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ABSTRACT: RNA is an emerging target for drug discovery. However, like for
proteins, not all RNA binding sites are equally suited to be addressed with
conventional drug-like ligands. To this end, we have developed the structure-
based druggability predictor DrugPred_RNA to identify druggable RNA binding
sites. Due to the paucity of annotated RNA binding sites, the predictor was
trained on protein pockets, albeit using only descriptors that can be calculated
for both RNA and protein binding sites. DrugPred_RNA performed well in
discriminating druggable from less druggable binding sites for the protein set
and delivered predictions for selected RNA binding sites that agreed with
manual assignment. In addition, most drug-like ligands contained in an RNA
test set were found in pockets predicted to be druggable, further adding
confidence to the performance of DrugPred_RNA. The method is robust
against conformational and sequence changes in the binding sites and can
contribute to direct drug discovery efforts for RNA targets.

■ INTRODUCTION
The vast majority of targets for approved drugs are proteins.1,2

However, in recent years, it has been increasingly realized that
RNAs also constitute promising drug targets as they play a key
role in many biological processes, can fold into diverse 3D
structures, and specifically recognize small molecules.3−6 By
targeting RNA, the functions of currently undruggable protein-
mediated pathways and the noncoding transcriptome can be
modulated, and thus, the size of the druggable genome can be
increased considerably.3 A prime example of an RNA drug
target is the bacterial ribosome, where protein synthesis is
inhibited through binding of small molecules.7 This is
illustrated by linezolid, an FDA-approved antibiotic, which
acts by binding to ribosomal RNA (Figure 1).8 Another active
research area is the discovery of RNA-binding splicing
modifiers for the treatment of spinal muscular atrophy with
several compounds in clinical trials.9,10 Riboswitches, which are
noncoding RNA structures in the 5′ untranslated region and
regulate gene expression through metabolite binding, are new
RNA drug targets for antibiotics.11,12 For example, compounds
binding to the flavin mononucleotide (FMN) riboswitch, e.g.,
ribocil and 5FDQD, have been shown to kill bacteria (Figure
1).13,14 Riboflavin is known to bind to both the FMN
riboswitch and riboflavin kinase. In both binding sites, the
ligand is recognized in a similar way, forming hydrophobic
contacts and hydrogen bonds between the surrounding
residues and the pteridine ring system, the dimethylbenzene
ring, and the ribose chain. This fact nicely illustrates the
capability of RNA to make specific molecular interactions with
a wide variety of functional groups and ligand surfaces.3
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Figure 1. Examples of RNA-binding small molecules. FMN is the
natural ligand for the FMN riboswitch,15 while 5FDQD and ribocil
are synthetic ligands for the same target.13,14 Linezolide, an FDA-
approved antibiotic, targets bacterial ribosomal RNA, thus inhibiting
protein synthesis.8
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When targeting RNA, the question arises as to which targets
are best suited for drug discovery and where in chemical space
to look for potent ligands. Analysis of RNA-binding small
molecules has revealed that some RNA ligands have drug-like
properties comparable to FDA-approved drugs, while others lie
outside this space.4,16 Warner et al. have argued that RNA
targets that bind such drug-like molecules and are thus deemed
to be “ligandable” hold the greatest promise.3 Consequently,
tools are needed to identify such targets.
Targets are commonly considered to be “ligandable” or

“druggable” if they possess binding sites that allow them to
bind orally bioavailable drugs with high affinity.17,18 The terms
to name such pockets are hotly debated, and several alternative
terms such as “bindability”, “tractability”, or “chemical
tractability” have been proposed.18 We will use the term
“druggability” throughout this manuscript because it is the
prevalent term used in the literature. Druggability is not an
absolute property, and for other pockets, potent drugs can be
developed, albeit larger efforts might be required. Accordingly,
we will label pockets that are not classified to be druggable as
“less druggable”.
Over the last few years, several methods have been reported

that are able to segregate druggable pockets from less
druggable ones based on the 3D structure of the binding
site.18 Typically, these methods use descriptors describing the
hydrophobicity, size, and shape of the pockets to classify them
using machine learning methods. As training and validation
sets, protein pockets that have been assigned to either category
are used. One of these methods, the DLID (drug-like density)
measure,19 has also been applied to analyze RNA pockets.
DLID uses PocketFinder20 to identify potential binding sites
and the descriptors volume, buriedness, and hydrophobicity to
estimate how likely a pocket is to bind a drug-like molecule.
Warner et al. used this approach to illustrate the diversity of
selected RNA binding sites.3 Hewitt et al. conducted a
comprehensive analysis of RNA structures in the PDB using
the same method and concluded that many RNAs contain
pockets that are likely suitable for small molecule binding.21

However, they did not distinguish between the binding of
drug-like ligands and other molecules.
In our group, we have developed DrugPred as a structure-

based druggability prediction method for protein binding
sites.22,23 DrugPred describes the size and shape of the binding
site using a “superligand” as a negative print, which is obtained
by merging predicted binding modes of drug molecules that
were docked into the pocket using only steric constraints.
Descriptors encoding the polarity and size of the pocket are
subsequently calculated based on the superligand and used to
predict the druggability of the binding site. DrugPred was
trained and validated on a set of nonredundant druggable and
less druggable protein binding sites (NRDLD), which has
become a standard in the field. In comparison studies,
DrugPred performed at least equally well than other methods
and achieved an accuracy of about 90%.22,24,25

A hurdle when developing a druggability predictor for RNA
is the paucity of training and validation data. Compared to the
protein field, there are very little data about ligands binding to
RNA and even less data that can be accessed in an efficient
way. In the Protein Data Bank (PDB),26 only 43 crystal
structures containing only RNA as macromolecule are
annotated with affinity data from PDBbind27 mapping to
about 20 unique sequences. The NALDB and SMMRNA
databases contain affinities of small molecules binding to RNA

extracted from the literature.28,29 However, it is not possible to
download the data for further processing. The R-BIND
database links binding data to RNA crystal structures, but for
only five of the ligands in this database is a complex structure
available in the PDB.30 As the principles of molecular
recognition are universal, the lack of RNA data can potentially
be overcome by training a predictor on protein binding sites as
long as only descriptors that can be calculated for both types of
pockets are used.
Here, we adopted DrugPred for druggability predictions of

