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Abstract

A flexible class of multivariate distributions for continuous lifetimes is pro-
posed. The distribution is defined in terms of the age-at-death of m siblings.
The expression for the joint density is derived using classical results from
mathematical demography. The parameters of the distribution are the age-
specific birth and death rates, in addition to a vector of relative death times
for the m siblings. For the case of constant birth and death rates we are
able to derive an explicit expression for the bivariate sibling density, which is
proven to be MTP2, and hence has positive dependence. Further, we show
that a special case of the sibling distribution belongs to the Block-Basu class
of multivariate distribution. In the general case, with age-dependent birth
and death rates, evaluation of the density involves numerical integration, but
is still feasible.

AMS (2000) subject classification. Primary 62N99; Secondary 60E05.
Keywords and phrases. Copula, Frailty, Life time distribution, Mathematical
demography, Close-Kin Mark-Recapture.

1 Introduction

Classes of multivariate densities for multivariate life time and survival
data are well studied in the statistical and demographic literature (Hougaard,
2001; Barreto-Souza and Mayrink, 2019). A common approach for making
survival times positively dependent goes via “shared frailties” (Hougaard,
2001, Chpt. 7). A frailty is a latent random variable that proportionally
scales the hazard rate in a group of individuals, hence inducing dependence
between otherwise independent lifetimes. In the present paper we introduce
a new class of latent variable models, named the “sibling distribution”, which
is defined in terms of the age-at-death for each of m half siblings. There is
no information available about their common mother, except that she had
m offspring in total, and was alive at a specified point in time, taken to be
t = 0 for convenience. The two latent variables of the model are the mother’s
birth and death times. The building blocks of the sibling distribution are
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the individual birth rates β(a) and death rates φ(a), where a is the age of
an individual. We define the distribution for general functions, β(a) and
φ(a), but for most part we shall assume that β(a) and φ(a) are constants as
functions of a.

The positive dependence between the sibling’s life times comes from con-
ditioning on their (absolute) times of death, in combination with a shared
dependence on the mother’s life span. The times-of-death become parame-
ters of the distribution. This somewhat implicit construction will be seen to
be a mixture distribution, and can be studied using general theory for mul-
tivariate dependence (Shaked and Spizzichino, 1998; Khaledi and Kochar,
2001). We prove that the bivariate constant-rate sibling distribution is mul-
tivariate totally positive of order 2 (Karlin and Rinott, 1980), which for
instance imply that the correlation is positive.

The constant-rate sibling distribution turns out to have marginal dis-
tributions that are perturbated exponential distributions. The exponential
distribution plays a special role for univariate life times and several multi-
variate extensions can be found in the literature (Marshall and Olkin, 1967;
Freund, 1961; Block and Basu, 1974; Arnold and Strauss, 1988; Gumbel,
1960; Hougaard, 1986; Sarkar, 1987). One of these extensions was intro-
duced by Block and Basu (Block and Basu, 1974). The Block-Basu bivariate
lifetime distribution can be derived by omitting the singular part of a bivari-
ate exponential distribution as outlined by Marshall and Olkin (Marshall
and Olkin, 1967), but can also be viewed as a reparametrization of Freund’s
distribution (Freund, 1961). We will see that the constant-rate (birth and
death) sibling distribution reduces to a Block-Basu distribution, which will
be used to shed light on the sibling distribution.

An alternative route to construction of multivariate life time distributions
goes via copulae (Andersen, 2005). The implication also goes in the other
direction; our sibling distribution induces a novel symmetric two-parameter
copula.

The remaining part of the paper is organized as follows. In Section 2 we
introduce the general sibling distribution. Explicit expressions in the bivari-
ate case, along with positive dependence property, are derived in Section 3.
In Section 4 we discuss the relationship to the Block-Basu distribution and
in Section 5 we address simulation and parameter estimation. Finally, we
provide a discussion in Section 6.

2 The Sibling Age Distribution

Consider a female who over her lifespan is known to have hadm offspring.
Denote by tj and xj the time of death and age-at-death, respectively, of the
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j’th offspring. The offspring are arbitrarily ordered, not according to the
time of birth. We shall view t and x as random variables taking values on
the real line. For notational simplicity we let j = 0 refer to the mother, and
we condition on the fact that the mother was alive at time t = 0, i.e. on the
event that t0 − x0 ≤ 0 ≤ t0. This assumption should be kept in mind at
all times when reading this paper. We define a0 = x0 − t0 as the age of the
mother at t = 0, and we denote the joint density of (a0, t0) by g(a0, t0). Let
yj = tj −xj , be the birth time of the j’th offspring. Please refer to Fig. 1 for
an illustration of key quantities.

We denote random variables by capital letters. Conditionally on (A0, T0)
= (a0, t0), and hence on X0 = x0 = a0 + t0, the density of Yj is

fY (yj |a0, t0) =
β(yj − y0)∫ x0

0 β(a)da
, yj ∈ (y0, t0), (2.1)

where β(a) is the age-specific rate at which the mother produces offspring.
We shorten our notation for conditional densities, e.g. we write fY rather
than the full fY |A0,T0

. The joint conditional density of (Xj , Tj) is

fX,T (xj , tj |a0, t0) = fY (yj |a0, t0)fX(xj) = fY (tj − xj |a0, t0)fX(xj), (2.2)

on the support
{(xj , tj) : (tj − t0)+ ≤ xj ≤ tj − y0} , (2.3)

where z+ = max(z, 0). The constraints on xj express the fact that xj ≥ 0
and y0 ≤ yj ≤ t0, i.e. the offspring must be born in the time window when
the mother is alive (see Fig. 1). The latter is related to Eq. 2.3 via the
algebraic equivalence y0 ≤ yj ≤ t0 ⇔ tj − t0 ≤ tj − yj ≤ tj − y0. Further,
the marginal density fX(xj) in Eq. 2.2 is defined in terms of the survival
function l(xj) = Pr(X > xj) via fX(xj) = −l′(xj). Finally, the marginal
density of Tj is obtained from Eq. 2.2 and Eq. 2.3,

fT (tj |a0, t0) =
∫ tj−y0

(tj−t0)+

fY (tj − x|a0, t0)fX(x)dx, tj ≥ y0. (2.4)

Figure 1: Birth (y0) and death (t0) times of mother, and corresponding times
(yj and tj) for the j’th offspring. Further, a0 is the age of the mother at the
reference point t = 0
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The births and deaths of the m siblings are assumed to be condition-
ally independent, given (A0, T0) = (a0, t0), so the joint density of X1:m =
(X1, . . . , Xm) and T1:m = (T1, . . . , Tm) is

∏m
j=1 fX,T (xj , tj |a0, t0), where the

density fX,T (xj , tj |a0, t0) is given by Eq. 2.2. We are now in position to
define the sibling distribution as the conditional distribution of X1:m, given
T1:m = t1:m.

