
1. Introduction
There is a long-standing scientific awareness of the importance of the interactions between streams and aquifers 
(Brunner et  al.,  2017; Krause et  al.,  2014; Lewandowski et  al.,  2019, 2020; Magliozzi et  al.,  2018; Stanford 
& Ward, 1988; Winter, 1998, 1999). Many investigations describe the role of the dynamics of these interac-
tions in the transport, degradation, and residence time of solutes and pollutants (Boano et al., 2014; Elliott & 
Brooks, 1997; Singh et al., 2020; Trauth & Fleckenstein, 2017), the transport of nutrients, the ecosystem me-
tabolism and the biogeochemical transformations at the interface (Boano et al., 2014; Findlay, 1995; Jones & 
Holmes,  1996; Pinay et  al.,  2015), as well as the modulation of temperature (Arrigoni et  al.,  2008; Bhaskar 
et al., 2012; Gerecht et al., 2011; Marzadri et al., 2013). Mass and energy exchange are defined by the distribution 
of the hydraulic heads, the flow path directions, the canal bed conditions and the stream hydraulics (Lewandowski 
et al., 2019; Woessner, 2000). Thus, the stream-aquifer interaction (i.e., river-aquifer interaction) is a function of 
space and time that may vary not only due to the geomorphologic and hydrogeologic controls, but also due to the 
occurrence, magnitude, and distribution of hydrologic conditions (e.g., flood events) and anthropogenic impacts 
(e.g., hydropeaking). Numerous studies have also reported that rapid and fluctuating stages and peak-flow events 
can significantly affect the stream-aquifer interaction and modify the water flux, the residence times, and the 
flow paths in the subsurface flow (Bernard-Jannin et al., 2016; Boano et al., 2013; Cardenas, 2008; Casas-Mulet 
et al., 2015; Malzone et al., 2016; Singh et al., 2020; Trauth & Fleckenstein, 2017; Wu et al., 2018). Still, as 
recognized by Conant et al. (2019) and Krause et al. (2017, 2014), we need to develop new methods to describe 
the stream-aquifer dynamics in spatial and temporal terms to advance in the mechanistic understanding and pre-
dictability of these systems.

Irregular flow paths may affect fluid mixing and transport (Zhang et al., 2009) and consequently, reactive solute 
transport in geophysical flows (Chiogna et  al.,  2012; Sund et  al.,  2015). For instance, fluctuating head gra-
dients change the rates of the groundwater flow and can create stagnation zones (Anderson & Munter, 1981; 
Cardenas,  2008; Tóth,  1963; Winter,  1976), regions associated with stagnation or equilibrium points (Jiang 
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et  al.,  2011), where the groundwater velocity is zero (Bear,  1972). Nontrivial flow patterns can be observed 
near the stagnation points, which are relevant to the identification of the origin and fate of fluids and solutes 
(Bresciani et al., 2019). These points can allocate mixing and highly reactive regions, control the behavior of 
dissolution, dissipation, and reaction rates (Hidalgo & Dentz, 2018; Hidalgo et al., 2015; Jiang et al., 2014), and 
promote biogeochemical transformations (Krause et al., 2014; Pinay et al., 2015; Singh et al., 2020). Moreover, 
the location of stagnation points supports the description of the groundwater flow patterns in regimes that are 
driven by topographical and morphological configurations (Gomez & Wilson, 2013; Jiang et al., 2011; Ren & 
Zhao, 2020; Wang et al., 2017). Additionally, transient stages in the stream-aquifer interactions can be relevant to 
the evaluation of multidirectional variations in the flow field. The rise of stream stages may reverse the dominant 
direction of the groundwater flow regime (Hunt et al., 2006) and affect the circulation of nutrients and solutes 
(Dudley-Southern & Binley,  2015). Additionally, the reversals in the hydraulic gradient can switch between 
losing and gaining stream conditions, and influence the infiltration depth of solutes and the reaction rates in the 
subsurface (Trauth & Fleckenstein, 2017).

Groundwater numerical models are frequently used to understand stream-aquifer interactions (Anderson 
et al., 2015; Peyrard et al., 2008). Major uncertainties may propagate into the model outcomes due to the error 
in the observed hydrological variables, the parameterization and structure of the model, as well as the con-
ceptual assumptions and simplifications (Brunner et al., 2010; Di Baldassarre & Montanari, 2009; Götzinger 
& Bárdossy, 2008). In the field of hydrology, the propagation of the uncertainty has often been quantified by 
implementing Monte Carlo methods and related ensemble techniques (Beven & Binley, 1992; Kuczera & Mrocz-
kowski, 1998; Vrugt et al., 2003). The main drawbacks of these approaches are typically the high number of 
simulations to cover the stochastic space of the uncertain parameters accordingly (Cools & Nuyens, 2016). Spec-
tral expansion methods, such as generalized polynomial chaos (gPC), are suitable options to tackle these issues, 
particularly, to solve low-dimensional stochastic problems (Le Maitre & Knio, 2010; Smith, 2013). By using 
gPC expansions, we can represent different stochastic processes based on a suitable orthogonal polynomial basis 
(Rajabi, 2019; Xiu, 2009; Xiu & Karniadakis, 2002) and represent the full randomness of the system responses 
with expansion coefficients (Rajabi et al., 2015).

Previous investigations have properly implemented polynomial expansion methods to solve simplified analytical 
problems associated with hydrology, hydrogeology, and hydraulics (Esfandiar et al., 2015; Francis et al., 2010; 
Gibson et al., 2014; Litvinenko et al., 2020; Maina & Guadagnini, 2018; Meng & Li, 2017; Oladyshkin et al., 2012; 
Rajabi, 2019; Sochala & Le Maître, 2013; Zhang & Lu, 2004). Yet, the application of polynomial expansion tech-
niques in hydrological field studies have received less attention (Deman et al., 2016; Ghaith & Li, 2020; Laloy 
et al., 2013; Rajabi & Ataie-Ashtiani, 2016). In addition, evaluation of the polynomial expansions performance 
in groundwater applications is still an open matter (Rajabi, 2019), and its application for the quantification of the 
uncertainty caused by stream-aquifer interactions remains unexplored. In fact, the efficiency of spectral methods 
is problem-dependent (Le Gratiet et al., 2017). Therefore, to benefit from the application of these tools and to 
produce appropriate conclusions, we need to examine a large number of hydrological case studies.