RNA binding sites. As some of the original DrugPred
descriptors could only be calculated for amino acids (the
hydrophobicity indices of amino acids and the relative
occurrence of hydrophobic amino acids in the pockets),22 we
have implemented alternative descriptors and thus made a
prediction software that is applicable to both protein and RNA
binding sites. Due to the paucity of suitable RNA data, we
opted to train our modified DrugPred model, which we termed
DrugPred_RNA, on our previously derived NRDLD protein
binding site set. For machine learning, the decision tree
algorithm XGBoost (eXtreme Gradient Boosting) was used.31

In the absence of a benchmarking set for RNA druggability
predictions, we compiled a set containing RNA and ribosome
binding sites from the PDB for validating the performance of
DrugPred_RNA on RNA pockets. Here, we present the
construction of DrugPred_RNA, the compilation of RNA sets
for druggability predictions, and the validation results with the
protein and RNA sets. Further, we discuss the implications of
this study for RNA-targeted drug discovery.

■ METHODS
Scripts to download crystal structures from the PDB, process
them, and calculate ligand and binding site descriptors were
written using Python 3.6.8 with the Biopython (1.73) and
RDKit (2019.09.1) libraries.32,33

NRDLD Set for Training and Validation. Our NRDLD
set with the most recent modifications was used to train and
test a druggability predictor on protein targets.22,23 In brief,
this set contains 110 small molecule binding sites. The proteins
in the set have a maximum sequence similarity of 60% to each
other, and 68 of the binding sites were previously annotated to
be druggable and 42 to be less druggable based on data mining
and available literature. This set was split into a training set
containing 75 pockets (47 druggable/28 less druggable) and a
test set containing 35 pockets (21 druggable/14 less
druggable) as done before. The binding sites and surrounding
residues were carved out of the CIF files downloaded from the
PDB by keeping all residues with an atom within 15 Å of the
ligand to reduce the file size. The isolated parts of the
structures together with co-factors and metal ions if present
were saved in the PDB format and used for generating the
superligand and calculating descriptors as described below.

Superligand Generation. A superligand as a negative
print of the binding site was obtained as done previously with
minor modifications.22 In brief, a set of approved drug
molecules was docked into the pocket that contained the
bound ligand in the original crystal structure using DOCK
3.6.34 Since the aim of docking was solely to obtain
information about the shape and the volume of the binding
site, all receptor atoms were set to carbon atoms and assigned a
partial charge of 0. Subsequently, compounds for which a
docking pose was obtained and for which the ratio of van der
Waals (VDW) score to number of heavy atoms was ≤−1.3
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were merged into a superligand. This cutoff was chosen to
ensure that only ligands that filled the pocket were kept. To
minimize the number of atoms in the final superligand, during
the merging process, only atoms adhering to all of the
following criteria were retained: (1) the atom had to be a
nonhydrogen atom, (2) at least two atoms coming from
different docked compounds had to be closer than 1.2 Å, and
(3) only one of the atoms within 1.2 Å from other atoms was
kept. If no docked ligands passed these filters, the ligand
contained in the original complex structure was used as the
superligand. This was the case in 125 instances in the RNA
data set and 342 instances in the ribosomal data set.
Descriptor Calculation. The binding site and buried

superligand atoms were determined based on the superligand.
For that purpose, using FreeSASA35 as implemented in RDKit,
the solvent accessible surface area (SASA) of each receptor and
superligand atom in the superligand-bound and -unbound state
was calculated using a 1.0 Å probe radius and ProtOr radii.36

All receptor atoms for which the SASA differed between
superligand-bound and -unbound state were assigned as being
binding site atoms. Further, the SASA of all superligand atoms
in the free state was calculated. Superligand atoms with a SASA
>0 were assigned as surface atoms, and those with a SASA = 0
were assigned as buried superligand atoms.
Using superligand and binding site atoms as input,

descriptors describing the size, shape, and polarity of the
pocket were calculated (Table S1). For shape descriptors that
are not based on the surface area or the number of receptor or
superligand atoms, the Descriptors3D module of RDKit was
used. For calculating polarity descriptors, we considered all
carbon, phosphor, and sulfur atoms in addition to nitrogen
atoms of the RNA bases that are bound to the ribose to be
hydrophobic and all oxygen atoms of amino acids, ribose
sugars, and phosphate groups in addition to nonaromatic
nitrogen atoms of amino acids to be polar. The SASA values of
these atoms were calculated with FreeSASA using the same
settings as described above. The side chains of histidine and
tryptophane residues as well as the RNA bases are known to
form hydrogen bonds in the plane of the heterocycles, while
parallel to this plane, they engage in pi-stacking interactions
that are more hydrophobic in nature. To account for this
ambivalent behavior, the SASA of endocyclic aromatic nitrogen
atoms of the bases and amino acid side chains and exocyclic
oxygen and nitrogen atoms of the bases was split into a
hydrophobic and a polar contribution in the following way.
The SASA of these atoms was calculated in both the absence
(SASA_total) and the presence (SASA_pol) of two blocking
carbon atoms that were placed perpendicular to the plane of
the aromatic ring with a 1.70 Å distance from the atom of
interest. The area SASA_pol was considered to belong to a
polar atom, while the difference SASA_total − SASA_pol was
considered to belong to a hydrophobic atom. Similarly, if more
than half of the SASA of an atom was deemed to be
hydrophobic, the atom was included in the hydrophobic
binding site atom count.
Training the Predictive Model Using Decision Trees.

Machine learning was carried out using the XGBoost31 package
in R,37 a scalable machine learning system for tree boosting. In
brief, the method is based on initially creating multiple
decision trees that are evolved over time into a model with
increased predictive power. As a learning objective, logistic
regression for binary classification with output probability was
used. Thus, all binding sites obtained a score between 0.0 and

1.0, whereas pockets with a score ≥ 0.5 were labeled druggable
and pockets with a score < 0.5 were labeled as less druggable.
Divergent from the default settings, the following parameters
were used for training the model:

• Max_depth = 3 (maximum depth of trees)
• Scale_pos_weight = 0.63 (adjusts for the skewness

between druggable and less druggable binding sites in
the training set)

• Early_stopping_rounds = 20 (Validation metric needs to
improve at least once in every 20 rounds to continue
training.)