Remark 1. The sibling distribution of X1:m has density

f(x1:m|t1:m) =

∫∞
0

∫∞
0

∏m
j=1 fX,T (xj , tj |a0, t0)g(a0, t0)da0dt0

∫∞
0

∫∞
0

∏m
j=1 fT (tj |a0, t0)g(a0, t0)da0dt0

, x1:m ∈ Rm
+ ,

(2.5)
where fX,T and fT are given by Eqs. 2.2 and 2.4, respectively, and g is the
joint density of (A0, T0) for which we will derive the density (2.7) below.

The parameters of the sibling distribution are t1:m ∈ Rm, in addition
to whatever parameters are hidden in the functional forms of the functions
β(a) and l(a). Note that the tj are not restricted to be positive, i.e. the
offspring may have died before t = 0. Mostly, we shall parameterize l(a)
in terms of the age-specific death rate φ(a), which is related to the survival
function through the well known relationship l(x) = exp

(
−
∫ x
0 φ(a)da

)
.

In order to derive an expression for the density g(a0, t0), occurring in
Eq. 2.5, we use the theory for stable age distributions from mathematical
demography (Caswell and Keyfitz, 2005), which we now briefly review. A
population in which the age-specific rates φ(a) and β(a) do not change with
time will settle into a stable age distribution. Further, the population will
grow at a rate r given as the solution to the “characteristic equation”

∫ ∞

0
β(a)l(a)e−rada = 1.

The stable age distribution has density fA(a) = l(a)e−ra/
∫ a
0 l(u)e

−rudu, for
a ≥ 0. Our point of view is that the mother is randomly selected among all
females alive at t = 0, so that the density of A0 is given by fA. This is yet
not taking into account the fact that she has m offspring over her life time.
The joint density of A0 and T0 is

fA0,T0(a0, t0) = fT0|A0
(t0|a0)fA0(a0), a0 ≥ 0, t0 ≥ 0, (2.6)

where fT0|A0
(t0|a0) = −l′(a0 + t0)/l(a0). Conditionally on A0 and T0, and

hence on the length of the time periodX0 = A0+T0 that she is alive, her total
number of offspringM is Poisson distributed with mean B(x0) =

∫ x0

0 β(u)du.
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Knowing that the mother had m offspring over her lifetime perturbs the
distribution (2.6) as follows

g(a0, t0) ∝ fA0,T0(a0, t0)B(a0 + t0)
me−B(a0+t0). (2.7)

We have now completely specified the sibling distribution via its den-
sity (2.5). Instead of providing results about its properties in the general
case, we turn to a special case in which explicit results can be found. In
Section 6 we briefly return with some discussion of the general case.

3 Constant Birth and Death Rates

We shall refer to the situation

β(a) = β and φ(a) = φ for all a, (3.1)

as the constant-rate sibling distribution. Under this assumption it follows
that the conditional densities (2.1) and (2.2) reduce respectively to

fY (yj |a0, t0) =
1

a0 + t0
, yj ∈ (−a0, t0), (3.2)

and

fX,T (xj , tj |a0, t0) =
1

a0 + t0
φe−φxj , (tj − t0)+ ≤ xj ≤ tj + a0. (3.3)

Further, the marginal density (2.4) becomes

fT (tj |a0, t0) =
e−φtj

a0 + t0

{
eφtj − e−φa0 , −a0 ≤ tj ≤ t0,

eφt0 − e−φa0 , tj > t0,
(3.4)

and the joint density (2.7) becomes

g(a0, t0) ∝ (a0 + t0)
me−(φ+β)t0e−2βa0 , a0, t0 ≥ 0. (3.5)

Using these expressions we are able to find an explicit expression for the
sibling distribution (2.5) of order m = 2. We shall first assume that t1 = t2
which simplifies expressions somewhat. Derivations for the case t1 �= t2 are
very similar.

Consider the distribution of the life times X1 and X2, given that T1 =
T2 = t, where t is the common time of death of the two siblings. We have
the following expression for the sibling density, which due to symmetry is
presented only for x1 ≤ x2.
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Theorem 1. With constant-rates (3.1), the sibling density (2.5) with
m = 2 becomes (for t > 0):

f(x1, x2) = C−1
1

⎧
⎪⎨

⎪⎩

e−(β+φ)(t−x1)−φ(x1+x2), 0 ≤ x1 ≤ x2 ≤ t,

e2β(t−x2)−(β+φ)(t−x1)−φ(x1+x2), 0 ≤ x1 ≤ t ≤ x2,

e2β(t−x2)−φ(x1+x2), 0 ≤ t ≤ x1 ≤ x2,

(3.6)

and for t < 0:

f(x1, x2) = C−1
2 e−(2β+φ)x2−φx1 , t < 0 ≤ x1 ≤ x2, (3.7)

where C1 and C2 are normalizing constants.

Proof. See Appendix A.

By integrating over three branches in Eq. 3.6 we obtain the following
expression for the normalizing constant:

C1 =

{
e−2φt(7β+5φ)
(2β+φ)(β2−φ2)

+ 4e−(β+2φ)t

φ(2β+φ) − 2e−(β+φ)t

φ(β−φ) , β �= φ,
12φeφtt−7eφt+8

6φ2e3φt
, β = φ,

(3.8)

and similarly integration of Eq. 3.7 yields

C2 = [(2β + φ)(β + φ)]−1 . (3.9)

Note that f(x1, x2) does not depend on t when t < 0 . When we in addition
set β = 0 (interpreted as a limit), X1 and X2 become independent, expo-
nentially distributed. Further interpretation of the case that t < 0 is given
in Section 4 below.