This work aims to map the occurrence of complex flow processes caused by stream-aquifer interactions in terms 
of temporal dynamics and spatial patterns. By exploiting the strengths of gPC expansions, we want to distinguish 
reverse flow and stagnation hotspots and describe them in terms of probability of occurrence. We use gPC expan-
sions to quantify the propagation of uncertainty in the groundwater flow field due to the uncertain river boundary 
conditions during a flood event. We define the evaluation criteria to classify flow types and explore the posterior 
probabilities in an element-wise fashion (i.e., cell-by-cell) of a distributed model using kernel density estima-
tions. The approach that we propose aims to assess the randomness of the input uncertainty of parameters that 
are variable in time and hence are commonly unknown in the parameterization of stream-aquifer relations, such 
as the streambed conductance and the stream stages. These parameters are often used to fine-tune, recalibrate, 
and update the hydrogeologic models. Then, hydraulic conductivity, specific storage, specific yield, and effective 
porosity are excluded from our set of stochastic parameters. Even if these aquifer properties are uncertain and can 
be evaluated using gPC theory, once a numerical model is developed, they are assumed as constant input param-
eters over time (Bachmat et al., 1978; Osman, 2013). On the other hand, variation of the streambed conductance 
as a function of time has been largely reported (Cui et al., 2020; Hatch et al., 2010; Hubbs, 2006; Stewardson 
et al., 2016), and the stream stage is, by definition, a fluctuating attribute of the streamflow (Reddy, 2005). Fur-
thermore, by using pseudo-spectral expansions, the groundwater model does not require to be modified and can 
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be treated as a black box in the computational procedure. Hence, this method can be applied to preexisting models 
where the spatial and temporal implications of the stream-aquifer interactions play a relevant role.

2. Methods
2.1. Groundwater Flow and River Boundary Conditions

Transient groundwater flow in a heterogeneous unconfined aquifer, when the coordinate system is oriented paral-
lel to the major axes of anisotropy, can be expressed by a partial differential equation (Fetter, 1999):

�
��

(

���
�ℎ
��

)

+ �
��

(

���
�ℎ
��

)

+ �
��

(

���
�ℎ
��

)

+� = ��
�ℎ
��

, (1)

where 𝐴𝐴 𝐴 is the piezometric head [L], 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥 , 𝐴𝐴 𝐴𝐴𝑦𝑦𝑦𝑦 , and 𝐴𝐴 𝐴𝐴𝑧𝑧𝑧𝑧 represent the hydraulic conductivity along the 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴 
coordinate axes [LT−1], 𝐴𝐴 𝐴𝐴𝑠𝑠 is the specific storage [L−1], and 𝐴𝐴 𝐴𝐴  is the volumetric flux per unit volume to represent 
the sources and sinks [T−1]. For practical applications, Equation 1 is often solved by numerical methods as a set 
of spatially discrete points in the center of a cell. So, the rate of change in storage within each cell is equal to the 
sum of flows into and out of the cell, as follows (Harbaugh, 2005):

∑

𝑄𝑄𝑖𝑖 = 𝑆𝑆𝑠𝑠
Δℎ
Δ𝑡𝑡

Δ𝑉𝑉 𝑉 (2)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 is the 𝐴𝐴 𝐴𝐴 component of the flow rate into the cell that includes the source and sink terms [L3T−1], 𝐴𝐴 Δ𝑉𝑉  
is the cell volume [L3], and 𝐴𝐴 Δℎ [L] is the change in the groundwater head over a time interval 𝐴𝐴 Δ𝑡𝑡 [T]. External 
sources or stressors (e.g., rivers, artificial waterways, and lakes) can be represented as 𝐴𝐴 𝐴𝐴𝑖𝑖 elements to predict head 
distributions at successive times for transient simulations. The interaction between surface water and groundwater 
is frequently conceptualized as a boundary condition for the head-dependent flux (Anderson et al., 2015; Brunner 
et al., 2010; Di Ciacca et al., 2019). Hence, the flux exchange between streams and aquifers, 𝐴𝐴 𝐴𝐴𝑒𝑒 , is represented 
as follows:
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where 𝐴𝐴 𝐴𝐴𝑟𝑟 is the streambed conductance [L2T−1], 𝐴𝐴 𝐴𝑟𝑟 is the water level or stream stage [L], 𝐴𝐴 𝐴𝐴𝑟𝑟 is the bottom of the stre-
ambed [L], and 𝐴𝐴 𝐴𝑎𝑎 represents the hydraulic head at the node in the cell underlying the stream reach [L]. The term 

𝐴𝐴 𝐴𝐴𝑟𝑟 in the river package of MODFLOW-2005 is a resistance factor defined by the stream width 𝐴𝐴 𝐴𝐴𝑟𝑟 [L], the length 
of the conductance block 𝐴𝐴 𝐴𝐴𝑟𝑟 [L], the thickness of the streambed 𝐴𝐴 𝐴𝐴𝑟𝑟 [L], and the vertical hydraulic conductivity of 
the streambed material 𝐴𝐴 𝐴𝐴𝑟𝑟 [LT−1] (Harbaugh, 2005):

𝑐𝑐𝑟𝑟 =
𝑘𝑘𝑟𝑟𝑙𝑙𝑟𝑟𝑤𝑤𝑟𝑟

𝑚𝑚𝑟𝑟
. (4)

Streambed conductance is a broadly applied approach in hydrogeologic modeling (Morel-Seytoux,  2019). 
Nonetheless, it is a very simplified conceptualization of the stream-aquifer interactions that assumes homoge-
neity and isotropy of the streambed hydraulic conductivity within the cell (Cardenas & Zlotnik, 2003; Ghysels 
et al., 2018, 2019). Furthermore, the river package is not able to represent flow in the unsaturated zone (Brunner 
et al., 2010; Ghysels et al., 2019). In our application, the unsaturated flow under the stream can be neglected due 
to the active hydraulic connection during the simulated period. On the other hand, major roles are played by 𝐴𝐴 𝐴𝐴𝑟𝑟 
and 𝐴𝐴 𝐴𝑟𝑟 , and they are included in the uncertainty analysis accordingly. Overall, these parameters can show large 
spatial and temporal variability, and they are frequently uncertain, hardly accessible, or even unknown. In prac-
tice, 𝐴𝐴 𝐴𝐴𝑟𝑟 is a lumped parameter that cannot be easily measured in the field, that comprises various properties of the 
streambed (Cousquer et al., 2017; Mehl & Hill, 2010), and that is often estimated by calibration (Morel-Seytoux 
et al., 2017). The uncertainty in the estimation of 𝐴𝐴 𝐴𝑟𝑟 originates from the stream flow data (Di Baldassarre & Mon-
tanari, 2009) and the model structure (Georgakakos et al., 2004).
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To define the velocity distribution, transient simulations can be represented as a series of discrete steady-state 
flow periods (Pollock, 2012). The stationary version of Equation 1 can be rewritten in terms of the average linear 
groundwater velocity as:

�
��

(�v�) +
�
��

(�v�) +
�
��

(�v�) = � , (5)

where v� , v� , and v� represent the principal components of the averaged linear velocity [L/T], and 𝐴𝐴 𝐴𝐴 is the effective 
porosity [-]. Then, to obtain the averaged linear velocity component across one face of the cell, we can represent 
the volumetric flow rates across the finite-sized cell within a structured aligned grid in this fashion:
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Δ�
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+
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Δ�

= ��

Δ� Δ� Δ�
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Equation 6 is formed by 𝐴𝐴 𝐴𝐴𝑠𝑠 as the internal sources or sinks within the cell, 𝐴𝐴 Δ𝑥𝑥 , 𝐴𝐴 Δ𝑦𝑦 , and 𝐴𝐴 Δ𝑧𝑧 as the dimensions of 
the cell in the respective coordinate directions, and the components v�1 , v�2 , v�1 , v�2 , v�1 , and v�2 that represent the 
velocities perpendicular to the respective coordinate direction at the six faces of the cell. Equation 6 can be solved 
using the values of the groundwater heads 𝐴𝐴 Δℎ at a given distance 𝐴𝐴 Δ𝑙𝑙 [L] by substituting each of the flow terms by 
Darcy's law. For instance, Equation 7 exemplifies the definition of the velocity perpendicular to the 𝐴𝐴 𝐴𝐴 -direction 
at one face (Pollock, 2012):

v�1 =
��1

�Δ�Δ�
=

−���Δℎ�1

�Δ��1
. (7)

2.2. Polynomial Chaos Expansion and Pseudo-Spectral Approach

Within the context of uncertainty quantification, generalized Polynomial chaos theory (Xiu & Karniadakis, 2002) 
refers to the representation of random spaces by spectral expansions (Smith, 2013; Xiu, 2009). Following the gen-
eralized Cameron-Martin theorem (Cameron & Martin, 1947), we define a second-order random (finite variance) 
process (Smith, 2013) by a general polynomial approximation:

𝑓𝑓 (𝑠𝑠𝑠 𝑠𝑠; Φ) =
∞
∑

𝑖𝑖=0

𝑐𝑐𝑖𝑖(𝑠𝑠𝑠 𝑠𝑠)Ψ𝑖𝑖(Φ)𝑠 (8)

where 𝐴𝐴 𝐴𝐴 (𝑠𝑠𝑠 𝑠𝑠; Φ) is the output function defined by both the deterministic spatio-temporal dependencies 𝐴𝐴 {𝑠𝑠𝑠 𝑠𝑠} , and 
the stochastic dependencies 𝐴𝐴 Φ = (𝜑𝜑1,… , 𝜑𝜑𝑑𝑑) , 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖(𝑠𝑠𝑠 𝑠𝑠) are deterministic coefficients, and 𝐴𝐴 Ψ𝑖𝑖(Φ) are orthogonal 
polynomials that form the basis for the stochastic component of the solution. The random events 𝐴𝐴 Φ represent the 
stochasticity in the system due to uncertain parameters, source terms, initial or boundary conditions, etc. For the 
case of this study, this is the uncertainty related to the parameterization of the river boundary conditions: 𝐴𝐴 𝐴𝐴𝑟𝑟 and 

𝐴𝐴 𝐴𝑟𝑟 . In practice, the series in Equation 8 must be truncated after 𝐴𝐴 𝐴𝐴 terms, to obtain a finite approximation:

𝑓𝑓 (𝑠𝑠𝑠 𝑠𝑠; Φ) ≈
𝑁𝑁
∑

𝑖𝑖=0

𝑐𝑐𝑖𝑖(𝑠𝑠𝑠 𝑠𝑠)Ψ𝑖𝑖(Φ). (9)

In Equations 8 and 9, we observe that the polynomial approximation separates the deterministic and the stochas-
tic components. The polynomial basis functions 𝐴𝐴 Ψ𝑖𝑖(Φ) must be properly specified according to the probability 
density function of the random variables (Xiu & Karniadakis, 2002). The basis construction of a single random 
variable 𝐴𝐴 𝐴𝐴𝑖𝑖(𝜑𝜑) will satisfy the orthogonality condition with respect to the density 𝐴𝐴 𝐴𝐴Φ(𝜑𝜑) , such that:

𝔼𝔼[𝜓𝜓𝑖𝑖(Φ)𝜓𝜓𝑗𝑗(Φ)] = ∫Γ
𝜓𝜓𝑖𝑖(𝜑𝜑)𝜓𝜓𝑗𝑗(𝜑𝜑)𝜌𝜌Φ(𝜑𝜑)𝑑𝑑𝜑𝜑 = ⟨𝜓𝜓𝑖𝑖, 𝜓𝜓𝑗𝑗⟩𝜌𝜌 = 𝛾𝛾𝑖𝑖𝛿𝛿𝑖𝑖𝑗𝑗 , (10)

where 𝐴𝐴 ⟨𝜓𝜓𝑖𝑖, 𝜓𝜓𝑗𝑗⟩𝜌𝜌 is the inner product of 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑗𝑗 on the interval 𝐴𝐴 Γ with the weighting function 𝐴𝐴 𝐴𝐴Φ(𝜑𝜑) , 
𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝔼𝔼[𝜓𝜓2

𝑖𝑖 (Φ)] = ⟨𝜓𝜓𝑖𝑖⟩
2 is a normalization factor, and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 denotes the Kronecker delta. As described later in Sec-

tion 4.5, to construct the orthogonal polynomials in this study, the uniform distributions of the river and canal 
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conductance lead to the Legendre-chaos polynomials, while the Hermite-chaos polynomials correspond to nor-
mal distribution of the stream stages.

As stated by Smith (2013), the representation of random processes that are functions of 𝐴𝐴 𝐴𝐴 multiple independent 
random variables is analogous to the univariate case and the multidimensional basis can be constructed as tensor 
products of univariate polynomials. Since the underlying 𝐴𝐴 Ψ𝑖𝑖(Φ) in Equation 9 are known and previously defined, 
we only need to compute 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖(𝑠𝑠𝑠 𝑠𝑠) to obtain the gPC expansion. In this work, we apply a nonintrusive expansion 
known as the pseudo-spectral approach (Xiu, 2007). We use this method because it applies a set of deterministic 
model resolutions using specific realizations of 𝐴𝐴 Φ to construct approximations (Le Maitre & Knio, 2010). There-
fore, we can treat the solver as a black box in the computational procedure. This process requires numerical inte-
gration. In this work, we use an optimal Gaussian quadrature (Gautschi, 1968; Golub & Welsch, 1968) over a full 
tensor product of integration order 𝐴𝐴 𝐴𝐴 to achieve order 𝐴𝐴 𝐴𝐴 polynomials. This specifies a set of Gaussian quadrature 
nodes 𝐴𝐴 𝐴𝐴𝑘𝑘 = (𝐴𝐴1,… , 𝐴𝐴𝐾𝐾 ) and weights 𝐴𝐴 𝐴𝐴𝑘𝑘 = (𝐴𝐴1,… , 𝐴𝐴𝐾𝐾 ) , following the method defined by Gautschi (1968). Then, 
the number of model evaluations 𝐴𝐴 𝐴𝐴  is equal to 𝐴𝐴 (𝐾𝐾 + 1)𝑑𝑑 . The calculation of 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖(𝑠𝑠𝑠 𝑠𝑠) then follows:

𝑐𝑐𝑖𝑖(𝑠𝑠𝑠 𝑠𝑠) = ⟨𝑓𝑓 (𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝑠)𝑠 𝜓𝜓𝑖𝑖(𝑠𝑠)⟩𝜌𝜌 = ∫Γ
𝑓𝑓 (𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝑠)𝜓𝜓𝑖𝑖(𝑠𝑠)𝜌𝜌Φ(𝑠𝑠)𝑑𝑑𝑠𝑠𝑠 (11)

𝑐𝑐𝑖𝑖(𝑠𝑠𝑠 𝑠𝑠) ≈
𝐾𝐾
∑

𝑘𝑘=0

𝑓𝑓 (𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝑠𝑘𝑘)𝜓𝜓𝑖𝑖(𝑠𝑠𝑘𝑘)𝑤𝑤𝑘𝑘. (12)

The number of nodes 𝐴𝐴 𝐴𝐴 can be defined by 𝐴𝐴 (𝑛𝑛 + 𝑑𝑑)!∕𝑛𝑛!𝑑𝑑! − 1 (Smith, 2013; Xiu, 2010) to represent the 𝐴𝐴 𝐴𝐴 inter-
action terms optimally, or by using experimental combinations such as the empirical rule 𝐴𝐴 𝐴𝐴 = (𝑑𝑑 − 1)𝑁𝑁 , where 

𝐴𝐴 𝐴𝐴 = 𝑛𝑛 + 1 (Sudret, 2008). Once the forward deterministic evaluations are run and 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖(𝑠𝑠𝑠 𝑠𝑠) are approximated, we 
can compute the polynomial expansions 𝐴𝐴 𝐴𝐴 (𝑠𝑠𝑠 𝑠𝑠; Φ) . We can also straightforwardly obtain the first and second 
statistical moments by the following equations:

𝔼𝔼[𝑓𝑓 (𝑠𝑠𝑠 𝑠𝑠; Φ)] = 𝜇𝜇𝑓𝑓 = 𝑐𝑐0(𝑠𝑠𝑠 𝑠𝑠)𝑠 (13)

𝕍𝕍 [𝑓𝑓 (𝑠𝑠𝑠 𝑠𝑠; Φ)] = 𝜎𝜎2
𝑓𝑓 =

𝐾𝐾
∑

𝑘𝑘=1

𝑐𝑐2𝑘𝑘(𝑠𝑠𝑠 𝑠𝑠). (14)

2.3. Kernel Density Estimation

The statistics of the quantity of interest, 𝐴𝐴 𝐴𝐴𝑓𝑓 (expected value) and 𝐴𝐴 𝐴𝐴𝑓𝑓 (standard deviation), are point estimates 
because they represent a single value in the parameter space. However, for understanding the uncertainty and ex-
tending the analysis to the spatial and temporal variations, computing the underlying probability density function 
may be quite informative, and also practical to estimate the probability of occurrence of stagnation points and re-
verse flow. We apply a nonparametric estimation technique known as kernel density estimation (Silverman, 1998; 
Wand & Jones, 1995). This method calculates the density function by weighting the distances of the realizations 
from a point 𝐴𝐴 𝐴𝐴 . The kernel estimator 𝐴𝐴 𝑓𝑓 (𝑥𝑥) is defined by:

�̂ (�) = 1
���

�
∑

�=1

�
(

� −��

��

)

. (15)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 are independent data points drawn from the actual gPC expansions, 𝐴𝐴 𝐴𝐴𝜉𝜉 is the window width or band-
width, 𝐴𝐴 𝐴𝐴 is the window function that determines the shape of the kernel, and 𝐴𝐴 𝐴𝐴 is the sample size. For this study, 𝐴𝐴 𝐴𝐴𝜉𝜉 
is defined following Scott's Rule as 𝐴𝐴 𝐴𝐴𝜉𝜉 ≡ 3.5𝜎𝜎𝜎𝜎−1∕3 (Scott, 2014), and 𝐴𝐴 𝐴𝐴 is a Gaussian kernel defined as:

�(�, ��) ∝ �
− �2

2��2 . (16)

Once we define the quadrature degree 𝐴𝐴 𝐴𝐴 that is able to represent the randomness of the uncertain inputs at a 
low computational cost and with a small error in relation to the observed heads, we replicate the method in an 
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element-wise operation to find 𝐴𝐴 𝑓𝑓 (𝑥𝑥) and obtain the point estimates and poste-
rior probability distributions for each cell of the domain.

2.4. Flow Criteria Classification

The posterior probability distributions can be evaluated according to a set of 
criteria that reflect the occurrence of particular flow types (i.e., stagnation 
points and flow reversal) at different phases of the event. The first criterion 
states the probability of finding stagnation cells, which are cells where the 
local magnitude of the flow field can be equal to zero. We can explain this 
condition by defining the cumulative distribution function 𝐴𝐴 𝐹𝐹𝑉𝑉 (𝑣𝑣) from the 
previous kernel estimator, as follows:

𝐹𝐹𝑉𝑉 (𝑣𝑣) = 𝑃𝑃 (𝑉𝑉 ≤ 𝑣𝑣), (17)

where the right-hand side is the probability that the magnitude of the flow 
field 𝐴𝐴 𝐴𝐴  takes on a value less than or equal to 𝐴𝐴 𝐴𝐴 . Then, the probability of find-
ing stagnation cells can be written as:

𝑃𝑃 (𝑉𝑉 = 0) = 𝐹𝐹𝑉𝑉 (0). (18)

To identify the probability of occurrence of reverse flow, we need to define a flow field direction of reference 
with an angle 𝐴𝐴 �̄�𝜃 . Based on this reference direction, we define a flow as reverse when the angle of the evaluated 
flow direction 𝐴𝐴 𝐴𝐴 is within the interval 𝐴𝐴 [𝛼𝛼𝛼 𝛼𝛼] , where:

𝛼𝛼 = �̄�𝜃 − 135◦, 𝛽𝛽 = �̄�𝜃 + 135◦. (19)

Figure 1 shows an example of these criteria for a hypothetical reference direction with an angle 𝐴𝐴 �̄�𝜃  = 135° (red 
arrow), which means that the flow runs from southeast to northwest. We assume a flow reversal when the angle 𝐴𝐴 𝐴𝐴 
varies between 𝐴𝐴 𝐴𝐴  = 0° and 𝐴𝐴 𝐴𝐴  = 270° (gray area), because the flow is no longer flowing to the north nor to the west. 
In practice, we need to find the angles of the reference directions for every cell in order to map the probability. 
Notice that the reference flow field direction can be adapted to the requirements of the study, the temporal span 
and discretization of interest, and the hydraulic responses of the system. For instance, in this study, we use the 
mean as measurement of central tendency to define 𝐴𝐴 �̄�𝜃 :

