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ABSTRACT 

Sleep is important for animal health and welfare and there are many factors, for example, the 

environment, illness, or stress, that are likely to have an impact on cow sleep and consequently 

affect their welfare. Polysomnography (PSG) is considered the gold standard for precise 

identification of sleep stages. It consists of electrophysiological recordings of the brain activity, 

eye movements and muscle activity but is costly and difficult to use with cows on farm. 

Accordingly, the study of sleep in cows may be limited due to the impracticability of PSG. 

Alternative methods of assessing sleep have been developed for humans. Some such work has 

been conducted for cows, but this has yet to be validated with PSG.  

The main aim of this thesis was to investigate alternative methods to PSG to accurately detect 

sleep stages in dairy cows. Specifically, I aimed to develop a detailed 5-stage scoring system for 

assessing sleep stages from the cow PSG, to investigate the suitability of using lying postures 

and heart rate (HR) measures to assess sleep stages and to develop a model to accurately predict 

sleep stages using non-invasive measures in dairy cows compared with PSG. 

Two studies were conducted using 6 non-lactating dairy cows in an indoor housed environment 

in Scotland, and outdoors at pasture in New Zealand. PSG was recorded with each cow over a 

period of seven days. From these data a 5-stage sleep-scoring criteria with good reliability was 

developed which identified two stages of light sleep, two stages of deep sleep as well as awake 

and rumination stages.  

Video was recorded during sleep recordings and the cow’s behaviour was analysed and 

compared with the scored sleep stages from the PSG. Some sleep stages were found to occur 

mainly in specific lying postures; however, overall, postures were not useful indicators of sleep 

stages. Heart rate (HR) and heart rate variability (HRV) were measured using a Polar HR monitor 
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and data logging device. Differences in the HR and HRV measures were found between the sleep 

stages, and the patterns of these changes were similar between both Scottish and NZ cows. 

Finally, machine learning models were developed using supervised learning methods to predict 

sleep stage from the HR and HRV measures as well as the surface EMG data recorded during 

PSG. The models were able to learn to recognize and accurately predict sleep stages compared 

with the PSG scoring.   

This research demonstrates that non-invasive alternatives can be used to identify sleep stages 

accurately in dairy cows compared with PSG. Further research is necessary with larger sample 

sizes and cows of various breeds and life stages; however, the success of the methods developed 

during this thesis demonstrates their suitability for the future measurement of sleep in cows 

and in the assessment of cow welfare.   
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Sleep is a conserved trait among almost all animals studied to date (Ungurean et al., 

2020). Birds have been found to be able to sleep mid-flight (Rattenborg et al., 2016), cetaceans 

sleep with half their brain while floating in the ocean (Lyamin et al., n.d.), even insects have been 

shown to have periods of quiet activity akin to sleep (Ho and Sehgal, 2005). There is no single 

definitive answer for why we humans and so many other animals sleep, however it is possible 

that sleep, at least in mammalian species has evolved and has continued to be expressed since 

it is essential for animal health and survival (Miyazaki et al., 2017).  Sleep loss can have severe 

consequences on physical health (Faraut et al., 2012; Lasselin et al., 2015; Meerlo et al., 2008), 

mental health (Marques et al., 2017), relationships, and social interactions for humans 

(Dickinson and McElroy, 2017). As sleep architecture and patterns of sleep from brain activity in 

mammals seems to be highly conserved between species, there is reason to consider that sleep 

serves similar functions for cows as it does for humans.  

There are many factors that may affect a cow’s sleep, such as the lying surface, bedding type, 

air temperature, weather, light level, noise, and other cows. By studying sleep in cows, we could 

be able to determine the importance of sleep for cow welfare, and subsequently inform 

management practices for farmers.  

Animal welfare refers to the well-being of non-human animals. This constitutes their physical 

health, requirements for nutrients, water, air, and space, but also their mental needs; social 

behaviour, sexual behaviour, play and positive affect. Animal welfare science uses various tools 

across multiple disciplines, such as immunology, behaviour, and physiology to try to quantify the 

effects of various situations and factors that might have a serious effect on an animal’s welfare.  

Sleep is affected by what happens to an animal and therefore could be used as a tool to assess 

a cow’s welfare. Assuming that the functions of sleep are similar between cows and humans, 

experiences during the day- be they positive or negative, could influence sleep time and sleep 

patterns in cows. It could be possible to use changes to sleep patterns in responses to changes 
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in the environment as a tool for understanding how these changes affect a cow’s welfare 

(Langford and Cockram, 2010). For example, looking at the changes to sleep patterns when cows 

are moved to an unfamiliar environment such as a different housing or management system or 

when transported to an abattoir could be a way to understand how they may be impacted by 

the change. 

The first chapter of this thesis consists of a literature review. This chapter is divided into three 

parts; firstly, an introduction to sleep in general, sleep physiology and sleep scoring, secondly, I 

reviewed other non-invasive methods used with humans and other animals for the identification 

of sleep and their potential for use with cows. In the final section, I present an overview of sleep 

research with cows and factors likely to affect cow sleep. This is where I have identified the main 

issue currently limiting the progression of sleep research in dairy cows and its use in welfare 

assessment. The gold standard method for recording sleep in humans and any animal depends 

on electrophysiological activity of the brain, eyes and muscles. Recording brain activity in cows 

is possible, but is challenging, impractical and time consuming both for data collection and 

analysis and is a limiting factor for future cow sleep research.  

The aim of this thesis was to determine if other non-invasive methods may be used to identify 

the stages of sleep in cows and to develop a method that could be more easily applied on farms 

to facilitate sleep research in cows.  

This thesis was conducted as a partnership between three organizations, AgResearch Ltd, 

 cotland’s Rural College ( RUC) and Massey University. A year of the research program was 

conducted in Scotland and the rest was conducted in New Zealand. We ran two major 

experiments as part of this thesis, the first with indoor housed cows in Scotland, and the other 

with cows outdoors on pasture in New Zealand. The aim of these experiments was to record 

brain activity and other behavioural and physiological data simultaneously that could potentially 

be used to identify sleep in cows.  
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Chapter two describes the methods and protocols used for both trials, with a focus on the brain 

activity data, how it was collected, and how it was analysed and the development of a detailed 

sleep staging system for cow sleep. 

One of the characteristics of mammalian sleep is the adoption of typical sleeping postures, and 

cows, unlike horses, need to lie down to sleep. Therefore, in chapter 3, we investigated the 

possibility of using behaviour and specific lying postures to identify stages of cow sleep. In this 

chapter, I have analysed the behavioural data recorded from both studies to determine if there 

are differences between the groups and if postures are useful for sleep stage identification in 

cows.  

Chapter 4 examines the possibility of using heart rate (HR) and heart rate variability (HRV) as a 

proxy to identify sleep stages in cows. Heart rate activity changes with sleep stages in humans, 

we even have smart watches that claim to estimate sleep based on activity and changes in heart 

rate.  

In chapter five, we aimed to determine if two non-invasive physiological devices could be used 

together to predict sleep stage accurately compared to brain activity. Using machine learning 

techniques, we developed and tested the accuracy of two models to predict sleep stage using 

heart rate and muscle activity alone. 

The appendices following the main text describe supplementary data collected throughout the 

thesis that were not included in the chapters. Appendix A details the overall sleep results of the 

cows in both countries, indicating total sleep time, bout lengths etc. 

Finally, I discuss the results of the thesis, the development of detailed scoring system for cow 

sleep, investigation of non-invasive sleep assessment measures and the implications and 

applications of this work for future sleep research in dairy cows. 
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CHAPTER ONE  

Literature Review:  
Measuring sleep in dairy 
cows and implications for 

cow welfare. 
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1 Introduction 
The study of sleep in humans and in other animals is a diverse field covering a broad range of 

topics such as the evolutionary origins of sleep, the effects of sleep deprivation, the neurological 

and cellular control of sleep and the reasons and explanations for the functions of sleep. Over 

the past few decades, a great deal of research into sleep in a diverse range of species from tiny 

songbirds to walruses has been conducted, and states of sleep, or potential sleep-like states, 

have even been reported in reptiles (Ayala-Guerrero and Mexicano, 2008; Libourel and Barrillot, 

2020), fish (Hur et al., 2012; Zhdanova et al., 2001), invertebrates (Brown et al., 2006; Medeiros 

et al., 2021) and insects (Hendricks et al., 2000; Ho and Sehgal, 2005) 

There has been little research into sleep in cattle but interest in this field is growing. Research 

into the effects of lying restriction on sleep and production (Kull et al., 2019), the effects of 

moving into new environments (Fukasawa et al., 2018a) and diet concentrations (Fukasawa et 

al., 2020) on cows’ sleep behaviour have been published recently. However, such research may 

be limited by the typical tools for studying sleep, which are impractical for use with cattle. At 

present the knowledge of sleep and sleep patterns of cows and the importance of sleep for dairy 

cow health and welfare is limited.  

In this review, I will provide a brief introduction to sleep, sleep physiology and sleep recording 

methodology, I will review alternatives to the traditional methods for studying sleep and their 

potential suitability for use with dairy cows. And finally, present a general background regarding 

cow sleep patterns and discuss the importance of and effects of sleep loss for cows.  

2 Sleep, sleep physiology and sleep scoring 

2.1  What is Sleep? 

Sleep is a function or a behaviour under homeostatic control, where the need for sleep builds 

until it has been achieved (Eban-Rothschild et al., 2017).  hus, feeling ‘tired’ is a signal such as 



 

8 
 

hunger or thirst, indicating to an animal that it is time to sleep. Like hunger and thirst, feeling 

tired is then followed up with a behaviour, and instead of eating or drinking, it is characterized 

by a reversible state of behavioural immobility combined with reduced responsiveness (Siegel, 

2005).  

Animal sleep can be divided into two main stages- rapid eye movement (REM) which is a deep 

sleep stage characterized by a loss of muscle tone and characteristic quick bursts of eye 

movements, and non-REM (NREM) sleep, an amalgamation of the rest of sleep. The different 

states of sleep have been identified in almost all mammals studied to date (Kashiwagi and 

Hayashi, 2020). Interestingly, sleep timing and cycles vary remarkably between species. Some 

animals such as bats have been found to sleep for up to 20 hours per day and others such as 

elephants may sleep for only 1-2 hours per day (Siegel, 1995; Tobler, 1995). A link between body 

mass and sleep time has been described, with larger animals tending to sleep for less time than 

smaller animals and carnivores also sleeping longer than herbivores (Siegel, 2005). The question 

of why there is such a big difference in sleep patterns between different species and between 

individuals within species remains unanswered.  

It is difficult to pinpoint a single reason for, or purpose of sleep and it is likely that sleep has 

many overlapping and interconnected functions. Many theories regarding the function of sleep 

have been suggested, such as the idea that sleep clears potentially harmful metabolites, the by-

products of cellular function, from the brain (Xie et al., 2013).  In this study, the extracellular 

space was found to expand during sleep and allowed these metabolites to be flushed away 

faster (Xie et al., 2013). Alternatively, a behavioural evolutionary theory for the function of sleep 

is that periods of sleep, and the associated behavioural quiescence and often protected sleeping 

site, would be advantageous for animals to avoid predation during a vulnerable time (Lima and 

Rattenborg, 2007). Regardless of the reasons for why sleep exists, it is a phenomenon that is 
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conserved across species and shows similar or recognizable patterns, and because of this, it is 

likely to be extremely important for animals and their welfare.  

2.2  Polysomnography  

Polysomnography (PSG), uses multiple physiological signals, including brain activity, to identify 

sleep and sleep stages and it is considered as the ‘gold standard’ in sleep identification (Van De 

Water et al., 2011). PSG uses electrodes to record electrical activity of the brain 

(electroencephalography: EEG), the eyes (electro-oculography: EOG) and muscles 

(electromyography: EMG) and often also of respiratory effort (Rundo and Downey, 2019). These 

physiological measurements use electrodes to sense the electrical signals caused by activity of 

the cells in the brain, eye area and neck muscles. This information is passed to a signal 

amplification device. Older devices used a pen, and the signal “trace” was drawn onto a 

continuously moving roll of paper (Spriggs, 2015). Modern devices convert the analogue signal 

into a digital signal using a fixed sampling rate which can be recognized by a computer (Young, 

2001).  

2.2.1 Electroencephalography (EEG) 

EEG is the study of the electrical activity of the brain. Depending on the data required and the 

area of interest, different electrode types can be used.  Electrodes can be surgically implanted 

in the skull (Benovitski et al., 2017), on the dura (the protective lining of the brain), the surface 

of the brain (cortex) or within the brain (Perentos et al., 2017). These implanted electrodes and 

subcutaneous wire electrodes are less likely to be affected by movement artefacts on the traces 

(Duun-Henriksen et al., 2015; Young et al., 2006), and the signal is less attenuated or disrupted 

by having to pass through layers of skull, muscles, and skin to reach the electrode than surface 

attached electrodes. However, non-invasive cup electrodes and adhesive electrodes which are 

attached to the surface of the skin in the area of interest are also used in EEG but can be more 
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easily removed or disrupted by movements, especially in non-human animal studies, and as such 

are more suited to shorter term recordings (Duun-Henriksen et al., 2015). 

EEG in humans is often done using an electrode montage, or arrangement of electrodes. A 

commonly used montage is the international 10-20 method (Silverman et al., 1960), which 

indicates specific locations for electrodes based on defined characteristics of the skull. It is not 

necessary to have this many electrodes to record sleep, however a full montage allows a 

researcher to specify activity occurring in different regions of the brain. Recording can be 

conducted in what is known as a referential montage, where all electrodes are connected to a 

single reference electrode and the EEG activity is determined by comparing the data recorded 

at the electrode to the reference (Britton et al., 2016). It can also be conducted using a bipolar 

montage, where electrodes are referenced to other electrodes in a region. While these montage 

methods may have individual advantages, for example, bipolar montages are less likely to be 

affected by artefacts, no differences have been found between the methods when scoring sleep 

(Duce et al., 2014).  

2.2.2 Electro-oculography (EOG) 

EOG is the study of the electrical activities of the eye movements. EOG is typically conducted 

with non-invasive surface attached electrodes (López et al., 2016). The EOG signal is important 

when identifying the presence or absence of the different sleep stages and particularly for the 

identification of REM sleep.   

2.2.3 Electromyography (EMG) 

Electromyography is the study of the electrical activity of muscles (Cifrek et al., 2009). Invasive 

or non-invasive electrodes can be used to detect signals in the muscle of interest. There is a large 

body of research using skin surface EMG (sEMG), particularly in kinesiology, where muscle 

activity is studied during various activities and postures, in sports and movement and 



 

11 
 

particularly regarding muscle fatigue (Cifrek et al., 2009). In the context of PSG, EMG helps to 

identify the different sleep stages as muscle activity is higher when awake or in lighter sleep, 

than when in REM sleep (Okura et al., 2006).  

2.3  Scoring Human Sleep  

Sleep is usually divided into two main stages: Rapid Eye Movement (REM) sleep and Non-Rapid 

 ye Movement (NR M) sleep. In 1968, Rechtshaffen and Kales published the ‘manual of 

standardized techniques and scoring system for sleep stages of human subjects’ (Rechtschaffen 

and Kales, 1968), which is often referred to as the ‘R&K’ guidelines.  he R&K manual described 

the visual scoring of the PSG traces, and divided NREM sleep into four stages from lighter to 

progressively deeper sleep. The R&K manual was widely used until the American Association of 

Sleep Medicine (AASM) published a revised scoring system in 2007 (Iber and American Academy 

of Sleep Medicine, 2007), reducing NREM sleep divisions into three stages. The AASM guidelines 

are reviewed and updated frequently and have since become the main scoring system used 

around the world.  

2.3.1 Rapid Eye Movement Sleep 

Rapid eye movement sleep (REM) is named after the characteristic features that frequently 

occurs during this stage of sleep:  quick, bouts of rapid eye movements, seen on the EOG trace 

as sharp peaks (Iber and American Academy of Sleep Medicine, 2007). Another characteristic 

feature of REM sleep is a very low amplitude EMG trace, or muscle atonia. In REM sleep, the 

brain is considered to be quite active, with low voltage mixed frequencies seen on the EEG trace 

that often look similar in appearance to the awake EEG. Because of this similarity, REM sleep 

was occasionally called ‘paradoxical’ sleep as the brain could appear to be awake while the 

patient was asleep (Peyron et al., 2020). REM sleep is particularly important for memory 

consolidation and learning in humans and other animals (Boyce et al., 2017).  
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2.3.2 Non-Rapid Eye Movement Sleep 

The rest of total sleep time (TST) consists of NREM sleep. Human NREM sleep is further divided 

into 3 stages in the AA M guidelines, from ‘lighter’ stages N1 and N2 to deeper N3 sleep. In 

humans, N1 sleep occurs when a person is drifting off: slow rolling movements of the eyes occurs 

on the EOG, the brain activity begins to slow, theta waves (4-7Hz) are observed on the EEG, but 

the EMG remains high. The majority of TST, however, consists of N2 sleep. The EEG of N2 stage 

is of lower amplitude with mixed frequencies, sleep spindles- small bursts of high frequency 

activity often occur as do k-complexes (short high amplitude slow waves). N3 stage is often 

referred to as ‘slow wave sleep’ ( W ), as one of the defining characteristics in human sleep is 

the presence of low frequency delta waves (<4Hz) on the EEG.  Differentiation of these stages is 

not typically conducted in non-human animal species although a thorough 5 stage scoring 

definition has been published for macaques (Goonawardena et al., 2019) and work is currently 

under review for mice (Lacroix et al., 2018). 

2.4 Human Sleep Cycles 

Typically, adult humans are mono-phasic sleepers, meaning we tend to sleep in one long bout, 

usually at night, but young humans and many other animals are poly-phasic sleepers, who have 

multiple bouts of sleep throughout the day and night (Lima et al., 2005).  Generally, over the 

course of a night’s sleep, humans cycle through the different sleep stages in a characteristic 

pattern, going from awake to light NREM sleep to deeper NREM sleep into REM sleep, which is 

usually ended by a small ‘micro-arousal’ and immediately back into NR M sleep (Carley and 

Farabi, 2016). The different sleep stages are associated with differences in awareness 

thresholds, which is the source of the idea of the ‘depth’ of sleep, as it is much easier to wake 

someone from R M sleep for example than a ‘deeper’ NR M stage ( usby et al., 1994).  
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2.5  Sleep restriction and deprivation 

The importance of sleep is often evaluated by examining the effects of total or partial sleep 

deprivation on health and wellbeing. There are many studies on human sleep and sleep 

deprivation, or ‘sleep loss’, indicating that poor or insufficient sleep can be associated with a 

variety of health conditions including cardiovascular issues, obesity, diabetes, and depression to 

name a few (Luyster et al., 2012). Chronic sleep loss may also result in neurobiological changes 

that accumulate over time and may ultimately have serious health implications (Meerlo et al., 

2008). In a notorious experiment, rats were placed on a small disk over a tray of water, falling 

asleep would result in the disk being rotated, forcing the rat to walk to avoid falling into the 

water (Rechtschaffen and Bergmann, 1995). While some of the effects of this study are likely 

due to severe stress, the rats subjected to this deprivation protocol all suffered a similar 

progression of negative effects on health: firstly, the development of lesions on the skin, then 

issues with thermoregulation and eventual death within 2-3 weeks.  

2.5.1 Effects on the immune system 

Sleep restriction and deprivation has effects on the immune systems in humans and animals 

(Luyster et al., 2012). Sleep is regulated by the hypothalamic-pituitary-axis (HPA) and 

parasympathetic nervous system, which play a part in the stress and immune responses of 

humans and other animals. Total sleep deprivation for long periods is not typically an issue facing 

humans and other animals, who are more likely to experience periodic sleep deprivation or 

restriction. Sleep deprivation has been found activate the immune system and low-level 

systemic inflammation, which can contribute to cardiovascular issues, and one night of recovery 

sleep is not sufficient for a return to baseline levels (Faraut et al., 2012). A study of sleep 

restriction from a typical 8 hours down to 4 hours of sleep in healthy men resulted in an increase 

of circulating white blood cells, an indication of immune activation, and changes in diurnal 

rhythm of these indicators (Lasselin et al., 2015). Immune consequences of sleep restriction and 
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deprivation could therefore cause an increased susceptibility to infection and have many 

negative health consequences. Activation of the immune system also has an effect on sleep 

architecture, or the patterns of sleep, causing fragmented patterns and a reduction of REM sleep 

(Imeri and Opp, 2009). 

2.5.2 Pain 

A link between sleep loss and pain has been described in the literature and reviews of this topic 

have highlighted the bidirectional relationship of pain and sleep. Pain disturbs sleep, but equally 

sleep loss affects pain (Lautenbacher et al., 2006; Okifuji and Hare, 2011). Deprivation or 

reduction in sleep can affect the experienced intensity of pain, and many studies have found 

sleep deprivation to be associated with hyperalgesia (Lautenbacher et al., 2006). Much of the 

research in this area has focussed on the effects of REM sleep deprivation (Lautenbacher et al., 

2006). A study in rats who were restricted from sleep for 6 hours per day found that chronic 

sleep restriction increased pain sensitivity measured by mechanical paw withdrawal thresholds, 

and that two days of recovery sleep was not enough to improve pain sensitivity (Sardi et al., 

2018). Another study in laboratory rats suffering from sepsis due to caecal ligation and a 

puncture operation had significant changes to the EEG, namely an increase in NREM sleep and 

absence of REM sleep.  They also had reduced slow wave amplitude and had highly fragmented 

sleep which could be an indicator of poor sleep quality (Baracchi et al., 2011).  

2.5.3 Sleep Quality 

Most people will have first-hand experience of the negative consequences of poor sleep, and 

how their sleep impacts on their quality of life. Sleep quality is a subjective experience that 

differs from person to person but is generally accepted to refer to the ‘restfulness’ or ‘refreshing’ 

qualities of the previous night’s sleep (Westerlund et al., 2014).   tandardized scales such as the 

Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 1989) have been created to try to quantify 

patient reported sleep quality. In a study of Portuguese university students, subjective sleep 
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quality measured through self-report using the PSQI was able to predict most aspects of their 

quality of life (Marques et al., 2017). Therefore, not only is the total amount of sleep important 

for humans, but the quality of the achieved sleep is also important.  

The ability to measure sleep quality objectively, particularly when self-report is not possible is 

an issue.  In humans there is a hypothesis that the spectral density of NREM sleep could be an 

indicator of the depth of sleep and as such a measure of sleep quality (Krystal and Edinger, 2008). 

Aspects of sleep architecture, such as sleep latency (SL), the time it takes someone to sleep after 

lying down, number of wakefulness episodes after sleep onset (WASO) and other aspects have 

been associated with aspects of human perceived sleep quality in some studies (Åkerstedt et al., 

2016; Krystal and Edinger, 2008). While these quantitative measures are promising as a more 

objective way of assessing sleep quality, some researchers question the reliability of PSG derived 

measures for predicting the varied and subjective nature of sleep quality in humans (Kaplan et 

al., 2017). Most of what we know about sleep in non-humans is through studying laboratory 

animals as models for humans. As such, studies that assess sleep in animals to understand 

changes in their welfare or assess the effects of poor welfare on animal sleep are few, especially 

in dairy cows.  

3 Alternatives to PSG for assessing sleep, and 

their potential for use with dairy cows 

3.1 Polysomnography with cows 

Due to the continuous activity of the rumen, there used to be a belief that cows and other 

ruminants could not achieve deep sleep (Balch, 1955). Using electrocorticography (ECoG), a 

method of recording the electrical activity of the brain via electrodes placed on the surface of 

the cortex of the brain of cows, Ruckebusch et al. (1970) identified stages of paradoxical (REM) 

sleep and Slow Wave Sleep (NREM). More recently, studies in calves and cows have made use 
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of less invasive methods to record PSG using electrodes placed subcutaneously (Takeuchi et al., 

1998) or on the surface of the head with non-invasive adhesive electrodes (Hänninen et al., 

2008; Kull et al., 2019; Ternman et al., 2012).  EEG is a less invasive method than ECoG due to 

the placement of the electrodes outside the skull, however the data may be more prone to 

artefacts, which can obscure the wave patterns from brain activity, due to muscle movement or 

movement of the animal. Electrodes attached to the skin of cows can be easily rubbed off and 

often require frequent technical attention (Ternman, 2014) and the recording equipment used 

for PSG is not easily applied to free-moving cows. 

3.2  Miniaturization of PSG recording devices or just EEG 

Recording PSG is difficult in humans and more so in animals, especially large animals such as 

cows being managed outdoors. Because of these difficulties, research has focussed on the 

development of accurate and reliable alternative mechanisms both in the engineering of logging 

devices and in the development of sleep-detecting computer algorithms for use in humans and 

other animals such as mice, rats and pigeons (Allocca et al., 2019).  

A starting position to make sleep research more accessible and applicable, especially for animal 

research, is through the miniaturization of PSG recording devices. Small devices with electrodes 

implanted into the brain have been used to make long term recordings of birds in flight 

(Rattenborg et al., 2016). These devices have also been used with walruses (Lyamin et al., 2012), 

sloths (Rattenborg et al., 2008), wildebeest (Malungo et al., 2021) and many other species, 

however, require invasive methods for long term implantation of electrodes. 

3.3 Behaviour 

Sleep is driven by processes in the brain, and it has been postulated that “sleep is of the brain 

for the brain” (Hobson, 2005). Despite this, in some species, such as wild animals, those living in 

challenging environmental conditions or very large animals, it could be incredibly difficult to 
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study sleep using these electrophysiological methods. Tobler (1995) therefore defined 

behavioural criteria for the identification of sleep in animals including “1) species- specific 

sleeping site, 2) typical body posture, 3) physical quiescence, 4) elevated arousal threshold, 5) 

rapid state reversibility, 6) regulatory capacity”.  hese behavioural criteria are useful to identify 

the likely presences of sleep or “sleep-like states” in animals but may not be as useful to identify 

specific stages of animal sleep.  

Observing behaviour is the least invasive methodology for the assessment of sleep. It is also 

perhaps the most practical method, particularly for wild animals or where fitting animals with 

recording devices could be difficult. Behavioural sleep has been described for rhinoceroses 

(Santymire et al., 2012), elephants in zoos and in the wild (Gravett et al., 2017; Holdgate et al., 

2016; Walsh, 2017), giraffes (Tobler and Schwierin, 1996) and porpoises (Wright et al., 2017), 

where electrophysiological methods would be difficult due to the size of the animals or their 

habitats. However, behaviour is an indirect measure of sleep, complicated by the possibility that 

animals achieve different sleep states in a variety of behavioural postures that may not be 

mutually exclusive.  

The use of behaviour alone has been suggested as a method for identifying total sleep and sleep 

stages in cows. Lying and head postures of calves can be used with some reliability to predict 

the actual stage of sleep as analysed from their EEG (Hänninen et al., 2008). However, these 

same behavioural indicators of sleep could not predict sleep stages as accurately in adult cows 

(Ternman et al., 2014), potentially due to difficulties in differentiating between drowsing and 

NREM sleep, which can occur in the same behavioural postures. In calves, drowsing was not 

observed and therefore not scored on the EEG. This may be a reason that behaviour could be 

used more reliably as a proxy for sleep in calves (Hänninen et al., 2008). Behaviour alone may 

not be sufficient to measure and describe total sleep time and of the different stages, however, 
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it could be combined with physiological parameters to measure the sleep of cows more 

accurately. 

3.4 Actigraphy 

Actigraphy uses accelerometers to measure movement and activity which can be used to predict 

sleep stages (Zinkhan et al., 2014). Actigraphy is a simple, cost effective and non-invasive 

method often used in the preliminary assessment of sleep disorders in humans. It is easy and 

low cost compared to full PSG assessments; however, it tends to overestimate sleep (Van De 

Water et al., 2011). The use of accelerometers to determine sleep stages has also been 

investigated recently in cows. Hokkanen et al. (2011) used accelerometers attached to collars to 

predict sleep in calves. It was validated with behavioural observations and they were able to 

correctly identify 82% of the occurrence of sleep, 66% of NREM sleep and 70% of REM sleep 

correctly. Accelerometers have also been developed to predict sleep in adult cows. The 

accelerometers were attached to a halter on adult cows in an attempt to use head movement 

and position as an indicator of sleep (Fukasawa et al., 2018b; Klefot et al., 2016). These methods 

have shown good accuracy in predicting sleep; however, they have only been validated using 

lying behaviour, head positions and eye closure, which may not be as true a representation of 

the actual sleep experienced that could only be reliably quantified with PSG.   

