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Abstract

The Fisher discriminant is probably the best known likelihood discriminant for continuous data.
Another benchmark discriminant is the naive Bayes, which is based on marginals only. In this paper
we extend both discriminants by modeling dependence between pairs of variables. In the continuous
case this is done by local Gaussian versions of the Fisher discriminant. In the discrete case the naive
Bayes is extended by taking geometric averages of pairwise joint probabilities. We also indicate how the
two approaches can be combined for mixed continuous and discrete data. The new discriminants show
promising results in a number of simulation experiments and real data illustrations.
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1 Introduction

The statistical classification problem consists in allocating observed data samples to one of several possible
classes based on information obtained from a set of observations having known class membership. Two
standard classifiers are the Fisher discriminant (?) and the naive Bayes discriminant (?, p. 210-211). These
are easy to understand and to apply, and have been much used in practice. The Fisher discriminant assumes
that each class is multivariate normally distributed, while the naive Bayes is based on the assumption of
independent variables, so that multivariate class distributions are replaced by the product of its marginal
distributions. The Fisher discriminant requires continuous data, whereas the naive Bayes works both for
continuous and discrete data. For both methods, Bayes’ formula is typically used to obtain class probabilities.

The Fisher and Naive Bayes classification rules have some obvious problems though: They can not separate
between classes that differ in their dependence structure beyond independence and the second moments,
respectively. In this paper we seek to rectify this by presenting novel discrimination procedures generalizing
these basic classification methods. For continuous data we replace the standard Fisher classifier by a
local Fisher discriminant, that uses locally normal approximations of the class distributions. The local
approximation has a pairwise dependence structure and is constructed such that, in the limit experiment, our
discriminant coincides with the standard Fisher discriminant if the class distributions are, in fact, multinormal.
For discrete data, we generalize the naive Bayes classifier by replacing the product of marginal distributions
within each class by a type of geometric mean of pairwise distributions, which again reduces to the naive
Bayes in case of independence. We believe that this pairwise representation of a joint discrete probability is
both novel and useful. It is derived by arguments that are very different from the continuous local Gaussian
representation, and we think that its applicability is not limited to classification.
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For situations with both continuous and discrete data present, we incorporate the dependence between the
data types by first modeling the continuous variable with the local Gaussian distributions. Then the pairs
of discrete variables are modeled conditionally on the continuous variables with a logistic regression type
procedure. Thus, our paper aims at generalizing the Fisher and Naive Bayes classifiers in all these three,
equally important, data situations.

1.1 Background

Let us first provide some background for the classification! problem. The K-class discrimination problem
consists in assigning the d-dimensional data vector X = (Xi,...,X,) to one of K classes. Examples ranges
from fraud detection, authorship and text analysis, spam-email detection, credit rating, bankruptcy prediction
and even seismic discrimination (see e.g. ?, ?, 7,7, 7, 7, 7, and ?). Usually (in supervised learning) a
training data set is available. Fach training set consists of data X from a known class that we use to get an
idea of the stochastic features within each class, and that we again describe by the class-wise probability
distribution functions f, k = 1,..., K, hereafter referred to as class distributions. These distributions may
be continuous, discrete or mixed. In Sections 7?7 - 7?7, fi will be a density function, whereas we look at the
discrete and mixed cases in Sections ?? - ??. We may also have available an (unconditional) prior probability
7 = P(class(X) = k) for each class, or at least such a probability can be estimated from the training data.

Let D be a decision variable that takes the values 1,..., K. Let us also write f = (f1,..., fx), and
m = (m1,...,7k). On the basis of a new sample X and the available training data, one must determine
the value of D in an optimal way. Optimality is usually obtained by minimizing the so-called Bayes risk.
Assuming that fr and 7, = P(D = k) are known for all k, we obtain the posterior probability of having
D = k using Bayes’ Theorem:
pf(D:k\X:x):M. (1)
> jm1 ™5 f5(2)

Now assign a loss function L(k, j) which gives the loss of assigning « to k, when in fact D = j. The Bayes
risk is defined as the expected loss with respect to the posterior probabilities:

Ry(k,z,m) = ZL(kaj)Pf(D =JjIX = ). (2)

The classification rule Dp, which is Bayes optimal with respect to Ry, then follows by minimizing R over k,
or in other words, Dp is given by

Dg(z,m) = argmin Ry (k,z, ). (3)
k=1,..,K

In the particular case of a 0-1 loss (L(k,j) = 1(k # j) where 1(+) is the indicator function), it is easy to
compute the Bayes rule, since the decision rule takes the simple form

Dg(z,m) = argmax Py(D = k|X = z) = argmax 7, fi, (). (4)
k=1,...K k=1,...,K

This is a small but vital part of Bayesian decision theory and Bayesian inference whose foundations are
explored in the classic text of ?. The expression (??) forms the «intuitive» solution to the classification
problem, and we shall rely on this decision rule throughout the paper. Note, however, that the methodology
we develop and the comparisons we perform, are equally valid with decision rules originating from other loss
functions. In the practical situation when f (and 7) are not known, these need to be estimated from data
in order to reach a decision. When 7 is unknown it may typically be estimated by the relative class-wise
frequencies observed in the training data: 7y = ny/n, where n is the total number of observations, and ny
is the number of observations belonging to class k. The estimation of fx,k =1,..., K, may typically be
done in a number of different ways, and it is this choice of estimation method that essentially distinguishes

1We will use the terms discrimination and classification interchangeably throughout this paper, referring to the same concept.



different classification methods from each other. The remaining part of the paper shall therefore, to a large
extent, be concerned with methods for estimating fx,k = 1,..., K in the continuous, discrete and mixed
continuous/discrete cases, and the comparison of these, in the discrimination context of (??). In many
situations there are only two classes, K = 2. Although all presented methodology works for general K, we
will for simplicity concentrate on the K = 2 case in the illustrations considered in the present paper.

1.2 Estimating discriminants

If the fis are continuous, one may assume that they belong to a particular parametric family of densities.
The estimation problem then consists in estimating the parameters of that parametric density. The classic
Fisher discriminant originates from the work by 7, who assumes that the d-variate data from each class k are
normally distributed, written A (ug, Xx), where the uy and Xy, are class-wise mean vectors and covariance
matrices, respectively; i.e.,

fe(w) = W exp <—;($ — )" S (@ - Mk)) ;

where | - | denotes the determinant and T the transposed. If we assume X = X for all k, the Bayes rule in
(??) takes the form (?, Chapter 11.3)

=~ a1~  lopa 1. ~
Dipa(z) = argmax 2’ S iy, — i,ufE Lk + log 7y,
k=1,....K

yeeny

where the [i; are the class-wise empirical mean vectors and S is the common empirical covariance matrix,
respectively, that we calculate using training data. This particular classification rule is called linear discrim-
inant analysis (LDA) because the estimated decision boundaries between classes are linear in z and thus
forms hyper planes in the d-dimensional Euclidean space. The general case where we allow the covariance
matrices 3y to be different within each class, leads to the classification rule

~ 1 74 S 1 a1 1 S ~

Dqpa (z) = arg max fixTﬁglm + 278 g — gugEk Yig — 3 log |2k | + log 7k, (5)
k=1,....K

which is termed quadratic discriminant analysis (QDA) due to the quadratic term in (?7), causing a second

order (quadratic) decision boundary.

One advantage of the Fisher discriminant is that fi is easy to estimate also for quite a large d, since for
each k the estimation reduces to marginal estimates of means p;x, j = 1,...,d and pairwise estimates of
covariances Xk, j,{ = 1,...,d. This corresponds to pairwise dependencies between components. A general
d-dimensional density does not have this property, such that dependence between any two variables may not
be so easily extracted from the joint distribution. Despite, or perhaps due to, their simplicity, QDA and LDA
have a proven track record in many situations where the class distributions are clearly non-normal (7).