The influence of the descriptors on the model was evaluated
with the help of Shapley Additive Explanation (SHAP) values
as implemented in the SHAPforxgboost package.38−40 The
same package was also used to make Figure 2 and Figure S3.
SHAP values describe the importance of each descriptor for
the model output taking into account the interactions with
other descriptors. Each descriptor for each data point (here, a
particular binding site) is assigned a positive or negative SHAP
value describing the contribution of the descriptor to the
model output (here, druggable or less druggable) for that data
point. The mean SHAP value formed by all SHAP values for a
descriptor for the entire data set indicates the importance of
the descriptor for the model (the larger the absolute mean
SHAP value, the more important the descriptor). For
DrugPred_RNA, positive SHAP values imply a high
druggability probability, while negative SHAP values imply a
low druggability probability. Further, by plotting the individual
SHAP values for a descriptor against the descriptor values, it
becomes evident which descriptor values contribute positively
or negatively to the model. The sum of the SHAP values of all
descriptors for a single data point indicates the direction of the
prediction for that data point. Descriptors included in the final
model were chosen by iteratively removing the least impactful
descriptors until the predictive performance of the model was
negatively affected. To further assess the robustness of the final
model (called DrugPred_RNA), leave-one-out cross-validation
was carried out, yielding a training and testing error of 0.00342
and 0.127, respectively.
In addition, accuracy precision and recall values of the

models were calculated using eqs 1−3 with true positives (tp)
and true negatives (tn) being the number of correctly classified
binding sites and false positives ( fp) and false negatives (tn)
being the number of wrongly classified binding sites.

=
+

+ + +
tp tn

tp fp tn fn
Accuracy

(1)

=
+
tp

tp fp
Precision

(2)

=
+
tp

tp fn
Recall

(3)

Assembly of the Data Set with RNA Binding Sites. We
selected RNA structures for druggability assessment by
querying the PDB for structures containing only RNA and
ligands (accessed November 2019). In addition, the PDB was
searched for entries containing ligands and the keyword
″riboswitch″ to include structures that were excluded in the
first query due to the presence of proteins. In total, this yielded
1084 structures. Subsequently, all structures that contained
only ligands that were detergents, buffer salts, or crystallization
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components were filtered out, reducing the data set to 427
unique entries (Table 1, see the supplementary material for

three-letter codes of rejected ligands). If a crystal structure
contained several instances of the same ligand, only the first
instance was retained. In addition, all metal ions and water
molecules were deleted (for a list of metal abbreviations, see
the supplementary material). This resulted in 465 distinct
binding sites spanning 224 unique ligands. A second variant of
this set was also prepared. In this variant, only pockets with
metal ions that were not more than 5 Å away from a ligand
atom were retained. If a binding site contained several metal
ions, several copies of the binding sites, each of them
containing one of the metal ions, were prepared. This variant
contained 343 entries. In the following, the first variant is
called the metal-free and the second variant the metal-
containing set. Further, a data set containing ligand binding
sites in ribosome crystal structures was compiled by querying
the PDB for structures that contained ″ribosome″ as a
keyword. These structures were treated as described above.
In addition, the ligands were visually inspected to remove
buffer components that had slipped the filter rules. This
resulted in 613 binding sites in the metal-free ribosome set and
546 in the metal-containing set spanning 217 unique ligands.
The binding site regions were carved out of the original CIF

files by keeping all RNA residues with at least one atom within
15 Å of the ligand and potentially metal ions as described for
the NRDLD set and subjected to descriptor calculations.
Determination of Overall Sequence Similarity and

Binding Site Similarity. To investigate the robustness of
DrugPred_RNA toward changes in the binding site compo-
sition or conformation, binding sites were grouped into
families based on overall sequence similarity and binding site
similarity. For the grouping based on overall sequence
similarity, the chains were aligned pairwise using BioPython’s
pairwise2 global alignment function and the sequence
similarity was calculated. If this value was >98%, the structures
were assigned to the same family. For clustering based on
binding site similarity, the binding site sequence of each pocket
was generated by including all residues that contained at least
one binding site atom in ascending order, while for modified
nucleic residues, the name of the corresponding unmodified
residue was used (see the supplementary material for a list of
residue IDs for modified residues). Subsequently, all binding
site sequences were aligned as described above. If the sequence
similarity was >85%, the pockets were assigned to the same
family.
Consensus Scoring. As done previously, the consensus of

the druggability predictions within each family of sequences
(C) was calculated using the following formula:

=
| − |

×C
n n

N
100%d ld

where nd is the number of druggable binding sites within the
family, nld is the number of less druggable binding sites, and N
is the total number of family members.23 Thus, 100%
consensus would be obtained if all pockets in one family
were predicted to belong to the same class (druggable or less
druggable) and 0% if one half of the pockets was predicted to
belong to one class and the other half to the other class.

Calculation of Ligand Properties. Physicochemical
properties of the ligands in the RNA sets (Table 1) were
calculated using RDKit. Further, the drug-likeness of ligands
was estimated using the quantitative estimate of drug-likeness
(QED) score as implemented in RDKit using average
descriptor weights.41 This score weighs multiple molecular
features (e.g., molecular weight, number of hydrogen bond
donors or acceptors, polar surface area, and presence of
unwanted functionalities) into one single unitless score, which
ranges from 0 (undesirable) to 1 (desirable). Although this
metric does not provide a clear cutoff to distinguish “desirable”
from “undesirable” compounds, the authors denoted a mean
score of 0.67 for attractive compounds, 0.49 for less attractive
compounds, and 0.34 for too complex and unattractive
compounds. Accordingly, we classified compounds with a
QED score ≥ 0.67 as drug-like, those with a QED score ≤ 0.49
as less drug-like, and those with a score in between as
moderate drug-like.