Behavioural estimates of sleep tend to overestimate total sleep and sleep stages in cows 

(Ternman, 2014) and as such may not yield the most accurate results and cannot be used as a 

gold standard.  Actigraphy has the potential to be used as a measurement tool for calves and 

cows, however more research, and importantly, validation with PSG is required. 

3.5 Physiological Covariables 

As mentioned earlier, human PSG can often contain several physiological measures including 

ECG and respiratory effort (McCarley, 2007). Sleep is intertwined with the autonomic nervous 
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system (ANS) and as such, transitions to sleep stages also influence the interrelated systems 

such as the cardiovascular, respiratory, and metabolic systems, impacting the heart rate (HR), 

respiration rate and body temperature.  

HR and heart rate variability (HRV), the time between successive heart beats, can be used to 

identify sleep in humans (Chouchou and Desseilles, 2014). Methods using machine learning, the 

development of computer programs to learn from data, have been developed to predict sleep 

stages accurately from HR and HRV metrics alone (Mitsukura et al., 2020; Xiao et al., 2013). 

Changes to the HR and HRV have also been found to occur during sleep in dogs (Varga et al., 

2018).  

HR and HRV has been recorded in cows, however these were shorter term recordings used to 

evaluate the effects of stress (Kovács et al., 2016; Mohr et al., 2002; Stewart et al., 2016) or pain 

(Byrd et al., 2019; Stewart et al., 2008). HR measurement can be conducted with dairy cows 

using non-invasive surface electrodes and so offers a viable opportunity for this methodology to 

be applied to sleep assessment in cows. 

Regulation of core body temperature occurs during NREM sleep; however, it is reduced during 

REM sleep (Troynikov et al., 2018). Core body temperature fluctuations are more challenging 

and more invasive to record in dairy cows and require invasive methods such as internal vaginal 

(Vickers et al., 2010) or rectal sensors, subcutaneous implantation of sensors (Lea et al., 2008), 

rumen boluses, or ear temperature sensors (Rutten et al., 2017). Non-invasive temperature 

monitoring using thermal imaging has also been developed with cows to assess surface body 

temperature (Salles et al., 2016). Eye temperatures may be a better indicator of core body 

temperature (Church et al., 2014). However, these can be influenced by the environmental 

conditions such as air temperature and wind speed (Bell et al., 2020) and could be impractical 

to use for long term recording. Body temperature could be an interesting factor to investigate 

during sleep in dairy cows, however, is not likely to be useful as an alternative to PSG.  
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Respiratory effort, including parameters such as respiration frequency, respiration regularity as 

well as respiratory depth can be used to identify sleep in human subjects (Long et al., 2014), 

particularly when combined with HR and HRV signals (Ebrahimi et al., 2015). Measuring 

respiration rate in cattle is often used in assessment of heat stress and can be calculated by 

timing breaths manually using a stopwatch (Schütz et al., 2014) or from infrared thermography 

(Stewart et al., 2017). More recently, an algorithm has been developed to identify respiration 

rate in dairy cows using deep learning and video analysis with a mean accuracy of 93% (Wu et 

al., 2020). Respiration rate could be a potential non-invasive method to assess sleep in dairy 

cows, however, as with human sleep, it may be more effective in combination with other non-

invasive measures.  

There are a few possibilities for alternative technologies to use as a proxy compared to PSG for 

assessing sleep and sleep stages in cows. Behavioural based methods, including the observation 

of lying postures and actigraphy have been previously used with cows, however, need further 

validation with PSG. Alternative physiological methods, particularly HR may potentially be a 

useful proxy, however further development and validation is needed.  

4 Sleep research in cattle and the importance 

of sleep for cow welfare 

4.1  Scoring sleep in cows 

Ruckebusch et al. (1970) observed and defined the two main stages of sleep in cows; slow wave 

sleep (SWS) aka NREM sleep characterized by high amplitude low frequency wave patterns, and 

paradoxical sleep (PS) aka REM sleep characterized by high frequency low amplitude wave 

patterns similar to the awake pattern but accompanied by a lack of muscle tone and rapid eye 

movements. In addition, Ruckebush et al. (1970) also defined two states of wakefulness in the 

cow: Active Wakefulness (AW) and ‘Drowsiness’ (DR) an intermediate stage between active 
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wakefulness and slow wave sleep exhibiting a mix of fast and slow wave patterns. Although 

defined as a state of wakefulness in cows, this definition is very similar to human stage N1 or N2 

sleep, which is often classified as light sleep. Indeed, more recent studies of sleep in calves and 

cows which have scored sleep using the Ruckebush and R&K guidelines have also scored 

‘drowsing’ but indicate it to be an ‘intermediate’ stage ( ernman et al., 2018). 

4.2  The cow sleep cycle 

Cows housed in a tie stall barn were found to sleep for approximately 4 hours per day 

(Ruckebusch et al. 1970), with approximately 3.5 hours in NREM sleep and only about 30-45 

minutes in REM sleep. Humans typically sleep in a single long bout at night and are considered 

to be monophasic, cows however, sleep in several shorter bouts about 8-9 times per day, with 

the majority of these bouts occurring during the night. Cattle are considered to have a 

polyphasic sleep cycle (Ruckebusch et al., 1970; Ruckebusch, 1975a).  

 he majority of cow sleep consists of the NR M stage or ‘deep sleep’ which, according to 

Ruckebusch et al. (1970) occurs in bouts of approximately 15-20 minutes in length followed by 

bouts of REM sleep around 5 minutes in length. These are usually followed by either awakening 

to AW or DR or another bout of NREM sleep. In a study conducted using non-invasive PSG 

methods, Ternman et al. (2012) also reported REM sleep bout lengths of 3 ± 1 minutes. In 

contrast, Ternman et al. (2012) reported average NREM sleep bouts of only 5±3 minutes from 

the 8 cows included in their study which was markedly shorter than the bout lengths reported 

by Ruckebusch et al. (1970). The observed differences in bout length could be due to the 

differences in analysing the wave patterns between the two studies, the experience of the EEG 

scorer or differences in the technological methods used for recording. Ternman et al. (2014) 

noted that the electrodes and equipment on the cows needed to be adjusted frequently in their 

studies as the cow’s movements caused them to be displaced.  his frequent disruption to the 

cows may have affected their sleep bout lengths. Additionally, the outfitting of cows with these 
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devices may have also shortened their sleep bouts due to discomfort from the wires and other 

attachments, however Ternman et al. (2018) found no significant effect of the sleep recording 

devices on the first night compared to subsequent nights in dairy cows.  

4.3  Factors that may affect cow sleep 

4.3.1 Environment level factors 

The sleeping and resting environment is likely to have a pronounced impact on the sleep of cows. 

Human sleep can be affected by comfort, temperature, noise, light and novelty. Cow sleep can 

probably be affected by these factors as well.  

4.3.1.1  Housing type 

Toutain and Ruckebusch (1973) found that cows outdoors rested their heads for about half the 

amount of time (22.5±10.7 minutes) compared to cows housed indoors (42.9 ± 10.8 minutes). 

They had previously associated this behaviour with REM sleep (Ruckebusch et al., 1970). When 

the cows returned indoors after a period of time on pasture, they showed a significant rebound 

in the time spent with head resting (107 ±13 minutes) which took 4 weeks to return to the 

baseline level for indoor housing (43± 7 minutes). The data from the ECoG of a cow on pasture 

and in a stalled environment showed a similar effect and the total sleep time (NREM & REM 

sleep) of the cow on pasture was only 2.5 hours which was significantly less than when stalled 

(Ruckebusch et al., 1974). The cow on pasture also tended to have a more polyphasic pattern of 

sleep with short periods of sleep in the morning and afternoon following grazing periods. 

Housed cows had more of a monophasic sleep pattern with almost all sleep occurring during the 

night (Ruckebusch et al., 1974; Toutain and Ruckebusch, 1973).  

Tucker et al. (2007) found that housed cows lie down with their head resting on the ground or 

tucked on the flank twice as much as cows maintained outside. They also found that cows 

outside during the winter lay down significantly less than those housed indoors, and that cows 
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outdoors lay down more often in a tucked posture, possibly to preserve body heat. This could 

suggest that temperature and weather are likely to influence the postures adopted during sleep 

and potentially the pattern of sleep stages of cows. 

The differences in the amount of sleep shown between cows housed or held outdoors begs the 

question regarding the minimum sleep requirements and the impacts on the welfare of cows on 

pastures if they are exhibiting such a comparatively low amount of sleep. It could be possible 

that cows on pasture are able to achieve a better quality of sleep and as such, need less of it to 

feel refreshed or that they can become more efficient sleepers than those indoors, and they 

may meet their sleep requirements in a shorter period of time. It is also possible that such a 

short period of sleep such as the 2.5 hours exhibited by cows on pasture (Ruckebusch et al., 

1974) is all that is required, and the higher amounts achieved by indoor-housed cows is a form 

of ‘luxury’ allowed by the security and food availability of a housed environment. 

As discussed above, cows on pasture have been found to exhibit shorter lying times than cows 

indoors, however Krohn and Munksgaard (1993) found that cows on pasture exhibited 

significantly more lying with the head resting than cows in indoor tie-stall housing. Interestingly, 

Krohn and Munksgaard (1993) also found that cows on pasture exhibited significantly more 

resting bouts where lying with the head resting on the flank occurred, and the duration of these 

bouts was significantly longer. This could suggest that despite shorter total lying times, cows 

may be able to condense their sleep bouts to achieve sufficient sleep. 

Charlton et al. (2011) found that cows with access to pasture as well as an indoor free-stall area, 

chose to lie down for 90% of their lying time indoors. However, when they investigated the 

motivation for pasture access in dairy cows, they found that the cows in their study would spend 

approximately 80% of the night outdoors and were highly motivated and would walk longer 

distances (260m) to access a pasture at night (Charlton et al., 2013). As sleep was found to occur 

mainly at night (Ruckebusch, 1972) these findings could also indicate a preference for cows to 
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sleep at pasture. It is unclear though, if this preference for pasture is due to intrinsic features of 

the outdoor environment, or difference in space and therefore ‘comfort’ in being able to stretch 

or engage in more expansive lying postures. Shewbridge-Carter et al. (2020) found that cows 

chose to lie down on a larger surface area of their less preferred bedding surface type when the 

space of their preferred surface type was reduced by the addition of a metal stall. Therefore, 

sleep in cows could be affected by the amount of space available for them to lie down in. 

4.3.1.2  Lying Surface and Quality 

Dairy cows sleep lying down (Ruckebusch, 1975a) unless forced to stand, or when not properly 

adapted to the environment. Because of this, factors that affect cow lying behaviour are also 

likely to influence cow sleep as well. The lying surface is important for cows. Cows have been 

found to spend longer lying in stalls with more bedding than in sparsely bedded stalls (Tucker et 

al., 2009), and the quality of the bedding affects lying time as well. Cows will spend less time 

lying on wet bedding than on dry bedding (Fregonesi et al., 2007b) but also find dirty bedding to 

be more aversive than wet bedding alone (Schütz et al., 2019). Unsurprisingly, lying surfaces are 

also important for cows managed outdoors. A study of cows and heifers managed in outdoor 

enclosures found that in muddy and wet enclosures, they would lie down for as little as 3.2 hours 

per day and would prefer to lie on a concrete apron rather that to lie in the mud (Chen et al., 

2017). Such a short lying time would severely limit the amount of sleep that could be achieved 

significantly affecting the welfare of the cows.  

4.3.1.3  Familiarity of the environment 

A study investigating collapsing behaviour, which can be dangerous and cause severe injuries, 

during sleep in horses, found that 50% of the horses with a history of collapses had experienced 

a stressful situation such as a barn relocation or were housed improperly (Fuchs et al., 2017). In 

several of the cases the collapsing issues improved when the issues of housing were addressed, 

and it is hypothesized that some horses were uncomfortable in a new, unfamiliar, stressful, or 

inadequate environment and as such were reluctant to lie down and sleep. Consequently, when 
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they transitioned into REM sleep, they collapsed, and showed the onset of muscle atonia 

characteristically associated with REM stage sleep (Fuchs et al., 2017). Similarly, in a study of 

behavioural REM sleep in zoo giraffes, relocation significantly affected the pattern and amount 

of REM sleep (Sicks, 2016). As this change to the REM sleep cycle was likely due to the stress of 

transport and of unfamiliarity with the new environment, the authors concluded that changes 

in sleep patterns could be a useful indicator for mental state and overall welfare.  

In Japanese cows, sleep estimated from lying posture was lower on the first day after moving 

into a new environment and took nine days to stabilize (Fukasawa et al., 2018a). Dairy cows are 

not transported on shorter trips as frequently as horses. In some systems, however, such as with 

sharemilking in New Zealand, where dairy farmers may own the cows but not the land or 

facilities used to graze and milk their cows (Stafford, 2017), whole herds of cows are moved to 

new properties more frequently. The change of environment and experience during transport 

could therefore have an effect on their ability to sleep. The most common reason for 

transporting cattle, however, is transport to the abattoir. A study of cull dairy cows in Canada 

found that following transport, cows spent an average of 82±46 hours in the market system 

before being slaughtered (Stojkov et al., 2020). Stress from transport as well as unfamiliar 

environments among other factors are likely to affect a cows’ sleep during this time.  

4.3.2 Cow level factors  

4.3.2.1 Pregnancy, Parturition and Parity 

Pregnancy and parturition are physically demanding processes for cows and are likely to affect 

their sleep. Cows showed a significant decrease in the total amount of sleep in the 24hrs prior 

to calving, and there is some evidence indicating a significant decrease in the amount of NREM 

sleep in the week after calving. However, this is based on data reported from a single cow 

(Ruckebusch, 1975b).  
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The stage of lactation has also been found to have an effect on sleep in cows. Cows in the late 

dry period and also late pregnancy were found to exhibit more REM sleep, and cows in early 

lactation exhibited less REM sleep than during other stages of the lactation cycle (Ternman et 

al., 2019). Lying time has been found to increase with days in milk but is shorter in cows with 

higher milk yields, presumably due to the increased energy demand and need to eat (Norring et 

al., 2012; Stone et al., 2017). High-yielding cows had a shorter latency to become inactive 

without ruminating and with the neck relaxed after lying down, which may demonstrate an 

ability to get to sleep faster in order to achieve sufficient sleep even though total lying time is 

shorter (Norring et al., 2012).  

Stone et al (2017) found that primiparous cows were faster to lie down without ruminating and 

the neck relaxed compared to multiparous cows. There is some evidence that a longer latency 

to sleep onset is associated with a subjective experience of poor sleep in humans (Åkerstedt et 

al., 2016; Westerlund et al., 2014). Although the use of neck activity as an indicator of sleep may 

not be a particularly accurate method to quantify the actual awareness state of cows, these 

results may indicate that age is an important factor that may affect the normal sleep cycles or 

sleep quality. Age is known to affect total sleep time and patterns in humans and other animals. 

Sleep patterns change with increasing age in rats (Kirov and Moyanova, 2002) and young 

mammals often exhibit more total REM sleep which slowly decreases to an adult level with 

development. This is particularly apparent in altricial animals (Siegel, 2005). The EEG wave 

patterns, and frequency spectrum of calves change from birth to ten weeks of age (Takeuchi et 

al., 1998) and the stage of drowsing was not observed in dairy calves in the study by Hänninen 

et al (2008). It is possible that calves do not drowse as older cows do and age is therefore an 

important consideration for the study of sleep in cows. 

4.3.2.2  Social stress 

Mice subjected to chronic social stress after being placed in a cage with an aggressor, showed a 

decrease in the power spectrum of the EEG during Slow Wave Activity (SWA: deep NREM sleep) 
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during recovery sleep after a short sleep deprivation period of four hours (Olini et al., 2017). 

Decreased power of SWA is thought to be a potential measure for poor sleep quality and the 

EEG power could be indicative of the depth of sleep achieved (Krystal and Edinger, 2008). Cows 

can experience social stress from several sources including overstocking and social group 

rearrangement. After regrouping, dairy cows had a tendency to show a reduction in lying time 

and had fewer lying bouts than before regrouping (von Keyserlingk et al., 2008). There is 

evidence which shows that overstocking reduces lying times in dairy cows, but it is difficult 

however, to tease out how much of this is caused by the lack of suitable lying places or social 

competition alone (Fregonesi et al., 2007a). As social stress affects lying time, it also is likely to 

have effects on the sleep of cows. 

4.4  Implications for sleep and cow welfare 

4.4.1 Sleeplessness/Sleepiness 

Sleeplessness is an unpleasant subjective experience for humans. It is possible that other 

animals may experience a similar sensation when they do not achieve the required amount of 

sleep. Humans subjected to periods of repeated short sleep restriction reported that sleep 

restriction was not overly stressful per se but rather ‘burdensome’ ( impson et al., 2016). 

Ruckebusch et al. (1975b) commented that the sleep deprived cows seemed to be ‘irritable’ 

towards the farm staff and experimenters. While this observation may be based on subjective 

observations and could be an anthropomorphism, it is possible that these observations are a 

valid description of the experiences of the cows at that time. Occasional experiences of sleep 

restriction and deprivation may be manageable over time, however chronic or repeated sleep 

deprivation could lead to the very negative feeling of exhaustion. The strong motivation for cows 

to lie down (Metz, 1985) and the significant rebound and almost doubling of sleep time after 

deprivation in cows as well as preference to sleep when time available to eat was also restricted 

(Ruckebusch, 1974), indicates that sleep is extremely important to cows.  
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Ruckebusch (1974) found that REM sleep deprivation resulted in a slight increase in the amount 

of NR M sleep but also a severe fractionation of NR M sleep bouts into small ‘micro-cycles’ of 

2 minutes in length compared to a typical duration of 18.9 minutes when not restricted. 

Fractionation of sleep can be associated with poor sleep quality in humans (Krystal and Edinger, 

2008). As sleep typically occurs during the night (Ruckebusch, 1975a), lying restriction over-night 

would likely affect the sleep patterns of cows.  Fisher et al. (2002) found that periodically 

depriving cows of lying from 15:00h to 6:45h over a period of 7 days was associated with 

increased plasma cortisol and reduced responsiveness to corticotropin releasing hormone 

(CRH). 

The experience of insufficient or a total lack of sleep could be a welfare concern for dairy cows. 

 leep is included under the behaviour section of the ‘five domains’ model for animal welfare 

(Mellor and Beausoleil, 2015) with exhaustion as an associated negative mental state and feeling 

refreshed or energized associated with a positive state. More research on sleep patterns and 

particularly on minimum sleep requirements for cows is needed to better inform management 

decisions regarding their resting behaviour and sleep on farms. 

4.4.2 Sleep and health 

As discussed previously, sleep has a significant relationship with health, the immune system and 

pain. It is therefore important to understand the sleep requirements of cows and the impacts 

that the environment can have on sleep for their physical health and resilience to potential 

illness and disease. 

Lameness is a highly prevalent (Rutherford et al., 2009) and significant cause of pain experienced 

by dairy cows, particularly those in indoor housing systems (Haskell et al., 2006). During a long-

term study of cow sleep in 1975, a cow developed an interdigital abscess, and was treated during 

the study. This unexpectedly allowed for the opportunity to investigate the effects of pain/illness 

on the sleep of cows. Ruckebusch (1975b) found that this cow showed increased fractionation 
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of the periods of slow wave (NREM) sleep and fewer periods of paradoxical (REM) sleep during 

inflammation. After treatment he observed increased slow wave sleep bouts and more episodes 

of paradoxical sleep in the cow which he associated with relief from pain.  

Another common source of pain in dairy cows is mastitis, an infection and inflammation of one 

or several quarters of the udder. Mastitis has also been found to reduce the lying time of dairy 

cows (Fogsgaard et al., 2012; Medrano-Galarza et al., 2012; Siivonen et al., 2011) and there is 

some evidence to suggest they prefer to lie on the side with the unaffected quarter, probably 

due to the pain associated with lying on the inflamed side (Siivonen et al., 2011). Pain from 

mastitis and reduced lying time might also affect the amount of sleep and sleep quality of cows. 

The immune consequences of sleep loss may also aggravate the issue. 

4.4.3 Sleep in welfare assessment 

Changes to the sleep patterns of animals in response to changes in their environment can be 

potentially used as a tool for the assessment of animal welfare. Disruptions to sleep can be 

caused by emotional experience in humans and it follows that sleep disturbances in animals 

could perhaps also be due to their emotional or mental state in response to their experiences 

(Langford and Cockram, 2010). Sleep patterns were affected by transport and change of 

environment in horses and giraffes (Fuchs et al., 2017; Sicks, 2016) and there are many 

environmental and individual factors that have the potential to affect the experience of sleep in 

cows. More research is required to update our knowledge of the typical sleep patterns of cows 

before sleep could be used as an indicator of mental state in cows. However, measuring changes 

to sleep could be a useful tool to assess the mental state of cows in many situations and could 

be beneficial for future welfare assessment.  
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5 Conclusion 
Sleep is an essential function for the health and welfare of humans and animals. It plays an 

integral role in body functions such as metabolism and the immune system, and the loss or 

restriction of sleep can have significant consequences on health and well-being. There are many 

external and individual factors that have the potential to affect a dairy cow’s sleep, including the 

housing environment, temperature and weather conditions, pain, illness, and stress, and thus 

have an effect on her health and overall welfare.  Therefore, I believe sleep is an essential 

function that should be considered in all management decisions for cows on farms. Further 

research is needed to investigate cow sleep requirements and to understand more regarding its 

impacts on and importance for cow health and welfare. Development of capability in sleep 

measurement could be used to assess the effects of changes in the environment by differences 

in sleep duration and patterns. PSG is the gold standard method to identify sleep and the sleep 

stages from light to deep sleep in all animals as it is a direct reflection of the brain and 

physiological functions involved in the regulation of sleep. However, PSG, is expensive and 

difficult to use, and is therefore a limiting factor for future studies of the effects of sleep for cow 

welfare.  There are several possible proxy methods that have been developed to study sleep in 

humans and dairy cows based on sleep behaviour or physiology, but that may also not be 

feasible for used with cows or require further validation.  Accordingly, more research is required 

to develop more reliable and practical methods to assess sleep stages in cows validated with 

PSG to facilitate future research on sleep in cows.  
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CHAPTER TWO  

Cow Polysomnography and 
Sleep Scoring Methods 
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The aim of this chapter is  firstly to describe the PSG recording methodology used to 

record cow sleep in the two main experiments that are presented in this thesis from cows 

housed indoors in Scotland, and cows managed outdoors on pasture in New Zealand. The second 

aim is to present an updated and detailed visual scoring criteria for five stages of vigilance 

(Awake, N1, N2, N3, REM) for dairy cows developed using a combination of human scoring, 

previously published guidelines and observations from the collected data set. 

Methods 

Animal Ethics 

Approval was obtained for the methods and manipulations used in the research conducted in 

Scotland from the UK Home Office (Project Licence P204B097E) and SRUC Animal Ethics 

Committee (Ref. ED AE 03-2018). Approval for the methods and manipulations of the trial work 

conducted in New Zealand was obtained from the Ruakura Animal Ethics Committee (AE 14708). 

Scottish Cows 

Six healthy non-pregnant, non-lactating cows, known by farm staff to be friendly and that were 

due to be retired for the herd due to issues with fertility were selected from the Acre Head 

Research Farm, Dumfries, Scotland. The cows were housed indoors in a large deep-bedded straw 

pen within the main barn and were managed as per typical farm practice. During recording the 

cow was penned individually in a 4x4m pen separated from the other cows by a 2m buffer zone 

which allowed visual and auditory contact with them to minimize potential disturbances to 

recording equipment (Figure 1).  
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Figure 1.  The Scottish housing design (A) and (B) a diagram of the test pen, buffer zone and 
group pen configuration. 

New Zealand Cows 

Six healthy pregnant, non-lactating, cows from the herd at Dairy NZ Lye Farm, Hamilton, New 

Zealand were selected based on their known friendly and calm behaviour towards humans. The 

cows were managed in a large (44m x 21m) outdoor area created with electric fencing within a 

large paddock. During recording, the target cow was moved into a 10x10m pen created with 

non-live electric fencing tape and surrounded by a 2m buffer zone fenced with live tape 

separated from the group area (Figure 2). The buffer zone between non-live and live wires was 

created to reduce potential noise on the electrophysiological traces while also minimizing 

possible disturbances to recording equipment from groupmates. The fencing configuration was 

moved around within the paddock as the ground became too wet or muddy. All cows were 

allowed to graze and supplemented with silage regularly. 
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Figure 2.  The New Zealand test pen created with non-live electric fencing tapes with a cow 
being recorded and groupmates eating silage in the background (A) and diagram of the New 
Zealand test and group pen configuration (B) 

Training Procedure 

Considerable training and habituation were conducted with the cows in both Scottish and New 

Zealand studies prior to the start of data recording (described below in Table 1). This habituation 

was done to ensure the cow was not fearful of the researchers or materials and to minimize 

stress to the cows during device attachment and recording. The training and habituation were 

also conducted so maintenance of the equipment and devices could be done with the cow in 

the test pen, avoiding the need to put the cow through a race or crush to fix or adjust the device 

attachments which could be more stressful to her.  
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 The Scottish cows were initially moderately avoidant of human contact, and several weeks 

training was required to build positive relationships with each animal so that they allowed 

people to approach them, being touched, and handled particularly on the head and neck. The 

New Zealand cows were selected from a group of cows who had previously been involved in 

research trials and had experience from a very young age of being touched and handled by 

people. We selected cows for the New Zealand trial that could be approached and touched in 

the pasture, thereby cutting down on the amount of habituation time required. 

A checklist was created to monitor each cow’s progress until they were fully prepared for the 

recording (Table 1). Positive reinforcement with food rewards (concentrate/pellets) were given 

to reinforce desired/good behaviour. 

 Halter training was conducted with each cow, firstly to habituate her to being touched around 

the face, but also to stay still during device attachment. The New Zealand cows were halter 

trained with rope halters over the span of 2-3 weeks according to Dairy NZ’s research technician 

SOP for halter training. The cows were then habituated to the sounds and smells of the materials 

and devices and to wearing the protective gear. This gear included an elastic surcingle girth, and 

a Lycra horse hood, modified to fit the position of the cow’s ears.  he cows were habituated to 

the sound and feel of battery-operated hair clippers. The Scottish cows were also habituated to 

the smell of hair removal cream (Veet extra sensitive, UK). Training depended on the individual 

cow’s personality and took varying amounts of time depending on the individual cow’s 

behaviour  

Once the cows had successfully passed the habituation criteria and were ready for recording, 

they were moved into the test pen. They were held there for 24 hours to become familiar with 

the new environment prior to device attachment or recording as well as providing a baseline for 

the cow’s normal lying behaviour prior to being outfitted with the recording devices. The ethical 

guidelines (ED AE 03-2018) restricted housing individually for a maximum of one week. 
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Table 1. Steps for training and habituation of dairy cows for attachment of recording devices 
and protective gear 

Behaviour Description 

Approach cow Approach the cow by slowly moving closer to the cow and the edge 

of her flight zone over several days until she was accustomed to the 

presence of people and would allow a person to be next to her. 

Touch face Touch all over her face head and ears, initially with one hand, then 

both. 

Touch Body Pat and stroke the neck, back, rear and around the girth of the cow. 

Halter on 

(Scottish cows only) 

Introduce the cow to the smell, sight and sound of the halter and 

have her allow it to be put on. See the halter hanging on the fence, 

touch the halter with the nose, put nose through nose band, wear 

unlatched halter for a short period of time, wear latched halter for a 

short period of time, wear halter for a long period of time. 

