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Mesmerize is a dynamically adaptable user-friendly
analysis platform for 2D and 3D calcium imaging
data
Kushal Kolar 1✉, Daniel Dondorp1, Jordi Cornelis Zwiggelaar 1,2, Jørgen Høyer 1,2 &

Marios Chatzigeorgiou 1✉

Calcium imaging is an increasingly valuable technique for understanding neural circuits,

neuroethology, and cellular mechanisms. The analysis of calcium imaging data presents

challenges in image processing, data organization, analysis, and accessibility. Tools have been

created to address these problems independently, however a comprehensive user-friendly

package does not exist. Here we present Mesmerize, an efficient, expandable and user-

friendly analysis platform, which uses a Findable, Accessible, Interoperable and Reproducible

(FAIR) system to encapsulate the entire analysis process, from raw data to interactive

visualizations for publication. Mesmerize provides a user-friendly graphical interface to state-

of-the-art analysis methods for signal extraction & downstream analysis. We demonstrate

the broad scientific scope of Mesmerize’s applications by analyzing neuronal datasets from

mouse and a volumetric zebrafish dataset. We also applied contemporary time-series ana-

lysis techniques to analyze a novel dataset comprising neuronal, epidermal, and migratory

mesenchymal cells of the protochordate Ciona intestinalis.
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Large-scale calcium imaging of neuronal activity in populated
brain regions, or entire animals, has become an indis-
pensable technique in neuroscience research. The analysis of

calcium imaging datasets presents significant challenges in the
domains of image preprocessing, signal extraction, dataset orga-
nization, downstream analysis, and visualizations. As a result, the
analysis of calcium imaging data requires computational expertise
that are rather uncustomary among biologists. Numerous state-
of-the-art packages, such as the Caiman library1, Suite2p2,SIMA3,
EZCalcium4 and ImageJ5, provide users with a myriad of options
for image preprocessing and ROI/signal extraction. Workflow
management tools for neurophysiological analysis, such as
DataJoint6 and NWB7, provide programmers with tools for
dataset organization. Users with computational training often
incorporate these tools using custom-written scripts or spread-
sheets. In contrast, biomedical scientists with little or no pro-
gramming experience would immensely benefit from a user-
friendly platform to organize, analyze, visualize, and share 2D and
3D calcium imaging data.

An important attribute of such a platform would be the ability
to seamlessly incorporate cutting-edge tools that will readily
address current and future technical challenges. The immense
growth we have seen over the last decade in new imaging tech-
nologies combined with the ever-increasing palette of genetically
encoded indicators have fueled an increase in the temporal and
spatial resolution of the acquired datasets. Calcium imaging is not
only a workhorse technique for monitoring brain-wide activity,
but it is becoming increasingly popular in the dissection of
developmental and physiological processes at the level of entire
embryos or organs. These types of information-rich datasets are
characterized by the presence of large populations of morpholo-
gically and functionally diverse, tightly packed, cells that exhibit
diverse activity profiles, making downstream processing challen-
ging. In particular, the analysis of 2D and 3D calcium imaging
datasets poses significant technical hurdles across multiple
domains including those of image preprocessing, signal extrac-
tion, dataset organization, downstream analysis, and
visualization.

One of the greatest challenges that modern biomedical
research faces is compliance with FAIR data (Findable, Acces-
sible, Interoperable, and Reusable) principles, which aim to set
new and robust standards in terms of reproducibility and data
sharing. However, even some of the most advanced analysis
pipelines rely on custom-written scripts and spreadsheets,
without a standardized system to organize and functionally link
raw imaging data, analysis procedures, and visualizations8,9. This
greatly impedes the reproducibility of the work even when the
raw data are available8–10. State-of-the-art project management
tools, such as OMERO11, Biaflows12, Cytomine13, OpenBIS14,
and KNIME15, are geared towards cell biology and histological
analysis, and are not suited for neurophysiological or calcium
imaging analysis (Table 1). Most crucially, none of these tools
support the rich and comprehensive annotations necessary for
most experiments in the field of neuroscience. For example, the
analysis of neurophysiological experiments often requires tem-
poral mapping of complex combinations of stimuli and beha-
vioral annotations that directly correspond to the imaging data
(Table 1). There are also experimental scenarios where the cells
or regions of interest (ROIs) require a combination of annotation
tags (text/numerical labels) describing features such as the cell
type, morphology, or identity, which can be mapped back to the
corresponding cell(s) or ROI(s). Finally, for publication, authors
have to produce figures integrating all of the above (i.e. the
calcium imaging data, the annotations, and the downstream
analysis) to effectively and coherently convey the biological
findings. While there are many tools for producing basic static

visualizations, there is an urgent need for a software platform
that can produce interactive visualizations where the imaging
data and analysis history of every datapoint can be instantly
retrieved8,9,16. Interactive and traceable visualizations have var-
ious applications, such as quality control8, reproducibility9,16,17,
and allowing for a better understanding of experiments and the
underlying biology8.

From the examination of the tools currently available for
calcium imaging analysis and bio-imaging project management
(Table 1), we demonstrate that there is currently no tool that
provides a comprehensive suite of features necessary for calcium
imaging analysis and project management, i.e. image processing,
ROI extraction, project organization, downstream analysis, and
interactive visualizations. To address these challenges, we cre-
ated Mesmerize—a free and open-source comprehensive plat-
form that encapsulates these requirements within a reproducible
system. The Mesmerize platform also provides graphical user
interfaces (GUI) for the analysis and visualization of 2D and 3D
datasets, thereby allowing biomedical scientists to create FAIR
(Findable, Accessible, Interoperable, and Reusable) datasets10,18

within a flexible system that can be adopted by a wide variety of
researchers who work on diverse biological problems. Mes-
merize is not a pipeline, but rather a highly modular platform
that presents users with many options along each step of their
specific user-defined calcium imaging analysis workflow. Con-
sequently, this flexible design allows developers to easily add
new or customized modules for image processing, analysis, and
visualization. In summary, the ability to create modular and
adaptable workflows grants Mesmerize a very broad scope of
applicability across a variety of labs in various fields of neu-
roscience. For example, it may be used to study whole-brain
dynamics, sensory-motor integration systems, or activity defects
in disease models. Beyond neuroscience, Mesmerize has the
potential to be transformative in the hands of developmental
biologists and physiologists interested in mapping embryonic
and post-embryonic calcium dynamics of specific tissues/organs
or entire embryos. Mesmerize lets users create and dynamically
curate an unlimited number of categorical labels that map to
entire imaging sessions, single ROIs, and temporal periods. This
rich and complex annotation capability goes beyond standard
neurobiological annotations such as behavioral correlates or
sensory stimuli and can be extended to developmental stages,
shared gene expression patterns, morphological and phenotypic
cell-type descriptors, and subcellular compartments to a name a
few. This flexibility means that Mesmerize is broadly suitable for
cell biologists, developmental biologists, and other specialties
beyond neuroscience. In scenarios where the analysis workflows
require further tailoring, Mesmerize can serve as a blueprint for
future platforms that seek to encapsulate data analysis, project
organization, and interactive traceable visualizations in other
fields.