It is, however, crucially important to note here that the QDA and LDA discriminants do not see any difference
between populations having equal mean vectors and covariance matrices, even though the populations may be
radically different in terms of nonlinear dependence. In that case, we should rather resort to a method that
does allow for non-linear dependence or more flexibility in terms of the distributional form of fi(z). While it
might be most natural to handle such situations by a method that has both these properties, one may also
consider a method with only one of the properties. Naive Bayes is a well known references discriminant of
this type, allowing for more flexibility for the marginal distributions, but completely ignoring any dependence
between the variables X; and X;. Naive Bayes, which works both for discrete and continuous data, takes the
form

d
Pf(D:k‘X:x):pr(j)(D:k‘Xj::Cj)a (6)
j=1

where f(;) denotes the marginal distribution of X;. This approximation may work surprisingly well even
in situations where property (??) is not satisfied. The marginal distributions in (??) may be estimated



parametrically (for instance with a Gaussian distribution) as well as non-parametrically (for instance with a
kernel density estimator), in both cases avoiding the curse of dimensionality. Note that naive Bayes may
actually work in cases where the means and covariances of the populations are identical, i.e. cases where
the Fisher discriminant cannot work. This is because it is possible to have different non-Gaussian marginal
distributions where variances and means are the same. A simple example is when class 1 has Uniform[—3, 3]
marginals, while class 2 has N(0,3?) marginals. These distributions have the same mean and variances, but
the distributions are still very different.

In the first part of this paper, where we focus on the continuous case, we construct generalizations of the
QDA and naive Bayes that take general pairwise dependencies between pairs (X, X;), into account, not just
correlations (linear dependence), but also having the important property that they collapse to simpler forms
if that indeed is optimal.

One alternative to choosing between the approximations described above is to pursue a fully nonparametric
approach. Then f; can be estimated for example using the kernel density estimator

~ 1 & ,
fkernel,k(x) = Tlik Z; KBk (X(k) (Z) - Ji),

where {X®)(4),4 = 1,...,n;} are observations in the training set of class k, and where Kp, (-) = By 'K(B; "),
with K being a kernel function, and By, is a non-singular bandwidth parameter (matrix) for class k. When
ny — 00, then fk — fr under weak regularity conditions, but a considerable disadvantage is the curse of
dimensionality. For d moderate or large, bigger than 3 or 4 say, the kernel estimator may not work well, see
e.g. 7, Chapter 4.5. This limits the potential usefulness of the kernel estimator in discrimination problems,
where d may be quite big. In these situations the problem may be alleviated to some extent by a judicious
choice of bandwidth. See in particular the work by ? and ?. Other nonparametric approaches are nearest
neighbor classifiers, see e.g. ? and classification using data depth (?), but the basic problem of the curse
of dimensionality remains unless we accept the radical simplification provided by the naive Bayes with
nonparametric margins.

The literature provides various other approaches to density estimation, such as the use of mixtures of a
parametric and nonparametric approach that may reduce the consequences of the curse of dimensionality,
see e.g. 7. To a lesser degree this has also been the case in discrimination, see 7, who basically choose a
parametric approach, but allows a nonparametric perturbation similar to that of ?. Another such method
is the local likelihood estimator proposed by ? and by ?, who estimate fi(x) by fitting a whole family of
parametric distributions, such that the parameter vector § = 6(x) is allowed to vary locally with . We will
pursue this idea in the first part of this paper by choosing the multivariate normal as the local approximant.
This makes it possible to replace the pairwise correlations used by the Fisher discriminant with locally pairwise
dependence functions directly in (??). An alternative, non-equivalent option, which we shall also visit, is
to perform classification by inserting the class distributions obtained with the local (Gaussian) likelihood
approach into (??). We will pursue both approaches. The local Gaussian approach has been recently used
with success in a number of different contexts, see 7, 7, 7, 7, 7, 7 and 7. R-packages for computing local
Gaussian quantities also exist, as described by 7 and 7. We will in particular use the local Gaussian density
estimation technique as presented by 7, who show that the curse of dimensionality can be avoided, at least to
a certain degree, by restricting the local correlations to pairwise dependence.

The local Gaussian discriminant is limited to the continuous case, but discrimination problems often involve
discrete variables, or even mixtures of continuous and discrete variables. In the second, and equally important,
part of the paper we consider discrete variables and mixtures of continuous and discrete variables. In that
part we extend the idea of describing dependence by means of pairwise relationships to discrete variables,
relying on geometric means of pairwise probabilities and successive conditioning, in a sense similar to the
pair-copula construction described in 7. For the case of mixed continuous and discrete variables, we first
model the continuous variables with methodology described in the succeeding section. Then, conditioning on
the continuous variables, the discrete variables is sought described by a link function and a logistic regression
or a GAM type procedure. We will come back to this in Section 7?7 - ?7.



The rest of the paper is organized as follows: In Section 77 some aspects of local Gaussian density estimation
are introduced. Asymptotics of the Bayes risk and bandwidth choice are presented, in particular in the context
of local Gaussian discrimination, in Sections 7?7 and ??. A number of illustrations in the continuous case are
given in Section ?7?7. Section 7?7 and 7?7 deal with the purely discrete case and the mixed discrete-continuous
case, respectively, with corresponding illustrations in Section ??. Finally, in Section 7?7, we present some
conclusions and a brief discussion.

2 A local Gaussian Fisher discriminant

Considering the case with a continuous class distribution, let us now derive a local Fisher discriminant. We
will start by introducing the local Gaussian approximation for a class distribution of a single class k. The idea
of the local Gaussian approximation is to approximate fx(z) in a neighborhood N, around x by a Gaussian
density

0 (v, (@), D(2)) = @m) S (@)] 2 exp { (0 = (@) TS @) (0 = (@) |, (7)

where v is the running variable. The size of N, is determined by a bandwidth parameter (matrix). In the
bivariate case (d = 2) with x = (z1, 22) and with parameters 6y (x) = (g1 (), pr2(2), ok1(x), or2(x), pr(x)),
we write (?7) as

0.2 0), ). (2. o) o) = G
wor1(x)ora(x —pix
exp |- 1 (1 = (@) 01— (@) (02 = pe(@) | (V2 = paa(2))”
) p{ 21— g () ( @ T ) T )] '

Moving from z to another point y, we use a possibly different Gaussian approximation (v, uk(y), Xk (y)),v €
Ny. The family of Gaussian distributions is especially attractive in practical use because of its exceptionally
simple mathematical properties, which truly stands out in the theory of multivariate analysis. Our intention in
this work is to exploit these properties locally. Note that the multivariate normal N (ug, Xx) is a special case
of the family of locally Gaussian distributions (??) with ug(z) = pr and Xk (z) = Xg. ? discuss non-trivial
questions of existence and uniqueness. As the local parameter functions py(z) and Xx(x) take the place of
the fixed parameters py and 3y for each class distribution k in the Gaussian case, it is natural to extend the
QDA of (??) by simply replacing py and 3y by ux(x) and Xi(z) for k = 1,..., K. This gives what we term
the local Fisher discriminant
1.

~ 1 ~_ ~_ N ~_ N
DLocal Fisher(‘r) = %rg ma;{( _ixTzk 1(1')1' + xTEk 1(x)uk(x) - iﬂk(‘r)Tzk 1(1')/””6(‘%)
=1,...,

1, .« _
= 5 log[Zk(2)[ +log T (8)

To practically apply this procedure, we need estimates of the involved parameter functions for all class distribu-
tions k = 1,..., K. Following ?, we estimate the parameters () and Xy (z) given data X ®)(1),..., X*)(ny)
with class label k, by maximizing the local log likelihood

DXO), - X0 0),04() = me S K, (X0 0) ) log (X (), () - [ K o-awto, et o
- (9)

where Kp, is a kernel function depending on a bandwidth parameter (matrix) By. We refer to ? and ? for
details on parameter estimation.

From the description of the local Gaussian likelihood above, the two discriminants in (??) and in (??) below
appear to be highly affected by the curse of dimensionality. 7 suggest a particular simplification in order
to relieve this effect, which we will adopt throughout the paper. The solution is to apply the following
simplification

pi k() = pyk(e;)  and  Ejik(r) = Tji (s, 21), (10)



Discriminant: — LDA --- Local Fisher —- QDA

Figure 1: The two-class discrimination problem in two different cases.

leading to a pairwise local dependence structure. Examples can be found where this approximation is not at
all valid, but the experience so far indicates that it covers a fairly wide set of circumstances; see e.g. 7, 7 and
the references therein. With this simplification it is possible to do a pairwise local dependence analysis in a
multivariate non-Gaussian and nonlinear context, such as the local Fisher discriminant (??). This can be
done such that, as ny — oo, it reduces to the familiar pairwise correlation case if the true class distributions
are indeed Gaussian. We illustrate this point graphically in Figure 77?.