Tying to the 

gate/lead training 

Introduce the cow to the lead rope, train the cow to stand when tied 

to the side of the pen or to walk beside the researcher when being 

led. 

Rope halter training 

(New Zealand cows 

only) 

Introduce cows to rope halter, halter and loosely wrap the rope 

around a fence to provide some resistance, eventually tie the rope 

to the fence for a short period of time.  

Clippers Sniff clippers (when off), rub on face and neck. Turn on clippers and 

rub on face and neck (without clipping hair) 

Hood Introduce the cow to the sight, smell, sounds and sensation of the 

horse hood. Teach the cow to allow it to be placed over her head 

and secured, see the hood and movement of the fabric, smell the 

hood, rub the hood on the neck, body and face and over the eyes, 

put nose into nose hole, wear non-zipped hood around the neck, 

attach hood over ears and eyes and zip up, wear hood for long 

periods. 

Hair Removal Cream 

(Scottish cows only) 

Introduce the cow to the smell of the hair removal cream. Test a 

patch on the neck prior to removing hair on the forehead, above the 

eyes and the neck. 
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Attachment of devices  

Hair removal  

The boundaries of the electrode attachment zone were two lines vertically from the lateral 

canthus of the eyes, a horizontal line just above the orbital bone above the eyes and a horizontal 

line just below the poll at the top of the forehead (Figure 3a). The hair in this main area and at 

the at the other electrode attachment sites, the lateral side of the eye and the trapezius muscle 

of the neck was removed immediately prior to electrode attachment using clippers and/or hair 

removal cream (Veet extra sensitive, Reckitt Benckiser UK, for the Scottish cows only). The 

clipped skin was then wiped clean and sanitized using alcohol wipes. Hair removal cream was 

used initially as it is dissolves hair down to the skin. Clippers leave an amount of stubble which 

could cause issues for electrode impedance (skin-electrode contact). Most of the Scottish cows 

were accepting of this cream, however some found it particularly aversive, probably due to its 

strong smell, and had a strong negative behavioural reaction to it. Hair clippers were then used 

on these cows, and while not removing hair as closely as the cream, good impedance values 

were still obtained. Hair removal for the New Zealand trial (conducted after the Scottish trial) 

was done using clippers only.  

 

Figure 3. [A] Hair clipped at electrode location, [B] Electrodes attached, and snap leads 

connected [C] Adhesive electrode placement for EEG and EOG. 

A B C 
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Electrode attachment 

Electrodes were placed as previously described in studies of sleep in dairy cattle (Hänninen et 

al., 2008; Ternman et al., 2012). Due to the cranial anatomy of dairy cows and the presence of 

many sinus cavities, a typical electrode montage as is used in human studies that records all 

regions of the brain is impossible. The electrode placement described is the most suitable option 

to reduce brain signal attenuation resulting in better quality data. This placement involves a 

reference electrode places in the centre of the attachment zone, surrounded by four EEG 

electrodes in a box formation around  the four corners (Figure 4). An EOG electrode was placed 

on the lateral side of each eye, and two EMG electrodes were placed approximately mid-way 

along the trapezius muscle in the cow’s neck. Finally, a patient ground (PGND) electrode was 

attached behind the poll at the top of the cow’s head.  

Ag/AgCl cup electrodes:  

The Initial recordings in the Scottish cows were made with Ag/AgCl cup electrodes (Embla 

Systems, Kanata, Canada) commonly used for recording the EEG of humans (Figure 5a). The cups 

of the electrodes were filled with ultrasound gel or Ten20 conductive neurodiagnostic electrode 

paste (Weaver and Company, Aurora, USA) to improve conductivity of the signal and attached 

Figure 4. Electrode placement diagram 
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to the cow using cyano-acrylate (Loctite 454 or Loctite gel control, Henkel Corp., Dublin, Ireland 

or Gorilla Glue gel, Gorilla Glue Inc., Cincinnati, Ohio, USA) placed in small dots around the 

outside edge of the electrode and held in place on the cow’s head for 10 seconds and secured 

with a piece of adhesive tape. Recordings from this type of electrode were of good quality 

however, due to the small surface area for attachment with glue, could be easily scratched off 

or pulled off with the cow’s normal behaviour or from rubbing on features in the pen. 

Single-use pre-gelled adhesive ECG electrodes with clip on leads 

After encountering issues with the Ag/Cl cup electrodes, single use adhesive snap electrodes 

(Natus disposable LM solid gel electrodes, Embla Systems, Kanata, Canada) were trialled as an 

alternative and were preferred due to the larger adhesive surface area. Several dots of glue 

could be spread over the entire adhesive patch allowing for a more secure hold.   These 

electrodes could be used for several sequential recording sessions and wire leads could be 

snapped on and off easily and required less maintenance than the cup electrodes. (Figure 5b).  

Electrode Removal 

The electrodes could be removed by gently pulling on the electrode lead wire (Cup electrodes) 

or on the adhesive tab (ECG electrodes) and usually pulled away easily with no observed 

Figure 5.  [A] Ag/AgCl cup electrodes, [B] pre-gelled adhesive snap ECG 
electrodes and leads 

A B 
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discomfort to the cow. If they could not be removed with gentle pulling, the glue was softened 

with aqueous cream or removed with acetone. Any glue remaining on the skin was removed 

with cream or acetone.  

Device Housing 

After attachment, electrode lead wires were bundled in a cable sleeve along the neck and 

plugged into the Embletta MPR PG and ST+ Proxy PSG recording device (Embla Systems, Kanata, 

Canada). The device was then placed in a protective plastic box lined with foam (Figure 6), placed 

in a soft sided zippered pouch (modified lunchbox), and attached to an elastic surcingle girth 

around the cow (Figure 7c). The modified lycra horse hood (Figure 7a) was placed over the top 

of the electrodes and wires to prevent them from being scratched off or snagged on features in 

the test pen environment.  he horse hood was modified to better fit the cows’ ears, as well as 

to create an access flap secured with Velcro so that electrodes on the forehead could be 

accessed without the need to remove the entire hood. Due to warmer than average 

temperatures during recording in the summer months in Scotland, and concern for cow comfort 

in the heat, a modified head-only version of the hood was created (Figure 7b). This ‘summer 

hood’ offered protection for the electrodes on the head, and bundling of electrodes on the neck, 

however, did not cover the neck and forequarters and may have been cooler for the cows during 

this time. For outdoor recording in New Zealand, the hoods were sprayed with a 

weatherproofing spray (Scotchgard Heavy Duty Water Shield, 3M New Zealand Ltd, Auckland) 

to protect the electrodes from wet weather conditions.  A plastic shower cap was used as a cover 

over the top of the device housing pouch, to further protect the recording devices from the 

weather (Figure 7c).  
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Figure 6.  Image of the Embletta MPR PG with ST+ proxy and attached snap electrode 
leads in the foam padded sandwich box. 

Figure 7.  [A] Cow in New Zealand wearing a modified Lycra hood [B] A cow in Scotland wearing 
a modified ‘summer’ hood with electrode wires bundled along the neck to the device housing 
attached to the girth, [C] A cow in New Zealand wearing the full hood and with a waterproof 
plastic cover over the device housing pouch. 

A 

B 
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Recording protocol 

When all the electrodes had been attached, and the leads were plugged into the Embletta MPR 

PG recording device, it was essential to check that impedance (electrode-skin contact) was 

within an acceptable range (<14kΩ) before recording commenced. Impedance issues could be 

caused by numerous factors including hair regrowth, insufficient skin cleaning or preparation or 

issues with the device. Electrodes with impedance out of acceptable ranges were removed, 

these issues were addressed, electrodes were re-placed, and impedance was re-checked until 

an acceptable impedance value was achieved.  

EEG, EOG and EMG were recorded using the Embletta MPR PG and ST+ Proxy (Natus Medical, 

Kanata, Canada). The device was programmed to record 4 channels of EEG, 2 channels of EOG, 

2 channels of EMG, a reference electrode and ground electrode. Due to the number of electrode 

channels attached the maximum recording time was 10 hours due to the memory limitations of 

the device. Signals were sampled at 500Hz and the device was programmed to complete 

automatic calibration and impedance tests at the start of each recording.  

Recordings ran from approximately 7am-5pm and 7pm-5am, however some variation in the 

start/end times of recordings occurred due to difficulties in device attachment/impedance 

testing, electrodes becoming detached mid-recording or other extraneous factors. Recording in 

the Scottish cows was occasionally disrupted when cows began showing oestrus behaviours. In 

these cases, the recording session was postponed, and the cow was returned to the group as 

oestrus behaviour would likely be disruptive to sleep patterns, and the cow could be more 

difficult to work with during this time. 

Recording Data Quality  

Each recording was checked for quality after data collection and download was complete. 

Good quality PSG occurred when at least one EEG, EOG and EMG electrode remained attached 

for the entire recording time (or for a long period of time) and that impedance of these 
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electrodes were within an acceptable range (<14kΩ). Impedance checks were automatically 

recorded on each trace at the start of the recording.  

Signal Processing 

At least one EEG, one EOG and one EMG trace were selected for analysis from each recording. 

High pass and low pass filters were applied to each trace to remove some of the noise due to 

attenuation of the signal, skin and muscle activity and noise in the environment and the gain 

was adjusted to adjust focus on the important features of the traces (Table 2.).  A 50 Hz notch 

filter was applied to all traces to remove artefacts from the electrical mains frequency in 

Scotland and New Zealand.  

Table 2.  Filters and gain of cow EEG, EOG and EMG traces for PSG scoring 

Trace Low Pass High Pass Notch Filter Gain 

EEG 30 Hz 0.3 Hz 50 Hz 50µV/20µV 

EOG 20Hz 0.15 Hz 50 Hz 500 µV 

EMG - 10Hz 50 Hz 50 µV 

 

Detailed scoring protocol 

As is standard in human sleep scoring, sleep stages were scored in 30 second epochs. Scoring 

was done by the author (LH) after completing training in Practical Polysomnography, a course 

approved by the Federation of the Royal Colleges of Physicians of the United Kingdom for full 

polysomnography including scoring sleep stages, arousals, and respiratory events according to 

AASM standards. The development of sleep staging criteria was based on methods described by 

previous publications regarding sleep in cows,  (Hänninen et al., 2008; Ternman et al., 2012; 

Toutain & Ruckebusch, 1973) and on AASM guidelines (Iber & American Academy of Sleep 
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Medicine, 2007) and included observations of the overall wave patterns, FFT power spectrum of 

EEG traces, presence of eye movements and amplitude of the EMG traces. 

Traces were first scored with the scorer blind to the behaviour or any other details from the cow 

during the recording. The scoring was then re-checked while simultaneously watching video 

recordings from 4 angles of the pen of the cow matched to the time of the traces. This allowed 

for the identification of artefacts such as ear flicks or movements that could appear to be blinks 

or other PSG features. Traces were then checked over a third time prior to completion to ensure 

all potential disrupting factors had been identified. 

Scoring Criteria: 
This scoring criteria describes 6 stages from wakefulness (W), N1, N2, N3, REM and rumination 

using EEG, EOG, EMG as well as the Fast Fourier Transform (FFT) power spectrum to measure 

frequency content and sleep power bands calculated from one EEG trace. PSG traces can 

appear visually different between cows and a certain amount of familiarization with the traces 

was required to adapt to each scoring session. Scoring was not based on the visual appearance 

of only one trace, but rather from a combined interpretation of all aspects. Epochs were 

scored based on the sleep stage that makes up >50% of the epoch. If the epoch was estimated 

to contain equal amounts of each sleep stage, it was scored based on the stage of the epoch 

immediately pre-ceding it. Epochs containing short artefacts that did not obscure the entire 

time period could be scored, but epochs with multiple artefacts for example from moving or 

eating (Table 3) were marked as unknown if the sleep stage could not be reliably determined.  
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Awake:  

The awake state consists of low amplitude mixed frequency waves and appears as a thick and 

dark trace, this can be seen by the wide range of values in the EMG trace shown in Figure 8. 

There are often many artefacts from movement/eating etc during this stage. The FFT power 

spectra of EEG traces in the 10-30 Hz range is usually well above 300µV, however, can be at the 

300-400 µV range while the cow is awake. There is a lot of activity in the EMG trace, which 

usually has high amplitude and frequency throughout with many artefacts from movement and 

muscle twitches. Frequent spikes are seen on the EOG trace from blinking. Figure 8 (a) indicates 

an epoch scored as awake during which the cow was standing and somewhat more active than 

the epoch in figure 8 (B) indicating an awake epoch of a cow who was lying down.  

 

Figure 8.  Screenshot from RemLogic software indicating an awake epoch; (A) Filtered PSG 
traces, (B) FFT power spectrum from 0-35 Hz, (C) FFT power spectrum for only the 10-30 Hz 
range. 
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N1: 

Visually, the EEG in N1 appears to be similar to awake, however the trace is lower in amplitude 

and frequency and therefore the density of the trace appears to be lighter (See Figure 9 below). 

In this stage there are minimal artefacts from movement and activity. The FFT power spectra of 

the EEG trace in 10-30 Hz range is at or below 400µv. The neck EMG continues to show high 

amplitude and frequency and occasional activity on the EOG trace is seen (Figure 9). This stage 

was also very rarely found to occur while the cow was standing. 

 

Figure 9. Screenshot from RemLogic software indicating an N1 epoch; (A) Filtered PSG traces, 
(B) FFT power spectrum from 0-35 Hz, (C) FFT power spectrum for only the 10-30 Hz range. 
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N2: 

 In this stage, low amplitude high frequency waves mixed in with higher amplitude low frequency 

wave patterns are observed on the EEG trace. The presence of features such as occasional spikes 

that resemble human k-complexes begin to occur, and incidences of small segments of high 

frequency waves that resemble human sleep-spindles can also be found.  The FFT power spectra 

of the EEG trace in the 10-30 Hz range is well below 300µV. Activity on the EMG trace tends to 

remain high, with high frequency activity observed (Figure 10). Very few eye movements are 

observed on the EOG trace and movement artefacts are infrequent (Figure 10).  Sleep spindles 

are observed and consist of a small burst of fast activity lasting <1second (Figure 11).  

 

Figure 10.  Screenshot from RemLogic software indicating an N2 epoch; (A) Filtered PSG traces, 
(B) FFT power spectrum from 0-35 Hz, (C) FFT power spectrum for only the 10-30 Hz range. 

 

 

Figure 11.  Screenshot from RemLogic software of the EEG traces from an N2 epoch containing 
probable sleep spindles and k-complexes (indicated in red). 
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N3:  

In N3 stage, lower frequency and high amplitude waves are usually seen on the EEG trace. 

Compared to human N3 stages, which are often observed as high amplitude slow waves, the 

amplitude of the cow EEG traces during N3 may not be overly different from other N2 or REM 

stages. The slow wave pattern is seen most of the time, however N3 stage can also be identified 

as being when amplitude and frequency are both low. The FFT power spectra of the EEG trace 

in the 10-30 Hz range is usually well below 200µV (Figure 12). Neck EMG activity is usually low, 

however may not be drastically different from N2, and a heartbeat artefact may be seen on the 

trace as repetitive spikes. No eye movements are observed on the EOG and no movement 

artefacts occur. 

 

Figure 12.  Screenshot from RemLogic software indicating an N3 epoch; (A) Filtered PSG traces, 
(B) FFT power spectrum from 0-35 Hz, (C) FFT power spectrum for only the 10-30 Hz range. 
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REM:  

The EEG trace during REM sleep is usually characterized by very low amplitude high frequency 

waves. The EEG trace does tend to resemble the awake EEG trace however is less dense in 

comparison. Many artefacts can occur in this stage such as phasic twitches, ear twitches and 

rapid eye movements resulting in spikes on all PSG traces. The FFT power spectra of the EEG in 

the 10-30 Hz range is usually very low (>200µv), however due to artefacts on the trace, could be 

higher, even above the 300µV range. The main defining characteristic of this stage is very low 

activity on the EMG trace and frequent spikes and movements on the EOG trace from rapid eye 

movements (Figure 13).  

 

Figure 13.  Screenshot from RemLogic software indicating a REM epoch; (A) Filtered PSG 
traces, (B) FFT power spectrum from 0-35 Hz, (C) FFT power spectrum for only the 10-30 Hz 
range. 
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Rumination:  

The powerful chewing motion during rumination bouts causes a characteristic artefact that 

obscures signals from all PSG traces. This consists of rhythmic spikes and troughs with very high 

amplitude interspaced with bouts of swallowing lasting approximately 3-4 seconds (Figure 14). 

 

Figure 14.  Screenshot from RemLogic software indicating a rumination epoch with swallowing; 
(A) Filtered PSG traces, (B) FFT power spectrum from 0-35 Hz, (C) FFT power spectrum for only 
the 10-30 Hz range.



 

 

 

Table 3. Table of commonly observed artefacts (Eating, movement and rumination) and images of the PSG traces (EEG, EOG and EMG), and FFT power 
spectrum from 0-35Hz range and 10-30 Hz range. 

Artefact EEG, EOG, EMG Power Spectrum 

Eating 

 

 

Movement 

 

 

Rumination 
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Recorded Data Quantity and Quality  
Two of the Scottish cows did not progress sufficiently through the training and habituation 

protocol and were removed from the study. In total, 590 hours of PSG recordings were collected 

from the 12 cows in both Scottish and New Zealand studies. From this, approximately 212 hours 

were rejected due to issues with signal quality or malfunction of other devices not discussed in 

this chapter. Approximately, 167 hours from the Scottish cows and 210 hours of data were 

scored and used for analysis from the New Zealand cows.  Of the overall total data scored, 

178.68 hours were recorded during the daytime and 199.02 hours were recorded at night. A 

further break down of the data recorded is included in appendix A.  

Intra-scorer Reliability 

Intra-rater reliability was computed using the `irr` package (Gamer et al., 2019)  in R (version 

4.0.5) (R Core Team, 2021) for the reliability of scoring sleep stages from the PSG. Overall 

agreement was 89.4% and a Cohen’s kappa value of k= 0.835 indicated a high level of 

agreement. Further investigation using Fleiss’ kappa to compute category-wise kappa values 

found significant differences in agreement between stages (Table 4). Very high and near-

perfect level of agreement between scoring was found for awake (W) and rumination (RNT) 

epochs, a good level of agreement was found for N2, N3 and R stages, however a poor level of 

agreement was found for the reliability of scoring N1. N1 was mostly mistakenly scored as N2 

in 39.1% of re-scored epochs or as REM in 28.3% of re-scored epochs (Table 5). As most 

scoring mistakes were made between N1 and N2 we decided to pool these stages to 

investigate the effect on overall agreement. Total percent agreement increased to 91.1% with 

a Cohen’s kappa of k= 0.86 indicating a high level of agreement. Agreement between the 

combined N1/N2 improved to k=0.691 (Table 4) with an agreement of 80.8% between original 

and re-scoring ( able 6) while kappa’s for other sleep stages remained unchanged.  
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Table 4.  able of categorical Fleiss’s kappa values by sleep stage and level of agreement before 
and after combination of N1 & N2 stages 

Sleep 
Stage Kappa 

Level of 
agreement 

Sleep 
Stage 

Kappa combining 
N1/N2 

Level of 
agreement 

W 0.880 Strong W 0.880 Strong 
N1 0.295 Minimal Light 

NREM 
0.691 Moderate 

N2 0.681 Moderate 
N3 0.755 Moderate N3 0.755 Moderate 

REM 0.697 Moderate REM 0.697 Moderate 
RNT 0.973 Almost Perfect RNT 0.973 Almost Perfect 
UN 0.267 Minimal UN 0.267 Minimal 

 

Table 5. Percentage of agreement between first scoring and re-scoring by sleep stage 

 W N1 N2 N3 R RNT U 

W 86.1% 6.4% 0.3% 0.0% 1.3% 0.3% 5.6% 

N1 0.0% 32.6% 39.1% 0.0% 28.3% 0.0% 0.0% 

N2 0.0% 3.4% 84.5% 6.9% 5.2% 0.0% 0.0% 

N3 2.3% 0.0% 30.2% 67.4% 0.0% 0.0% 0.0% 

R 10.4% 0.0% 2.1% 0.0% 87.5% 0.0% 0.0% 

RNT 0.3% 1.0% 0.0% 0.0% 1.1% 97.6% 0.0% 

U 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 

 

Table 6. Percentage of agreement between first scoring and re-scoring by sleep stage after 
combining N1 & N2 sleep stages 

 W N1/2 N3 REM RNT UN 

W 86.1% 6.7% 0.0% 1.3% 0.3% 5.6% 

N1/2 0.0% 80.8% 3.8% 15.4% 0.0% 0.0% 

N3 2.3% 30.2% 67.4% 0.0% 0.0% 0.0% 

REM 10.4% 2.1% 0.0% 87.5% 0.0% 0.0% 

RNT 0.3% 1.0% 0.0% 1.1% 97.6% 0.0% 

UN 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 

Discussion: 
We developed and described a 5-stage visual scoring system for sleep for dairy cows, based on 

human AASM guidelines and previous published work with dairy cows, and have shown strong 

intra-observer reliability in the range of inter-observer observations from human sleep scoring 

studies. However, we have identified that there are differences in the reliability between 
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categories of sleep stages. Using this scoring system, we showed very good ability to identify N2, 

R, RNT and a reasonably good ability at identifying N3, however most disagreements in the intra-

rater reliability were between N1 and N2 stages in cows. This is similar to results found for intra-

observer reliability in a human study where a registered PSG scoring technician with 33 years of 

experience also had more disagreements between N1 and N2 sleep (Suzuki et al., 2019). 

This scoring system is the first to score lighter stages of NREM sleep in dairy cows. Previous 

criteria for scoring sleep in dairy cows described R M sleep,  low Wave  leep and ‘drowsing’. 

Ruckebusch (1972) described drowsing as a stage of stable wakefulness, indicating that he 

believed the cows to be awake but inactive during this time. More recent work in cows that have 

also scored drowsing according to the criteria described by Ruckebusch, and noted the 

occurrence of sleep spindles and k-complexed during this stage (Ternman et al., 2012). Thus, 

stages previously described as drowsing might likely be a combination of N1 and N2 light sleep 

stages. The description of the 5 stages of sleep in this study are based solely on their visual 

similarity to well described human sleep stages. Essentially, human sleep has been differentiated 

into these stages as a way to categorize different brain patterns as well as depths of sleep. Sleep 

depth can be determined from auditory arousal thresholds (Busby et al., 1994; Pilon et al., 2012) 

and generally, it takes less auditory stimulation to wake someone from light sleep than from a 

deep sleep. In future, verification of the classification of sleep stages in dairy cows could be 

accomplished by investigating the auditory arousal thresholds compared to PSG. 

A considerable amount of data was not usable due to poor signal quality, electrodes falling off, 

and other issues with the adaptation of these devices, that are intended for humans, for dairy 

farm conditions. While PSG is an excellent way of accurately identifying sleep stages of dairy 

cows it is not an ideal way to study sleep in a large number of cows or to use as a tool to assess 

welfare of cows. Accurate, more accessible and easily used alternative methods would be 

beneficial for future studies of sleep-in dairy cows.   
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Conclusion 
PSG is challenging and onerous to use with dairy cows, and even after developing substantial 

practical experience with PSG and improving efficiency in the methodology, we continued to 

experience a large amount of data loss and poor data quality. This data loss was likely due to the 

cows’ behaviour and the device being il-suited for use outside of clinical settings. Being able to 

identify sleep in cows accurately is the first step in being able to study sleep, and how changes 

to sleep patterns and architecture correspond with cow welfare. We developed a 5-stage scoring 

system for cow sleep, based on modern human scoring guidelines as well as limited previous 

cow work. Overall intra-observer agreement was strong, however reliability for the 

identification of light N1 sleep was minimal. Combining N1 with N2 into “light sleep” improved 

agreement to a moderate level. N1 can be reliably distinguished from awake, indicating that it 

is likely to be a distinct stage of sleep, but more work is needed to improve definitions to 

distinguish N1 from N2 in the future. Identifying sleep stages accurately from PSG is essential 

for the investigation of how sleep architecture affects sleep quality and thus cow welfare and is 

also pivotal for the investigation of possible methods of recording sleep in cows as an accurate 

alternative to PSG. The ensuing chapters in this thesis utilize the described methods and scoring 

system to identify sleep stages using PSG as a baseline or ground truth with which to examine 

other non-invasive proxy indicators for sleep in dairy cows.  
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69 
 

Preface 
The body of this chapter comprises a paper that has, since submission of this thesis, been 

published in Applied Animal Behaviour Science (AABS) journal. The structure of this chapter is 

therefore in the AABS style, however, has been modified to fit with the format of this thesis and 

may differ from the version available online.  

Hunter, Laura B., O’Connor, C., Haskell, M.J., Langford, F.M., Webster, J.R., Stafford, K.J., 2021. 

Lying posture does not accurately indicate sleep stage in dairy cows. Appl. Anim. Behav. Sci. 242, 

105427. https://doi.org/10.1016/j.applanim.2021.105427 

 

Following on from the development of the 5-stage scoring system for cow sleep described in the 

previous chapter, the aim of this chapter was to begin to investigate alternative proxies for PSG 

to assess detailed sleep stages in dairy cows. Behavioural observations can be conducted with 

minimal to no disturbance to cows and would be the most straightforward and least invasive 

method for the cows and therefore better for their welfare. However, as mentioned in chapter 

one, there is some uncertainty regarding the reliable use of lying postures to estimate sleep 

stages in cows. Previous studies have indicated that lying postures can be used to identify REM 

and NREM sleep in calves, however the same postures were not able to be used to identify these 

two stages in adult cows. Therefore, specifically, the aim of this chapter was to determine if 

more detailed head positions and lying posture could be used to identify the 5-stages of sleep 

in cows.  

Hänninen, L., Mäkelä, J.P., Rushen, J., de Passillé, A.M., Saloniemi, H., 2008. Assessing sleep 

state in calves through electrophysiological and behavioural recordings: A preliminary 
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Agenäs, S., Strasser, C., Winckler, C., Nielsen, P.P., Hänninen, L., 2014. Agreement 

between different sleep states and behaviour indicators in dairy cows. Appl. Anim. Behav. 

Sci. 160, 12–18. https://doi.org/10.1016/j.applanim.2014.08.014 
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Abstract 
Quality sleep is important for physical health and welfare in animals. However, we know little 

about dairy cow sleep, and how much they need. Practical techniques are needed to monitor 

sleep in cows to determine how different management practices affect their sleep and their 

welfare.  It is impractical to use ‘gold standard’ electrophysiological - polysomnography (PSG) to 

identify sleep in cows. Previous work suggests lying postures are useful to identify sleep stages 

in calves, but the reliability of lying behaviour to identify these sleep stages in adult cows is 

uncertain. We compared the lying postures of adult dairy cows (deep bedded on straw or in a 

pasture) with PSG, to determine if lying postures could be used to accurately identify Rapid eye 

movement (REM) and the different stages of Non-R M sleep. Lying in the typical “sleep” posture 

mailto:laura.hunter@agresearch.co.nz
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with the head turned and resting on the flank identified approximately 70% of REM sleep in 

outdoor managed cows but was less accurate in indoor housed cows that showed REM sleep in 

numerous postures. Lying with the head still and low did not identify stages of Non-REM sleep 

in either group. Using sleep postures to estimate total sleep would be an over estimation of REM 

sleep, but also an underestimation of total sleep as it ignores most NREM sleep. Lying postures 

are not useful indicators of sleep stages in dairy cows and additional research is required to 

identify efficacious alternative techniques.  

Introduction  
Sleep is an essential physiological function for all animals and plays an important part in physical 

and mental health (Faraut et al., 2012). Little is known about the sleep needs of dairy cattle or 

its impact on cow health, productivity, and welfare. Sleep can be disrupted by stress or 

environmental factors such as light (Raap et al., 2016) and comfort (Troynikov et al., 2018). 

