
Vol.:(0123456789)

Quality & Quantity
https://doi.org/10.1007/s11135-021-01193-9

1 3

Different algorithms, different models

Martyna Daria Swiatczak1 

Accepted: 23 June 2021 
© The Author(s) 2021

Abstract
This study assesses the extent to which the two main Configurational Comparative Meth-
ods  (CCMs), i.e.  Qualitative Comparative Analysis (QCA) and Coincidence Analysis 
(CNA), produce different models. It further explains how this non-identity is due to the 
different algorithms upon which both methods are based, namely QCA’s Quine–McClus-
key algorithm and the CNA algorithm. I offer an overview of the fundamental differences 
between QCA and CNA and demonstrate both underlying algorithms on three data sets 
of ascending proximity to real-world data. Subsequent simulation studies in scenarios of 
varying sample sizes and degrees of noise in the data show high overall ratios of non-
identity between the QCA parsimonious solution and the CNA atomic solution for vary-
ing analytical choices, i.e.  different consistency and coverage threshold values and ways 
to derive QCA’s parsimonious solution. Clarity on the contrasts between the two methods 
is supposed to enable scholars to make more informed decisions on their methodological 
approaches, enhance their understanding of what is happening behind the results gener-
ated by the software packages, and better navigate the interpretation of results. Clarity on 
the non-identity between the underlying algorithms and their consequences for the results 
is supposed to provide a basis for a methodological discussion about which method and 
which variants thereof are more successful in deriving which search target.

Keywords Configurational Comparative Methods (CCMs) · Set-theoretic methods · 
Qualitative Comparative Analysis (QCA) · Coincidence Analysis (CNA) · Quine–
McCluskey optimization · CNA algorithm · Consistency Cubes (CCubes) algorithm

1 Introduction

Configurational Comparative Methods (CCMs) provide powerful methodological tools for 
researchers who are interested in inferring causal complexity in terms of equifinal con-
junctural causation from Boolean models (Baumgartner and Ambühl 2020a; Furnari et al. 
2020; Haesebrouck and Thomann 2021; Rihoux and Ragin 2009). Different CCMs propose 
several solution types and new solution types emerge continually (Schneider and Wage-
mann 2012, chap. 8.2). At the same time, there is an ongoing debate on which method and 
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solution type is best at finding which search target (Baumgartner 2021; Baumgartner and 
Thiem 2020; Baumgartner and Ambühl 2020a; Duṣa 2019b; Haesebrouck and Thomann 
2021). However, a prerequisite for discussing the explanatory power of different solution 
types in CCMs is to acknowledge and understand their actual differences, which, too often, 
are neglected.

The two most prominent CCMs are Qualitative Comparative Analysis (QCA, Cron-
qvist and Berg-Schlosser 2009; Ragin 1987, 2009; Rihoux and Ragin 2009) and the more 
recently introduced Coincidence Analysis (CNA, Baumgartner 2009; Baumgartner and 
Ambühl 2020a). Both methods emphasise a case-based approach to comparative research 
(Ragin 1987; Whitaker et al. 2020), they are both based on Boolean algebra and set theory 
(Baumgartner and Ambühl 2020b; Ragin 1987), both methods are designed to discover 
combinations of factor values that are associated with a certain outcome of interest (Baum-
gartner and Ambühl 2020b; Rihoux and Ragin 2009) and they both aim at analysing causal 
complexity (Baumgartner and Ambühl 2020b; Mahoney 2008; Misangyi et al. 2016; Ragin 
1987). To draw causal inferences, they both require homogeneity as a background assump-
tion (Álamos-Concha et  al. 2021;  Baumgartner and Ambühl 2020b; Berg-Schlosser and 
De Meur 2009), i.e. an unmeasured causal background in which every confounder is con-
stant in all investigated cases (Baumgartner and Ambühl 2020b). Moreover, CNA and 
what Haesebrouck and Thomann (2021) refer to as the “RF-approach” to QCA (see also 
Thomann and Maggetti 2020) both seek for redundancy-free models and, thus, have cau-
sation as defined in the INUS-theoretic tradition (Baumgartner 2015; Graßhoff and May 
2002; Hume 1999; Mackie 1974) as their exclusive search target. However, QCA and CNA 
are based upon different algorithms with inherently different rationales leading to differ-
ent models. QCA in all its variants and advancements is built upon the Quine-McCluskey 
(QMC) minimisation algorithm that has a long tradition and stems from electrical engi-
neering (McCluskey 1956, 1965; Quine 1955), whereas CNA is developed from the CNA 
algorithm custom-built for analyzing causal structures (Baumgartner 2015; Baumgartner 
and Ambühl 2020b, a).

While the differences between the various solution types within QCA, i.e.  conserva-
tive, (enhanced) intermediate, (enhanced/more realistic) parsimonious solution are being 
extensively discussed (e.g. Baumgartner and Ambühl 2020b; Oana et al. 2021, chap. 4.4; 
Schneider and Wagemann 2012, 2013), the differences between QCA and CNA have not 
yet been sufficiently clarified leading to a partly incomplete, partly blurred, and partly false 
picture within the CCM literature. Until now, when contrasting QCA and CNA, much 
focus was put on CNA’s ability to design multi-outcome structures like causal chains or 
common cause structures (Baumgartner and Ambühl 2020a; Duṣa 2019b, chap. 10.2, 
2019c; Oana et al. 2021, chap. 5.4.2). This ability is inherent to CNA, which can treat any 
number of factors as endogenous within one analysis (Baumgartner and Ambühl 2020b). 
However, attributing the non-identity between outputs of CNA and QCA mainly to multi-
outcome structures disregards the most fundamental difference between QCA and CNA, 
namely the different algorithms both methods are built upon—a fact that gained less atten-
tion so far (for an exception, see Haesebrouck and Thomann 2021). At the same time, it is 
precisely this difference that leads to different models, whether multi-outcome structures 
or not. Thus, when comparing QCA and CNA, I focus on single outcome structures in 
the remainder of the article and consequently refer to CNA’s single-outcome solution only, 
i.e. atomic solution.

Moreover, claims were made in the past that the QCA parsimonious solution equals the 
CNA solution. These claims rely on individual examples for which they hold (e.g. Duṣa 
2019c, chap. 10.2). However, based on a few such examples, no general claim regarding the 
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equality of the QCA parsimonious solution and the CNA solution can be made whatsoever. 
Nonetheless, these references are echoed in the QCA literature contributing to an incorrect 
picture of QCA and CNA producing “exactly the same solutions” (Duṣa 2019c, p. 217). 
The erroneously implied general identity of the QCA parsimonious solution and the CNA 
solution is particularly detrimental as it not only obfuscates relevant decision criteria for 
CCM users designing their studies, but also blocks the important debate on which CCM, 
solution type, and algorithm is more suitable for which search target, purpose, or research 
question. To deskew the picture, this article shows that the QCA parsimonious solution 
and the CNA solution are not always identical, explains why their frequent non-identity 
stems from the different algorithms underlying both methods, and assesses the extent of 
their non-identity. As methods constantly evolve organically rather than linearly, along the 
way it may be useful to take a step back, assess the evolution of a family of methods, and 
understand the differences between original, emerged, and newly added methods to be able 
to review what the different methods’ consequences are.

I contribute to this overarching aim in three ways. First, I offer an overview of the fun-
damental differences between QCA and CNA. Second, I introduce the QMC algorithm 
and the CNA algorithm and provide data examples to demonstrate their differences. Third, 
using a series of simulations that benchmark the degree to which QCA and CNA produce 
identical models, I show overall low ratios of trials that produce identical models. In this 
context, I also show the non-identity of CNA solutions and QCA solutions produced by 
other algorithms incorporated in the R package QCA (Duṣa 2019c) than QMC, i.e. eQMC 
(enhanced Quine McCluskey, Duṣa and Thiem  2015) and CCubes (Consistency Cubes, 
Duṣa  2019a), as well as QCA solutions derived via varying methods of solving QCA’s 
prime implicant chart. Overall, this article elucidates the implications of different algo-
rithms underlying QCA and CNA for the models they produce, enables an informed under-
standing of the models’ non-identity, and seeks to enable a long-needed discussion about 
the consequences of this non-identity for the methods’ ability to uncover different search 
targets.

Supplementary material, including detailed R scripts, is available in the Online Appen-
dix. It is meant to make replication accessible and enable scholars to challenge or further 
develop my calculations.

