which will be useful for our graph construction.

Let us first mention two results that hold on general graphs. First, if G = (V , E)

is a connected graph and x, y ∈ V and we let distG(x, y) denote the graph distance
between x and y in G, we have

P

(
ξ

{x}
G,λ;t (y) = 1 for some t ≤ distG(x, y)

)
≥
(
e−2(1 − e−λ)

)distG (x,y)
. (9)

This is obtained by fixing a geodesic v0 = x, v1, . . . , vn = y (with n = distG(x, y))
and prescribing that, in each time interval [i, i + 1] with 0 ≤ i ≤ n − 1, there is no
recovery mark at vi or vi+1, and there is a transmission arrow from vi to vi+1.

Second, we have the following inequality for the extinction time of the contact
process on G started from full occupancy.

Lemma 1 For every s > 0, we have

P

(
ξGG,λ;s = ∅

)
≤ s

E

[
inf

{
t : ξGG,λ;t = ∅

}] . (10)

This follows from noting that for any s, the extinction of the process started from
full occupancy is stochastically dominated by the random variable sX , where X has
geometric distribution with parameter P(ξGG,λ;t = ∅). See Lemma 4.5 in [14] for a
full proof.

3.1 Contact Process on Line Segments

We will need some estimates involving the contact process on half-lines and line
segments. From now on, we fix λ < λc(Z). The results below are essentially all
consequences of the exponential bound

P

(
ξ

{0}
Z,λ;t �= ∅

)
≤ exp{−cλ · t}, t ≥ 0 (11)
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for some cλ > 0; see Theorem 2.48 in Part I of [13]. By simple stochastic comparison
considerations and large deviation estimates for Poisson random variables, this also
implies that

P

(
ξ

{0}
Z,λ;t = ∅,

⋃
s≤t

ξ
{0}
Z,λ;s ⊂ [−t, t]

)
> 1 − exp{−c′

λ · t}, t ≥ 0 (12)

for some c′
λ > 0.

For each � ∈ N, letL� denote the subgraph ofZ induced by the vertex set {0, . . . , �}.
The following result is an immediate consequence of (11), so we omit its proof.

Lemma 2 We have

lim
�→∞ P

(
ξ

L�

L�,λ;(log(�))2 �= ∅

)
= 0. (13)

Next, we bound the probability of existence of an infection path starting from a
space-time point in the segment {0} × [0, t] and crossing L�.

Lemma 3 For any � ∈ N the contact process with parameter λ on L� satisfies

P
({0}×[0, t] � {�}×[0,∞)

) ≤ e·(t+1)·P ((0, 0) � {�} × [0,∞)) , t > 0. (14)

Proof Define the event

A := {{0} × [1, t + 1] � {�} × [0,∞)} ,

so that the probability in the left-hand side in (14) is equal to P(A). Let X denote the
Lebesgue measure of the random set of times

{s ∈ [0, t + 1] : (0, s) � {�} × [0,∞)}.

Denote by F the σ -algebra generated by all the Poisson processes in the graphical
construction of the contact process on L�, and letF′ be similarly defined, except that
it disregards all the recoveries marks at 0 that occur before time t + 1. Note that X is
measurable with respect to F and A ∈ F′. Moreover, we have

E[X | F′] ≥ e−1 on A,

since if A occurs and s ∈ [1, t + 1] is such that (0, s) � {�} × [0,∞), then with
probability e−1 there is no recovery mark on [s − 1, s], so that X ≥ 1. We thus obtain

P(A) ≤ E
[
e · E

[
X | F′]] = e · E[X ] = e

∫ t+1

0
P ((0, s) � {�} × [0,∞)) ds

= e · (t + 1) · P ((0, 0) � {�} × [0,∞)) .

��
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The following corollary is a straightforward consequence of Lemma 3 and (12).

Corollary 1 There exists cL > 0 such that, for � ∈ N large enough, the contact process
with parameter λ on L� satisfies

P
({0} × [0, t] � {�} × [0,∞)

) ≤ (t + 1) exp{−cL�}. (15)

We now show that the subcritical contact process on Z started from occupation in
a half-line {1, 2, . . .} has positive probability of never infecting the origin.

Lemma 4 There exists cL > 0 such that

P

(
ξ

{1,2,...}
Z,λ;t (0) = 0 for all t

)
> cL. (16)

Proof For n ∈ N, let A(n) denote the event that vertices 1, . . . , n − 1 have a recovery
mark and generate no transmission arrow in the time interval [0, 1]. We have

P

(
ξ

{1,2,...}
Z,λ;t (0) = 0 for all t

)
≥ P(A(n)) · P

(
ξ

{n,n+1,...}
Z,λ;t (0) = 0 for all t

)
.

For any n ∈ N, we have P(A(n)) > 0 and

P

(
ξ

{n,n+1,...}
Z,λ;t (0) = 0 for all t

)
≥ P

( ∞⋂
i=n

{
ξ

{i}
Z,λ;t ⊂ [i/2, 3i/2] for all t

})

(12)≥ 1 −
∞∑
i=n

exp{−c′
λ · i},

which can be made positive by taking n large enough. ��
Finally, we compare the contact process on the same graph for two different values

of the infection parameter.

Lemma 5 For all λ′, λ > 0 with λ′ < λ < λc(Z) there exists η = ηλ′,λ > 1 such that,
for � large enough,

P

(
ξ̄

{0}
{0,1,...},λ′(�) > 0

)
≤ η−�

P

(
ξ̄

{0}
{0,1,...},λ(�) > 0

)
(17)

Proof Using monotonicity and the Markov property it can be proved that the limit

β(λ) = lim P

(
ξ̄

{0}
Z,λ(�) > 0

)1/�

exists (see discussion preceding Proposition 4.50 in [13] for a full proof of this fact).
Furthermore, it was shown in [9] that, for the contact process on a regular tree, if

λ′ < λ and β(λ) < 1/
√
d
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then β(λ′) < β(λ). Noting that the exponential bound (11) implies that β(λc(Z)) < 1,
we have the result for the contact process on Z. Finally, [8] proves that

lim P

(
ξ̄

{0}
Z,λ

(�) > 0
)1/� = lim P

(
ξ̄

{0}
{0,1,...},λ(�) > 0

)1/�
.