■ RESULTS AND DISCUSSION
Construction of DrugPred_RNA. Compared to protein

data, there are very little data about ligands binding to RNA,
and a data set of sufficient size composed of druggable or less
druggable RNA binding sites to train a druggability predictor
could not be compiled. Therefore, we opted to predict the
druggability of RNA binding sites by training a descriptor on
protein binding sites and to subsequently apply it to the
prediction of RNA pockets. This approach required that only
descriptors that can be calculated for both protein and RNA
binding sites were used. This was not the case for our
previously derived DrugPred model, as it contained the two
descriptors “relative occurrence of hydrophobic amino acid”
and “hydrophobicity indices of the amino acids”.22 Thus, a
modified DrugPred model, termed DrugPred_RNA, was
derived. As a training and test set, our NRDLD set of
druggable and less druggable binding sites with the most recent
modifications was used.22,23 For all 110 binding sites in the
NRDLD, 23 descriptors describing the size, shape, and polarity
were calculated (Table S1). Subsequently, the data set was
divided into a training and test set as done previously23 to train
and evaluate a predictor. For DrugPred and DrugPred 2.0,
partial least squares-discriminant analysis (PLS-DA) was used
to model the data. However, using only protein-independent
descriptors with PLS-DA resulted in worse predictions (data
not shown). Therefore, we retreated to decision tree modeling
based on XGBoost.31 To avoid overfitting, the maximum depth
of trees was limited to 3 and the early stopping option was
used (Figure S1). In an iterative process, weak descriptors as
judged by SHAP values were removed until the predictive
performance of the model was negatively affected. With the
final model, termed DrugPred_RNA, of the 75 binding sites in
the training set, 1 druggable pocket was misclassified as less
druggable, and of the 35 binding sites in the validation set, 4

Table 1. Data Sets of RNA and Ribosomal Binding Sites for
Assessing DrugPred_RNA

RNA-only set (metal-
free/metal-containing

set)

ribosome set (metal-
free/metal-containing

set)

unique PDB IDs 427 497
binding sites containing
small molecule ligands

465/343 613/546

unique ligands 224 217
druggable entries 172/126 224/141
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were misclassified (2 false positives and 2 false negatives),
leading to accuracy, precision, and recall values between 0.86
and 1.00 (Table 2 and Figure S2). With DrugPred_RNA, the

performance for the training set was or slightly improved
compared to DrugPred 2.0, while the performance for the test
set was slightly worse.
The final DrugPred_RNA predictor was based on 12

descriptors (Figure 2A and Table S1). According to the
SHAP values, the two most important descriptors were the
relative polar surface area (psa_r, absolute mean SHAP value =
1.46) and the fraction of hydrophobic binding site atoms
( f r_hpb_atoms, absolute mean SHAP value = 0.63), which
both describe the polarity of the binding site. As expected,
druggable binding sites were less polar than less druggable sites
(Figure 2B and Figure S3). Both the high-ranking descriptor
f r_buried_sl_atoms (absolute mean SHAP value = 0.34) and
the less important descriptor sa_vol_r (absolute mean SHAP
value = 0.09) encode how compact a pocket is, with less
druggable pockets being more shallow (lower descriptor values
for f r_buried_sl_atoms and higher values for sa_vol_r) than
druggable ones. Further, two descriptors for the solvent
accessibility of the pocket (exp_sl_sa, absolute mean SHAP
value = 0.22 and sl_bs_r, 0.19) were included in the final
model. Here, it was found that druggable binding sites were
less solvent accessible than less druggable ones. The descriptor
hsa was also found to be among the more important ones
(absolute mean SHAP value = 0.30). This descriptor describes
the size of the surface area of hydrophobic binding site atoms
and correlates roughly with the size of the pocket. Other
descriptors describing the size of the pocket were also included

in the model but had less influence on the predictions
(no_bs_atoms, absolute mean SHAP value = 0.17; no_sl_a-
toms, absolute mean SHAP value = 0.20). In agreement with
previous findings, druggable pockets were larger and more
hydrophobic than less druggable ones. The descriptors
InertialShapeFactor, SpherocityIndex, and PMI3 describing the
shape of the superligand as a negative print of the binding site
were also included in the final model. Pockets with a
superligands with a larger third moment of inertia (PMI3,
absolute mean SHAP value = 0.27) and that were less spherical
(SpherocityIndex, absolute mean SHAP value = 0.08;
InertialShapeFactor, absolute mean SHAP value = 0.08) were
more likely to be assessed as druggable, albeit the latter two
descriptors were determined to be less important.

Druggability Predictions for RNA-Containing Binding
Sites. Encouraged by the good performance of DrugPred_R-
NA on the NRDLD, we proceeded with druggability
predictions for RNA and ribosomal binding sites. Using the
PDB, we compiled two data sets for this purpose, one
containing RNA-only binding sites and one with ribosome
binding sites that, in addition to ribosomal RNA, could also
contain ribosomal proteins. As binding sites, we considered all
pockets that contained a ligand that is not a common
crystallization buffer component. If a binding site contained
metal ions within 5 Å of the ligand, several copies of the
binding sites, each of them containing one of the metal ions in
addition to the metal-free pocket, were prepared. In total, the
RNA-only binding site set was composed of 427 unique PDB
IDs spanning 465 binding sites in the metal-free and 343 in the
metal-containing subset (Table 1). A total of 224 different
ligands were found in these pockets. The ribosomal binding
site set was prepared in a similar fashion, resulting in 497
unique PDB IDs with 613 pockets in the metal-free and 546 in
the metal-containing subset containing in total 217 different
ligands.
The ligands in both sets spanned a wide range of

physicochemical properties (Figure S4). Generally, the
descriptor space for ribosomal and RNA-only ligands over-
lapped. However, the medians of the molecular weight,
number of hydrogen-bond acceptors and donors, rotatable
bonds, clogP, and fraction of sp3 carbon atoms were higher
among the ligands in the ribosomal set compared to the ligands

Table 2. Performance of DrugPred_RNA and DrugPred 2.0
on the Training and Test Set of the NRDLD

training set [druggable/less
druggable]

test set [druggable/less
druggable]