2  QMC vs CNA: top‑down vs bottom‑up

As CCMs, both QCA and CNA examine relations that hold between factors taking on spe-
cific values, i.e. 0 or 1 for crisp-set factors, any (continuous) values between 0 and 1 for 
fuzzy-set factors, or any of an open (but finite) number of non-negative integers in the case 
of multi-value factors (Baumgartner and Ambühl 2020b; Rihoux and Ragin 2009). Factors 
represent categorical properties that partition the observed cases into sets (Baumgartner 
and Ambühl 2020b). They comprise those factors that are hypothesised as causal for an 
outcome of interest (causal factors) and the outcome itself. This paper covers crisp- and 
fuzzy-set CCMs. For these two types of CCMs, factor values can be interpreted as mem-
bership scores in the set of cases exhibiting a certain factor. Causal factor values are usu-
ally referred to as conditions in QCA language (Haesebrouck and Thomann 2021; Oana 
et al. 2021; Rihoux and Ragin 2009; Schneider and Wagemann 2012).

In this paper, I use a shorthand notation conventional in Boolean algebra and express 
membership in a set by italicised upper case and non-membership by italicised lower case 
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Roman letters. Wherever I generally refer to a factor (but not a factor value) I use reg-
ular (non-italicised) Roman letters. Combinations of factor values that a particular case 
can instantiate are configurations. They are systematically compared by QCA and CNA in 
order to derive relations of necessity and sufficiency between causal factor values (e.g. the 
presence of a supportive supervisor, perceiving ones work as highly meaningful, or not 
being male) and the outcome factor value (e.g. high satisfaction at work or not belonging 
to a certain career group). However, the processes to do so and the offered solutions differ 
between QCA and CNA. More precisely, QCA and CNA are based on different algorithms 
to trace different search targets.

Search targets are properties of interest of the investigated system. As such, they are 
independent of the procedures (e.g. algorithms) that are used to achieve them. In the con-
text of CCMs, I define search targets as properties of interest of the investigated system 
(e.g robust sufficiency or INUS causality) that are represented by models in form of con-
junctions and disjunctions in disjunctive normal form restricted to certain sufficiency and 
necessity relations contained in the investigated system (e.g. all sufficiency relations or suf-
ficiency and necessity relations and only such relations). These restrictions define the fea-
tures of the models (e.g. completeness or non-redundancy).

QCA and CNA both subscribe to the INUS-theory of causation (e.g. for QCA Haese-
brouck and Thomann 2021; Ragin 2000; Schneider and Wagemann 2012; Thomann and 
Maggetti 2020, and for CNA Baumgartner 2015). The acronym INUS stands for Insuf-
ficient but Necessary part of a conjunction which is Unnecessary but Sufficient for the out-
come value (Mackie 1974, p. 62). Based on this notion, Mackie’s INUS theory of causation 
then defines causation as follows: X is a cause of Y if, and only if, X is at least an INUS 
condition of Y. As INUS implies that a factor value is a necessary part of a sufficient con-
junction, it follows that solutions must not contain parts that are unnecessary for the suffi-
ciency of the conjunction and therefore need to be redundancy-free to be causally interpret-
able, a fact that previous literature has widely discussed (Baumgartner 2015; Baumgartner 
and Thiem 2017; Thomann and Maggetti 2020). QCA’s most-parsimonious solution, or the 
“RF-approach” to QCA (Haesebrouck and Thomann 2021; Thomann and Maggetti 2020), 
and CNA both search for “redundancy-free” solutions that can be interpreted as causes 
in terms of the INUS theory. In contrast, the “SI-approach” to QCA (Haesebrouck and 
Thomann 2021; Thomann and Maggetti 2020) focuses on “substantive interpretability”, 
emphasises the multi-method character of QCA, and advises to relate results to case stud-
ies and profound theoretical reasoning (Schneider and Wagemann 2010; Rihoux and Ragin 
2009; Oana et al. 2021, chap. 6). However, this approach’s search targets are not yet suf-
ficiently defined in terms of the above given definition (see also Baumgartner 2021; Duṣa 
2019b).

There are two important differences between QCA and CNA: First, different combi-
nations of analyses of necessity and sufficiency and, second, therein prevalent different 
top-down vs bottom-up search directions. I refer to top-down as an approach that starts 
with complex configurations and subsequently minimises these expressions, whereas 
a bottom-up approach starts with single factor values and then, step by step, adds factor 
values until the search target is reached (Baumgartner and Ambühl 2020a; Schneider and 
Wagemann 2012, p. 92). QCA generally separates the analysis of necessity from the analy-
sis of sufficiency and puts the analysis of necessity first (Oana et  al. 2021, chaps. 3, 4; 
Schneider and Wagemann 2010, 2012, chap. 3). Nonetheless, there exist multiple ways in 
which both analyses can be systematically combined (Haesebrouck 2019; Schneider 2019). 
While the analysis of necessity can be restricted to single factor values or can also include 
more complex necessary disjunctions of factor values (Thomann and Maggetti 2020), it 
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always proceeds bottom-up (Schneider and Wagemann 2012, p.  104; Duṣa 2019c, chap. 
5.5), i.e. by first checking single factor values for their necessity and then, if desired, pro-
ceeding to more complex configurations. In contrast, in its analysis of sufficiency, QCA, 
as introduced by Ragin (1987), builds on the QMC algorithm and proceeds top-down. 
CNA, in contrast, proceeds bottom-up only and first performs an analysis of sufficiency 
and uses the solutions thereof for the subsequent analysis of necessity. As these steps are 
closely intertwined, it is sometimes wrongly assumed, that CNA performs both analyses 
simultaneously.

QCA’s analysis of sufficiency in all its variants builds on the QMC algorithm. Mean-
while, the eQMC  algorithm (Duṣa and Thiem 2015) and the  CCubes algorithm (Duṣa 
2019a) have been developed and implemented in the R package QCA to produce solutions 
in line with the QMC approach. Although these algorithms proceed differently than QMC, 
i.e. they do not follow QMC’s pairwise minimisation process as it is computationally not 
very efficient, they are implemented in the R package in such a way as to produce solutions 
in line with the QMC algorithm, and only such solutions, while advancing the R package 
in terms of speed. eQMC and CCubes are implemented, so to say, to mimic the classical 
QMC top-down approach. Therefore, I will concentrate on the contrast between the QMC 
and CNA algorithm in the following. The QMC algorithm stems from electrical engineer-
ing where its original purpose is to obtain minimal combinations of inputs, i.e. closed and 
open gates, to produce a specific electrical output (McCluskey 1956, 1965; Quine 1955). It 
is mainly driven by cost minimisation and originally was not geared towards causal infer-
ence. Moreover, such a setting allows for purposefully realising all configurations of inputs.

In social science, however, data rarely contain all possible configurations leading 
to the much discussed problem of limited diversity (Cooper and Glaesser 2016b; Ragin 
1987; Ragin and Sonnett 2005; Schneider and Wagemann 2006, 2012). Limitedly diverse 
data often do not allow to remove all redundancies following a top-down approach from 
observed configurations that display the outcome value of interest only. To approach this 
problem, Ragin and Sonnett (2005) introduce three strategies leading to three types of 
solutions: (1) the conservative (or most complex) solution assumes that unobserved con-
figurations will not show the outcome value of interest, (2) the intermediate solution makes 
assumptions for certain of the unobserved configurations on the basis of theoretical expec-
tations and (3) the parsimonious solution assumes that those unobserved configurations 
that allow for simplifying the solutions are associated with the outcome value of interest. 
Once all configurations that are observed or assumed to display the outcome value of inter-
est are identified, the QMC algorithm proceeds by repeatedly minimising these configura-
tions via pairwise comparisons in order to output the so called prime implicants, which are 
then selectively combined into disjunctions (Duṣa 2019c, chap. 8; Oana et al. 2021, chap. 
4.3.1; Ragin 1987, chap. 6; Schneider and Wagemann 2012, chap. 4.3).

In contrast, the CNA algorithm uses a bottom-up search strategy for both the analysis 
of sufficiency and necessity. Moreover, it is custom-built to exclusively recover cau-
sality as defined by the INUS-theory of causation (Baumgartner 2015; Baumgartner 
and Ambühl 2020b). In a bottom-up manner, the CNA algorithm first checks single 
factor values for their sufficiency for the outcome and conjunctively adds additional 
factors only if no less complex conjunction is sufficient. The revealed minimally suf-
ficient conditions are then tested for necessity and only combined disjunctively if no 
less complex disjunctions of minimally sufficient elements are necessary—a procedure 
that I will explain in more detail in the following chapter. The CNA algorithm is not 
restricted to configurations that display the outcome value of interest only, but draws 
causal inferences using both configurations that display the outcome value of interest 
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and not. Overall, the CNA approach automatically leads to redundancy-free solutions 
without the need for a minimisation procedure and without the need for making assump-
tions on unobserved configurations, that is without the need for counterfactual analy-
ses. Another direct consequence of CNA’s bottom-up approach is its ability to identify 
multi-outcome structures and treat any factor as exogenous (Baumgartner and Thiem 
2015; Baumgartner and Ambühl 2020a). In contrast, QCA restricts itself to the QMC 
algorithm or, more precisely, to deriving models in line with QMC. If one applies QMC, 
one necessarily proceeds top-down which makes a minimisation process necessary.

