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Boolean functions, and bent functions in particular, are 
considered up to so-called EA-equivalence, which is the most 
general known equivalence relation preserving bentness of 
functions. However, for a special type of bent functions, so-
called Niho bent functions there is a more general equivalence 
relation called o-equivalence which is induced from the 
equivalence of o-polynomials. In the present work we study, 
for a given o-polynomial, a general construction which 
provides all possible o-equivalent Niho bent functions, and 
we considerably simplify it to a form which excludes EA-
equivalent cases. That is, we identify all cases which can 
potentially lead to pairwise EA-inequivalent Niho bent 
functions derived from o-equivalence of any given Niho 
bent function. Furthermore, we determine all pairwise EA-
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inequivalent Niho bent functions arising from all known o-
polynomials via o-equivalence.

© 2021 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Boolean functions of n variables are binary functions over the vector space Fn
2 of all 

binary vectors of length n, and can be viewed as functions over the Galois field F2n, 
thanks to the choice of a basis of F2n over F2. In this paper, we shall always have this 
last viewpoint. Boolean functions are used in the pseudo-random generators of stream 
ciphers and play a central role in their security.

Bent functions, introduced by Rothaus [36] in 1976, are Boolean functions having 
an even number of variables n, that are maximally nonlinear in the sense that their 
nonlinearity, the minimum Hamming distance to all affine functions, is optimal (for 
more information on bent functions see, for instance, [13]). This corresponds to the fact 
that their Walsh transform takes the values ±2n/2, only. Bent functions have attracted 
a lot of research interest in mathematics because of their relation to difference sets and 
to designs, and in the applications of mathematics to computer science because of their 
relations to coding theory and cryptography. Despite their simple and natural definition, 
bent functions admit a very complicated structure in general. An important focus of 
research is to find constructions of bent functions. Many methods are known and some of 
them allow explicit constructions. We distinguish between primary constructions giving 
bent functions from scratch and secondary constructions building new bent functions 
from one or several given bent functions (in the same number of variables or in different 
ones).

Boolean functions, and bent functions in particular, are considered up to so-called EA-
equivalence, which is the most general known equivalence relation preserving bentness 
of functions [4,5].

Bent functions are often better viewed in their bivariate representation, in the form 
f(x, y), where x and y belong to Fm

2 or to F2m , where m = n/2. This representation has 
led to the general families of explicit bent functions which are the original Maiorana-
McFarland class [30], the Partial Spreads (PSap) class and its generalizations to other 
spreads from finite geometry (see a survey in Subsection 6.1.15 of [10]); these latter 
classes are included in the more general but less explicit PS class, which is itself in-
cluded in the GPS class. Bent functions can also be viewed in their univariate form, 
expressed by means of the trace function over F2n . Finding explicit bent functions in 
this trace representation is usually more difficult than in the bivariate representation. 
References containing information on explicit primary constructions of bent functions in 
their bivariate and univariate forms are [10,11,25]. It is well known that some of these 
explicit constructions belong to the Maiorana-McFarland class and to the PSap class. 

http://creativecommons.org/licenses/by/4.0/
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When, in the early 1970s, Dillon introduced in his thesis [18] the two above mentioned 
classes, he also introduced another one denoted by H, where bentness was proven under 
some conditions which were not obvious to achieve. This made class H an example of 
a non-explicit construction: at that time, Dillon was able to exhibit only functions be-
longing, up to the affine equivalence (which is a particular case of EA-equivalence), to 
the Maiorana-McFarland class.

It was observed in [12] that the class of the, so called, Niho bent functions (introduced 
in [19] by Dobbertin et al.) is, up to EA-equivalence, equal to the Dillon’s class H. Note 
that functions in class H are defined in their bivariate representation and Niho bent 
functions had originally a univariate form only. Three infinite families of Niho binomial 
bent functions were constructed in [19] and one of these constructions was later gener-
alized by Leander and Kholosha [26] into a function with 2r Niho exponents. Another 
class was also extended in [20]. In [7] it was proven that some of these infinite families 
of Niho bent functions are EA-inequivalent to any Maiorana-McFarland function which 
implied that classes H and Maiorana-McFarland are different up to EA-equivalence.

In the same paper [12], the authors also showed that Niho bent functions define o-
polynomials and, conversely, every o-polynomial defines a Niho bent function. They also 
discovered that a given o-polynomial F can produce two different (up to EA-equivalence) 
Niho bent functions, namely, the ones derived from F and its inverse F−1. Since taking 
the inverse of an o-polynomial is a particular case of the equivalence of o-polynomials, 
a natural question was to explore this equivalence for the construction of further EA-
inequivalent cases of Niho bent functions. The first work in this direction was done in 
[8] where the group of transformations (introduced in [15]) of order 24 preserving the 
equivalence of o-polynomials was studied for relation to EA-equivalence. It was shown 
that these transformations can lead to up to four EA-inequivalent functions including 
those derived from an o-polynomial and its inverse. That is, two new transformations 
which can potentially provide EA-inequivalent functions from a given o-polynomial were 
discovered. Hence, application of the equivalence of o-polynomials can be considered as 
a construction method for new (up to EA-equivalence) Niho bent functions from the 
known ones.

Note that the group of transformations from [15] does not cover all possible transfor-
mations within equivalence of o-polynomials. A more general group of transformations, 
so-called the Magic action, was presented in [21], which is an action of a group of transfor-
mations acting on projective line on the set of o-permutations. In this paper we study the 
modified Magic action, a transformation of o-polynomials preserving projective equiva-
lence. We show that o-polynomials are projectively equivalent if and only if they lie on 
the same orbit under the modified Magic action and the inverse map. Further we prove 
that, for a given o-polynomial, EA-inequivalent Niho bent functions can arise only from 
a specific formula involving particular compositions of transformations of the modified 
magic action and the inverse map. We show that each o-monomial can define up to four 
EA-inequivalent bent functions. We prove, for instance, that the Pyne hyperoval can 
give rise to EA-inequivalent Niho bent functions defined by o-polynomials which lie on 
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3 different orbits of the modified Magic action. For each of the known o-polynomials 
we provide an explicit number of pairwise EA-inequivalent Niho bent functions which 
can be derived via o-equivalence. Moreover, we give an explicit description (involving 
transformations of the modified magic action and the inverse map) of all o-polynomials 
providing pairwise EA-inequivalent Niho bent functions.

The paper is organized as follows. In Section 2 we recall necessary background, in 
Section 3 we define Niho bent functions via o-polynomials and vice versa. In Section 4 we 
prove that the affine equivalence of o-polynomials yields in some cases the EA-equivalence 
of the corresponding Niho bent functions. The known fact that every o-polynomial on 
F2m necessarily defines a vectorial Niho bent function from F22m to F2m can be seen as 
a corollary. In Section 5 the modified magic action is introduced and it is proven that 
potentially EA-inequivalent Niho bent functions can arise from o-polynomials which lie 
on the same orbit under the modified Magic action and the inverse map. The main 
results of the paper are contained in Sections 6 and 7, where we obtain an exact form of 
the orbit on which o-polynomials should lie to produce potentially EA-inequivalent Niho 
bent functions. For each of the known o-polynomials we provide the explicit number and 
representations for all equivalent o-polynomials which provide pairwise EA-inequivalent 
Niho bent functions.

2. Notation and preliminaries

2.1. Trace representation, Boolean functions in univariate and bivariate forms

For any positive integer k and any r dividing k, the trace function Trkr is the mapping 
from F2k to F2r defined by

Trkr (x) :=
k
r −1∑
i=0

x2ir

= x + x2r

+ x22r
+ · · · + x2k−r

.

In particular, the absolute trace over F2k is the function Trk1(x) =
∑k−1

i=0 x2i (in what 
follows, we just use Trk to denote the absolute trace). Recall that the trace function 
satisfies the transitivity property Trk = Trr ◦ Trkr .

The univariate representation of a Boolean function is defined as follows: we identify 
Fn

2 (the n-dimensional vector space over F2) with F2n and consider the arguments of f
as elements in F2n . An inner product in F2n is x · y = Trn(xy). There exists a unique 
univariate polynomial 

∑2n−1
i=0 aix

i over F2n that represents f (this is true for any vectorial 
function from F2n to itself and therefore for any Boolean function since F2 is a subfield 
of F2n). The algebraic degree of f is equal to the maximum 2-weight of the exponents 
of those monomials with nonzero coefficients in the univariate representation, where the 
2-weight w2(i) of an integer i is the number of ones in its binary expansion. Moreover, 
f being Boolean, its univariate representation can be written uniquely in the form of



D. Davidova et al. / Finite Fields and Their Applications 72 (2021) 101834 5
f(x) =
∑
j∈Γn

Tro(j)(ajxj) + a2n−1x
2n−1 ,

where Γn is the set of integers obtained by choosing the smallest element in each cy-
clotomic coset modulo 2n − 1 (with respect to 2), o(j) is the size of the cyclotomic 
coset containing j, aj ∈ F2o(j) and a2n−1 ∈ F2. The function f can also be written in a 
non-unique way as Trn(P (x)) where P (x) is a polynomial over F2n .

The bivariate representation of a Boolean function is defined in this paper as follows: 
we identify Fn

2 with F2m × F2m (where n = 2m) and consider the argument of f as 
an ordered pair (x, y) of elements in F2m . There exists a unique bivariate polynomial ∑

0≤i,j≤2m−1 ai,jx
iyj over F2m that represents f . The algebraic degree of f is equal to 

max(i,j) | ai,j �=0(w2(i) +w2(j)). And f being Boolean, its bivariate representation can be 
written in the form f(x, y) = Trm(P (x, y)), where P (x, y) is some polynomial of two 
variables over F2m .

Remark 1. Let g(x, y) be a Boolean function over F2m × F2m . Then one can get a uni-
variate representation of g making the following substitutions:

x = t + t2
m

and y = αt + (αt)2
m

,

where α is a primitive element of F22m .

2.2. Walsh transform and bent functions

Let f be an n-variable Boolean function. Its “sign” function is the integer-valued 
function χf := (−1)f . The Walsh transform of f is the discrete Fourier transform of χf

whose value at point w ∈ F2n is defined by

χ̂f (w) =
∑

x∈F2n

(−1)f(x)+Trn(wx) .

For even n, a Boolean function f in n variables is said to be bent if for any w ∈ F2n

we have χ̂f (w) = ±2n
2 .

It is well known (see, for instance, [11]) that the algebraic degree of a bent Boolean 
function in n > 2 variables is at most n2 .

Bentness and algebraic degree (when larger than 1) are preserved by extended-affine 
(EA-) equivalence. Two Boolean functions f and g in n variables are called EA-equivalent
if there exists an affine permutation A of F2n and an affine Boolean function � such that 
f = g ◦ A + �. If l = 0 then f and g are called affine equivalent. In the case of vectorial 
functions there exists a more general notion of equivalence, called CCZ-equivalence, but 
for Boolean functions, it reduces to EA-equivalence, see [4] (as well as for bent vectorial 
functions [5]).
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Two functions F and F ′ from F2n to itself are called EA-equivalent if A1 ◦F ◦A2 +A

for some affine permutations A1 and A2 and for some affine function A. If A = 0 then 
F and F ′ are called affine equivalent.

For positive integers n and t, a vectorial Boolean function F from Fn
2 to F t

2 is called 
bent if for any a ∈ Fn

2 \ {0} the Boolean function a · F (x) is bent. Bent functions exist 
if and only if n is even and t ≤ n/2 (see [31]).

2.3. Projective plane, ovals, hyperovals

In the following we give a short introduction to the projective plane. We refer to [17]
for a detailed introduction to projective geometry. A projective plane consists of a set of 
points P , a set of lines L, and an incidence relation I between P and L. The classical 
projective plane PG(2, q) over F3

q has the 1-spaces of F3
q as points and the 2-spaces of F3

q

as lines. A point p is contained in a line � if p ⊆ � in F3
q . A set of points is called collinear

if they all lie on the same line. Note that PG(2, q) has q2 + q + 1 points, q2 + q + 1 lines, 
each line contains q + 1 points, and each point lies in q + 1 lines. The group PΓL(3, q)
acts naturally on PG(2, q). In particular, it preserves incidence.

Let O be a set of points in PG(2, q) such that no three points are collinear. It is 
well-known that |O| ≤ q + 1 if q is odd and |O| ≤ q + 2 is q is even. One can see this as 
follows: Consider a point P ∈ O. Each of the q+1 lines on P contains at most one more 
points, so |O| ≤ q + 2. Suppose that equality holds. Then each line contains either 0 or 
2 points. Consider a point R ∈ O. Then there are s lines through R with 2 points and 
q + 1 − s lines through R with 0 points. Hence, q + 2 = 2s, so q is even.

Call a line � passant, tangent, respectively, secant if |� ∩O| = 0, |� ∩O| = 1, respectively, 
|� ∩O| = 2. If |O| = q + 1, then O is called an oval. From the argument above it follows 
that in this case each point of O lies on exactly one tangent and q secants. For q even 
these secants all meet in one point N , the nucleus of O. If |O| = q+2, then O is called a 
hyperoval and we usually write H instead of O. If |O| = q + 1 and q even, then O∪{N}
is a hyperoval.