�̄�𝜃 = 1
𝑛𝑛𝑠𝑠

𝑡𝑡𝑓𝑓
∑

𝑖𝑖=𝑡𝑡𝑠𝑠

𝜇𝜇𝜃𝜃𝑖𝑖 , 𝑛𝑛𝑠𝑠 = 1 + (𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑠𝑠), (20)

with 𝐴𝐴 𝐴𝐴𝜃𝜃𝑖𝑖 representing the expected values of the flow field angle computed with the polynomial expansions, with 
𝐴𝐴 𝐴𝐴𝑠𝑠 and 𝐴𝐴 𝐴𝐴𝑓𝑓 representing the first and last stress periods between two flood events or, in our study, the beginning of 

the simulation and the flood event, and with 𝐴𝐴 𝐴𝐴𝑠𝑠 denoting the number of stress periods between 𝐴𝐴 𝐴𝐴𝑠𝑠 and 𝐴𝐴 𝐴𝐴𝑓𝑓 . Finally, 
we can define the probability of finding reverse flow and express it in terms of a cumulative density function:

𝑃𝑃 (𝛼𝛼 ≤ 𝜃𝜃 ≤ 𝛽𝛽) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹𝐹𝜃𝜃(𝛼𝛼) − 𝐹𝐹𝜃𝜃(𝛽𝛽), 𝛼𝛼 𝛼 𝛽𝛽

𝐹𝐹𝜃𝜃(𝛼𝛼) + (1 − 𝐹𝐹𝜃𝜃(𝛽𝛽)), 𝛼𝛼 𝛼 𝛽𝛽

. (21)

2.5. Case Study and Algorithm Implementation

We applied the exposed approach to a real case model. The study area is in the Alz valley in Tacherting, Germany. 
Figure 2a shows the site location and the schematics of the numerical model. The Alz river flows from south 
to north along the valley. We can also observe an artificial waterway, the Alz canal, that acts as a tributary of 
the river. The river and the canal are hydraulically connected to an unconsolidated shallow sedimentary aquifer 

Figure 1. Reverse flow criteria representation: the red arrow represents the 
reference flow direction before a flood event, the gray area represents the 
interval within which the directions are considered reversal flows.
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(Keilholz et al., 2015; Merchán-Rivera et al., 2018). The bottom of the aquifer is located at 430 m a.s.l (above sea 
level) and it has an average depth of ∼30 m (Doppler et al., 2011). As shown in Figure 2b, the region was affected 
by a flood event due to heavy rainfall events at the beginning of June 2013.

To describe the interaction between the streams and the aquifer, we built a groundwater numerical model using 
MODFLOW-2005 (Harbaugh, 2005). This model is based on the model presented in Merchán-Rivera et al. (2018) 
and the data collected in Keilholz et al. (2015). The spatial domain of the model is subdivided into a finite-differ-
ence grid formed by one layer (vertical representation), 260 rows, and 260 columns (horizontal representation). 
The simulation period covers 75 days from 02 May 2013 00:00:00 to 15 July 2013 18:00:00, and it is discretized 
in 300 stress periods of 6 h intervals. The number of stress periods used to define 𝐴𝐴 𝐴𝐴𝑠𝑠 is equal to 100 (from 02 May 
2013 to 26 May 2013). The aquifer properties of the model were defined according to the underlying geological 
features presented in previous studies (Bayerisches Landesamt für Umwelt, 2017; Doppler et al., 2011). These 
studies identified three main soil types in the area: a younger floodplain underneath the Alz river formed by 

Figure 2. Flood event in 2013 in the Alz valley description: (a) study area location and numerical model settings, and (b) measured discharge in the river Alz and 
precipitation rate.
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gravel and sand (SA), an alluvial terrace formed by gravel and sand (SB), 
and a low terrace mainly formed by gravel (SC) (Figure 2a). The soil prop-
erties allow a very dynamic behavior of the groundwater flow due to the 
high permeability of the porous media, the good hydraulic connection with 
the adjacent streams, and the relatively high rainfall recharge. The hydraulic 
conductivity, the specific storage, the specific yield of the three soil types and 
the effective porosity are not considered calibration parameters in this study, 
since we are using a model that has already been calibrated, and we do not 
consider these parameters as time dependent. The groundwater responses are 
field measurements that were registered every 6 h in four groundwater mon-
itoring wells: Alzpitz, B1, B3, and B4 (Keilholz et al., 2015). The hydraulic 
conductivity, specific storage, specific yield, and effective porosity for each 
soil zone were calibrated in previous studies (Keilholz et  al.,  2015; Mer-
chán-Rivera et al., 2018) and are based on the soil properties (Bayerisches 
Landesamt für Umwelt, 2017; Doppler et al., 2011). Table 1a summarizes the 
parameterization of the numerical model.

Three boundary conditions were imposed in the model. First, time-variant 
specified-heads (CHD) were used to simulate the variation in the water ta-
ble at the borders of the domain. By applying this option, transient heads 
were adjusted at every stress period. Second, we included recharge into the 
saturated zone to simulate the distributed flux from the top of the domain 
due to infiltration. Third, we used the river package (Harbaugh, 2005), the 
streambed conductance and hydraulic head in the stream to simulate the in-
teraction between surface water and the aquifer. A regional hydrologic model 

built in MIKE SHE (DHI, 2013) by Keilholz et al. (2015) was used to obtain the scatter stage information for the 
river and the canal, the recharge into the saturated zone, and the groundwater heads to define the time-variant 
specified-heads, which change in time and space.

The uncertainty in the river boundary conditions is introduced by the experimental error in the stream stage 𝐴𝐴 𝐴𝐴 and 
the streambed conductance 𝐴𝐴 𝐴𝐴𝑟𝑟 , which are assumed to be random variables. The uncertainty related to stream dis-
charges of the region have been previously quantified by Willems (2011) and Willems and Stricker (2012). These 
works extensively study the uncertainty in the physical measurements of the rivers of the region and describe a 
normal distribution for the uncertainty in the discharges and the head measurements of the river Alz. This choice 
considers that the normal distribution is the best limiting distribution for a parameter that is defined from a finite 
set of physical measurements (Fornasini, 2008). Based on these settings, we then computed the rating curve and 
the corresponding propagation of the uncertainty in the stream stage. The spectral expansions introduce the sto-
chasticity of this parameter by using the quadrature node values as a noise value 𝐴𝐴 𝐴𝐴 . This means that 𝐴𝐴 𝐴𝐴 increases or 
reduces the stream stage 𝐴𝐴 𝐴𝑟𝑟 , for all of the stress periods of the model at each cell that represent the streams. Hence, 
the stream stages 𝐴𝐴 ℎ̂𝑟𝑟 used in the deterministic evaluations are defined using a random variable 𝐴𝐴 𝐴𝐴 ∼  (𝜇𝜇𝐴𝐴, 𝜎𝜎𝐴𝐴) to 
represent the stage error, where 𝐴𝐴 𝐴𝐴𝜀𝜀 = 0 , as follows:

ℎ̂𝑟𝑟 = ℎ𝑟𝑟 + 𝜀𝜀𝜀 (22)

For the definition of prior parameter distributions of the conductance, we consider physically suitable ranges 
according to the streambed material. In addition, given the lack of prior information related to the conductance 
properties of the streambed, we assume uniform density distributions to maximize the entropy for both the canal 
and the river conductance 𝐴𝐴  (𝑎𝑎𝑎 𝑎𝑎) (Cousquer et al., 2017; Zeng et al., 2016). Table 1b includes the actual values 
that were applied for the prior distributions.