The main reason for the top-down procedure given by QCA scholars is that in this 
way the integrity of all investigated causal factor values per case is ensured in the course 
of the whole analysis (Ragin 2014, p. xxi). It is argued that “causes are not viewed in 
isolation but always within the context of the presence and absence of other causally 
relevant conditions” (Ragin 1987,  p. 93). For CNA, this statement could be reformu-
lated as follows: Causes are not viewed in isolation but always within the context of the 
presence and absence of at least the outcome factor or any additional number of other 
investigated causal factors. As the bottom-up approach is still a rather novel add-on to 
the family of CCMs, it has not yet been subject to much explicit discussion by QCA 
scholars. Thus, it has not yet been explicitly excluded that QCA could also proceed bot-
tom-up in the analysis of sufficiency for certain search targets in a similar way like CNA 
while leaving room for further expansion of the method.

3  QMC vs CNA: an empirical example

I will illustrate the differences between the CNA and QMC algorithm on an example 
using the R packages QCA, version 3.10 (Duṣa 2019c), and cna, version 3.0.1 (Baum-
gartner and Ambühl 2020b). The main goal is to clarify the differences between the two 
algorithms so that the resulting differences in the produced solutions become more eas-
ily accessible and comprehensible. For the example, I assume a causal structure (ground 
truth) such that A alone or B in conjunction with C are sufficient and necessary for the 
outcome Y to occur.

From this ground truth, I will generate crisp-set data sets of ascending proximity to real-
world data and show how the two algorithms operate on these data sets, how the QCA and 
CNA approach deviate from each other, and which solutions they offer. Table 1 introduces 
the three data sets. Table 1a shows the first data set, dt1, with all eight possible configura-
tions that are in line with the assumed ground truth (1). Every configuration is represented 
by one case. In other words, dt1 shows ideal-world data with no limited diversity and a 
frequency of 1 for every configuration. In the second data set, dt2 (Table 1b), I remove 25% 
of compatible configurations to introduce limited diversity. Two of eight logically possible 
configurations (c3, c6) are no longer represented. Finally, I introduce 11% of noise and 
varying frequencies in dt3 (Table 1c). Dt3 contains one configuration of A, B, C, and Y not 
in line with the assumed ground truth (c9) and all configurations are no longer represented 
by exactly one case but by a varying number of cases. Note that all three tables represent 
observed data. In order to still compactly represent the data, all tables list all observed 
configurations exactly once and contain a column n that indicates the number of observed 

(1)Ground Truth ∶ A + B∗C ↔ Y
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cases per configuration. This way of depicting data is called configuration table in CNA 
jargon (Baumgartner and Ambühl 2020b).

3.1  CNA

To begin with, consider the ideal-world data set in Table 1a. The CNA algorithm proceeds 
in four stages to derive causally relevant models that are—to a certain degree specifiable 
by the researcher—sufficient and at the same time necessary for the outcome (Baumgartner 
and Ambühl 2020b, a).

Stage 1: As the CNA algorithm is capable of treating values of more than one factor 
as outcomes, in the first stage it builds a set of potential outcomes O and assigns a set 
of potential cause factors ��

 to each potential outcome. By default, the cna() function 
from the R package cna will treat the value 1 for every given factor as a potential outcome 
unless specified otherwise. Thus, the function does not need to be told which factors are 
the outcome factors. However, if prior knowledge exists about potential outcome factors 
or multi-outcome structures, a causal ordering can be provided. For example, one could 
assume a combined causal chain and common cause structure with two outcomes Y and 
C in which A and B are causes of C and A, B, and C are causes of Y. This would lead to 
O = {Y ,C }, �

�
 = {A, B, C} and �

�
 = {A, B}. The ordering can be given to cna() via 

the argument ordering, for example ordering = list(c(”A”,”B”), ”C”, 
”Y”). But let us, for demonstration purposes, keep Y as the only assumed outcome and 
causally locate Y after all other factors using the argument ordering = list(”Y”) 
which leads to O = {Y  } and �

�
 = {A, B, C}.

Stage 2: In the second stage, CNA looks for relations of sufficiency. To this end, it builds 
a set of so called minimally sufficient conditions (msc) for each potential outcome, thus, for 
the single outcome Y in our example. It first checks if single causal factor values, i.e. 0 or 
1 for crisp set data, are sufficient for the outcome and then conjunctively adds factor values 
until sufficiency is reached. Sufficiency is assumed when the consistency, i.e. the degree to 
which the behaviour of an outcome obeys the conjunction of factor values (Baumgartner 
and Thiem 2015; Ragin 2006), equals or is above the defined consistency threshold. For 
the ideal-world data set dt1, I set the consistency threshold to con = 1. Put differently, I 
define that a factor value X (or a conjunction of multiple factor values) is sufficient for the 
outcome Y if, and only if, the statement “if X is present, then Y is present” (Baumgartner 
2021) is strictly true.

Table 1  (a) Ideal-world data (dt1), (b) data with limited diversity (dt2), and (c) data with limited diversity, 
noise and varying frequencies (dt3). Light grey rows in dt1 are missing from dt2 and dt3. The dark grey row 
in dt3 is incompatible with the ground truth (1). All tables represent observed data and summarise identical 
configurations of A, B, C, and Y. Column n indicates how often a configuration is observed

A B C Y n

c1 1 1 1 1 1

c2 0 1 1 1 1

c3 1 0 1 1 1

c4 1 1 0 1 1

c5 1 0 0 1 1

c6 0 0 1 0 1

c7 0 1 0 0 1

c8 0 0 0 0 1

(a) dt1

A B C Y n

c1 1 1 1 1 1

c2 0 1 1 1 1

c4 1 1 0 1 1

c5 1 0 0 1 1

c7 0 1 0 0 1

c8 0 0 0 0 1

(b) dt2

A B C Y n

c1 1 1 1 1 5

c2 0 1 1 1 5

c4 1 1 0 1 1

c5 1 0 0 1 4

c7 0 1 0 0 1

c8 0 0 0 0 5

c9 0 1 1 0 2

(c) dt3
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As the CNA algorithm follows a bottom-up approach, it starts by checking single fac-
tor values for sufficiency. The first single factor value to be checked is A. In dt1 (Table 1a) 
there are cases, in which A is true and Y is true as well (c1, c3, c4, and c5) and at the same 
time there are no cases in which Y is not true but A is. Thus, the consistency with which A 
is sufficient for Y is 1 and A is part of the set of msc. For B, we observe three cases in which 
B is true and Y is true as well (c1, c2, and c4). However, in the seventh row, B is true, but 
Y is not true. Thus, the consistency with which B is sufficient for Y falls under 1, more 
precisely to 0.75, and therefore B is no part of the set of msc. The same holds true for C 
with a consistency of 0.75 as well as for a, b, and c with consistencies of 0.25, 0.5, and 0.5, 
respectively.

For every single factor value that is not sufficient (in this case B, C, a, b, and c), and 
only for these factor values, the CNA algorithm conjunctively adds one additional potential 
causal factor value and tests the so derived conjunctions for sufficiency. Again, sufficiency 
is assumed when the consistency equals or is above the defined consistency threshold. In 
the example, no conjunction is tested that includes A as A itself is already minimally suf-
ficient. The next conjunction to be tested is B ∗ C , which in fact is sufficient for Y with a 
consistency of 1. No other conjunction of two factor values meets the consistency thresh-
old. This procedure is systematically repeated for all factor values in the data if, and only 
if, no less complex conjunction is already found to be sufficient. Thus, whenever a con-
junction meets the consistency threshold, it is automatically minimally sufficient, that is 
redundancy-free. The set of msc can be called via the msc() function and contains two 
msc for the example on dt1 (Table 2).