DrugPred_RNA
DrugPred

2.0 DrugPred_RNA
DrugPred

2.0

accuracy 0.99 0.91 0.91 0.94
precision 1.00/0.97 0.92/0.89 0.95/0.86 0.95/0.93
recall 0.98/1.00 0.94/0.86 0.91/0.92 0.95/0.93

Figure 2. SHAP values for the DrugPred_RNA model. (A) Absolute mean SHAP values for each descriptor ranked from the highest to lowest
impact on the model output. (B) Individual SHAP values for each pocket in the training set for the top six descriptors in the model plotted against
the descriptor values. Locally estimated scatterplot smoothing (LOESS) curves are overlaid on the descriptor observations (black dots). The
midpoint in each curve indicates the cutoff value from where the prediction changes the direction. Positive SHAP values are associated with
druggable and negative SHAP values with less druggable binding sites. The plots for the reaming descriptors are displayed in Figure S3.
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in the RNA-only set. In contrast, the median of the number of
aromatic rings was higher in the RNA-only set, while the
median of the number of rings was the same in both sets.
Next, descriptors for all pockets in the sets were calculated

and compared to the descriptors of the NRDLD set (Figure 3

and Figure S5). In general, the descriptors for the druggable
protein binding sites were more narrowly distributed than
those for less druggable protein binding sites or the RNA
pockets. Both RNA sets (ribosomal and RNA-only) had
binding sites for which the descriptor values were in the same
range as those found for druggable protein pockets.
Subsequently, the druggability of the pockets in all sets was

predicted. In the RNA data set, 36% of the binding pockets
(metal-containing and metal-free combined) were predicted to
be druggable, while in the ribosomal data set, 31% of the
pockets were predicted to be druggable (see the supplementary
material for individual predictions for all pockets).
To assess the impact of metal ions on the druggability

prediction, we compared the predictions of metal-free and
metal-containing versions of same parent pocket. In both sets,
for the majority of the cases (90% in the RNA-only set and
83% in the ribosome set), no change in the prediction outcome
was found. Accordingly, metal ions had only a minor influence
on the predictions. In the following, we therefore only present
data for pockets that were stripped of metal ions.
Criteria for the Assessment of Druggability Predic-

tions for RNA Binding Sites. Next, the quality of the
predictions of DrugPred_RNA for RNA binding sites was
evaluated. No benchmark set for the evaluation of RNA
druggability predictions is available in the public domain.

Therefore, we evaluated the performance of DrugPred_RNA
on the above described RNA sets based on the following
criteria: (1) the agreement of the predictions with how one
would judge the druggability based on visual inspection of the
binding site and the properties and affinities of the known
ligands, (2) the extent to which binding sites that efficiently
bind drug-like ligands were predicted to be druggable, and (3)
the robustness of the predictions with respect to substitutions
and conformational changes in the binding sites. In this
context, we considered a ligand to bind tightly to a binding site
if it had a ligand efficiency (the binding energy normalized by
the number of heavy atoms, LE) at least close to 0.30 kcal·
mol−1·heavy atom−1, which translates to low nanomolar
binding affinities of compounds with a molecular weight of
maximum 500 Da under the assumption that the ligand
efficiency stays at its best constant during optimization.42 Such
a measure of tight binding takes into account that a small
ligand with a weak affinity can potentially be optimized to a
larger, more potent ligand.

Evaluation of the Performance of DrugPred_RNA
Based on Visual Inspection of Binding Sites and
Properties of Bound Ligands. In the absence of a
benchmarking set to assess the performance of RNA
druggability predictions, we chose a few examples from the
RNA sets for a first validation of the predictions. The examples
were selected to have published affinity data for at least the co-
crystallized ligand, cover different RNA classes, and have
different prediction outcomes. The list included two ribosomal
binding sites (Figure 4A,G); the FMN, guanine, and lysine
riboswitches (Figure 4B,D,E); TAR RNA (Figure 4C); and a
splicing site (Figure 4F). The binding pockets of the selected
examples were visually inspected. Pockets that were large
enough to accommodate a drug-sized ligand, that were partially
buried, and for which a drug-like ligand binding with high
ligand efficiency was known were judged to be druggable,
whereas the remaining pockets were judged to be less
druggable. This resulted in the linezolid binding site in the
50S ribosomal subunit (Figure 4A), the FMN riboswitch
binding site (Figure 4B), and the TAR RNA binding site
(Figure 4C) to be manually assigned as druggable and the
binding sites in the guanine and lysine riboswitch (Figure
4D,E) as well as the splicing site (Figure 4F) to be assigned as
less druggable. (More details about the manual assignment of
the binding sites and the DrugPred_RNA predictions can be
found in the supplementary material.) The predictions
obtained by DrugPred_RNA (Figure 4, right panels) agreed
with the manual assignment for all pockets.

Druggability Predictions of RNA Pockets Binding to
Drug-like Ligands. In the next step, we investigated which
prediction pockets in our RNA test sets obtained that
contained drug-like ligands. By definition, a pocket binding
potently to a drug-like ligand is considered to be
druggable.17,18 We therefore expect from a well-performing
druggability predictor that pockets binding to drug-like ligands
are predicted as druggable. However, a pocket binding to a
non-drug-like ligand is not necessarily less druggable as it could
be that a potent drug-like ligand has simply not yet been found.
This is a particular concern when working with RNA binding
sites, as ligand space is typically much less explored than for
protein binding sites and, in addition, the available ligand
information cannot easily be mined using computational
methods. Accordingly, validating structure-based druggability
predictions based on pockets binding to non-drug-like ligands

Figure 3. Boxplots showing the distribution of the six highest-ranking
descriptors in the DrugPred_RNA model for the druggable and less
druggable protein binding sites in the NRDLD set and the RNA
binding sites in the RNA sets. The lower and upper hinges of the
boxes represent the 25th and 75th percentiles of the data, and the
whiskers extend to the bottom 10th and upper 90th percentile. The
line inside the boxes marks the median value. The plots for the
reaming descriptors are displayed in Figure S5.
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would be associated with a large uncertainty, and we therefore
abstained from discussing predictions obtained for these
pockets.
In total, the RNA sets contained 331 unique ligands with 22

of them having a QED score ≥ 0.67. Four of these ligands were
found in the binding site of the preQ1 riboswitch. Upon closer
inspection of these pockets, it became evident that some of the
bases in these structures were not resolved (e.g., the residues
13−15 in PDB ID 6e1t and the residues 13−14 in PDB ID
6e1v). These pockets were therefore not further considered.
Out of the remaining ligands, 12 (67%) were found in binding
sites assessed by DrugPred_RNA as druggable (Table 3) and 6
(23%) in binding sites assessed to be less druggable (Table 4).
As only 37% of all metal-free binding sites were predicted to be
druggable, the drug-like ligands were clearly enriched in
druggable binding sites.