As introduced above, calcium imaging analysis usually requires
the following components: (1) preprocessing and ROI/signal
extraction; (2) data annotation and organization; (3) downstream
analysis; and (4) visualization. Mesmerize provides end-users
with extensive graphical interfaces for each of these components
to analyze their 2D and 3D datasets. Users with basic Python or
scripting skills can utilize the API to implement more customized
or complex analysis. We have built the graphical interfaces using
the Qt framework due to its maturity and extensive developer
community. All data structures are well-documented and built
using pandas DataFrames19 and numpy arrays20,21, both highly
prevalent and mature libraries. These features make Mesmerize a
highly accessible platform, allowing users to easily integrate
Mesmerize into their analysis workflows, or develop new custo-
mized modules.
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Results
Mesmerize allows for rich data annotation. The first step of any
calcium imaging analysis workflow requires a system for users to
explore their imaging data and perform ROI extraction. We
demonstrate that Mesmerize works with both 2D and 3D datasets
from a broad set of model organisms, such as mice, zebrafish, and
Ciona intestinalis (Fig. 1a). These datasets can be visualized using
the Mesmerize Viewer, which provides GUI front-ends (based on
pyqtgraph) and API interfaces for various signal extraction
modules (Fig. 1b). Importantly, the Viewer also facilitates
extensive in-place annotation of experimental information
(Fig. 1c–e), such as but not limited to

1. temporal mapping, such as stimulus or behavioral periods
(Fig. 1d);

2. cell identities, morphology, or any other tags that map to
individual cells/ROIs (Fig. 1e).

These annotations may be performed through the GUI, or
automated through the simple scripting interface. Mesmerize’s
unique support for customizable annotations makes it broadly
applicable for a diverse range of researchers and distinguishes it
from other calcium imaging and image analysis tools (Table 1).
The highly versatile annotation functions within Mesmerize
enable scientists to efficiently curate and analyze complex datasets
that are emerging from the use of multiplexed imaging combining
several cell-specific promoters that express Genetically Encoded
Calcium Indicators (GECIs). For example, researchers can
perform a cohort of experiments that utilize tens of GCaMP
promoters, multiple combinations of optogenetic and/or chemo-
genetic lines, multiple UAS-GAL4 systems, multiple drugs etc. in
one efficient, organized and reproducible system. To illustrate this
capacity of Mesmerize, we leverage a powerful emerging model
organism, the protochordate C. intestinalis. The Ciona dataset
analyzed here includes annotations for seven different GCaMP6s
promoters, eight anatomical regions, and 21 cell types (Supple-
mentary Tables 1 and 2).

ROI extraction. Graphical front-ends help users explore ima-
ging data, perform preprocessing, and signal extraction. They
help facilitate efficient workflows for advanced users and are
necessary for users without extensive programming experience.
From a user’s perspective these front-ends, which we call
Viewer Modules, interact with the Mesmerize Viewer in a
manner similar to the various components within ImageJ and
its plugins. This familiarity in the user-end design will allow
Mesmerize to be easily adopted by more biologists, and broaden
the reach of cutting-edge packages (such as the CaImAn
library1), allowing users to perform more accurate and in-depth
analysis.

By default, Viewer Modules are provided for NoRMCorr22,
CNMF(E)23,24, NuSeT25, as well as importers for Suite2p2

outputs and ImageJ5 ROIs (Fig. 1b). These front-ends encompass
a very broad variety of user-options for motion correction and
signal extraction from both 2D and 3D calcium imaging datasets.
Many Viewer Modules are used in conjunction with the
Mesmerize Batch Manager which streamlines the exploration of
parameter space and data organization for these computationally
intensive tasks.

ROI extraction and image processing are not limited to the
default options that we provide; these Viewer Modules can be
expanded, customized and created by users with modest
programming experience. We provide an API and scripting
interfaces, which allows ROIs to be extracted from any other
custom technique which the user may desire. This flexibility
allows scientists to conveniently integrate and combine theirT
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favorite preprocessing or ROI extraction technique into their
analysis workflow. For example, we created a simple API26 to a
deep-learning approach for cellular segmentation using the
NuSeT25 network, which is useful for the segmentation of
recordings using nuclear-localized GCaMP. The NuSeT method
can be used through a GUI that can be expanded to include
additional deep-learning segmentation approaches from this

rapidly evolving field in the future. Furthermore, the binary
masks produced by the NuSeT Viewer Module can be used for
seeding CNMF(E)23,24, thereby allowing these two cutting-edge
tools to be combined in manner that would be non-trivial for
users without extensive programming experience. In summary,
these features demonstrate how Mesmerize can be a powerful
platform for complex integration and interoperability between
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multiple state-of-the-art analysis tools for both end-users and
developers.

Project organization. Current software platforms for bio-image
dataset organization are not suited for handling calcium imaging
data (Table 1). Mesmerize packages all data associated with an
imaging sample, i.e. extracted signals, annotations etc., into a
Project Sample (Fig. 1f). A collection of Project Samples con-
stitute a Project Dataset, which can be explored and filtered in a
user-friendly manner to create experimental groups using the
Project Browser (Fig. 1g). Project Samples can be modified
throughout the course of a project. Therefore, in addition to
efficient data annotation, users can append, change, or supple-
ment existing annotations that can then be propagated through
downstream analysis and visualizations. Dynamically adaptable
data management is extremely useful since biological questions
and experiments are often in constant flux as new data are pro-
cessed and analyzed.

Downstream analysis. A Project Dataset, or sub-dataset, can be
loaded into a flowchart where users can build analysis pipelines
by connecting analysis nodes (Fig. 1h–j). We provide nodes to
perform many common signal processing routines, data hand-
ling/organization, dimensionality reduction, and clustering ana-
lysis. Mesmerize’s default collection of nodes allows users to
perform many common analysis procedures such as comparison
of stimulus/behavioral periods (Fig. 1h), peak detection (Fig. 1i),
and clustering analysis (Fig. 1j). All analyses performed in the
flowchart are logged with a description of the nodes and their
parameters, thereby facilitating future reproducibility of the
analyses. For more customized analysis, we provide documenta-
tion and an API for efficiently writing new analysis nodes or
using the analysis data structures in external notebooks or scripts
(http://docs.mesmerizelab.org/en/master/developer_guide/
nodes.html). The flowchart builds upon a pyqtgraph27 widget.
The stock assortment of nodes implement various signal pro-
cessing, dimensionality reduction, and clustering analysis using
scipy28, sklearn29, and tslearn30 libraries. We use common and
mature libraries to simplify customization by more advanced
users or developers.