In the following we limit ourselves to q = 2m even.
A frame of PG(2, q) is a set of four points P = {P1, P2, P3, P4} such that any 3-subset 

of P spans F3
q . The fundamental theorem of projective geometry (for projective planes) 

states that PΓL(3, q) acts transitive on frames. As any four points of a hyperoval H are 
a frame, we can assume that an oval O contains 〈(1, 0, 0)〉, 〈(0, 0, 1)〉, 〈(1, 1, 1)〉 ∈ O and 
has 〈(0, 1, 0)〉 as its nucleus. In the following we usually leave out the brackets 〈·〉 for the 
sake of readability. Hence, we can write O as

O = {(x, F (x), 1) : x ∈ F2m} ∪ {(1, 0, 0)},

where the polynomial F satisfies the following:
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(a) F is a permutation polynomial over F2m of degree at most q− 2 satisfying F (0) = 0
and F (1) = 1.

(b) For any s ∈ F∗
2m the function

Fs(x) :=
{

F (x+s)+F (x)
x if x 
= 0,

0 otherwise

is a permutation polynomial. Here and further int he paper we denote F∗
2m = F2m \

{0}.

Such a polynomial F is called an o-polynomial and, conversely, each o-polynomial defines 
an oval. If we do not require F (1) = 1, then F is called an o-permutation. We write O(F )
for the oval defined by the o-polynomial F , and we write H(F ) for the hyperoval defined 
by F .

Note that throughout this paper O consists of points of the form (x, F (x), 1), while 
in the hyperplane literature, usually the form (1, x, f(x)) is used.

For a hyperoval H we have 2m + 2 choices for the nucleus N ∈ H to obtain an oval 
H\{N}. Hence, each hyperoval H defines 2m + 2 o-polynomials. Two o-polynomials are 
called (projectively) equivalent, if they define equivalent hyperovals (under the natural 
action of PΓL(3, q)).

2.4. Niho bent functions

A positive integer d (always understood modulo 2n − 1 with n = 2m) is a Niho 
exponent and t → td is a Niho power function if the restriction of td to F2m is linear 
or, equivalently, if d ≡ 2j (mod 2m − 1) for some j < n. As we consider Trn(atd)
with a ∈ F2n , without loss of generality, we can assume that d is in the normalized 
form, i.e., with j = 0. Then we have a unique representation d = (2m − 1)s + 1 with 
2 ≤ s ≤ 2m. If some s is written as a fraction, this has to be interpreted modulo 2m + 1
(e.g., 1/2 = 2m−1 + 1). Following are examples of bent functions consisting of one or 
more Niho exponents:

1. Quadratic function Trm(at2m+1) with a ∈ F∗
2m (here s = 2m−1 + 1).

2. Binomials of the form f(t) = Trn(α1t
d1 + α2t

d2), where 2d1 ≡ 2m + 1 (mod 2n − 1)
and α1, α2 ∈ F∗

2n are such that (α1 + α2m

1 )2 = α2m+1
2 . Equivalently, denoting a =

(α1 + α2m

1 )2 and b = α2 we have a = b2
m+1 ∈ F∗

2m and

f(t) = Trm(at2
m+1) + Trn(btd2).

We note that if b = 0 and a 
= 0 then f is a bent function listed under number 1. 
The possible values of d2 are [19,20]:
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d2 = (2m − 1)3 + 1,

6d2 = (2m − 1) + 6 (taking m even).

These functions have algebraic degree m and do not belong to the completed 
Maiorana-McFarland class [7].

3. Take 1 < r < m with gcd(r, m) = 1 and define

f(t) = Trn

(
a2t2

m+1 + (a + a2m

)
2r−1−1∑

i=1
tdi

)
, (1)

where 2rdi = (2m−1)i +2r and a ∈ F2n is such that a +a2m 
= 0 [26,27]. This function 
has algebraic degree r+1 (see [6]) and belongs to the completed Maiorana-McFarland 
class [14].

4. Bent functions in a bivariate representation obtained from the known o-polynomials.

Consider the listed above two binomial bent functions. If gcd(d2, 2n − 1) = d and 
b = βd for some β ∈ F2n then b can be “absorbed” in the power term td2 by a linear 
substitution of variable t. In this case, up to EA-equivalence, b = a = 1. In particular, 
this applies to any b when gcd(d2, 2n − 1) = 1 that holds in both cases except when 
d2 = (2m − 1)3 + 1 with m ≡ 2 (mod 4) where d = 5. In this exceptional case, we can 
get up to 5 different classes but the exact situation has to be further investigated.

3. Class H of bent functions and o-polynomials

Here we restrict ourselves with fields F2n with n even, n = 2m.
In his thesis [18], Dillon introduced the class of bent functions denoted by H. The 

functions in this class are defined in their bivariate form as

f(x, y) = Trm(y + xF (yx2m−2)),

where x, y ∈ F2m , and

• F is a permutation of F2m s.t. F (x) + x doesn’t vanish,
• for any β ∈ F∗

2m the function F (x) + βx is 2-to-1.

Dillon was able to exhibit bent functions in H that also belong to the completed 
Maiorana-McFarland class. Dillon’s class H was modified in [12] into a class H of the 
functions:

g(x, y) =
{

Trm

(
xG

(
y
x

))
, if x 
= 0

Trm(μy), otherwise
(2)

where μ ∈ F2m , G : F2m → F2m satisfying the following conditions:



D. Davidova et al. / Finite Fields and Their Applications 72 (2021) 101834 9
F : z → G(z) + μz is a permutation over F2m , (3)

z → F (z) + βz is 2-to-1 on F2m for any β ∈ F∗
2m . (4)

Here condition (4) implies condition (3) and it is necessary and sufficient for g being bent. 
Functions in H and the Dillon class are the same up to addition of a linear term Trm((μ +
1)y) to (2). Niho bent functions are functions in H in their univariant representation.

Theorem 1 ([12]). A polynomial F on F2m satisfying F (0) = 0 and F (1) = 1 is an 
o-polynomial if and only if

z → F (z) + βz is 2-to-1 on F2m for any β ∈ F∗
2m . (5)

Hence, obviously every o-polynomial defines a Niho bent function. And vice versa, 
every Niho bent function defines an o-polynomial since it defines a polynomial F satis-
fying condition (5) of Theorem 1, and we can derive an o-polynomial F ′(x) = F (x)+F (0)

F (1)+F (0)
which fixes the requirements F ′(0) = 0 and F ′(1) = 1. Note that to get a Niho bent 
function from a polynomial F it is sufficient that F satisfies only condition (5) while the 
conditions F (0) = 0 and F (1) = 1 are not necessary.

In Section 2.3 we saw that each o-polynomial corresponds to a hyperoval and vice 
versa, each hyperoval corresponds to an o-polynomial. We say that Niho bent functions 
are o-equivalent if they define projectively equivalent hyperovals. As shown in [8,12], 
o-equivalent Niho bent functions may be EA-inequivalent. For example, Niho bent func-
tions defined by o-polynomials F and F−1 are o-equivalent but they are, in general, 
EA-inequivalent.

Here is the list of all known o-polynomials (we also give names of the corresponding 
hyperovals):

1. F (x) = x2, regular hyperoval;
2. F (x) = x2i

, i and m are coprime, i > 1, irregular translation hyperoval;
3. F (x) = x6, m is odd, Segre hyperoval;
4. F (x) = x3·2k+4, m = 2k − 1, Glynn I ;
5. F (x) = x2k+22k

, m = 4k − 1, Glynn II ;
6. F (x) = x22k+1+23k+1

, m = 4k + 1, Glynn II ;
7. F (x) = x2k

+ x2k+2 + x3·2k+4, m = 2k − 1, Cherowitzo hyperoval;
8. F (x) = x

1
6 + x

1
2 + x

5
6 , m is odd, Payne hyperoval;

9. F (x) = δ2(x4 + x) + δ2(1 + δ + δ2)(x3 + x2)
x4 + δ2x2 + 1 + x

1
2 ,

where Trm(1
δ ) = 1 (if m ≡ 2 (mod 4), then δ /∈ F4), Subiaco hyperoval (for m = 4

also known as Lunelli-Sce hyperoval);
10. F (x) = 1

Trnm
(v)

(
Trnm(vr)(x + 1) + (x + Trnm(v)x 1

2 + 1)1−rTrnm(vx + v2m

)r
)

+ x
1
2 , 

where m is even, r = ±2m−1 , v ∈ F22m , v2m+1 
= 1, v 
= 1, Adelaide hyperoval;
3
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11. F (x) = x4 + x16 + x28 + ω11(x6 + x10 + x14 + x18 + x22 + x26) + ω20(x8 + x20) +
ω6(x12 + x24) with ω5 = ω2 + 1 and m = 5, O’Keefe-Penttila hyperoval.

Note that an o-polynomial F defined on F2m has the following form [17]:

F (x) =

2m−2
2∑

k=1

b2kx
2k.

A comprehensive survey on the class H, bent functions and o-polynomials can be 
found in [29], Chapter 8.

4. Vectorial Niho bent functions from o-polynomials

It is known since 2011 that every o-polynomial defines a Boolean Niho bent function 
[12]. In this section, we revisit the fact that, actually, every o-polynomial on F2m defines a 
vectorial Niho bent function from F2m ×F2m to F2m . This connection has been originally 
observed in [28]. In the present paper, we derive this result by studying some simple 
transformations of o-polynomials.

Below we show that in some cases, affine equivalence of o-polynomials yields EA-
equivalence of the corresponding Niho bent functions. Note that in general if a function 
F ′ is affine equivalent to an o-polynomial F then F ′ is not necessarily an o-polynomial.

Lemma 1. Let F be an o-polynomial defined on F2m and a, b ∈ F∗
2m . Then G(x) = aF (bx)

is an o-polynomial on F2m if and only if a = 1
F (b) (or, what is the same, b = F−1(a−1)). 

The Niho bent functions defined by the o-polynomials F and G = 1
F (b)F (bx) are affine 

equivalent.

Proof. Suppose G(x) = aF (bx) is an o-polynomial, then G(0) = aF (0) = 0 for any 

a, b ∈ F2m and 1 = G(1) = aF (b), hence G is an o-polynomial if and only if a = 1
F (b) .

The Niho bent function corresponding to the o-polynomial F is f(x, y) = Trm(xF ( yx )), 
and the one corresponding to G is

g(x, y) = Trm(xG(y
x

)) = Trm(xaF (b y
x

)) = Trm(xaF (abyax )) = Trm(vF (uv )),

where v = ax, u = aby. Hence, g = f ◦A with A(x, y) = (ax, aby), and, therefore, f and 
g are affine equivalent. �
Corollary 1. For every o-polynomial F defined on F2m the function xF ( yx ) from F2m×F2m

to F2m is bent. That is, every o-polynomial on F2m defines a vectorial Niho bent function 
xF ( y ) from F2m × F2m to F2m .
x
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Proof. From Lemma 1 we have that for a given o-polynomial F and any a ∈ F∗
2m

the function g(x, y) = Trm(axF ( byx )) is Niho bent where b = F−1(a−1). Then the 
function ḡ(x, y) = Trm(axF ( yx )) is also bent since g and ḡ are affine equivalent, that is, 
g = ḡ ◦A with A(x, y) = (x, by), and clearly, such a transformation A keeps ḡ as a Niho 
function. �
Lemma 2. Let F be an o-polynomial on F2m and A(x) = x2j be an automorphism over 
F2m . Then the Niho bent functions defined by o-polynomials F and G = A ◦F ◦A−1 are 
affine equivalent.

Proof. Obviously if F is an o-polynomial, then G(x) = (F (x2−j ))2j is also an o-
polynomial.

Consider the Niho bent function defined by G:

g(x, y) = Trm

(
xG

(y
x

))
= Trm

(
xA ◦ F ◦A−1

(y
x

))
=

Trm

(
x
(
F
((y

x

)2−j))2j)
= Trm

(
x2−j

F
((y

x

)2−j))
= Trm

(
uF

( v
u

))
,

where u = x2−j and v = y2−j . Thus, f and g are affine equivalent (g = f ◦ A with 
A(x, y) = (x, y)2−j ). �
Lemma 3. Let F be an o-polynomial on F2m and A1(x) = x + a and A2(x) = x + b for 
a, b ∈ F2m . Then G = A1 ◦F ◦A2 is an o-polynomial on F2m if and only if b = F (a) and 
F (a + 1) + F (a) = 1. Furthermore, the Niho bent functions defined by o-polynomials F
and G are EA-equivalent.

Proof. Suppose G(x) = A1 ◦ F ◦ A2(x) = F (x + a) + b is an o-polynomial. Then 0 =
G(0) = F (a) +b and, therefore, F (a) = b and 1 = G(1) = F (1 +a) +b = F (1 +a) +F (a).