Therefore, the amount of sleep and changes to sleep patterns could be used as a tool for animal 

welfare assessment (Langford & Cockram, 2010). It is challenging, however, to identify when a 

cow is sleeping and the different stages of sleep.  

Sleep in humans and other animals is typically sub-divided into several stages from light to deep 

sleep. These different stages allow different functions such as memory processing in deep rapid 

eye movement (REM) sleep (Boyce et al., 2017; Siegel, 1995), and restorative functions during 

Non-REM (NREM) sleep (Xie et al., 2013). In humans and some animals, NREM sleep can be 

further divided into light stages (N1 and N2) and deeper slow wave sleep (N3) (Goonawardena 

et al., 2019). Much of the sleep literature in humans and animals focusses on REM sleep, 

however, NREM sleep and particularly lighter stages (N1 & N2) makes up the majority of human 

sleep time (McCarley, 2007) and are also likely to be important features of sleep for other 

animals. Therefore, it is important to record light sleep stages when investigating effects of 

housing and management on sleep in cattle. 
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The recognized gold standard for assessing sleep in animals is polysomnography (PSG). This 

involves recording electrophysiological signals (traces) of the brain (electroencephalogram- 

EEG), eye movement (electrooculogram- EOG) and muscle activity (electromyogram- EMG) 

which are scored into sleep stages by visual analysis of the characteristic patterns of these 

traces.  PSG recording systems require many electrodes, wires and fragile and expensive signal 

amplification/recording devices that are usually made for use on humans. While they can be 

used with large animals, they are not an ideal tool for the acquisition of sleep data in cows 

managed under standard farm conditions which may be humid and dirty, or used in a large-scale 

scientific study with other animals that may disrupt the devices. 

Dairy cows sleep lying down (Ruckebusch et al., 1970) and can adopt several different postures 

while lying which could be useful to identify different sleep stages. One of the main 

characteristics of REM sleep is a reduction in muscle tone on the EMG trace, which reflects 

relaxation of the major muscle groups. In cows, this may necessitate relaxation and resting of 

the head. Recent studies have described the ‘sleep posture’ as being when a cow is lying 

sternally with her head rested on the flank and have used this to estimate total sleep time in 

cows (Fukasawa et al., 2020). Scoring sleep in this manner however is likely to be a better 

estimate for REM sleep and an underestimation of total sleep time, as time in NREM sleep will 

not be included. In calves, lying with the head resting on the ground or on the flank, identified 

REM sleep and lying with the head held up identified NREM sleep as determined from PSG 

(Hänninen et al., 2008). Although, in indoor housed adult cows, these same postures could not 

be used as reliably to identify the same sleep stages (Ternman et al., 2014), perhaps due to 

changes in sleep behaviour with age.  

These previous studies have only scored deep NREM sleep (N3) and have not differentiated 

between light and deep NREM sleep stages (N1 and N2 vs N3). In deep NREM sleep, a reduction 

in muscle tone is also seen on EMG traces as it is for REM sleep (Hänninen et al., 2008). This 
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reduction is not usually as great as the atonia associated with REM sleep and therefore could 

result in a lower head posture but may not necessitate head resting. The position of the head 

could therefore potentially be useful to identify differences between light and deep sleep stages 

as deeper NR M sleep may be associated with the head held lower or in a more ‘relaxed’ 

position.  

To our knowledge, all previous studies of sleep in dairy cows using PSG have been conducted in 

indoor-housed environments. Pastoral dairy systems add additional challenges as animals are 

outdoor ranging and may be more active, potentially affecting device attachment, signal quality 

and increasing risks of weather damage to the equipment used in PSG. It is also unknown if the 

environment and conditions including the space available for lying and the lying surface, 

influences posture during sleep. 

The aims of this study were to investigate if a more detailed behavioural assessment of lying 

postures and neck position is useful to accurately differentiate between different stages of light 

to deep sleep and wakefulness in adult dairy cows, both in an indoor housed environment in 

Scotland (UK) and outdoors on pasture in New Zealand (NZ). Specifically, we aimed to determine 

if lying with the head resting can be used to predict REM sleep, if lying with the head lifted but 

still and up would be an indicator of lighter NREM sleep (N1 and N2) and if lying with the head 

still and low could be used to identify deep NREM (N3) sleep. 

Methods 
This study was designed in accordance with relevant animal welfare guidance and regulations. 

Ethics approval was obtained prior to any procedures involving animals. In the UK, Ethics 

approval was obtained from SRUC animal ethics committee (ED AE 03-2018) and was carried out 

under Home Office Licence (P204B097E). In NZ animal ethics approval was obtained from 

Ruakura animal ethics committee (NZ AE 14708). 
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Housed Animals (UK) 

Six non-pregnant Holstein-Friesian cows, average age 3.8±0.6 years and known to have a calm 

nature were selected from the herd at the SRUC Dairy Research Centre, Acrehead Farm 

(Dumfries, Scotland UK). All cows were in good health and were due to be retired from the herd 

due to poor reproductive performance. They had been dried off according to routine farm 

practice prior to the study. Halter training and habituation to the procedures and materials used 

in the study were conducted prior to recording using positive reinforcement techniques with 

concentrate pellets as reinforcers. Following the training and habituation period, recording was 

conducted in a 5x5m ‘test pen’ directly adjacent to the larger group pen. A 1-2m buffer zone 

was created between the pens to discourage group mates from interfering with the recording 

devices (Figure 1). Visual and auditory contact with group mates, as well as the rest of the herd 

was always possible. Cows had ad libitum access to silage and fresh water in both test and group 

pens. All device attachment and maintenance were conducted with the cow in the test pen. 
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Figure 1. Diagrams of group and test pen and PSG electrode locations. (A) Depicts the indoor pen 

set up in the UK and (B) depicts the NZ outdoor pasture pen set up created with electric fencing 
within a larger paddock. During recordings, the test cow was moved into the test pen, when not 
recording, the cow was moved back into to the group pen. Diagram (C) depicts the electrode 
locations on the test cow’s head and neck for P G recording, including   G (C3, C4, F3 and F4), two 
EOG electrodes, two EMG electrodes on either side of the neck as well as a reference electrode 
(REF) and a patient grounding electrode (PGND) placed behind the poll on the top of the head.  

 

Pasture Animals (NZ) 

Six three-year-old mid to late pregnant dry Kiwi-cross cows were selected for their quiet and 

approachable nature at Dairy NZ Lye Farm (Newstead, NZ). The cows were halter trained and 

habituated to being touched and handled and to experience the equipment used in the study 

with positive reinforcement techniques using grass silage as a reinforcer. Recording was 

conducted outdoors in a typical NZ paddock environment. A portable 10x10m test pen was 

constructed using electric fencing tape and standards. The fence was not electrified so as not to 

interfere with the electrophysiological recording device. A 2-meter buffer zone around the test 

C 

A 

B 
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pen was created using live electric fencing tape to separate the test cow from the other 5 

groupmates in the paddock surrounding the test pen (Figure 1). Visual and auditory contact 

between test cow and groupmates was always possible. All cows had access to fresh water and 

pasture, and supplementary silage was provided several times daily. The test pen and group pen 

were rotated to a new area in the paddock every 1-1.5 weeks to prevent ground conditions from 

becoming wet and dirty and to provide the cows with fresh pasture to graze. The cows were 

moved into a sampling race for device attachment, and daily device maintenance was conducted 

with the haltered cow in the test pen.   

Cow Preparation and Device attachment  

The hair at electrode attachment sites was clipped and the skin was cleaned thoroughly to 

improve impedance. Adhesive ECG electrodes (Natus Neurology, Kanata, Canada) were placed 

as indicated (Figure 1c) using a small amount of super glue (Loctite 454 or Loctite gel control, 

Henkel Corp., Dublin, Ireland) around the adhesive edge to ensure a secure attachment. 

Electrode leads were clipped on the appropriate electrode, bundled along the neck and plugged 

into the Embletta MPR PG with ST+ proxy polysomnography recording device (Natus Neurology, 

Kanata, Canada), housed in a protective pouch attached to the cow with an elasticated surcingle 

girth. A Lycra horse hood (UK: Horse Health Wessex, Woodington, UK. NZ: Caribu AU, Truganina, 

Australia) modified to fit a cow was placed over the head to hold the leads closely to the body 

to avoid entanglement and protect electrodes from being rubbed off. In the outdoor NZ study 

this hood was coated in breathable weatherproofing spray (Scotchgard Heavy Duty Water 

Shield, 3M New Zealand Ltd, Auckland, NZ) and a water-proofing plastic cover was placed over 

the device housing pouch to further protect the recording materials from the elements. 

Recording and Sleep Scoring 

RemLogic 3.4.3 software (Embla Systems, Kanata, Canada) was used to set up, download and 

score PSG data. The Embletta device was programmed to record four channels of EEG, two 
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channels of EOG, two channels of EMG. A reference electrode and grounding electrode were 

also attached (Fig 1c). Immediately following attachment, each electrode’s impedance was 

checked to be within an acceptable rage (1-14kHz).  If it was not, the electrode was removed, 

the skin cleaned, and the electrode was attached and re-checked until impedance was within 

range. Data were sampled at 500Hz and due to memory and battery limitations of the Embletta 

device, recordings were restricted to 10 hours in length and ran from approximately 7am-5pm 

and 7pm-5am.  

At the end of the 10-hour recording period, data were downloaded from the device and checked 

for quality. “Good” recordings occurred when all impedance was within range (>14Ω) and at 

least 2 EEG, 1 EMG and 1 EOG electrodes remained attached for the entire recording and could 

be used for scoring. ‘Poor Quality’ recordings occurred when impedance had deteriorated 

between attachment and recording, or the reference/ground electrodes had become detached, 

battery malfunctions leading to data loss, extreme artefacts or poor impedance. These 

recordings were not scored.  

Sleep stage scoring was conducted by as single scorer (LH) who had received training in human 

PSG scoring using American Association of Sleep Medicine (AASM) guidelines.  Scoring criteria 

(Table 1) were developed based on AASM guidelines as well as criteria from previous 

publications of cow sleep with PSG (Hänninen et al., 2008; Ruckebusch et al., 1970; Takeuchi et 

al., 1998; Ternman et al., 2012). Unlike previous work, four stages of sleep from light N1, N2 to 

deep N3 and REM sleep stages as well as wakefulness and rumination were scored in standard 

30 second epochs based on the vigilance state that made up >50% of the epoch. Intra-scorer 

reliability was calculated using the function within the RemLogic software, and percent 

agreement was 89.42%. 
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Table 1. Basic sleep stage definitions for awake, light N1, N2, deep N3 and REM sleep stages. 

Sleep Stage Defining Features on the PSG traces 

  

Awake EEG High frequency mixed amplitude, often higher amplitude, artefacts 
throughout trace. 

EOG Many blinks and eye movements 

EMG High frequency, high amplitude, many movement artefacts 

N1 EEG Can appear to be similar to awake- high frequency lower amplitude, no 
artefacts 

EOG Very few if any eye movements 

EMG High frequency, however lower amplitude than awake, few movement 
artefacts 

N2 EEG Lower frequency than n1, some lower frequency waves, occasional sleep 
spindles (short bursts of repetitive higher amplitude waves) and k-
complexes (Sharp low frequency waves) 

EOG No eye movements 

EMG high frequency, lower amplitude than n1, no movement artefact 

N3 EEG Typically seen as low frequency high amplitude waves. 
EOG No eye movements visible on trace 

EMG Very low amplitude 

REM EEG EEG- low amplitude mixed frequency waves, occasions very low 
amplitude. 

EOG Occasional bursts of rapid eye movements. 

EMG Low amplitude, occasional rapid muscle twitches, the heartbeat is often 
picked up as an artefact on the trace.  
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Behaviour Scoring 

A Geovision monitoring system (UK) (Viewlog, GeoVision Inc., Taiwan) and Vivotek ND9541P 

H.265 NVR (Vivotek Inc., Taiwan) (NZ) recording system were used, with video cameras 

equipped with automatic infrared night vision mounted on each corner of the test pen to ensure 

views from all angles could be achieved.  

Time stamps on the video recordings were synchronized with time stamps from the PSG 

recordings. Lying postures (Table 2) were scored instantaneously by a single observer from the 

video in 30 second increments to correspond with the start of the scored sleep epoch. 

Intra-observer reliability for the lying posture data was calculated using the Cohen’s kappa 

reliability function in the “psych” package in R (version 4.0.2).  he kappa statistic was k= 0.95 

indicating an almost perfect level of agreement (McHugh, 2012). 

Epochs identified as rumination were removed from the analysis since sleep or wake stage could 

not be reliably determined from the PSG trace due to chewing artefacts on the traces. All 

standing epochs were also removed from the data set since cows sleep lying down.  
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Table 2. Behavioural ethogram for scoring lying postures in dairy cows, including head 

positions and photographs from surveillance videos. 

Behaviour Description 

Standing 
Any activity when the cow’s body is off the ground and the 
bodyweight is supported by the legs. 

Ly
in

g
 

H
ea

d
 u

p
 a

n
d

 S
ti

ll 

Lying Head 
Up (UP) 

The cow is sternally 
recumbent, with the neck 
lifted and the poll of the head 
above the withers. 

 
Lying Head 

Low (HL) 
The cow is sternally 
recumbent with the neck held 
low but not resting on the 
ground and the poll of the 
head below the withers. 

 

H
ea

d
 R

es
te

d
 

Tucked (T) The cow is sternally 
recumbent with the neck 
turned backwards and the 
head resting on the flank or on 
the ground. 

 
Flat-Out 

(FO) 
The cow is laterally recumbent 
with the legs extended, head 
and neck resting on the 
ground. 

 
Lying Head 

Front on 
Ground (HF) 

The cow is sternally 
recumbent, with the neck low 
or on the ground and the head 
resting on the ground in front. 

 

Moving (M) 
The cow is in any of the above recumbent positions, but the 
head and/or neck are moving. 

 

Data analysis 

Data from 2 of the 6 cows in the UK group were removed due to limited data as only one ‘good’ 

recording was available from these cows. Cross-tabulations of data were conducted, and 
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positive and negative predictive value as well as sensitivity and specificity were calculated as 

described in equations 1-6. Sensitivity indicates the probability of the posture correctly 

identifying a target sleep stage out of all epochs scored as that sleep stage (true positives), and 

equally, not classifying the epoch as not being in the sleep stage, when in fact they are (false 

negative) (Trevethan, 2017). Specificity applies to epochs identified by the PSG as being not in 

the target sleep stage and defines the probability of correctly identifying epochs not in the target 

sleep stage (true negatives), and also avoiding false positives- classifying the epoch as the target 

sleep stage, when it isn’t.  

Positive predictive value (PPV) refers to the probability that of the epochs scored as positive (in 

this case in the target posture), that the target sleep stage was correctly identified (true 

positive), and equally, epochs are not classified as being in a particular sleep stage, when they 

in fact are not (False positive). Negative predictive value also applies to the epochs that were 

identified as not being in the target posture and defines the probability that when giving a 

negative result (i.e. not being in the posture) the probability that all cows are not in the sleep 

stage (true negative), and not categorizing some epochs as not being in the sleep stage when 

they actually are (False Negative).  

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉) =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑁𝑃𝑉) =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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Results 
With two of the UK cows and all epochs of rumination removed from the data set, 91.06 hrs 

were obtained from 16 recordings from the UK cows (n=4) six of which occurred during the 

daytime and ten overnight. In the UK group, 57.2% of lying time (when not ruminating) were 

scored as being awake, and 42.8% as being asleep. The UK group spent 68.4% of the total 

recording time lying down, whereas the NZ group spent 37.8% of total recording time lying 

down. In the NZ group (n=6), 116.3 hrs of sleep/wake data were obtained from 24 recordings, 

half of which occurred in the daytime and half over night. 82.3% of total lying time when not 

ruminating were spent awake, and the cows were asleep for 17.7% of the non-ruminating lying 

time.  

UK indoor-housed cow results 

Table 3 displays the positive predictive value (PPV), negative predictive value (NPV), sensitivity 

and specificity for each of the postural predictions for sleep stages in the UK indoor-housed 

cohort. In this group, of epochs scored in the Tucked (T) posture, the PPV of correct identification 

of REM sleep epochs was 44.69%. Of epochs scored in other postures, the NPV was 98% of 

correctly identifying epochs not in REM sleep. The sensitivity of tucked lying posture to correctly 

identify REM sleep epochs was 62% and specificity was 93.23%.  

Table 3. Positive predictive value (PPV), negative predictive value (NPV), sensitivity and 

specificity of the Scottish indoor managed cows describing the use of specific lying postures 

ability to identify sleep stages. 

Posture- Sleep Stage Identifier PPV NPV Sensitivity Specificity 

Tucked Posture= REM 44.69% 98.34% 77.62% 93.23% 

Resting Posture= REM 31.90% 99.57% 94.69% 85.76% 

Head Low= N3 6.13% 94.97% 58.36% 46.79% 

Head UP= N1/2 18.66% 68.14% 14.75% 73.94% 

Head Low= NREM 34.80% 65.92% 54.02% 46.78% 
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Including all postures when the head was resting on the flank or on the ground (T, FO, HF) did 

not improve positive predictive value for REM sleep in the UK group, which declined to 31.9%. 

NPV for this combination of postures was high. When not in a head resting posture, there was a 

99.57% chance that a cow was not in REM sleep. Of epochs scored in REM sleep, sensitivity of 

head resting postures to correctly identify REM sleep was 94.69% and specificity (probability 

that not being in a head resting posture correctly identified epochs not in REM sleep) was 

85.75%. As seen in Figure 2a, all sleep stages were observed in the FO and HF postures.  

 

Figure 2 Proportions of sleep stage epochs that occurred in each lying posture in the Scottish 
indoor-housed group (n= 4 cows) with total epoch counts of each posture above each bar (a), 
and proportions of lying posture epochs that occurred in each sleep stage in the indoor housed 
group with total epoch counts of each sleep stage above each bar (b). Figure produced in R 
version 4.0.5 using ggplot2 package 
(https://cran.rproject.org/web/packages/ggplot2/index.html) 

 

Lying with the head held immobile and below the shoulder (HL) was not a good predictor of N3 

sleep. Of epochs scored in the HL posture, the probability of correctly identifying N3 sleep (PPV) 

was only 6.13% and NPV was 94.97%. Of epochs scored as N3 from the PSG, sensitivity was 

58.36% and specificity was 46.79%. While N3 did occur in the head low posture, the majority of 

HL posture epochs were scored as N2 (Fig 2a). 

https://cran.rproject.org/web/packages/ggplot2/index.html
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Lying posture was also not useful to identify stages of light sleep (N1 & N2) in the UK group. Of 

epochs when the cow was lying with the head up and still (UP) PPV was only 18.66% and NPV 

was 68.14%. Of epochs scored as either N1 or N2, posture correctly identified sleep stage in only 

14.75% of epochs.  

We then investigated the ability of lying with head still and low (HL) to identify all epochs of 

NREM sleep combined (N1, N2 and N3). This improved PPV to 34.8%, and NPV was 65.92%. Of 

known sleep epochs, HL posture correctly identified 54.02% of NREM sleep stages and of epochs 

not in NREM sleep, specificity was 46.78%.  

NZ Pasture managed cow results 

Table 4 displays the positive predictive value (PPV), negative predictive value (NPV), sensitivity, 

and specificity for each of the postural predictions for sleep stages in the NZ pasture-managed 

cohort. Of epochs in the tucked posture (T), the positive predictive value to identify REM sleep 

was 69.04%. Of epochs not in the T posture, NPV was high at 99.86%. Of all epochs scored from 

the PSG as being in REM sleep, sensitivity was 97.81%. Specificity was 97.27%. As shown in Figure 

3, in the pasture cohort in NZ, 98% of REM epochs occurred when the cow was in a tucked 

posture. The cows were awake in 16% of tucked posture epochs, and in other sleep stages the 

rest of the time. No REM sleep occurred in the flat-out posture (FO) or head resting front (HF) 

postures in the NZ cohort.  
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Table 4. Positive predictive value (PPV), negative predictive value (NPV), sensitivity and 

specificity of the New Zealand outdoor managed cows describing the use of specific lying 

posture’s ability to identify sleep stages. 

 

Posture- Sleep Stage Identifier PPV NPV Sensitivity Specificity 

Tucked Posture= REM 69.04% 99.86% 97.81% 97.27% 

Resting Posture= REM 63.08% 99.86% 97.81% 96.44% 

Head Low= N3 4.41% 94.40% 29.70% 64.76% 

Head UP= N1/2 21.96% 82.99% 59.73% 48.08% 

Head Low= NREM 23.49% 74.43% 33.06% 64.42% 

 

Adding all head resting postures did not improve identification of REM sleep in the NZ cohort 

and decreased PPV (63.08%), and specificity (96.44%) slightly from the tucked posture scores. 

Lying in the HL posture correctly identified epochs of N3 sleep in only 4.41% of epochs of HL 

posture (PPV). The NPV of epochs not in HL posture to identify epochs not in N3 sleep was 

94.40%.  Of epochs in N3 sleep, sensitivity of HL posture to correctly identify N3 was 29.7%. Of 

epochs scored in other sleep stages, the probability of other postures ruling out N3 (specificity) 

was 64.76%.  As seen in Figure 3a, 31% of head low posture epochs were awake, and 33% were 

scored in N2.  
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Figure 3 Proportions of sleep stage epochs that occurred in each lying posture in the New 
Zealand outdoor managed group (n= 6 cows) with total epoch counts of each posture above 
each bar (a), and proportions of lying posture epochs that occurred in each sleep stage in the 
outdoor managed group with total epoch counts of each sleep stage above each bar (b). Figure 
produced in R version 4.0.5 using ggplot2 package (https://cran.r-
project.org/web/packages/ggplot2/index.html) 

 

Lying with the head up and still was also only able to positively identify 21.96% of N1/2 epochs. 

Using head low posture to identify all NREM sleep stages (N1, N2 & N3) did not improve PPV, 

and it was able to identify only 23.49% of NREM epochs correctly.  

Individual differences 

Within the UK group a degree of individual differences in lying postures during REM sleep 

occurred. Of the 4 cows included in the analysis, PPV ranged from 19.05% to 62.72%, NPV was 

consistently very high, but sensitivity ranged from 39.47%-96.13%. All cows in this group 

exhibited REM sleep during a flat-out lying posture, and one cow spent the majority of their REM 

sleep in this posture. REM sleep almost exclusively occurred in the tucked posture in the NZ 

cohort.  
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Discussion  

In the UK indoor housed group, the tucked lying posture was not a strong identifier for REM 

sleep. Arguably, in this case, PPV and NPV are some of the most important ways of evaluating 

the success of using postures as a test for sleep stage, as they indicate the actual proportion of 

instances of the sleep stage that occur during observations of the lying posture as well as the 

inverse of this (Trevethan, 2017). Only 44% of instances of all epochs of tucked posture observed 

in the UK group were scored as REM sleep. Therefore, if this posture was used as a tool to 

identify REM sleep in cows in this type of environment, it would greatly overestimate the actual 

REM sleep time. Posture was a better indicator of REM sleep in the NZ pasture-managed group 

where REM sleep almost always occurred in the tucked posture, and as such the test had a high 

sensitivity. The PPV was still only 69%, indicating that using tucked posture would also 

overestimate actual REM sleep in this environment. All other stages were also found to occur in 

the tucked posture, particularly awake (W) and N1, although these other stages could have 

occurred before or after actual bouts of REM sleep. NPV and specificity of lying with the head 

tucked and lying with the head resting was high in both indoor and outdoor cows, showing that 

if a cow isn’t lying in one of these postures, they likely are not in R M sleep. However, this is not 

particularly useful when the goal is to identify instances when they are. These results are similar 

to those found by (Ternman et al., 2014), with indoor housed adult cows, who found low to 

moderate agreement of PSG with behavioural observations where for 30 second intervals, lying 

with the head resting had a sensitivity of 70-80% and specificity from 40-50%. PPV and NPV were 

not presented in that study.   

Lying postures were also not useful to identify instances of NREM sleep in both groups. We 

tested the hypothesis that lying with the head still and low could be used to identify deep NREM 

(N3) sleep stages as with deepening sleep stages, there is a reduction of neck muscle tone on 

the EMG trace (Hänninen et al., 2008) and that lying with the head lifted still and up would be 
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an indicator of lighter NREM sleep (N1 & N2). In both groups, however, the head low posture 

positively predicted only 6% (UK) and 4% (NZ) of N3 sleep epochs correctly. Lying with the head 

still and held up was also not a good indicator of N1 and N2 sleep stages combined. Interestingly 

however, the majority of NREM sleep occurred in the head up posture in the NZ group, while 

the majority of NREM sleep occurred in the head low posture in the UK group.  We found that 

stages of NREM sleep occurred across almost all lying postures, but the awake stage also 

occurred in almost every lying posture as well. We did not score eye opening or closure from 

the video, as despite the 4 angles of the test pen captured on video, we could not reliably discern 

if the eyes were open or closed during night-time infra-red video recordings. This may have been 

a way to identify instances when the cow was lying in a posture but was awake as was used by 

Klefot et al. (2016) in a study attempting to compare behavioural sleep indicators to 

accelerometer data. However, it is also possible for the cow to be awake whilst keeping the eyes 

closed and indeed asleep with eyes partially open.  

Despite PSG being the gold standard for sleep scoring and being the most reliable way of 

accurately identifying sleep in dairy cows, the difficulty of using PSG with these animals 

reinforces the need for an accurate alternative method that is more easily applied in a farm 

setting.  

In this study, we considered each epoch to be independent of all others. While this makes sense 

for analysis and comparison between the PSG and lying postures, it is not indicative of what is 

occurring in real life. The epochs are in a time series, and sleep stages and postures can be 

grouped into bouts. Comparing behaviour with sleep stage over longer periods of time or 

considering recent preceding behaviour may increase accuracy. For example, a cow who was 

standing and immediately adopted a head resting posture upon lying down may be less likely to 

be in REM sleep than a cow who has been lying for a long time.  
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Interestingly, lateral lying was very rarely observed in the pasture cow cohort in NZ. When 

observed, it was always brief and tended to occur as a stretch or transition between other 

postures. This is different to results published by Krohn and Munksgaard (1993) who found cows 

on pasture spent more time lying on the side (flat-out/lateral lying) than when indoors in deep 

bedding. However, the cows in that study were usually managed indoors and may have taken 

advantage of the availability of space to engage in postures that would be restricted in their 

typical cubicle housing environment. This may then be similar to the UK cows who, prior to being 

included in our study, were managed with the milking herd which had access only to cubicles 

equipped with mattresses and light sawdust bedding. Therefore, these cows could have been 

showing long term rebounds from poor housing conditions restricting their ability to sleep in 

more expansive positions. Access to a larger unrestrictive lying surface could have influenced 

the postures achieved during sleep. 

The NZ cows almost only adopted a tucked (T) posture during REM sleep, however, the NZ study 

occurred during the winter. The overall average temperature during daytime recordings was 

10.2°C, with an average low of 5.3°C to an average high of 14.4°C (range 2 -18°C). During the 

night-time recordings, the overall average temperature was 8.4°C with an average low of 6.2°C 

to an average high of 11.4°C (range 2-14°C). A previous study found cows managed outdoors in 

winter in NZ were less likely to lie down in a tucked posture than when inside and were more 

likely to lie in a position that exposed less surface area to the elements when lying outdoors in 

cold weather (Tucker et al., 2007). Moreover, a tucked posture has been shown to conserve heat 

and protect the cow from wind (Schütz et al., 2010). The UK study was conducted from early 

spring to summer in the Dumfries and Galloway region in Scotland. Average daytime 

temperature during recordings was 15.2°C, with an average low of 11.3°C and an average high 

of 17.3°C (range 8-22°C). Over night-time recordings, the average temperature was 11.2°C with 

an average low of 8.4°C and an average high of 15.4°C (range 5-22°C).  These temperatures 

indicate the outdoor climate, as temperature was not measured indoors, and it is possible that 
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the cows would have experienced warmer temperatures due to insulating properties of the barn 

and deep bedded straw surface. Some of the differences in lying postures during REM sleep 

between groups could have been due to temperatures and cows seeking to minimize or 

maximize heat loss depending on temperature and lying surface.  