Stage 3: In the third stage, the CNA algorithm derives so called atomic solution for-
mulas (asf) by checking all msc for their necessity for the outcome. In this way, the CNA 
algorithm accounts for both sufficiency and necessity in one solution formula—a major dif-
ference to QCA. Necessity is assumed when the coverage, i.e. the degree to which a model 
accounts for the behaviour of the corresponding outcome (Baumgartner and Thiem 2015; 
Ragin 2006), is met. For the ideal-world data set dt1, I set the coverage threshold, like the 
consistency threshold in the previous stage, to 1. Put differently, I define that a factor value 
X (or a disjunction of multiple factor values) is necessary for the outcome Y if, and only if, 
the statement “if Y is present, then X is present” (Baumgartner 2021) is strictly true.

Note that the notion of consistency and coverage in CNA is the same as consistency 
and coverage of sufficiency in QCA (Ragin 2006; Schneider and Wagemann 2012, 
chaps. 5.2, 5.3). Consequently, consistency in CNA is the same as coverage of neces-
sity in QCA (Ragin 2006; Schneider and Wagemann 2012, chap. 5.5) and coverage 
in CNA is the same as consistency of necessity in QCA (Ragin 2006; Schneider and 
Wagemann 2012, chap. 5.4). However, the use of consistency and coverage thresholds 
differs fundamentally between the QCA and CNA approach, a fact that I will continue 
to illustrate throughout the example.

To come back to the CNA protocol, we see from the msc object in Table 2 that no 
msc is an asf on its own as their individual coverage values are both below 1 (more pre-
cisely 0.8 and 0.4). If, and only if, single msc do not meet the coverage threshold—like 

Table 2  CNA - set of msc 
inferred from dt1

Outcome msc Consistency Coverage

1 Y A → Y  1 0.8
2 Y B∗C → Y 1 0.4
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in our example—the CNA algorithm combines msc discunctively and systematically 
tests theses disjunctions for their necessity for the outcome. In our example the dis-
junction of A and B ∗ C indeed meets the coverage threshold and, thus, is the only asf, 
which can be called via asf() (Table  3). From two msc, only one disjunction can 
be built and tested. If this disjunction had a coverage below 1, the set of asf would be 
empty and cna() could not derive any model given the set consistency and coverage 
thresholds.

Again, the CNA algorithm builds and tests more complex disjunctions only if no 
less complex disjunctions of msc are necessary. This means that disjunctions of three 
msc are only built and tested for those disjunctions of two msc that do not meet the 
coverage thresholds and so forth. Thus, whenever a disjunction meets the coverage 
threshold, it is automatically a minimally necessary condition, i.e. redundancy-free. In 
this way, the CNA algorithm derives solution formulas for ex ante defined consist-
ency and coverage thresholds—a major difference to the sufficiency analysis in QCA. 
More precisely, every msc from stage 2 must meet the consistency threshold and every 
disjunction of several msc equals the maximum of each single msc’s consistencies con-
tained in this disjunction. The coverage threshold, however, must be met by the asf 
only. In contrast, for the analysis of sufficiency in QCA, only the consistency for suf-
ficient conditions is a defining threshold, while the coverage for sufficient conditions is 
a desirable value, but not a defining one and needs to be assessed ex post—a character-
istic I will come back to later when illustrating the QMC algorithm.

Stage 4: To finish off the CNA protocol, in the fourth stage a set of complex solu-
tion formulas (csf) is built encompassing all atomic solution formulas for the different 
outcomes, if different outcomes are allowed. In this step all derived msc are not only 
conjunctively connected to one solution (like it is currently the case for causal chains 
that are mimicked by the causalChain() function in the R package QCA 3.10), 
but by default also structural redundancies, solutions with partial structural redundan-
cies, and tautologous as well as contradictory solutions are eliminated. Overall, this 
step unveils multi-outcome structures like causal chains and common cause structures. 
As I specified only one outcome ( Y  ) in the first stage, the csf will be the same as the 
asf (Table 3).

3.2  QCA

Contrary to CNA, QCA puts a separate analysis of necessity before the analysis of suf-
ficiency (Oana et al. 2021, chaps. 3, 4; Schneider and Wagemann 2010, 2012, chap. 3). 
The analysis of necessity is based on calculating consistency values for the necessity of 
single factor values or disjunctions of factor values for the outcome of interest (Duṣa 
2019c, chap. 5.4; Oana et al. 2021, chap. 3.3; Thomann and Maggetti 2020). Contrary 
to QCA’s top-down analysis of sufficiency, QCA’s analysis of necessity proceeds bot-
tom-up, similar to CNA, i.e. by checking simple expressions for their necessity first and 
subsequently adding more complex expressions. This can inter alia be performed by 

Table 3  CNA - asf = csf inferred 
from dt1

Ooutcome Solution Consistency Coverage

Y A + B∗C ↔ Y 1 1
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the superSubset() function in the R package QCA (Duṣa 2019c, chap. 5.5; Sch-
neider and Wagemann 2012, p. 104). Every factor value or disjunction of factor values 
is assessed as potentially necessary if its consistency of necessity is at least 0.9 (Ragin 
2008). When performing the analysis of necessity on dt1, we see that there is no sin-
gle factor value present in all cases in which Y is also present. In fact, with 0.8, the 
single factor value A reaches the highest consistency of necessity. However, the two 
disjuncts A + B and A + C both show a consistency of necessity of 1 (Table 4). For the 
analysis of necessity, the QCA protocol further advises to check for empirical relevance 
indicated by the coverage of necessity and the relevance of necessity (RoN) indicators 
(Duṣa 2019c, chap. 5.3; Oana et al. 2021, chap. 3.2). In our example, both disjuncts pass 
this tests as the coverage is high (0.883) and the RoN exceeds 0.5 (0.667). To round up 
QCA’s analysis of necessity, researchers should assess the conceptual meaningfulness 
of the necessary expressions (Oana et al. 2021, chap. 3.2). Due to its overall bottom-up 
procedure, QCA’s analysis of necessity and CNA proceed rather similarly.

In contrast, QCA’s analysis of sufficiency follows QMC’s top-down approach in order 
to derive configurations that are sufficient for an outcome and at the same time mini-
mised to a certain degree (Ragin 1987). While the main focus in the preceding analysis 
of necessity lies on the consistency of necessity, the main focus in the analysis of suf-
ficiency lies on the consistency of sufficiency. In contrast, CNA is designed to derive 
solutions that meet both consistency and coverage thresholds at the same time. Further, 
the CNA algorithm operates bottom-up directly on the data set at all stages. In contrast, 
the QMC algorithm operates top-down and therefore requires a truth able, i.e. a matrix 
of all possible configurations of causal factors to which outcome values are assigned 
depending on the consistency to which a particular configuration is sufficient for the 
outcome. Table 6 represents dt1, dt2 and dt3 as truth tables.

A truth table is constructed in the following three steps  (Duṣa 2019c,  chap. 7; 
Oana 2021, chap. 4.3; Schneider and Wagemann 2012, chap. 7).

Step 1: For fuzzy as well as crisp sets, all logically possible combinations of the ideal 
values 0 and 1 for all investigated causal factors are listed. The first three columns of 
Table 5 a-c are the results of this step. Configurations comprising all causal factors, and 
only those, are also referred to as minterms in Boolean algebra.

Step 2: If not ambiguous, every case is assigned to exactly one ideal truth table row to 
which it belongs best. This is done by calculating the membership scores for all cases in all 
configurations. Each such case will have a membership of above 0.5 in only one configura-
tion. If, in the case of fuzzy sets, a case has a membership value of exactly 0.5 in at least 
one causal factor, the case is ambiguous in the sense that it will have partial membership 
in two configurations. In this case, it cannot be determined to which row a case belongs 
best. In the current R package QCA, such cases will not appear in the truth table and the 
warning is produced that “Fuzzy causal conditions should not have values of 0.5 in the 
data.” However, cases with ambiguous memberships in two configurations will neverthe-
less be used for calculating parameters of fit. As in dt1 each configuration is covered by 

Table 4  QCA analysis of 
necessity - solutions

Consistency Coverage RoN

A + B 1 0.833 0.667
A + C 1 0.833 0.667
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exactly one case and there are no deviant cases, the assignment of cases to truth table rows 
is straightforward. In dt2 cases 3 and 6 are missing. Thus, the corresponding configurations 
have no cases assigned.

Step 3: Based on the assigned cases and the computed consistency of sufficiency values, 
each row is classified as sufficient for the outcome, not sufficient for the outcome, or a logi-
cal remainder. Logical remainders are rows that are not represented by any case (c3 and c6 
in Table 5b and c). For all other rows, their consistency as a sufficient row for the outcome 
is calculated (incl) and, based on this value, a row is declared as sufficient for the outcome 
(OUT=1) or not (OUT=0). These values are bold in Table 5. All configurations that dis-
play a consistency of necessity equal to or above a consistency threshold to be defined by 
the researcher are assigned an OUT value of 1, all configurations that display a consistency 
of necessity below this threshold, are assigned an OUT value of 0.