Visualization. The ultimate result of almost any analysis proce-
dure and scientific study is the creation of visualizations that
convey an experiment’s results. The vast majority of visualizations
in most research are static. This makes it difficult or impossible to
instantly link datapoints from a plot with the original imaging
data and analysis procedures8,9,16, which greatly hampers

reproducibility16. Recent developments help address these issues;
tools such as Jupyter31 notebooks delivered via MyBinder32 allow
the data and analysis procedures to be shared. However, these
methods are not readily accessible to non-programmers and do
not aid in the creation of FAIR and functionally linked datasets.
Mesmerize allows users to create interactive visualizations
through a GUI and share them in their interactive state (Fig. 1k).
Many interactive plots are attached to a Datapoint Tracer
(Fig. 1l), which highlights the spatial localization of the selected
datapoint and displays all its associated annotations and the
analysis history log which can be visualized using an analysis
graph (Fig. 1m), a graphical visualization that intuitively com-
municates the analysis steps. A rich variety of built-in plots are
provided, such as heatmaps, spacemaps, scatterplots, beeswarm,
and more. As with other components of the Mesmerize platform,
we provide developer instructions for the creation of new plots
that can integrate with the Datapoint Tracer (http://
docs.mesmerizelab.org/en/master/developer_guide/plots.html).
Thus far, no other calcium imaging analysis suite offers such a
rich variety of interactive visualizations for downstream analysis
(Table 1). Lastly, we are currently creating a set of standardized
web-based visualizations that mirror the current options available
for matplotlib33 and pyqtgraph27 based plots in Mesmerize. This
will further improve the shareability of data since a user will be
able to interactively explore visualizations from a Mesmerize
dataset without installing anything on their end.

Shareable datasets. In summary, Mesmerize is the first platform
to address common difficulties with reproducibility, data reusa-
bility, and organization in calcium imaging data analysis by
comprehensively encapsulating image analysis, data annota-
tion, downstream analysis, and interactive visualizations. Mes-
merize allows analysis procedures and annotations to be
transparent at the level of individual datapoints in a plot. This is
achieved by tagging Universally Unique Identifiers (UUID) to the
data at various layers of analysis, a key principle for the creation
of a FAIR dataset. Mesmerize’s unique capacity for the robust
maintenance of rich and complex annotations encourages users
to exhaustively describe their datasets. A Mesmerize project is
entirely self-contained within a single directory tree, making it
easy to share entire datasets, analysis workflows, and interactive
visualizations with the scientific community. Another scientist
can open a Mesmerize project and immediately explore visuali-
zations, analysis procedures, and view the raw data associated
with the datapoints on a published figure. This ease of opening a
Mesmerize project and exploring datasets in conjunction with
interactive visualizations will help scientists in making their data
easily accessible and reusable.

Fig. 1 Mesmerize platform overview. a Raw imaging data that can originate from a variety of sources; examples shown from 1-photon calcium imaging of
Ciona intestinalis, 2-photon imaging of the mouse visual cortex neurons and volumetric 2-photon imaging of zebrafish. bMesmerize’s highly modular design
allows ROI extraction to be performed through a variety of methods such as CaImAn CNMF(E), NuSeT deep learning, or manually. ROIs can also be
imported from Suite2p, ImageJ, or a custom module can be written using the API to import ROIs from other sources. c The Mesmerize Viewer lets users
explore their imaging data and integrates with various viewer modules such as: d Stimulus Mapping module which allows users to map temporal
information, such as stimulus or behavioral periods; e ROI Manager that can work with ROIs originating from a variety of sources, as shown in (b), and
allows users to tag an unlimited variety of categorical information such as anatomical location, cell type, morphology, etc. for each ROI. f All data pertaining
to an imaging session, i.e. the image sequence, calcium curves, ROIs, tags (annotations), stimulus mappings, and all other categorical information are
packaged into a Project Sample and saved to the Project Dataset. g The samples within a Project Dataset can be interactively managed using the Project
Browser. h–j Project Datasets, or sub-datasets, can be loaded into a flowchart to interactively perform downstream analysis. Simplified examples of how
flowcharts can be used to h explore stimulus or behavioral responses, i analyze peak features (width, amplitude, slope etc.) or perform k-shape clustering
and j perform hierarchical clustering. k Downstream analysis in flowcharts are integrated with various forms of highly interactive plots such as cross-
correlation analysis. Many interactive plots are associated with a l Datapoint Tracer where users can click on individual datapoints to view the spatial
location of the ROI that it originates from, along with all other data associated with that datapoint. m The Datapoint Tracer shown in (l) also lets users view
the analysis history log for every datapoint in the form of an Analysis Graph.
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Lastly, in order to reach a broad range of users, Mesmerize is
cross-platform and works on Linux, Mac OSX, and Windows.
Mesmerize is free, open source, uses the GNU General Public
License v3.0 and is hosted on GitHub. To facilitate fast and easy
installation on all major platforms, we provide an importable
Virtual Machine with Mesmerize pre-installed so that users can
get up and running within minutes. Mesmerize is also on PyPI,
which allows it to be installed via pip—the prevailing package
manager for Python. We have a dedicated YouTube channel with
more than 150 min of video tutorials, we host an active GitHub
community to provide troubleshooting help, software main-
tenance, and a gitter room for open discussions. Mesmerize is
regularly updated and there have been five releases in the past
year (excluding bug-fix releases). This paper describes Mesmerize
v0.7.1. See the “Code availability” section for details.

Calcium imaging in the mouse visual cortex in response to
visual sinusoidal grating stimuli. Before we illustrate the more
complex and novel analysis that can be performed with Mes-
merize, we demonstrate its use for basic neurobiological analysis
using a well-known phenomenon and a simple dataset. We used a
mouse visual cortex dataset (dataset name: CRCNS pvc-7) con-
tributed by the Allen Brain Institute, which consists of in vivo
2-photon imaging data from layer 4 cells in the mouse visual
cortex34 (Fig. 2a). The recording was performed while the mouse
was presented with visual stimuli consisting of sinusoidal bands at
various orientations, spatial frequencies, and temporal fre-
quencies. The stimulus mapping module in Mesmerize allows
users to map temporal annotations, such as the characteristics of
the visual stimuli in this experiment (Fig. 2b). However, it can be
used to map any temporal variable, such as behaviors and other
forms of stimuli, with any number of characteristics. These
temporal mappings can be entered manually through the GUI, or
the scripting interface can be used to import a temporal mapping
from a spreadsheet file. As we will show, these temporal map-
pings can be incorporated into the downstream analysis—an
essential feature for streamlined analysis in systems neuroscience.
The CaImAn NoRMCorre22 module and CNMF23 were used for
motion correction and signal extraction respectively (Fig. 2c). A
flowchart, illustrated in Fig. 2d, can then be used to determine
how cells are tuned to various characteristics of the visual stimuli.
An interactive heatmap can be used to visualize the result
(Fig. 2e). The heatmap can be labeled and sorted according to any
categorical variable in the dataset, such as the orientation, spatial
frequency, and temporal frequency that each cell is tuned to. As
mentioned previously, clicking a datapoint in the heatmap will
update the Datapoint Tracer, which then (1) highlights the spatial
localization of the ROI that the datapoint originates from, (2)
displays all other data associated to the datapoint (Fig. 2e, bottom
center), and (3) lists the analysis log (Fig. 2e, top center) which
can be exported as an analysis graph (Supplementary Fig. 1).
Another visualization that is appropriate for these data are
Spacemaps. These allow users to spatially visualize categorical
analysis results or annotations within the imaging field. For
example, we show orientation tuning (Fig. 2f), spatial frequency
tuning (Fig. 2g), and temporal frequency tuning (Fig. 2h) of the
cells in the CRCNS pvc-7 dataset. The analysis of this basic
dataset illustrates how Mesmerize can encapsulate entire analysis
workflows.