In addition to temperature, NZ cows were also subject to the effects of wet weather which 

affected the lying surfaces. Cows prefer clean and dry bedding to wet and dirty lying surfaces 

(Schütz et al., 2019) and while we moved the test and group pens within a larger paddock to 

avoid wet and dirty conditions, wet lying surfaces occasionally occurred, which could have 

affected the cow’s comfort and inclination to adopt more expansive lying postures.  

Sleep is an instinctive behaviour, and with the accompanied behavioural inactivity and loss of 

vigilance, most animals are likely to choose sleeping locations that are secure, and 

thermodynamically favourable (Lima et al., 2005). Wild cattle are a prey species, and it is 

possible that despite the lack of predators in New Zealand, their domesticated cattle 

descendants have retained the instincts to locate secure and favourable sleeping locations. 

Pigeons, who prefer to sleep on higher perches, exhibited reduced REM sleep when forced to 

sleep on the ground, presumably due to perceived predator risk (Tisdale et al., 2018). It is 

possible that the cows managed on pasture adopted more upright and tucked positions to 

maintain a level of vigilance and ability to react quickly to threats. In contrast, cows in a sheltered 

barn may feel more secure or protected and therefore more likely to adopt flat out positions or 

to relax more fully and adopt positions that might take more time to react and rise from.  

Stage of pregnancy and position of the calf could have also been a factor influencing lying 

posture during sleep.  Advanced pregnancy has been found to have an effect on cow lying 

laterality (Forsberg et al., 2008). The NZ pasture cows were in their mid-late pregnancy during 

the recording period whereas the Scotland cows were not pregnant. It is possible that the 
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presence of the growing foetus affected the cow’s choice of lying posture or lying comfort in 

different postures. 

Conclusion   

 REM sleep in dairy cows almost always occurs with the head resting or tucked, however, 

observation of the posture is not an accurate way of identifying REM sleep. Lying with the head 

lifted, immobile and held high or low was also not a good predictor for the occurrence of light 

and deep NREM sleep. Despite the limited sample sizes in these studies, there was variation 

between study environments and individual cows, so generalizations of sleep based on a specific 

posture may be inaccurate for some cows and when comparing between groups. PSG is a time 

consuming and impractical method for sleep identification in dairy cows, however using lying 

postures and head position is not likely to be a useful alternative. Investigations into more 

reliable and easily applied physiological alternatives for identifying sleep stages in dairy cows is 

necessary for the study of sleep in cows in the future.  
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CHAPTER FOUR 

Heart Rate changes with 
sleep stage and lying posture 

in dairy cows 
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Preface 

This chapter consists of a journal article that, since the submission of this thesis, has been 

published in the journal Animals. The chapter is structured in the Animals style however the 

formatting has been modified to fit with the style of this thesis and may differ slightly from the 

published version.  

Hunter, Laura B, Haskell, M.J., Langford, F.M., Connor, C.O., Webster, J.R., Stafford, K.J., 2021. 

Heart Rate and Heart Rate Variability Change with Sleep Stage in Dairy Cows. Animals 11. 

https://doi.org/https://doi.org/10.3390/ani11072095 Academic 

 

As discussed in the previous chapter, lying posture was not a useful proxy to identify detailed 

stages of sleep in dairy cows. Therefore, further investigation into other minimally invasive 

proxies for PSG to identify sleep stages in dairy cows are needed. As identified in chapter 1, HR 

and HRV are used in human sleep stage detection and can be a minimally invasive method to 

identify sleep. In cows as with humans, Polar heart rate monitors are often regarded as being 

the most accurate monitoring tools compared with ECG, particularly for measuring inter-beat 

intervals (IBI) or R-R intervals (Figure A) which are needed to calculate HRV. 

The aim of this chapter was to determine if HR and HRV measures changed with sleep stage to 

determine their suitability for sleep stage assessment in dairy cows. Furthermore, we aimed to 

investigate differences in the HR an HRV of the housed cows in Scotland and pasture based 

cows in New Zealand and determine if lying posture affected also affected the heart rate.  

 

Figure A.  Diagram of two heart beats indicating the individual elements (PQRST) of each 

heartbeat as well as inter-beat interval or R-R interval. 
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Simple Summary:  
The amount of sleep acquired and changes to patterns of sleep could be a useful tool to assess 

cow welfare, particularly in response to changes or stressors in their environment. However, the 

current most accurate method to assess sleep, Polysomnography (PSG), is difficult and time 

consuming. In humans, the heart rate (HR) and variability in time between heart beats (HRV) can 

be used to identify sleep stages, and this could be a useful alternative to investigate sleep in 

cows. We compared measures of HR and HRV with PSG in two groups of dairy cows in different 

environments and investigated the effects of lying posture on these measures. We found that 

HR decreased with deepening sleep stages in both groups of cows, that rapid eye movement 

sleep (REM) was associated with higher HRV and that HR and HRV also changed with different 

lying postures. The patterns of the differences between sleep stages were similar between two 
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groups of cows. Our results suggest that HR and HRV change with sleep stages in cows and that 

these measures could be a useful, and more easily applied, method of assessing sleep stages in 

dairy cows. 

Abstract:  
Changes to the amount and patterns of sleep stages could be a useful tool to assess the effects 

of stress or changes to the environment in animal welfare research. However, the gold standard 

method, Polysomnography PSG, is difficult to use with large animals such as dairy cows. Heart 

rate (HR) and heart rate variability (HRV) can be used to predict sleep stages in humans and 

could be useful as an easier method to identify sleep stages in cows. We compared the mean 

HR and HRV and lying posture of dairy cows at pasture and when housed, with sleep stages 

identified through PSG. HR and HRV were higher when cows were moving their heads or when 

lying flat on their side. Overall, the mean HR decreased with depth of sleep, there was more 

variability in time between successive heart beats during REM sleep, and more variability in time 

between heart beats when cows were awake and in REM sleep. These shifts in the HR measures 

between sleep stages followed similar patterns despite differences in mean HR between the 

groups. Our results show that HR and HRV measures could be a promising alternative method 

to PSG for assessing sleep in dairy cows.  

Keywords: Dairy cows, heart rate, sleep, heart rate variability, polysomnography 

Introduction 
Two main stages of sleep exhibited by animals are known as rapid eye movement sleep (REM) 

and non-REM sleep. Non-REM sleep has been associated with restorative functions in the body 

and brain, for example, the clearance of potentially harmful toxins produced by normal cellular 

function (Xie et al., 2013). REM sleep has been associated with memory, learning and dreaming 
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(Le Bon, 2020). Changes to the amount and patterns of sleep stages could be used to assess 

animal welfare, as these aspects of sleep are known to be affected by factors such as 

environmental conditions, stressful occurrences during the day, pain or illness (Langford and 

Cockram, 2010). However, in dairy cows, without using neuro-electrophysiological methods, it is 

difficult to accurately identify sleep from wakefulness, let alone different sleep stages.  

As sleep is a homeostatic function originating in the brain, the most accurate way to study it is 

through polysomnography (PSG), the study of multiple electrophysiological signals, namely 

brain activity, eye movements and muscle activity (Carley and Farabi, 2016). PSG can be 

successfully used to study sleep in cattle, however it is costly, the equipment is fragile, and 

interpretation of the signals is time consuming (Ternman et al., 2012). Being able to identify sleep 

in dairy cows with other more easily applied or less invasive devices would be beneficial not only 

for the cow’s comfort and welfare, but also for ease of application by researchers, thus 

facilitating the study of the sleep of cows and opening several new avenues for investigation of 

the effects of sleep loss or importance of sleep for cows.  

During sleep and the different sleep stages, changes occur in the regulation of the mammalian 

autonomic nervous system (ANS) and its subdivisions - the parasympathetic (PNS) and 

sympathetic nervous systems (SNS), affecting many functions such as heart rate, respiration rate 

and body temperature (Zoccoli and Amici, 2020).  Specifically, during REM sleep, there is 

variability in the ANS activity, leading to more variability in the associated physiological functions 

whereas in non-REM sleep stages there is more activity of the PNS while SNS activity is reduced 

(Zoccoli and Amici, 2020). Because the ANS affects the heart, measures of heart rate (HR) and 

heart rate variability (HRV:  the measurement of the variability in the time between successive 

heart beats), can be used as a way to identify activation of the PNS and SNS (Bertsch et al., 2012). 

In humans, the changes in HR and HRV have been used to accurately identify and differentiate 

between sleep stages (Mitsukura et al., 2020; Xiao et al., 2013). HRV can be quantified with 
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different methods. Time domain indices of HRV identify differences in the time between 

successive heart beats or inter-beat-interval (IBI) while frequency domain indices classify the 

signal into frequency bands (Shaffer and Ginsberg, 2017). 

The study of HRV in cow welfare to date has focussed mainly on the application of HR and HRV 

to identify and assess stress.  HR and HRV were found to be affected by severe lameness which 

may cause chronic stress in cattle (Kovács et al., 2015). Calves being disbudded without local 

anaesthetic showed an increase in frequency domain metrics of HRV (Stewart et al., 2008). HRV 

has also been used to identify positive interactions in dairy cows as well, social licking between 

cows was found to reduce heart rate in receivers (Laister et al., 2011).  Body posture has been 

found to affect HR and HRV measures, the heart rate was lower and variability in time between 

heart beats was higher in cows lying down compared to when standing (Frondelius et al., 2015a), 

but investigations of HR and HRV during sleep in cows have not been done. In previous work, 

we have found that sleep occurs when cows are lying down but that specific lying postures could 

not be used reliably to identify sleep stages compared to PSG in dairy cows and that housing 

conditions have been shown to affect the relationship between lying postures and sleep (Hunter 

et al., 2021b).  

It is possible that HR and HRV could be used to identify sleep stages in cows. The equipment 

required to assess HR and HRV is a less invasive and more easily applied than used for PSG. 

Therefore, the objective of this study was to determine if HR and HRV differ between sleep 

stages in dairy cows, and, to determine if this is repeatable between cows in different areas, 

housing conditions and lying postures.  
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Materials and Methods 

Ethical Statement 

The study was designed in accordance with the relevant guidelines and legislation in both 

Scotland and New Zealand (NZ) where the studies took place. Ethical approval was obtained 

from the UK Home Office (Project Licence P204B097E), SRUC Animal Ethics Committee (Ref. ED 

AE 03-2018) and Ruakura Animal Ethics committee (AE 14708) prior to the start of animal 

manipulations. 

Cows and Housing 

Twelve cows were recruited for this study from two locations. Six non-lactating and non-

pregnant Holstein cows (age 3.86±0.68) from the Acrehead unit of  RUC’s Dairy Research Centre 

(Dumfries, Scotland) and six, three-year-old, non-lactating, pregnant Kiwi-cross (Friesian x 

Jersey) cows from the DairyNZ Lye Farm (Newstead, NZ) were used. Non-lactating cows were 

selected to avoid disruptions to the cow’s sleep patterns due to fetching for milking and the risk 

of damage to recording devices in the milking parlour.  he  cottish cows, destined to ‘retire’ 

from the herd due to reduced fertility, were healthy during the trial.  

The cows were managed in a large group pen. and moved into a smaller adjacent ‘test’ pen 

individually for recording sessions (Figure 1). The Scottish cows were held on deep-bedded straw 

in a barn. The group pen measured 20m x 5.2m and test pen 5.2m x 5.05m. The cows were fed 

silage and always had access to water. The NZ cows were managed outdoors in a large paddock. 

They were able to graze and were provided with silage ad libitum and always had access to 

water. The group pen measured 44m x 29m and was created with live electric fencing. The 10m 

x 10m test pen was created with non-live electric fencing tape, to prevent potential interference 

with the electrophysiological recordings. The fencing set-up for both group and test pens could 
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be moved around the paddock when ground conditions became wet or muddy. In both 

locations, a 2m buffer zone was created between the test pen and group pen, to inhibit contact 

and reduce damage to recording devices from social interactions. 

 

Figure 1 Diagrams of group and test pen design in the Scottish indoor housed study (A) and in 

the NZ outdoor pasture study (B). During recordings, the test cow was moved into the test 

pen. When not recording, the cow was moved back into to the group pen. 

Data Collection 

The cows were fitted with the recording devices and moved into the test pens individually for a 

maximum of 7 days. The devices and recording gear were downloaded, re-charged and re-set 

twice daily. Devices were removed if the cow showed signs of skin or behavioural irritation or in 

the case of forecasted heavy rain (NZ outdoor group).   

Heart Rate Recording 

HR and HRV were measured using a polar RS800 CX watch and Polar equine monitoring belt 

(Polar Electro Oy, Kempele, Finland). Patches of hair at the electrode locations were clipped and 

 



 

105 
 

the electrodes were generously coated with ultrasound gel (Aquasonic 100 gel, Parker 

Laboratories, NJ, USA) to improve the contact with the skin and signal transmission. The belt and 

watch were checked frequently and adjusted as needed throughout the recording. An elastic 

surcingle was attached over the belt to keep it tight to the skin. The clasps of the Polar belt and 

surcingle were padded with felt and wrapped in cohesive bandage to reduce chances of irritation 

to the cows and also reduced the chance of the surcingle loosening throughout the recording. 

 he watch was synchronized to the recording computer’s time and was programmed to record 

heart rate and R-R intervals which are used for HRV calculations. R-R intervals are the time (in 

milliseconds) from the R peak of one heartbeat to the R peak of the next heartbeat.  

The data were downloaded and analysed using Polar Pro Trainer (Version 5.35.160) and 

artefacts in the R-R data were filtered and corrected using the moderate filter power. Only traces 

containing less than 1% of identified errors were used in the analysis. Filtered data were 

exported and HR and HRV statistics were calculated in 30 second intervals (epochs) 

corresponding to the scored PSG data. Only time domain features of the HRV were calculated 

since frequency domain features of the HRV may not be an accurate representation of the data 

in such small time periods (Bourdillon et al., 2017). Time domain features included mean HR (in 

beats per minute - BPM), root mean square of successive differences of the R-R signal (RMSSD), 

and standard deviation of the R-R signal (SDRR) in 30 second epochs.  

PSG Recording and Sleep Scoring 

PSG recording protocols 

PSG were recorded as described in Hunter et al., (2021a). Pre-gelled adhesive snap ECG 

electrodes (Natus Neurology, Kanata, Canada) were used to record four EEG, a reference (REF), 

patient grounding (PGND), two EOG and two EMG channels from the cows. Lead wires were 

snapped on, bundled down the neck and plugged into the Embletta MPR PG +St proxy PSG 

recording device (Embla Systems, Kanata, Canada). The device was placed in a padded plastic 
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box within a pouch sewn to the elastic surcingle covering the HR monitor belt. The device was 

programmed, data were downloaded, and traces processed and scored using RemLogic 3.4.3 

software (Embla Systems, Kanata, Canada). Good quality recordings, which had a minimum of 

one complete EEG, EOG and EMG trace each with good impedance (1-14kHz), minimal artefacts 

and with good quality corresponding HR traces were used in the analysis. Recordings lasted a 

maximum of 10 hours due to device memory limitations.  

Sleep Scoring 

The good quality traces were scored according to criteria developed from a combination of 

previous cow sleep EEG studies (Hänninen et al., 2008; Ruckebusch et al., 1970; Ternman et al., 

2012) and well as human sleep scoring criteria (Iber and American Academy of Sleep Medicine, 

2007). Five stages of sleep and wakefulness were scored: Awake (W), REM (R) and Non-REM 

(which was subdivided into 3 stages, light N1 and N2, and deep N3).  Rumination was also scored 

from the PSG as substantial artefacts due to jaw muscle movements when chewing obscured 

the actual signals of the traces and it was impossible to tell what stage the cow was in during 

that time. Intra-observer accuracy was calculated using “irr” package (Gamer et al., 2019) in R 

(Version 4.0.5) using Cohen’s Kappa with κ = 0.83 and overall agreement of 89.4% indicating 

good agreement (McHugh, 2012). 

Lying Postures 

Lying postures were identified from video recordings made from four surveillance cameras 

equipped with automatic infra-red night vision capability (Geovision monitoring system, 

Viewlog, GeoVision Inc., Taiwan (Scottish Cows)) and Vivotek ND9541P H.265 NVR (Vivotek Inc., 

Taiwan) (NZ Cows)). Lying postures; with head held up above the point of the shoulder (UP), 

head held below the shoulder (HL), head resting on the ground to the front (HF), neck turned 

with head resting on flank or “tucked” ( ), lateral lying or “flat out” (FO) and moving (MV) as 

well as not scored (NS) (Table 1) were scored instantaneously every 30 seconds corresponding 
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to the start of the PSG and HR epochs. Intra-observer reliability was conducted in R (version 

4.0.5) (R Core Team, 2021) using the Cohen’s kappa in the `irr` package (Gamer et al., 2019) and 

the kappa statistic was κ = 0.95 demonstrating a high level of agreement (McHugh, 2012). 

Table 1 Behavioural ethogram for scoring lying postures in dairy cows, including head positions 

and photographs from surveillance videos. 

 

Head Up (UP) 

Lying sternally 
recumbent with head 
held up 

 

Head Low (HL) 

Lying sternally 
recumbent with head 
held low 

 

Head Resting Front (HF) 

Lying sternally 
recumbent with the 
head and or neck resting 
on the ground 

 

Tucked (T) 

Lying sternally 
recumbent with head 
turned and resting on 
the flank 

 

Flat-out (FO) 

Lying laterally with legs 
extended and head and 
neck resting on the 
ground 

 

Data Analysis 

Scored sleep stages, lying postures and heart rate data were aligned by time stamps. In cows, 

sleep occurs when lying down (Ruckebusch et al., 1970), therefore only epochs identified as lying 
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were  included in the analysis. Epochs with posture ‘not scored’ (N ) due to observer inability to 

accurately observe behaviour or other extraneous circumstances were also removed from the 

dataset. As the stages of sleep or wakefulness could not be determined while ruminating, these 

epochs were also removed.  

We fitted a mixed effects model to determine if the cow’s HR changed by sleep stage using the 

‘lme4’ (Bates et al., 2015) and ‘lmertest’ (Kuznetsova et al., 2017) packages in R (version 4.0.5) (R 

Core Team, 2021). The fixed effects were study (country), sleep stage and their interaction. We 

included recording day nested within individual cow ID as random factors. We then used the 

same model with each of the remaining variables; RMSSD and SDRR as the response variables. 

Using the ‘predictmeans’ (Luo et al., 2021) package we calculated the predicted means, standard 

error of the means (SEM) and least significant differences (LSD). 

We then re-ran the same models, now including the cow’s lying posture as a fixed effect with 

interaction with study and calculated predicted means of cow’s HR and HRV measures by lying 

posture and study.  

Results 

Overall, with rumination, standing, and unscored lying behaviour removed, 1968 epochs 

totalling 16.4 hours of good quality data were obtained from 10 cows in 29 recordings days. Data 

from one Scottish and one NZ cow were removed as they each had only one limited good quality 

recording that did not contain any lying periods. The data set was skewed towards more time in 

the awake (W) state, as 629 epochs were scored as W, 315 epochs in N1, 593 epochs in N2, 197 

epochs in N3 and finally 234 epochs in REM (Table 2). 

Lying Posture 

The HR and HRV parameters changed with specific body posture while lying. In the Scottish 

cows, moving and lying flat out postures resulted in significantly higher mean heart rate (MV= 
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56.43 ±3.17 bpm, FO= 55.53 ±3.15 bpm), than all other postures (lying with the head up, or low, 

or resting on the ground or with the head tucked) (Figure 2). Flat out lying was rare in the NZ 

data, with only one epoch over all observations.  Moving was also associated with a higher mean 

HR in the NZ group (84.22 ±3.41 bpm). In the NZ cows, tucked posture was also associated with 

significantly higher RMSSD values than the head low, head up and moving postures indicating 

more variability in the time between successive heart beats. Similar results were found with 

RMSSD in the Scottish group, who had higher RMSSD in T compared to HL (p=0.007), UP 

(p=0.0017) and lower compared to FO (p=0.0035). We also found a significant effect of sleep 

stage and its interaction with study location on the HR and HRV parameters. Table 2 shows the 

means for the different sleep stages. 

Table 2 Count of the total number of epochs of data in each posture by sleep stage (tucked (T), 

head resting front (HF), head low (HL), head up (UP), moving (MV) and flat out (FO)) and study 

country. 

 NZ Scot 

 T HF HL UP MV FO Total  T HF HL UP MV FO Total  

W 24 2 67 116 14 1 224 42 4 133 157 49 20 405 

N1 4 2 34 58 3 0 101 20 1 103 52 13 25 214 

N2 9 4 61 120 0 0 194 51 13 217 46 6 66 399 

N3 8 2 21 47 0 0 78 17 1 72 15 3 11 119 

R 90 0 0 1 0 0 91 114 1 4 3 1 20 143 

Total by 
Posture 

135 10 183 342 17 1 688 244 20 529 273 72 142 1280 
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Figure 2. Plots of predicted means with error bars indicating standard error of the means for the 
mean heart rate in beats per minute (bpm) (A), the RMSSD (B) and SDRR (C) by lying postures 
(Tucked (T), head resting front (HF), head low (HL), head up (UP), moving (MV) and flat out (FO)) 
for the New Zealand group (NZ), Scottish group (Scot). Figure produced in R version 4.0.5 using 
ggplot2 package (https://cran.r-project.org/web/packages/ggplot2/index.html). 

Mean HR 

After accounting for variation between cows and study days, we found a large effect of study 

group on the mean HR.  The mean HR were around 20 BPM lower in the Scottish cows than the 

NZ cows. After accounting for this variation, significant differences between sleep stages were 

evident. In both the indoor-housed Scottish group and outdoor-managed NZ cows, mean heart 

rate was significantly slower in the REM sleep stage compared to awake (W) (NZ: p<0.001) 

(Scottish: p<0.001). In the Scottish group, N2 and N3 stages were not significantly different from 

one another (p=0.09), but all others (W, N1, R) were. In the NZ group, W and N1 were not 

different from each other (p= 0.46), and neither were N3 and REM (p= 0.89). Overall, heart rate 

declined successively from W to N1 and then to N2, while N3 and REM were significantly lower 

than the other sleep stages.  

RMSSD- variability between successive heart beats 

As heart rates were significantly different between the study groups, it is unsurprising that they 

also had a significant effect of study on the RMSSD (Figure 3). As the mean heart rate was lower 

in the Scottish group, their RMSSD was 15-30ms higher than the NZ group indicating longer inter-

beat intervals (Table 3). Accounting for the random effects, we found significantly higher RMSSD 

https://cran.r-project.org/web/packages/ggplot2/index.html
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values during REM sleep epochs, indicating more variability in the time between successive 

heart beats in this stage. In the NZ group, the RMSSD during REM sleep was significantly higher 

than W (p=0.0061), N1 (p= 0.01) and N2 (p=0.0056) but not significantly different from N3 (p= 

0.18). In the Scottish group, RMSSD during REM sleep was highly significantly different from all 

other sleep stages which did not differ greatly from one another.  However, N2 did differ 

significantly from W (p=0.002) and N1 (p = 0.028). Overall, the time between successive heart 

beats during REM sleep was significantly more variable than the other stages. N3 was more 

variable than W but not compared to the other NREM stages (N1 & N2). 

SDRR- total variability of time between heart beats 

There were differences between the groups, but this was not as wide as for the other variables. 

SDRR was higher for the awake and REM stages compared to the other stages, indicating that 

there was higher variability in the overall time between heart beats for these stages. In the NZ 

cows, SDRR during REM sleep was significantly higher than N3 (p=0.0288), but not the other 

stages. N3 was significantly lower than W (p= 0.0337), however N3 was not significantly different 

from the other stages. In the Scottish group, SDRR was not significantly different between W 

and REM (p=0.4422), but these stages were significantly higher than N1, N2 and N3 that were 

not significantly different from one another.   
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Table 3 Table of predicted means ± standard error of the HR mean, RMSSD and SDRR for each 

of the stages, awake (W), Non-REM: N1-N3 and REM sleep overall data and by study group in 

NZ and Scotland (SC). 

Sleep Stage W N1 N2 N3 REM 

HR Mean      

Predicted Mean NZ 78.03 A 

 ± 3.05 

 

78.57 A  

± 3.09 

 

76.72 B  

± 3.06 

 

73.90 C  

± 3.10 

 

73.78 C  

± 3.09 

 

Predicted Mean SC 56.77 D  

± 3.04 

53.56 E  

± 3.05 

52.20 F  

± 3.04 

51.14 F  

± 3.08 

49.48 G 

 ± 3.07 

RMSSD      

Predicted Mean NZ 17.15A  

± 3.97 

16.80 A  

± 4.12 

17.14 A  

± 3.99 

19.22 AB  

± 4.18 

22.14 BC  

± 4.14 

Predicted Mean SC 32.92 CD  

± 3.82 

33.41 DE 

 ± 3.88 

36.03 F  

± 3.83 

35.96 EF  

± 3.98 

50.96 G  

± 3.94 

SDRR      

Predicted Mean NZ 31.74 AB  

± 6.22 

30.95 ABC  

± 6.60 

26.30 AC 

 ± 6.27 

23.32 C  

± 6.75 

33.08 ABD  

± 6.63 

Predicted Mean SC 62.93E  

± 6.03 

49.61 D  

± 6.19 

46.69 BD  

± 6.04 

44.83 BD 

± 6.42 

60.71 E 

 ± 6.34 

A-G Means without a common superscripted letter are significantly different at p<0.05 
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Figure 3 Plots of predicted means with error bars indicating standard error of the mean, in 

each sleep stage for the NZ and Scotland groups for the mean HR (A), RMSSD (B) and SDRR 

(C)). Figure produced in R version 4.0.5 using ggplot2 package (https://cran.r-

project.org/web/packages/ggplot2/index.html). 

Discussion 

Our results show that cardiac outputs could be useful in assessing sleep stages in dairy cows. 

However, we found major differences in mean HR between the two groups of cows, these may 

be due to the different cow characteristics. Understandably, despite replication in the data 

collection methods, there were marked differences in the housing, breed, size, physiological 

stage, and diet of the cows in each study location. The NZ cows were all in late pregnancy, 

whereas the Scottish cows were non-pregnant and non-lactating. Late pregnant heifers and 

cows have been found to have higher mean HR than earlier on in pregnancy (Trenk et al., 2015). 

While there was not a particularly large differences in cow age, there was a difference between 

cow size and breed. The Scottish cows were very large Holstein cows, and the NZ cows were 

https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
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much smaller being Jersey-Holstein crosses (Kiwi-cross). Other studies have found significant 

differences in HR and HRV measures between different breeds (Brown Swiss and Simmental) 

when standing, lying and milking (Hagen et al., 2005). Body size is also known to affect HR and 

HRV, and a decrease in HR was found with increasing weight in horses and ponies (Schwarzwald 

et al., 2012).  

Importantly, despite these group differences, we found that HR and HRV changes with sleep 

stages in both groups and clearly, Figure 2 shows that the differences are in the same direction. 

These results indicate that the patterns of the changes in HR and HRV measures between the 

sleep stages are stable and as such these measures could be used with all cows, although further 

research is needed to assess if these patterns are also observed in lactating cows and cows in 

other stages of pregnancy.  

Surprisingly, we found that mean HR during REM sleep was lower than when awake and in the 

lighter NREM sleep stages (N1 and N2). This is different to results in humans, where HR has been 

found to decrease with the progression of NREM sleep stages, and speeds up again in REM sleep 

(Cajochen et al., 1994). However similar results with an overall lower heart rate during REM sleep 

were also found in dogs (Varga et al., 2018). Despite the lower mean HR, HRV measures of RMSSD 

and SDRR were higher in REM sleep, indicating more variation between heart beats. This 

observation is  similar to that shown for HRV patterns during human sleep, where HRV tends to 

be more variable when awake and in REM sleep than during N3 and other NREM sleep stages 

(Stein and Pu, 2012). Mean HR and RMSSD may be useful to distinguish between awake (W) and 

REM stages, however, they are not particularly useful to distinguish between NREM stages (N1, 

N2, N3). SSDRR was useful to identify N3 stages in both groups as it was significantly lower. 