��

3.2 Contact Process on Finite Trees

To conclude this section, we gather a few estimates from [4] concerning the contact
process on finite trees. We continue with fixed λ < λc(Z), and assume d is large
enough that λ > λlocc (Td). For each h ∈ N, we let T

d
h be a rooted tree with branching

number d, truncated at height h. This means that T
d
h is a tree with a root vertex ρ

with degree d, and so that vertices at graph distance between one and h − 1 from ρ

have degree d + 1, and vertices at graph distance h from ρ have degree one. The next
result contains two statements concerning the contact process onT

d
h . First, the process

started from full occupancy survives for a time at least as large as exponential in dh ,
with probability tending to one exponentially in dh . Second, with probability bounded
away fromzero, the process started fromany non-empty configuration coupleswith the
process started from full occupancy within time exp{dh1/5} (and both process remain
alive at a time that is exponential in dh).

Proposition 1 There exists cT = cT(λ, d) > 0 such that, for h large enough,

P

(
ξ

T
d
h

T
d
h ,λ;exp{cT·dh} �= ∅

)
> 1 − exp{−cT · dh} (18)

and, letting t(h) := exp{dh1/5},

inf
A⊂T

d
h ,

A �=∅

P

(
ξ A
T
d
h ,λ;t(h)

= ξ
T
d
h

T
d
h ,λ;t(h)

, ξ A
T
d
h ,λ;exp{cT·dh} �= ∅

)
> cT. (19)

Proof Theorem 1.5 in [4] states that the limit

lim
h→∞

logE

[
inf

{
t : ξ

T
d
h

T
d
h ,λ;t = ∅

}]

|Td
h |

(20)

exists and is positive; denote it by c1. Taking cT < c1/4, the inequality (18) follows
from this combined with (10). Next, Corollary 4.10 in [4] implies that there exists a
constant c2 > 0 such that

inf
A⊂T

d
h ,

A �=∅

P

(
ξ A
T
d
h ,λ;t(h)

�= ∅

)
> c2,
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and Proposition 4.15 in [4] gives

sup
A⊂T

d
h ,

A �=∅

P

(
ξ A
T
d
h ,λ;t(h)

�= ∅, ξ A
T
d
h ,λ;t(h)

�= ξ
T
d
h

T
d
h ,λ;t(h)

)
h→∞−−−→ 0.

Using these two facts and also (18), we obtain that, if cT < min(c1/4, c2/2), then for
any A ⊂ T

d
h , A �= ∅,

P

(
ξ A
T
d
h ,λ;exp{cT·dh}

)
≥ P

(
∅ �= ξ A

T
d
h ,λ;t(h)

= ξ
T
d
h

T
d
h ,λ;t(h)

, ξ
T
d
h

T
d
h ,λ;exp{cT·dh} �= ∅

)
> cT.

��

4 Proof of Theorem 2

In this section, we will give some key definitions and state three results (Proposi-
tions 2, 3 and 4) that will immediately imply Theorem 2. The idea of our graph
augmentation (G̃, õ) of a given rooted graph (G, o) is summarized in Fig. 1: next to
the root o of G, we append a copy of T

d
h (with h large), followed by a line segment

whose length is a function of h, denoted L(h). The endpoint of this line segment that
is away from the tree is the root õ of G̃. We will be free to take h large (adjusting the
length L(h) accordingly) so as to guarantee several desirable properties for G̃.

Now, let us briefly discuss the differences between the construction carried out in
this work and the desert–oasis construction in [19]. First note that in [19] the goal is to
show that the process survives at λc(Z) and dies out at any λ < λc(Z). At each step of
their construction, they take the oasis–desert pair satisfying two things. First, the oasis
is a structure that sustains for a long time the process with rate λc(Z) (and possibly
also with slightly smaller rates). Second, the volume of the oasis is small compared
to the length of the desert: in the nth augmentation of their graph construction, the
oasis has volume n2 and the desert has length n3. This way, if λ < λc(Z), even if
the process survives for time exp{c(λ)n2} in the oasis, this is not enough to overcome
the probability of crossing the oasis, which is around exp{−c′(λ)n3}. However, in our
case, we want to have as target rate a value λ that is already subcritical, so it is not
so clear which sizes to put in place of n2 and n3, or how a given choice of sizes can
be favorable for the target λ but not for smaller values. Our solution involves defining
the length of the desert implicitly (depending on λ and on a fixed oasis size), in a way
that the probability of crossing the desert starting from the oasis at rate λ is around a
prescribed value.

Fix λ ∈ (0, λc(Z)). The value d = dλ that appears in the statement of Theorem 2
will now be chosen: d should be large enough that λ > λlocc (Td), and also

m = mλ := d · (1 − e−λ) · e−2 > 1. (21)
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From now on, we fix (G, o) = ((V , E), o) a rooted tree with degrees bounded by d+1
and with degG(o) = 1, as in the statement of Theorem 2.

Throughout this section, it will be useful to abbreviate

s(h) := exp
{
d

√
h
}

, h ∈ N. (22)

We first define an auxiliary graph Ĝ, depending on (G, o) and on a positive integer h
(which we often omit from the notation), as follows. We let Th be a copy of T

d
h , with

root ρ, and letL∞ be a half-line with extremity denoted v−. We then let Ĝ denote the
graph obtained by putting the three graphs G,Th,L∞ together, and connecting them
by including an edge between o (the root of G) and ρ (the root of Th), and an edge
between ρ and v− (the extremity of L∞).

For each � ∈ N0, let v� denote the vertex of L∞ at distance � from v− (in particu-
lar, v0 = v−), and define

P(�) = P(G,o),h(�) := P

(
ξ̄
V∪Th
Ĝ,λ

(v�) > 0
)

, (23)

that is, P(�) is the probability that v� becomes infected in the contact process on Ĝ
with parameter λ and initial configuration V ∪ Th . Note that P is non-increasing.

Lemma 6 (Properties of P) We have

lim
�→∞P(�) = 0

and, if h is large enough,

P(0),P(1) ≥ 1 − s(h)−1. (24)

Proof The first statement follows from the fact that the contact process with parame-
ter λ on Ĝ dies out (which is in turn an easy consequence of the facts that G,Th are
finite graphs and λ < λc(Z)).