The magnitude and direction of the flow fields were calculated at the center of the cell by computing the flow 
face-to-face from the MODFLOW outputs and applying the same semi-analytical algorithm described in a previ-
ous section and defined by Pollock (2012). We implemented the polynomial expansions, the nonintrusive pseu-
do-spectral projection, and the kernel density estimation using the Chaospy library (Feinberg, 2019; Feinberg & 
Langtangen, 2015) and the SciPy library (Virtanen et al., 2020).

Model parameters Value Unit

(a) Deterministic parameters

 Hydraulic conductivity SA 7.0131e−03 m/s

 Hydraulic conductivity SB 1.0617e−03 m/s

 Hydraulic conductivity SC 1.3068e−04 m/s

 Specific storage SA 2.2475e−05 1/m

 Specific storage SB 1.9938e−06 1/m

 Specific storage SC 2.8263e−05 1/m

 Specific yield SA 1.6561e−01 𝐴𝐴 −
 Specific yield SB 1.6057e−01 𝐴𝐴 −
 Specific yield SC 2.0543e−01 𝐴𝐴 −
 Effective porosity 0.3500 𝐴𝐴 −
(b) Stochastic parameters

 Stream stage error Normal ∼ 𝐴𝐴  (0, 0.145) m

 Conductance of the river Uniform ∼ 𝐴𝐴  (1𝑒𝑒−7, 9𝑒𝑒−4) m2/s

 Conductance of the canal Uniform ∼ 𝐴𝐴  (1𝑒𝑒−5, 9𝑒𝑒−1) m2/s

Table 1 
Model Parameters: (a) Deterministic Hydraulic Parameters and (b) 
Stochastic Stream Parameters
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The simulated groundwater heads were evaluated in relation to the set of observed values. Also, we validated 
the results obtained from the gPC method by comparing the simulated groundwater heads with the results from 
the application of a quasi-Monte Carlo method (qMC) with 𝐴𝐴 𝐴𝐴 = 1000 samples. The sampling points for the 
qMC were generated using Halton sequences (Halton, 1964) as a low-discrepancy arrangement to reduce the 
variance in the samples and considering that the convergence rate of quasi-random sequences is (ln��∕�) 
(Smith, 2013). Further explanations of how the collocation of the uncertain values differs between the methods 
are provided in Annex A in Supporting Information S1 for illustrative purposes.

3. Results and Discussion
To present some of the results clearly, we extracted them at specific time steps to understand the responses of the 
system at the following time steps: before the event at stress period 86 (23 May 2013), peak-flow at stress period 
127 (02 June 2013), recession phase at stress period 145 (07 June 2013) and after the flood event at stress period 
290 (13 July 2013).

We performed various tests to define 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , which included the application of the empirical rule presented 
by Sudret (2008), the full factorial design (Smith, 2013; Xiu, 2010), and a series of experimental combinations. 
We calculated the mean absolute error [L] of the expected values of the groundwater head [L] from the gPC ex-
pansions and the qMC sampling [L] in relation to the observed values at the monitoring wells. The results from 
these evaluations are displayed in Table 2. As mentioned by Debuscherre (2017), in practical applications of the 
polynomial expansions, the selection of the order of representation of the expansions is an experimental choice 
that depends on the problem. We observed that low quadrature degrees were able to capture the dependence be-
tween the solution and the stochastic spaces. Indeed, the convergence of the results does not significantly improve 
by using 𝐴𝐴 𝐴𝐴  > 4. Consequently, we applied 𝐴𝐴 𝐴𝐴  = 4 and 𝐴𝐴 𝐴𝐴  = 4 to proceed with the quantification of uncertainty 
and the creation of probability maps. In addition, to validate this choice against the qMC results, we performed a 
comparison of the spatial distribution of the statistical moments of the hydraulic heads at different phases of the 
flood event that can be found in the Annex B in Supporting Information S1.

Method K n P

Monitoring well

AverageAlzpitz B1 B3 B4

gPC 2 2 27 0.0971 0.1999 0.1836 0.0952 0.1440

3 1 64 0.1262 0.1876 0.1590 0.0919 0.1412

3 3 64 0.1262 0.1876 0.1590 0.0919 0.1412

4 1 125 0.1165 0.1916 0.1663 0.0926 0.1417

4 2 125 0.1165 0.1916 0.1663 0.0926 0.1417

4 4 125 0.1165 0.1916 0.1663 0.0926 0.1417

5 2 216 0.1187 0.1905 0.1649 0.0925 0.1416

5 3 216 0.1187 0.1905 0.1649 0.0925 0.1416

5 5 216 0.1187 0.1905 0.1649 0.0925 0.1416

6 2 343 0.1184 0.1907 0.1650 0.0925 0.1417

6 3 343 0.1184 0.1907 0.1650 0.0925 0.1417

8 3 729 0.1184 0.1907 0.1650 0.0925 0.1417

9 2 1,000 0.1184 0.1907 0.1650 0.0925 0.1416

10 4 1,331 0.1184 0.1907 0.1650 0.0925 0.1417

12 5 2,197 0.1184 0.1907 0.1650 0.0925 0.1417

qMC – – 1,000 0.1205 0.1896 0.1628 0.0922 0.1413

Table 2 
Mean Absolute Error (in Meters) of the Expected Values at the Monitoring Wells Using Different Values of Quadrature 
Degree and qMC Validation With 1,000 Samples
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Figure 3 includes the observed groundwater heads and the statistical moments that we obtained using the gPC 
method along the whole simulation period. The expected value and the standard deviation are represented by 𝐴𝐴 𝐴𝐴ℎ 
and 𝐴𝐴 𝐴𝐴ℎ , respectively. Notice that the colored shade in the plots represents the interval [𝐴𝐴 𝐴𝐴ℎ + 𝜎𝜎ℎ , 𝐴𝐴 𝐴𝐴ℎ − 𝜎𝜎ℎ ]. Over-
all, the model responses are more accurate in the monitoring wells close to the streams. The expected values at 
Alzpitz, the closest monitoring well to the streams, represent the observed values properly and mimic the respons-
es of the aquifer during the flood event. The Alzpitz monitoring well is placed in the riverbank and the discrepan-
cies observed between modeled and measured data may be a consequence of the inability of the model to replicate 
the propagation of the overbank flow on the flood plain. This would lead to the underestimation of the exchange 
flow at the peak of the event. Similarly, the responses at B3 are well characterized, even though there is a bias in 
relation to the expected value of the heads. Regarding the uncertainty bounds, we see that the prediction intervals 
of 1standard deviation cover the ranges of the observed values in the monitoring wells located immediately close 

to the streams. On the other hand, the results at B1 and B4 are less accurate 
than the results at Alzpitz and B3 and do not properly match the values of the 
observations. We attribute these outcomes to inaccuracies in the time-vari-
ant specified-head boundary conditions that mainly control the groundwater 
flow at these points and were extracted from the preexisting regional model 
(Keilholz et al., 2015). In our research, we primarily relied on the evaluation 
of Alzpitz and B3, because these are in the vicinity of the streams and the 
main drivers are the boundary conditions imposed in the canal and the river.