In the left panel of Figure 7?7 we have plotted observations from two bivariate Gaussian populations, signified
by “e” and “+7”, that have different mean vectors as well as different covariance matrices. In this case the
LDA, being derived from the assumption of equal covariance matrices, is not optimal, as we appreciate from
the plot where we have drawn the linear decision boundary as a solid line. The QDA, on the other hand, is in
fact optimal because the parametric assumption of binormal populations having unequal covariance matrices
is correct. The quadratic decision boundary is indicated by a dashed line. Furthermore, in this particular
case, we observe that the local Fisher discriminant (?7?) essentially reduces to the the global QDA in (?7?),
and we achieve precisely this by choosing a large bandwidth in the estimation of the local parameters in
(??) using the local likelihood function in (?7?). The resulting decision boundary is displayed in the figure
as a dotted line that for the most part coincides with the QDA boundary. It is important to note that the
bandwidth selection in this illustration is completely data driven by means of a cross-validation procedure
that we describe in Section ?77.

In the second panel of Figure 7?7 we have a different situation. The two populations are clearly not normally
distributed, but their covariance matrices are equal (indeed, they are diagonal). This means that the QDA
in practice collapses to the LDA, producing a near straight line. In this constructed example, though, we
see immediately from the plot that a linear decision boundary is sub-optimal. In this case, our bandwidth
selection algorithm that we present in Section ?? produces a small smoothing parameter, allowing the local
Fisher discriminant (??) to become very local, non-linear and non-quadratic. This appears to work well for
this discrimination problem.

As a by-product of the local likelihood setup and estimation procedure in (??), we approximate fi(z) by a
family {1 (v, pi(z), Li(z))} of multivariate Gaussians, with estimates of the parameter functions jix(x) and
Yk(x): R R

fuepe, k(@) = ¥(z, fik(z), k(@) (11)

These locally Gaussian density estimates (LGDE) (?) of the class distributions f(z) give rise to a second
option for utilizing the local Gaussian likelihood method in the discrimination setting. This option is to use
fe(x),k=1,..., K directly to compute posterior probabilities and perform classification via (??) and (?7?),



respectively. This gives the following discriminant:

Digpe(z) = argmax 7, fLapE, £(7)- (12)
k=1,.,K
With the pairwise simplification described above, the estimate ]?LGDE involves a further simplification resulting
from transforming each variable to approximate standard normality, i.e., one can use the transformation
Z(k) (j) =1 (F\nk (X(k)(j))), j=1,...,ny, of the marginals X*)(j) in each population, where ﬁnk is the
empirical distribution function and ® the cumulative distribution function of the standard normal. Then, as
a further simplification, we fix pr(z) =0 and ok (z) =1, k = 1,...,d. Alternatively, one could estimate py(z)
and oy (2) by local likelihood, as has been done by ? and ?. This leads to larger flexibility and accuracy in
the estimation, but at the cost of more complicated asymptotic analysis. The transformation procedure is
especially attractive if the data contain extreme outliers.

Transforming back one obtains estimates fk(x) As it is not guaranteed that [ ﬁ(w)dm =1 for a fixed ny and
bandwidth (matrix) By, the recipe also involves normalization of the fi by a simple Monte Carlo procedure
in the end. We do not normalize the locally Gaussian density estimates in this paper. Our experience is
that the factor by which the density estimate fLape departs from the unit integral mostly depends on the
number of variables, and will thus not significantly affect the ratio figpr,x/fLepE,; for two classes k and j.
Furthermore, as noted in Section 7?7, we do not pursue precise density estimates as such in this paper, but
rather tune our bandwidths to optimize discrimination performance. This can, in principle and in practice,
be done regardless of whether the class-wise probability density estimates exactly integrate to one. In both
constructed examples shown in Figure ??, the LGDE based discriminant (??) is essentially identical to the
local Fisher discriminant. This is not always the case though.

Asymptotic theory has been developed for the estimate fy(z) = 1(z, fix(2), Sk (2)) as ny — oo and as the
bandwidth (matrix) By — 0. ?, Theorems 3 and 4 demonstrate asymptotic normality and consistency under
certain regularity conditions. In particular, fk(x) = Y(z, ik (x), ik(x)) — fr(z) implies that fﬁ(w) dez — 1,
which is relevant also for the asymptotic behavior of the Bayes risk.

3 Some asymptotics of Bayes risk

The Bayes risk in (??), as we have already seen, depends on density functions which may be estimated
parametrically or nonparametrically. In the former case, assuming for simplicity ny =n, k=1,..., K, this
typically gives an asymptotic standard error of order n~/2, where n is the size of the training set. In the
latter case, using kernel density estimation, assume the bandwidth matrix By, is diagonal, By, = diag{b; 1}
with bj, = by, for j =1,...,d. A kernel estimate of f; has asymptotic standard error of order (nbg)_l/z,
which is large if d is large. Due to the reduction to a pairwise structure, the locally Gaussian parameters
discussed above, and thus the corresponding density estimate, has error of order (nbi)*l/ 2 irrespective of the
dimension d. The full asymptotic distribution is given in Theorem 4 of 7.

In discrimination, the asymptotics of the density estimates do not hold the main interest, but rather the
asymptotics of the related Bayes risk. The purpose of the present section is to show that the local Gaussian
discriminant has an asymptotic Bayes risk independent of d under weak regularity conditions. To do this we
will base ourselves on 7, who shows that a broad class of nonparametric density estimates (not restricted to
kernel density estimates) achieves a mean square convergence rate of n=" for some 0 < r < 1.

To indicate how these results can be applied to locally Gaussian estimation, assume first that the class densities
fi,--., fx are known. Recall from (7?) that the Bayes rule takes the form Dp = argmingc(; i) Ry(k,z,7)

for each x and . However, in practice f is unknown, and has to be estimated. Estimating f by f: (]?1, ey ]?K)
leads to an estimate R
D,, = argmin R}\(kj,x,ﬂ')
ke(1,...,K)
of the Bayes rule, and we are interested in the asymptotic behavior of ﬁn relative to Dp as n increases, both
in terms of consistency as well as its rate of convergence. To this end we need some assumptions on the loss



function L introduced in (??) and the smoothness of f. The loss function L must satisfy

< mi ).
max L(k, k) < ?;?L(k,j) (13)

To define the mode of convergence, let C' be a compact set C C R?, and let Sk be the simplex defined by
>, mi = 1. 7 studies the mode of convergence of

/ /‘Rf(f)n,x,w)—Rf(DB,a:,w) dx dm,
Sk JC

where we in fact do not need to take absolute value of the integrand since by definition, for every z € R%, k €
(1,...,K),

Rf(k,x,ﬂ') > Rf (DB,J?,TI') .
Let further V,, = 9l°1/(92§* --- 025%), ||z|| = (23 + --- + 22)1/2 and |a| = Z?Zl a;. Then the following
boundedness and smoothness assumptions are imposed on f. Let My be a constant My > 1, let m be a
non-negative integer and 8 € (0, 1], and let ¢ = m + 5. We denote by Fj, the class of probability densities fy
on R? such that forall k =1,..., K,

(i) fr < My on R4,
(ii) fx > M; ' on C.
(iii) For all x,y € R, and all |a| = m, we have

Vafi(@) — Vafe(y)| < Myl —yl|°.

As is well known, the smoothness of f; determines the rate of convergence of j?n,k. More specifically, let

fr € F, then, according to 7, Theorem 3, there is a constant ¢ > 0 and a density estimator f, ; so that
when r = 2q/(2q + d),

lim sup Py

N0 fLeFy

/C (ﬁlk(x) — fk(a:))z dz > cn_T] =0. (14)

Moreover, let F denote the K-fold Cartesian product of the Fi, and T™ the set of training samples, each of
size n. From ?, Theorem 1, then there is a constant ¢ > 0 and a classification rule D,,(z,7,T™) so that

lim sup Pr
n—oo fe]:

/Sk/C {Rf (ﬁmx,w) — Ry (Dg,x,w)} dedr > cn_Tl =0. (15)

The rate r in (??) describes the speed at which ﬁn approaches the Bayes rule Dp. The rate turns out to be
the same as for the density estimation rate for the class of densities in Fj. In Theorem 2 of 7 it is shown
that this rate is optimal in the sense that no better rate can be obtained for any classification rule D,, based
on density estimates f,, ; of densities in Fj.