Further we have

g(x, y) = Trm

(
xA1 ◦ F ◦A2

(y
x

))
= Trm

(
x
(
F
(y
x

+ a
)

+ b
))

=

Trm

(
xF

(y + ax

x

))
+ Trm(bx) = Trm

(
xF

(u
x

))
+ Trm(bx),

where u = y+ax. Thus, g and f are EA-equivalent (g = f◦A +l with A(x, y) = (x, y+ax)
and l(x, y) = Trm(bx)). �
5. The modified magic action

Let F be the collection of all functions F : F2m → F2m such that F (0) = 0.
The following set

PΓL(2, 2m) = {x → Ax2j |A ∈ GL(2,F2m), 0 ≤ j ≤ m− 1}
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is a group of transformations acting on the projective lines, i.e. on the set with the 
elements of the form: {(a · x, a · y)|(x, y) 
= (0, 0), x, y ∈ F2m , a 
= 0}.

An action of the group PΓL(2, 2m) on F was introduced and described in [21]. Define 
the image of F ∈ F under the transformation ψ ∈ PΓL(2, 2m), ψ : x → Ax2j , A =(
a b
c d

)
∈ GL(2, 2m), 0 ≤ j ≤ m − 1, as a function ψF : F2m → F2m such that

ψF (x) = |A|− 1
2

[
(bx + d)F 2j

(ax + c

bx + d

)
+ bxF 2j

(a
b

)
+ dF 2j

( c

d

)]
.

This yields an action of PΓL(2, 2m) on F , which is called the magic action. The magic 
action takes o-permutations to o-permutations and it is a semi-linear transformation, i.e.

ψ(F + G) = ψF + ψG, for any F,G ∈ F ,

ψaF = a2j

ψF, for any a ∈ F2m , F ∈ F , 0 ≤ j ≤ m− 1.

Let us recall two theorems (Theorem 4 and Theorem 6) from [21]. For a given o-
polynomial F denote O(F ) the oval defined by F .

Theorem 2 ([21]). Let F be an o-permutation on F2m and let ψ ∈ PΓL(2, 2m) be ψ :

x → Ax2j for A =
(
a b
c d

)
∈ GL(2, F2m) and 0 ≤ j ≤ m − 1. Then G = ψF is also an 

o-permutation on F2m . In fact, O(G) = ψ̄(O(F )), where ψ̄ ∈ PΓL(3, 2m) is defined by 
ψ̄ : x → Āx2j , where

Ā =

⎛⎝ d 0 c

bψF (db ) |A| 12 aψF ( c
a )

b 0 a

⎞⎠ .

Note that the formulation of the theorem above differs from the one in [21] because 
in the current paper (following notations of [8]) the points of the oval (or the hyperoval) 
defined by an o-polynomial F are considered as (x, F (x), 1), meanwhile in [21] the form 
(1, x, F (x)) is used.

Theorem 3. [21] Let F and G be o-permutations on F2m , and suppose further that the 
ovals defined by F and G, i.e. O(F ) and O(G) are equivalent under PΓL(3, 2m). Then 
there exists ψ ∈ PΓL(2, 2m) such that G = ψF .

The magic action can be also described by a collection of generators of PΓL(2, 2m)
[21]:
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σa : x →
(
a 0
0 1

)
x, σaF (x) = a−

1
2F (ax), a ∈ F∗

2m ;

τc : x →
(

1 0
c 1

)
x, τcF (x) = F (x + c) + F (c), c ∈ F2m ;

ϕ : x →
(

0 1
1 0

)
x, ϕF (x) = xF (x−1);

ρ2j : x → x2j

, ρ2jF (x) = (F (x−2j

))2
j

, 0 ≤ j ≤ m− 1.

(6)

We slightly modify the magic action generators σa and τc multiplying them by appro-
priate constants to preserve the image of 1 at 1:

σ̃aF (x) = a
1
2

F (a)σaF (x) = 1
F (a)F (ax), a ∈ F∗

2m ;

τ̃cF (x) = 1
F (1 + c) + F (c)τcF (x) = 1

F (1 + c) + F (c) (F (x + c) + F (c)), c ∈ F2m .

(7)

The new set of generators

H = {σ̃a, τ̃c, ϕ, ρ2j |0 ≤ j ≤ m− 1, c ∈ F2m , a ∈ F∗
2m

preserves the property F (1) = 1 of the function F .
The action of the group with the new set of generators H on the set of all functions 

F defined on F2m with the properties F (0) = 0 and F (1) = 1 will be called the modified 
magic action.

Proposition 1. Two o-polynomials arise from equivalent hyperovals if and only if they lie 
on the same orbit of the group generated by H and the inverse map.

Proof. According to the first part of Theorem 2, the magic action takes o-permutations 
to o-permutations. Since the generators of the modified magic action differ from the 
original magic action generators only by constant coefficient (what allows as to preserve 
the property of F (1) = 1 for any o-polynomial F ), then the modified magic action takes 
o-polynomials to o-polynomials.

According to the second part of Theorem 2, if two o-permutations lie on the same 
orbit under the magic action, then the corresponding ovals are equivalent and have fixed 
nucleus (0, 1, 0).

Now suppose that two o-polynomials lie on the same orbit under the modified magic 
action and the inverse map. Since each o-polynomial is an o-permutation, then the corre-
sponding ovals defined by o-polynomials are equivalent and have nucleus (0, 1, 0). As we 
know, each oval is contained in a unique hyperoval, which is obtained by adding nucleus 
to the points of oval. So, hyperovals defined by the o-polynomials on the same orbit 
under the modified magic action are equivalent. Also it is well known that o-polynomials 
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F and F−1 define equivalent hyperovals. Thus, we conclude that hyperovals defined by 
the o-polynomials on the same orbit under the modified magic action and the inverse 
map are equivalent.

Let’s show the converse statement. Suppose that hyperovals H(F ) and H(G) defined 
by o-polynomials F and G are equivalent. It means that there is a collineation which 
maps H(F ) to H(G). Consider the preimage of (0, 1, 0) under this collineation, there are 
3 possible cases:

1. The preimage of (0, 1, 0) is (0, 1, 0). It means that this collineation fixes point 
(0, 1, 0). So deleting this point from hyperovals H(F ) and H(G), we will get equivalent 
ovals with fixed nucleus, hence by Theorem 3, their generator o-polynomials are on the 
same orbit under the magic action, hence under the modified magic action.

2. The preimage of (0, 1, 0) is (1, 0, 0). Since hyperovals defined by o-polynomial and 
its inverse o-polynomial are equivalent, then hyperoval H(F ) is equivalent to a hy-
peroval H(F−1) and by the corresponding collineation the point (1, 0, 0) has preimage 
(0, 1, 0). So, at the end we have that hyperovals H(F−1) and H(G) are equivalent and 
the preimage of (0, 1, 0) is (0, 1, 0). Hence by the previous case 1 (and the fact that an 
o-polynomial and its inverse belong to the same orbit under modified action and the 
inverse) o-polynomials F and G are on the same orbit under modified magic action and 
the inverse map.

The following diagram illustrates the previous decisions.

H(F−1) ∼= H(F ) ∼= H(G)

∈ ∈ ∈

(0, 1, 0) → (1, 0, 0) → (0, 1, 0)

3. The preimage of (0, 1, 0) is (t, f(t), 1). Choose an element ϕ of PΓL(2, 2m) taking 
(1, t) to (0, 1) (such automorphism always exist, for example it can be defined by matrix 

A =
(

0 0
1 0

)
). Applying ϕ to F we will get a hyperoval H(ϕF ) equivalent to H(G)

where the preimage of (0, 1, 0) is (1, 0, 0). Because of the case 2, we get that ϕF and G
belong to the same orbit under the modified magic action and the inverse map and so 
do F and G. �

We formulate the next theorem without proof. First this result was announced in 
September 2014 at the Forth Isree Conference “Finite Geometries” [9] by the authors of 
this paper, the complete proof can be found in [1].

Theorem 4. Two Niho bent functions are EA-equivalent if and only if the corresponding 
ovals are equivalent. Hence, the number of EA-equivalence classes of Niho bent functions 
arising from a hyperoval of PG(2, 2m) is the number of orbits of the collineation stabilizer
of the hyperoval on the points of the hyperoval.
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6. Niho bent functions and the modified magic action

A group of transformations of order 24 with 3 generators preserving o-polynomials 
was considered in [8]. This group of transformations is a subgroup of the group with the 
(modified) magic action generators and the inverse map. Precisely, they are the transfor-
mations generated by ϕ, τ̃1 = τ1 and the inverse map. Only 4 of these transformations 
can lead to EA-inequivalent Niho bent functions [8].

As a continuation of the work of [8], let’s consider the modified magic action genera-
tors, and the inverse map and see which of them give rise to EA-inequivalent Niho bent 
functions. From Proposition 1 it is clear that o-polynomials on the same orbit under the 
modified magic action and the inverse map and only they are projectively equivalent. 
Since we are interested in EA-inequivalent Niho bent functions arising from projectively 
equivalent o-polynomials, we focus on the orbits of the modified magic action together 
with the inverse map. We prove below that to get EA-inequivalent Niho bent functions 
from a given o-polynomial it is sufficient to use only τ̃ and ϕ generators together with 
inverse map while ρ and σ̃ do not play any role in it. Moreover, we show that all EA-
inequivalent Niho bent functions can be obtained from a special formula.

6.1. Preliminary results

Following notations of [8] the generator ϕ will be denoted by ′ when needed. Let’s 
recall the set of generators

H = {τ̃c, σ̃a, ′, ρ2j |c ∈ F2m , a ∈ F∗
2m , 0 ≤ j ≤ m− 1},

where

σ̃aF (x) = 1
F (a)F (ax), a ∈ F∗

2m ;

τ̃cF (x) = αc
F τcF (x) = αc

F (F (x + c) + F (c)), c ∈ F2m ,where αc
F = 1

τcF (1) ;

F ′(x) = ϕF (x) = xF (x−1);

ρ2jF (x) = (F (x−2j

))2
j

, 0 ≤ j ≤ m− 1;

and prove a few statements about the generators of magic action and the inverse map.

Lemma 4. Let F be an o-polynomial on F2m . Then the following identities hold:

τ̃c ◦ τ̃dF = τ̃c+dF, (8)

σ̃a ◦ σ̃bF = σ̃abF, (9)

ρ2j ◦ ρ2iF = ρ2j+iF, (10)

where a, b ∈ F∗
2m , c, d ∈ F2m , 0 ≤ i, j ≤ m − 1.



16 D. Davidova et al. / Finite Fields and Their Applications 72 (2021) 101834
Proof. To prove the first equality note that

τc ◦ τdF (x) = τdF (x + c) + τdF (c) = F (x + c + d) + F (d) + F (c + d) + F (d) =

F (x + c + d) + F (c + d) = τc+dF.

Since magic action is a semilinear transformation we get:

τ̃c ◦ τ̃dF (x) = 1
F (1 + d) + F (d)

1
τ̃dF (1 + c) + τ̃d(c)

τc(τd(F (x)) =

1
F (1 + d) + F (d)

F (1 + d) + F (d)
F (1 + d + c) + F (d + c)τc+dF (x) =

1
F (1 + d + c) + F (d + c)τc+dF (x) = τ̃c+dF (x).

The other two equalities are straightforward to prove:

σ̃a ◦ σ̃bF = 1
σ̃bF (a) σ̃bF (ax) = 1

1
F (b)F (ab)

1
F (b)F (abx) = 1

F (ab)F (abx) = σ̃abF (x),

ρ2i ◦ ρ2jF (x) = ρ2i(F (x
1
2j ))2

j

= F (x
1

2j+i )2
j+i

= ρ2i+jF (x). �
Corollary 2. Let F be an o-polynomial on F2m and k a positive integer. Then

(σ̃a1 ◦ σ̃a2 ◦ . . . ◦ σ̃ak
)F = σ̃a1·a2·...·ak

F,

(τ̃c1 ◦ τ̃c2 ◦ . . . ◦ τ̃ck)F = τ̃c1+c2+...ckF,

(ρ2i1 ◦ ρ2i2 ◦ . . . ◦ ρ2ik )F = ρ2i1+i2+...+ikF,

where a1, . . . , ak ∈ F∗
2m , c1, . . . , ck ∈ F2m , 0 ≤ ij ≤ m − 1 for all j ∈ {1, . . . , k}.

Proof. The proof follows by induction using Lemma 4. �
Lemma 5. Let F be an o-polynomial on Fm

2 . Then the following identities hold:

(τ̃cF )−1(x) = τ̃F (c)F
−1

( 1
αc
F

x
)
, (11)

(σ̃aF )−1(x) = σ̃F (a)F
−1(x), (12)

(ρ2jF )−1(x) = ρ2jF−1(x), (13)

where a ∈ F∗
2m , c ∈ F2m and 0 ≤ j ≤ m − 1.
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Proof. It is easy to see that τ̃F (c)F
−1

(
1
αc

F

)
= 1, therefore

(τ̃cF )−1(x) = (αc
F (F (x + c) + F (c)))−1 = F−1

( 1
αc
F

x + F (c)
)

+ c =

F−1
( 1
αc
F

x + F (c)
)

+ F−1(F (c)) = τ̃F (c)F
−1

( 1
αc
F

x
)
.