For the second statement, we will only treat P(0), since the proof for P(1) is the
same. Assume h is larger than the graph diameter of G. Then, for any non-empty A ⊂
V ∪ Th we have

P

(
ξ A
Ĝ,λ;t (v0) = 1 for some t ≤ h

)
≥
(
e−1 · (1 − e−λ)

)h
.

Iterating this, we obtain

P

(
ξ A
Ĝ,λ;s(h)

�= ∅, ξ A
Ĝ,λ;t (v0) = 0 ∀t ≤ s(h)

)
≤
(
1 −

(
e−1 · (1 − e−λ)

)h)�s(h)/h�
.
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Fig. 1 The graph G̃

The result now follows from noting that the right-hand side above is much smaller
than s(h)−1, and moreover,

P

(
ξ
V∪Th
Ĝ,λ;s(h)

= ∅

)
≤ P

(
ξ

T
d
h

T
d
h ,λ;s(h)

= ∅

)
≤ s(h)

exp{cT · dh} � s(h)−1

if h is large, where in the second inequality we have used Lemma 1 and Proposition 1.
��

With the above result at hand, for h large enough we can define

L(h) := inf
{
� ∈ N0 : P(�) < 1 − s(h)−1

}
(25)

and have L(h) > 1. We now define the graph G̃ in the same way as Ĝ, with the sole
exception that, instead of the half-line L∞, it includes a line segment Lh with vertex
set

v0 = v−, v1, . . . , vL(h)

(as before, we linkLh toTh with an edge betweenρ and v−).We denote by Ṽ and Ẽ the
vertex and edges sets of G̃, respectively. The vertex vL(h) is the root of G̃, denoted õ.
The definition of (G̃, õ) depends on (G, o) and h, but this dependence will be omitted
from the notation. We will several times assume that h is large (possibly depending
on G).

We will now state several results about (G̃, õ), culminating in the proof of Theo-
rem 2. Define the set of configurations

Ah :=
{
A ⊂ Ṽ : #{v ∈ A ∩ Th : distG̃(ρ, v) = �h/2�} ≥ (m/2)�h/2�} ,

that is, A ∈ Ah if A has at least m�h/2� vertices at height �h/2� in Th . The following
result is the main reason for the introduction of Ah .
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Lemma 7 (Persistence starting fromAh) If A ∈ Ah, then

P

(
ξ A
G̃,λ;s(h)

�= ∅

)
> 1 − s(h)−2.

Proof Fix A ∈ Ah and let T1, . . . , T(m/2)�h/2� be disjoint copies of T
d
�h/2� that appear

as subtrees of Th , rooted at a vertices v1, . . . , v(m/2)�h/2� ∈ A ∩ Th at distance �h/2�
from ρ. We have

P

(
ξ A
G̃,λ;s(h)

�= ∅

)
≥ P

⎛
⎝

(m/2)�h/2�⋃
i=1

{
ξ

{vi }
Ti ,λ;exp{cT·d�h/2�} �= ∅

}⎞⎠

(19)≥ 1 − (1 − cT)(m/2)�h/2� � 1 − s(h)−1.

��
Proposition 2 (Ignition) There exists cλ > 0 such that for h large enough, any λ′ ≥ λ

and any A ⊂ V we have

P

(
ξ A
G̃,λ′;s ∈ Ah for some s ≥ 0 | ξ̄ A

G,λ′(o) > t
)

> 1 − exp{−cλ · t},

that is, given that the contact process with rate λ′, started from A and confined to G
spends more than t time units with o occupied, the probability that the same process
on the full graph G̃ reaches Ah is higher than 1 − exp{−cλ · t}.

We interpret the conditioning in the above statement as saying that the confined
process has time t to attempt to “ignite” the infection on the treeTh (meaning fill it up
sufficiently to enter the setAh). We postpone the proof of this proposition to Sect. 5.1.

Proposition 3 (From Ah to õ) If h is large enough, then for any A ∈ Ah we have

P

(
ξ̄ A
G̃,λ

(õ) > h
)

> 1 − 1

h
and P

(
ξ̄ A
G̃,λ

(v) > h
)

> 1 − 1

h
for all v ∈ V .

The proof of this proposition will be carried out in Sect. 5.3.

Proposition 4 For any λ′ < λ, if h is large enough depending on λ′, then

P

(
ξ̄ A
G̃,λ′(õ) > 0

)
< s(h)−1 for any A ⊂ V ∪ Th . (26)

The proof of this proposition will be done in Sect. 5.4.

Proof of Theorem 2 It follows from the construction that G̃ satisfies the stated degree
properties. The inequality (3) follows from Propositions 2 and 3, and (4) follows from
Proposition 4. ��

123



Journal of Theoretical Probability

5 Proofs of Results in Section 4

Wenow turn to the proofs of the three propositions of the previous section. In Sect. 5.1,
we will prove Proposition 2. In Sect. 5.2, we will give some bounds involving the
function L(h), as well as a key proposition involving coupling of the contact process
on G̃, Proposition 5. Next, Sect. 5.3 contains the proof of Proposition 3, and Sect. 5.4
contains the proof of Proposition 4.

5.1 Proof of Proposition 2

Proof of Proposition 2 We begin with some definitions. For 0 ≤ i ≤ h, let T (i)
denote the set of vertices of Th at distance i from the root ρ. Using the graphical
construction of the contact process with parameter λ′ ≥ λ, we will now define random
sets Zλ′(0), . . . ,Zλ′(�h/2�) with Zλ′(i) ⊂ T (i) for each i . We set Zλ′(0) := {ρ}.
Assume that Zλ′(i) has been defined, let z be a vertex of T (i + 1) and let z′ be
the neighbor of z in T (i). We include z in Zλ′(i + 1) if z′ ∈ Zλ′(i) and, in the
time interval [i, i + 1], there are no recovery marks on z′ or z, and there is a trans-
mission arrow from z′ to z. Letting Zλ′(i) := |Z(i)| for each i , it is readily seen
that (Zλ′(i) : 0 ≤ i ≤ �h/2�) is a branching process. Its offspring distribution is equal
to the law ofU ·W , whereU ∼ Bernoulli(e−1) andW ∼ Binomial(d, e−1 ·(1−e−λ′

))

are independent. The expectation of this distribution is larger than mλ > 1. For this
reason, there exists σλ > 0 such that the event

Bλ′ :=
{
Zλ′(�h/2�) > (mλ/2)

�h/2�}

has

P (Bλ′) > σλ for all λ′ ≥ λ and h ∈ N.