The construction of a truth table is only necessary as long as an algorithm proceeds top-
down and becomes obsolete in the CNA procedure. In contrast, the QMC algorithm is nec-
essarily based on a truth table (Duṣa 2019a; Oana et al. 2021, chap. 4.3; Ragin 1987, chap. 
6; Schneider and Wagemann 2012, chap. 4.3). All rows with an OUT value of 1 are then 
passed to the minimisation process. Logical remainders are treated differently depending 

Table 5  Truth tables based on 
the three data sets introduced in 
Table 1. Bold values are assigned 
based on consistency levels (incl) 
for particular configurations of 
causal factors

A B C OUT incl n cases

(a) Truth table based on dt1
 c
1

1 1 1 1 1.000 1 1
 c
2

0 1 1 1 1.000 1 2
 c
3

1 0 1 1 1.000 1 3
 c
4

1 1 0 1 1.000 1 4
 c
5

1 0 0 1 1.000 1 5
 c
6

0 0 1 0 0.000 1 6
 c
7

0 1 0 0 0.000 1 7
 c
8

0 0 0 0 0.000 1 8
(b) Truth table based on dt2
 c
1

1 1 1 1 1.000 1 1
 c
2

0 1 1 1 1.000 1 2
 c
3

1 0 1 ? - 0 -
 c
4

1 1 0 1 1.000 1 4
 c
5

1 0 0 1 1.000 1 5
 c
6

0 0 1 ? - 0 -
 c
7

0 1 0 0 0.000 1 7
 c
8

0 0 0 0 0.000 1 8
(c) Truth table based on dt3
 c
1

1 1 1 1 1.000 5 1, 1.1, 1.2, 1.3, 1.4
 c
2

0 1 1 0 0.714 7 2, 2.1, 2.2, 2.3, 2.4 ,9, 9.1
 c
3

1 0 1 ? - 0 -
 c
4

1 1 0 1 1.000 1 4
 c
5

1 0 0 1 1.000 4 5, 5.1, 5.2, 5.3
 c
6

0 0 1 ? - 0 -
 c
7

0 1 0 0 0.000 1 7
 c
8

0 0 0 0 0.000 5 8, 8.1, 8.2, 8.3, 8.4
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on the QCA solution type. The conservative solution assumes that all logical remainder 
rows have an OUT value of 0, the intermediate solution assigns some logical remainders 
OUT values of 0 and some OUT values of 1 based on theoretical knowledge, and the par-
simonious solution assumes that all logical remainders that allow for simplifying the solu-
tion have an OUT value of 1. All these decisions are part of the analytic QCA process.

All minterms with an OUT value of 1 are then compared by pairs and if a pair differs by 
exactly one conjunct, this conjunct is eliminated. The results of this pairwise comparison 
process are called implicants. The implicants are then further minimised if they differ in 
one conjunct only, until nothing more can be minimised. The solutions from this step are 
the so called prime implicants, which build the prime implicant chart. For the truth table 
corresponding to dt1 (Table 5a), this means that e.g.  c1-c5 are part of the minimisation 
process for the conservative solution. Further, c1 and c2 only differ in A and, thus, A is 
eliminated. This leads to B ∗ C as one implicant. Other implicants are A ∗ C , A ∗ B , A ∗ b 
and A ∗ c , which are further minimised to A, so that the resulting two prime implicants are 
A and B ∗ C.

To resolve the prime implicant chart, prime implicants are disjunctively combined in 
such a way as to cover each of the initial configurations that are part of the minimisation 
process. In our example, A covers the configurations 1, 3, 4, and 5, whereas B ∗ C covers 
the configurations 1 and 2. Only the disjunction of both prime implicants covers all con-
figurations 1-5, and, thus, the conservative solution is A + B ∗ C . The step of solving the 
prime implicant chart by disjunctively combining the prime implicants can be seen as an 
integrated analysis of necessity step in so far as the derived solution has to cover all initial 
configurations. Thus, one can summarise that while CNA proceeds from an analysis of suf-
ficiency to an analysis of necessity both being intertwined, QCA puts a separate analysis 
of necessity first and then, in what is called the analysis of sufficiency also intertwines an 
analysis of sufficiency with a subsequent moment of analysis of necessity, namely when 
resolving the prime implicant chart. The process of resolving the prime implicant chart 
is performed by the minimize() function and the prime implicants are stored in the 
object PIchart. If more than one possibility exists to cover all initial configurations, 
minimize()follows the principle of row dominance, i.e.  prime implicants that cover 
more configurations dominate those that cover less and are prioritised (Duṣa 2019a). By 
setting the argument all.sols from the minimize function to TRUE, this principle 
can be circumvented and all possible solutions outputted.

Figure 1 summarises the CNA and QCA protocol.
For ideal-world data like dt1 (Table  1a), the QCA conservative solution shown in 

Table 6 will be identical to the QCA parsimonious solution just like the CNA solution will 
be identical to all QCA solution types. Thus, all of the above elaborated different proce-
dures will produce the same solutions for all ideal-world data sets.

However, when faced with noisy data or consistency and coverage thresholds below 1, 
the CNA solution may deviate from QCA’s parsimonious solution just as QCA’s conserva-
tive solution may deviate from QCA’s parsimonious solution.1 In fact, as widely agreed 
upon, real-world data tend to be less than perfect (e.g. Baumgartner 2021; Rohlfing 2016; 
Schneider 2018). They can be incomplete, i.e.  limitedly divers, contain observations that 
are more frequent than others, or contain noise. By noise I refer to all configurations that 

1 As the intermediate solution is based on analytic decisions specific to research settings and due to the 
ongoing debate towards a sufficiently defined search target for the intermediate solution (Baumgartner 
2021), this article considers QCA’s conservative and parsimonious solutions only.
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are incompatible with the underlying causal structure (ground truth). Sources of noise may 
be measurement errors or deviant correctly measured configurations that e.g. may be due 
to variations of unmeasured causes. To account for real-world data, I will now gradually 
introduce limited diversity, noise, and varying frequencies (Table 1b and c) to the previous 
example to show how models produced by QMC and CNA can diverge. Later on, this one-
shot example will be extended by simulation studies to contribute to a more general picture 
of the ratio of identical models produced by QCA and CNA.

Dt2 from our example shows a data set with 25% limited diversity produced by deleting 
c3 and c6 from dt1 but no other deficiencies. Table 7 shows the CNA solution, the QCA 
conservative solution, and the QCA parsimonious solution inferred from dt2. As dt2 is no 
longer as informative as dt1, CNA will, in this case, produce the submodel A + C of the 
ground truth (1). However, depending on which rows are deleted, the derived model could 
also equal the full ground truth or a different submodel of the ground truth. More pre-
cisely, if rows 1&3, 1&4, 1&5, 1&8, 3&4, 3&5, 3&8, 4&5, 4&8, or 5&8 were deleted, the 
produced model would equal the full ground truth. If rows 1&7, 3&7, 4&7, or 5&7 were 
deleted, the produced model would be A + B . If rows 1&6, 4&6, or 5&6 were deleted, the 
produced model would also be A + C . Finally, if any combination including row 2 was 

Fig. 1  CNA vs QCA protocol
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deleted, A would be a duplicate of Y leading to an error message in CNA due to insuffi-
cient variance in A. Following the CNA algorithm despite the insufficient variance would 
lead to the submodel A only. In any case, when only faced with limited diversity (and no 
noise), the CNA solution (just like the QCA parsimonious solution) does not include false 
positives. Depending on the data quality, the full ground truth or submodels of the full 
ground truth will be derived.

In contrast, the QMC top-down approach will produce the more complex model 
A∗c + B∗C for the conservative solution as dt2 does not allow for maximum pairwise 
minimisation anymore. This model contains false positives but also the full ground truth 
(1) as it is a supermodel of the ground truth. If rows 1&4 or 1&8 were deleted, the pro-
duced solution would equal the ground truth. If any other combination of two rows was 
deleted, all solutions would produce a more complex model than the ground truth (1). In 
the most complex case, the solution A∗B∗c + A∗b∗C + a∗B∗C would be outputted if 
rows 1&5 were deleted. The QCA parsimonious solution is identical to the CNA solution 
for our example with perfect consistency and no noise.