Equalities (12) and (13) are straightforward to prove:

(σ̃aF )−1(x) =
( 1
F (a)F (ax)

)−1
= 1

a
F−1(F (a)x) = σ̃F (a)F

−1(x),

(ρ2jF )−1(x) = ((F (x2−j

))2
j

)−1 = (F (x2−j

)−1)2
j

= ρ2jF−1(x). �
Lemma 6. Let F be an o-polynomial on F2m . Then the following identities hold:

τ̃c ◦ ρ2jF = ρ2j ◦ τ̃c2−jF, (14)

τ̃c ◦ σ̃aF = σ̃a ◦ τ̃acF, (15)

(ρ2jF )′ = ρ2jF ′ (16)

(σ̃aF )′ = σ̃ 1
a
F ′, (17)

where a ∈ F∗
2m , c ∈ F2m , 0 ≤ j ≤ m − 1.

Proof. To prove the first equality, transform its left and right sides.

τ̃c ◦ ρ2jF (x) = αc
ρ2jF

(ρ2jF (x + c) + ρ2jF (c)) =

αc
ρ2jF

((F ((x + c)2
−j

))2
j

+ (F (c2
−j

))2
j

) = αc
ρ2jF

((F (x2−j

+ c2
−j

))2
j

+ (F (c2
−j

))2
j

) =

αc
ρ2jF

(F (x2−j

+ c2
−j

) + F (c2
−j

))2
j

On the other hand,

ρ2j ◦ τ̃c2−jF (x) = (τ̃c2−jF (x2−j

))2
j

= (αc2
−j

F (F (x2−j

+ c2
−j

) + F (c2
−j

))2
j

.

So, it is left to check that (αc2
−j

F )2j = αc
ρ2jF

. Indeed,

αc
ρ2jF

= 1
ρ2jF (1 + c) + ρ2jF (c) = 1

(F ((1 + c)2−j ))2j + (F (c2−j ))2j =

( 1
F (1 + c2−j ) + F (c2−j )

)2j

= (αc2
−j

F )2
j

.

Thus we proved that τ̃c ◦ ρ2jF = ρ2j ◦ τ̃ 2−jF .
c
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Computing the left and the right sides of equality (15) we get

τ̃c ◦ σ̃aF (x) = αc
σ̃aF (σ̃aF (x + c) + σ̃aF (c)) = αc

σ̃aF ( 1
F (a)F (a(x + c)) + 1

F (a)F (ac)),

σ̃a ◦ τ̃acF (x) = 1
τ̃acF (a)α

ac
F (F (ax + ac) + F (ac)).

Note that the coefficients 1
F (a)α

c
σ̃aF

and 1
τ̃acF (a)α

ac
F are equal which means that τ̃c◦σ̃aF =

σ̃a ◦ τ̃acF . Indeed,

1
F (a)α

c
σ̃aF = 1

F (a)
1

σ̃aF (1 + c) + σ̃aF (c) = 1
F (a)

F (a)
F (a(1 + c)) + F (ac)

= 1
F (a + ac) + F (ac) ,

1
τ̃acF (a)α

ac
F = F (1 + ac) + F (ac)

F (a + ac) + F (ac)
1

F (1 + ac) + F (ac) = 1
F (a + ac) + F (ac) .

The remaining two equalities are proved similarly. For (16) we get

ρ2jF ′(x) = (F ′(x2−j

))2
j

= (x2−j

F ( 1
x2−j ))2

j

= x(F ( 1
x2−j ))2

j

= xρ2jF ( 1
x

) = (ρ2jF )′(x).

Transforming both sides of Equality (17) we get

(σ̃aF )′(x) = xσ̃aF
( 1
x

)
= x

F (a)F
(a
x

)
.

σ̃ 1
a
F ′(x) = 1

F ′( 1
a )

F ′
(x
a

)
= a

F (a)
x

a
F
(a
x

)
= x

F (a)F
(a
x

)
. �

6.2. EA-inequivalent Niho bent functions and orbits

Further we need the following equality from [8]

((F ′)−1)′ = ((F−1)′)−1 (18)

Let’s introduce a few notations. Denote by gF the Niho bent function defined by an 
o-polynomial F . When Niho bent functions gF and gF̄ are EA-equivalent (respectively, 
EA-inequivalent), we will write gF ∼EA gF̄ (respectively, gF �EA gF̄ ). We will use 

notation “A 
(p)= B”, when the expression B is obtained from the expression A using 

equality number p.

Theorem 5. Let F be an o-polynomial. Then an o-polynomial F̄ obtained from F using 
one generator of the modified magic action and the inverse map can produce a Niho bent 
function EA-inequivalent to those defined by F and F−1 only if F̄ = (F ′)−1.
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Proof. Assume F̄ is an o-polynomial which is obtained from o-polynomial F using one 
generator of the modified magic action and the inverse map, i.e. F̄ has one of the following 
forms: hF, hF−1, (hF )−1, (hF−1)−1, where h ∈ H.

As we show below, when h is σ̃a, τ̃c or ρ2j , F̄ defines a Niho bent function EA-
equivalent to those defined by F or F−1.

a) Let h be σ̃a, a ∈ F∗
2m . Then hF (x) = σ̃aF (x) = 1

F (a)F (ax) and by Lemma 1, the 
corresponding Niho bent function is EA-equivalent to those defined by F . By the same 
reason hF−1 = σ̃aF

−1 and F−1 define EA-equivalent Niho bent functions. Further note 
that

(hF )−1(x) = (σ̃aF )−1(x) (12)= σ̃F (a)F
−1(x).

Hence, g(σ̃aF )−1 ∼EA gF−1 and

(hF−1)−1(x) = (σ̃aF
−1)−1(x) (12)= σ̃F−1(a)(F−1)−1(x) = σ̃F−1(a)F (x),

and therefore g(σ̃aF−1)−1 ∼EA gF .
b) Suppose h is τ̃c with c ∈ F2m . Then hF (x) = τ̃cF (x) = αc

F (F (x + c) + F (c)) and 
hF−1(x) = τ̃cF

−1 define Niho bent functions EA-equivalent to those defined by F and 
F−1 respectively (by Lemma 3). Hence,

(hF )−1(x) = (τ̃cF (x))−1(x) (11)= τF (c)F
−1((αc

F )−1x)

yields that g(hF )−1 ∼EA gF and from

(hF−1)−1(x) = (τ̃cF−1)−1(x) (11)= τF−1(c)(F−1)−1
( 1
αc
F−1

x
)

= τF−1(c)F
( 1
αc
F−1

x
)

follows g(hF−1)−1 ∼EA gF .
c) Take now h = ρ2j with 0 ≤ j ≤ m − 1. Then hF (x) = ρ2jF (x) = (F (x2−i))2i

and hF−1(x) = ρ2jF−1 = (F−1(x2−i))2i , and by Lemma 2 we get that gρ2jF
and 

gρ2jF
−1 are EA-equivalent to gF and gF−1 , respectively. Therefore, from (hF )−1(x) =

(ρ2jF )−1(x) (13)= ρ2jF−1 and (hF−1)−1(x) = (ρ2jF−1)−1 (13)= ρ2jF it follows that 
g(ρ2jF )−1 ∼EA gF−1 and g(ρ2jF

−1)−1 ∼EA gF .
d) Consider h = ′. The Niho bent function defined by an o-polynomial hF (x) =

F ′(x) = xF (x−1) is

gF ′(x, y) = Trm(x(F ′(y
x

))) = Trm(xy
x
F ((y

x
)−1)) = Trm(yF (x

y
)) = gF (y, x),

i.e. gF ′ ∼EA gF . Similarly, g(F−1)′ ∼EA gF−1 .
The function (hF )−1(x) = (F ′)−1(x) = (xF (x−1))−1 can define a Niho bent function 

EA-inequivalent to those defined by F and F−1. For example, an o-monomial x2i defines 
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three surely EA-inequivalent Niho bent functions corresponding to o-polynomials F , F−1

and (F ′)−1 [8].
Using equality (18), we immediately get that a Niho bent function defined by the o-

polynomial (hF−1)−1(x) = ((F−1)′)−1(x) is EA-equivalent to one defined by (F ′)−1. �
We rewrite the equalities of Lemmas 4, 5 and 6 in a more compact way. Equalities 

(8)–(10) as

hb1 ◦ hb2F = hb3F, (19)

where hb1 , hb2 , hb3 are the same generators from the set H \{′} with different parameters 
b1, b2, b3 ∈ F2m .

Equalities (11)–(13) as

(hb1F )−1 = hb2F
−1, (20)

where hb1 , hb2 are the same generators from the set H \ {′} with different parameters 
b1, b2 ∈ F2m . Note that right and left parts of the equality (11) have different arguments, 
but it does not play any role in our study of EA-equivalence of resulting Niho bent 
functions.

Equalities (14)–(15) as

τ̃c1 ◦ hbF = hb ◦ τ̃c2F, (21)

where hb ∈ {σ̃a, ρ2j}. And equalities (16) - (17) as

(hb1F )′ = hb2F
′, (22)

where hb1 , hb2 are the same generators from the set {σ̃a, ρ2j} with different parameters 
b1, b2 ∈ F2m .

To make the formulation of the next theorem more visual instead of using the notation 
′ we will use the initial one, i.e. ϕ. We will also refer to the original notation ϕ in some 
parts of the proof when convenient. Further, by “reduce o-polynomial” we mean that 
the original o-polynomial and the new one (reduced) define EA-equivalent Niho bent 
functions. When we are saying “delete generator” we mean that if we skip this generator 
the new o-polynomial will define a Niho bent function EA-equivalent to one generated 
by the original o-polynomial.

Let i be a positive integer and ki ≥ 0. By Hi we denote a composition of length ki of 
generators ϕ and τ̃c following each other as follows:

Hi = ϕ ◦ τ̃ci1 ◦ ϕ ◦ τ̃ci2 ◦ . . .︸ ︷︷ ︸ (23)
ki
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That is, if F is an o-polynomial and we denote Tj = ϕ ◦ τ̃cij , 0 ≤ j < (ki + 1)/2 then

HiF =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F if ki = 0,
ϕF if ki = 1,
T1 ◦ . . . ◦ TsiF if ki = 2si,
T1 ◦ . . . ◦ Tsi ◦ ϕF if ki = 2si + 1.

In the theorem below we prove that for a given o-polynomial we can derive all EA-
inequivalent Niho bent functions only using transformations ϕ, τ̃c and the inverse map 
in a special sequence.

Theorem 6. Let F be an o-polynomial, gF the corresponding Niho bent function and GF

the class of all functions o-equivalent to gF . Then o-polynomials of the form

(H1(H2(H3(. . . (HqF )−1 . . .)−1)−1)−1, (24)

where Hi is defined by (23), for all i ∈ {1 . . . q}, q ≥ 1, and ki ≥ 1 for i ≥ 3, ki ≥ 0 for 
i ≤ 2, provide representatives for all EA-equivalence classes within GF . That is, up to 
EA-equivalence, all Niho bent functions o-equivalent to gF arise from (24).

Proof. Note first that we can get F itself in the form (24) if we take q = 2, k1 = k2 = 0. 
if q = 1 and k1 = 0 then we get F−1. Further we have a restriction ki ≥ 1 for i ≥ 3 to 
avoid repetitions.

According to Proposition 1 any function o-equivalent to gF corresponds to an o-
polynomial of the form

h1 ◦ h2 ◦ . . . ◦ hkF, (25)

where h1, h2, . . . , hk (for some k ≥ 0) are generators of the modified magic action and the 
inverse map. Our aim is to simplify this expression to exclude as many cases leading to 
EA-equivalent functions as possible. That is, we exclude certain sequences of generators 
which surely lead to EA-equivalent Niho bent functions. By hij we denote a generator 
of the same type as hi but with a different parameter.

From Theorem 5 it follows

a) If h1 ∈ H, then gh1◦h2◦...◦hkF ∼EA gh2◦...◦hkF and we can consider reduced o-
polynomial h2 ◦ . . . ◦ hkF ;

b) If h1 is the inverse map and h2 ∈ H \ {′} then gh1◦h2◦...◦hkF ∼EA gh1◦h3◦...◦hkF , so 
we can consider the reduced o-polynomial h1 ◦ h3 ◦ . . . ◦ hkF .

Hence, if k = 1 in (25) then we can get an EA-inequivalent case only if h1 is the inverse 
map, and it corresponds to (24) with q = 1 and k1 = 0. If k = 2 in (25) (and it cannot 
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be reduced to the case k = 1) then we can get EA-inequivalent cases only if h1 is the 
inverse map and h2 = ′, and it corresponds to (24) with q = 1 and k1 = 1. If k ≥ 3 we 
can reduce (25) until at some moment we will get an o-polynomial hi ◦ hi+1 ◦ . . . ◦ hkF , 
where hi is the inverse map and hi+1 = ′, that is, we have

((hi+2 ◦ . . . ◦ hkF )′)−1. (26)

Note that here and further we assume that k is large enough to allow such a redaction 
while otherwise, it is easy to see that the process would stop and provide a formula (24)
for some parameters.