Finally, note that

Bλ′ ⊂
{
ξ

{ρ}
Th ,λ′;�h/2� ∈ Ah

}
.

Now, define Bλ′(0) := Bλ′ and, for t ∈ [0,∞), define Bλ′(t) as the time translation
of Bλ′ , so that time t becomes the time origin (that is, Bλ′(t) is defined by using the
graphical construction of the contact process on the time intervals [t, t+1], [t+1, t+
2], . . . , [t + �h/2� − 1, t + �h/2�]). We evidently have

P(Bλ′(t)) = P(Bλ′) > σλ for any t, (27)

and moreover,

{
ρ ∈ ξ A

G̃,λ′;t
}

∩ Bλ′(t) ⊂
{
ξ A
G̃,λ′;t+�h/2� ∈ Ah

}
(28)
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for any A. It will be useful to note that, if t1, t2 ≥ 0 with t2 > t1 + 2, then Bλ′(t1)
and Bλ′(t2) are independent.

Now, fix t > 0 and condition on the event
{
ξ̄ A
G,λ′(o) > t

}
occurs. Note that this

event only involves the graphical construction of the contact process onG; in particular,
the Poisson processes involving vertices and edges of Th , or the edge {o, ρ}, are still
unrevealed. Then, by elementary properties of Poisson processes, there exists cλ > 0
(depending only on λ) such that (uniformly on λ′ ≥ λ) outside probability exp{−cλ ·t},
we can find random times s1 < · · · < s�cλt� separated from each other by more than
two units, and such that for each i , o ∈ ξ A

G,λ′;si and there is a transmission arrow
from (o, si ) to (ρ, si ). If this is the case, and if Bλ′(si ) also occurs for some i , we then
get ξ A

G̃,λ′;si+�h/2� ∈ Ah , by (28). The desired result now follows from independence

between the events Bλ′(si ), together with (27) and a Chernoff bound. ��

5.2 Preliminary Bounds

In this section we will prove that

d
3h
4 ≤ L(h) ≤ d2h

for large enough h. These bounds will be instrumental for proving Propositions 3 and
4. We first give an upper bound involving the extinction time of the contact process
on G̃, in terms of the length L(h).

Lemma 8 We have

lim
h→∞ P

(
ξ Ṽ

G̃,λ;exp{d 3
2 h}·(log L(h))2

�= ∅

)
= 0,

that is, the extinction time of the contact process on G̃ started from full occupancy is

smaller than exp{d 3
2 h} · (log L(h))2 with high probability as h → ∞.

Proof Let E ′
0 be the event that each vertex in V ∪ Th has a recovery mark before it

sends out any transmission arrow, and before time 1. Since all vertices of V ∪Th have
degree at most d + 1, we have

P(E ′
0) ≥

(
(1 − e−1) · e−(d+1)λ

)|V∪Th | ≥
(
(1 − e−1) · e−(d+1)λ

)dh+2

,

if h is large enough (since |Th | < dh+1 and |V | is fixed as h → ∞). Next, let E ′′
0

denote the event that the contact process on G̃ started fromLh infected dies out before
time (log L(h))2, and never infects the root ρ of Th . That is,

E ′′
0 :=

{
ξ
Lh

G̃,λ;(log L(h))2
= ∅, ρ /∈ ξ

Lh

G̃,λ;t for all t
}

.
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The probability of E ′′
0 is the same as the probability that a contact process on the line

segment {−1, 0, . . . , LG(h)}, with rate λ̄ and initial configuration {0, . . . , L(h)}, dies
out before time (log L(h))2 and never infects vertex −1. Therefore, by Lemmas 2 and
4, we have

P(E ′′
0 ) > δ > 0

for all h. Let E0 := E ′
0 ∩ E ′′

0 ; since E
′
0 and E ′′

0 have different supports in the graphical
representation, they are independent and hence

P(E0) > δ
(
(1 − e−1) · e−(d+1)λ

)dh+2

.

For i ∈ {1, . . . , �exp{d 3
2 h}�}, let Ei be the time translation of event E0 to the

graphical construction on the time interval

[i(log L(h))2, (i + 1)(log L(h))2].

Finally, noting that E0, E1, . . . are independent and

Ei ⊂
{
ξ Ṽ
G̃,λ;(i+1)(log L(h))2

= ∅

}
,

we have

P

(
ξ Ṽ

G̃,λ;exp{d 3
2 h}·(log L(h))2

�= ∅

)

≤ P((E0)
c)�exp{d

3
2 h}�

≤ exp

{
−�exp{d 3

2 h}� · δ
(
(1 − e−1) · e−(d+1)λ

)dh+2}
h→∞−−−→ 0.

��
We now proceed to an upper bound on L(h).

Lemma 9 If h is large enough, we have

L(h) ≤ d2h (29)

Proof Define

F1 :=
{
ξ
V∪Th
G̃,λ;exp{d 3

2 h}·(log L(h))2
= ∅

}
.

Recall that vL(h)−1 denotes the neighbor of õ inLh , and let F2 be the event that there

is no infection path starting from (ρ, s) for some s ≤ exp{d 3
2 h} · (log L(h))2, ending
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at (vL(h)−1, t) for some t > s, and entirely contained inLh ∪{ρ}. It is easy to see that

F1 ∩ F2 ⊂
{
ξ
V∪Th
G̃,λ;t (vL(h)−1) = 0 for all t ≥ 0

}
.

By Lemma 8 we have lim
h→∞ P(F1) = 1, and by Corollary 1 we have

P(F2) ≥ 1 −
(
exp{d 3

2 h} · (log L(h))2 + 1
)

· exp{−cL · L(h)}.

This shows that, if we had L(h) > d2h , we would get

P

(
ξ
V∪Th
G̃,λ;t (vL(h)−1) = 0 for all t ≥ 0

)
≥ P(F1 ∩ F2)

h→∞−−−→ 1.