It is easy to find density estimates that satisfy (??). If X is d-dimensional, and assuming existence of a
bounded second derivative of f, the traditional kernel estimate has a variance of order (nb¢)~! and a bias of
order b?. Balancing the order of variance and bias squared; i.e., putting (nb¢)~! = b} leads to r = 4/(4 + d).
Assuming existence of a bounded g-th order derivative of f; and using higher order kernels; as in e.g. ?
leads to a bias of order h9, whereas the order of the variance is unchanged. Again, equating the order of
the variance and the bias squared leads to r = 2¢q/(2q + d). By increasing ¢, it may seem like one may in
the limit obtain the parametric rate of n=! for the mean square error, but this is illusory as extremely large
sample sizes would be required for the higher order asymptotics to kick in. In fact, as demonstrated by ?,
the practical usefulness of higher order kernels is debatable, and a realistic mean square convergence rate in
practice is n=%(4+4)  which is a slow rate for d greater than 4, say.

The key of Marron’s paper is that the derivation of (??) only uses the general convergence property in (77),
the definition of Ry, and the general assumptions on L and f stated earlier in this section. This means



that it is not limited to kernel estimation, but can be applied to any density estimate that satisfies these
requirements and has a rate as determined by (?7?). In turn this means that it can be applied to the locally
Gaussian density estimator (LGDE, described in the preceding section) satisfying the regularity conditions
of Theorem 4 of ? and the additional mild conditions (??) and (i) - (iii) in this section. Note that the
pairwise LGDE is defined irrespective of whether there actually is such a structure. In general it can serve
as a computational approximation in the same way as an additive computational model can serve such a
purpose in nonlinear regression.

Under the regularity assumptions stated in Theorem 4 by 7 it follows that the variance of the LGDE is of
order (nb?)~!. From the log likelihood expression in (??) it is seen that by taking derivatives and using the
weak law of large numbers, a local likelihood estimate of #; would have to satisfy

OLy(0,2) P

0 =
00;

[ty = 2)ustw. 00 {10 ~ (00000 } ay (16)

where u;(-,0) = 0/00;log(-,6). By Taylor expanding this integral we see that the difference between
between f(y) and v (y,8;) is of order b2 as b — 0. This means that 1(6;) approximates f at this rate, and it
is in fact the reason for including the last term in the log likelihood in (??). Contemplating that we obtain
the estimates of 0 by setting the log likelihood equal to zero, it is not difficult to see that the bias of the
LGDE is of order b?, see also ?. Combining this with the expression for the order of the variance of the
LGDE and equating bias squared and variance, this leads to b = n~1/% and r = —2 /3, and this would lead to
a rate of the mean square risk of n~2/3 which is much better than the risk rate for the kernel estimator as d
increases.

However, 7 used the log-spline approach to density estimation, see 7 and ?. Its convergence rate as applied
to local Gaussian density estimation is explained in detail in Appendix Al in ?. The density estimate requires
the added restriction on the bandwidth that n'/2*<b*> — 0, where ¢ € (0,1/2) is a design parameter having to
do with the density of knots in the spline approximation (e close to 0 means that new knots are added very
fast, whereas € close to 1/2 means a slower rate). If the limit theorem should be valid over the entire e-range,
this implies the added condition n'/2b?> — 0 (see condition (iv) of Theorem 4 in ?), leading to a non-sharp
convergence rate of the Bayes risk with b = n=(1/2+€) where € € (0,1/2). However, by taking the design
parameter, which is user-controlled, to be in the range 1/6 < e < 1/2, it is seen that no extra restriction on
the bandwidth is required, leading to the mean square convergence rate of n=" = n~2/3 irrespective of the
dimension d. We also remark that condition (iii) of Theorem 2 in ? implies a mild tail behavior condition on

f.

An alternative to the log-spline approach is obtained by taking as an estimate of the marginal cumulative
distribution function the integral of the kernel density estimate, see e.g. 7 and ?. The problem of the design
parameter € is then avoided. The marginal density must be sufficiently smooth to guarantee the existence of
the derivative of F~!(z), and again in the pairwise local Gaussian case a mean square convergence rate of
n~2/3 is obtained.

To summarize, all this means that using pairwise local Gaussian density estimation (with Bayes risk convergence
rate n=%/ 3) instead of kernel estimation (with Bayes risk convergence rate n~4(4+d) Jeads to improvements
as d increases. We confirm this in the simulation experiments in Section 7?7 with d in the range 2 < d < 8.

It is not difficult to check that a higher order kernel applied to (??) will reduce the bias in the same way as
for ordinary kernel estimation. Moreover, since no moments of the kernel function enter into the calculation
of the variance of the local Gaussian density estimate, the convergence rate of the variance is not influenced
by this, and higher order kernels will lead to a convergence rate of n=% of the Bayes risk. We remain
relatively skeptical to the practical significance of this result, though.

In practical error estimation in discrimination, the empirical error frequencies are used via the AUC and Brier
measures, see Section ?7. If the population densities are known, error estimates and upper bounds can be
obtained by integrating over the tails of the densities. This is related to the evaluation of Value-at-Risk (VaR)
in finance, and it is well known that it is sensitive to misspecification of densities. Especially, if Gaussians are
used when true densities are thick-tailed, very serious underestimation may occur. This is illustrated in Table



1in ? in a comparison between Gaussian, kernel, so-called NP-estimates (?) and local Gaussian estimates,
the latter being a clear winner in this particular example.

4 Choice of bandwidth

The preceding section concerns asymptotic results as the size of the training sets grows to infinity. We
proceed now to establish rules for selecting bandwidths in finite-sample situations, which is clearly a problem
of greater practical interest.

Nonparametric and semiparametric density estimators must as a general rule be tuned in one way or the
other, usually by fixing a set of hyper parameters. The development of optimal strategies to do just that has
been a topic of great interest in nonparametric analysis over the last couple of decades. The kernel density
estimator, in particular, is associated with many bandwidth selection algorithms, and results on optimal
choice of bandwidth have been known for some time, see e.g. 7 for a fairly general cross-validation case.
The locally Gaussian density estimator is much more recent, and has seen but a few results on bandwidth
selection.

? suggest cross-validation as a viable strategy, that ?, 7 and ? apply with reasonable results. It clearly works
best on data that has been transformed towards marginal standard normality, which is a strategy that was
mentioned in Section ??. The method is time consuming, however, and the plug-in estimator b,, = ¢n~1/6
has been used as well, for which the value of ¢ may be determined empirically. No optimality theory of
bandwidth selection exists for local likelihood density estimation.

The purpose of most bandwidth routines is to obtain good estimates of a density function f. We must
here ask the following basic question, however: Is it true that an optimal bandwidth algorithm developed
for density estimation is still optimal in a discrimination context? In the discrimination problem one is
more concerned with the local properties of fi where these densities overlap rather than the overall quality
of the estimate of fi. There are in fact several indications that a density-optimal bandwidth may not be
discrimination-optimal.

This issue has been examined in some special cases by 7. They examine the misclassification probability as a
function of the bandwidth in the case of two multivariate Gaussian populations of dimensions 1 - 6 , and they
found that the density-optimal bandwidth performed much worse than a bandwidth optimized with respect
to the discrimination error in the case of equal a priori probabilities m; = w5 = 0.5. The latter bandwidth
was much larger, and in fact the classification error was largely insensitive to the choice of the bandwidth
when it exceeded a certain threshold, whereas the density-optimal bandwidth was far below this threshold.
For unequal prior probabilities, 7, = 0.4, mo = 0.6 they reported less clear results.

We are interested in obtaining the best possible discriminant, rather than the best possible density estimators
for the different classes. We therefore rely on a cross-validation scheme which optimizes the bandwidth
parameter (matrix) in terms of discrimination performance (7).

The area under the receiver operating characteristic (ROC) curve, or simply AUC, is a widely used ranking-
based metric for measuring the quality of a probability based discrimination procedure (?). The AUC is
constructed for two-class classification, but generalizations to K > 2 classes exist (7, Section 10), and may
replace the AUC in the description below when K > 2. A classifier that has an AUC value equal to 0.5 in
a balanced classification problem is equivalent to pure guesswork, while if AUC = 1, this enables perfect
classification.

We have chosen to optimize the bandwidth parameter in terms of this metric in our cross-validation scheme.
As a reasonable trade-off between stability and computational expense, we perform cross-validation with
a single split into m separate sets, i.e. m-fold cross-validation (7). To reduce the search space for the
cross-validation procedure we require the bandwidth matrix B,, to be diagonal, with all diagonal entries on
the form b,, = en™/%, as mentioned above. The precise metric we optimize over is the average of the AUCs
computed for each fold separately. To summarize, we tune the ¢ parameter in b, for the locally Gaussian
discriminants according to the following cross-validation procedure:

10
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Figure 2: Data from the bivariate versions of the three simulated classification problems.