If hi+2 ∈ {σ̃a, ρ2j} or hi+2 is the inverse map then we can delete the generator hi+2
and consider the reduced o-polynomial hi ◦ hi+1 ◦ hi+3 ◦ . . . ◦ hkF . Indeed, suppose 
hi+2 ∈ {σ̃a, ρ2j} then

hi ◦ hi+1 ◦ hi+2 ◦ . . . ◦ hkF = ((hi+2 ◦ . . . ◦ hkF )′)−1 (22)=

(h(i+2)1 ◦ (hi+3 ◦ . . . ◦ hkF )′)−1 (20)= h(i+2)2 ◦ ((hi+3 ◦ . . . ◦ hkF )′)−1

and, according to (a), ghi◦hi+1◦hi+2◦...◦hkF ∼EA ghi◦hi+1◦hi+3◦...◦hkF . In the case when 
hi+2 is the inverse map, using (18) we get the same result that the o-polynomials (((hi+3◦
. . . ◦ hkF )−1)′)−1 = ((hi+3 ◦ . . . ◦ hkF )′)−1)′ and ((hi+3 ◦ . . . ◦ hkF )′)−1 = hi ◦ hi+1 ◦
hi+3 ◦ . . . ◦ hkF define EA-equivalent Niho bent functions.

If hi+2 is ′, then hi+1 and hi+2 eliminate each other: hi ◦ hi+1 ◦ hi+2 ◦ . . . ◦ hkF =
hi ◦ hi+3 ◦ . . . ◦ hkF . If hi+2 = τ̃c, then we cannot eliminate it from the o-polynomial 
hi ◦ hi+1 ◦ hi+2 . . . ◦ hkF .

Further consider an o-polynomial hi ◦ hi+1 ◦ hi+2 ◦ . . . ◦ hkF where hi is the inverse 
map, hi+1 = ′, hi+2 = τ̃c, i.e. an o-polynomial

((τ̃c ◦ hi+3 ◦ . . . ◦ hkF )′)−1. (27)

When k = i + 2 then we get ((τ̃cF )′)−1 which has the form (24) with q = 1 and k1 = 2. 
Hence, in (27) we can assume that k ≥ i + 3. Further we can reduce hi+3 from (27)
unless hi+3 is ′. Indeed, consider first hi+3 ∈ {σ̃a, ρ2j} then

((τ̃c ◦ hi+3 ◦ . . . ◦ hkF )′)−1 (21)= ((hi+3 ◦ τ̃c1 ◦ hi+4 ◦ . . . ◦ hkF )′)−1 ((22))=

(h(i+3)1 ◦ (τ̃c1 ◦ . . . ◦ hkF )′)−1 ((20))= h(i+3)2 ◦ ((τ̃c1 ◦ hi+4 ◦ . . . ◦ hkF )′)−1.

The last o-polynomial defines a Niho bent function EA-equivalent to one defined by the 
o-polynomial ((τ̃c1 ◦ hi+4 ◦ . . . ◦ hkF )′)−1 = hi ◦ hi+1 ◦ h(i+2)1 ◦ hi+4 ◦ . . . ◦ hkF .

If hi+3 = τ̃c1 , then using (8) we immediately get hi ◦ hi+1 ◦ hi+2 ◦ hi+3 ◦ . . . ◦ hkF =
hi ◦ hi+1 ◦ h(i+2)1 ◦ hi+4 ◦ . . . ◦ hkF , where h(i+2)1 = τ̃c+c1 .
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If hi+3 is the inverse map then

hi ◦ hi+1 ◦ hi+2 ◦ hi+3 ◦ . . . ◦ hkF = ((τ̃c((hi+4 ◦ . . . ◦ hkF )−1))′)−1 (20)=

(((τ̃c1 ◦ hi+4 ◦ . . . ◦ hkF )−1)′)−1 = (((τ̃c1 ◦ hi+4 ◦ . . . ◦ hkF )′)−1)′,

defines a Niho bent function EA-equivalent to the one defined by ((τ̃c1 ◦ hi+4 ◦ . . . ◦
hkF )′)−1 = hi ◦ hi+1 ◦ h(i+2)1 ◦ hi+4 ◦ . . . ◦ hkF .

Note that we could eliminate hi+3 as the inverse here because it is followed by hi+2 =
τ̃c, hi+1 = ′ and hi as the inverse map.

Hence, if (25) produces a Niho bent function g EA-inequivalent to those corresponding 
to F , F−1, (F ′)−1 and ((τ̃cF )′)−1 then g is EA-equivalent to the function corresponding 
to an o-polynomial

(ϕ ◦ τ̃c′ ◦ ϕ ◦ hl′ ◦ . . . ◦ hkF )−1. (28)

Now consider an o-polynomial of the form:

(ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ . . . ◦ hl ◦ . . . ◦ hkF )−1. (29)

Case 1. First we restrict to the case hl, . . . , hk ∈ H when considering (29). Note that if l
is an even number in (29), then the generator ϕ acts on hl; if l is odd, then the generator 
τ̃c acts on hl (for some c ∈ F2m). We consider l odd case, i.e. l = 2t + 1 while for l even 
case the proof is similar and we skip it.

If h2t+1 ∈ {σ̃a, ρ2j} then

(ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ . . . ◦ τ̃ct ◦ h2t+1 ◦ . . . ◦ hkF )−1 (21)=

(ϕ ◦ τ̃c1 ◦ ϕ ◦ . . . ◦ ϕ ◦ h2t+1 ◦ τ̃ct1 (h2t+2 ◦ . . . ◦ hkF ))−1 (22)=

(ϕ ◦ τ̃c1 ◦ ϕ ◦ . . . ◦ h(2t+1)1 ◦ ϕ(τ̃ct1 (h2t+2 ◦ . . . ◦ hkF )))−1 (21)=

. . .

(h(2t+1)t(ϕ(τ̃c11 (ϕ(. . . (τ̃ct1 (h2t+2 ◦ . . . ◦ hkF )) . . .))))−1 (20)=

h(2t+1)t+1(ϕ(τ̃c11 (ϕ(. . . (τ̃ct1 (h2t+2 ◦ . . . ◦ hkF )) . . .))))−1,

hence we can reduce the o-polynomial (ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . . ◦ τ̃ct ◦h2t+1 ◦ . . . ◦hkF )−1, 
and consider (ϕ ◦ τ̃c11 ◦ ϕ ◦ τ̃c21 ◦ ϕ ◦ . . . ◦ τ̃ct1 ◦ h2t+2 ◦ . . . ◦ hkF )−1.

If h2t+1 = τ̃ct+1 then obviously we can consider o-polynomial

((τ̃c1(τ̃c2(. . . (τ̃ct+ct+1(h2t+2 ◦ . . . ◦ hkF ))′ . . .)′)′)′)−1.

If h2t+1 = ′ then we cannot eliminate it.
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Continuing this process we get for this case that the o-polynomial (25) can be reduced 
to (ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . . ◦F )−1 as in (23). This corresponds to the case q = 1 in (24).

Case 2. Now we consider (29) and allow hl, . . . , hk to be inverses too. We still assume l be 
odd and (as we saw earlier in the proof) w.l.o.g. hl, . . . , hk ∈ {′, ̃τc, the inverse|c ∈ F2m}. 
Take hl the inverse (the other possibilities for hl were discussed earlier in the proof), i.e. 
consider the following o-polynomial:

(ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ . . . (hl+1 ◦ . . . ◦ hkF )−1)−1. (30)

If hl+1 is the inverse, then it cancels with hl. If hl+1 is τ̃ct+1 , then

(ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ . . . ◦ (τ̃ct+1 ◦ hl+2 ◦ . . . ◦ hkF )−1)−1 (20)=

(ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ . . . ◦ τ̃c(t+1)1
(hl+2 ◦ . . . ◦ hkF )−1)−1,

which is of the form (30) with fewer transformations in the inner brackets.
If hl+1 is ϕ then we get (ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ . . . ◦ (ϕ ◦ hl+2 ◦ . . . ◦ hkF )−1)−1.
If further hl+2 is τ̃ct+1 , then (ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .◦ (ϕ ◦ τ̃ct+1 ◦hl+3 ◦ . . .◦hkF )−1)−1. 

If hl+2 is the inverse or hl+2 = ϕ then we get (30). Indeed, if hl+2 = ϕ then it cancels 
with hl+1, and if hl+2 is the inverse then we get:

(ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ . . . ◦ (ϕ(hl+3 ◦ . . . ◦ hkF )−1)−1)−1 (18)=

(ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ . . . ◦ ϕ(ϕ ◦ hl+3 ◦ . . . ◦ hkF )−1)−1.

Continuing these process we will clearly transform (30) to (24) in a way that these 
o-polynomials produce EA-equivalent Niho bent functions. �

In this paper, when we say that two o-polynomials F and F ′ define potentially EA-
inequivalent Niho bent functions gF and gF ′ , it means that either in some cases gF
and gF ′ are EA-inequivalent, or it is not possible to deduce EA-equivalence with the 
developed technique which leaves a possibility that gF and gF ′ may be EA-inequivalent.

Below we consider some particular cases of formula (24).

Corollary 3. Let F be an o-polynomial defined on F2m . Then o-polynomials

F ◦
c (x) =

(
αc
Fx

(
F
( 1
x

+ c
)

+ F (c)
))−1

, c ∈ F2m (31)

define a sequence of Niho bent functions gF◦
c

potentially EA-inequivalent to each other 
for different c, and EA-inequivalent to Niho bent functions defined by F , F−1.

Proof. o-polynomial (31) is the explicit form of o-polynomial (24) for q = 1, k1 = 2. 
Indeed,
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((τ̃cF )′)−1(x) =
(
xτ̃cF

( 1
x

))−1
=

(
αc
Fx

(
F
( 1
x

+ c
)

+ F (c)
))−1

.

Note that F ◦
c = (F ′)−1 for c = 0. Hence, the o-polynomial (F ′)−1 is included in the 

class of o-polynomials F ◦
c .

For c = 1 we get the function F ◦ =
(
x
(
F
(

1
x + 1

)
+ 1

))−1
studied in [8] and which 

can define a Niho bent function EA-inequivalent to those defined by F , F−1 and (F ′)−1. 
For instance, when F (x) = x2i , gF◦ is EA-inequivalent to gF , gF−1 and g(F ′)−1 [8].

Using the equality (8) for every c ∈ F2m we can write:

F ◦
c = ((τ̃cF )′)−1 = ((τ̃1 ◦ τ̃c+1F )′)−1 = (τ̃c+1F )◦.

Since F ◦, F , F−1 and (F ′)−1 can define four potentially EA-inequivalent Niho bent 
functions, we obtain that F ◦

c can define Niho bent functions potentially EA-inequivalent 
to those defined by τ̃c+1F , (τ̃c+1F )−1, ((τ̃c+1F )′)−1. It means that, for any c ∈ F2m a 
Niho bent function gF◦

c
can be potentially EA-inequivalent to gF , gF−1 and gF◦

c+1 . �
Corollary 4. Let F be an o-polynomial defined on F2m . Then o-polynomials

(F ∗
c )−1 =

(
αc
F ′

(
(1 + cx)F

( x

1 + cx

)
+ cxF

(1
c

)))−1
, c ∈ F2m (32)

define Niho bent functions g(F∗
c )−1 which can potentially be EA-inequivalent to each other 

for different c and EA-inequivalent to Niho bent functions defined by F , (F ′)−1.

Proof. o-polynomial (32) is the explicit form of o-polynomial (24) for q = 1 and k1 = 3. 
Indeed,

((τ̃cF ′)′)−1(x) =
(
αc
F ′x

((
F ′

( 1
x

+ c
)

+ F ′(c)
))−1

=(
αc
F ′x

(1 + cx

x
F
( x

1 + cx

)
+ cF

(1
c

)))−1
=(

αc
F ′

(
(1 + cx)F

( x

1 + cx

)
+ cxF

(1
c

)))−1
.

Note that (F ∗
0 )−1 = F−1. So the o-polynomial F−1 is included in the class of o-

polynomials (F ∗
c )−1 with c = 0.

For c = 1 we get the function (F ∗
1 )−1 = ((x + 1)F ( x

x+1 ) + x)−1 also studied in [8], 
and the Niho bent function associated with it is EA-equivalent to the one defined by F ◦

[8]. But in the general case, for arbitrary c ∈ F2m we can’t say that (F ∗
c )−1 defines an 

o-polynomial EA-equivalent to those defined by F and F ◦
c .

Using equalities (8) and (31) note that (F ∗
c )−1 = (F ′)◦c = (τ̃c+1F

′)◦.
Hence, we can say that (F ∗

c )−1 = (F ′)◦c defines a Niho bent function potentially EA-
inequivalent to Niho bent functions defined by F ′, (F ′)−1 and (F ′)◦c+1 = (F ∗

c+1)−1. �
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6.3. The case of o-monomials and the known o-polynomials

Further we study the consequences of the obtained results for the particular cases of 
o-monomials and the known o-polynomials.

Lemma 7. For an o-monomial F (x) = xd, the Niho bent functions defined by F ◦
c and F ◦

are EA-equivalent, for any c ∈ F∗
2m .

Proof. We have for c 
= 0

F ◦
c (x) = (ϕ ◦ τ̃cF )−1 =

(
αc
Fx

((
F
( 1
x

+ c
)

+ F (c)
))−1

=(
αc
Fx

(( 1
x

+ c
)d

+ cd
))−1

=
(
αc
Fx

((1 + cx

x

)d

+ cd
))−1

=(
αc
F c

dx
((1 + cx

cx

)d

+ 1
))−1

=
(
αc
F c

d−1cx
((1 + cx

cx

)d

+ 1
))−1

= 1
c
F ◦

( 1
αc
F c

d−1x
)
.