On the other hand, the definition of L(h) implies that

P

(
ξ
V∪Th
G̃,λ;t (vL(h)−1) > 0 for some t ≥ 0

)
≥ 1 − s(h)−1 h→∞−−−→ 1,

a contradiction. ��
The following guarantees that if the contact process with some initial condition

remains active for s(h) time in G̃, then it is highly likely to coincide with the process
started from full occupancy. This, in turn, will be applied in the proof of Lemma 10
which is an important step toward obtaining lower bounds on L(h).

Proposition 5 If h is large enough, for any A ⊂ Ṽ we have

P

(
ξ A
G̃,λ;s(h)

�= ∅, ξ A
G̃,λ;s(h)

�= ξ Ṽ
G̃,λ;s(h)

)
< s(h)−2.

Theproof of this proposition is lengthy and technical, sowepostpone it toAppendix.
We are now interested in giving an upper bound for the probability that the infection

crossesLh in a single attempt. For the proof of Proposition 4, it will be important that
this bound is given in terms of the extinction time of the infection on G̃, starting from
full occupancy.

Define

S(h) := E

[
inf

{
t : ξ Ṽ

G̃,λ;t = ∅

}]
,

that is, S(h) is the expected amount of time it takes for the contact process on G̃ with
parameter λ started from full occupancy to die out. Also let

p(�) = pλ(�) := P

(
ξ̄

{0}
N0,λ

(�) > 0
)

, (30)

or equivalently, p(�) is the probability that, for the contact process with parameter λ

on a line segment of length � + 1, an infection starting at one extremity ever reaches
the other extremity.
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Lemma 10 If h is large enough,

p(L(h)) ≤ s(h)3

S(h)
. (31)

Proof Recall that v0 is the vertex ofLh neighboring ρ, the root ofTh . Let q(h) denote
the probability that there is an infection path starting from (v0, 0), ending at (õ, t) for
some t ≤ s(h), and entirely contained in Lh . Note that q(h) ≤ p(L(h)) and, by a
union bound,

p(L(h)) ≤ q(h) + P

(
ξ

{v0}
Lh ,λ;s(h)

�= ∅

) (11)≤ q(h) + e−cZ·s(h).

Next, assume that h is large enough that any vertex in V is at distance smaller than h
from ρ, the root of Th . With this choice, we claim that for any A ⊂ Ṽ , A �= ∅ we
have

P

(
ξ A
G̃,λ;t (õ) = 1 for some t ≤ h + s(h)

)
> (e−1(1 − e−λ))h · q(h). (32)

Indeed, if A ∩ Lh �= ∅, then the left-hand side is larger than q(h) by the definition
of q(h) and simple monotonicity considerations. If A ∩ Lh = ∅, then by (9), with
probability larger than δ(h) := (e−1(1 − e−λ))h , ρ gets infected within time h, and
conditioned on this, with probability q(h), õ gets infected after at most additional s(h)

units of time. Applying (32) and the strong Markov property repeatedly, we have

P

(
ξ A
G̃,λ;t �= ∅,

ξ A
G̃,λ;r (õ) = 0 ∀r ≤ t

)
≤ (1 − δ(h) · q(h))

⌊
t

h+s(h)

⌋
, t ≥ h + s(h). (33)

Now, letting S′(h) := S(h)
4s(h)

, we have

(s(h))−1 < P

(
ξ̄
V∪Th
G̃,λ

(õ) = 0
)

≤ P

(
ξ
V∪Th
G̃,λ;S′(h)

= ∅

)
+ (1 − δ(h) · q(h))

⌊
S′(h)
h+s(h)

⌋

≤ P

(
ξ
V∪Th
G̃,λ;S′(h)

= ∅

)
+ exp

{
−δ(h) · q(h) ·

⌊
S′(h)

h + s(h)

⌋}
. (34)

where the first inequality follows from the definition of L(h), see (23) and (25). We
now claim that

P

(
ξ
V∪Th
G̃,λ;S′(h)

= ∅

)
< (2s(h))−1 (35)

if h is large enough. Plugging this into (34), we obtain

q(h) <
log(2s(h)) · (h + s(h))

δ(h) · S′(h)
<

4 log(2s(h)) · (h + s(h)) · s(h)

(e−1(1 − e−λ))h · S(h)
<

s(h)3

S(h)
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for large enough h, completing the proof.
It remains to prove (35). Noting that S′(h) � s(h) if h is large, we have

P

(
ξ
V∪Th
G̃,λ;S′(h)

= ∅

)
≤ P

(
ξ Ṽ
G̃,λ;S′(h)

= ∅

)
+ P

(
ξ
V∪Th
G̃,λ;s(h)

�= ξ Ṽ
G̃,λ;s(h)

)
.

By Lemma 1, we have

P

(
ξ Ṽ
G̃,λ;S′(h)

= ∅

)
≤ S′(h)

S(h)
= (4s(h))−1.

Next,

P

(
ξ
V∪Th
G̃,λ;s(h)

�= ξ Ṽ
G̃,λ;s(h)

)

≤ P

(
ξ
V∪Th
G̃,λ;s(h)

= ∅

)
+ P

(
ξ
V∪Th
G̃,λ;s(h)

�= ∅, ξ
V∪Th
G̃,λ;s(h)

�= ξ Ṽ
G̃,λ;s(h)

)
.

Now, the first term on the right-hand side is smaller than s(h)−2 byLemma7 (since V ∪
Th ∈ Ah), and the second term on the right-hand side is also smaller than s(h)−2 by
Proposition 5. Putting things together gives (35) for large enough h. ��

We end this section with a lower bound on L(h), which again will be important for
the proof of Proposition 4.

Lemma 11 If h is large enough,

L(h) ≥ d
3h
4 . (36)

Proof By the simple estimate (9) and Lemma 10, we have

(e−1(1 − e−λ))L(h) ≤ pλ(L(h)) ≤ s(h)3

S(h)
.

This gives

L(h) ≥ 1

log(e(1 − e−λ)−1)
· log

(
S(h)

s(h)3

)
.