For 10 out of the 12 drug-like ligands binding to pockets
predicted to be druggable, we could find binding data in the
literature (Table 3). Based on these data, eight ligands bind
efficiently to their target with LEs > 0.30 kcal·mol−1·heavy
atom−1, hinting that these pockets are indeed druggable. The
two remaining ligands were linezolid with the 50S ribosomal
subunit as target and acetylpromazine binding to HIV-1 TAR
RNA (Figure 4A,C). Based on manual assignment (see the
supplementary material), these pockets also appear to be
druggable. Thus, all predictions for the pockets binding to the
10 drug-like ligands with accessible binding data appear to be
valid.
On the other hand, six drug-like ligands were found in

pockets predicted to be less druggable (Table 4). For five of
them, we could retrieve affinity data in the literature, and all of
these bind rather efficiently to their targets (LE ≥ 0.29 kcal·
mol−1·heavy atom−1). Three of these ligands are fragments

Figure 4. Evaluation of the performance of DrugPred_RNA based on selected examples. The RNA backbones are shown as orange tubes,
nucleobases as thin sticks with carbon atoms colored pink, and ligands as thick sticks with carbon atoms in green. The surface of the superligand
created by DrugPred_RNA as a negative print of the pocket is shown as blobs with the solvent exposed surface area colored gray and the remaining
surface area colored blue. Hydrogen bonds are indicated as dotted black lines. For each pocket, the individual SHAP values for the six most
important descriptors together with the descriptor values are also displayed. The SHAP value plots are labeled with the PDB IDs of the receptors
and the three-letter codes of the ligands found in each pocket. (A) The binding site of linezolid in the 50S ribosomal subunit. (B) Ribocil bound to
the FMN riboswitch. (C) TAR RNA complexed with acetylpromazine. (D) Guanine bound to the guanine riboswitch. (E) Lysine in the binding
site of the lysine riboswitch. (F) Splicing site complexed with a splicing site modifier. (G) Paromomycin bound to a bacterial ribosome site.
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binding to the TPP riboswitch, one is a ligand binding the
influenza A virus promoter region, and one a ligand of the
Spinach aptamer. Several examples of the TPP riboswitch
binding site were contained in the RNA-only set (Figure 5).
The pockets differ mainly in the conformation of G72 (Figure
5E), but in all cases, the pocket is rather large and partially
buried (Figure 5A-D). The pockets with G72 in one of the
conformations were predicted to be druggable (Figure 5A, B),
while pockets with G72 in the alternative conformation
(Figure 5C, D), including the ones binding the drug-like
fragments, were predicted to be less druggable. Based on the
structures, discussed in more detail below, it is not obvious
why the latter TPP riboswitch binding sites should be less
druggable. These predictions can therefore be considered false
negative. The drug-like ligand of the influenza A promoter
region sits on the surface of the RNA molecule and is almost
entirely solvent exposed (Figure 6A). It is highly unusual that a

ligand with such a binding mode binds that efficiently (LE =
0.29 kcal·mol−1·heavy atom−1). However, the structure of the
complex has been determined by NMR, and it is possible that
the resolution of the structure is not accurate enough to reveal
the details of the binding mode.53 The small molecule dye,
DFHBI, is bound deep into the solvent-excluded part of the
pocket in the Spinach aptamer, forming pi-stacking interactions
and hydrogen bonds with the surrounding residues (Figure
6B). Considering the drug-likeness of the ligand together with
its efficient binding and its binding mode, the prediction for
this pocket by DrugPred_RNA is likely wrong.
Taken together, the druggability predictions for the pockets

predicted to be druggable and binding to drug-like ligands
appeared to be correct, while four out of five pockets predicted
to be less druggable are likely false negatives (three of the false-
negative predictions are pockets arising from the same target
but are bound to different ligands). These could suggest that
DrugPred_RNA has a larger tendency to misclassify druggable
binding sites as less druggable than vice versa, as already
observed for the NRDLD test set (precision = 0.95 for
druggable pockets vs 0.86 for less druggable pockets, Table 2).
However, the investigated data set was too small to conclude
firmly on this.

Assessment of the Robustness of the Druggability
Predictions. Finally, we assessed the robustness of the
predictions with respect to small changes of the conformation
or base composition of the binding sites. To this end, the
pockets in the RNA sets were grouped based on two different
measures: overall sequence similarity and binding site
similarity. For overall sequence similarity and for binding site
similarity, a cutoff of 98% and 85%, respectively, was used for
grouping similar sequences into the same family. The lower
cutoff value for binding site similarity was chosen to allow for
some variation in the binding sites considering the low number
of binding site residues (on average, about 15 residues for the
RNA data set and 47 for the ribosomal data set). Grouping
based on overall sequence similarity was only carried out for
the RNA subset as the ribosome structures contain several
pockets and thus grouping based on sequence similarity would
have resulted in different pockets in the same family. This
procedure resulted in 57 families for the RNA-only set based
on overall sequence similarity and 46 families based on binding
site similarity (Tables S2 and S3). For the ribosome set, 52
families were found based on binding site similarity (Table
S4). Subsequently, the consensus of the predictions for each
family was calculated. In the RNA-only set, a consensus of
100% was obtained for 79% of the families grouped based on
overall sequence similarity and for 74% of the families grouped
based on binding site similarity. In the ribosome set, for 75% of
the families, all members obtained the same druggability
prediction. Thus, in most cases, using different crystal
structures of the same or a related pocket did not change
the outcome of the prediction.
Next, selected families were more closely investigated to

obtain an understanding as to which binding site changes
caused a low consensus score. For this purpose, the TPP and
ZTP riboswitch families (Table S2) as well as the neomycin
binding site of bacterial ribosome were chosen (Table S4)
because they had a low consensus for the predictions, they had
more than two members, all structures in these families were
determined using X-ray crystallography, all binding site
residues were resolved, and they contained only naturally
occurring RNA.