The uncertainty at the peak-flow of the flood event is higher than the un-
certainty before the event and at the recession phase (see Table 3). There-
fore, despite the fact that the uncertainty in the stream stage has the same 
statistical distribution over time, the highest uncertainties are observed dur-
ing the peak-flow event. The deviation for the stage uncertainty was defined 

Figure 3. Simulated groundwater heads (colored line), observed values of the groundwater head at the monitoring wells (black line) and uncertainty bounds of the 
groundwater head (colored shade).

Monitoring 
well

Before 
flood (stress 
period: 86)

Peak-flow 
(stress 

period: 127)

Recession 
phase (stress 
period: 145)

After flood 
(stress 

period: 290)

Alzpitz 0.5744 1.0737 0.5765 0.5326

B1 0.2510 0.4489 0.2548 0.2225

B3 0.4254 0.6987 0.4580 0.4032

B4 0.1522 0.1796 0.1697 0.1420

Table 3 
Predictive Uncertainty Represented by the Standard Deviation Results (in 
Meters) at Different Phases of the Flood Event Computed at the Monitoring 
Wells
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based on the uncertainties calculated by Willems (2011) for high discharge conditions, but not for extreme event 
conditions. Notice that the uncertainty in discharge and head observation during exceptional flow conditions 
(e.g., during flood events) can be higher than the uncertainty under ordinary flow conditions (Di Baldassarre & 
Montanari, 2009).

The propagation of uncertainty in the groundwater flow field was also quantified and the results were extracted 
at six different points (from E1 to E6), which are shown in Figure 2a. Since the magnitude and direction of the 
flow fields respond to the hydraulic gradients, the different evaluation points show the behavior of the subsurface 
system depending on the river and the canal behavior. The high stages in the streams increase the steepness of 
the gradients and raise the expected value of the velocity �v in the vicinity of the streams (see Figure 4). This 
effect and the large hydraulic conductivity of the gravel and sand in the alluvial plain allow a rapid increase of 
the magnitude of the flow field. Therefore, it is possible to see the highest average velocities at the peak-flow in 
all six monitoring points. During the recession phase of the flood, the velocity not only decreases but also the 
uncertainty, which is represented by the standard deviation 𝐴𝐴 𝐴𝐴𝑣𝑣 , also drops because of the reduction in the head dif-
ference between streams and aquifer at this phase. The highest velocities are registered at E3 due to the hydraulic 
gradients and the hydraulic conductivity of the alluvial terrace.

As observed in E4 and E5, the velocity and the uncertainty south of the joining streams vary highly at short dis-
tances (∼40 m between E4 and E5). In this region, the intensity of the signals is controlled by the conductance 
and the stage of both the canal and the river. The response at E4 may be a consequence of the dominance of the 
signal coming from the stream stage. Conversely, at E5, rather than one hydraulic pulse, more signals may affect 
the head variability and the propagated uncertainty in a similar magnitude due to the relative distance of both of 
the streams and their interaction with the regular groundwater flow regime. As observed, the standard deviation 
at E3 and E5 are higher than the standard deviation at the other evaluation points.

Figure 4. Simulated expected value of the flow field magnitude (black line) and uncertainty bounds of the flow field (gray shade).
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As seen in Figure 4, the results give evidence of a complex dynamic of the groundwater flow in the region where 
the streams converge. A limitation of our study is certainly the lack of field information from south of the con-
vergence of the streams. This emphasizes the need and significance of quantifying the uncertainty due to surface 
water and groundwater interaction. To see the behavior south of the junction of the streams in detail, we extracted 
the results of the flow fields to display the velocity vectors in Figure 5. Figure 5a includes the expected value of 
the flow fields at the different phases of the flood event, and Figure 5b shows the spatial distribution of the stand-
ard deviation of the velocity. Notice that Figures 5a and 5b display the results in a logarithmic scale to facilitate 
the examination. With the same purpose, the vector arrows in Figure 5a only show the direction of the vector and 
were upscaled applying an interpolation that queries the nearest cell values.

During the peak-flow, we observed major variations in the magnitude and direction of the flow field. The east-
ern side of the river shows slow flow due to the convergence of fluxes, while the flow velocity below the canal 
reaches its maximum. In the recession phase, we can observe a dominant orientation of the flow from southeast 
to northwest. The magnitude and direction almost recover to the initial state after the flood. In Figure 5b, we 
observe major uncertainties before and after the event. This may occur because there is not a single signal that 
independently controls the flow field in the selected domain during this period. Therefore, small changes in the 
values of the stream parameters may imply significant modifications of the magnitude of the flow field at the 
meter-scale. Lower values of the standard deviation are found below the streams and also the recession phase is 
the least uncertain.

The probability density functions of the directions were obtained from the kernel density estimation. In Fig-
ure 6, we represent the probability density function of the flow field direction within a two-dimensional polar 

Figure 5. Statistics of the flow field at the river and canal confluence: (a) expected value of the velocity (colored cells) and expected value of the direction (black 
arrows), and (b) standard deviation of the velocity (colored cells). The river and canal locations are referenced by the white dashed line.
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coordinate system labeled in degrees. In this reference system, the direction is defined by the angular coordinate 
in degrees, and the frequency is represented by the radial coordinate [-] as the distance from the origin. We 
observed variations in the direction of the flow field at every stage of the flood event. The significance of these 
variations depends on the spatial location and the underlying geomorphological and hydrological features. The 
evaluation points located west of the streams (E1, E2, and E3) present small changes in the expected value of the 
direction. However, the uncertainty is higher at E1 than at E2 and E3. South of the confluence of the streams, the 
orientations fluctuate considerably. As mentioned above, the flow fields depend on two diverse hydraulic pulses 
from different sources. One is the river, where the wave propagates without any immediate anthropogenic inter-
vention. The second one is the canal, where the discharge is modulated by the upstream infrastructure. The E4, 
E5, and E6 evaluation points show major changes in the mean direction at every stage of the flood event. Simi-
larly, the values of the standard deviation are higher, and the uncertainty varies highly at every stage of the event. 
The highest values of standard deviation of the direction can be observed at the peak of the event, particularly at 
E1, E4, E5, and E6. At the E5 evaluation point, we observe the most critical change in the orientation of the flow 
fields. Before the flood, we can observe the usual groundwater flow regime from southeast to northwest. At the 
peak of the flood event, the expected direction points toward the southeast. Afterward, during the recession of the 
flood, the flow follows the general reach regime in direction to the northeast. Observing E4 and E5 in Figure 6, 
and given the morphological conditions of the streams, we may expect to find reverse flow. However, we can 
also observe that, although the evaluation points are relatively close, the standard deviation and the mean of the 
direction can change considerably in short distances. This behavior is similar to the one observed in the velocity 

Figure 6. Propagation of uncertainty in the flow field direction. The probability density function of the flow field direction is represented within a two-dimensional 
polar coordinate system labeled in degrees.