Analysis of a volumetric zebrafish calcium imaging dataset
coupled to somatosensory stimulation. Mesmerize is also cap-
able of handling 3D volumetric imaging datasets with the same
annotation and analysis capabilities that are provided for 2D
datasets. In order to demonstrate some of these features we

analyzed an in vivo 2-photon imaging dataset where zebfrafish
larvae expressing a nuclear-localized GCaMP are presented with
various forms of heat stimuli35 (Fig. 3a). Users are provided with
multiple options for ROI extraction from 3D data. Mesmerize can
interface with the Caiman 3D CNMF23 implementation, or each
plane can be processed individually using Caiman 2D CNMF.
Furthermore, Mesmerize can utilize the NuSeT25 network to
provide a deep-learning-based segmentation tool for ROI
extraction. These NuSeT-segmented ROIs that can then be used
to initialize CNMF. This example demonstrates how Mesmerize’s
modular platform greatly simplifies the process of combining
multiple cutting-edge tools, allowing them to be more easily
adopted by a broader range of users. For this 3D dataset, CNMF
with greedy initialization performed poorly (Fig. 3b), which is
likely due to lower signal-to-noise ratios that are more common
with 2-photon volumetric imaging36. However, the performance
of CNMF is greatly improved when it is initialized with binary
masked produced by NuSeT (Fig. 3b). After ROI extraction, the
stimulus information was temporally mapped and a few imaging
samples were used to create a Mesmerize project and perform
downstream analysis. Interactive stimulus tuning plots can be
obtained for every cell (Fig. 3c, d), and these can be used to sort
cells according to the stimulus they are tuned for (Fig. 3e) and
visualized using a spacemap (Fig. 3f). Lastly, we used Mesmerize
to train a linear discriminant analysis (LDA) model and classified
three distinct brain states that are observed during heat-on, heat-
on-delayed, and pre-stimulus (none) periods (Fig. 3g). Put toge-
ther, these demonstrate Mesmerize’s capabilities in handling 3D
calcium imaging data and identifying distinct brain states
using standard machine learning approaches, such as LDA. This
example demonstrates how Mesmerize’s suite of analysis tools
and annotation capabilities makes it a game-changer for cutting-
edge systems neuroscience researchers in the present and into the
future as volumetric imaging becomes more widespread.

Functional fingerprinting of neuronal and non-neuronal cell
types in C. intestinalis. Having demonstrated how Mesmerize
can be used to tackle several popular experimental paradigms in
neuroscience, where neuronal dynamics are analyzed in the
context of stimuli or behavior, we next addressed more con-
temporary/non-standard forms of analysis, with the aim of
making novel biological findings. We thus turned our attention to
spontaneous calcium activity datasets from both neuronal and
non-neuronal cells in the absence of well-defined stimuli, in cells
where typical neuronal spike trains have not been observed pre-
viously by leveraging the emerging model organism for systems
neuroscience, the protochordate C. intestinalis. Neurobiological
studies in C. intestinalis have just gained momentum, with a
handful of ethological studies37–39 and a few studies of calcium
dynamics40. However, no pan-neuronal calcium imaging analysis
has been performed and such a study would be a great resource
for the Ciona and greater chordate community.

We chose C. intestinalis as a model system to address the
unique and fundamental question of spontaneous neuronal
activity in neuronal and non-neuronal cells for multiple reasons.
First, the recent completion of the larval connectome41–43 in
conjunction with the generation of comprehensive single-cell
transcriptomes44,45 establishes the nervous system of C. intesti-
nalis as likely the most thoroughly mapped chordate nervous
system to date. Second, despite the established connectome, there
has not been a comprehensive functional study to investigate
neuronal activity across its diverse neuronal populations. Third,
its small nervous system, flat head, and the ability to label
genetically defined populations of cells using various promoters
that drive GCaMP6s expression allow us to approximate the
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identity of neuronal cells in reference to the connectome41,42.
Finally, to showcase comprehensive comparative calcium
dynamics analysis within the same organism for applications
beyond neuroscience, we additionally performed calcium imaging
in two non-neuronal cell types in C. intestinalis, the epidermis
and a population of migratory mesenchymal cells termed trunk
lateral cells46 (TLCs).The analysis methods developed in this

work can be employed by cell and developmental biologists to
study calcium-dependent mechanisms that underlie a broad
range of cell biological and morphogenetic processes.

Since our goal here was to quantitatively define calcium
activities in cells and domains where typical neuronal spike trains
have not been observed previously, we implemented techniques
which have not been used prior to our study to analyze calcium
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Fig. 2 Stimulus tuning of cells from the CRCNS PVC-7 dataset. a Video of cells within the visual cortex of a mouse being presented with visual stimuli
consisting of sinusoidal gratings. These stimuli can be mapped onto the imaging data using the b Stimulus Mapping module of the Mesmerize Viewer.
c The video was processed using the Mesmerize Batch Manager, which allows users to conveniently manage computationally intensive tasks such as
CaImAn NoRMCorre motion correction and CNMF(E). The CNMF results are imported in the Mesmerize Viewer and are packaged into a Project Sample
with the imaging data and stimulus maps. d Flowchart that illustrates basic stimulus tuning analysis that can be performed in Mesmerize flowcharts.
e Heatmap widget showing the results of the stimulus tuning analysis flowchart in (d). The heatmap shows min-max normalized calcium traces. The y axis
color labels show the orientation tuning of the cells. These plots are interactive, allowing the user to plot various forms of numerical data, such as raw
traces, normalized traces, ΔF/F0, z-scored traces etc., the relationships between numerical data and various form of categorical data such as stimulus
tuning, ROI tags, etc. The spatial location of the ROI and calcium trace, along with any other tagged data, can be seen on the right-hand-side panels of the
widget (Datapoint Tracer). The stimulus tuning of individual cells can also be visualized using Spacemaps to visualize the (f) orientation tuning of cells,
g spatial frequency tuning, and h temporal frequency tuning. Spacemaps can be used to visualize ROIs with respect to any categorical variables.