These patterns of differences in sleep stage could be useful in future applications to predict 

sleep stage of dairy cows, particularly if prior to recording, a lying awake baseline could be 

specified. Then sleep stages could be identified or predicted from differences from that baseline. 
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A previous study has found that body position had a significant effect on HR and HRV measures 

in cows (Frondelius et al., 2015b), however they did not specify body posture while lying and were 

unable to identify awareness levels. We found that the specific posture that cows adopted 

during lying affected their HR and HRV, and in particular that epochs identified as being in the 

flat out (lateral lying) posture and epochs with the head moving resulted in higher HR and more 

variability in the HRV. As moving is a physically active behaviour, this activity may have had a 

carry-over effect on the heart rate for an extended period. So, an epoch in which the cow moved 

her head at the start may have higher HR across that epoch and into the next. Flat out posture 

was rarely observed in the NZ group, and only scored once, and even then, was only observed 

as a transition behaviour between other postures. In the Scottish group, flat out postures were 

far more commonly observed, and most often occurred while the cow was in N2 sleep as well 

as awake and in N1. It is unclear if the increased HR in this posture was due to the position of 

the body which could have facilitated a faster movement of blood, or because most epochs 

scored as flat out happened to occur in sleep stages that had higher heart rates. In the NZ group 

almost all REM sleep occurred in the tucked posture. The tucked posture was found to have 

significantly higher RMSSD, however since REM sleep was also found to have higher RMSSD it is 

likely that the effect of the posture on the HRV measure was more likely due to the sleep stage 

in this case.  

The intra-observer reliability for sleep scoring was 89%, which according to inter-scorer 

reliability in human sleep studies is very good (Danker-Hopfe et al., 2009; Wendt et al., 2015) . 

However, there is still some possibility that the 11% uncertainty in sleep scoring was a 

contributing factor to the variability of the HR and HRV measures within sleep stages. 

Additionally, we analysed the HR data in 30 second epochs, specifically to correspond to the 

sleep scoring. The 30 second epoch is a standard practice in scoring sleep stages from PSG as it 

corresponds well to the structure of human sleep, containing fewer stage shifts than longer 

epochs which would be more likely to contain many stage shifts (Schulz, 2008).  Despite shorter 
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epoch length, some mid-epoch stage shifts could still have occurred. In these instances, although 

the PSG was scored one way, the HR measures could have reflected another stage, and this 

could also be another source of variability in the HR and HRV measures within sleep stage.   

Similarly, the HR and HRV data may have also been influenced by the short epoch windows. 

Typically, human HRV measures are conducted in 5-minute increments, although ultra-short 

windows such as 30 second windows  have been found to be acceptable for the assessment of 

HRV at rest in humans (Wu et al., 2020). Bouts of cow sleep stages can typically be quite short 

(Ruckebusch et al., 1970; Ternman et al., 2012) and thus multiple stage shifts would  be captured 

in a longer epoch length of 5 minutes. This was a major reason for choosing to analyse the HR 

and HRV in ultra-short windows.  However, some have questioned the accuracy of windows 

shorter than 2-minutes for the analysis of HRV in human athletes (Bourdillon et al., 2017). RMSSD 

measurements in even shorter 10 second windows were also found to correspond well to 

standard longer intervals in humans, but SDRR did not (Thong et al., 2003). Therefore, the short 

time window selection could have affected the accuracy of the cow HRV RMSSD and SDRR 

measurements. HR and HRV may be useful for the assessment of sleep stages in dairy cows, 

however, further investigation into the validity of ultra-short HRV measures in dairy cows and 

additional validation with PSG is needed.  

Conclusion 

We have shown that sleep stage sleep stage is associated with changes in HR and HRV in dairy 

cows. Mean HR was significantly lower in the indoor-housed, non-pregnant, and non-lactating 

cows compared to pregnant dry outdoor managed cows. We also found that mean HR decreased 

with sleep depth, SDRR was more variable in awake and REM and RMSSD was significantly higher 

in REM sleep than the other stages. These results indicate that HR and HRV could be a useful 

measure for the future identification of sleep stages in dairy cows using less invasive devices 

than PSG, making sleep research for animal welfare more accessible. 
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CHAPTER FIVE 

Machine learning prediction 
of sleep stages in dairy cows 
from heart rate and muscle 

activity measures 
  



 

122 
 

Preface 
The body of this chapter consists of a journal article published in Nature’s Scientific Reports. 

The article has been re-formatted to follow the style of this thesis, however, retains the structure 

of the published paper.  

Hunter, Laura B., Baten, A., Haskell, M.J., Langford, F.M., O’Connor, C., Webster, J.R., Stafford, K., 

2021a. Machine learning prediction of sleep stages in dairy cows from heart rate and muscle 

activity measures. Sci. Rep. 11. https://doi.org/10.1038/s41598-021-90416-y 

 

Machine learning involves programming a computer to learn from a data set and to make 

predictions based on statistical probability. Using ‘supervised’ machine learning methods, 

human input is required to ‘teach’ the computer how to recognize different categories. The data 

must first be labelled and then is split into a ‘training set’ and a ‘test set’.  he labelled training 

set is used to teach the model examples to learn to associate differences in the features and to 

correctly identify the label. The test set then uses unlabelled examples to evaluate how well the 

model has learned and how good its predictions are compared to the actual label. 

 

Label: The outcome variable or category of the data 

Feature: The input variables  

Training Set: Labelled data used to teach or train the model 

Test set: Data used to evaluate the model (with labels removed) 
 
 

In the preceding chapter, I found that HR and HRV changed with sleep stage, however, using the 

HR and HRV alone to identify sleep stages in cows at this stage may be difficult due to large 

differences between the groups, and occasionally subtle differences between stages.  As 

discussed in Chapter 3, behaviourally, the cow’s neck position was not an ideal indicator of sleep 

stage in the cows, however, almost all REM sleep occurred when the cows had their heads 

resting. The neck EMG was a useful component for the visual identification of the sleep stages 

and the criteria developed in Chapter 2, thus, it follows that the raw EMG data also has the 

potential to be used to identify sleep stages in cows.   

Therefore, the aim of this final experimental chapter was to investigate the potential to integrate 

several data sources using machine learning models to be able to predict sleep stage and to 

evaluate their success compared to PSG in dairy cows.   

https://doi.org/10.1038/s41598-021-90416-y
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Abstract 
Sleep is important for cow health and shows promise as a tool for assessing welfare, but 

methods to accurately distinguish between important sleep stages are difficult and impractical 

to use with cattle in typical farm environments. The objective of this study was to determine if 

data from more easily applied non-invasive devices assessing neck muscle activity and heart rate 

(HR) alone could be used to differentiate between sleep stages. We developed, trained, and 

compared two machine learning models using neural networks and random forest algorithms 

to predict sleep stages from 15 variables (features) of the muscle activity and HR data collected 

from 12 cows in two environments. Using k-fold cross validation we compared the success of 

the models to the gold standard, Polysomnography (PSG). Overall, both models learned from 

the data and were able to accurately predict sleep stages from HR and muscle activity alone with 

mailto:*laura.hunter@agresearch.co.nz
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classification accuracy in the range of similar human models. Further research is required to 

validate the models with a larger sample size, but the proposed methodology appears to give an 

accurate representation of sleep stages in cattle and could consequentially enable future sleep 

research into conditions affecting cow sleep and welfare.  

Introduction 
Animals are driven to sleep and it is vital that enough restful sleep is achieved to feel replenished 

(Siegel, 2005). Feelings of exhaustion, tiredness and sleeplessness can impact negatively on 

animal welfare (Mellor and Beausoleil, 2015). Health can also be significantly impacted by sleep 

loss (sleep deprivation or restriction), which can result in activation of the immune and 

inflammatory systems (Faraut et al., 2012) and also influence pain sensitivity and perception 

(Sardi et al., 2018) in both humans and animals. 

We know very little about the importance of sleep and the effects of limited or poor-quality 

sleep for dairy cows. Broadly, it is likely that factors affecting lying behaviour will also influence 

sleep, as cows must lie down to achieve it (Ruckebusch, 1974). Sleep can be affected by stressful 

experiences during the day (Langford and Cockram, 2010). Therefore, changes to sleep patterns 

or total sleep time in cattle could be useful indicators for stress and other welfare concerns. The 

ability to identify sleep stages accurately could enable research on the effects of sleep loss for 

cows and could be useful to inform management practices such as determining rest intervals 

during long-haul transport or management of cattle during wet weather (i.e. on standoff pads).  

Sleep consists of two main types: rapid eye movement (REM) and non-REM (NREM) sleep. The 

most accurate method of identifying  sleep types is polysomnography (PSG)(Drinkenburg et al., 

2016; Miano et al., 2010), which consists of a combination of physiological measurements; 

mainly electroencephalography (EEG), electromyography (EMG), and electro-oculography 

(EOG), which record electrical signals of the brain, as well as muscle and eye activity. Using 

specialized software, traces from these signals are analyzed and scored visually using 
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characteristic patterns to determine sleep stages according to defined criteria. REM sleep is a 

deep sleep stage, where the brain is active, the muscle tone is low and there are often frequent 

eye movements. The majority of human total sleep time is spent in NREM sleep, which can be 

further divided by ‘depth’ into 3 stages from light - N1 and N2 sleep to deep N3 or slow wave 

sleep (SWS). SWS is characterized by high amplitude oscillating activity on the EEG accompanied 

by lower muscle tone and lack of eye movements. Many of the restorative functions of sleep are 

thought to occur in this stage (Xie et al., 2013). Dairy cows have been found to sleep for 

approximately 3-4 hours per day, but only around 30 minutes of this in REM sleep (Ruckebusch 

et al., 1970; Ternman et al., 2012). Therefore, most of the sleep time also consists of NREM sleep 

stages and it is likely that these stages serve important functions for cows as they do humans. 

PSG has recently been used to record sleep in calves (Hänninen et al., 2008) and cows (Ternman 

et al., 2012) in indoor-housed environments. However, it requires a considerable amount of 

training to habituate the animal to wearing the equipment, and this with intensive handling, 

delicate and expensive devices, specialized scoring and frequent monitoring, makes PSG 

impractical for large research projects on cows in uncontrolled environments such as in typical 

group-housed farms and outdoors on pasture. No recent studies have attempted to record non-

invasive PSG of sleep of cows on pasture, probably because of the difficulty in using these 

instruments with cows let alone in challenging and variable outdoor conditions. An ideal solution 

would be an alternative method or proxy for PSG, more easily applied in a variety of 

environments and less intensive than PSG. As cows must lie down to sleep (Ruckebusch, 1974), 

lying posture has been suggested as such a proxy. In calves that spend a lot more time in deep 

sleep stages, lying with head up and immobile and lying with the head resting on the ground or 

turned and resting on the flank were found to be able to estimate SWS and REM sleep time 

respectively (Hänninen et al., 2008). However, these same postures greatly over-estimated total 

sleep time in adult cows (Ternman et al., 2014) and were unable to accurately detect NREM 

sleep. Further methods based on accelerometers to collect movement and position data from 
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devices on the head or neck of calves and cows (Fukasawa et al., 2018; Hokkanen et al., 2011; 

Klefot et al., 2016) have been developed to predict sleep. However, while these models have 

shown some success in detecting the tucked lying posture during which most REM sleep occurs, 

they overestimate total sleep time and lack the ability to distinguish differences between light 

and deep NREM sleep, as well as wakeful inactivity. Additionally, these methods have only been 

validated with postural estimates of sleep and not with PSG.  

During mammalian sleep, autonomic nervous activity such as heart rate (Chouchou and 

Desseilles, 2014; Muzet et al., 2016; Xiao et al., 2013), respiration rate (Ebrahimi et al., 2015) 

and body temperature change with sleep stage. Machine learning has been used to develop 

wearable technology for humans such as smart watches that use heart rate and activity to 

predict human sleep stages and duration (Fiorillo et al., 2019). Therefore, the potential exists to 

use similar physiological changes to identify different sleep stages in cows. In dairy cows, 

respiration rate and body temperature can be recorded for long periods of time, but are difficult 

or require invasive internal devices (Wu et al., 2020). Heart rate (HR) and heart rate variability 

(HRV) recording devices are relatively inexpensive and unobtrusive to the cow and can be worn 

for long periods of time (Frondelius et al., 2015; Kovács et al., 2015). Methods using machine 

learning to predict sleep stage from HR and HRV have been developed recently for humans 

(Wang et al., 2019; Xiao et al., 2013), and methods combining HR with other measures such as 

actigraphy further increase performance for sleep stage identification (Zhang et al., 2018). 

We collected HR, lying behaviour and PSG data simultaneously from two groups of cows, housed 

indoors and on pasture. The aim of this project was to determine if we could accurately 

differentiate between different stages of light and deep sleep in dairy cows using only HR and 

neck muscle EMG data, compared to visual scoring of the PSG, and to compare the success of 

two machine learning algorithms in this task. 
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Results and Discussion 

  G is the recognized ‘gold standard’ to determine sleep stages however, a complicated and 

painstaking setup is required which makes it prohibitive to use for determining sleep stages in 

cows. The objective of this study was to determine the efficacy of using heart rate and neck 

muscle activity to determine cow sleep stages using machine learning. To our knowledge, this is 

the first study of its kind aimed to detect cow sleep stages using only heart and neck muscle 

data. Using this data alone, the machine learning models developed were able to predict 82.3% 

of sleep stages correctly.  Classification performance of the machine learning models presented 

in this paper is similar to Mitsukura et al. (Mitsukura et al., 2020), which proposed models to 

detect human sleep stages using only heart rate data. Table 1 shows the values used to compare 

both machine learning models. The neural network (NN) analysis produced the best overall 

performance and had an area under the curve (AUC) value of 92.5%. Classification accuracy was 

82.3%. precision was 81.5%, recall was 82.3% and F1 score was 0.814. The prediction accuracy 

of the NN model is just marginally better than that of random forest (RF)which produced 82.1% 

classification accuracy and a slightly better AUC value of 92.6%. Both neural network and 

random forest algorithms show the ability to learn reasonably well from the data and 

discriminate well between various sleep stages. 

Table 1 Overall performance of the neural network and random forest models across all sleeping 

stages (Average over classes) in terms of area under the curve (AUC), classification accuracy (CA), 

F1 score, precision, and recall (Sensitivity).  

Model AUC CA F1 Precision Recall 

Neural Network 92.5% 82.3% 0.814 81.5% 82.3% 

Random Forest 92.6% 82.1% 0.805 81.3% 82.1% 

 

Table 2 shows the CA and AUC of both models to predict the sleep/wakes stages individually. In 

terms of AUC, Awake and REM stages were the most accurately detected with a 94% and 92% 
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chance of scoring correctly. The models had slightly more difficulty identifying NREM sleep 

stages; however, AUC was remained at 90%. Figure 1 shows the ROC curves for the classification 

of each individual sleep stage by both NN and RF models. Classification accuracy for N3 and REM 

stages were above 95%, with awake and N1/2 ranging from 85-88%. Individually, N3 and light 

N1/2 sleep were slightly more difficult to predict according to the classification performance of 

various models in our dataset. As previously discussed, this could be due to errors in sleep 

scoring from the PSG, however NREM sleep stages are the least different from one another 

physiologically, so it is possible that there is a significant overlap with other sleep stages in the 

heart rate and neck muscle activity. 

Table 2 Performance of both models (Neural Network and Random Forest) for individual sleep 

stages (Awake, combined light NREM sleep (N1/2), N3 (SWS) and rapid eye movement sleep 

(REM)) in terms of area under the receiver operator curve (AUC) and classification accuracy (CA).  

Model Awake N1/2 N3 REM 

 AUC CA AUC CA AUC CA AUC CA 

Neural 
Network 

94.7% 88.4% 90.8% 85.2% 90.2% 95.3% 92.4% 95.8% 

Random Forest 94.4% 87.2% 91.1% 85.5% 90.4% 95.7% 92.3% 95.9% 
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Our methodology involved spending a significant amount of time prior to the beginning of data 

collection gentling and handling the cows who had previously been unused to such an amount 

of human contact and training them to wear unfamiliar materials and instruments. Even with 

these efforts, a large amount of recorded data was then unusable due to cows rubbing 

electrodes off on gates, water buckets or when lying or moving, unpredictable cow behaviour, 

or issues with electrode impedance and the devices that could only be determined after the 

recording. We collected a total of 23,123 useable 30 second epochs (approximately 192 hours) 

of PSG, HR, and activity data from a total of 12 cows in two different environments – housed 

Figure1. ROC curves of the Neural Network and Random forest models for detection 
of each individual sleep stage.  (a) Awake Stage, (b) Combined light sleep stages N1/2, 
(c) Slow wave sleep- N3 stage and (d) REM sleep stage. Figure created using Orange 
(version 3.26) https://orangedatamining.com/ 
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indoors in the UK and on pasture in New Zealand. As there are no widely used scoring criteria 

for cows as there are for humans, previous work on cow sleep (Hänninen et al., 2008; 

Ruckebusch et al., 1970; Takeuchi et al., 1998; Ternman et al., 2012) as well as human American 

Association of Sleep Medicine (AASM)2018 guidelines (Iber and American Academy of Sleep 

Medicine, 2007) were used to define sleep stages. Previous cow PSG studies have only identified 

R M sleep,  W  and ‘drowsing’, however definitions of drowsing and implications for sleep and 

cow welfare are unclear (Ternman et al., 2012; Toutain and Ruckebusch, 1973). Labelling of the 

sleep stages based on visual analysis of the PSG traces is accepted as common practice in human 

sleep scoring, however, it can be somewhat subjective and there can be a degree of 

disagreement even between highly experienced human sleep scoring technicians using clearly 

defined criteria (Collop, 2002). A study of inter-rater reliability of human sleep using AASM 

guidelines found an overall agreement of 82.0% and Cohen’s kappa = 0.76 (Danker-Hopfe et al., 

2009) and a study of intra-expert scoring of spindles from light sleep found agreement of 72% 

with k=0.66 (Wendt et al., 2015). These kappa figures suggest high, but not perfect agreement 

between observers. Overall intra-observer agreement for scoring sleep/awake stages from the 

PSG traces in this study was 89.42%, however, N1 and N2 were the least reliable as only 32% of 

epochs were agreed, and 39% of N1 were re-scored as N2. Combining N1 and N2 improved 

agreement to 91.1%. Despite an ‘almost perfect’ level of intra-observer reliability (Landis and 

Koch, 1977), even when combining N1 and N2 stages, 8.9% of epochs were disagreed upon when 

re-scoring PSG. There is therefore a margin of error introduced into the model due to mistakes 

in scoring and labelling data from the P G which was used as the ‘ground truth’ with which to 

train the model. However, with visual analysis there is always likely to be a degree of human 

error associated with the scoring.  

Machine learning has also been used to classify sleep stages in animals such as mice ( rankačk 

et al., 2010) and rats (Crisler et al., 2008) using spectral aspects of the EEG signals, so this could 

be attempted in future sleep stage labelling of cow PSG data .  
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Cows are ruminants and must regurgitate and re-chew their food to obtain energy. Because of 

their strong jaw muscle movements, distinct rhythmic chewing artefacts obscure the PSG traces 

making accurate identification of any potential sleep stages during rumination or chewing 

impossible. For this reason, epochs containing rumination were excluded from the dataset and 

therefore the current model is only able to identify vigilance state from data when rumination 

is absent. Future models could be modified to predict rumination, however sleep stage 

estimation during this time would be impacted by the artefacts on the EMG traces.  

The data set was heavily weighted to the awake stage. As shown in Table 3, around 70% of the 

data set consisted of awake data with the other 30% consisting of sleep, and less than 5% of 

data points being in REM or N3 sleep stages. We made recordings during both day and night and 

included all recorded data of sufficient quality in the data set. Most cow sleep occurs at night-

time, with small bouts of sleep during the day, and in total only about 4 hours per day is spent 

sleeping (Ruckebusch et al., 1970). Being so heavily weighted to the awake stage, the models 

had many more examples to learn from to identify Awake epochs, but far fewer examples from 

which to learn to identify N3 or REM sleep epochs. Balancing the dataset in terms of sleep and 

awake stages equally might help future models to learn better by having more examples of less 

common sleep stages.  

Table 3 Number of data points and overall percent of data points at each sleep stage in the 

dataset.  

Awake 16584 71.72% 

N1/2 4401 19.03% 

N3 1034 4.47% 

REM 1104 4.77% 

Total 23123 100% 

We used 15 different features of the heart rate and EMG data and the machine learning models 

were able to learn from this and discriminate between various sleep stages. Classification 
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models learn and perform well when there is a significant difference between features in various 

classes. Table 4 shows the rank of each feature calculated in terms of information gain (the 

expected amount of information or entropy), gain ratio (a ratio of the information gain and the 

attribute’s intrinsic information, which reduces the bias towards multivalued features that 

occurs in information gain) and ANOVA (the difference between average values of the feature 

in different classes). The features of our dataset that were the most informative for the machine 

learning models were mainly the Neck EMG features (Neck RMS, Neck Variance, and Neck 

Standard Deviation). The highest scoring features of our dataset were the Neck EMG features 

(Neck RMS, Neck Variance, and Neck Standard Deviation).  A reduction of muscle tone in the 

neck muscles is a classical indicator used for the visual identification of REM sleep from PSG 

data. The higher AUC and accuracy values for the prediction of REM sleep compared to other 

sleep stages may be due to the high rank of the neck EMG features (Table 2). Mitsukura et al. 

(Mitsukura et al., 2020) predominantly used frequency domain features of the HRV signal for 

sleep stage classification in humans, and it is possible that frequency domain features could be 

useful for cow sleep staging as well. However, we only used time domain features of the HRV as 

we were working from 30 second epochs, which is arguably too short of a window to calculate 

frequency domain metrics from. Frequency metrics are usually calculated for 5 minute periods, 

and while it could be possible to increase epoch size to 5 minutes to allow for these calculations, 

this would reduce the granularity and possibly result in longer epochs containing several sleep 

stages as some bouts of individual stages have durations of less than 2 minutes. Long epochs 

consisting of multiple stages could also introduce confusion into the model resulting in more 

misclassification. 
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The classification models were developed with data from two separate groups of cows which 

were different in terms of breed, age, housing, and previous experience. All cows were non-

lactating, but the Kiwi-cross (NZ) cows were also in mid-late pregnancy during the recording 

period. There were differences between the two populations in terms of average HR and the 

Kiwi-cross cows generally had a higher heart rate than the UK group. These differences could be 

due to age, size of cows and pregnancy status, but highlights the possibility of hidden batch 

effects within the model. More training data from different populations of cows, and cows in 

different stages of lactation would be beneficial to increase confidence in the classification 

ability of the model. 

Sleep in mammals typically occurs in cycles with REM sleep following a bout of NREM however, 

NREM sleep can also occur on its own (Le Bon, 2020). Sleep is regulated homeostatically, but 

achieving a certain amount of REM sleep does not necessarily mean that a proportionate 

amount of NREM will also be achieved (Le Bon, 2020). In the development of the models, we 

Table 4. Ranking of features in the dataset from overall most informative to least and 
ranking by each calculation; Info Gain, Gain ration and ANOVA (redlines). Table produced 
using Orange (version 3.26) https://orangedatamining.com/ 
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considered each 30 second epoch independently, however, they are in a time series and make 

up bouts lasting from a few minutes to a few hours. Preceding epoch classification therefore 

could have an influence on the classification decision for the successive epoch. Information on 

typical cow sleep patterns and bout lengths could possibly aid in future models to predict sleep 

stages in cows. 

The current model is a marked improvement over sleep staging models for cows using only 

accelerometers to predict NREM and REM developed in the past that were only able to predict 

up to 70% of sleep correctly (Klefot et al., 2016). These models also used behavioural 

observations to label sleep stages, which has been shown to overestimate sleep in cows 

(Ternman et al., 2014). Our models have been developed with sleep stages labelled using PSG 

rather than behavioural observations, and while not as simple as accelerometers, EMG and HR 

monitoring equipment are small and far easier to use with cows than a full PSG montage. 

We investigated the use of non-invasively acquired EMG and HR data to predict sleep stages 

from light N1/2 sleep to deep N3 and REM sleep in dairy cows. While these models have been 

developed with a small sample size, our classification models developed with Neural Network 

and Random Forrest algorithms achieved similar outcomes, both with good accuracy, suggesting 

neck EMG and HR data could be suitable to predict sleep stage with some reliability in dairy 

cows. More data from cows of different breeds, ages and lactation stages would be beneficial 

to improve future models. We believe the use of HR and Neck EMG is promising for future 

identification of sleep stages in dairy cows from non-invasive physiological recording devices. 

This will enable future research into the effects of typical husbandry practices, transport and 

environment on cow sleep and the importance of sleep for cow health and welfare. 
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Methods 

Animals and on farm management 

Ethical approval for all procedures involving animals was obtained from the UK Home Office 

(Project Licence P204B097E), SRUC Animal Ethics Committee (Ref. ED AE 03-2018) and Ruakura 

Animal Ethics committee (AE 14708) prior to study onset. All methods were carried out in 

accordance with UK and New Zealand animal welfare guidelines and regulations and the authors 

have complied with the ARRIVE guidelines. 

The indoor study was conducted with 6 non-pregnant, Holstein cows (average age 3.86±0.68 

years) who were selected from the herd at SRUC Acrehead Farm (Dumfries, Scotland) based on 

farm staff knowledge of their approachable nature. When enrolled, the cows were either non-

lactating or dried off according to routine farm practice prior to the study and were housed in a 

20m x 5m group pen, deep bedded with straw, within the main barn and fed as per routine farm 

practice. A 5m x 5m test pen was located adjacent to the group pen but could be separated by 

a buffer zone of approximately 2m to reduce potential damage to recording equipment and 

disruptions to the recordings of other cows, while maintaining visual and auditory contact with 

the group (Fig. 2).  
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The protocol was then repeated at pasture with six approachable, mid-late pregnant, non-

lactating three-year-old Kiwi-cross (Friesian-Jersey) cows selected from the herd at DairyNZ Lye 

Farm (Newstead, NZ). These cows were managed outdoors in a large (44m x 29m) group pen 

created with electric fencing that could be moved around within a larger paddock as ground 

conditions deteriorated. A 10m x 10m test pen was created with non-live electric fencing (to 

reduce potential electrical noise on physiological traces) on one side of the group pen. A 2m 

buffer zone with live electric fencing was set up around the test pen, allowing for visual and 

auditory contact of the test cow with the group at all times (Fig 2). Cows were allowed to graze 

and were supplemented with silage ad libitum. All cows in both groups were trained and 

a 

b 

Figure 2. Diagrams of group and test pen design in the UK indoor housed 
study (a) and in the NZ outdoor pasture study (NZ) (b). During recordings, 
the test cow was moved into the test pen, when not recording, the cow 
was moved back into to the group pen.  
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habituated to the recording devices and handling protocols for a minimum of 2 weeks prior to 

the start of data collection.  