Table 3. Drug-like Ligands (QED ≥ 0.67) Found in RNA
Binding Sites Predicted to Be Druggable

ligand
ID

PDB
ID receptor name

QED
score Kd [nM]

LE [kcal·mol−1·
heavy atom−1]

RNA data set
MGR 1q8n malachite

green
aptamer

0.76 80043 0.34

6YG 5kx9 FMN
riboswitch

0.69 13.444 0.41

L8H 2l8h HIV-1 TAR
RNA

0.67 NAa,45

PMZ 1lvj HIV-1 TAR
RNA

0.85 27,00046 0.22

Ribosomal data set
917 5v7q 50S ribosomal

subunit
0.94 70047 0.39

ZLD 3cpw 50S ribosomal
subunit

0.89 20,00048 0.27

G6M 6ddg 50S ribosomal
subunit

0.79 260049 0.31

3HE 4u3u 80S ribosome 0.76 14050 0.48
G6V 6ddd 50S ribosomal

subunit
0.76 260049 0.30

ANM 3 cc4 50s ribosomal
subunit

0.78 20,00051 0.34

HN8 5on6 80S ribosome 0.71 NAa

3 K8 4u55 80S ribosome 0.71 39 0.32
aBinding affinity unknown.

Table 4. Drug-like Ligands (QED ≥ 0.67) Found in RNA
Binding Sites Predicted to Be Less Druggable

ligand
ID

PDB
code receptor name QED KD [nM]

LE [kcal·
mol−1·heavy
atom−1]

RNA data set
VIB 4nyg TPP riboswitch 0.79 150052 0.45
2QC 4nyb TPP riboswitch 0.77 103,00052 0.43
0EC 2lwk influenza A virus

RNA promoter
region

0.86 50,00053 0.29

1TU 5ob3 Spinach aptamer 0.85 53054 0.49
218 2hop TPP riboswitch 0.77 600055 0.38

Ribosomal data set
TRP 4v6o tryptophan-sensing

ribosomal site
0.67 NAa

aBinding affinity unknown.
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The TPP riboswitch family that contained pockets from 16
distinct PDB entries when clustered based on binding site
similarity obtained a low consensus score of 12.5% with the
majority of the pockets predicted as less druggable (Table S2).
Superimposing the pockets, it became evident that there is
some plasticity in the binding site (Figure 5E). One guanine
residue (G72 in the E. coli TPP riboswitch) can adopt several
conformations depending on the bound ligand, leading to
considerably different superligands (Figure 5A,C). Conse-
quently, the pockets differ in compactness ( f r_buried_sl_a-
toms, sl_bs_r) and solvent exposure (exp_sl_sa), leading to
different prediction outcomes. However, based on the
structures and the affinity of the bound ligands, both binding
sites appear to be druggable and thus, in this case, some of the
predictions are likely wrong.
Another family with a low consensus is the ZTP riboswitch

(33.3%), with the majority of the pockets predicted to be less
druggable (Table S2). The three entries in the family are all
bound to the same ligand, ZMP (aminoimidazole 4-

carboxamide ribonucleotide), which is poorly drug-like
(QED = 0.39). Superposition of the druggable pocket with
the less druggable pockets revealed that one of the less
druggable pockets has a clearly different conformation of the
residue A60 resulting in very different superligands for the
druggable and one of the less druggable pockets and thus
different predictions (Figure 7A,C,D). The second less
druggable pocket has nearly the same conformation as the
druggable pocket (Figure 7B). In this case, subtle conforma-
tional changes were enough to obtain a slightly different
superligand that in turn resulted in a switch of the prediction
despite the descriptors with top six highest SHAP values being
almost identical (Figure 7D,E).
The family containing the neomycin binding site of bacterial

ribosome obtained a consensus score of 0% based on clustering
by binding site similarity (Table S4). The two druggable
entries in this family were bound to neomycin (PDB IDs 4v52
and 4v57), while the two less druggable entries were bound to
paromomycin (4woi) and gentamicin (4v55). Compared to

Figure 5. Druggability predictions for TPP riboswitch binding sites, with the flexible residue G72 highlighted. The surface of the superligand
created by DrugPred_RNA as a negative print of the pocket is shown as a blob with the solvent exposed surface area colored gray and the
remaining area colored blue. For the pockets shown in (A) and (B), the individual SHAP values for the six most important descriptors are shown
together with their descriptor values. The SHAP plots are labeled with the PDB IDs of the receptors and three-letter codes of the ligands found in
each pocket (B, D). (A) TPP riboswitch binding site (PDB ID 4nyc) in complex with a fragment screening hit (green sticks). (C) TPP riboswitch
binding site (PDB ID 4nyg) in complex with thiamine. (E) Superposition of all E. coli TPP riboswitch binding sites in the RNA-only set. Entries
predicted to be druggable are colored green, and those predicted to be less druggable are colored red. For clarity, only the backbone (gray tube)
from PDB entry 4nyc is shown. The conformation of the residue G72 influences the prediction.
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Figure 6. RNA binding sites predicted to be less druggable but binding drug-like ligands. The surface of the superligand created by DrugPred_RNA
as a negative print of the pocket is shown as a blob with the solvent exposed surface area colored gray and the remaining surface area colored blue.
For each pocket, the individual SHAP values for the six most important descriptors together with the descriptor values are also displayed. The
SHAP value plots are labeled with the PDB IDs of the receptors and the three-letter codes of the ligands found in each pocket. (A) Binder (green)
of influenza A promoter region (PDB ID 2lwk). (B) The Spinach aptamer (PDB ID 5ob3) bound to the dye DFHBI (green).