Fig. 3 Mesmerize handles 3D calcium imaging data. a Mesmerize can work with volumetric calcium imaging data. b Frame from one plane of the
volumetric dataset. CNMF with greedy initialization is unable to detect many cells in this relatively noisy dataset; however, CNMF seeded with NuSeT
segmentation picks up many more cells. c Mesmerize datapoint tracer showing a cell highlighted in red, and the corresponding calcium trace. The tuning
curves of this cell are shown in (d), which shows that this cell is tuned to heat-on stimulus. e Min−max normalized calcium traces sorted by their stimulus
tuning profiles, heat-on, heat-on-delayed, and none. Color bar indicates normalized fluorescence intensity. f Spacemap showing the stimulus tuning
characteristic of each cell. g LDA projection showing distinct brain states for heat-on, heat-on-delayed and none between each stimulus trial. Scale bars:
100 μm. heat-on: cells that respond to the heat stimulus; heat-on-delayed: cells that show a delayed response to the heat stimulus; none: cells that are
more active between the stimulus trials and less active during heat-on and heat-on-delayed stimulus periods.
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dynamics. These methods can also be applied to understand
calcium dynamics in other systems. Frequency-domain analysis
has previously been used to compare calcium dynamics between
experimental groups47,48 and during cortical development49;
however, it has not been used for global clustering analysis to
deduce more complex relationships between cell types or
experimental conditions. To fill this gap, we introduce the
application of Earth Mover’s Distances50,51 (EMD) between
frequency-domain representations of calcium traces data as a
distance metric for hierarchical clustering. The EMD is
commonly used for pattern recognition and image retrieval
systems through histogram comparison51. Intuitively, the EMD
can be thought of the amount of work that must be done to
transform one distribution into another. Therefore, in contrast to
the Euclidean distance, the EMD accounts for the order of
elements along two feature vectors that are being compared. This
makes it a useful metric for performing clustering analysis using
discrete Fourier transforms (DFTs) of calcium traces since similar
weights in neighboring, but not identical, frequency domains are
measured as a small EMD whereas the same weights in far-apart
frequency domains result in a large EMD between the feature
vectors. To illustrate this, consider the traces from two cells that
appear to have similar dynamics (Fig. 4a), and their correspond-
ing Fourier transforms (Fig. 4b). If the order of elements along
the DFT, shown as feature vectors u and v (Fig. 4b), are randomly
shuffled, the EMD between the shuffled vectors is different
whereas the Euclidean distance is identical (Fig. 4c).

Next, we show how we used the EMD to cluster calcium dynamics
of neuronal and non-neuronal cells from C. intestinalis. To
conceptually demonstrate the application of EMD, consider eleven
example traces (Fig. 4d). It is important to note that these traces were
not acquired over the same time period and we were not interested in
finding neurons/cells that fire together (i.e. neural assemblies).
Instead, we were interested in quantitatively categorizing neurons
based on their overall dynamics. The EMD-based distance matrix
shows better grouping than the distance matrices calculated using
Euclidean distances (Fig. 4e, f). To quantitatively demonstrate that
the EMD performs better than Euclidean distances, we performed
hierarchical clustering and calculated the agglomerative coefficient
(denoted by α)—a score between 0 and 1 where values approaching 1
indicate better clustering structure. With the ten example traces, the
hierarchical clustering obtained by using the EMD metric results in
an agglomerative coefficient α≈ 0.841 (Fig. 4g), whereas the
clustering obtained from Euclidean distances results in a coefficient
α≈ 0.574 (Fig. 4h). When applied to a larger dataset the clustering
structure found through EMD is even stronger with an agglomerative
coefficient α ≈ 0.983 (Fig. 4i), compared to α ≈ 0.663 for Euclidean
distances (Fig. 4j). Agglomerative coefficients tend to increase with
the size of a dataset; therefore, smaller datasets (Fig. 4e, f) are more
useful for evaluating performance between different metrics.
Euclidean distances in the time domain can be useful for grouping
cells that fire together; however, this is irrelevant since the traces were
not acquired over the same time period.

To compare our methods with techniques that have previously
been used in clustering analysis of spontaneous neuronal activity,
such as comparisons between various stages of the circadian
cycle52, we benchmarked Silhouette and Davies−Bouldin scores
using both hierarchical and k-means clustering. EMD-based
hierarchical clustering far outperforms standard hierarchical
clustering using Euclidean distances, and k-means using both
the time and frequency domain (Fig. 4k, l). Since the data are not
temporally aligned, k-means clustering would be unsuitable for
our task and mostly results in aligned traces as expected
(Supplementary Fig. 2). From these dendrograms and agglom-
erative coefficients, we demonstrate that the EMD metric between
frequency-domain representations of calcium traces results in

better separation of disparate dynamics and an aggregation of
similar dynamics. Since this method is suitable for data that are
not temporally aligned, it opens the potential for novel analysis of
spontaneous activity during circadian cycles52, development49,
and during pathological states using psychiatric disease-relevant
models and paradigms48,53.

To illustrate how the EMD is a simple and effective method for
characterization of calcium dynamics across a diverse range of
cell types, we performed hierarchical clustering on traces obtained
by imaging various neuronal and non-neuronal populations of
cells in the C. intestinalis head. Clustering of both neuronal and
non-neuronal cells resulted in a dendrogram which was cut to
form four clusters, separating these cells into four distinct
populations based on their activity profile (Fig. 5a). Example
traces from each of the four clusters show that cluster 1 consists
of cells with very low levels of activity (Fig. 5b). Cells within
cluster 2 show slightly more activity, and cluster 3 is enriched
with cells showing moderately more activity and shorter peaks.
Cluster 4 is highly enriched with cells that show very high levels
of activity. The cluster centroids help to further describe the
characteristics of the four clusters. Cluster 1 shows very high
spectral energy in the lowest frequency domains, and relatively no
spectral energy in higher frequency domains (Fig. 5c). The
amount of spectral energy in the lowest frequency domains
decreases progressively from cluster 1 to cluster 4, whereas the
opposite is true for spectral energy in higher frequency domains.
Cluster 4 shows the most spectral energy in higher frequency
domains. Biologically, each of these four clusters are enriched
with distinct populations of cells (Fig. 5d). Cluster 1 is almost
exclusively composed of CESA and HNK-1 cells exhibiting wide
and large peaks, with high spectral energy in lower frequency
domains. In contrast, neuronal cells are predominantly found in
clusters 3 and 4, with a few peripheral sensory neurons also found
in cluster 2. Peripheral sensory neurons, such as Palp, aATEN,
pATEN and RTEN, are highly enriched in clusters 2 and 3.
Cluster 4, with cells showing very high activity, mostly consists of
various types of photoreceptor cells and interneurons.

This analysis demonstrates that the combination of DFT with
EMD allows us to identify different activity states in non-
neuronal cell types and to classify different neuronal cell types in
different groups based on their activity dynamics. We show that
this clustering separates genetically defined populations of
peripheral and sensory neurons, from populations located within
the brain vesicle which form the central nervous system. Most
interestingly, four cell types involved in peripheral sensory
networks namely the Palp Sensory Neurons (PSNs), the rostal
trunk epidermal neurons (RTEN), and the apical trunk epidermal
neurons (aATEN & pATEN) exhibit similar modes of activity and
are enriched in clusters 2 and 3. Previous anatomical
studies43,54,55 postulated that PSNs provide feedforward excita-
tion to the RTENs, while all four cell types appear to exhibit a
glutamatergic molecular signature54,56. The similarity in their
activity signatures that we observe in our imaging analysis
provides functional support for this hypothesis. Cells that are
mostly primary interneurons within the brain vesicle all exhibit
high levels of activity and cluster together (Fig. 5d). These cell
types include interneurons that are postsynaptic to the RTENs
such as the peripheral interneurons (PNIN), interneurons closely
associated with photoreceptors such as the photoreceptor tract
interneuron (trIN) and the photoreceptor relay neurons (prRN),
antenna relay neurons (antRN) which receive input from the
gravity sensing cells and finally the Eminens (Em) peripheral
relay neurons which are thought to be one of the main centers of
integration in the larval nervous system based on the number of
synaptic partners they have41. In agreement with the emerging
view from the larval connectome, the high activity that these
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different types of interneurons exhibit likely reflects the more
complex inputs that they receive due to their intermediate
positions in different sensory networks.