Data Collection Methods 

Polysomnography 

PSG was recorded using a 10 electrode montage as described in Hänninen et al.(Hänninen et al., 

2008). This included 4 EEG, 2 EOG and 2 EMG electrodes as well as a ground and reference 

electrode attached to the head and neck of the cow (Fig. 3). Adhesive pre-gelled ECG electrodes 

(Natus neurology, Kanata, Canada) were used and secured to clipped and cleaned skin on the 

head and neck of the cow with a small amount of superglue (Loctite 454 or Loctite gel control, 

Henkel Corp., Dublin, Ireland). A stretchable LeMieux® or Caribu Lycra horse hood (UK: Horse 

Health Wessex, Woodington, UK. NZ: Caribu AU, Truganina, Australia) was modified for the cow 

anatomy and worn on the head and neck over top of the electrodes to keep all wires close to 

the skin and avoid being tangled in the test pen. After data collection was completed, all 

materials were removed and electrodes either came away easily or were gently removed using 

acetone or aqueous cream to soften the glue. Signals were sampled at 500Hz and recordings ran 

for 10 hours due to memory capacity of the Embletta MPR PG +ST proxy recording device 

(Embla, Natus Neurology, Kanata, Canada). The recording device was programmed, and data 

were downloaded using RemLogic 3.4.3 software (Embla Systems, Kanata, Canada). After 

downloading, a 50Hz mains filter was applied to all traces to remove the background noise 

caused from electrical wires that are present in the environment and can be picked up by the 

PSG device, in the UK and NZ electrical mains frequencies are both at 50Hz. EEG traces were 

high pass and low pass filtered at 0.3Hz and 30 Hz, EOG traces were filtered at 0.15 Hz and 20Hz 

and EMG at 10Hz. Traces were first inspected for quality, “good” quality recordings included 

those where impedance was within the acceptable range (>14Ω) and at least 2   G, 1  MG and 

1  OG trace remained attached for the entire recording period. “Poor” quality recordings were 
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not scored and occurred when impedance was too high, there was noise on the traces, many 

artefacts obscured the data or electrodes became detached during the recording. Traces were 

then scored visually in 30 second epochs into 4 stages of sleep (N1, N2, N3, REM), wakefulness 

(W) and rumination (RNT) by a single scorer trained in human sleep staging, according to staging 

criteria developed from previous work on cow sleep (Hänninen et al., 2008; Ruckebusch et al., 

1970; Takeuchi et al., 1998; Ternman et al., 2012) as well as human American Association of 

Sleep Medicine 2018 guidelines (Iber and American Academy of Sleep Medicine, 2007).  

 

Heart Rate 

Heart rate (HR) and inter-beat intervals (between R peaks of the heartbeat signal: (R-R)) were 

recorded using a Polar equine monitoring girth strap with electrodes near the heart and the 

reference electrode near the shoulder (Fig 3) and logged with the Polar RS800CX Watch (Polar 

Electro Oy, Kempele, Finland). The time was synchronized between the watch and PSG recording 

devices. Ultrasound gel (Aquasonic 100 gel, Parker Laboratories, NJ, USA) was applied liberally 

Figure 3. (a) Diagram indicating electrode placement on the head and neck of the cow for PSG 
data acquisition. Four EEG electrodes (C3, C4, F3 & F4) and a reference (REF) electrode were placed 
on the forehead. PGND- patient grounding electrode was placed behind the poll on the top of the 
head. Two EOG electrodes were placed beside the eyes and two EMG electrodes were placed on 
the mid-trapezius muscle on either side of the neck. (b) Diagram indicating placement of the heart 
rate monitoring girth strap, leg mounted accelerometer, and PSG electrodes on the whole cow. 

a b 
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at electrode locations. Data were downloaded using Polar Pro-Trainer 5 software (Polar Electro 

Oy, Finland). After downloading, the signal was filtered using Polar Pro-trainer 5 at a moderate 

filter power with a minimum protection zone of 6bpm. Only traces containing less than 1% 

identified errors were used for analysis. The filtered data were then extracted, and statistics 

were calculated in 30 second epochs corresponding to the timestamps of the PSG epochs. Only 

the time domain metrics of the heart rate variability were calculated, as the validity of frequency 

domain metrics in intervals smaller than the 5 minute standard are questionable (Bourdillon et 

al., 2017). 

Lying Behaviour 

Lying and standing times were recorded continuously using an accelerometer (UK; IceTags (Ice 

Robotics, Edinburgh, Scotland), NZ; Onset Pendant G data loggers (64k, Onset Computer 

Corporation, Bourne, MA) attached on the lower hind leg (Fig 3). The data were downloaded 

using IceManager Software (Ice Robotics, Edinburgh, Scotland) or HOBOware Pro software 

(Onset Corp., Pocasset, MA). Lying and standing behaviour were determined from the data-

logger files in 30 second epochs corresponding to the PSG epochs. 

Data pre-processing and segmentation 

Neck muscle activity data was extracted from a single good quality EMG trace per recording. 

Statistics were calculated for each epoch, including mean, maximum (max), minimum (min), 

median (med), standard deviation (SD), variance (Var) and root mean square (RMS) using 

RemLogic software.  

Mean HR, mean R-R interval, Standard deviation of RR intervals (SDRR) and Root Mean Square 

of Successive Differences (RMSSD) (Eqn. 1) were calculated from the exported and filtered polar 

heart rate data for each 30 second epoch corresponding to the PSG epochs.  

𝑅𝑀𝑆𝑆𝐷 =  √
1

𝑁−1
(∑ ((𝑅𝑅)𝑖−1 − (𝑅𝑅)𝑖

𝑁−1
𝑖−1 )2)    (1) 
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Normalized HR mean, RMSSD, EMG mean, and EMG RMS values were also calculated by dividing 

the data by the largest point for each individual recording as a way of removing some of the 

variation between cows and between recordings. All 15 parameters or ‘features’ from the HR, 

HRV, EMG and lying behaviour data were merged and matched with the scored sleep stage 

epochs using R Studio (Version 1.3.959) using time stamps and epoch numbers.  

Intra-observer reliability was calculated using Cohen’s kappa in the “irr” package in R (Version 

4.0.2). Overall agreement was 89.4% with k=0.83however, N1 and N2 were the least reliable as 

only 32% of epochs were agreed, and 39% were misidentified as N2. In exploration of the 

physiological data, N1 and N2 were not vastly visually different in terms of mean and variance 

(Fig 4), and so were combined into a new stage of light sleep named ‘N1/2’- to improve 

classification performance. Combination of N1 and N2 improved overall agreement to 91.1% 

(k=0.86). Rumination causes rhythmic chewing activity artefacts that obscure the PSG traces and 

make it impossible to determine brain activity and sleep stage. It is possible that cows could 

achieve sleep during rumination, which could create confusion and misclassification of the data, 

so for this reason it was removed from the data set. Dairy cows must lie down to sleep 

(Ruckebusch, 1974), therefore epochs determined as ‘standing’ from the accelerometer data 

were also removed from the data set. 
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From visual and exploratory analysis of the data set, there were no clear differences between 

sleep stages for any of the features. There were minor differences such as REM sleep tending to 

have a higher RMSSD than other sleep stages, and the means of W were higher for max EMG, 

RMS EMG and SD EMG than for the other sleep stages (Fig 4). 

Altogether there were 23,120 data points labelled into 4 different sleep stages (Awake, N1/2, 

N3 and REM) each with corresponding data from the 15 different features (HR Mean, RR Mean 

Figure 4. Box and whisker plots of each feature (Titles), with sleep stage on the x-axis and relevant 
units on the y-axis. The y-axis of HR mean, and Norm HR mean are expressed as beats per minute 
(BPM), while RMSSD, RRSD and the normalized graph of these are expressed in milliseconds. The y-
axis of all EMG graphs is expressed in microvolts (µV) Figure produced in R version 4.0.2 using 
ggplot2 package  https://cran.r-project.org/web/packages/ggplot2/index.html 
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etc.). Table 3 shows number of data points for each sleep stage, the awake category has the 

greatest number (16584) of data points, while the combination of N1 and N2 (N1/2) had 4401 

data points, REM had 1104 and N3 had 1034 data points.   

Machine learning method for sleep stages 

To predict cow sleep stages using only heart and neck muscle data, we considered two machine 

learning techniques: Neural Network (Lippmann, 1987), and Random Forest (Breiman, 2001). 

Both the machine learning models were implemented using the open source Orange machine 

learning platform (Version 3.26) (Demšar et al., 2013). Stratified 10-fold cross-validation was 

used to train and test the models.  

Architecture of the Neural Network Model: 

Number of neurons in hidden layers: 500 

Activation function: ReLu 

Solver: Adam 

Regularization: 0.0001 

Maximal number of epochs/iterations: 2000 

During the cross-validation process, the whole dataset was randomly split into a labelled or 

‘known sleep stage’ data set to train the model with, the remaining data having the labels hidden 

and used to test the model with. For example, REM had 1104 observations, approximately 110 

observations were used for testing and rest were used for training and this process was repeated 

10 times for each sleep stage.  he model’s predictions were then compared with the actual 

labelled sleep stages to test and compare the models. Classification accuracy (CA) (the number 

of correct predictions divided by the total number of predictions), recall (sensitivity or true 

positive rate), precision (a measure of the model’s exactness),  F1 score (the balance between 
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Precision and Recall) and area under the curve (AUC) determined from the receiver operator 

curve (ROC) values from each model were used to measure the performance. The classification 

accuracy (Eqn. 2), precision (Eqn. 3), recall (Eqn. 4) and F1 score (Eqn. 5) were obtained from 

true negative (TN), false negative (FN), true positive (TP), and false positive (FP) values. This 

process was repeated for 10 random splits or ‘folds’ and classification accuracy of each machine 

learning technique was measured by taking the average across the 10 folds.  

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐶𝐴) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (4) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
      (5) 
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Introduction 
The difficulties with assessing sleep using PSG in dairy cows became apparent in my literature 

review in Chapter 1. Although there is increasing interest in the study of sleep regarding cow 

welfare, assessing sleep accurately, affordably, and easily is a barrier for future research in this 

area. Much of the limited literature regarding cow sleep has focused on alternative methods for 

identifying sleep in dairy cows but studies validating these measures using PSG are limited. 

Therefore, the overall focus of this thesis was to identify and examine potential proxies for 

recording sleep accurately in dairy cows as compared with PSG. The first aim was to develop and 

describe a detailed scoring system, similar to what is used with humans, for identifying stages 

of light and deep sleep in dairy cows. Following on from the development of these methods, I 

aimed to determine if lying postures, and particularly the position of the cow’s head while lying 

could predict these detailed sleep stages compared with the PSG scoring system. I then aimed 

to determine if cow’s HR and HRV changed with sleep stage, and if this could be of potential use 

for sleep stage prediction. Finally, I aimed to determine if multiple physiological signals obtained 

from non-invasive surface attached devices could be used as an alternative to predict sleep 

stages in dairy cows as accurately as PSG. In this chapter, I will discuss the findings of the main 

works of the thesis and the wider implications of the results. I will also discuss the limitations 

and consider areas for future research. 

General Limitations 
The experiments carried out during this thesis were limited by very small sample sizes: 6 cows 

in Scotland and 6 cows in New Zealand. The small sample size was necessary as it was very time, 

and labour, intensive to train and record data from the cows, however, this small sample size 

does make it difficult to extrapolate the results to dairy cows in general. Although I expect that 

major patterns of physiological changes during sleep should persist among all cows, it is possible 

that differences in the patterns of physiological changes with sleep stage can occur between 
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breeds, ages, physiological status and management systems as seen between cows in the 

Scottish and New Zealand systems. 

A main strength of the studies included in this thesis is the replication of the experiments with 

indoor housed cows in Scotland and outdoor pasture managed cows in New Zealand. We proved 

it is possible to adapt PSG methods to record free moving cows in outdoor environments despite 

changing weather conditions.  Importantly, we found that the PSG, HR and HRV showed similar 

patterns with sleep stages for cows in both environments. However, the use of two 

environments was also a limitation and made it difficult to be able to determine whether the 

cause of the observed differences in the sleep behaviour between studies was caused by the 

housing environment, weather conditions, or from differences in breed, physiological status, or 

country between the cows.  

Sleep scoring methods 
In chapter 2, I described a five-stage scoring system developed for dairy cow sleep based on 

human scoring guidelines and visual analysis of PSG traces. Using the guidelines resulted in good 

intra-observer reliability, although reliability was lower between lighter N1 and N2 sleep stages. 

This has also been found to be an issue in human sleep scoring (Suzuki et al., 2019) and it has 

been found that there is only moderate and sometimes poor agreement between scoring 

technologists in different scoring labs (Collop, 2002; Danker-Hopfe et al., 2004), and poor or 

moderate agreement in intra-observer agreement has been shown as well (Suzuki et al., 2019). 

Inaccurate scoring of the PSG has impacts on the results of the other chapters as it is used for 

scoring and is designated as the gold standard reference for sleep stage identification. This could 

have implications for the other methods described in chapters 3-5, where for example, instances 

of mis-scoring between N1 and N2 could have affected the accuracy of the proxy method to 

identify the correct stage.  



 

152 
 

The outputs or traces from the PSG are often scored visually, as there can be individual 

differences in brain activity between subjects, and human scorers using standardized criteria 

can often be more adaptable to these differences than current computer algorithms (Silber et 

al., 2007).  However, computer algorithms have been developed to identify sleep stages in 

humans (Faust et al., 2019) and in other animals such as rats and mice (Allocca et al., 2019; 

Lampert et al., 2015). During this study we attempted to run the automatic human sleep staging 

algorithm included with the RemLogic software on the cow PSG but found that most epochs 

were obviously scored incorrectly. Using the built-in scoring algorithm, epochs clearly containing 

rumination were scored as N3, likely due to the slow wave artefact from the chewing activity. 

Because of the rumination artefact, using previously developed sleep staging algorithms for 

other animals may not be useful for scoring sleep in ruminants.   

The methods and devices required to record PSG are time consuming and difficult to use, and 

scoring PSG manually is also time and labour intensive, and human scoring can be subjective. 

Thus, investigation into the differences in the characteristic activity and power spectra of the 

EEG or other PSG traces could be useful to develop more objective automatic or semi-automatic 

scoring systems for cow sleep in the future. 

This scoring system is the first to score lighter stages of NREM sleep in dairy cows. Previous 

criteria for scoring sleep in dairy cows described R M sleep,  low Wave  leep and ‘drowsing’ 

(Hänninen et al., 2008; Ruckebusch et al., 1970; Ternman et al., 2012). As mentioned earlier in 

this thesis, Ruckebusch (1972) described drowsing as a stage of stable wakefulness, indicating 

that he believed the cows to awake but inactive during this time. More recent work in cows that 

have also scored drowsing according to the criteria described by Ruckebush noted the 

occurrence of sleep spindles and k-complexed during this stage (Ternman et al., 2012). Sleep 

spindles, short 1 second or so bursts of 11-16 Hz activity (Iber and American Academy of Sleep 

Medicine, 2007), are characteristic of human N2 sleep and were also observed on the cow PSG 
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during drowsing epochs (Ternman et al., 2012). Thus, drowsing may be better classified as a 

stage of light sleep rather than wakefulness. Sleep spindles can be difficult to identify reliably. A 

study of inter-expert and intra-expert agreement for human sleep spindle scoring found weak 

to moderate agreement in the ability to identify sleep spindles correctly (Wendt et al., 2015). 

The difficulty in reliably identifying sleep spindles could be a source of disagreement in scoring 

between N1 and N2, as epochs of N2 stage sleep with no sleep spindles or K-complexes could 

appear to be similar to N1. Sleep spindles have been described in sheep and can be detected 

using an automatic algorithm (Schneider et al., 2020). Using an algorithm to detect sleep 

spindles or other patterns of the cow PSG could also be a way to improve sleep stage 

identification, particularly for the lighter N1 and N2 stages.  

The description of the 5 stages of sleep in this study are based solely on their visual similarity to 

well described human sleep stages. The scoring system I developed for the cow PSG was 

influenced by the pre-conceived scoring systems developed for humans, splitting NREM into 3 

stages, however, these divisions may not necessarily be required for cows. Human sleep has 

been differentiated into these stages to categorize different brain patterns as well as depths of 

sleep. Sleep depth can be determined from auditory arousal thresholds (Busby et al., 1994; Pilon 

et al., 2012) and generally, it takes less auditory stimulation to wake someone from light sleep 

than it is to wake them from a deep sleep. Verification of the classification of sleep stages and 

suitability of splitting NREM into multiple stages in dairy cows could be accomplished by 

investigating the auditory arousal thresholds compared to PSG. 

Using unsupervised machine learning methods could also be useful way to identify sleep stages 

from the PSG data alone, without the bias associated with pre-conceived scoring frameworks. 

Unsupervised machine learning methods use unlabelled data  as opposed to supervised machine 

learning that requires human input to classify the data into categories, and are able to identify 

hidden patterns in the data without human direction (Sathya and Abraham, 2013). Clustering 
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algorithms, that group data into more homogenous clusters could be an option to classify the 

raw data into similar stages (Jafari-Marandi, 2021). 

Cows must ruminate to break down the fibre in their diets and can spend large amounts of time 

per day chewing (Beauchemin, 1991), however it is unclear if a certain level of cognitive arousal 

is required for this behaviour to occur. In this thesis, rumination was scored as a distinct stage 

on the PSG traces and removed from the dataset completely in analysis of the HR and 

development of machine learning models because the actual brain activity during this time could 

not be determined accurately. A filter has been specifically created to attempt to  remove the 

rhythmic chewing artefact from the EEG traces in dairy cows using the EMG trace (Pastell et al., 

2012). While the filter appears to work well in being able to remove a large amount of the error 

in the signal, the corrected trace can appear to contain spindles, which may still cause confusion 

during scoring.  I observed that the cows would go from rumination straight into REM sleep 

(Appendix A). This type of sudden cataplexy or loss of muscle tone, and the presence of  REM- 

like EEG traces are criteria used to identify narcolepsy in animal models (Toth and Bhargava, 

2013). However, rather than being a type of narcoleptic transition, it may be more likely that 

cows are able to sleep during rumination and transition directly to REM from this 

rumination/sleep state. When ruminating, cows need to pause chewing to swallow and 

regurgitate the cud. This gives a small 3-4 second window without chewing to observe the EEG 

unobscured by rumination artefact. Such a short window is not typically used in human sleep 

scoring, and may be misleading for visual analysis (Schulz, 2008), but could be a method to 

identify sleep stages during rumination in cows. Cows have been found to ruminate for around 

6-8 hours per day (Stone et al., 2017) and rumination is often correlated with lying behaviour 

(Schirmann et al., 2012; Stone et al., 2017), therefore cows may be able to achieve more sleep 

than previously thought, and particularly more light or NREM sleep.  
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Lying postures 
We found that lying postures could not be used to identify sleep stages that were identified 

using PSG as the gold standard in chapter 3. This was similar to results found by Ternman et al. 

(2014), who found that lying postures could not be used to identify REM and NREM sleep in 

dairy cows. We found that more specifically defined head postures were also not useful to 

identify stages of N1 and N2 sleep as hypothesised. REM sleep did occur in a head resting or 

tucked posture most of the time, and almost all of the time in the New Zealand study; however, 

using only these postures would overestimate actual REM sleep time substantially.  Moreover, 

using the tucked or “sleep posture” to estimate total sleep time (Fukasawa et al., 2019, 2018) 

would be an underestimation of total sleep time and overestimation of REM. There is as yet no 

evidence to suggest that REM sleep is expressed proportionately to the amount of other sleep 

stages that a cow will achieve. However, recently, Ternman et al. (2019) found that REM sleep 

time changed with the lactation cycle, and also showed that other sleep stages, such as NREM 

and drowsing also changed similarly. More research is needed to determine if sleep stages are 

exhibited proportionally in dairy cows and if so, if total sleep time could potentially be estimated 

through the identification of only one stage. 

In a study to investigate the use of accelerometers on a halter to study sleep in cows, Klefot et 

al. (2016) used in-person monitoring of the cows’ lying postures, head positions as well as eye 

closure and opening to identify stages of NREM and REM sleep and wakefulness. We attempted 

to record eye opening and closure during behavioural observations of the cows, but even from 

the four corners of the test pen, and infrared cameras, were not always able to accurately 

determine when the eyes were open or closed. It could be possible for cows to be asleep with 

eyes open (McNab, 2005), or alternatively, to be awake with eyes shut. Future investigation of 

this behaviour could be conducted using PSG methods for clarification.   
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Heart rate 
In chapter 4, HR was recorded simultaneously with PSG and the HR and HRV measures were 

found to change between sleep stages in dairy cows. The differences between stages followed 

similar patterns between the Scottish and New Zealand cows despite large differences in the 

mean heart rate between the groups. Again, repetition of the experiments with different breeds, 

ages, physiological status and sizes of cows would be beneficial to be able to apply the use of HR 

and HRV as proxy measures of sleep to all types of cows.  

The heart rate signals recorded from the cows contained artefacts. Artefacts can be 

physiological in nature, originating for example from ectopic (extra) heart beats, or from 

technical issues with the HR recording devices (Peltola, 2012). PolarPro Trainer 5 software was 

used for correction of the HR data in chapters 4 and 5 with moderate filter power, which 

detected and corrected errors based on deviation from the HR curve, and a minimum protection 

zone of 6 beats, above which the filter power would not adjust the HR reading. Only recordings 

where the HR correction methods corrected just a small proportion of beats over the entire 

recording were included for analysis. Different editing methods such as deletion or interpolation 

can be used for correction of HR signals. They are important for the accurate reflection of HRV 

measures, however these filtering methods also have an effect on the results (Peltola, 2012). 

Additionally, short term HRV analyses are more sensitive to artefacts, and editing and the use of 

30 second epochs in the studies of this thesis could have affected the accuracy of the HRV 

metrics calculated. In future, analysis of the HR data using different filtering methods, or longer 

epoch lengths, could improve accuracy of the HRV analysis for cow sleep.   

Some problems were encountered when recording the HR signals in the cows, mainly issues with 

artefacts or signal loss due to technical issues with the recording devices or degradation of the 

signal during long-term recording. Polar HR monitors are often identified as being the most 

accurate and are suitable for long term recordings up to and over 24 hours in length (Hinde et 
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al., 2021). The artefacts encountered may have been caused by movement of the electrode belt 

which could have been exacerbated by free movement of the cows in the test pen or in the 

paddock, or from the ultrasound gel on the electrode pads drying out. Tightening the belts and 

the girth may be a way to reduce the likelihood of movement of the belt and therefore the 

number of artefacts in the data but may be uncomfortable for the cows.  Further investigation 

regarding the accuracy of long-term heart rate recording methods would be beneficial, 

particularly if attempting to use HR signals in sleep assessment, as long-term monitoring for 24 

hours or at least over-night is required.  

Over the past few decades, other methods of heart rate monitoring, specifically optical heart 

rate monitoring technology, have improved significantly. Photoplethysmography (PPG) is an 

optical technique that uses changes in the refractory rate to detect pulse rate from optical 

changes of blood circulation in the skin (Allen, 2007). Many human smart watches use PPG and 

machine learning algorithms to identify heart rate for humans, however there is some concern 

regarding the use of PPG for accurate HRV detection (Hoog Antink et al., 2021). PPG is used in 

veterinary practice to monitor the pulse oxygenation of the animals, usually from a clip on the 

tongue during surgical procedures, but more recently, a study found good comparison of tongue 

pulse oximetry with sensors placed on the tail of dogs and around a cat’s paw (Cugmas et al., 

2019). Deep learning methods have been developed to predict sleep stages from PPG signals 

with moderate accuracy compared with PSG for humans (Korkalainen et al., 2020). PPG could 

be a potential method to measure HR in dairy cows and may also be useful to include in future 

models to predict sleep stage.  

Machine learning  
Applying machine learning methods, I developed a method to predict sleep stage as identified 

from the PSG traces using a combination of non-invasive HR measures and surface EMG. The 

two supervised machine learning algorithms performed similarly and were both able to classify 
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the data well and predict the correct sleep stages. Supervised machine learning works by using 

the already classified or scored data as an example with which to teach the model. As discussed 

earlier, using unsupervised learning, and allowing the algorithms to identify the most likely or 

natural groupings of the data could be a method for future refinement of the models.  

The models were built and tested with a data set with standing and rumination removed making 

it easier for the model to learn to identify the sleep stages correctly, however this is a somewhat 

‘un-natural’ data set. Adding the standing and rumination data in future models would be 

beneficial for real life scenarios in future applications. Adding in these sorts of real life, messy 

data sets could enable future development of these models to be able to predict the sleep of 

cows in real-time. Live HR and HRV can be accurately detected with a smartphone app rather 

than having to log the data with a Polar watch for dairy cows (Wierig et al., 2018) and wireless 

surface EMG devices have been developed for human activity monitoring (Biagetti et al., 2018). 

Further research into the use of these devices with dairy cows, and in outdoor free ranging 

environments could be a way to identify particular sleep stages and to investigate the effects of 

selective sleep deprivation, to identify the importance of individual sleep stages for cows.  

Further improvements to the current predictive model could also be made through evaluation 

and learning of the patterns and probabilities of sleep stage transitions. Appendix A contains a 

transition matrix of the probabilities of the epoch of a sleep stage being followed by each of the 

other sleep stages. In general, the cows followed similar patterns to humans (Carley and Farabi, 

2016), moving from awake to lighter sleep (N1&N2) into N3 and REM followed by arousal back 

to awake. Using the transition probabilities, or more complex computer algorithms such as long 

term/short term memory functions could improve the predictive ability of the model by cutting 

down on the likely possible epoch classification based on experience from previous epochs 

(Radha et al., 2019).  
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HR and HRV were included in the predictive models for sleep stage, however the model could 

only learn from the discrete data points to have input on the classification decision. Because of 

this, HR and HRV features were not as important to the model as the EMG data were. However, 

in chapter 4 we found the HR and HRV features did differ between sleep stages, and often there 

was a significant difference between the sleep stages. These cardiac variables were particularly 

effective at distinguishing REM and N3 sleep from awake.  Therefore, by using the typical 

patterns of differences in the sleep stages using identified periods of wakefulness as a baseline, 

HR and HRV features could become much more useful in future machine learning models.  

Potential uses of non-invasive methods for 

assessing cow sleep  
The development of these method for detecting sleep could facilitate future research in dairy 

cow welfare and could assist in the investigation of many questions regarding sleep, cow 

behaviour and welfare. For example, how short term or chronic sleep loss events, uncomfortable 

surfaces, restrictive lying areas, and high stocking densities affect the abilities of cows to get 

sufficient sleep.  

The PSG recording length during the studies in this thesis was limited to 10 hours due to memory 

of recording devices and we chose to start recordings at 7pm and 7am ending at 5am and 5pm 

respectively, based on human-centred time schedules. Upon analysing the data, we found that 

when the recordings stopped at 5am the cows were often right in the middle of a bout of sleep. 

This observation raises the subject of the impact of the timing of farm processes and specifically 

milking frequency on cow sleep.  On farms that milk twice or three times a day, early morning 

milking times can start at 4am or even earlier. In a study of milking frequency of cows in Israel 

where milking three times a day is common, cows were milked at around 1am, 1pm and 8pm 

(Moallem et al., 2019). A study of dairy cows using automatic milking, or robotic milking in 

Australia identified three main groups of cows, who showed shifts in the mean number of 
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milking events per hour (John et al., 2019). This could indicate that individual cows may have 

different chronotypes or sleep timing preferences. Some cows may prefer to sleep-in, and some 

may be early risers, therefore developing an understanding of typical sleep patterns and timing 

of sleep could be beneficial for improving cow sleep and cow welfare on farms.  

Pasture based dairy cows in New Zealand may occasionally graze in paddocks that are a good 

distance away from the milking shed, meaning that they may need to walk long distances to 

milking in addition to their daily movement activity while grazing. These cows are therefore likely 

to have much more movement opportunities than cows housed indoors in free stall or even tie 

stall environment (Shepley et al., 2020).  While movement opportunity may not be exactly 

comparable with human exercise, it can indicate more opportunities for physical activity. In 

humans, a positive relationship between perceived sleep quality and physical activity has been 

reported, particularly in older adults (Christie et al., 2016). The methods developed during this 

thesis could be used in the future to investigate the effects of movement opportunity on sleep 

and sleep architecture in dairy cows.   