From Lemma 1 it follows that Niho bent functions defined by F ◦
c and F ◦ are EA-

equivalent for any c 
= 0. �
From the proof of the previous lemma it is easy to see that for any o-monomial F

ϕ ◦ τ̃cF (x) = βc ϕ ◦ τ1F (cx), (33)

where βc = αc
F c

d−1, c ∈ F ∗
2m .

Lemma 8. For an o-monomial F (x) = xd, the Niho bent functions defined by (F ∗
c )−1, 

(F ∗)−1 and F ◦ are EA-equivalent, for c ∈ F∗
2m .

Proof. F ∗(x) = (x + 1)F ( x
x+1 ) + x = (x + 1)( x

x+1 )d + x.
For c 
= 0 we have

(F ∗
c )−1(x) = (ϕ ◦ τc ◦ ϕF )−1 =

(
αc
F ′

(
(1 + cx)F

( x

1 + cx

)
+ cxF

(1
c

)))−1
=(

αc
F ′

(
(1 + cx)

( x

1 + cx

)d

+ cx
(1
c

)d))−1
=(

αc
F ′

(1
c

)d(
(1 + cx)

( cx

1 + cx

)d

+ cx
))−1

= 1
c
(F ∗)−1

( cd

αc
F ′

x
)
,

Using Lemma 1, we conclude that the Niho bent functions defined by (F ∗)−1 and (F ∗
c )−1

are EA-equivalent for c 
= 0. According to [8], the Niho bent function defined by (F ∗)−1

and F ◦ are EA-equivalent, and taking into account Lemma 7, we get that Niho bent 
functions defined by (F ∗

c )−1, (F ∗)−1 and F ◦ are EA-equivalent to each other for any 
c 
= 0. �
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From the proof of above lemma it is easy to see that for any o-monomial F

ϕ ◦ τ̃c ◦ ϕF (x) = γc ϕ ◦ τ1 ◦ ϕF (cx), (34)

where γc = αc
F ′cd−1, c ∈ F∗

2m , F ′ = ϕF .
Further we will need the following equality, which holds for any o-polynomial F

ϕ ◦ τ1 ◦ ϕF = τ1 ◦ ϕ ◦ τ1F. (35)

Indeed,

τ1 ◦ ϕ ◦ τ1F (x) = (1 + x)
(
F
( 1

1 + x
+ 1

)
+ 1

)
+ 1 = (1 + x)F

( x

1 + x

)
+ x =

ϕ ◦ τ1 ◦ ϕF (x).

To keep notations as simple as possible, since we are interested in EA-equivalence of 
Niho bent functions and coefficients of arguments of o-polynomial do not affect on EA-
equivalence of Niho bent functions as well as coefficient of o-polynomial, then instead of 
aF (bx) = G(x) we will write F ≈ G for a, b ∈ F∗

2m .

Lemma 9. Let F be an o-monomial defined on F2m . Then

ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ . . .︸ ︷︷ ︸
k

F ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τ1F, if t ≡ 0 mod 4;
ϕ ◦ τ1F, if t ≡ 1 mod 4;
τ1 ◦ ϕF, if t ≡ 2 mod 4;
ϕ ◦ τ1 ◦ ϕF, if t ≡ 3 mod 4;

if k = 2t

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τ1 ◦ ϕF, if t ≡ 0 mod 4;
ϕ ◦ τ1 ◦ ϕF, if t ≡ 1 mod 4;
τ1F, if t ≡ 2 mod 4;
ϕ ◦ τ1F, if t ≡ 3 mod 4;

if k = 2t + 1,

where t ≥ 1.

Proof. Assume that k = 2t, i.e. the orbit in the statement of this lemma has the form 
ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ . . . ϕ ◦ τ̃ctF . Then

1) For t = 1 we have ϕ ◦ τ̃c1F
(33)
≈ ϕ ◦ τ̃1F .

2) For t = 2,

ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2F
(33)
≈ ϕ ◦ τ̃c1 ◦ ϕ ◦ τ1F

(34)
≈ ϕ ◦ τ1 ◦ ϕ ◦ τ̃c1F

(33)
≈ ϕ ◦ τ1 ◦ ϕ ◦ τ1F

(35)
≈

ϕ ◦ ϕ ◦ τ̃ ◦ ϕF ≈ τ ◦ ϕF.
1 1
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3) For t = 3,

ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ τ̃c3F
2)
≈ ϕ ◦ τ̃c1 ◦ τ1 ◦ ϕF ≈ ϕ ◦ τ̃c1+1 ◦ ϕF

(34)
≈ ϕ ◦ τ1 ◦ ϕF

4) For t = 4

ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ τ̃c3 ◦ ϕ ◦ τ̃c4F
3)
≈ ϕ ◦ τ̃c1 ◦ ϕ ◦ τ1 ◦ ϕF

2)
≈ τ1 ◦ ϕ(ϕF ) ≈ τ1F.

Thus for even k,

ϕ ◦ τ̃c1 ◦ . . . ◦ ϕ ◦ τ̃ct−3 ◦ ϕ ◦ τ̃ct−2 ◦ ϕ ◦ τ̃ct−1 ◦ ϕ ◦ τ̃ctF
4)
≈

ϕ ◦ τ̃c1 ◦ . . . ◦ ϕ ◦ τ̃ct−4 ◦ τ1F ≈ ϕ ◦ τ̃c1 ◦ . . . ◦ ϕ ◦ τ̃ct−4+1F
4)
≈

. . .⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ1F, if t ≡ 0 mod 4;

ϕ ◦ τ̃c1 ◦ τ1F
1)
≈ ϕ ◦ τ1F, if t ≡ 1 mod 4;

ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ τ1F
2)
≈ τ1 ◦ ϕF, if t ≡ 2 mod 4;

ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ τ̃c3 ◦ τ1F
3)
≈ ϕ ◦ τ1 ◦ ϕF, if t ≡ 3 mod 4.

Note that ϕF is an o-monomial, therefore we can apply the previous formula to the 
case of odd k. Indeed,

ϕ ◦ τ̃c1 ◦ . . . ◦ ϕ ◦ τ̃ct−3 ◦ ϕ ◦ τ̃ct−2 ◦ ϕ ◦ τ̃ct−1 ◦ ϕ ◦ τ̃ct(ϕF ) ≈⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τ1 ◦ ϕF, if t ≡ 0 mod 4;
ϕ ◦ τ1(ϕF ), if t ≡ 1 mod 4;
τ1 ◦ ϕ(ϕF ) ≈ τ1F, if t ≡ 2 mod 4;
ϕ ◦ τ1 ◦ ϕ(ϕF ) ≈ ϕ ◦ τ1 F, if t ≡ 3 mod 4. �

Lemma 10. Let F be an o-monomial defined on F2m . Then

ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ . . .︸ ︷︷ ︸
k

(ϕ ◦ τ1F )−1 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
(ϕ ◦ τ1F )−1, if t ≡ 0 mod 3;
(ϕ ◦ τ1(ϕF )−1)−1, if t ≡ 1 mod 3;
(ϕ ◦ τ1 ◦ ϕF−1)−1, if t ≡ 2 mod 3,

if k = 2t

⎧⎪⎪⎨⎪⎪⎩
(ϕ ◦ τ1F−1)−1, if t ≡ 0 mod 3;
(ϕ ◦ τ1(ϕF−1)−1)−1, if t ≡ 1 mod 3;
(ϕ ◦ τ ◦ ϕF )−1, if t ≡ 2 mod 3,

if k = 2t + 1,

(36)
1
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where t ≥ 1.

Proof. Assume that k = 2t, i.e. the orbit in the statement of this lemma has the form 
ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ . . . ϕ ◦ τ̃ct(ϕ ◦ τ1F )−1. Then

1) For t = 1 we get:

ϕ ◦ τ̃c1(ϕ ◦ τ1F )−1 (20)
≈ ϕ(τ̃c11 ◦ ϕ ◦ τ1F )−1 (18)

≈ (ϕ(ϕ ◦ τ̃c11 ◦ ϕ ◦ τ1F )−1)−1 (34)
≈

(ϕ(ϕ ◦ τ1 ◦ ϕ ◦ τ̃c11F )−1)−1 (33)
≈ (ϕ(ϕ ◦ τ1 ◦ ϕ ◦ τ1F )−1)−1 (35)

≈ (ϕ(τ1 ◦ ϕF )−1)−1 (20)
≈

(ϕ ◦ τ1(ϕF )−1)−1.

2) For t = 2

ϕ ◦ τ̃c1 ◦ ϕ ◦ τc2(ϕ ◦ τ1F )−1 1)
≈ ϕ ◦ τ̃c1(ϕ ◦ τ1(ϕF )−1)−1 1)

≈ (ϕ ◦ τ1(ϕ(ϕF )−1)−1)−1 (18)
≈

(ϕ ◦ τ1 ◦ ϕF−1)−1.

3) For t = 3,

ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2 ◦ ϕ ◦ τc3(ϕ ◦ τ1F )−1 2)
≈ ϕ ◦ τ̃c1(ϕ ◦ τ1 ◦ ϕF−1)−1 1)

≈ (ϕ ◦ τ1F )−1.

Thus,

ϕ ◦ τ̃c1 ◦ . . . ϕ ◦ τ̃ct−2 ◦ ϕ ◦ τ̃ct−1 ◦ ϕ ◦ τ̃ct(ϕ ◦ τ1F )−1 3)
≈

ϕ ◦ τ̃c1 ◦ . . . ϕ ◦ τ̃ct−3(ϕ ◦ τ1F )−1 3)
≈

. . .⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ϕ ◦ τ1F )−1, if t ≡ 0 mod 3;

ϕ ◦ τ̃c1(ϕ ◦ τ1F )−1 1)
≈ (ϕ ◦ τ1(ϕF )−1)−1, if t ≡ 1 mod 3;

ϕ ◦ τ̃c1 ◦ ϕ ◦ τ̃c2(ϕ ◦ τ1F )−1 2)
≈ (ϕ ◦ τ1 ◦ ϕF−1)−1, if t ≡ 2 mod 3.

Note that from (18) follows that ϕ(ϕ ◦ τ1F )−1 = (ϕ(τ1F )−1)−1 = (ϕ ◦ τ1F
−1)−1. 

Therefor the case of odd k comes down to the previous case. Indeed,

ϕ ◦ τ̃c1 ◦ . . . ϕ ◦ τ̃ct−2 ◦ ϕ ◦ τ̃ct−1 ◦ ϕ ◦ τ̃ct ◦ ϕ(ϕ ◦ τ1F )−1 3)
≈

ϕ ◦ τ̃c1 ◦ . . . ϕ ◦ τ̃ct−2 ◦ ϕ ◦ τ̃ct−1 ◦ ϕ ◦ τ̃ct(ϕ ◦ τ1F−1)−1 ≈⎧⎪⎪⎨⎪⎪⎩
(ϕ ◦ τ1F−1)−1, if t ≡ 0 mod 3;
(ϕ ◦ τ1(ϕF−1)−1)−1, if t ≡ 1 mod 3;
(ϕ ◦ τ ◦ ϕF )−1, if ≡ 2 mod 3. �
1



30 D. Davidova et al. / Finite Fields and Their Applications 72 (2021) 101834
Lemma 11. Let F be an o-monomial. Then for q ≥ 3

(H1(H2(. . . (HqF )−1 . . .)−1)−1 ≈

⎧⎪⎪⎨⎪⎪⎩
τ1G

−1;
(ϕ ◦ τ1G)−1;
ϕ ◦ τ1G,

where G ∈ {F, (ϕF )−1, ϕF−1, F−1, (ϕF−1)−1, ϕF} and Hi are defined by (23) for all 
1 ≤ i ≤ q.

Proof. First consider the following cases:
1. q = 1. It is easy to see that from Lemma 9 follows

(H1F )−1 ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(τ1F )−1 ≈ τ1F

−1;
(ϕ ◦ τ1F )−1;
(τ1 ◦ ϕF )−1 ≈ τ1(ϕF )−1;
(ϕ ◦ τ1 ◦ ϕF )−1;

=
{
τ1G

−1;
(ϕ ◦ τ1G)−1,

(37)

where G ∈ {F, ϕF}
2. q = 2. Obviously from Lemma 10 we have

(H1(ϕ ◦ τ1F )−1)−1 = ϕ ◦ τ1G, (38)

where G ∈ {F, (ϕF )−1, ϕF−1, F−1, (ϕF−1)−1, ϕF}.
Using (37) and (38) we get

(H1(H2F )−1)−1 (37)
≈

⎧⎪⎪⎨⎪⎪⎩
(H1 ◦ τ1G−1

1 )−1 (37)
≈

{
τ1G

−1
2 ;

(ϕ ◦ τ1G2)−1;

(H1(ϕ ◦ τ1G1)−1)−1 (38)
≈ ϕ ◦ τ1G2,

(39)

where

G1 ∈ {F,ϕF},
G2 ∈ {G−1

1 , ϕG−1
1 } = A1,

G2 ∈ {G1, (ϕG1)−1, ϕG−1
1 , G−1

1 , (ϕG−1
1 )−1, ϕG1} = A2.