The distinct clustering of cell types shown here is likely
indicative of cellular function and molecular composition. For
example, the slower calcium dynamics observed in cluster 1 likely
reflect the contribution of calcium signaling in homeostatic
cellular processes57 such as epidermal barrier formation and
maintenance, and processes mediating motility and cell-shape
changes in mesenchymal cells. Neuronal cells are inherently noisy
compared to other excitable cell types58, such as epithelial cells,
even in the absence of any discernable stimuli. However noise, or
spontaneous activity, is often important for many neurobiological
processes such as development49, encoding59 and stochastic
resonance60–63—a signal-boosting strategy employed by sensory
circuits and other neurophysiological systems where noise from

neurons exhibiting spontaneous activity is injected to increase the
sensitivity of sensory circuits. Spontaneous activity in developing
circuits have been studied semi-quantitatively, including fre-
quency analysis49. These fields could greatly benefit from a
method to quantitatively compare and cluster large numbers of
diverse cell types to create cell-type signatures at various stages of
development, which could complement the ever-growing tran-
scriptomic data that are more commonly used to generate cell-
type signatures64. Put together, this work reveals how sponta-
neous activity is sufficient to broadly derive cell-specific
functional fingerprints in C. intestinalis larvae. This simple but
broadly applicable technique can be used in other model systems
to define discrete functional domains for specific populations or
sub-types of neurons and provides a novel way to quantitatively
characterize the overall dynamics of calcium, or other molecules
and ions.

Fig. 4 The Earth Mover’s Distance is a robust metric for broadly characterizing calcium activity. a Two example calcium traces, u and v, in the time
domain. b Discrete Fourier transforms (DFTs) of u and v are used as feature vectors. The Earth Mover’s Distance (EMD) between u and v is 1.30, the
Euclidean (EUC) distance between u and v is 22.72. c A random shuffle is applied to feature vectors u and v. The Earth Mover’s Distance (EMD= 5.75)
changes after the random shuffle; however, the Euclidean distance (EUC= 22.72) is identical. This demonstrates how the order of elements along a feature
vector is captured by the EMD, which is necessary for effectively comparing DFTs. Color bar for (b) and (c) indicates square root of energy. d Eleven
example calcium traces from C. intestinalis. e Distance matrix showing EMDs between DFTs of the 11 calcium traces from (d). f Distance matrix showing
Euclidean Distances between DFTs of the 11 calcium traces from (d). g Dendrogram constructed from (e), with a high agglomerative coefficient (α≈ 0.841,
best= 1, worst= 0) indicating good hierarchical clustering. h Dendrogram constructed from (f), with a low agglomerative coefficient (α≈ 0.574),
indicating poor hierarchical clustering. Color bar for (g) indicates normalized fluorescence intensity for (g) and (h). i, j Dendrograms showing hierarchical
relationships between over 200 calcium traces. Color bar indicates min-max normalized fluorescence. i Dendrogram calculated using EMD, showing a very
high agglomerative coefficient (α≈ 0.983) that indicates good clustering performance. Cells near the top of the tree show slow and sparse calcium
dynamics, cells closer to the bottom of the tree show much more active and complex calcium dynamics. j Dendrogram calculated using Euclidean
distances, showing a moderate agglomerative coefficient (α≈ 0.663). k Silhouette scores comparing clustering performance of various methods, higher
scores indicate better, performance. Hierarchical clustering using the EMD between DFTs outperforms other methods. l Davies−Bouldin scores comparing
clustering performance of various methods; lower scores indicate better clustering performance. This score also demonstrates that hierarchical clustering
using the EMD between DFTs outperforms other methods. Abbreviations from (l) are defined in Supplementary Table 2.
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Motif extraction from shape-based analysis of calcium imaging
data. To extract additional valuable information from our calcium
imaging datasets, here we demonstrate another downstream analysis
method, k-Shape clustering30,65, on our C. intestinalis dataset using
Mesmerize. Many experiments in neuroscience and cell biology
require a quantitative method to define discrete archetypical shapes
from calcium traces, as well as traces that may represent changes in
the levels of other molecules such as those obtained from neuro-
transmitter or voltage indicators, etc. Thus, the methods described
here will be broadly applicable to trace-containing datasets and not
limited to calcium datasets. In the early days shape archetypes were
defined subjectively66–69, and currently the most common method is
to describe peak-features such as amplitude, width, slope, etc.70.
However, certain biological systems such as the developing nervous
system or adult nervous system in the context of pathological con-
ditions (e.g. seizures) display complex and irregular types of calcium
activity, which makes the use of such metrics less suitable. Here we
apply k-Shape clustering, a contemporary time-series analysis tech-
nique to tackle this problem. This method allows us to compre-
hensively compare peaks directly so that we can reduce calcium
traces to sequences of discrete motifs. k-Shape clustering uses a
normalized cross-correlation function to derive a shape-based dis-
tance metric that can be used to extract a finite set of discrete
archetypical peaks from calcium traces (Fig. 6a). These clusters can be
visualized using PCA of peak features to illustrate how the k-Shape
clustering maps to more traditional peak-features based mea-
sures (Fig. 6b–c). k-Shape derived archetypes can then be used to
reduce calcium traces to sequences of discrete letters, and statistical
models, such as Markov chains (Fig. 6d–g), can be applied to describe
calcium dynamics between different types of cells or experimental
groups. For example, the Markov chains created using k-Shape-
sequences derived from HNK-1 traces (Fig. 6d, e) are very simple,
characteristic of the simple calcium dynamics that these cell exhibit.
On the other hand, Markov chains that represent photoreceptor cells

(Fig. 6f, g) are much more complex. In summary, we show that
k-Shape clustering could provide a contemporary approach to
answering questions in various systems, such as examining stimulus-
response profiles, behavioral periods, etc. This approach can likely be
further tailored to extract motifs from imaging calcium, neuro-
transmitters, voltage or other Genetically Encoded Indicators (GEIs)
using different organisms, to investigate conserved and species-
specific mechanisms.

Discussion
We demonstrate here that Mesmerize is a platform that can be
used to perform novel, complex, and reproducible calcium ima-
ging data from a diverse range of cell types and organisms.

Mesmerize addresses a contemporary need in the field of
functional imaging namely, the requirement for a platform with
cutting-edge analytical tools capable of tackling 2D and 3D
datasets that is accessible to biologists with a broad range of
competence in terms of computational skills and biological
interests. We show that Mesmerize can analyze a wide range of
datasets from multiple organisms with morphologically diverse
brains and cell types, which were acquired using different imaging
techniques (e.g., 2-photon imaging, epifluorescence) in the
absence or presence of spatiotemporally defined external stimuli.