Recalling that s(h) = exp{d
√
h} and noting that

S(h) ≥ E

[
inf{t : ξ

Th
Th ,λ;t = ∅}

]
≥ exp{cT · dh},

we obtain

L(h) ≥ cT · dh − 3d
√
h

log(e(1 − e−λ)−1)
> d

3h
4

if h is large enough. ��

123



Journal of Theoretical Probability

5.3 Proof of Proposition 3

We begin with a simple consequence of Proposition 5.

Lemma 12 If h is large enough, for any A ∈ Ah we have

P

(
ξ A
G̃,λ;s(h)

= ξ
V∪Th
G̃,λ;s(h)

)
> 1 − 4s(h)−2.

Proof Since both A and V ∪ Th belong toAh , Lemma 7 gives

P

(
ξ A
G̃,λ;s(h)

= ∅

)
<

1

s(h)2
, P

(
ξ
V∪Th
G̃,λ;s(h)

= ∅

)
<

1

s(h)2
,

and Proposition 5 gives

P

(
ξ A
G̃,λ;s(h)

�= ∅, ξ A
G̃,λ;s(h)

�= ξ Ṽ
G̃,λ;s(h)

)
< s(h)−2,

P

(
ξ
V∪Th
G̃,λ;s(h)

�= ∅, ξ
V∪Th
G̃,λ;s(h)

�= ξ Ṽ
G̃,λ;s(h)

)
< s(h)−2.

The desired statement follows from these four inequalities. ��

Lemma 13 If h is large enough, we have, for any v ∈ V ,

P

(∫ ∞

s(h)

ξ
V∪Th
G̃,λ;t (v) dt > h

)
> 1 − 1

2h
.

Proof Assume h is larger than the graph diameter of G, and fix v ∈ V . We have, for
any A ⊂ Ṽ with A ∩ Th �= ∅,

P

(∫ 4h

0
ξ A
G̃,λ;t (v) dt > h

)
≥ e−2h · (e−1 · (1 − e−λ))2h .

Indeed, by the estimate (9) we have that, with probability at least (e−1 ·(1−e−λ))2h , v
becomes infected before time 2h, and then, it remains infected for time 2h (by having
no recovery marks) with probability e−2h . By iterating this, we obtain

P

(
ξ
Th
Th ,λ;2s(h)

�= ∅,

∫ 2s(h)

s(h)

ξ
V∪Th
G̃,λ;t (v) dt ≤ h

)

<
(
1 − e−2h · (e−1 · (1 − e−λ))2h

)�s(h)/(4h)� � 1

4h
.
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We therefore have

P

(∫ 2s(h)

s(h)

ξ
V∪Th
G̃,λ;t (v) dt ≤ h

)

≤ P

(
ξ
Th
Th ,λ;2s(h)

= ∅

)
+ P

(
ξ
Th
Th ,λ;2s(h)

�= ∅,

∫ 2s(h)

s(h)

ξ
V∪Th
G̃,λ;t (v) dt ≤ h

)

(10),(18)≤ 2s(h)

exp{cT · dh} +
(
1 − e−2h · (e−1 · (1 − e−λ))2h

)�s(h)/(4h)� � 1

2h

if h is large, which implies the statement of the lemma. ��
Lemma 14 If h is large enough, we have

P

(∫ ∞

s(h)

ξ
V∪Th
G̃,λ;t (õ) dt > h

)
> 1 − 1

2h
. (37)

Proof We will separately prove that

P

(∫ ∞

0
ξ
V∪Th
G̃,λ;t (õ) dt > h

)
> 1 − 1

4h
(38)

and

P

(∫ s(h)

0
ξ
V∪Th
G̃,λ;t (õ) dt = 0

)
> 1 − 1

4h
; (39)

the desired result will then follow.
For (38), let u1 := vL(h)−2, u2 := vL(h)−1 be such that u1, u2, õ (in this order) are

the three last vertices inLh , as wemove away fromTh . By Lemma 6 and the definition
of L(h) we have

P

(
ξ̄
V∪Th
G̃,λ

(ui ) = 0
)

< s(h)−1, i = 1, 2. (40)

Let G ′ denote G̃ after removing u2 and õ. Define the random set of times

I :=
{
t ≥ 0 : u1 ∈ ξ

V∪Th
G ′,λ;t

}
.

We have

P

(
ξ̄
V∪Th
G̃,λ

(u2) = 0
)

= E
[
1 − e−λ|I |], (41)

where |I | denotes the Lebesgue measure of I . To justify this, note that the first time
that u2 becomes infected in (ξ

V∪Th
G̃,λ;t )t≥0 is necessarily through a transmission from u1.
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Hence, one can decide if u2 is ever infected in this process by inspecting whether there
is a point in time at which (1) u1 is infected in process confined to G ′, and (2) there
is a transmission arrow from u1 to u2. The number of such time instants is a Poisson
random variable with parameter λ|I |, justifying (41).

We bound

s(h)−1 (40)
> P

(
ξ̄
V∪Th
G̃,λ

(u2) = 0
)

(41)= E
[
e−λ|I |] ≥ e−λh2 · P(|I | < h2),

so

P(|I | < h2) ≤ eλh2 · s(h)−1 � 1

8h
(42)

for h large enough.
We next claim that

P

(
ξ̄
V∪Th
G̃,λ

(õ) ≤ h
∣∣∣ |I | ≥ h2

)
< e−h . (43)

To prove this, we observe that on the event {|I | ≥ h2}, we can find an increasing
sequence of times S0, . . . , S�h2/2� ∈ I with

|I ∩ [S j + 1, S j+1]| ≥ 2 for each j .

Next, note that for each interval [S j , S j+1], with a probability that is positive and
depends only on λ, the infection is sent to õ and remains there for one unit of time.
This occurring independently in different time intervals, (43) follows from a simple
Chernoff bound. Now, (38) follows from (42) and (43).

We now turn to (39). Note that the event inside the probability there is contained
in the event that there is an infection path starting at some time s and ending at some
time t with s ≤ t ≤ s(h), connecting the two endpoints of Lh . By Corollary 1, the
probability that such a path exists is smaller than

(s(h) + 1) · exp{−cL · L(h)} � 1

4h

if h is large enough. ��
Proof of Proposition 3 The statements follow readily from Lemmas 12, 13 and 14. ��

5.4 Proof of Proposition 4

ProvingProposition 4 is now just amatter of putting together bounds thatwere obtained
earlier.