It is easy to see that

A1 = {F−1, (ϕF )−1, ϕF−1, (ϕF−1)−1},
A2 = {F, (ϕF )−1, ϕF−1, F−1, (ϕF−1)−1, ϕF}.

Indeed,
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if we take G1 = F in A2, then we get {F, (ϕF )−1, ϕF−1, F−1, (ϕF−1)−1, ϕF}, if we take 
G1 = ϕF , then we get the same set of o-polynomials, since

(ϕ(ϕF )−1)−1 (18)= ((ϕF−1)−1)−1 = ϕF−1.

Note that all functions in the sets A1 and A2 are o-monomials.
3. q = 3,

(H1(H2(H3F )−1)−1)−1 (39)
≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(H1 ◦ τ1G−1
2 )−1 (37)

≈
{
τ1G

−1
3 ;

(ϕ ◦ τ1G3)−1,

(H1(ϕ ◦ τ1G2)−1)−1 (38)
≈ ϕ ◦ τ1G3

(H1 ◦ ϕ ◦ τ1G2)−1 (37)
≈

{
τ1G̃

−1
3 ;

(ϕ ◦ τ1G̃3)−1,

where G3 ∈ {G−1
2 , ϕG−1

2 }, G3 ∈ {G2, ϕG
−1
2 , (ϕG2)−1, G−1

2 , (ϕG−1
2 )−1, ϕG2}, G̃3 ∈

{G2, ϕG2}, G2 ∈ A1, G2 ∈ A2.
Substituting in the corresponding sets o-monomials from A1 and A2, using (18), we 

get that G3, G3, G̃3 belong to A2, therefore

(H1(H2(H3F )−1)−1)−1 ≈

⎧⎪⎪⎨⎪⎪⎩
τ1G

−1
3 ;

ϕ ◦ τ1G3;
(ϕ ◦ τ1G3)−1,

where G3 ∈ A2 = {F, (ϕF )−1, ϕF−1, F−1, (ϕF−1)−1, ϕF}.
We are going to prove this lemma by induction on the length of orbit q. For q = 3 the 

statement of the lemma is true as we saw above. Suppose that it is true for any l ≤ q−1
and l ≥ 3. By our assumption:

(H1(H2(. . . (HqF )−1 . . .)−1)−1 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(H1 ◦ τ1G−1)−1 (37)
≈

{
τ1G

−1
1 ;

(ϕ ◦ τ1G1)−1,

(H1(ϕ ◦ τ1G)−1)−1 (38)
≈ ϕ ◦ τ1G1,

(H1 ◦ ϕ ◦ τ1G)−1 (37)
≈

{
τ1G̃

−1
1 ;

(ϕ ◦ τ1G̃1)−1,

where G ∈ A2, G1 ∈ {G−1, ϕG−1}, G1 ∈ {G, (ϕG)−1, ϕG−1, G−1, (ϕG−1)−1, ϕG}, G̃1 ∈
{G, ϕG}. By straightforward computations it is easy to see that all of the sets are equal 
to A2, thus
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(H1(H2(. . . (HqF )−1 . . .)−1)−1 ≈

⎧⎪⎪⎨⎪⎪⎩
τ1G

−1;
(ϕ ◦ τ1G)−1;
ϕ ◦ τ1G,

where G ∈ {F, (ϕF )−1, ϕF−1, F−1, (ϕF−1)−1, ϕF}, which proves our statement. �
Proposition 2. The modified magic action and the inverse map applied to o-monomials 
give at most 4 EA-inequivalent functions. For an o-monomial F the 4 potentially EA-
inequivalent bent functions are defined by F, F−1, (F ′)−1 and F ◦.

Proof. We use Lemma 11 and discuss the cases q = 1, 2 and q ≥ 3 separately.
1. q = 1. According to (37) (H1F )−1 has the following two forms τ1G−1 and (ϕ ◦

τ1G)−1, where G ∈ {F, ϕF}. The first function obviously defines Niho bent functions 
EA-equivalent to one defined by G−1 and therefore to those defined by F−1 and (ϕF )−1. 
The second function defines Niho bent functions EA-equivalent to one defined by F ◦ (by 
Lemma 8).

2. q = 2. From (39) we have:

(H1(H2F )−1)−1 ≈

⎧⎪⎪⎨⎪⎪⎩
τ1G

−1
2 ;

(ϕ ◦ τ1G2)−1;
ϕ ◦ τ1G2,

where

G2 ∈ {F−1, (ϕF )−1, ϕF−1, (ϕF−1)−1},
G2 ∈ {F, (ϕF )−1, ϕF−1, F−1, (ϕF−1)−1, ϕF}.

Obviously, τ1G−1
2 and ϕ ◦ τ1G2 define Niho bent function EA-equivalent to those 

defined by G−1
2 and G2 respectively, which in their turn define Niho bent functions EA-

equivalent to F, F−1 and (F ′)−1. (ϕ ◦ τ1G2)−1 defines functions EA-equivalent to one 
defined by F ◦. Indeed, (ϕ ◦ τ1G2)−1 has one of the following forms:

• (ϕ ◦ τ1F
−1)−1 (20)= (ϕ(τ1F )−1)−1 (18)= ϕ(ϕ ◦ τ1F )−1 defines Niho bent function EA-

equivalent to (ϕ ◦ τ1F )−1 = F ◦

• (ϕ ◦ τ1 ◦ ϕF−1)−1, by Lemma 8 defines Niho bent functions EA-equivalent to (ϕ ◦
τ1F

−1)−1 = (ϕ(τ1F )−1)−1 (18)= ϕ(ϕ ◦ τ1F )−1, which defines functions EA-equivalent 
to one defined by (ϕ ◦ τ1F )−1 = F ◦;

• (ϕ ◦ τ1(ϕF )−1)−1 (20)= (ϕ(τ1 ◦ ϕF )−1)−1 (18)= ϕ(ϕ ◦ τ1 ◦ ϕF )−1 defines Niho bent 
function EA-equivalent to F ◦(by Lemma 8);
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• (ϕ ◦ τ1(ϕF−1)−1)−1 = (ϕ ◦ τ1 ◦ ϕ(ϕF )−1)−1 (35)= (τ1 ◦ ϕ ◦ τ1(ϕF )−1)−1 (20)= τ1(ϕ ◦
τ1(ϕF )−1)−1 defines Niho bent function EA-equivalent to (ϕ ◦ τ1(ϕF )−1)−1, which 
by the previous case defines Niho bent function EA-equivalent to F ◦.

3. For q ≥ 3 by Lemma 11,

(H1(H2(. . . (HqF )−1 . . .)−1)−1 ≈

⎧⎪⎪⎨⎪⎪⎩
τ1G

−1;
(ϕ ◦ τ1G)−1;
ϕ ◦ τ1G,

where G ∈ {F, (ϕF )−1, ϕF−1, F−1, (ϕF−1)−1, ϕF}.
τ1G

−1 and ϕ ◦ τ1G define Niho bent function EA-equivalent to G−1 and G corre-
spondingly, which in their turn define Niho bent functions EA-equivalent to F, F−1 and 
(ϕF )−1.

(ϕ ◦ τ1G)−1 defines Niho bent functions EA-equivalent to F ◦. Indeed, for G equals to 
F−1, (ϕF )−1, ϕF−1, (ϕF−1)−1, we already prove it in the case q = 2. If G = ϕF , then 
(ϕ ◦ τ1G)−1 = (ϕ ◦ τ1 ◦ ϕF )−1 which defines Niho bent function EA-equivalent to one 
defined by F ◦ (by Lemma 8). If G = F , then (ϕ ◦ τ1F )−1 = F ◦. �
Proposition 3. The modified magic action and the inverse map applied to the Frobenius 
map, give exactly 3 EA-inequivalent functions corresponding to F , F−1, (F ′)−1.

Proof. For the Frobenius map F (x) = x2i we have: F ◦ = (F ′)−1 = x
1

1−2i . Hence by 
Proposition 2, F can potentially define 3 EA-inequivalent Niho bent functions corre-
sponding to F , F ′ and (F ′)−1. This 3 o-polynomials define 3 surly EA-inequivalent Niho 
bent functions [8]. �

The Payne o-polynomial can be represented via Dickson polynomials. Let us recall
Dickson Polynomials. For every non-negative integer d Dickson polynomials Dd(x) over 
F2m can be defined by a recursion relation in the following way:

D0(x) = 0, D1(x) = x, Dd+2(x) = xDd+1 + Dd(x), for all integers d ≥ 0.
It satisfies the following properties:

1. Dd ◦Dd′ = Ddd′ .
2. If d is co-prime with 2m − 1, then Dd is a permutational polynomial.

Using Dickson polynomials we can prove the following results for the Payne o-
polynomials.

Lemma 12. Let F (x) = x
1
6 + x

1
2 + x

5
6 . Then F ◦

c = (F ∗
c )−1 for any c ∈ F2m .
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Proof. Note first, that F (x) = x
1
6 + x

1
2 + x

5
6 = D5(x

1
6 ). Also it is easy to see that 

F ′ = F . Indeed,

F ′(x) = xF (x−1) = xD5(x− 1
6 ) = x(x− 1

6 + x− 1
2 + x− 5

6 ) =

x
1
6 + x

1
2 + x

5
6 = D5(x

1
6 ) = F (x).

Therefore (F ′)−1 = F−1, and hence,

(F ∗
c )−1 = ((τcF ′)′)−1 = ((τcF )′)−1 = F ◦

c , for any c ∈ F2m . �
Proposition 4. The modified magic action and the inverse map applied to o-polynomial 
F (x) = x

1
6 + x

1
2 + x

5
6 can potentially give EA-inequivalent Niho bent functions corre-

sponding to o-polynomials F and F ◦
c , c ∈ F∗

2m .

Proof. Immediately follows from Lemma 12. �
Example. For m = 5 we checked computationally that the o-polynomial F (x) = D5(x

1
6 )

over F2m defines 6 EA-inequivalent Niho bent functions corresponding to o-polynomials 
F , F−1 and F ◦

w, F
◦
w3 , F ◦

w5 , where w is a primitive element of F2m .

Remark. The modified magic action and the inverse map applied to Subiaco, Adelaide 
and x2k + x2k+2 + x3·2k+4 o-polynomials F can give a sequence of EA-inequivalent 
functions defined by o-polynomials on the orbits F , F−1, F ◦

c , (τ̃cF )◦c , (τ̃c(F ′))◦c and 
so on.

7. The known hyperovals1

Over two decades, finite geometers determined the stabilizers of all known hyper-
ovals. In this section we provide an explicit list of all o-polynomials which provide 
EA-inequivalent Niho bent functions for each of the known hyperovals. We start by 
giving an overview over the number of EA-inequivalent Niho bent functions for each 
known hyperoval. See Table 1.

Below, for given o-polynomials F1 and F2, we denote F1 ∼= F2 if F1 and F2 define 
EA-equivalent Niho bent functions gF1 and gF2 .

Note that a matrix corresponding to the transformation ϕ ◦ τc is(
0 1
1 0

)
·
(

1 0
c 1

)
=

(
c 1
1 0

)
,

and that ϕ ◦ τ̃c = αc
F · (ϕ ◦ τc). Hence, by Theorem 3 the hyperoval defined by the 

o-polynomial F ◦
c is obtained from the hyperoval defined by F using the following trans-

1 Some of the results will repeat Section 6.2 results. We decided to keep both of them, since we use a mix 
of algebraic and geometric approach.
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Table 1
Number of EA-inequivalent Niho bent functions for known hyperovals.

Name Hyperoval Condition Number Ref.
Regular x2 m = 1 1 [23, Th. 4.1]

m = 2 1 [23, Th. 4.1]
m ≥ 3 2 [23, Th. 4.2]

Irregular 
translation

x2i

m = 5 or m ≥ 7 3 [23, Th. 4.3]

Segre x6 m = 5 2 [23, Th. 4.4]
m > 5 odd 4 [23, Th. 4.4]

Glynn I x3σ+4 m ≥ 7 odd σ = 2(m+1)/2 4 Th. 7
Glynn II xσ+λ m = 7 σ = 4 = λ 2 Th. 7

m > 7 odd σ = 2(m+1)/2

λ = 2k for m = 4k − 1; 
λ = 23k+1 for m = 4k + 1

4 Th. 7

Cherowitzo xσ + xσ+2 + x3σ+4 m = 5 10 [23, Th. 4.6]
m > 5 prime 4m+2m−2

m
Th. 9

m > 5 odd nC(m) [23]

Payne x1/6 + x3/6 + x5/6 m ≥ 5 is prime 3m+2m−1−1
m

Th. 8
m ≥ 5 is odd nP (m) Th. 8

Lunelli-Sce 
(Subiaco)

m = 4 ν prim. root ν4 = ν + 1 1 [23, Th. 4.1]

Subiaco m = 6 |Aut| = 60 3 [33, p. 98]
m = 6 |Aut| = 15 6 [33, p. 98]
m odd m = 7 12 [35]
m odd m > 7 nS(m) Th. 11
m ≡ 0 (mod 4) m > 6 nS(m) Th. 11
m ≡ 2 (mod 4) m > 6
|Aut| = 10e

Th. 12

m ≡ 2 (mod 4) m > 6
|Aut| = 5e/2 5 � m

Th. 12

Adelaide m = 6 8 [35]
m > 6 m even nA(m) Th. 10

O’Keefe-Penttila m = 5 12 [22, Case 2]a

a Notice that the reference claims 1 + 110 instead of 1 + 11 orbits due to a typo.

formation matrix (the first matrix in the product corresponds to the inverse transforma-
tion): (0 1 0

1 0 0
0 0 1

)
·
(0 0 1

0 αc
F αc

FF (c)/c
1 0 0

)
=

(0 αc
F αc

FF (c)/c
0 0 1
1 0 c

)
.