While the creation of a user-friendly platform was of para-
mount importance, this should not come at the expense of
novelty, expandability, traceability, and broad applicability.
Mesmerize provides new analysis techniques such as EMD-based
hierarchical clustering and k-Shape clustering in combination
with Markov chains, equipping users with new tools to extract
functional fingerprints and to delineate the basic building blocks
and organization of calcium activity from diverse cell types. Our
platform can be readily integrated with popular imaging pro-
cessing tools such as Suite2p and can utilize newly published

Fig. 5 Spontaneous calcium dynamics in C. intestinalis reveals cell-type signatures. a Hierarchical clustering of calcium dynamics observed in neuronal
and non-neuronal cells within the head of C. intestinalis. Dendrogram shows hierarchical relationships. Top left color bar indicates the min−max normalized
fluorescence intensity scale used for the heatmap. Left color bar legend between the dendrogram and heatmap indicates cluster membership. Right color
bar legend indicates cell identity. Heatmap shows normalized traces. b Example traces from each cluster. c Cluster centroids in both the time domain (top)
and frequency domain (bottom). d Proportion of cells that appear in each of the four clusters. For each cell type, proportions sum up to 100% across all
four clusters. Cell-type abbreviations are defined in Supplementary Table 3.
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cutting-edge tools such as the deep-learning tool NuSeT, which as
we demonstrate can markedly improve the performance of the
well-established and popular signal extraction method CNMF(E).
Importantly, Mesmerize’s capacity to produce FAIR datasets by
the encapsulation of raw data, analysis procedures and interactive
plots en masse provides a blueprint for other projects and future
software platforms. In future directions, Mesmerize could provide

neuroscientists with a user-friendly interface to back-end tools
such as DataJoint6 and NWB7. This will help create a community
where traceable visualizations and reproducible analysis become
more common in the biological sciences.

Mesmerize provides the opportunity to combine functional
fingerprinting (calcium signal or other using GEIs) with genetic
fingerprinting (e.g. regulatory elements) in genetically tractable
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organisms with the potential to simplify systems-level analyses
that utilize complex combinations of categorical variables that
include multiple genotypes, drugs, and other experimental
groups. Our functional imaging analysis of genetically defined
neuronal and non-neuronal cell types in C. intestinalis showed
that different neuronal cell types can be grouped together based
on their calcium fingerprint. In addition, it also revealed for the
first time some of the basic building blocks that build the
observed calcium activity (k-Shape-derived archetypes) and how
these building blocks can be organized (Markov chains) in order
to generate distinct calcium dynamics. The C. intestinalis datasets
(both neuronal and non-neuronal) generated in this work will
enrich an ever-growing ecosystem of openly available
genomic44,45, morphological and genetic71–73 resources for an
emerging model system for neuroscience and beyond.

Methods
Obtaining C. intestinalis (type B). Gravid hermaphrodite adults used in this study
were collected from Døsjevika, Bildøy Marina AS near Bergen, 5353, Norway with
GPS coordinates: 60.344330, 5.110812.

Rearing conditions for adult Cionas. Adult C. intestinalis were kept in a purpose-
made facility at the Sars Centre. In all, 50–100 adults were housed in 50 L tanks
with running sea water with a temperature of 10 °C and pH of approximately 8.2
under constant illumination to enhance egg production37.

Electroporation of zygotes and staging of larvae. Electroporations were per-
formed largely as described by L. Christiaen et al.74; adult C. intestinalis were
dissected to obtain eggs and sperm to perform fertilization in vitro. Eggs were then
dechorionated using chemical dechorionation in a pronase with sodium-
thioglycolate solution and placed on a rocker for ~6 min until zygotes were fully
dechorionated. Dechorionated eggs were washed several times and then fertilized
with sperm for ~10 min. After thoroughly washing zygotes were electroporated in a
mannitol solution with 70–100 μg of DNA depending on the typical expression
levels of a given construct. We electroporated zygotes in MBP Catalog #5540
electroporation cuvettes with a 4 mm gap using a BIORAD GenePulserXcell with a
CE-module. The settings we used were Exponential Protocol: 50 V, Capacitance:
800–1000 μF, Resistance ∞ and we aimed for an electroporation time constant of
15–30 ms. Embryos were cultured in ASW (artificial sea water, Red Sea Salt) at
14 °C until they were swimming larvae (Stage26 according to FABA; https://
www.bpni.bio.keio.ac.jp/chordate/faba/1.4/top.html) to be used for imaging. From
fertilization until we started imaging the average age of the animals was 36 h at
14 °C. We imaged animals that were up to ~44 h post fertilization. For reference, at
14 °C tail regression starts ~52 h post fertilization. The pH of the ASW was 8.4 at
14 °C. The salinity of the ASW was 3.3–3.4%.

Ciona calcium imaging. Stage 26 larvae were embedded in 1.5% low melting point
agarose (Fisher BioReagents, BP1360-100) between two coverslips to minimize
scattering and bathed in artificial sea water. Illumination was provided by a mer-
cury lamp with a BP470/20, FT493, BP505-530 filterset. A Hamamatsu Orca
FlashV4 CMOS camera acquired images at 10 Hz with exposure times of 100 ms
using a custom application75 using a python library for interfacing with Hama-
matsu cameras76. Imaging was performed at 16 °C using a Zeiss Examiner A1 with
a water immersion objective ZEISS W B- ACHROPLAN ×40.

Signal extraction. Images were motion-corrected using NoRMCorre22 and signal
extraction was performed using CNMFE24 with parameters optimized per video.
Extracted signals that were merely movement or noise were excluded. All para-
meters for motion correction and CNMFE can be seen in the available dataset.
Cells were identified with the assistance of the connectome41,42 to the best of our
capability with 1-photon data (Supplementary Fig. 3). Only regions that covered
cell bodies were tagged; axons were not tagged with cell identity labels.

Hierarchical clustering. Analysis was performed using the Mesmerize flowchart. All
traces extracted from CNMFE were normalized between 0 and 1. The DFT of the
normalized data was calculated using ‘scipy.fftpack.rfft’ from the SciPy (v1.3) Python
library28. The logarithm of the absolute value of the DFT data arrays was taken, and the
first 1000 frequency domains (corresponding to frequencies between 0 and 1.67Hz)
were used for clustering. This cutoff was determined by looking at the sum of squared
differences (SOSD) between the raw curves and interpolated inverse Fourier transforms
(IFTs) of the DFTs with a step-wise increase in the frequency cutoff (Supplementary
Fig. 4). The SOSD changes negligibly beyond 1.67Hz, and inclusion of higher fre-
quencies would likely introduce noise. At 1001 frequency domains, corresponding to
1.676Hz, the cumulative sum of the mean SOSD corresponds to 94.5% of the total
cumulative sum from all frequency domains (i.e. all domains up to Nyquist frequency).
EMD was used as the distance metric through the OpenCV77 (v3.4) EMD function and
complete linkage was used for constructing the tree. The dendrogram was cut to obtain
four clusters according to the maxima of the silhouette scores (Fig. 4k). The Davies
−Bouldin score was also relatively low for the four clusters (Fig. 4l). Silhouette scores
were calculated using sklearn29 v0.23 and a custom-written function was used to adapt
the Davies−Bouldin score for EMD. Euclidean Davies Bouldin scores were calculated
using sklearn29 v0.23.

k-Shape clustering. This method uses a normalized cross-correlation function to
derive a shape-based distance metric65. The tslearn30 implementation is used in Mes-
merize. Tslearn v0.4 was used. Peak-curves were used as the input data for k-Shape
clustering and the parameters can see seen in Supplementary Fig. 5. A gridsearch was
performed to optimize the hyperparameters and obtain a set of clusters with minimum
inertia (sum of within-cluster distances) with no empty clusters. The search range for
the number of clusters to form was 2–14. For each iteration of the gridsearch, peak-
curves were ordered based on half-peak-width and partitioned into n_cluster partitions
and a random centroid seed was picked from each partition.