Proof of Proposition 4 Fix λ′ < λ. Let B be the event that, in the graphical construction
with parameter λ′, there is an infection path starting from (v0, s) for some s ≤ 2s(h) ·
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S(h) (where v0 is the vertex of Lh neighboring the root ρ of Th), ending at (õ, t) for
some t > s, and entirely contained in Lh . Then, by a union bound,

P

(
ξ̄ A
G̃,λ′(õ) > 0

)
≤ P

(
ξ Ṽ
G̃,λ′;2s(h)·S(h)

�= ∅

)
+ Pλ′(B). (44)

The first term is bounded using Markov’s inequality and monotonicity:

P

(
ξ Ṽ
G̃,λ′;2s(h)S(h)

�= ∅

)
≤ (2s(h))−1.

Next, note that the occurrence of B depends only on the graphical construction of the
contact process with parameter λ′ on the line segment connecting v0 and õ = vL(h).
Therefore, using Lemma 3 [and also recalling the definition of p from (30)], we have

Pλ′(B) ≤ (2s(h) · S(h) + 1) · e · pλ′(L(h)) ≤ 7s(h) · S(h) · pλ′(L(h)). (45)

Bounding the right-hand side using Lemma 5, we obtain

Pλ′(B) ≤ 7s(h) · S(h) · pλ(L(h)) · (ηλ,λ′)−L(h).

By using p(L(h)) ≤ s(h)3/S(h) as in (31) and L(h) ≥ d
3h
4 as in (36), the right-hand

side above is smaller than

7s(h)4 · (ηλ,λ′)−d
3h
4

,

which is much smaller than (2s(h))−1 if h is large enough (depending on λ and λ′). ��
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Appendix: Proof of Proposition 5

We will first state and prove some auxiliary claims.

Claim 1 For any A ⊂ Ṽ \Th we have

P

(
either ξ A

G̃,λ;√s(h)
= ∅ or ξ A

G̃,λ;t ∩ Th �= ∅ for some t ≤ √
s(h)

)
≥ 1

2
.
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Proof Let G ′ be the graph obtained by removing Th from G̃ (so that G ′ is the dis-
connected union of G andLh). The complement of the event in the probability above
is

{
ξ A
G ′,λ;√s(h)

�= ∅

}
⊂
{
ξ
V∪Lh

G ′,λ;√s(h)
�= ∅

}
⊂ {τ1 >

√
s(h)} ∪ {τ2 >

√
s(h)},

where

τ1 = inf
{
t : ξVG,λ;t = ∅

}
, τ2 = inf

{
t : ξ

Lh
Lh ,λ;t = ∅

}
.

Since G is fixed while h can be taken arbitrarily large, we can assume

P

(
τ1 >

√
s(h)

)
<

1

4
.

Next, noting that, by Lemma 9,

s(h) = exp
{
d

√
h
}

�
(
log

(
d

3h
2

))2 (29)≥ (log L(h))2,

we have, by Lemma 2,

P

(
τ2 >

√
s(h)

)
≤ P

(
τ2 > (log L(h))2

) (13)
<

1

4

if h is large enough. ��
For the next two claims we let cT be as in Proposition 1.

Claim 2 For any A ⊂ Ṽ we have

P

(
either ξ A

G̃,λ;2√s(h)
= ∅ or ξ A

G̃,λ;2√s(h)
⊃ ξ

Th
Th ,λ;2√s(h)

)
>

cT

2
.

Proof Define

τ ′ := inf
{
t : ξ A

G̃,λ;t = ∅

}
, τ ′′ := inf

{
t : ξ A

G̃,λ;t ∩ Th �= ∅

}

and let τ = min(τ ′, τ ′′). By the first claim we have

P

(
τ ≤ √

s(h)
)

≥ 1

2
. (46)

Next, note that

P

(
ξ A
G̃,λ;2√s(h)

= ∅ | τ = τ ′ ≤ √
s(h)

)
= 1. (47)
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We will prove that

P

(
ξ A
G̃,λ;2√s(h)

⊃ ξ
Th
Th ,λ;2√s(h)

| τ = τ ′′ ≤ √
s(h)

)
> cT. (48)

Taken together, (46), (47) and (48) give the statement of the claim.
To prove (48), we first introduce some notation. Given A′ ⊂ Th , we write

ξ A′
Th ,λ;t1,t2(x) := 1{A′ × {t1} � (x, t2)}, t1 ≤ t2, x ∈ Th .

Note that (ξ A′
Th ,λ;t1,t1+s : s ≥ 0) has same distribution as (ξ A′

Th ,λ;s : s ≥ 0). Next, on the

event {τ ′′ < ∞} let A′ := ξ A
G,λ;τ ′′ ∩ Th . Define the event

B := {τ ′′ < ∞} ∩
{
ξ A′
Th ,λ;τ ′′,τ ′′+√

s(h)
⊃ ξ

Th
Th ,λ;τ ′′,τ ′′+√

s(h)

}
.

By Proposition 1 and the strong Markov property we have P(B | τ ′′ <
√
s(h)) > cT.

Moreover, on B we have

ξ A
G̃,λ;2√s(h)

⊃ ξ A′
Th ,λ;τ ′′,2

√
s(h)

⊃ ξ
Th
Th ,λ;τ ′′,2

√
s(h)

⊃ ξ
Th
Th ,λ;2√s(h)

.

This completes the proof. ��
Claim 3 For any A ⊂ Ṽ and h large enough we have

P

(
either ξ A

G̃,λ;s(h)/2
= ∅ or

ξ A
G̃,λ;s(h)/2

⊃ ξ
Th
Th ,λ;s(h)/2

)
> 1 −

(
1 − cT

2

)�√
s(h)/4�

. (49)

Inwords, the event in the probability in the left-hand side can be described by saying
that one of two alternatives has to hold true for the contact process on G̃ started from A.
The first alternative is that by time s(h)/2, this process dies. The second alternative
is that at time s(h)/2, the occupation of this process inside Th is large enough that it
contains the set ξ

Th
Th ,λ;s(h)/2. This set is obtained by running the contact process only

inside Th , from time 0 to time s(h)/2, starting from full occupancy at time 0.