However, once data are generated that resemble real-world data even more, the non-
identity of CNA and QCA solutions may also extend to the QCA parsimonious solution. 
The next data set dt3 shows different frequencies for the observations and 11% noise due 
to the incompatible configuration c9 that is observed twice. With different frequencies and 
deviant cases, full consistency cannot be achieved anymore. Thus, I set the consistency 
and coverage thresholds for CNA to 0.75, a usual threshold value in applied CNA (Baum-
gartner and Ambühl 2020b). The recently introduced robustness analysis by Parkkinen and 
Baumgartner (2021) offers a more sophisticated procedure to determine suitable threshold 
values. Table 8 summarises the CNA and QCA solutions inferred from dt3. For the given 
threshold values of 0.75, CNA produces two models that represent an ambiguity, i.e. mod-
els that fit the data equally well: A + C and A + B.

It is important to stress that the CNA protocol imposes high standards on both consist-
ency and coverage thresholds and uses them at different stages than the QMC algorithm. 
A consistency threshold of 0.75 means that not only all msc need to meet the specified 
consistency but also the asf and the csf. Moreover, the asf and the csf need to meet the cov-
erage threshold. Overall, the CNA solutions reach a consistency of 0.882 and full coverage 
of 1.

Table 6  QCA analysis of 
sufficiency - conservative = 
parsimonious solution inferred 
from dt1

Solution Consistency Coverage

A + B ∗ C ↔ Y 1 1

Table 7  CNA and QCA analysis of sufficicency - solutions inferred from dt2

∗ Note that thresholds are used differently in CNA and QCA

Solution type Solution Consistency Coverage Threshold value∗

CNA solution A + C ↔ Y 1 1 1
QCA conservative solution A∗c + B∗C ↔ Y 1 1 1
QCA parsimonious solution A + C ↔ Y 1 1 1
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In contrast, QCA’s conservative solution shown in Table 8 only contains one disjunct 
of the ground truth (A). The other disjunct B ∗ C is not contained anymore. I specified the 
same value of 0.75 for the consistency threshold as I did for CNA, which is in line with 
the QCA protocol. Keep in mind that the consistency threshold in QCA’s analysis of suf-
ficiency is used differently than in CNA. It is used as the cut-off value above which truth 
table rows are declared as sufficient for the outcome. Indeed, any consistency threshold 
between 0.714 and 1 would lead to the same result. At the same time, a consistency thresh-
old below 0.714 would not be in line with the current best practices for QCA applications 
(Schneider and Wagemann 2010). However, QCA puts a lot of emphasis on case knowl-
edge throughout the analysis and case knowledge can also be used to determine consist-
ency thresholds. More precisely, cases that show a different outcome value for a certain 
configuration than the assigned OUT value are so-called deviant consistency in kind cases 
(DCK). In our example, cases 9 and 9.1 in the truth table based on dt3 are such deviant 
cases. The more DCK occur in a truth table row, the more reason  exists to not assume 
the associated configuration as sufficient for the outcome. However, if the study of DCK 
would uncover that there exist substantial reason to believe that these cases are due to noise 
in the data (e.g. due to response bias), the consistency threshold could be lowered to less 
than 0.714, which would reveal QCA solutions closer to the ground truth. This process 
would also be in line with QCA standards of good practice of engaging in an iterative 
process between theory and evidence. Overall, this example shows that while the QCA 
conservative solution strives for more complex models to integrate all causally relevant 
factors (while accepting false positives), it is not guaranteed to contain all disjuncts of the 
ground truth. Or put differently, the QCA conservative solution is not always a supermodel 
of the ground truth. Finally, the QCA parsimonious solution shown in Table 8 covers only 
one causally relevant disjunction of the ground truth (A) and is less complex than the CNA 
solution.

As the different ways of setting consistency and coverage thresholds are decisive fea-
tures distinguishing the CNA and QCA approach, I introduce the concept of ex ante and ex 
post usage of thresholds to round up the comparison of the CNA and QCA protocol. QMC 
uses the consistency threshold to decide whether a configuration (truth table row) is treated 
as sufficient for the outcome or not. The overall consistency and coverage of the solution, 
however, are to be assessed ex post. While high coverage of sufficiency in the analysis of 
sufficiency is a desirable feature and the interpretation of results is bound to it, it is not a 
defining threshold. In our example, both QCA solutions have coverage values of 0.667, 
which is lower than what the CNA solution produces. In turn, both QCA solutions have full 
consistencies of 1. In other words, in the analysis of sufficiency, QCA strives for as high 
consistency as possible while accepting low coverage values ex ante. If QCA research-
ers do not allow for coverage values as low as 0.667, they would need to change the basic 

Table 8  CNA and QCA analysis of sufficicency - solutions inferred from dt3

* Note that thresholds are used differently in CNA and QCA

Solution type Solution Consistency Coverage Threshold value*

CNA solution (1) A+C ↔ Y
(2) A+B↔Y

0.882 1 0.75

QCA conservative solution A ∗ B + A ∗ c → Y 1 0.667 0.75
QCA parsimonious solution A→Y 1 0.667 0.75
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research settings in a back and forth process. In contrast, CNA ex ante defines thresholds 
for both parameters of fit. For CNA, the consistency threshold is a decisive criterion for 
deriving both msc as well as asf, while coverage is a decisive criterion for deriving asf. 
Thus, CNA reveals a model with both solution consistency and coverage above 0.75. More 
precisely, the CNA solution has a lower solution consistency compared to the QCA solu-
tions (0.833), but full coverage (1) and overall a higher model fit.

4  On the non‑identity of models produced by QMC and CNA

The single example in the previous chapter shows that the solutions produced by QCA and 
CNA are not always equivalent. However, once the very different approaches of the algo-
rithms underlying QCA and CNA, namely  the QMC algorithm and the CNA algorithm, 
are understood, this observation comes as no surprise. More precisely, I have explained 
two fundamental differences between QCA and CNA: (1) the different  arrangements of 
analyses of sufficiency and necessity and (2) their different use of top-down vs. bottom-
up approaches including their different uses of parameters of fit therein. Building on this, 
the following simulation studies assess to which extent CNA and QCA output different 
solutions.

As the CNA algorithm does not need to assign crisp outcome values to configura-
tions but instead calculates the parameters of fit for msc, asf and csf directly on the 
fuzzy or crisp outcome values, it also does not depend on a truth table. In contrast, the 
truth table is at the core of QCA. Once the QMC algorithm is confronted with limited 
diversity, it cannot assign outcome values to all configurations anymore and therefore 
depends on counterfactual assumptions. If a researcher decides to assume none of the 
non-observed configurations as sufficient for the investigated outcome, this will result in 
the conservative solution. If they decide to assume some of the non-observed configura-
tions as sufficient for the outcome and some not based on theoretical knowledge, this 
will lead to the intermediate solution. If they decide to assume all of the non-observed 
configurations that allow for simplifying the solution as sufficient for the investigated 
outcome, this will result in the parsimonious solution.

In order to assess the extent to which the QCA parsimonious solution, i.e. the most 
similar QCA solution type to CNA, and the CNA solution differ, I conducted simula-
tion studies. Simulation studies have a long history in the evaluation of new and the 
comparison of alternative methods. As such, they are an important tool for the constant 
improvement of methods (Hug 2014). Accordingly, CCM scholars increasingly call for 
simulation  studies as an appropriate evaluation tool (Rohlfing 2016). However, their 
use is still surprisingly scarce compared to the wide spread of CCM applications (for 
exceptions, see e.g. Arel-Bundock 2019; Baumgartner and Ambühl 2020a; Baumgartner 
and Thiem 2020; Cooper and Glaesser 2016a; Duṣa 2019b; Hug 2013; Krogslund et al. 
2015).

I simulated 27 scenarios with varying (1) sample sizes (n = 20, 60, 120), (2) noise 
levels (noise = 0%, 10%, 20%) and (3) thresholds (incl.cut/con/cov = 0.75, 0.8, 1), for 
each of which I ran 1000 trials of QCA and CNA. To generate data structures for each of 
the trials, I first randomly selected 1000 Boolean causal structures (ground truths) out of 
five potential causal factors and one outcome factor. The drawn causal structures consist 
of two to nine (conjunctively and disjunctively grouped) causal factor values. Second, 
I built ideal-world data for these ground truths, i.e.  data containing all configurations 
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in line with the ground truth and only such configurations. Third, I constantly intro-
duced 30% limited diversity by randomly deleting 30% of the generated configurations. 
Fourth, from the 1000 limitedly diverse data sets, I randomly selected 20, 60, and 120 
cases, which led to 3000 data sets. Fifth, I introduced noise ratios of 0%, 10%, and 20% 
into the 3000 limitedly diverse data sets with different sample sizes, which led to 9000 
data sets. To do so, I randomly replaced 0%, 10%, and 20% of observations by observa-
tions not in line with the given ground truth (for a detailed description of the data gener-
ating process using the R package cna, see Baumgartner and Ambühl 2020b).