Markov chains. Cluster membership of peaks, as determined through k-Shape clus-
tering, was used to express calcium traces as discretized sequences. These sequences
were used to create Markov chain models using the pomegranate78 Python library.

Determining stimulus tuning of cell within the CRCNS pvc-7 and zebrafish
datasets. All stimulus periods were extracted and the average response was calculated
for each stimulus, such as an orientation, spatial frequency, or temporal frequency for
the pvc-7 dataset; or heat-on, heat-off, and none (inter-trial period). The stimulus tuning
of the cell was then determined as the stimulus that produced the highest mean response
in that cell. For more details, this is calculated by the ‘get_tuning_curves()’ function
within ‘mesmerize.plotting.widgets.stimulus_tuning.widget’. The analysis graph for the
analysis of the pvc-7 dataset can be seen in Supplementary Fig. 1, and the analysis graph
for the analysis of the zebrafish dataset can be seen in Supplementary Fig. 6.

Linear discriminant analysis. The Neural Decompose node was used in the
Mesmerize flowchart to perform supervised LDA. Each timepoint of the recording
is used as a feature vector containing the intensity values for each cell at that
timepoint. The model was trained using the stimulus periods (heat-on, heat-on-
delayed, and none) for classification.

Promoters. To drive the expression of GCaMP6s population in different cell types in
C. intestinalis larvae, we used eight different promoters. Details are shown in Supple-
mentary Table 4. Sequences for several of these promoters were obtained from
DBTGR73. To amplify these promoters C. intestinalis gDNA, which was purified using
the Wizard Genomic DNA Purification Kit (A1120, Promega). Using purified gDNA at
150 ng/μl, the primers shown in Supplementary Table 5 dNTPs (Thermofisher, R0182)
and the Q5 High-Fidelity DNA Polymerase (M0491L, NEB) we performed PCR
reactions. The amplified PCR products were gel purified using Zymogclean Gel DNA
Recovery Kit (Zymo research, D4002) and inserted into P4-P1R vector using BP
Clonase II (Invitrogen, P/N56480). Positive clones identified by restriction digest were
sequenced. Subsequently, we performed a four-way Gateway Recombination using one
of the promoters in the first position, GCaMP6s in the second position and unc-54 3′
UTR in the third position. These were recombined into a pDEST II backbone using LR
Clonase II (Invitrogen, P/N56485). Expression constructs were electroporated at a range
of concentrations (80–120 µg).

Fig. 6 k-Shape clustering and Markov chains. a Cluster means from k-Shape clustering of peaks from neuronal and non-neuronal cells in the head of C.
intestinalis. Clusters are assigned alphabetical labels according to their half-peak width. Error bands show within-cluster standard deviation. b PCA of peak-features
showing how k-Shape clustering maps onto the PCA space. c Inverse transform for each of the input features showing the characteristics of the PCA space. Color
intensity and the color bar scales indicate the magnitude of the corresponding feature. d State transition matrix of a Markov chain created from discretized
sequences of HNK-1 cell calcium traces and the corresponding (e) state transition graph. f State transition matrix of a Markov chain created from discretized
sequences of photoreceptor cell calcium traces and the corresponding (g) state transition graph. Color bar scales in (d) and (f) are transition probability. Numbers
on the transition graphs in (e) and (g) also show transition probability. Transition probabilities < 0.1 were excluded to reduce visual clutter.
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Statistics and reproducibility. The details on the number of animals and trials per
C. intestinalis promoter imaged are indicated in Supplementary Table 1. Each
GCaMP6s construct was electroporated at least two times and larvae from two or
more independent electroporations were imaged. All biological replicates were
included in our analysis. CNMFE extracted signals that represented movement in
the FOV or noise were excluded. Signals from heavily out of focus regions or cells
were also excluded. C. intestinalis micrographs in Fig. 1a and Supplementary Fig. 3
are representative maximum projections from PC2 > GCaMP6s larvae single
movies each of which composed of 3000 frames. For the zebrafish micrographs in
Figs. 1a and 3 are representative maximum projections of a single plane from brain
stacks that each contained 30 planes (each imaging plane was probed with three
stimulus trials). For mouse brain micrographs are maximum projections from
individual movies containing >20,000 frames.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imaging datasets generated are available as a Mesmerize project and can be
downloaded from Figshare: C. intestinalis: https://doi.org/10.6084/
m9.figshare.10289162 79; The CRCNS pvc-7 dataset used in this study is provided as a
Mesmerize dataset: https://doi.org/10.6084/m9.figshare.10293041 80. The Zebrafish
dataset used in this study is provided as a Mesmerize dataset here: https://doi.org/
10.6084/m9.figshare.14748915 81.

Code availability
The code for Mesmerize has been deposited in the following Github repo: https://
github.com/kushalkolar/MESmerize. The Mesmerize GitHub repo with the code has been
archived in Zenodo: https://doi.org/10.5281/zenodo.5539440 82. GitHub repo for
Mesmerize: https://github.com/kushalkolar/MESmerize. Notebooks that produce some of
the figures are available on GitHub: https://github.com/kushalkolar/mesmerize_manuscript_
notebooks. Many of these notebooks can be run on MyBinder: https://mybinder.org/v2/gh/
kushalkolar/mesmerize_manuscript_notebooks/master. Mesmerize can be installed through
pip on all platforms: https://pypi.org/project/mesmerize/. We provide a ready-to-use VM
with Mesmerize and all features pre-installed. You can run this VM onWindows, Mac OSX,
or Linux. Please visit: http://docs.mesmerizelab.org/en/master/user_guides/installation.
html#all-platforms. Thorough Mesmerize documentation can be found here: http://docs.
mesmerizelab.org/. Gitter community for discussion: https://gitter.im/mesmerize_
discussion/community. Video tutorials: https://www.youtube.com/playlist?list=PLgofWiw
2s4REPxH8bx8wZo_6ca435OKqg. Additional video tutorials: https://www.youtube.com/
playlist?list=PLgofWiw2s4RF_RkGRUfflcj5k5KUTG3o.
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