Water Resources Research

MERCHÁN-RIVERA ET AL.

10.1029/2021WR029824

14 of 19

calculations. These substantial distinctions underline the need to define the effects of the uncertainties due to 
river boundary conditions in terms of space and time, particularly considering the limited field observations in 
this zone.

The probability maps of the stagnation zones are presented in Figure 7a. We can distinguish different spots in 
space and time with higher sensitivity to the uncertainty in the river boundary conditions. In this case, we ob-
serve the probability of finding points where the local velocity is zero. Before and after the flood, we can observe 
black dots along the canal that show a relatively high probability of occurrence of stagnation points (∼25%). This 

Figure 7. Probability of occurrence of flow features: (a) stagnation zones at different phases of the flood event, and (b) reverse flow at different phases of the flood 
event. The river and canal locations are referenced by the black dotted line.
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occurs in the places where different signals from the canal, the river and the aquifer meet. Also, at the junction 
of the canal and the river, it is possible to observe a stable stagnation region with a probability of occurrence 
from 10% to 15% for all the phases of the flood. This can occur due to the immediate counterflow that depends 
on the pressure heads of the streams that could produce the cancellation of the hydraulic pulses. The occurrence 
of stagnation zones decreases highly during the peak-flow event because of the high hydraulic gradients, which 
increase the groundwater flow velocities. Nevertheless, at the peak-flow event, one can observe a fringe of a 
probable stagnation zone along the eastern border of the canal.

The second flow feature that we analyzed is the occurrence of reverse flows. We can observe the extracted results 
in Figure 7b. The probability of finding reverse flows in the domain dramatically increases during the peak-flow 
event, reaching a value of ∼75%. One of the reasons for this is the high streambed conductance in the canal, which 
allows the exchange of flow during maximum discharge. At this phase, we have the highest hydraulic heads of 
the stage in the canal, which changes the regular hydraulic gradient and produces flows against the regional flow 
at the meter-scale. During the recession phase, the probability of finding reverse flows drops considerably. At 
this phase, the flood event starts a contraction defined by an extensive drop of the hydraulic gradients. It is also 
interesting to observe a spot of constantly high reverse probability allocated east of the junction of the streams. 
We attribute the high probabilities in this spot to the encounter of the discharges from the river and canal that 
increases the hydraulic pressure in the aquifer after the confluence of the two water bodies. The mean direction at 
this zone can be highly affected by the input uncertainty of stream stage and the conductance. Variations in these 
inputs can change the ordinary south-north flow to a lateral east-west flow due to the degree of flow exchange and 
can even affect the losing and gaining stream conditions. Regions near the confluence of the streams are prone 
to the presence of both stagnation points and reverse flow at different phases of the flood event. This area is very 
dynamic due to the interaction of the streams and the aquifer. Despite the apparent spatial correlation, there is a 
temporal difference in the responses. At peak-flow, the probability of stagnation zones increases and the proba-
bility of reverse flow decreases. In terms of fluid mixing, transport of solutes and temperature fluxes, these zones 
may play a meaningful role and may be highly affected by the uncertainties in the river boundary conditions. In 
our opinion, this is evidence of the importance of quantifying the uncertainty in the river boundary conditions 
and properly representing stream-aquifer interactions in numerical models.

4. Conclusions
In this study, we computed the probability of occurrence of stagnation zones and reverse flow in a numerical 
model based on the prior uncertainty of the river boundary conditions. The framework consists of the application 
of gPC expansions solved by a pseudo-spectral approach to obtain point estimates of the statistical information. 
We subsequently used kernel density estimations to take advantage of the information stored in the probability 
density functions of the quantities of interest. Finally, the flow fields were assessed according to a series of crite-
ria that allowed us to identify hotspots of stagnation zones and reverse flow. A key feature of this work is the use 
of these techniques at every single cell of a distributed groundwater model. This allows us to explicitly map the 
flow field magnitude and direction in terms of statistical moments and the probability of occurrence in terms of 
spatial distribution and temporal variation.

This approach does not require further work for setting up preexisting models, because the pseudo-spectral ap-
proach is a nonintrusive technique, and the solutions are achieved using a relatively low number of model evalua-
tions (125 evaluations in this study). This means that a model can be treated as a black-box solver to calculate the 
expansion coefficients. This is quite practical considering that groundwater models that include river boundary 
conditions are often calibrated by tweaking the streambed conductance, which is a model parameter that can vary 
over time. Additionally, hydrogeological models are usually updated by adding time-variant processes, such as 
streamflow information and stream stages, for forecasting purposes. At the same time, we find this framework 
beneficial due to the flexibility to choose the precision and the computational cost. Due to the smooth dependence 
between the solution and the random spaces, a low quadrature degree may be sufficient to get accurate respons-
es and other quantities of interest can be computed at a low marginal cost. Considering that the deterministic 
calculation at every element of a distributed model is usually the expensive part of the groundwater numerical 
simulations, an affordable approach is convenient for constructing spatial maps.
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We validate the generalized polynomial chaos expansion as a method for quantifying the uncertainty in a real case 
study with a model that simulates flood events on surface water-groundwater interaction. The highest posterior 
uncertainties are found at the peak-flow phase, while the lowest uncertainties are observed at the recession phase 
of the flood. This occurs despite the fact that we used the same stream stage prior distribution over the whole 
simulation time to compute the expansion coefficients. The outcomes of this work give evidence of the complex 
hydrodynamic features occurring during the flood event due to the convergence of separate surface streams and 
their exchange flow with the aquifer. In consequence, there is significant uncertainty in the flow dynamics at the 
river boundaries that should be properly quantified. This is reflected in the probability of finding stagnation and 
reverse flow at the meter and reach scale, despite the groundwater regime flowing predominantly along-valley. 
We can observe that the regions near the confluence of the streams are very dynamic and prone to exhibit stag-
nation zones and reverse flow. However, the probabilities of occurrence clearly vary at different phases of the 
flood event. At the peak-flow, the probability of occurrence of stagnation zones increases, while the probability 
of occurrence of reverse flow decreases. The major effects on the water flux and the flow paths are transitory 
and relative to the spatial location and the hydrogeological conditions of the stream-aquifer system. Although the 
methodology was applied to one specific case study, it can be more broadly stated that flow reversal and stagna-
tion points can appear at the river confluence, where streams and highly permeable aquifers are well connected.

Data Availability Statement
The code infrastructure, the programming scripts, the simulation results, and the database files are stored and 
available in the online repository: Merchán-Rivera et al. (2021), with license CC BY 4.0. Annex A and B are 
included in Supporting Information S1.
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