Like the exponential distribution, the constant-rate sibling distribution is
closed under change of scale. If we define X ′

j = cXj for c > 0, the parameters

of the resulting sibling distribution are φ′ = c−1φ, β′ = c−1β and t′ = ct.
Hence, we may set φ = 1 and reparameterize the distribution in terms of
(c, β, t), which for some purposes is useful.

As seen from Eq. 3.6, the density has a piecewise definition. When using
symmetry to include also the case x1 > x2, the definition of the sibling
density splits the first quadrant, x1, x2 ≥ 0, into six regions (Fig. 2 with
t1 = t2). We see that log{f(x1, x2)} is piecewise linear over these regions, and
is continuous (but not differentiable) across the boundaries of the regions.
The density is unimodal, with the mode at (x1, x2) = (0, 0) when β < φ,
and while β > φ the mode is at (x1, x2) = (t, t). Figure 3 shows f(x1, x2)
for three different parameter.
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Figure 2: The six different regions of the sibling density when t1 = 9 and
t2 = 5. The dashed line indicates ages where the siblings are born at the
same time (y1 = y2)

In order to present the sibling distribution for the case t1 �= t2, it is
advantageous to introduce a general piecewise log-linear density f over the
regions R1, . . . , R6 in Fig. 2:

f(x1, x2) = C−1ebk+ckx1+dkx2 , (x1, x2) ∈ Rk, k = 1, . . . , 6. (3.10)

Here, b1:6 = (b1, . . . , b6), c1:6 = (c1, . . . , c6) and d1:6 = (d1, . . . , d6) are con-
stants satisfying the constraints c2, c3, c4, d3, d4, d5 < 0, which are needed for

Figure 3: Bivariate sibling density f(x1, x2) with parameters φ = 1, β =
0.8, 1.0, 1.2 (left to right) and (t1, t2) = (4, 4). The red dots show expected
value (μ, μ). The dashed white curve is the contour c = 1 of c(x1, x2) given
by Eq. 3.15
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f to be a proper density. Straightforward, but tedious, integration yields
the normalization constant:

C = −
eb1

(
ed1t2c1

(
e−d1t1 − ec1t1

)
+ ec1t1 (c1 + d1)− c1 − d1

)

c1d1 (c1 + d1)

+
ec2t1+b2

(
1− ed2t2

)

c2d2
+

ec3t1+d3t2+b3

c3 (c3 + d3)
+

ec4t1+d4t2+b4

d4 (c4 + d4)

−
ed5t2+b5

(
ec5t1 − 1

)

c5d5
+

ed6t2+b6
(
c6

(
e−d6t1 − 1

)
+ d6

(
ec6t1 − 1

))

c6d6 (c6 + d6)
,

(3.11)

where c1+d1 �= 0 and c6+d6 �= 0 in addition to the constraint c2, c3, c4, d3, d4, d5 <
0. The constants C1 and C2 in Theorem 1 are special cases of this.

It is easy to derive the moment generating function of Eq. 3.10:

M(s1, s2) = E
(
es1X1+s2,X2

)
=

C(b1:6, c1:6 + s1, d1:6 + s2, t1, t2)

C(b1:6, c1:6, d1:6, t1, t2)
, (3.12)

where c1:6 + s1 = (c1 + s1, . . . , c6 + s1) and d1:6 + s2 = (d1 + s2, . . . , d6 +
s2). Moments of X1 and X2 of various orders can be obtained by repeated
differentiation of M(s1, s2) at s1 = s2 = 0. The resulting expressions are
complex, and not well suited for interpretation, but are nevertheless useful
for numerical evaluation.

Theorem 2. With constant rates (3.1), the sibling density (2.5) with
m = 2 and t1 �= t2 has density given by Eq. 3.10 with coefficients as specified
in Table 1.

Proof. The proof is very similar to that of Theorem 1 and is omitted.

3.1. Positive Association Intuitively, X1 and X2 are positively associ-
ated under the sibling distribution, due to their dependence of the lifespan

Table 1: Choice of coefficients in Eq. 3.10 yielding the order 2 sibling density
when t1 �= t2
j bj cj dj
1 −(β + φ)t2 −φ β
2 2βt1 − (β + φ)t2 −(2β + φ) β
3 2βt1 −(2β + φ) −φ
4 2βt2 −φ −(2β + φ)
5 2βt2 − (β + φ)t1 β −(2β + φ)
6 −(β + φ)t1 β −φ
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(−A0, T0) of their shared mother. Further, for each marginal (j = 1, 2) we
must have that Xj is stochastically increasing in the parameter tj . The in-
formal argument for the latter is that since the mother is known to have
been alive at t = 0, the larger the death time tj the older (xj) the individual
is likely to be. We now set out to prove these claims rigorously.

We start out by proving the positive association between X1 and X2. An
appropriate notion of positive association is the so-called Multivariate Total
Positivity of order 2 (MTP2). A bivariate density f(x), x ∈ R2, is is said to
be MTP2 if

f(x ∨ z)f(x ∧ z) ≥ f(x)f(z), (3.13)

for any x, z ∈ R2, where x ∨ z = (max(x1, z1),max(x2, z2)) and x ∧ z =
(min(x1, z1),min(x2, z2)). See Karlin and Rinott (1980) for a comprehensive
overview of properties of MTP2 distributions.

Theorem 3. The sibling densities (3.6) and (3.7) are MTP2.

This is proved in Appendix C using the definition Eq. 3.13 of MTP2

directly. We believe that an alternative proof may be based on the fact
that mixture distributions, of which the numerator of Eq. 2.5 is an example,
under certain conditions are MTP2 (Khaledi and Kochar, 2001; Shaked and
Spizzichino, 1998). Using this approach it may be possible to prove that
more general sibling distributions than (3.6) are MTP2.

MTP2 is a strong positive dependence property, which among other
things imply that cov(X1, X2) ≥ 0. Although covariance is (arguably) not
the most relevant dependence measure for life times, it nevertheless the most
common dependence measure in general, and it is therefore useful to have
establish this result.