1. Divide the training set into m folds at random. We have used m = 5 in our experiments below.
2. For each proportionality constant ¢ on a specified grid:
(a) For each fold j =1,...,m:
i. For each class k =1,...,K:

A. Extract the variables corresponding to class k from all folds except fold j, and fit a local
Gaussian density estimators with bandwidth matrix B, = diag(cn™1/9).

B. Use the fitted density to compute the out-of-fold estimated posterior probabilities Py(D =
k|X = x) for all variable combinations x in fold j.

ii. Compute the AUC in fold j using all the out-of-fold estimated Py(D = k|X = z)’s and
corresponding true classes, and denote it by AUC;(B,,).

(b) Compute the averaged AUC over all folds: AUC(B,,) = (1/5) Z?Zl AUC,(By,)

3. Choose the bandwidth matrix B,, with the largest AUC(B,,).

In our illustrations in the following sections we also tune the non-parametric kernel estimators in the same
way. Note further that, if there is a high degree of class imbalance in the training set, one may consider
stratification when splitting the data into the m folds.

5 Illustrations

5.1 Simulations

Let us demonstrate some properties of the local Fisher discriminant (??) from a two-class simulation
perspective. We generate data in increasing dimension d from three different multivariate classification
problems that pose increasingly difficult conditions for the traditional discriminants:

e Problem 1: Two multivariate normal distributions, both having all correlations equal to zero and all
standard deviations equal to one (so their covariance matrices are equal), but the first population has

mean vector equal to (0,...,0)T, while the second population has mean vector equal to (1,...,1)7T.

11
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Figure 3: Simulation results for the first illustration: Two multinormal distributions with different means but
equal covariance matrices. Error measured as a function of dimension.

e Problem 2: Two multivariate normal distributions having means and standard deviations equal to
zero and one, respectively (so their marginal distributions are equal), but the first population has all
correlations equal to 0.7 and the second population has all correlations equal to 0.2.

o Problem 3: The first population consists of observations on the stochastic vector X having ¢(10)-
distributed marginals and a Clayton copula (?) with parameter § = 2. The second population consists
of observations on —X.

We have plotted realizations with n = 500 of the bivariate versions of these problems in Figure ?77.

In all simulations we let m; = w5 = 0.5. We measure classification performance in two standard ways. First,
we use the AUC, as briefly introduced in Section ??7. In addition to the AUC we will also measure the Brier
score of our predictions (7). The Brier score is essentially the mean squared error of a 0 — 1-loss classifier.
For a test data set of size IV in the two-class problem with class labels D = 0,1, it takes the form

N
. 1 2
Brier score = N E_l (PJ;{D =1X=x)— D) .

As such, smaller Brier scores translate to better classification.

In Figure 77 we see results for the first illustration, where we try to classify previously unseen test data
into one of two multinormal populations that differ only in their means. In particular, we generate training
data of total size n = 100 and n = 500 (that is, on average 50 and 250 in each class) and try five separate
discrimination methods: the parametric LDA and QDA, the multivariate kernel density estimator, the naive
Bayes with marginal kernel density estimates, as well as the new local Fisher discriminant (The Dygpg of eq.
(?7) gives very similar results to the local Fisher discriminant in these illustrations). For the latter three
discriminants we choose one bandwidth for each population based on the cross-validation routine that seeks
to maximize the AUC as described in the preceding section. We repeat the experiment 100 times for each
combination of sample size and dimension. In each experiment, we evaluate the discrimination using a test
data set of size N = 500. The plots report the average AUC and Brier scores for the various discriminants as

12
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Figure 4: Simulation results for the second illustration: Two multinormal distributions with different covariance
matrices. Error measured as a function of dimension.

a function of the number of variables, as well as the standard deviation over the 100 repetitions which we
plot as error bars.

In terms of AUC, all methods perform similarly in this case, but in terms of the Brier score, the correctly
specified LDA and QDA are clearly better than the two non-parametric methods, and we also see that the
local Fisher discriminant performs on par with the QDA, which comes as no surprise because the QDA-rate
is attainable for the local Fisher discriminant by choosing large bandwidths.

The results from the second illustration are shown in Figure 77, and we see clearly that the various
discrimination methods are more separated in this case. The two populations, while both being Gaussian,
differ only in their covariance matrices which means that the LDA as well as the naive Bayes can simply not
see any difference between them, and this emerges clearly in the plots. The kernel density estimator is able
to discriminate in this case, but seems to struggle with the curse of dimensionality, especially from the Brier
perspective. The QDA represents a correct parametric specification, and thus also the optimal discriminant in
this case, but we also see that the local Fisher discriminant has no problems at all to match its performance.
This is again due to our cross-validated choice of bandwidths, that seeks to maximize the AUC.

Finally, we look at the third illustration in which the two populations have both equal marginal distributions
as well as equal covariance matrices. Since there is no discriminatory information at all in the marginals,
nor in the second moments, we see in Figure 77 that also the QDA collapses. We are left with the purely
nonparametric kernel estimator — that works, but clearly feels the curse of dimensionality — and the local
Fisher discriminant that now must allow its bandwidths to shrink in order to reveal non-Gaussian structures.
It does that very well, as we see in the plots, and the pairwise estimation structure for the local covariance
matrices is seemingly able to detect clear differences between the two populations regardless of the number of
variables.

13
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Figure 5: Simulation results for the third illustration: Two multinormal distributions with different covariance
matrices. Error measured as a function of dimension.

5.2 Illustration: Fraud detection

Due to the enormous amounts involved, financial crimes such as money laundering is considered a serious
threat to societies and economies across the world (7). It is therefore crucial that banks and other financial
institutions report suspicious transactions and behavior to the authorities, such that thorough investigations
and monitoring can be put into effect — ultimately leading to stopping the criminal activity and making
the source legally liable. In a money laundering setting with a large Norwegian bank, ? develop and
train a machine learning model for filtering out suspicious transactions from the legitimate ones. Working
with a simplified subset of their data, both in terms of the transactions we use and the variables used for
discrimination, we illustrate the use of our local Fisher (and Dygpg) discriminant and compare it to the
classical discriminants from the above simulation experiments.

We have a data set consisting of 1011 transactions, of which roughly 28% are marked as suspicious. To check
how well our discriminants perform, we randomly split this full data set into a training and test set, and rely
on the AUC and Brier scores on the test set, as in the simulations experiments.? In order to minimize the
randomness introduced when splitting the data in training and test sets, we repeat this process 100 times.
This is typically referred to as Monte Carlo cross-validation or repeated learning-testing validation (7). The
reported results are thus mean AUC and Brier scores over the 100 sets, accompanied with 95% confidence
intervals for the means using a central limit theorem based normal distribution approximation. To simplify
this illustration, we have restricted ourselves to three continuous variables only. In Section 7?7 we will add
discrete variables to this illustration. Due to data restrictions, we can not provide further details about the
variables in the data set. The data are plotted in Figure ??7. As seen from the plot, the combination of the
two first variables, seems to distinguish the two classes fairly well. The third variable may also improve
slightly upon their contribution.

2The subset of the data used in this illustration contains a small sample of regular customer transactions and transactions
reported as suspicious. Transactions which are investigated, but ultimately not reported are not included in our data. This
makes the discrimination task much easier than in practice. The true proportion of suspicious transactions is also much smaller.
See ? for details.
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Figure 6: Summary plots for the three continuous variable in the fraud detection illustration. Grey (crosses)
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Table 1: Results using the three continuous variables in the fraud detection example. 95% confidence intervals

are shown in brackets. (continued below)

40 60

LGDE

LDA

QDA

AUC
Brier

0.964 [0.962, 0.966]
0.0649 [0.0635, 0.0664]

0.904 [0.900, 0.908]
0.116 [0.115, 0.118]

0.949 [0.946, 0.951]
0.0807 [0.079, 0.0824]

Naive Bayes

Kernel

Local Fisher

AUC
Brier

0.947 [0.944, 0.949]
0.0794 [0.0774, 0.0813]

0.944 [0.941, 0.946]
0.0847 [0.0828, 0.0866]

0.953 [0.950, 0.955]
0.0768 [0.0748, 0.0787]
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Table 7?7 shows the AUC and Brier scores obtained by the various methods, averaged over the 100 repeated
training/test splits, with 95% confidence intervals. Generally speaking, all methods are able to distinguish
between the two classes fairly well, as all methods have AUCs larger than 0.9. The LGDE model, however, is
clearly the best model for this classification task, both in terms of the AUC and the Brier score, with small
confidence intervals. The Local Fisher model is the second best model, with QDA, Kernel and Naive Bayes
not too far behind. The LDA model appears to be the least appropriate of these models, with significantly
smaller AUC and larger Brier score than the other methods.