For each of the so derived 9000 data sets, I computed the QCA parsimonious solu-
tion by means of the QMC algorithm by setting the method in the minimize() func-
tion to QMC and I computed the CNA solution by means of the CNA algorithm. For the 
analyses, I set the three threshold values 0.75, 0.8, and 1 as the consistency threshold 
above which configurations are assumed as sufficienct for the outcome (incl.cut) 
for the QCA runs and as consistency (con) and coverage (cov) thresholds for the CNA 
runs. This led to 27000 pairs of analyses. I finally compared the solutions and measured 
the ratio of trials that produced identical outputs. As output, I defined the sum of all 
produced models for the QCA parsimonious solution and the CNA solution. If there 
was more than one model produced, i.e. ambiguity in the solutions, I counted the out-
puts only as identical in such trials where all of the produced models were identical. 
Accordingly, in trials in which some of the produced models were identical and some 
not, I counted the outputs as non-identical. However, if both methods did not reveal any 
model at all (empty solutions), I counted their outputs as identical.

Figure 2 shows the varying ratios of trials that produced identical models in 27 sce-
narios. I will call these ratios identity ratios. For example, an identity ratio of 0.359 
means that out of 1000 trials, 359 trials produced an identical output. Thus, I use this 
simulation study for the pure assessment of the degree to which the QCA parsimonious 
solution and the CNA solution are identical, not for the evaluation of their quality as no 
comparison with the underlying ground truths is conducted. Moreover, although I fully 
share the understanding of QCA as both research approach and data analysis technique 
(Berg-Schlosser et  al. 2009; Schneider and Wagemann 2010; Thomann and Maggetti 
2020), which is also shared by proponents of CNA (Baumgartner and Ambühl 2020b), 
this study concentrates on CCMs as data analysis techniques in order to correct the 
existing picture according to which the QCA parsimonious solution and the CNA solu-
tion are identical or mostly identical. Overall, the ratios show that the QCA parsimoni-
ous solution and the CNA solution are in less-than-perfect scenarios, i.e. for thresholds 
below 1 or noisy data, not even frequently identical.

The average overall identity ratio is 15.7%. Only for thresholds set to 1 (incl.cut/
con/cov = 1) and no noise whatsoever (noise = 0%) all of the solutions are identical 
for each sample size (n = 20, 60, 120). Averaged over all non-ideal scenarios, the iden-
tity ratios drop drastically to 5.16%. In light of the fundamentally different principles of 
both algorithms, this finding comes as no surprise. The higher the noise ratios, the lower 
the identity ratios. This is partly to be explained by the fact that for poor, non-informative 
data, CNA tends to not output any model at all because it poses high requirements on both 
parameters of fit (consistency and coverage) of the derived models. In contrast, QCA will 
more likely produce a solution given such data sets. But also the lower the thresholds, the 
lower the identity ratios, which can be explained by the inherently different ways, CNA and 
QMC treat those thresholds. In this case, the low identity ratios stem from differing models 
rather than from empty CNA solutions. Finally, the lowest sample size produces, ceteris 
paribus, the highest identity ratios. This is surprising as the lowest sample size of 20 is too 
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low as to include all possible configurations of five causal factors, thus leading to the high-
est limited diversity. Indeed, good practices of QCA recommend a sample size of at least 
n = 32 when analyzing five causal factors in one analysis (minimum of  2k cases where k is 
the number of analysed causal factor values). One explanation for the high identity ratios is 
that higher limited diversity leads to more empty solutions for both methods. In addition, 
random noise has a higher impact on smaller sample sizes than on larger sample sizes lead-
ing also to more empty solutions for both methods.

5  CCubes ‑ towards a better understanding of what is fuzzy 
or non‑identical

In order to investigate if the previously derived identity ratios between the QCA parsi-
monious solution and the CNA solution can be further increased, I additionally analysed 
varying ways to derive the QCA parsimonious solution. More precisely, in addition to the 
QMC algorithm, Duṣa and Thiem (2015) and Duṣa (2019a) have meanwhile implemented 
two further algorithms in the R package QCA (Duṣa 2019c), i.e.  the eQMC (enhanced 
Quine-McCluskey) algorithm and the CCubes (consistency cubes) algorithm, to improve 
on memory and speed. Although eQMC and CCubes proceed differently than QMC, they 
are implemented in such a way as to produce solutions in line with the top-down approach 
of the QMC algorithm. More precisely, all algorithms are supposed to “return the same, 
exact solutions,” as stated in the current R Documentation of the minimize() function. 

Fig. 2  QCA parsimonious solution (method=QMC) vs CNA atomic solution - ratios of trials that produce 
identical outputs
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Nevertheless, a closer look at the different algorithms may be worthwhile as they inher-
ently follow partly different logics compared to QMC.

As its name suggests, the eQMC, i.e. enhanced Quine McCluskey, algorithm comple-
ments the QMC algorithm instead of replacing it entirely (Duṣa and Thiem 2015). More 
precisely, in addition to combinations where the outcome is present, eQMC also uses 
combinations where the outcome is not present to derive the same prime implicants for 
the parsimonious solution as the QMC algorithm. These prime implicants are derived 
by calculating the differences between all possible less complex logical expressions that 
cover all combinations where the outcome is present and all possible less complex logi-
cal expressions that cover all combinations where the outcome is absent, preserving those 
expressions where the outcome is present and subsequently further minimizing redundant 
expressions (for a more detailed description of eQMC, see Duṣa and Thiem 2015). This 
procedure was found to lead to the same implicants for the parsimonious solution. Accord-
ingly, for my previous simulation, the results did not change when I changed the argument 
method = QMC to method = eQMC.

The recently developed CCubes algorithm (Duṣa 2019a), however, inherently follows 
a different logic and proceeds bottom-up, similar to CNA. Thus, besides its substantially 
increased computing power in deriving parsimonious solutions in line with QMC, CCubes 
also provides avenues for broadening the QCA parsimonious solution repertoire by “CNA-
style” solution types. CCubes is founded on the observation that “[a] prime implicant is 
the most simple, non-redundant expression, a superset of at least one observed positive 
configuration, and not a superset of any of the observed negative ones” (Duṣa 2019a, p. 4). 
Based on this finding, the CCubes algorithm follows a bottom-up logic in deriving the sim-
plest possible (i.e. minimal) expressions that qualify as prime implicants. This is given if 
expressions are associated with the presence of the outcome and at the same time not with 
its absence (for a more detailed description of CCubes, see Duṣa 2019a). Consequently, 
CCubes, just like CNA, is capable of running directly on the data set and does not neces-
sarily need a truth table. Indeed, CCubes, just like CNA, does also not rely on counterfac-
tuals to derive its solutions.

As it stands, CCubes can be called in the R package QCA in two ways. First, the argu-
ment method in the minimize() function can be set to CCubes (just like it can be 
set to QMC or eQMC). When called in this way, the minimize() function solves the 
derived prime implicant chart in line with the classical QCA procedure, i.e. by distributing 
the prime implicants on each of the observed positive configurations. In this way, CCubes 
is implemented so as to derive the same solutions as when method is set to QMC. Sec-
ond, another possibility to call the CCubes algorithm is by giving non-default values to 
the arguments sol.cons, sol.cov, or pi.cons. When specified, all these arguments 
automatically change the minimisation method to CCubes. From the R package QCA 3.10 
onward, these arguments are available in the function causalChain().2 However, when 
using the causalChain() function with only one outcome specified, it is comparable to 
the minimize() function.

When using the second method to call the CCubes algorithm, the argument sol.
cons introduces another method of solving the PI chart. Instead of calculating param-
eters of fit ex post and combining the prime implicants so as to cover all observed positive 

2 In the R package QCA 3.10 these arguments were moved from the minimize() function to the 
causalChain() function to clearly separate both ways to call CCubes but they are currently also under-
stood by the minimize() function in order to secure backwards compatibility
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configurations, the prime implicants are combined so as to output only models that reach 
the consistency for sufficiency specified in the argument sol.cons. In doing so, the 
causalChain() function offers the possibility to produce solutions more in line with 
the CNA approach. Further, if the argument sol.cov is specified, the prime implicants 
are combined so as to output only models that reach the given value of coverage for suf-
ficiency and pi.cons accepts only those prime implicants in the analysis of sufficiency 
that reach a certain consistency threshold. Thus, all these arguments can be used to pro-
duce solutions more similar to CNA.