3.2. Marginal Distribution and Copula The marginal densities in Eq. 3.6
are both given as

f(x) =
e−φ(t+x)

C1

⎧
⎨

⎩

e−β(t−x)
[
β+φ
βφ − e−βx

β − 2βeφ(x−t)

φ(2β+φ)

]
, x ∈ (0, t],

e2β(t−x)
[
β+φ
βφ − e−βt

β − 2βeφ(t−x)

φ(2β+φ)

]
, x ∈ (t,∞),

(3.14)

where C1 is given by Eq. 3.8. As a local measure of dependency between X1

and X2 we introduce

c(x1, x2) =
f(x1, x2)

f(x1)f(x2)
. (3.15)

The c = 1 contour of c(x1, x2) is displayed in Fig. 3. The region in which
c(x1, x2) > 1 is located around the diagonal x1 = x2. This reflects the
positive dependence in the sibling distribution.
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We can obtain an analytical expression for the cumulative joint distri-
bution F (x1, x2) by integrating Eq. 3.6. Similarly, we get an expression for
the cumulative marginal distribution function G(x) by integrating Eq. 3.14.
Then we can define a copula (Nelsen, 2007), F

(
G−1(x1), G

−1(x2)
)
, based

on the sibling distribution, where G−1 denotes the inverse of G. Because the
sibling distribution is closed under change of scale, we set φ = 1, and the
copula thus has β and t as free parameters. We do not explore this copula
further in this paper.

We next prove that X (X1 or X2) is stochastically increasing in t, in the
sense of the following theorem.

Theorem 4. For any t′ > t > 0 we have

P (X > x|T = t) ≤ P (X > x|T = t′). (3.16)

It turns out to be easier to prove the more general statement that (X1, X2)
is multivariate stochastically increasing (Shaked and Shanthikumar, 2007,
p. 265), which imply Eq. 3.16. The reason this is simpler is that the key
quantity, the ratio f(x; t′)/f(x; t), which is involved in Theorem 6.B.8. of
Shaked and Shanthikumar (2007, p. 265), takes on a simpler form for the
bivariate density (3.6) than for the univariate density (3.14). The details of
the proof are given in Appendix D.

Stochastic monotonicity of a random variable X implies that E(X) is
an increasing function of t (Shaked and Shanthikumar, 2007, p. 4). This
means that, for given φ and β, there is a one-to-one correspondence between
t and μ = E(X). This fact will play a crucial role when we later devise an
estimator for the parameters φ, β and t.

3.3. The Role of β and t Because the family of constant-rate sibling
distributions is closed under change of scale we set φ = 1. In this section we
will study the effect of varying β and t on two characteristics: the correlation
(COR) between X1 and X2 and CV(Xj) =

√
Var(Xj)/E(Xj). Without

conditioning on Tj = t, we have that Xj is exponentially distributed with
rate φ = 1. The process of conditioning on Tj can be expected to deduce
CV(Xj). Rather than trying to prove this formally, we provide numerical
evidence.

Figure 4 shows correlation and CV as functions of β (top) and t (bottom),
and indeed we see that CV ≤ 1 for all β and t. When β and t are both close
to zero we have CV ≈ 1 and COR ≈ 0, which reflects the fact that X1 and
X2 are then approximately independent and exponentially distributed. For
increasing β the correlation increases, but not necessarily monotonically, and
approaches an asymptotic level (top-left). From the corresponding plot of



The sibling distribution... 11
C

o
r
r
e
la

ti
o
n

C
o
r
r
e
la

ti
o
n

C
V

C
V

Figure 4: Correlation (left) and CV (right) of the sibling distribution (φ = 1)
as a function of its parameters. The parameter φ is set to 1 and the plots on
the top row are plotted as a function of β for five different values of t. The plots
on the bottom are plotted as a function of t for five different values of β

the CV (top-right) we notice that the overall trend is that the CV decreases
as the value of β increases. The decrease is steepest for the highest values of t.

Further, we see from the bottom row of Fig. 4 that the correlation in-
creases as a function of t, except for very small t. It can be shown that
when β = φ the correlation approaches 1 as t → ∞. When β �= φ, the
correlation does not approach 1 as t → ∞, but flattens out at a lower value
which depends on the value of β. The CV decrease quickly as a function of
t, especially for the higher values of β. When β < φ we see that the CV first
decrease, then starts to increase for higher values of t.

4 Relationship to the Block-Basu Distribution

In this section we clarify the relationship between the constant-rate sib-
ling distribution and the Block-Basu distribution (Block and Basu, 1974),



12 Helgøy and Skaug

and we shall use this relationship to interpret the sibling distribution. One
way of deriving the Block-Basu distribution goes via (Freund, 1961), and
we will refer to this as the “Freund interpretation”. Let now X1 and X2 be
the lifetimes of two components assumed to be independently exponentially
distributed with rate parameters α1 and α2, respectively. When one of the
component fails, the rate for the remaining component changes from α1 to
α∗
1 or from α2 to α∗

2, depending on which component fails first. The resulting
density (see Freund (1961)) is

f(x1, x2) =

{
α1e

−x1(α1+α2)α∗
2e

−α∗
2(x2−x1), 0 ≤ x1 ≤ x2,

α2e
−x2(α1+α2)α∗

1e
−α∗

1(x1−x2). 0 ≤ x2 ≤ x1.
(4.1)

When setting

αj = β + φ, α∗
j = 2β + φ, j = 1, 2, (4.2)

we see that Eq. 4.1 reduces to the symmetric sibling density (3.7) with t ≤ 0.
Since t = 0 is the time point at which the mother is known to have been alive,
we are effectively considering a sibling distribution where both offspring are
dying before their mother.

The Freund interpretation yields that X(1) = min(X1, X2), i.e. the age
of the youngest sibling, has an exponential distribution with rate parameter
α1 + α2 = 2(β + φ). Further, the age difference between the oldest and
the youngest, X(2) = max(X1, X2) − min(X1, X2), has an exponential dis-
tribution with rate parameter α∗ = 2β + φ. In the following paragraphs we
interpret the rates (4.2) in the context of the sibling distribution.