Proof For 1 ≤ i ≤ ⌊√
s(h)/4

⌋
, define the event

Fi :=
{
ξ A
G̃,λ;i ·2√s(h)

= ∅

}
∪
{
ξ A
G̃,λ;i ·2√s(h)

⊃ ξ
Th
Th ,λ;i ·2√s(h)

}
.

We then note that the event in the probability in (49) is contained in ∪Fi , and by
Claim 2,

P
(∩i F

c
i

) ≤
(
1 − cT

2

)�√
s(h)/4�

.

��
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Wenow introduce notation for the time dual of the contact process: ifG ′ = (V ′, E ′)
is a graph, we write

ξ̃ A
G ′,λ;s,t (x) := 1{(x, s) � A × {t}}, x ∈ V ′, A ⊂ V ′, s ≤ t

(as usually, we abuse notation and sometimes treat ξ̃ A
G ′,λ;s,t as a subset of V ′ rather

than a configuration of 0s and 1s). Note that for any s, t > 0 and x, y ∈ Ṽ we have

{
ξ

{x}
G ′,λ;s ∩ ξ̃

{y}
G ′,λ;s,t �= ∅

}
⊂
{
y ∈ ξ

{x}
G ′,λ;t

}
, s ≤ t . (50)

Proof of Proposition 5 Fix x ∈ Ṽ and define

E1 :=
{
for all x ∈ Ṽ , either ξ

{x}
G̃,λ;s(h)/2

= ∅ or ξ
{x}
G̃,λ;s(h)/2

⊃ ξ
Th
Th ,λ;s(h)/2

}

Note that E1 is the joint occurrence of the event of Claim 3 [that is, the event
inside the probability in the left-hand side of (49)], with A ranging over all sets of the
form {x}, with x ∈ Ṽ .

By Claim 3, E1 has probability larger than 1 − |Ṽ | · (1 − cT

2

)�√
s(h)/4�. Note also

that for any A ⊂ Ṽ we have

E1 ∩
{
ξ A
G̃,λ;s(h)/2

�= ∅

}
⊂
{
ξ A
G̃,λ;s(h)/2

⊃ ξ
Th
Th ,λ;s(h)/2

}
. (51)

Define the event

E2 :=
⎧⎨
⎩
for all x ∈ Ṽ , either ξ̃

{x}
G̃,λ;s(h)/2,s(h)

= ∅

or ξ̃
{x}
G̃,λ;s(h)/2,s(h)

⊃ ξ̃
Th
Th ,λ;s(h)/2,s(h)

⎫⎬
⎭ .

This event can be interpreted in the same way as E1, except that it pertains to the
dual process. By invariance of Poisson processes under time reversal, E2 has the same
probability as E1. It is also the case that, for any A ⊂ Ṽ ,

E2 ∩
{
ξ̃ A
G̃,λ;s(h)/2,s(h)

�= ∅

}
⊂
{
ξ̃ A
G̃,λ;s(h)/2,s(h)

⊃ ξ̃
Th
Th ,λ;s(h)/2,s(h)

}
. (52)

Finally, Proposition 1 implies that if h is large enough, the event

E3 := {ξThTh ,λ;s(h)
�= ∅} =

{
ξ
Th
Th ,λ;s(h)/2 ∩ ξ̃

Th
Th ,λ;s(h)/2,s(h)

�= ∅

}

has probability larger than 1 − exp{−cTdh}. Putting our bounds together, we have

P(Ec
1 ∪ Ec

2 ∪ Ec
3) ≤ 2|Ṽ | ·

(
1 − cT

2

)�√
s(h)/4� + exp{−cTd

h} � s(h)−2
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if h is large enough.
We now claim that for any A ⊂ Ṽ we have

E1 ∩ E2 ∩ E3 ⊂
{
either ξ A

G̃,λ;s(h)
= ∅ or ξ A

G̃,λ;s(h)
= ξ Ṽ

G̃,λ;s(h)

}
.

To prove this, it suffices to prove

E1 ∩ E2 ∩ E3 ∩
{
ξ A
G̃,λ;s(h)

�= ∅

}
⊂
{
ξ A
G̃,λ;s(h)

= ξ Ṽ
G̃,λ;s(h)

}
∀A ⊂ Ṽ ,

which in turn is implied by proving:

E1 ∩ E2 ∩ E3 ∩
{
ξ A
G̃,λ;s(h)/2

�= ∅

}
⊂
{
ξ A
G̃,λ;s(h)

= ξ Ṽ
G̃,λ;s(h)

}
∀A ⊂ Ṽ . (53)

So for the rest of this proof,we assume that the event in the left-hand side of (53) occurs.

Fix x ∈ Ṽ ; we would like to prove that ξ A
G̃,λ;s(h)

(x) = ξ Ṽ
G̃,λ;s(h)

(x). This is immediate

in case ξ Ṽ
G̃,λ;s(h)

(x) = 0, so from now on we also assume that ξ Ṽ
G̃,λ;s(h)

(x) = 1, which

also implies that

ξ̃
{x}
G̃,λ;s(h)/2,s(h)

�= ∅. (54)

Now, since E1 ∩
{
ξ A
G̃,λ;s(h)/2

�= ∅

}
occurs, by (51) we have that

ξ A
G̃,λ;s(h)/2

⊃ ξ
Th
Th ,λ;s(h)/2.

Moreover, since E2 ∩
{
ξ̃

{x}
G̃,λ;s(h)/2,s(h)

�= ∅

}
occurs, by (52) we have that

ξ̃
{x}
G̃,λ;s(h)/2,s(h)

⊃ ξ̃
Th
Th ,λ;s(h)/2,s(h)

.

Finally, since E3 occurs, there exists some z ∈ ξ
Th
Th ,λ;s(h)/2∩ ξ̃

Th
Th ,λ;s(h)/2,s(h)

, so the two

set inclusions we just obtained imply that z is both in ξ A
G̃,λ;s(h)/2

and in ξ̃
{x}
G̃,λ;s(h)/2,s(h)

.

We thus have

A × {0} � (z, s(h)/2) � (x, s(h)),

so ξ A
G̃,λ;s(h)

(x) = 1 follows as desired. ��
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