To assess the degree to which the QCA parsimonious solution and the CNA solution 
are equivalent when using CCubes in several different ways, I ran another round of simula-
tions. I used the same data generation processes as specified in the previous section. How-
ever, I produced two different QCA parsimonious solutions and one different CNA solution 
to account for various circumstances that might reach higher identity ratios.

First, for the comparison that I call standard_CCubes, for the QCA solution, I set 
method to CCubes in the minimize() function and left all other settings unchanged 
compared to the simulation in the previous section. Thus, I also derived the CNA solution 
in the very same way as before.

Second, I produced a CNA solution that I forced to imitate the QCA solution produced 
in the standard_CCubes runs. To do so, I first produced the QCA solution from stand-
ard_CCubes for each run and then set the con and cov argument for CNA to the minimal 
solution coverage and consistency of the produced QCA models. This procedure takes into 
account the inherently different principles of QCA and CNA when dealing with thresholds. 
It is important to stress, however, that CNA solutions produced in this way are against the 
CNA protocol and are only produced to determine the identity ratios under such circum-
stances, in which the different approaches regarding parameters of fit are mitigated. I call 
this comparison imitate.

Third, I compared the standard CNA solution to what CCubes produces when the sol.
cons argument is specified, a comparison I call CCubes. To do so, I set sol.cons to the 
same value as the arguments incl.cut (QCA), con (CNA), and cov (CNA), i.e. to the 
threshold specified for the respective run (0.75, 0.8, or 1). Likewise, it is important to stress 
that this way of producing a QCA solution is against the current QCA protocol.

Figure 3 shows the identity ratios for the three outlined comparisons. The first important 
insight is that standard_CCubes produces the same solutions as shown in Figure 2. Thus, 
in my simulations the minimize() function produces the same solutions in line with the 
QMC procedure independently of whether method is set to QMC, eQMC, or CCubes. For 
the standard_CCubes comparison the identity ratio is 15.7% on average. The results for 
the imitate comparison show differences between both methods even when forcing CNA 
to use the same, ex post derived, consistency and coverage thresholds as QCA produces. 
The identity is the lower, the higher the noise levels. For small n samples, identity levels 
are high for all noise levels, which can be explained due to the fact that random noise 
affects smaller sample sizes more than larger sample sizes. On average, even for the imitate 
comparison, identity ratios are not perfect, more precisely at 78.5% on average. Finally, the 
CCubes comparison shows that when using CCubes with a different method of solving the 
prime implicant chart (when sol.cons is specified), the results equal the CNA results 
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to a higher extent than the standard procedure. However, the identity ratios are overall still 
below half of the conducted trials, more precisely at 46.2%.

Overall, the second run of simulations compared a wide variety of QCA parsimonious 
solutions that can be produced using the CCubes algorithm (Duṣa 2019a). The way, how-
ever, this powerful algorithm is currently implemented in the R package QCA is prone to 
some confusion as the basic logic of the CCubes algorithm differs substantially from the 
basic logic of the classical QMC algorithm, which QCA as introduced by Ragin (1987) is 
based on. An additional confusion might be due to the fact that CCubes (as well as eQMC) 
is only implemented to produce the QCA parsimonious solution. Any conservative solu-
tion is produced by the classical QMC algorithm, no matter what is specified in the argu-
ment method from the minimize() function.

6  Discussion and conclusion

My study provides broad evidence that, in real-world scenarios, the QCA parsimonious 
solution and the CNA solution are only rarely identical. In fact, simulation studies for 27 
scenarios with varying consistency and coverage thresholds, sample sizes, and noise in the 
data show that only in 15.7% of all trials the QCA parsimonious solution is identical to the 
CNA solution. Even when forcing CNA to produce solutions that equal the overall consist-
ency and coverage of the QCA parsimonious solution, the produced models are not always 
identical. More precisely, the identity ratio is 78.5%. When using a new form of solving the 

Fig. 3  Three comparisons of QCA parsimonious solutions (method=CCubes) vs CNA solutions - ratios of 
trials that procude identical output
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prime implicant chart provided by CCubes in the R package QCA, 46.2% of all produced 
parsimonious solutions are identical to the CNA solutions.

Overall, I show that the previously postulated identity between CNA and QCA does not 
hold true, not even under very identity-favourable settings. By further outlining the sub-
stantial degree to which solutions produced by CNA and QCA are not identical, a fact that 
has been widely disregarded to date, I pave the way for subsequent research on the question 
which algorithm serves which search target better. My study also points to the need for 
more simulation studies to validate CCMs given their high-speed developments. This holds 
especially true for QCA where simulation studies are still scarce while at the same time 
the number of QCA applications has been accelerating for decades, the quality of which is 
being criticised especially in business and management research, where much focus is put 
on QCA as a data analysis technique (Mello 2013; Wagemann et al. 2016). More simula-
tion studies are needed to back up the progressive developments in QCA as a data analysis 
technique in order to not further aggravate its “teething problem[s]” (Schneider and Wage-
mann 2010, p. 18), but to reinforce its strengths.

By bringing to light the different possible ways to call CCubes in the R package QCA 
and comparing these possibilities to CNA, my intention is to initiate a long needed discus-
sion on several questions, such as “Is CCubes as implemented in the minimize() func-
tion really still QCA as defined by Ragin?” “Which algorithm (and how implemented) is 
most suitable for which search target?” or “Could an additional solution type be added to 
the QCA protocol, namely a solution type that specifies overall solution consistencies, cov-
erages and PI-consistencies (i.e. solution type CCubes from Figure 3)?”. By raising these 
questions, I propose to open avenues for future integration of CNA’s rationale into specific 
QCA solution types. I also encourage future research to discuss the pros and cons of this 
proposition. Moreover, more transparency could be provided on how CCubes, as an inher-
ently bottom-up procedure, is implemented in the R package QCA so as to arrive at prime 
implicants and solutions in line with the top-down QMC approach.

My simulation studies have two main limitations. First, as in every simulation study, 
more scenarios could be analysed. I analysed three different QCA parsimonious solu-
tion types and compared them to CNA solutions in 27 scenarios running the simula-
tions 1000 times each, which led to 108.000 pairs of analyses. However, more settings 
could be varied, for example the number of causal factors, which I set to a maximum 
of 5, or the level of limited diversity, which I constantly set to 30%. I also covered 
only three QCA parsimonious solution types, namely parsimonious solution using 
method = QMC in the function minimize(), method = CCubes in the function 
minimize(), and method = CCubes with sol.cons = threshold in the 
function causalChain(). Moreover, I run the simulation in section  4, in addition 
to method = QMC also for method = eQMC and both runs produced identical out-
puts. Nevertheless, there exists a broad range of further solutions that could be produced 
using the powerful  CCubes algorithm. For example, different combinations of setting 
sol.cons, sol.cov, or pi.cons to non-default values are possible and could be 
further examined. Finally, noise as well as frequencies were randomly introduced into 
the analyzed data sets. However, in real-world data some configurations might be more 
likely to be observed than others and some patterns of noise more likely to occur that 
others. It might be worthwhile considering how such preferences could be modeled.

Second, the thresholds set in my simulations are prone to criticism. One major argu-
ment is that a good QCA application would always chose the consistency value based 
on the particular research setting and on specific case knowledge. To leverage this short-
coming, contrary to some previous simulation studies that chose extreme threshold 
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values (e.g. Arel-Bundock 2019), I followed best practices as to the chosen range of 
threshold values and varied three different threshold values while setting all of them 
to common practice values in both QCA and CNA (Baumgartner and Ambühl 2020b; 
Schneider and Wagemann 2010). Moreover, as the main purpose of this paper is to show 
the degree of non-identity between models produced by different algorithms, the ques-
tion of setting the right threshold values is not the main focus of this study. Nonethe-
less, I encourage more research on the choice of consistency thresholds, especially on 
rethinking the lower bounds of consistency thresholds in current good practices for both 
methods.

This research set out to show that the QMC and CNA algorithms to a substantial 
degree produce different models, and, on its way, it also showed that the CCubes algo-
rithm lately implemented in the R package QCA is capable of producing a wide range 
of QCA parsimonious solutions. This powerful algorithm is, inter alia, capable of pro-
ducing CNA-style solutions due to its inherent bottom-up procedure. More transparency 
on how CCubes is and could be implemented in QCA could reinforce the strength of 
QCA by broadening the repertoire of QCA’s solution types. More studies are needed to 
absolutely or comparatively evaluate the different CCMs and solution types. However, 
to perform such evaluations, clear and agreed-upon search targets are needed in the first 
place.
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