If we consider the case with t = 0, we know that the mother and her two
offspring were all alive at (or just prior to) t = 0. The Freund interpretation
requires us to look backwards in time, starting from t = 0. The “failure” of
a component corresponds to an offspring being born. We first look at the
event X(1) > x, which can be broken into three sub events:

(i) The mother was born prior to t = −x, i.e. a0 > x. Because the stable
age distribution of A0 is exponential with rate β, we have P (A0 > x) =
exp(−βx).

(ii) Both offspring were born prior to −x, and because we are conditioning
on there being m = 2 siblings in total, this implies that there were no
additional births in (−x, 0). The latter has probability exp(−βx).

(iii) Both offspring survived the interval (−x, 0), which has probability
exp(−2φx).
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When combining the independent events i)–iii) we get the Freund interpre-
tation P

(
X(1) > x

)
= exp [−2(β + φ)x].

The event X(2) > x can be interpreted similarly, but we must shift our
point of view backwards in time to t = −x(1) when the youngest sibling was
born. The mother would have to be born prior to t = −(x + x(1)). Using
the stable age distribution of A0, this has conditional probability

P
(
A0 > x+ x(1)|A0 > x(1)

)
= exp (−βx) .

Secondly, there couldn’t have been any births between t = −
(
x+ x(1)

)
and

t = −x(1), which has probability exp (−βx). Finally, the offspring that was
born at t = −x(2) survived from t = −

(
x+ x(1)

)
until t = −x(1), which has

probability exp (−φx). In total we get P
(
X(2) > x

)
= exp [−(2β + φ)x],

which is the Freund interpretation of the sibling distribution. Similar argu-
ments applies to the situation t < 0.

Finally, we discuss a few additional insights gained from the Freund
interpretation (4.2). First, the age difference between the siblings, X1 −X2

follows a Laplace distribution with rate 2β + φ. Further, note that α∗
j →

αj = φ as β → 0. Hence, X1 and X2 are independent in the limit β → 0,
each having an exponential distribution with rate φ.

5 Simulation, Estimation and Application to Real Data

We first devise an algorithm for sampling (x1, x2) from the density (3.6).
Rather than sampling directly from Eq. 3.6, which would be feasible albeit a
bit technical, we choose to go back to the definition of the sibling distribution.
This involves explicitly sampling (a0, t0) for the mother. As a byproduct,
our algorithm sheds light on the sibling distribution, through an expression
for the conditional density of (A0, T0), given (T1, T2).

We also construct a hybrid moment/maximum likelihood estimator for
the parameter vector θ = (β, φ, t). The statistical properties of this estimator
are investigated on simulated data.

5.1. Simulation The joint density of (A0, T0), (X1, T1) and (X2, T2) is
given by

g(a0, t0)
2∏

j=1

f(xj , tj |a0, t0) = f(t1, t2)f(a0, t0|t1, t2)
2∏

j=1

f(xj |tj , a0, t0), (5.1)

where for notational simplicity we suppress subscripts on densities and range
of variables in this section. The quantities on the left-hand side are given
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by Eqs. 3.3 and 3.5, while the right-hand side is a generic refactoring of the
joint density in terms of conditional densities. Dividing through by f(t1, t2)
in Eq. 5.1 we obtain the target distribution, and the right-hand side (5.1) sug-
gests the following algorithm for sampling (X1, X2) conditionally on (T1, T2):

(i) Sample (A0, T0) from f(a0, t0|t1, t2),

(ii) Using (a0, t0) from (i), draw Xj from f(xj |tj , a0, t0), independently for
j = 1, 2.

Step (ii) is straight forward, and is seen from Eq. 3.3 to amount to sampling
from an exponential distribution with xj constrained to a certain interval.
Step (i) requires more careful consideration. We have

f(a0, t0|t1, t2) ∝ g(a0, t0)
2∏

j=1

f(tj |a0, t0),

where f(tj |a0, t0) is given by Eq. 3.4 and g(a0, t0) by Eq. 3.5. We have found
experimentally for t1 = t2 that the following two-step procedure works well.
We start by independently drawing A0 and T0 from exponential distributions
with rates 2β and min(φ + β, t−1

1 , t−1
2 ), respectively. This is repeated K

times to get a pre-sample {(A0k, T0k), k = 1 . . . ,K}, from which a single
pair (A0, T0) is drawn with probabilities

pk ∝ f(a0k, t0k|t1, t2) exp
[
2βa0k +min(φ+ β, t−1

1 , t−1
2 )t0k

]
.

5.2. Estimation Consider n observation pairs {(x1i, x2i); i = 1, . . . , n}
from Eq. 3.6. While f(x1, x2) is continuous as a function of θ = (β, φ, t),
it is not differentiable in t at t = x1 and t = x2. This implies that the
log-likelihood

l(β, φ, t) = n−1
n∑

i=1

log (f(x1i, x2i;β, φ, t))

has 2n points where the derivative is not differentiable. Standard numerical
optimization algorithms typically either do not use derivative information
at all, or requires the objective function to be continuously differentiable in
all variables. The former types of algorithms are slow and unstable, and
the latter type are not directly applicable to our setting. We thus devise a
special two-stage estimation algorithm.

Because X1 and X2 have the same marginal distribution we define the
overall sample mean x̄ = (2n)−1

∑n
i=1(x1i + x2i). We denote by μ(β, φ, t)

the expectation of X1 and X2, and impose the constraint μ(β, φ, t) = x̄ on
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the parameter estimation problem. An analytical expression for μ(β, φ, t) is
given in Appendix B. The expression is complicated, but nevertheless well
suited for numerical evaluation. Recall that we have proven earlier that
μ(β, φ, t) is increasing as a function of t.

Our estimation algorithm iterates between the following two steps:

1. For given t̂, let β̂ and φ̂ be the maximizer of l(β, φ, t̂).

2. For given β̂ and φ̂, let t̂ be the solution of the equation μ(β̂, φ̂, t) = x̄.

Both 1) and 2) are solved numerically using the software TMB (Kristensen
et al., 2016).