Figure 7. Superposition of the ZNP riboswitch binding sites bound to ZNP (thick sticks with green carbon atoms). The superligands created by
DrugPred_RNA are shown as blobs. For clarity, only the backbone from 5btp is shown. (A) Superposition of the pockets of the structures with the
PDB IDs 4znp (red, less druggable) and 5btp (green, druggable). The entire residues forming the binding sites are shown. The residue A60 is
adopting two different conformations. (B) Superposition of the pockets of the structures with the PDB IDs 5btp (green, druggable) and 6od9 (red,
less druggable). For clarity, only the atoms that DrugPred_RNA predicted to be in contact with the superligand are shown (thin sticks/crosses).
(C, D, E) Individual SHAP values for the six most important descriptors for the displayed binding sites together with the descriptor values.
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the neomycin-containing structures, A1913 is rotated in 4woi,
leading to a very different shape and size of the pocket with a
different prediction outcome (Figure 8A,C,D). The structural
differences between the pocket in 4v55 and the druggable sites
are less pronounced but nevertheless sufficient to make the
pocket more polar and thus less druggable (Figure 8B,E).
In summary, in most of the cases (≥74%, depending on the

set), binding sites from related structures obtained the same
druggability predictions. However, there were also examples as
discussed above where this was not the case. In some of the
illustrated examples, a conformational change of a residue in
the binding site led to a clearly differently shaped pocket, and it
was easily comprehensible why this could influence the
predictions (Figures 5, 7A, and 8A). In other cases, the
conformational changes were more subtle but nevertheless, in
their sum, led to different predictions (Figures 7B and 8B).
Thus, it appears to be advisable to score more than one
example of a binding site if available to obtain reliable results.

■ CONCLUSIONS
RNA is an emerging target for drug discovery.3−6 However,
like for proteins, not all RNA binding sites are equally suited to
be addressed with conventional drug-like ligands. We have
developed the structure-based druggability predictor Drug-
Pred_RNA to identify pockets that are primed to potently bind
such ligands. Due to the paucity of annotated RNA binding
sites, the predictor was trained on a set of protein pockets,

albeit containing only descriptors that can be calculated for
both RNA and protein binding sites. DrugPred_RNA
performed comparably on the protein binding site set as our
previous DrugPred 2.0 predictor trained with slightly different
descriptors (Table 2). In addition, druggability predictions of
DrugPred_RNA for all manually selected examples were in
agreement with druggability assignments based on visual
inspection and properties of bound ligands (Figure 4). When
assessing the performance of DrugPred_RNA based on RNA-
containing binding sites bound to drug-like ligands (Tables 3
and 4), all predictions for pockets predicted to be druggable
and for which affinity data could be found were correct (Table
3), while for pockets predicted to be less druggable, four out of
five predictions were likely wrong (Table 4). Overall, these
data could suggest that DrugPred_RNA has a higher false
positve rate for predicted less druggable binding sites than
predicted druggable binding sites, Table 2, but the investigated
RNA subset was too small to firmly conclude on this. Further,
using different conformations of a binding site or pockets with
a slightly different sequence composition could result in
opposing druggability predictions (Tables S2−S4). The same
was observed before for druggability predictions for
proteins.22,56 In this study, both large and small conformation
changes could influence the prediction outcome (Figures 5, 7,
and 8). Nonetheless, for the majority of cases (≥74%,
depending on the set), consistent predictions were obtained

Figure 8. The neomycin ribosomal binding site family. (A) Superposition of the neomycin- (PDB ID 4v52, green) and paromomycin- (PDB ID
4woi, magenta and red) containing ribosomal binding sites. The backbone (taken from PDB ID 4v52) is shown as thick gray tube, and the
superligands created by DrugPred_RNA are shown as blobs (green: 4v52, red: 4woi). A1913 is highlighted with thick lines. (B) Superposition of
the neomycin- (green, thick sticks) and gentamicin (magenta, thick sticks)-containing binding sites (PDB IDs 4v52, 4v55) showing only atoms
(thin lines, crosses) in direct contact with the superligands (green blob, 4v52, red blob 4v55). (C, D, E) Individual SHAP values for the six most
important descriptors together with the descriptor values. The label denotes the PDB ID of the structure followed by the three-letter code of the
ligand.
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indicating that DrugPred_RNA is generally robust toward
small changes in binding site conformations and compositions.
Compared to proteins, RNA binding sites are not well

explored, and only limited ligand information is available. The
combined metal-free RNA and ribosome binding site sets
contained 1078 pockets (Table 1). Only 22 of them bound to
a drug-like ligand, and for 18 of them, affinity data could be
retrieved (Tables 3 and 4). In contrast, 396 pockets in the
metal-free sets were predicted to be druggable by Drug-
Pred_RNA based on their binding site properties (Table 1).
This points to ample opportunities to develop drug-like RNA
ligands. Interestingly, many riboswitches were found among
the binding site families that were predicted to be druggable
(Table S2). This finding underlines the notation that these
promising targets for new antibiotics could be addressed with
drug-like ligands.3,12,21 Further, also in the ribosomal binding
site set, druggable pockets were contained (Table S4). These
predictions can help to direct efforts when targeting the
ribosome for the development of drugs to overcome the
looming antibiotic crisis.7,49

Notably, as DrugPred_RNA was trained with descriptors
that can be calculated for both RNA and protein binding sites,
it can also be used to score pockets that are formed by both
types of macromolecules. An example is a pocket in the
protozoal 80S ribosomal site that highly efficiently (LE = 0.41
kcal·mol−1·heavy atom−1) binds to the drug-like molecule
mefloquine (QED = 0.79) and was predicted to be druggable
(Figure 9).57

To conclude, DrugPred_RNA is a promising tool for
structure-based druggability predictions of RNA binding sites
that can be used to prioritize targets and to decide if a target
can be addressed with drug-like ligands or another area of
chemical space has to be searched for potent ligands.
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