6 Discrete variables: Extending naive Bayes

We now move from continuous to discrete class distributions, which is highly relevant in discrimination
settings. The term «discrete variables» is broad, and may refer to interpretable numeric variables which can
take only some specific values, to unordered categorical variables, or to ordered categorical variables. In this
context we shall use the term as a replacement for unordered categorical variables.

As for the discrimination cases with continuous class distributions, the methods we consider are essentially
based on estimating the class distributions f; (which now are probability mass functions and not densities,
and therefore will be referred to as py) for each class and applying Bayes formula (?7?), and carry out the
discrimination according to (??). Thus, the rest of this section concerns methods for estimation of such a py
for a single class k. As we shall only be concerned with the general k-th class distribution, we will throughout
this section simplify notation by omitting the k£ subscript referring to the class.

Consider a sequence of discrete vector variables X (¢),s = 1,...,n (from a common class distribution). Each
vector variable has d components X = (Xi,...,Xy). Each of these components, X,., can take k, different
values {x;1,...,2%, }. Since the component X, can take k, different values, the vector X can take on
Hle k. values. The question is then, how we can estimate

p($1j1a"'axdj4) :P(Xl :xljl,...,Xd:xdjd), (17)
where j1 =1,... k1,...,5a=1,... kq.

There is a sort of curse of dimensionality for discrete variables as well, but it works in a different way than
for the continuous case. In the general case there are I1¢_, k, different cells to consider. In the special case of
binary variables, then k, = 2 and the number of cells is 2¢. For d large, this will be a very large number.
One can still in principle estimate p(x1;,,...,qj,) by the straight forward frequency estimator

n
PFrequency (T1j15 - - - Tdja) = %Z L(X1(1) = 21y, - -+, Xald) = 2aj,) = gy, dja /s (18)

i=1
where n is the total number of observations and n1j, ... 4;, is the number of observations in the cell defined
by X, = x,j,,r=1,...,d. Unlike the continuous case there is no bandwidth involved, and p(z1,,,. .., Z4j,)
converges to p(z1j,, ..., %q,) With the standard convergence rate of n~1/2. However, the problem in practice
is that many of the cells may be empty or contain very few observations if d is reasonably large, making it

difficult in practice to estimate the probability (?7).

The influential work of Li and Racine (?; ?) tackle this problem by a discrete-value smoothing algorithm
based on earlier work by 7. The suggested smoothing for component r is

_ 1— A\, if X, =z,
l(XT7x'r‘7)\’l‘) - { Ar/(kr _ 1) lf X’r‘ # T,
with A, € [0, (k. — 1)/k;]. For A, = 0, one is back to the indicator function. For A\, = (k, — 1)/k,,

X, xr, \r) = 1/k,; ie., all differences are in a sense smoothed out. Li and Racine then use the product
kernel

d d A L(Xr#xr)
L(X,x,\) = [[ 120, 00) = [ ] <k - 1) (1= A =)

r=1 r=1
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The smoothed probability estimate is then given by

n

1

DI =— L(X (7 A). 19
pNP(x) n; ( (’L),J}, ) ( )
Li and Racine find the optimal smoothing parameters A = (A1,...,Aq) by a cross-validation algorithm. Note

that this is a «smoothing» of discrete variables that results in changed probabilities for the values of these
same discrete variables, not a change in the values themselves. The cross-validation is done in a clever way
to eliminate non-relevant variables in a conditional situation (such as the classification problem). See in
particular ?. The algorithm is implemented in the R-package np (?).

6.1 Pairwise naive Bayes

Contrasting the frequency approach in (??), an obvious and much more radical solution to the problem is
to use the naive Bayes approach where dependence between components is ignored and p(z1;,,. .., Zq4,) is

estimated by
d d

~ ~ Nrj,
PNaive Bayes(xljlv e 7xdjd) = H pFrequency (xro) = H % (20)
r=1 r=1

Except for certain very rare cases, this approach automatically avoids the problem of empty cells. As
this approach has the obvious drawback that all dependence between the variables is completely ignored,
it is natural to ask whether one can extend the method in such a way that dependence is accounted for.
Motivated in parts by the pairwise approximations of Otneim and Tjgstheim (?; ?), the aim of this section
is to derive a new estimator for (??) using solely marginals p,; = P(X, = z,;.) with j, = 1,...,k,
and bivariate probabilities p,;,. s, = P(X, = z,,,Xs = xg;,) with j, = 1,...,k, and js = 1,... k.
Note that Zf::l Prj,. = 1 and Z?I:l Z?j:l Prj..sjs = 1. Our novel pairwise naive Bayes approach uses a
construction which in some sense is similar to the pair-copula construction, see e.g. 7. More precisely, when
a pair of variables is conditioned on another set of variables in a successive conditional representation of
a joint distribution, then the conditioning variables are ignored. To simplify notation, write p;...q instead
of p(xyj,, ..., 24j,) and ppp...q instead of p(pj,, |15, - - - Tajy) = P(Xon = Tmj, | X1 = 215y, 0, Xa = 245,).
Consider

Pb1...a = P1)2...dP2---d = P1|2---dP2|3..-dP3---d-

Continuing in this way, and ignoring the conditioning, results in the naive Bayes formula p;..q = p1p2 - - pa.
We now try to do the same reasoning, but on pairwise probabilities. Writing p;,,, instead of p(xj,, Zmj,,) and

Dimu--a instead of p(xy,, Ty, [Tujys -+ Tajy) = P(X1 = 215, Xon = Tmj, | Xu = Tujys -, Xa = 245,), and
assuming that the dimension d is an even number:
P1.-.d = P12|3---dP3---d = P12|3---dP34|5---d " * " Pd—1,d- (21)

Omitting conditioning we approximate this expression by

DPPairwise,even = P12P34 * * " Pd—1,d»

with the similar expression ppairwise,odd = P12P34Pd—2,d—1Pd4 in the case where d is odd. This approximation
can be done in many ways, however, in general each giving different results. (The decomposition can of course
be done in many ways in the naive Bayes case as well, but here they all give the same result pips - - - pg).

In the case of four variables the decomposition (??) can be done in 6 different ways

P12|34P34 =~ P12P34
P13]24P24 = P13P24
P14|23P23 =~ P14P13
P1234 = | (22)
P23|14P14 =~ P23P14

P24|13P13 =~ P24P13

P34|12P12 =~ P34P12-
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Since the various p;;pr; products generally give different answers, we suggest an estimate obtained by taking
the geometric mean,

~ s A A~ \1/6

D1234 = (D12 - P34 - P13 - P24 - P14 - D13 - D23 - D14 - D24 - P13 - P34 - P12) ", (23)
where Py, is used as a shorthand notation for Pryequency (Z1j, Tmy,. ). The factors in (??) are identical in pairs,
and taking this into account, (??) reduces to

Prosa = (D12 - Psa - s - Doa - Pra - Das)'®, (24)

which we easily see reduces to the naive Bayes formula in case of independence between all variables.

Let us now turn to the general derivation when d is even. Corresponding to the expression (?77), in the
first position, there are d(d — 1)/2 options. In the second position, we have used two variables, so there
are (d — 2)(d — 3)/2 pairs left to choose from, and so on. This means that the number of decompositions
consisting only of pairs of variables, is

g_dd=1) (d-2)(d-3) 2.1
= : 2l

because there are exactly d/2 factors in each such decomposition.

Denote each decomposition by g1, ...,gs. In the general version of (??) - (??), there are S - (d/2) factors in
total, but there are only d(d — 1)/2 pairs and thus unique factors after the approximation (after we drop the
conditioning). The number of times each factor occurs, then, is equal to

T No. of lines like those in eq. (??) x No. of factors in each line 25}2 4 gd—2)

No. of unique factors @ o 2d/2
We approximate p;...,, by taking the geometric mean of all the approximations g1, ..., gs:
s /8 ajaire N\ 2
o) ={1I @
j=1 j=1
This, in turn, simplifies because the individual pairwise probabilities comprising g1, ..., gs are repeated S
times each in the product above, so that we get the following estimator
5 1/8 1/8
o~}
ﬁpairwise Naive Bayes, even (mljl et xdjd) = H g;j = H pjl
ji=1 I<j<d
24/2 1
d! d—1
d(d—2)!
Py e —~
= I] 5,2 = II #u : (25)
1<j<d 1<j<d

This is not the geometric mean of the d(d — 1)/2 pairwise probabilities, but their product raised to the
(d — 1)~!st power, see (??) for the special case with d = 4. It is seen that this reduces to the product of
marginal probabilities under independence; i.e., naive Bayes, because each variable will be represented in
exactly d — 1 pairs each. Moreover, in case d = 2, it reduces to pio.