5.3. Simulation Experiment Using the algorithm of Section 5.1, we
sampled n = 1000 observation pairs (x1, x2) to which the estimator of Sec-
tion 5.2 was applied. This process was repeated 1000 times to assess the
statistical properties of the estimator. Table 2 shows the results for 20 dif-
ferent parameter combinations (one row per combination). Moments charac-
terizing the distribution of (X1, X2), obtained from the moment generating
function (3.12), are also given in the table.

From Table 2 we see that the estimator for the parameter vector θ =
(β, φ, t) is overall stable with respect to the different combinations of the
input parameters. More specifically, for the parameter t in the first column,
we see that the mean values of the estimates are all very close to the true
value of t, but they are slightly worse in the case when β > φ. The same trend
can be seen in the standard deviations, which are higher in these situations.
For the parameter β we see that the mean of the estimates are more accurate
for higher values of t, but we also see the trend with better predictions when
β > φ. The standard deviations are however quite stable for all combinations
of the input parameters. The mean values of the estimates for the parameter
φ are all very similar and they do not seem to be affected by the different
combinations of the input parameters. The standard deviations are higher
when t = 2, but otherwise quite similar. Figure 5 shows the marginal density
(3.14) for some of the parameter combinations used in Table 2.

5.4. Application to Real Data We have presented the sibling distribu-
tion as a distribution for life times, but it may in fact be applied to any
set of non-negative quantities with positive dependence. The constant-rate
case is applicable only when the CV is less than one, and when t1 = t2 the
marginals must be the same. We use the “twinData” dataset found in the
R-package “OpenMx” (Neale et al., 2016) as an example. These are BMI
measurements on twins (around age 18), but nevertheless satisfy the above
mentioned restrictions (Table 3).
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Table 2: Performance of the estimator (β̂, φ̂, t̂) with n = 1000 observations
drawn using the algorithm in Section 5.2

t̂ β̂ φ̂ Moments

True Mean SD True Mean SD True Mean SD E(X) CV(X) COR

1 2.00 2.05 0.21 0.60 0.63 0.05 1.00 1.01 0.15 1.20 0.65 0.37
2 2.00 2.03 0.15 0.80 0.83 0.05 1.00 1.01 0.15 1.21 0.61 0.40
3 2.00 2.02 0.08 1.20 1.23 0.06 1.00 1.01 0.13 1.27 0.54 0.46
4 2.00 2.00 0.07 1.40 1.43 0.06 1.00 1.00 0.13 1.30 0.51 0.48
5 4.00 4.06 0.15 0.60 0.64 0.04 1.00 1.01 0.05 1.84 0.66 0.57
6 4.00 4.03 0.10 0.80 0.83 0.04 1.00 1.00 0.05 2.02 0.61 0.62
7 4.00 4.01 0.06 1.20 1.21 0.05 1.00 1.01 0.06 2.43 0.49 0.68
8 4.00 4.00 0.05 1.40 1.41 0.05 1.00 1.00 0.07 2.62 0.43 0.70
9 6.00 6.05 0.18 0.60 0.64 0.04 1.00 1.00 0.04 2.30 0.71 0.69
10 6.00 6.03 0.12 0.80 0.83 0.04 1.00 1.00 0.04 2.73 0.63 0.75
11 6.00 6.01 0.06 1.20 1.21 0.04 1.00 1.01 0.05 3.71 0.45 0.80
12 6.00 6.00 0.05 1.40 1.40 0.05 1.00 1.00 0.06 4.16 0.37 0.81
13 8.00 8.03 0.25 0.60 0.65 0.04 1.00 1.00 0.03 2.59 0.75 0.76
14 8.00 8.02 0.14 0.80 0.83 0.04 1.00 1.00 0.04 3.32 0.66 0.82
15 8.00 8.01 0.06 1.20 1.20 0.04 1.00 1.01 0.05 5.12 0.42 0.87
16 8.00 8.00 0.05 1.40 1.40 0.04 1.00 1.01 0.05 5.87 0.32 0.86
17 10.00 9.98 0.33 0.60 0.65 0.03 1.00 1.00 0.03 2.77 0.79 0.80
18 10.00 10.00 0.15 0.80 0.83 0.03 1.00 1.00 0.03 3.81 0.69 0.87
19 10.00 10.00 0.06 1.20 1.20 0.04 1.00 1.01 0.04 6.63 0.39 0.90
20 10.00 9.99 0.05 1.40 1.39 0.05 1.00 1.00 0.05 7.69 0.28 0.89

The column “True” shows the values used in the simulations, while “Mean” and “SD”
are, respectively, the average and standard deviation of (β̂, φ̂, t̂) across 1000 repetitions.
The three rightmost columns show respectively E(X), CV (X) =

√
Var(X)/E(X), and

COV(X1, X2), all calculated using the moment generating function for the true parameter
values

The dataset consists of BMI measurements for 3569 (male/female, monozy-
gotic/dizygotic) twin pairs. The fitted sibling distribution is unable to ac-
comodate the light left-hand tail of data (Fig. 6). The fitted density is
huge perturbation of the unconditional (on T ) distribution of X, which for
the constant-rate case is an exponential distribution. This illustrates the
flexibility of the distribution. Table 3 shows the parameters of the fitted
distribution. The lack of fit is reflected in estimated moments not fitting the
empirical moments very well. If we look at the estimated parameter values
in Fig. 6 we see that these are “outside in the normal range”, in the following
sense. The expected life length of an individual is 1/φ̂ = 1/0.94 = 1.12, but



The sibling distribution... 17

0.0 2.5 5.70.5 01

X1

0.0

0.1

0.2

0.3

0.4

X1

0.0 2.5 5.70.5 01

0.0

0.1

0.2

0.3

0.4

5

6

7

8

Figure 5: Marginal density (3.14) when β < φ (left) and when β > φ
(right). The legend refers to the leftmost column of Table 2, which gives the
parameter setting used for the different density curves

the mother-offspring duo spanned (mother’s birth to offspring’s death) at
least t̂ = 21.77 time units.