That is,

F ◦
c (x) =

(
αc
Fx

(
F
( 1 + c

)
+ F (c)

))−1
x
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corresponds to the map

Ac
F :=

(0 αc
F αc

FF (c)/c
0 0 1
1 0 c

)
.

Also recall that the choice of an o-polynomial for a given hyperoval H only depends on 
which point of H is chosen as nucleus, so the o-polynomial is determined by the preimage 
of (0, 1, 0). We have

Ac
F (c, F (c), 1)T = (αc

FF (c) + αc
FF (c)/c, 1, c + c)T = (0, 1, 0).

Hence, F ◦
c
∼= F ◦

d if and only if 〈(c, F (c), 1)〉 and 〈(d, F (d), 1)〉 lie in the same point orbit 
of the stabilizer of H. To summarize, we have the following:

(a) F ◦
c
∼= F ◦

d if and only if 〈(c, F (c), 1)〉 and 〈(d, F (d), 1)〉 lie in the same point orbit;
(b) F ∼= F ◦

c if and only if 〈(0, 1, 0)〉 and 〈(c, F (c), 1)〉 lie in the same point orbit;
(c) F−1 ∼= F ◦

c if and only if 〈(1, 0, 0)〉 and 〈(c, F (c), 1)〉 lie in the same point orbit;
(d) F ∼= F−1 if and only if 〈(0, 1, 0)〉 and 〈(1, 0, 0)〉 lie in the same point orbit.

As guidelined in [9] we use the known results on the orbits of the known hyper-
ovals to get the explicit numbers and representations for o-polynomials which provide 
o-equivalent but EA-inequivalent Niho bent functions for each of the known hyperovals.

Lemma 13. Let m ≥ 3. The two o-polynomials obtained from the regular hyperoval H, 
that is F (x) = x2, are (up to EA-equivalence for the corresponding Niho bent functions) 
F and F−1.

Proof. By [23, Th. 4.2], one point orbit is the nucleus N and the other point orbit is 
H \ {N}. Hence, F−1 is a representative of the second orbit. �
Lemma 14. Let m = 5 or m ≥ 7. The three o-polynomials obtained from the irregular 
translation hyperoval H, that is F (x) = x2i with 1 < i < m − 1 co-prime to m, are (up 
to EA-equivalence for the corresponding Niho bent functions) F , F−1 and F ◦

0 .

Proof. By [23, Th. 4.3], one point orbit is the nucleus N = (0, 1, 0), another point orbit 
is N ′ := (1, 0, 0), and the last point orbit is H \ {N, N ′}. Hence, F , F−1, and F ◦

0 are 
representatives of the three orbits. �
Lemma 15. Let m ≥ 5 be odd. Consider the Segre hyperoval H, that is F (x) = x6.

(a) If m = 5, then the two o-polynomials obtained from H are (up to EA-equivalence for 
the corresponding Niho bent functions) F and F ◦

1 .
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(b) If m > 5, then the two o-polynomials obtained from H are (up to EA-equivalence for 
the corresponding Niho bent functions) F , F−1, F ◦

0 , and F ◦
1 .

Proof. By [23, Th. 4.4], for m = 5 the point orbits of H are {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
and all the remaining points. Hence, (0, 1, 0) and (1, 1, 1) are representatives, so we can 
choose F and F ◦

1 as representatives. For m > 5 the first orbit splits into three orbits, so 
we have to add F−1 and F ◦

0 to the previous list. �
Theorem 7. The collineation stabilizer of a Glynn hyperoval has 4 orbits unless it is of 
type II and m = 7.

Proof. First consider the case Glynn I. By [23, Th. 4.4] we have 4 orbits unless (3σ +
4)2 − (3σ + 4) + 1 ≡ 0 (mod 2m − 1). This simplifies to

9 · 2m+1 + 21 · 2(m+1)/2 + 13 ≡ 31 + 21 · 2(m+1)/2 ≡ 0 (mod 2m − 1).

One can easily check that this is never satisfied.
Now consider the case Glynn II. By [23, Th. 4.4] we have 4 orbits unless (σ + λ)2 −

(σ + λ) + 1 ≡ 0 (mod 2m − 1). For m = 4k − 1, this is

2(3m+7)/4 − 2(m+1)/4 + 3 ≡ 0 (mod 2m − 1).

Equality holds only for m = 7 as for m > 7 the left hand side is smaller than 2m − 1. 
The calculation for m = 4k + 1 is similar. �

Similar to Lemma 15, we obtain the following.

Lemma 16. Let m ≥ 7 be odd. Consider a hyperoval H of type Glynn I or Glynn II.

(a) If m = 7, then the two o-polynomials obtained from H are (up to EA-equivalence for 
the corresponding Niho bent functions) F and F ◦

1 .
(b) Otherwise, the four o-polynomials obtained from H are (up to EA-equivalence for 

the corresponding Niho bent functions) F , F−1, F ◦
0 , and F ◦

1 .

Theorem 8. The number of orbits of the collineation stabilizer of the Payne hyperoval H
is given by 3 + 2m−1

m if m is a prime. More generally, the number of orbits are given by

nP (m) := 3 +
∑

� |m, �>1

∣∣∣∣∣∣F∗
2� \

⋃
h | �, h<�

F∗
2h

∣∣∣∣∣∣ /(2�).
For w a primitive element of Fq and c = w2n, we get F ◦

c
∼= F ◦

d if and only if d = w2in

or d = w−2in for some i ∈ {1, . . . , m}. The o-polynomials F and F−1 define Niho bent 
functions EA-inequivalent to those defined by all other o-polynomials from H.
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Proof. By [23, Th. 4.5], the orbits are {(0, 1, 0)}, {(1, 0, 0), (0, 0, 1)}, and sets

Hn := {(wn2i

, f(wn2i

), 1) : i = 1, . . . ,m} ∪ {(1, f(wn2i

), wn2i

) : i = 1, . . . ,m},

where w is a primitive element of Fq. Notice that H0 is {(1, 1, 1)}. For m prime it is 
easy to see that each orbit Hn has length m for n > 1, hence the total number of orbits 
is 3 + 2m−1−1

m . In general, if wn ∈ F� with � | m, then {(wn)2
i

} ∈ F�. This yields the 
general formula.

The description of the equivalence of F ◦
c and F ◦

d follows directly from the explicit 
description of the orbits. �

For example for m = 5, the previous result gives the following representatives for all 
6 o-polynomials which can be obtained from the Payne hyperoval:

F, F−1, F ◦
1 , F ◦

w, F ◦
w3 , F ◦

w5 .

Theorem 9. The number of orbits of the collineation stabilizer of the Cherowitzo hyperoval 
is given by 4 + 22m−1−1

m if m is a prime. More generally, the number of orbits are given 
by

nC(m) := 3 +
∑
� | m

∣∣∣∣∣∣F ∗(2�) \
⋃

h | �, h<�

F∗
2h

∣∣∣∣∣∣ /�.
For w a primitive element of Fq and c = w2n, we get F ◦

c
∼= F ◦

d if and only if d = w2in

for some i ∈ {1, . . . , m}. The Niho bent functions gF and gF−1 are both EA-inequivalent 
to Niho bent functions defined by all other o-polynomials from H.

Proof. Corollary 4.5 in [3] describes the stabilizer as

{(x, y, z) → (xα, yα, zα) : α ∈ Aut(Fq)}.

The rest of the calculation is similar to the Payne hyperoval, just that this time the first 
and second coordinate cannot be interchanged. �
Theorem 10. Let [1] := δ + δ−1. For c ∈ Fq, let

Oc := {c2h

+
h−1∑
i=1

[1]2
i

: i = 0, . . . , 2m− 1}.

The number of EA-inequivalent Niho bent functions obtained from the Adelaide hyperoval 
is nA(m) := 2 + |{Oc : c ∈ Fq}|. In particular, for fixed c ∈ Fq, the Niho bent functions 
defined by the o-polynomials F , F−1, F ◦

c are pairwise EA-inequivalent. Furthermore, gF◦
c

and gF◦ are EA-equivalent if and only if d ∈ Oc.
d
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Proof. In [32, Eq. (9)] (in a slightly different representation) the stabilizer of the Adelaide 
polynomial was determined as the cyclic group generated by the map

θ : x →
(1 0 [1]

0 1 [1]
0 0 1

)(
x

F (x)
1

)2

.

From this it is easily verified that θ fixes (0, 1, 0) and (1, 0, 0), so gF and gF−1 are not EA-
equivalent to those functions defined by any of the other o-polynomials. Furthermore, it 
is easily checked that the orbit of (c, F (c), 1) is

{(x, F (x), 1) : x ∈ Oc}. �
Theorem 11. Let m ≥ 7 with m 
≡ 2 (mod 4), let

Oc := {x(−1)i+12i

: i = 0, . . . , 2m− 1}.

The number of EA-inequivalent Niho bent functions obtained from the Subiaco hyperoval 
is nS(m) := 2 + |{Oc : c ∈ Fq}|. In particular, for fixed c 
= 0, 1, the o-polynomials F , 
F−1, F ◦

0 , F ◦
c provide pairwise EA-inequivalent Niho bent functions. Furthermore, gF◦

c

and gF◦
d

are EA-equivalent if and only if d ∈ Oc.

Proof. By [24, Th. 13, Th. 16] (see also [16]), the stabilizer of the Subiaco hyperoval H
is generated by the map

θ : x →
(0 0 1

0 1 0
1 0 0

)(
x

F (x)
1

)2

.

From this it is easily verified that θ fixes (0, 1, 0), {(1, 0, 0), (0, 0, 1)}, (1, 1, 1), so Niho 
bent functions defined by F , F−1 ∼= F ◦

0 , and F ◦
1 are not EA-equivalent to those defined 

by any other o-polynomial obtained from H. Furthermore, it is easily checked that the 
orbit of (c, F (c), 1) is

{(x, F (x), 1) : x ∈ Oc}. �
For m ≡ 2 (mod 4) there are two types of non-equivalent hyperovals, see [34]. In 

particular, from Theorem 6.6 and Theorem 6.7 in [34] we obtain the following. We are 
not aware of any nice description of the orbits of the given groups, but the information 
is sufficient to calculate all o-polynomials efficiently.
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Theorem 12. Let m ≥ 6 with m ≡ 2 (mod 4).

(a) If F (x) = δ2(x4+x)
x4+δ2x2+1 + x1/2, then gF is EA-inequivalent to all gF◦

c
and we have 

F−1 ∼= F ◦
0 . Furthermore, F ◦

c
∼= F ◦

d if and only if (c, F (c), 1)h = (d, F (d), 1) for an 
element h of the group (of size 10m) generated by
(i) (x, y, z) → (z, y, x),
(ii) (x, y, z) → (x + δz, y + δ2z, z),
(iii) (x, y, z) → (z2 + δ2x2, z2 + δy2, z2).

(b) If F (x) = x3+x2+δ2x
x4+δ2x2+1 + δx1/2, then gF , gF−1 , and gF◦

0 are pairwise EA-inequivalent. 
Furthermore, F ◦

c
∼= F ◦

d if and only if (c, F (c), 1)h = (d, F (d), 1)h for an element h
of the group (of size 5m/2) generated by
(i) (x, y, z) → (xσ, yσ, zσ) for σ ∈ Aut(F ) with δσ = δ,
(ii) (x, y, z) → (z, y + δz, x + δz).

The O’Keefe-Penttila hyperoval for m = 5, which is not known to belong to any 
infinite family, is stabilized by the group generated by

(1 0 1
1 1 0
1 0 0

)
.

Hence, most orbits have the form {(c, F (c), 1), (1 +c−1, 1 +c−1F (c), 1), ((1 +c)−1, c−1(1 +
F (c), 1)}. Then, representatives for the 14 o-polynomials obtained from the hyperoval 
and defining EA-inequivalent Niho bent functions are

F, F−1, F ◦
w, F ◦

w2 , F ◦
w4 , F ◦

w5 , F ◦
w7 , F ◦

w8 , F ◦
w10 , F ◦

w14 , F ◦
w16 , F ◦

w19 .

Here w is a primitive element of F25 .
Note that one can find similar results in [2]. We use a different approach for find-

ing representatives of o-polynomials on the different orbits. Also, we use their different 
representation (via generators of the Magic action and the inverse map) than in [2]. 
Therefore, we consider our representation sufficiently different. Furthermore, our results 
are slightly more detailed, for instance in [2] the author only estimates the number of 
EA-inequivalent Niho bent functions from Cherowitzo and Payne hyperovals, while we 
provide explicit formulas.
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