We now turn to the case when d is odd. This is very similar, but we have to include the marginal probabilities
into the formula. It is not difficult to show that in this case one ends up with
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(d—1)/2
S 1/8 dl/2(d=1)/2 2 /d!
Pprairwise Naive Bayes, odd (1'1]1; ce ’xdjd) - 9j - 9ij
j:l j:l
2(d=1/2 /q) 1/d
(@d-1n d (d—1)! / d /

_ ~a(d—1)/2 ~a(d—1)/2 _ o -~
= I 7 P; = II »u1l%s

j<i<d j=1 J<I<d j=1

(26)

The first product in the expression above is the same as in the even case, but with the exponent 1/d instead of
1/(d—1). The second product is in fact the geometric mean of the marginal probabilities. Under independence,
the first product contains each marginal probability d — 1 times (as before), and then each of them enter
once more in the second product. The exponent then cancels, and we are left with just the product of the
marginal probabilities, i.e. the naive Bayes formula.

It is important to realize that, unlike the naive Bayes, the pairwise approximations in (??) and (??) need not
be proper probability distributions, i.e. they may not sum to 1. To arrive at proper probability estimators,
one must normalize:

~
~ . ( ) ) ) _ PPairwise Naive Bayes, even ('lel s ’zdjd)
PPairwise Naive Bayes, even\L1j15 -+, Ldjg) = Zkl o de = ( ) )
li=1 la=1 Ppairwise Naive Bayes, even Lilys -+ -5 Tdly (27)
-~
~ o PPairwise Naive Bayes, Odd(mljl’ s 7xdjd)
PPairwise Naive Bayes, odd($1j1, cee ,J?djd) = % % >
SRR S (1t a,)
=1 la=1 Ppairwise Naive Bayes, odd\*'1l1s -+ -5 Ldlg

but as in the continuous case we have used the non-normalized quantities in discrimination ratios.

This procedure can clearly be generalized to consider products of (g) factors of trivariate probabilities for

dimensions d = 3d’ for some integer d’ (with some adjustments for d = 3d' + j, j = 1,2) and then taking the
(dgl)—root of this and normalize. Again this reduces to the right thing for d = 3 or in the independent case.
This can be generalized to higher order interactions.

It is not difficult to show that the pairwise naive Bayes estimators in (??) achieve the usual root-n asymptotic
normality property when compared to respectively ppairwise, even alld PPairwise, odd- Due to the notational
complexity of their construction, their asymptotic variance is also quite complicated and notationally
inconvenient to derive. We will therefore only sketch the derivation of the estimators’ asymptotic normality.
Since the estimators are both continuously differentiable functions (products and d-roots) of the various
p; and pj;, it suffices to show asymptotic normality for each of these, and applying the delta method.
Since both p; and pj; are sums of independent variables, it follows from the ordinary central limit theorem
for iid variables that /n(p; — p;) and /n(pj — pji) converge in distribution to zero-mean normals with
certain variances. Thus, zero-mean asymptotic normality of /7(Dpairwise Naive Bayes, even — PPairwise,even) and
/1 (DPPairwise Naive Bayes, odd — PPairwise, odd) follows by the delta method. In the general case, where the
dependence between the variables takes a more complicated structure than the pairwise, these estimators will
be biased.

One potential problem in this context is the possibility of empty pairwise cells. This phenomenon is likely to
appear more often as the number of variables increases, and poses a particular problem in the discrimination
setting because it may happen that the two posterior class probability estimates both equal zero because of
this, regardless of the values of the other pairwise probability estimates. In order to avoid this we suggest to
simply «add e observations» to the empty variable pairs in the training data where € € (0,1). At present we
have used an ad hoc solution in choosing € = 1/2, resulting in replacing pairwise empirical frequencies of 0
with 1 /n.
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7 The mixed continuous-discrete case

So far we have considered the situations where all variables that ought to be used for discrimination are
either continuous or discrete. In the present section we discuss the situation where we have both variable
types present at once.

The simplest solution to handle mixed data types is to treat the continuous and discrete variables separately.
Within each class of the classification problem one could then choose ones favorite procedure for modeling
the continuous variables, and vice versa for the discrete ones — for instance, respectively, via our pairwise
Fisher and pairwise naive Bayes approaches. Assuming independence between the continuous and discrete
set of variables allows multiplying estimated distributions together, giving an estimate which can be used for
classification as described earlier. However, this independence assumption is too drastic in most situations.

Our take on this is to take dependence between continuous and discrete variables into consideration by
first modeling the continuous variables with the LGDE approach in Section 7?7, and then conditioned on
the continuous variables set up a logistic, log-linear or even generalized additive model (GAM), c¢f. ?. To
clarify notation, let us use X¢ and z° for the d.-dimensional continuous data, and similarly X? and z¢ for
the d4-dimensional discrete data. Assuming dg > 2, if ¢(u) is a link function; e.g. ¢(u) = log(u/(1 — u)),
then for an observed continuous d.-dimensional 2° with u = p,;, s;, one can model ¢(p,j, s;,) linearly as

de
(b(pi'f’rasjs) = ﬁg]“sjs + Z /8;jT78j5$5’ (28)
j=1
or additively as
de
¢<prj7-,sjs) _ h6]7~75]s + Z h;]Tysjs (953) (29)
j=1

The unknown 3 parameters can be estimated by maximum likelihood using a GLM software package, and in
the additive case the h;s can be estimated by e.g. the mgcv-package (?) in the R programming language (7).
Note that if the dimension of x¢ is large, which is likely in e.g. fraud applications, then one may consider
(ridge or lasso type of) regularized logistic regression (7, Ch. 5). We obtain estimates of marginal probabilities
Prj. (x) by using p,;,. (z) = Zfszl Drij..sj. (€). If there is only a single discrete variable (dg = 1), then ¢(p,;,.)
is modeled directly in the same manner as ¢(p,j, s;,) above. In the training phase this should be done
separately for the K training sets. In case there is no dependence on continuous variables the estimate of the
intercept By or ho will be close to a ¢-transformation of p,;, sj. = nrj,. sj. /M-

Once we have estimated the z°-dependent probabilities p(x¢; |2¢) and p(zf; .; |2¢), we compute the corre-
sponding (unnormalized) probability Pp,iwise Naive Bayes, k(14,5 - - - » T4, [2) using the procedure of Section

??. The pairwise estimator of the class distributions for mixed data is finally completed by multiplying with
the estimate of the continuous density, i.e.:

fPairwise, mixed, k = ﬁPairwise naive Bayes, k(x{fjl? te 7x:11jd |xc)fLGDE,k(xc)' (30)

By obtaining estimates of the a priori probabilities m, we may proceed to perform the classification task
through a straightforward application of the Bayes rule as in (?7?).

8 Illustrations in the discrete and mixed case

8.1 Simulations in the discrete case

One way to explore the finite sample properties of the pairwise discrete probability estimator in a classification
setting is to set up a simulation experiment in the same way as we did in the continuous case in Section 77,
where we gradually increase the number of variables. We shall consider two different types of problems, which
have fundamental similarities to Problem 3 for the continuous case:
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Figure 7: Simulation results for discrete problem 2: Two discretized Clayton populations with having weak
and strong dependence, respectively.

« Discrete problem 1: We define two continuous populations both being marginally standard normal,
but having two different dependence structures defined by the Clayton copula (?) with two different
parameter values: 6 = 0.1 (weak dependence between the variables) and § = 2 (strong dependence
between the variables). Then we discretize these observation by assuming that we only observe the sign
of them: —1 or 1.

e Discrete problem 2: We complicate the discrimination task between the populations in discrete
problem 1 in two ways: 1) We reduce the dependence between the variables in the second population by
setting § = 0.9 (while keeping # = 0.1 in the first population.) 2) We discretize the continuous variables
into three categories instead of two, —1, 0 and 1 by placing the boundaries between the categories in
such a way that all marginal distributions in both populations are uniform.