6 Discussion

The idea of a sibling distribution was conceived during our work with
the recently invented Close-Kin Mark-Recapture method (Bravington et al.,
2016), in which the joint age distribution of half-siblings plays a crucial
role. Its usefulness as a distribution for multivariate life time data in general
remains to be explored. The fact that it is a mixture (over A0 and T0)
of independent life times makes it amenable to analysis in the framework
of Shaked and Spizzichino (1998). However, due to the conditioning on

Table 3: Fitted sibling distribution to BMI data
Estimated Empirical

Mean 21.79 21.77
SD 1.82 0.94
CV 0.08 0.04
COR 0.87 0.53
β 1.52 -
φ 0.94 -
t 23.51 -
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Figure 6: Marginal distribution of BMI data, with fitted sibling distribution.
The dashed red curve shows the sibling density (3.6)

Tj its structure, and in particular the moments, is complicated. Moreover,
the non-differentiability of the likelihood with respect to the parameter t
prevents straight forward application of maximum likelihood estimation.

Our numerical experiments indicate that the constant-rate (3.1) distri-
bution has CV ≤ 1. This is clearly limiting for a general purpose life time
distribution, but this restriction can be removed by choosing a non-constant
φ(a). We have not been able to obtain explicit expressions for the sibling
density under more general conditions. In general, the sibling density (2.5)
can be evaluated numerically. Both the numerator and denominator in-
volves two-dimensional integrals (with respect to a0 and t0). The integrand
of the denominator is a product of m functions on form (2.4), which each
involves a one dimensional integral. This is by no means computationally
prohibitive, but specially tailored numerical integration schemes would have
to be devised in order for the general distribution to be practically useful.

We have shown that the constant-rate sibling distribution with t1 =
t2 = 0 coincides with the exchangeable Block-Basu distribution (α1 = α2

and α∗
1 = α∗

2). The non-exchangeable case is not a sibling distribution, as
the sibling framework requires that φ and β are the same for both siblings.
Conversely, the sibling distribution with t1 �= t2, or t1 = t2 > 0, is not a
Block-Basu distribution. Also, when allowing age-specific rates, φ(a) and
β(a), the sibling distribution is no longer a Block-Basu distribution. Kundu
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and Gupta (2010) extended the Block-Basu distribution by deriving it from
components that were Weibull distributed instead of exponential. The ad-
ditional shape parameter makes the extended Block-Basu distribution more
flexible at the cost of being less computational tractable.

Finally, we have proven that the constant-rate sibling distribution is
MTP2 and stochastically increasing in t. We conjecture, based on literature
for mixture distributions (Shaked and Spizzichino, 1998, p. 273; Shaked and
Shanthikumar, 2007) that these properties hold for a wider class of sibling
distributions, but possibly not for all.
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Appendix A. Proof of Theorem 1

The quantities involved in the expression (2.5) for the sibling density are
given by Eqs. 3.3, 3.4 and 3.5. The evaluation of the integrals over (a0, t0) in
the numerator and denominator of Eq. 2.5 is made difficult by the constraints
(2.3). Below we show how these constraints split the first quadrant of the
(x1, x2) plane into six disjoint regions R1, . . . , R6 (see Fig. 2). In each of these
the integrand is just a simple exponential function. Because the density is
exchangeable when t1 = t2 it is sufficient to specify the expression only over
the regions R1, R2 and R3.

Recall that yj = tj−xj denotes the birth time (j = 0, 1, 2). The integrand
of the numerator in Eq. 2.5 is

fX,T (x1, t|a0, t0)fX,T (x2, t|a0, t0)g(a0, t0)
∝ e−2βa0e−(β+φ)t0 × exp {−φ(x1 + x2)} , (A.1)
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for values of a0 and t0 such that the constraints (2.3) are satisfied for j = 1, 2,
and zero otherwise. The term after × does not depend on a0 and t0, but is
included for later reference. Because we assume x1, x2 ≥ 0, we can replace
the inequality (tj − t0)+ ≤ xj in Eq. 2.3 by t − t0 ≤ xj , which again is
equivalent to t0 ≥ yj . Similarly, the last inequality xj ≤ tj−y0 in Eq. 2.3 can
be re-expressed as a0 ≥ −yj . Together with the basic constraints a0, t0 ≥ 0
we get a0 ≥ max(0,−y1,−y2) and t0 ≥ max(0, y1, y2). Depending on the
relative values of y1 and y2, the lower bounds of the integrals over a0 and
t0 will be qualitatively different. There are 6 different cases, corresponding
to the partition R1, . . . , R6 of the (x1, x2) plane shown in Fig. 2. When
integrating (A.1) with respect to a0 and t0, and replacing yj by t− xj (j =
1, 2), we get

fX,T (x1, t)fX,T (x2, t) ∝ e−φ(x1+x2)×

⎧
⎪⎨

⎪⎩

e−(β+φ)(t−x1), (x1, x2) ∈ R1,

e2β(t−x2)e−(β+φ)(t−x1), (x1, x2) ∈ R2,

e2β(t−x2), (x1, x2) ∈ R3,

which is Eq. 3.6.
The proof when t < 0 follows in the same vein, where we start out with

the integrand of the numerator in Eq. 2.5 given by Eq. A.1. We must find
values of a0 and t0 such that the constraints (2.3) still hold. The inequality
(tj − t0)+ ≤ xj in Eq. 2.3 which is equivalent to t0 ≥ yj can be replaced with
t0 ≥ 0 since we have y1, y2 < 0 in combination with the constraint t0 ≥ 0.
For the last inequality in Eq. 2.3, the above arguments still apply such that
this term is replace, with by a0 ≥ −yj . In total we get a0 ≥ max(0,−y1,−y2)
and t0 ≥ 0.

Appendix B. Analytical expressions

The expectation under the density (3.14) is

μ(β, φ, t) = E(X)

= 6β (φ− β/3) (β + φ)2 (2β + φ)2 e(−β+φ)t

+4
(
φ2 (tβ − 1) + 2β2φt+ 2β2

)
(−β + φ)2 (β + φ)2 e−tβ

+(4− 10tβ)φ6 −
(
34β2t+ 4β

)
φ5−

(
18β3t+ 51β2

)
φ4+

(
34β4t− 7β3

)
φ3

+
(
28β5t− 23β4

)
φ2/8β (2β + φ) (−β + φ)φ (β + φ)

(
1/2 (2β + φ) (β + φ) e(−β+φ)t +

(
−β2 + φ2

)
e−tβ − 5/4φ (φ+ 7/5β)

)
.

This expression is obtained using computer algebra system Maple.
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Appendix C. Proof of Theorem 3

We shall work with g(x) = log f(x), x ∈ R2, which for the sibling density
that Eq. 3.6 is a piecewise linear function. The MTP2 property of f is
equivalent supermodularity of g, i.e.

g(x ∨ z) + g(x ∧ z) ≥ g(x) + g(z). (C.1)

It is trivial to check that a linear function g is supermodular, so it follows
directly that Eq. 3.7 is MTP2.

The density (3.6) requires more careful attention due to its piecewise
definition. It suffices to consider x and z such that the four points x, z,
(x∨z) and (x∧z) form a non-degenerate rectangle with sides parallel to the
axes. This happens when either x1 < z1 and x2 > z2 or when x1 > z1 and
x2 < z2. We will consider only the former, where x is the upper-left corner
(and z the lower-right corner) of the rectangle. The other case is handled in
the same way. When the rectangle is degenerate (a line or a point) it can
be checked that Eq. C.1 holds for any function g. Under these constraints,
if x and z lie in the same region (R1, . . . , R6) of Fig. 7 all four corners of the
rectangle lies lies in same region, and by linearity of g within each region we
have that Eq. C.1 is satisfied.

The sum of two supermodular functions is again supermodular, so we
may add φ(x1+x2) to all three branches of the logarithm of Eq. 3.6, so that
we may work with

g(x1, x2) =

⎧
⎪⎨

⎪⎩

−(β + φ)(t− x1), 0 ≤ x1 ≤ x2 ≤ t,

2β(t− x2)− (β + φ)(t− x1), 0 ≤ x1 ≤ t ≤ x2,

2β(t− x2), 0 ≤ t ≤ x1 ≤ x2.

(C.2)

The extension of g to all six regions of Fig. 7 (with t1 = t2 = t) is g(x1, x2) =
g(x2, x2) when x1 > x2. The fact that g(x1, x2) does not depend on x2 in
regions R1 and R4, and not on x2 in R3 and R6 are visualized via the a level
curve (green dashed line) of g in Fig. 7. It is seen that g is unimodal, with
the mode at (x1, x2) = (t, t).

We start out by restricting ourselves to the case x2 < t. Under the
facts established above, and the assumed restrictions on x and z, there are
only three qualitatively different cases that must be considered. Using the
red part of Fig. 7 as a reference, these are: i) x = A and z = C ′, ii)
x = A and z = D′ and iii) x = C and z = D′. With our geometric
approach, supermodularity is something that is checked for rectangles. It has
the property that we can split a rectangle (A,C,C ′, A′) in two, (A,B,B′, A′)
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Figure 7: Part of the proof of Theorem C. The green dashed line is an
example of a level curve (C.2). The red rectangles are used to prove super-
modularity

and (B,C,C ′, B′), and it is sufficient to check Eq. C.1 for the two parts.
Hence, to check all of i)–iii) it suffices to check all the red sub-rectangles in
Fig. 7, which we will now do. First, (A,B,B′, A′) lies in a single region (R6)
so Eq. C.1 holds. For (B,C,C ′, B′) we find by looking at the level curves
of g that g(C) > g(B) and g(C ′) = g(B′), which imply that Eq. C.1 holds.
Finally, the (solid black) vertical line x1 = t splits (C,D,D′, C ′) in two parts
which each line entirely in R1 and R2, respectively. This completes the proof
for x2 < t.

The situation that z2 > t, i.e. the red part of the figure is moved above
the (solid black) horizontal line x2 = t, follows by symmetry. The remain-
ing case, x2 > t > z1, can be handled by splitting in two the rectangle
horizontally at the x-axis, for each of which we know Eq. C.1 holds. Since
supermodularity is also additive when splitting a rectangle horizontally, we
have completed the proof.

Appendix D. Proof of Theorem 4

We prove that f(x1, x2; t) is multivariate stochastically increasing (Shaked
and Shanthikumar, 2007, Definition (6.B.1)) in the parameter t, where
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f(x1, x2; t) is given by Eq. 3.6. This implies Eq. 3.16, i.e. the marginals
are also stochastically increasing (Shaked and Shanthikumar, 2007, Theo-
rem 6.B.16 (c)).

We prove that the conditions in Theorem 6.B.8 in (Shaked and Shan-
thikumar, 2007) are satisfied. First, it follows from the MTP2 property that
(X1, X2) is “associated” in the sense of the theorem (Karlin and Rinott, 1980,
Eq. (1.7)). Define the function h(x1, x2) = log [f(x1, x2; t

′)/f(x1, x2; t)]. The
main condition of Theorem 6.B.8 is that h(x1, x2) is increasing in (x1, x2)
for t′ > t. To verify this we will check that

∂h

∂x1
≥ 0 and

∂h

∂x2
≥ 0, (D.1)

which together with the continuity of h is sufficient.
We build on the proof of Theorem 3, and denote the six regions of Fig. 7

associated with t′ by R′
1, . . . , R

′
6. We need to verify Eq. D.1 when (x1, x2) ∈

Rj∩R′
k for different values of j and k. When j = k it follows that h(x1, x2) =

0 which implies Eq. D.1. Next, due to the fact that t ≤ t′ many combinations
of j and k cannot occur, and we are left with the following list to check:

(x1, x2) h(x1, x2)
R4 ∩R′

5 (φ+ β)x1
R4 ∩R′

6 (φ+ β)x1 + 2βx2
R5 ∩R′

6 2βx2
R3 ∩R′

2 (φ+ β)x2
R3 ∩R′

1 (φ+ β)x2 + 2βx1
R2 ∩R′

1 2βx1

For all of these combinations (D.1) holds. Note that we have skipped
additive terms in h that does not depend on x1 or x2. This completes the
proof.
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