Since the marginals for the two populations are equal in both illustrations, there is no point in trying to
discriminate between the populations by looking only at marginal probabilities and using the naive Bayes.
We must, one way or the other, extract discriminatory information from the dependence between variables.
We shall compare the following three discriminants:

1. Estimate p;__q using empirical frequencies as in (?7?), proceed via Bayes formula (??), and carry out
the discrimination according to (?7).

2. Calculate conditional class probabilities directly using the smoothing algorithm in (??), implemented in
the np-package.

3. Estimate pi.. 4 using our pairwise probability approximation in (??) and (??), proceed via Bayes
formula in (??), and carry out the discrimination according to (?7?).

We evaluate the discriminants using the AUC and Brier scores as we did in Section ?77.

Consult Figure 7?7 for the results of discrete problem 1. We have allowed the dimension of the problem to
range from 2 to 12. We see clearly that the curse of dimensionality ruins the joint empirical frequencies
from dimension 5 or 6, depending a little bit on the sample size. The NP-estimator as well as the pairwise
probability estimates, on the other hand, perform much better, the latter of which having a slight advantage
in this case.
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Figure 8: Simulation results for discrete problem 2: Two three-category discretized Clayton populations with
having weak and not-as-strong dependence, respectively.
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Figure 9: Simulation results for the mixed example: Two Clayton populations where every other variable is
discretized.
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We present the results of discrete problem 2 in Figure 7?7, where we see the total collapse of the empirical
frequencies, as well as evidence suggesting that the two alternatives are useful discriminants in all dimensions,
again with an advantage given to the pairwise procedure.

8.2 Simulations in the mixed variable case

To accompany the simulations for the situation with purely discrete variables, let us consider a simulation
experiment with mixed variables, where we again explore the performance while gradually increasing the
dimension of the variables in the two class distributions. We do this by modifying Discrete problem 1 in
the preceding subsection as follows:

e Mixed problem: We generate continuous variables in the same way as in Problem 1 in Section 77?.
To create mixed variables, we discretize every other variable: Variables 2,4, ... are converted to the
categories —1 or 1 corresponding to their sign.

We can no longer use empirical frequencies directly when there are continuous variables present. We could,
of course, construct a naive estimate of the posterior probabilities in the mixed case by multiplying the
naive Bayes, or joint kernel estimates, with empirical frequencies. However, given our findings in earlier
illustrations, we have little hope in producing good classification from such a procedure, so we choose not to
implement it here. We are rather left with two options:

1. The ? method for computing conditional probabilities and densities directly.
2. Our pairwise procedure for combining locally Gaussian density estimates with the pairwise frequency
approach as in (??), using the logistic regression (??) or the generalized additive model (?7).

The results in the mixed case are presented in Figure ??7. We have used the logistic regression approach for
n = 100 in order to ensure numerical stability, but switch to the GAM when n = 500. The two methods
perform comparably in terms of both error measures, but our new method is again slightly better with
increasing dimension. We must note here though that the ? method for estimating conditional probabilities
is not tuned specifically towards discrimination.

8.3 Illustration: Fraud detection

In this section we build further on the fraud detection example in Section 7?7, by including seven discrete
variables in addition to the three continuous ones. The number of training observations in each of the
categories are shown in Table ?7?7. Category 1 of discrete variable 1 seems to be a decent indicator of a
suspicious transaction. Apart from that, there seems to be little information in the variables when looking at
them one by one, but there may of course be crucial patterns appearing when combining them both with each
other and with the continuous variables from Section ??7. We will check the performance of the discriminants
used in the above simulation experiments on the test data, both when using only the discrete variables, and
when combining the two data types. We use the same validation scheme as in Section 7?7, validating the
performance using AUC and Brier scores on 100 repeated training/test splits of the full data set.

8.3.1 Discrete variables only

For illustrative purposes, we first allow the discriminants to use the seven discrete variables only. The
performance results from the various discriminants on the test set are shown in Table ??7. As seen from the
table, our Pairwise probabilities approach and the NP approach perform essentially equally well, both for the
AUC and the Brier score. By carefully looking at the confidence intervals, our pairwise probabilities method
has slightly superior bounds, but this is highly uncertain. These two methods are anyway clearly superior to
the joint empirical frequencies method.
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Disc var 1 # Suspicious # Legitimate

Category 1 188 492 Disc var 4  # Suspicious # Legitimate
Category 2 1 40 Category 1 94 259
Category 3 32 437 Category 2 175 454
Category 4 8 9 Category 3 0 7
Category 5 9 76 Category 4 8 5
Category 6 16 60 Category 5 4 5
Category 7 27 66

Disc var 2 # Suspicious # Legitimate Disc var 5 # Suspicious # Legitimate
Category 1 255 724 Category 1 5 27
Category 2 26 6 Category 2 276 703

Disc var 6 # Suspicious # Legitimate

Disc var 3 # Suspicious # Legitimate

Category 1 7 16
Category 1 35 93 Category 2 17 6
Category 2 246 637 Category 3 252 697
Category 4 5 11

Disc var 7 # Suspicious # Legitimate

Category 1 14 88
Category 2 267 642

Table 3: Share of observations in the different categories for the seven discrete variables in the money
laundering fraud detection example.

8.3.2 Mixed variables

In this section we allow the discriminants to use both the three continuous variables and the seven discrete
variables. The performance results for the three discriminants accessible in this setting are shown in Table
?7?. As seen from the table, the NP method seems to be the best performing method in terms of both AUC
and the Brier score. The confidence interval for the AUC does, however, overlap with that of the GLM based
pairwise probability approach, so the results are not fully conclusive in this manner. This is not the case for
the Brier score. One possible reason that the GAM based version of the pairwise probability approach is not
performing as well here, is that it might be overfitting the dependence between the discrete and continuous
variables.

9 Summary remarks

We have demonstrated how the two standard discriminants, the Fisher and the naive Bayes, can be extended
by a (pairwise) local Gaussian Fisher discriminant and by a geometric mean of pairwise probabilities,
respectively, for continuous and discrete variables. For the mixed case, we merge the two approaches and
handle dependence between the two variable types with a logistic regression type approach. The performance
of the new discriminants have been compared to the ordinary Fisher and naive Bayes discriminant as well as
to a nonparametric discriminant based on the kernel density estimator in the continuous case, and NP-filtered
probability estimators considered by ? in the discrete and mixed distribution case. Our experiments show
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Joint empirical frequencies NP Pairwise probabilities

AUC  0.833 [0.828, 0.838] 0.857 [0.853, 0.861]  0.858 [0.855, 0.862]
Brier  0.126 [0.123, 0.128] 0.112 [0.111, 0.114]  0.112 [0.110, 0.113]

Table 4: Results using the seven discrete variables in the money laundering fraud detection example. 95%
confidence intervals are shown in brackets.

NP Pairwise probabilities (GLM) Pairwise probabilities (GAM)
AUC  0.979 [0.977, 0.980]  0.969 [0.967, 0.972] 0.944 [0.940, 0.947]
Brier  0.048 [0.0464, 0.0496] 0.051 [0.0492, 0.0529] 0.0766 [0.0738, 0.0794]

Table 5: Results using three continuous variables and seven discrete variables in the money laundering fraud
detection example. 95% confidence intervals are shown in brackets.

significant improvements compared to the two classic discriminants, and also good performance results
compared to the nonparametric alternatives.

There is a substantial potential for further research and modifications. For instance, we have ignored the
normalization issue in computing discrimination ratios. Further, in the discrete case, we have only worked
with unordered categorical variables, while extensions to ordered categorical variables or numerically-valued
discrete data would clearly also be of interest. The method for replacing zeros in the estimated discrete
pairwise probabilities also warrant a more systematic investigation. One possibility is a variant of the
NP-filtering of ? applied to the initial pairwise probabilities. Bagging and boosting (?) being general methods
for potential improvements of discriminants, may also represent a possible direction for improvement.

Finally, the purpose and motivation for the paper has not been to invent the ultimately best discriminant in
every situation, but merely to extend two classical discriminants in a coherent way. This is also the reason
for comparing our methods to the most natural statistically founded alternatives — as opposed to comparing
them to top notch algorithmic methods in the machine learning literature, which often require specification
of long lists of tuning parameters. It would, however, be interesting to see whether our approaches, being
built on completely different grounds, can utilize the data differently than those methods, and therefore bring
something new to the table. If this is indeed the case, combining the different flavored discriminants, for
instance by an ensemble method from 7, seems like a promising approach.

Acknowledgment: We are grateful to two anonymous referees for constructive comments.
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