Intensive winter grazing on crop or paddock is common in the South Island of New Zealand but 

grazing on crop is also becoming increasingly common in the North Island. Cows are held on 

restricted areas of the pasture or crop (break/strip) at a high stocking density, new breaks are 

given daily or when needed and they may also be given supplementary silage or hay. This is done 

to avoid pugging damage to the paddocks as the soil can be affected by seasonal increases in 

rainfall and shorter day-lengths affecting re-growth (Houlbrooke et al., 2009). However, due to 

increases in rainfall, and high stocking density, surfaces can quickly become wet and muddy, 

these factors can cause reductions in lying time, rumination time and choice of lying site which 

are all significant welfare concerns for cows. Dairy cows must lie down to sleep, therefore 

conditions that significantly affect lying times may also influence a cow’s ability to achieve 

enough sleep. The NZ dairy welfare code recommends cows should be able to lie and rest 
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comfortably for 10-12 hours per day (Ministry for Primary Industries, 2019). Studies with NZ 

dairy cows have found significant reduction of lying time during wet days on crop paddock (5hrs/ 

day, Al-Marashdeh et al., 2019) and in simulated winter conditions on grass pasture (4hrs/day, 

Tucker et al., 2007). In a simulated mud experiment, lying times were reduced proportionally 

with increasing moisture content, white blood cell counts were negatively affected and cows 

spent more time lying on concrete, rather than lie in very muddy conditions (Chen et al., 2017). 

Recently, Schütz et al. (2019) found that moisture content rather than ‘dirtiness’ was the main 

element affecting a cow’s decision to lie down. Cows also change their lying postures on wet 

surfaces to minimize body surfaces touching the ground and spend significantly less time in 

tucked or head resting positions (Schütz et al., 2019; Tucker et al., 2007). Temporarily removing 

or ‘standing off’ the cows from the paddock for a portion of the day onto a ‘stand-off pad’, 

sacrifice paddock or occasionally a farm laneway, are some of the management practices used 

to reduce the impact of the cows on the paddocks in winter. However, uncovered standoff pads 

are also subject to the winter elements and without refreshing the bedding surfaces regularly, 

can become wet and muddy leading to significant and serious reductions in cow lying time 

(O’Connor et al., 2019). The methods developed during this thesis could be used to investigate 

the impact of winter grazing practices, muddy surfaces, stocking density as well as stand-off pads 

of the sleep and sleep architecture of dairy cows to inform winter management practices on 

farm. 

Additionally, the methods developed during this thesis could also be applied to other animals. 

Long term monitoring of animal sleep has often necessitated implanted electrodes (Malungo et 

al., 2021; Perentos et al., 2017; Ruckebusch et al., 1970). The use of surface electrodes to record 

HR and EMG would be a way to refine these methods, improving animal welfare during sleep 

research. 
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Final Conclusion 
 

Sleep is important and needs to be considered for animal welfare. There are many factors in the 

environment and management of dairy cows that are likely to have an impact on sleep and 

methods to study sleep more easily and reliably are required to include sleep in future animal 

welfare research. Overall, the results of my thesis have expanded the understanding of sleep 

physiology in dairy cows. The studies presented in this thesis have provided an expanded 

framework for the visual assessment of sleep from PSG and have reinforced the need for 

alternate ways of identifying sleep other than PSG and behavioural methods. I have 

demonstrated that methods of identifying sleep from heart rate and muscle activity can be as 

accurate as verified using PSG, with accuracies in the range shown in similar research with 

humans. The results of my thesis are a significant advancement for the future of sleep research 

in cows, however further research is required to validate these results with larger sample sizes, 

different environments, and different cows.  
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In this section I have included results not presented in the main text, including 

information about the amount of data collected, the breakdown of sleep stages into bouts and 

bout lengths as well as stage transitions. 
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Data Recorded and Quality  

Overall, 32 recordings were made with the Scottish cows, and 35 with the NZ cows. Table 1 

shows the total amount of time recorded and the break down of this time into good, OK and 

bad quality data. Good quality data included recordings where at least one trace of each of the 

PSG signals had good impedance and the HR signal was also good based on the criteria described 

in chapter 4. OK quality data included recordings where one of the PSG traces was missing or 

had poor impedance, the recording cut out halfway, or the heart rate cut out halfway. Bad 

quality data included recordings where several of the PSG traces were missing or had poor 

impedance or the HR signal was poor or missing.  

Table 2 shows the number of recordings made with each cow as well as the number and percent 

of good quality recordings made with each cow. On average we made 5.6 recordings with each 

cow, but only 55% of the recordings made were successful, however this ranged from 0-100% 

depending on the cow.  

Only the good quality data, and the data classified as OK due to recordings cutting out halfway 

but that otherwise contained good quality data were used for scoring and included in the results 

in the main body of this thesis. Table 3 shows the breakdown of the total amount of the scored 

data by country and time of recording. Daytime recordings ran from 7am to 5pm and night-time 

recordings from 7pm to 5am. Table 3 also shows the breakdown of the scored data into total 

sleep time, total time awake and total time ruminating by study and time of day. Overall, 377.7 

hours of data were scored, almost half from recordings made in the daytime and half from 

overnight recordings. Over all the recordings, 17.64% of the time was scored as sleeping (N1, 

N2, N3 & REM), 48.9% of the time was scored as awake, and 33.7% was scored as ruminating. 

In both the Scottish and NZ data alone, about 30-35% of the data was scored as ruminating. In 

Scotland, about 25% of the data was scored as sleeping and 43% was awake. In NZ however, 

only around 12% of the data was scored as sleeping, and 52% was scored as awake. In both 
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groups, about 70% of the sleep occurred during night-time recordings, and 30% occurred during 

the day, and rumination followed a similar pattern. These results could indicate that the Scottish 

cows slept more than the NZ cows, but as we were only able to record for 10 hours at a time, 

and had a large amount of unusable data, we were unable to interpret the amount of sleep over 

a 24 hour period.  

Table 1 Number of recordings made, recording lengths, and recording quality for the Scotland 
and New Zealand cows.  

# Scotland Recordings: 32 
# New Zealand 
Recordings: 35 

Total Hours 
Recorded: 

241:11:55 
Percent 
of Total: 

Total Hours 
Recorded: 

338:48:00 
Percent of 
Total: 

Good Quality 
Total: 

159:36:27 66.17 
Good Quality 
Total: 

208:51:00 61.64 

OK Quality 
Total: 

50:56:34 21.12 
OK Quality 
Total: 

30:00:00 8.85 

Bad Quality 
Total: 

15:39:57 6.49 
Bad Quality 
Total: 

99:57:00 29.50 

Good/OK 
Total: 

210:33:01 87.29 
Good/OK 
Total: 

238:51:00 70.50 

 

Table 2 Total number of recordings and good quality recordings made with each cow 

Country Cow ID Name 
Total # 

Recordings 

# Good 

Recordings 

% Good 

Recordings 

NZ 5393 Ellie 5 3 60% 

NZ 5298 Millie 7 2 29% 

NZ 5344 Bobby Brown 5 3 60% 

NZ 5762 Annie 7 4 57% 

NZ 5037 Tango 5 4 80% 

NZ 5035 Mango 6 6 100% 

Scot 2481 Sassy 4 1 25% 

Scot 2457 Merida 2 0 0% 

Scot 404 Page 7 3 43% 

Scot 369 Maisel 9 7 78% 

Scot 367 Dina 6 5 83% 

Scot 337 Monster 4 2 50% 



 

172 
 

Table 3  Total hours of data scored from UK and NZ cohorts, total time from scored data scored 
as sleeping, awake and rumination, during the day and night by cohort. 

 
Scot NZ Total 

Overall total Scored Data 167.06 210.64 377.7 

Day 68.84 (41.21%) 109.84 (52.25%) 178.68 (47.31%) 

Night 98.22 (58.79%) 100.8 (47.85%) 199.02 (52.69%) 

Total Sleep Time 

 (N1, N2, N3 & REM) 

 

41.73 (24.97%) 

 

24.92 (11.83%) 

 

66.65 (17.64%) 

 Day 12.97 (31.08%) 7.51 (30.14%) 20.48 (30.73%) 

Night 28.77 (68.94%) 17.41 (69.86%) 46.18 (69.29%) 

 Total Wake Time 72.29 (43.27%) 111.6 (52.98%) 183.89 (48.86%) 

 Day 42.3 (58.51%) 80.28 (71.94%) 122.58 (66.66%) 

Night 29.99 (41.49%) 31.33 (28.07%) 61.32 (33.35%) 

Total Rumination Time 53.03 (31.71%) 74.13 (35.19%) 127.16 (33.66%) 

Day 13.58 (25.61%) 22.06 (29.76%) 35.63 (28.02%) 

Night 39.46 (74.41%) 52.07 (70.24%) 91.53 (71.98%) 
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Sleep Stage Bout Lengths 

Bout lengths were calculated by adding successive epochs until a stage shift was identified. 

Figure 2 indicates the average bout lengths in each sleep stage, awake and rumination for both 

study countries separated by recording time. Table 4 also shows these results, as well as the 

total number of minutes, and percent of total time in each sleep stage by country and time of 

day. Bout lengths in N1 were very short and lasted on average about 1.4±1 minute in both groups 

in both day and night recordings. N2 bouts were also quite short, lasting on average 2.6±2.3 

minutes in both daytime and night-time recordings for both groups. On average N3 bouts were 

3.1±2.1 minutes long, however N3 bouts were shorter in the daytime (2.5±1.4 min) than at night 

(3.4±2.3 min). REM sleep bouts were on average 4±2.4 minutes long, however, were also much 

shorter during the daytime (2.6±1.7 min) than at night (4.3±2.4 min). Very little REM sleep was 

scored during the daytime, only 83 minutes of REM sleep were scored during the daytime. Bouts 

of rumination lasted on average 31.6±19 minutes and were shorter during the daytime than at 

night. Awake bouts were quite variable in length, however the NZ cows had longer awake bouts, 

particularly during the daytime.  

 

Figure 1 Bout lengths (min) in each sleep stage (N1-N3, REM), wakefulness and rumination, by 

cohort group in daytime and night recordings. 
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Table 4  Total time and bout lengths by sleep stage, time of day and cohort group. 

Sleep stage, Time of 

Day, Study 

Total Minutes 

Recorded (% of total) 

Average Bout 

Length (min) ± 

StdDev 

N1 1036 (4.8%) 1.4±1 

Day 356 (34.4%) 1.5±1.1 

NZ 100.5 (28.2%) 1.4±1 

Scot 255.5 (71.8%) 1.5±1.2 

Night 680 (65.6%) 1.3±1 

NZ 255 (37.5%) 1.4±1 

Scot 425 (62.5%) 1.3±0.9 

N2 1710 (7.9%) 2.6±2.3 

Day 469.5 (27.5%) 2.4±2 

NZ 156.5 (33.3%) 2.6±2.4 

Scot 313 (66.7%) 2.4±1.8 

Night 1240.5 (72.5%) 2.7±2.4 

NZ 412 (33.2%) 2.6±2.2 

Scot 828.5 (66.8%) 2.8±2.4 

N3 597 (2.8%) 3.1±2.1 

Day 129.5 (21.7%) 2.5±1.4 

NZ 55 (42.5%) 2.4±1.6 

Scot 74.5 (57.5%) 2.6±1.3 

Night 467.5 (78.3%) 3.4±2.3 

NZ 196 (41.9%) 3.2±2.1 

Scot 271.5 (58.1%) 3.5±2.5 

REM 745.5 (3.5%) 4±2.4 

Day 83 (11.1%) 2.6±1.7 

NZ 10 (12.0%) 2±0.5 

Scot 73 (88.0%) 2.7±1.8 

Night 662.5 (88.9%) 4.3±2.4 

NZ 300.5(45.4%) 4.6±2.4 

Scot 362 (54.6%) 4.1±2.3 

Awake 10105.5 (46.9%) 11±27.1 

Day 6456.5 (63.9%) 21.1±40.5 

NZ 4455.5 (69.0%) 39.8±55.7 

Scot 2001 (31.0%) 10.3±22 

Night 3649 (36.1%) 6±14.2 

NZ 2012.5 (55.2%) 8.1±16.2 

Scot 1636.5 (44.8%) 4.5±12.4 

Rumination 7342.5 (34.1%) 31.6±19 

Day 1988.5 (27.1%) 24.3±14.7 

NZ 1195.5 (60.1%) 24.4±12.2 

Scot 793 (39.9%) 24±18.1 

Night 5354 (72.9%) 35.7±19.9 

NZ 2989 (55.8%) 39.3±21.7 
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Scot 2365 (44.2%) 32±17.3 

Sleep Stage Transitions 

Sleep stage bout transition matrices were calculated in R version 4.0.5 (R Core Team, 2021) using 

the ‘markovchain’  (Spedicato, 2017)and ‘msm’ (Jackson, 2011) packages. Figure 2 shows the 

proportion of bout transitions for all sleep stages (N1, N2, N3 & REM), awake (W), rumination 

(RNT) as well as epoch and bouts scored as unknown (U). The majority of W bouts were followed 

by a bout of N2 (66%), or rumination (18%). N1 sleep was often followed by a bout of N2 62% of 

the time or back to W in 30% of cases. In 38% of cases, N2 was followed immediately by a W 

bout, but 27% of the time proceeded into N3. Almost 40% of N3 bouts were also followed by a 

W bout, 31% of the time they returned to N2, and 17% of the time were followed immediately 

by REM sleep. Ninety percent of the time, REM sleep was immediately followed by W. About 

70% of bouts of rumination were followed by W bouts, but approximately 20% were followed 

by light sleep (N1 &N2). Rumination was proceeded by REM sleep 4% of the time. Table 5 shows 

the actual number of bout transitions to and from each sleep stage. Figure 3 and Table6 show 

the transitions for only the night-time recordings. Figure 4 and Table 7 show the transitions for 

the daytime recordings.  
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Figure 2 Bout transitions between sleep stages for all data 

 

 

Table 5 Overall number of bout transitions by sleep stage 

  To 

 
 

N1 N2 N3 R RNT U W 

Fr
o

m
 

N1 0 471 5 30 27 0 227 

N2 107 0 177 88 22 1 249 

N3 17 60 0 33 6 0 74 

R 9 6 2 0 0 0 166 

RNT 20 20 4 10 0 5 160 

U 2 2 0 1 9 0 36 
W 607 88 3 23 165 18 0 
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Figure 3 Bout transitions between sleep stages only night-time 

 

 

Table 6 Overall number of bout transitions by sleep stage during night-time recordings 

  To 

  N1 N2 N3 R RNT U W 

Fr
o

m
 

N1 0 330 5 28 17 0 137 

N2 69 0 126 66 14 1 174 

N3 12 39 0 27 5 0 55 

R 7 5 2 0 0 0 137 

RNT 17 18 3 10 0 3 88 

U 1 2 0 1 6 0 17 

W 413 59 3 21 103 7 0 
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Figure 4 bout transitions between sleep stages during the day 

 

 

Table 7 Overall number of bout transitions by sleep stage during daytime recordings 

  To 

  N1 N2 N3 R RNT U W 

Fr
o

m
 

N1 0 141 0 2 10 0 90 

N2 38 0 51 22 8 0 75 

N3 5 21 0 6 1 0 19 

R 2 1 0 0 0 0 29 

RNT 3 2 1 0 0 1 72 

U 1 0 0 0 3 0 19 

W 194 29 0 2 59 8 0 

 

 

 

 

 

 



 

179 
 

Daily Sleep Stage Patterns 

 

Figure 5 Breakdown of each recording by sleep stage and standing or lying behaviour for NZ 
(top) and Scottish (bottom) cows.



 

 
 

Figure 6 A diagram of each scored recording by sleep stage and activity 
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CAN WE DETERMINE COW SLEEP STAGES FROM LYING POSTURE? 

 

Laura Hunter123, Fritha Langford2, Cheryl O’Connor1 Jim Webster1, Marie Haskell2 and Kevin Stafford3 
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Sleep is an essential function for all animals and its importance is increasingly being discussed in the 

human literature. Sleep restriction can have severe implications for many important health and welfare 

domains such as mental and physical health, immunity, development, and social interactions. Little is 

known about the importance of sleep for livestock welfare. This is mainly due to difficulties in accurately 

determining when an animal is asleep. The gold standard to stage sleep in animals is to use 

polysomnography (PSG); using electroencephalography (EEG) to record brain activity, electrooculography 

(EOG) for eye movements and electromyography (EMG) for muscle tone, however this method is delicate 

and impractical to apply in a large-scale study with unrestrained livestock.  

Cows must lie down to sleep, therefore factors in the environment that affect cows lying behaviour are 

likely to have a significant impact on sleep. Cows adopt a characteristic tucked position with the neck 

turned and resting on the flank or ground and eyes closed, and occasionally will lie in a completely laterally 

recumbent posture. Previous studies in dairy calves have indicated that head position could be used with 

some accuracy to predict sleep stage in calves however it could not be used reliably in adult cows. The 

aim of this project was to continue to investigate the use of lying position and head posture in the 

prediction of cow sleep stages. 

PSG recordings were made from 5 non-pregnant, non-lactating dairy cows managed individually in a 5m 

x 5m deep bedded straw pen at the SRUC Acre Head Research farm in Dumfries, Scotland. Readable data 

from 164hrs of recordings were scored into five stages of sleep from light to deep from PSG traces in 30 

second epochs. Postures and head positions were scored from corresponding video recordings.  

When in REM sleep tucked posture with head resting was observed in 78.51% of epochs, lateral lying in 

14.8% of observations and other in 6.68%. However, REM sleep made up only 44.08% of all observations 

in the tucked posture while 47.91% of epochs were scored as light sleep or awake. REM sleep position 

varied between cows with some cows almost exclusively achieving this stage in a tucked position while 

another obtained almost half of scored REM sleep epochs in a laterally recumbent position. Non-REM 

deep sleep was observed in 58.84% of epochs when the cow was lying upright with the head low, however 

NREM sleep made up only 6.39% of all lying with head low epochs. 

This data supports previous findings that lying posture and head position cannot be used accurately to 

estimate sleep stage in adult dairy cows. There may be individual preference for lying postures in deep 

sleep stages between cows, therefore estimates of sleep from postural data alone could be inaccurate 

between animals. This research also reinforces the need for further research into practical alternative 

methods of assessing sleep stages in large animals that can be applied in a larger scale. 
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USING MACHINE LEARNING TO PREDICT SLEEP STAGES FROM MUSCLE ACTIVITY AND HEART RATE IN 

DAIRY COWS 

Laura Hunter123, Abdul Baten4, Fritha Langford2, Cheryl O’Connor1 Jim Webster1, Marie Haskell2 and 

Kevin Stafford3 
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Little is known about the importance of sleep for cow welfare, mainly due to difficulties in accurately 

determining when an animal is asleep. The gold standard method - polysomnography (PSG)- involves 

recording electrophysiological traces of the brain (EEG), eyes (EOG) and muscles (EMG), but is fragile and 

impractical to apply in large-scale studies or pastoral environments. Algorithms and devices such as smart 

watches have been developed for humans to predict sleep stages using movement and physiological 

changes. The aim of this project was to determine if similarly, heart rate (HR) and EMG activity alone could 

predict sleep stages accurately compared to PSG in dairy cows. Assessing the use of the new measures in 

both indoor-housed and pasture environments would allow the methodology to be used in either 

environment. 

Ethical approval was obtained prior to the start of the study. Six pregnant dry cows (New Zealand) and six 

non-pregnant dry cows (Scotland, UK) were fitted with PSG-recording equipment and a Polar HR 

monitoring belt. During recordings the cows were managed individually in a 5m x 5m indoor straw (UK) 

or 10m x 10m outdoor pasture enclosure (NZ), but always maintained audio-visual contact with group 

mates. Four sleep stages (Rapid Eye Movement (REM) and Non-REM (N1, N2, N3)), wakefulness and 

rumination were scored in 30 second epochs from the PSG traces and corresponding statistics were 

generated from the filtered HR and EMG traces. 192.7 hours of good quality data were used to build and 

test a machine learning model using the Orange machine learning platform. The performance of two 

machine learning algorithms (Neural Networks (NN) and Random Forest (RF)) was compared using ten-

fold cross validation. NN performed best and was able to predict overall sleep stages with an area under 

the receiver operating curve (AUC) of 92.5% and classification accuracy (CA) of 82.3%.  In predicting 

individual sleep stages, the model had more success identifying REM sleep (AUC 92.4%, CA 95.8%) and 

wakefulness (AUC 94.7%, CA 88.4%) than Non-REM stages such as N3 (AUC 90.8%, CA 85.25). 

Using HR and EMG data alone, the model was able to accurately predict sleep stages in the range of similar 

human models. These results are promising and the identification of sleep using non-PSG methods will 

allow us to investigate sleep in more commercially relevant settings. 
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sleep, as cows must lie down to achieve  it5. Sleep can be affected by stressful experiences 

during the d ay6. Therefore, changes to sleep patterns or total sleep time in cattle could be 

useful indicators for stress and other welfare concerns. The ability to identify sleep stages 

accurately could enable research on the effects of sleep loss for cows and could be useful to 

inform management practices such as determining rest intervals during long-haul transport or 

management of cattle during wet weather (i.e. on standoff pads). 

Sleep consists of two main types: rapid eye movement (REM) and non-REM (NREM) sleep. 

The most accurate method of identifying sleep types is polysomnography (PSG)7,8, which 

consists of a combination of physiological measurements; mainly electroencephalography 

(EEG), electromyography (EMG), and electro-oculography (EOG), which record electrical 

signals of the brain, as well as muscle and eye activity. Using specialized software, traces from 

these signals are analyzed and scored visually using characteristic patterns to determine sleep 

stages according to defined criteria. REM sleep is a deep sleep stage, where the brain is active, 

the muscle tone is low and there are often frequent eye movements. The majority of human 

total sleep time is spent in NREM sleep, which can be further divided by ‘depth’ into 3 stages 

from light—N1 and N2 sleep to deep N3 or slow wave sleep (SWS). SWS is characterized by 

high amplitude oscillating activity on the EEG accompanied by lower muscle tone and lack of 

eye movements. Many of the restorative functions of sleep are thought to occur in this s tage9.  

Model AUC (%) CA (%) F1 Precision (%) Recall (%) 
Neural network 92.5 82.3 0.814 81.5 82.3 
Random forest 92.6 82.1 0.805 81.3 82.1 

Table 1.  Overall performance of the neural network and random forest models across all 
sleeping stages (average over classes) in terms of area under the curve (AUC), classification 
accuracy (CA), F1 score, precision, and recall (sensitivity). 

 

Dairy cows have been found to sleep for approximately 3–4 h per day, but only around 30 min 

of this in REM sleep 10,11. Therefore, most of the sleep time also consists of NREM sleep stages 

and it is likely that these stages serve important functions for cows as they do humans. 

PSG has recently been used to record sleep in  calves12 and  cows10 in indoor-housed 

environments. However, it requires a considerable amount of training to habituate the animal 

to wearing the equipment, and this with intensive handling, delicate and expensive devices, 

specialized scoring and frequent monitoring, makes PSG impractical for large research projects 

on cows in uncontrolled environments such as in typical group-housed farms and outdoors on 

pasture. No recent studies have attempted to record non-invasive PSG of sleep of cows on 

pasture, probably because of the difficulty in using these instruments with cows let alone in 

challenging and variable outdoor conditions. An ideal solution would be an alternative method 

or proxy for PSG, more easily applied in a variety of environments and less intensive than PSG. 

As cows must lie down to s leep5, lying posture has been suggested as such a proxy. In calves 

that spend a lot more time in deep sleep stages, lying with head up and immobile and lying 

with the head resting on the ground or turned and resting on the flank were found to be able 

to estimate SWS and REM sleep time r espectively12. However, these same postures greatly 

over-estimated total sleep time in adult c ows13 and were unable to accurately detect NREM 
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sleep. Further methods based on accelerometers to collect movement and position data from 

devices on the head or neck of calves and c ows14–16 have been developed to predict sleep. 

However, while these models have shown some success in detecting the tucked lying posture 

during which most REM sleep occurs, they overestimate total sleep time and lack the ability to 

distinguish differences between light and deep NREM sleep, as well as wakeful inactivity. 

Additionally, these methods have only been validated with postural estimates of sleep and not 

with PSG. 

During mammalian sleep, autonomic nervous activity such as heart rate17–19, respiration  

rate20 and body temperature change with sleep stage. Machine learning has been used to 

develop wearable technology for humans such as smart watches that use heart rate and 

activity to predict human sleep stages and duration21. Therefore, the potential exists to use 

similar physiological changes to identify different sleep stages in cows. In dairy cows, 

respiration rate and body temperature can be recorded for long periods of time, but are d 

ifficult22 or require invasive internal devices. Heart rate (HR) and heart rate variability (HRV) 

recording devices are relatively inexpensive and unobtrusive to the cow and can be worn for 

long periods of t ime23,24. Methods using machine learning to predict sleep stage from HR and 

HRV have been developed recently for  humans19,25, and methods combining HR with other 

measures such as actigraphy further increase performance for sleep stage  identification26. 

We collected HR, lying behaviour and PSG data simultaneously from two groups of cows, 

housed indoors and on pasture. The aim of this project was to determine if we could accurately 

differentiate between different stages of light and deep sleep in dairy cows using only HR and 

neck muscle EMG data, compared to visual scoring of the PSG, and to compare the success of 

two machine learning algorithms in this task. 

Results and discussion 

  G is the recognized ‘gold standard’ to determine sleep stages however, a complicated and 

painstaking setup is required which makes it prohibitive to use for determining sleep stages in 

cows. The objective of this study was to determine the efficacy of using heart rate and neck 

muscle activity to determine cow sleep stages using machine learning. To our knowledge, this 

is the first study of its kind aimed to detect cow sleep stages using only heart and neck muscle 

data. Using this data alone, the machine learning models developed were able to predict 82.3% 

of sleep stages correctly. Classification performance of the machine learning models presented 

in this paper is similar to Mitsukura et al.27, which proposed models to detect human sleep 

stages using only heart rate data. Table 1 shows the values used to compare both machine 

learning models. The neural network (NN) analysis produced the best overall performance and 

had an area under the curve (AUC) value of 92.5%. Classification accuracy was 82.3%. precision 

was 81.5%, recall was 82.3% and F1 score was 0.814. The prediction accuracy of the NN model 

is just marginally better than that of random forest (RF) which produced 82.1% classification 

accuracy and a slightly better AUC value of 92.6%. Both neural network and random forest 

algorithms show the ability to learn reasonably well from the data and discriminate well 

between various sleep stages. 
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Table 2 shows the CA and AUC of both models to predict the sleep/wakes stages 

individually. In terms of AUC, Awake and REM stages were the most accurately detected with 

a 94% and 92% chance of scoring correctly. The models had slightly more difficulty identifying 

NREM sleep stages; however, AUC was remained at 90%. Figure 1 shows the ROC curves for 

the classification of each individual sleep stage by both NN and RF models. Classification 

accuracy for N3 and REM stages were above 95%, with awake and N1/2 ranging from 85 to 

88%. Individually, N3 and light N1/2 sleep were slightly more difficult to predict according to 

the classification performance of various models in our dataset. As previously discussed, this 

could be due to errors in sleep scoring from the PSG, however NREM sleep stages are the least 

different from one another physiologically, so it is possible that there is a significant overlap 

with other sleep stages in the heart rate and neck muscle activity. 

Model 

Awake  N1/2  N3  REM  

AUC (%) CA (%) AUC (%) CA (%) AUC (%) CA (%) AUC (%) CA (%) 

Neural network 94.7 88.4 90.8 85.2 90.2 95.3 92.4 95.8 

Random forest 94.4 87.2 91.1 85.5 90.4 95.7 92.3 95.9 

 
Table 2.  Performance of both models (neural network and random forest) for individual sleep 
stages (awake, combined light NREM sleep (N1/2), N3 (SWS) and rapid eye movement sleep 
(REM)) in terms of area under the receiver operator curve (AUC) and classification accuracy 
(CA). 
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Figure 1.  ROC curves of the Neural Network and Random forest models for detection of each 
individual sleep stage. (a) Awake stage, (b) combined light sleep stages N1/2, (c) slow wave 
sleep- N3 stage and (d) REM sleep stage. Figure created using Orange (version 3.26) https:// 
orang edata mining. com/. 

 

Our methodology involved spending a significant amount of time prior to the beginning of 

data collection gentling and handling the cows who had previously been unused to such an 

amount of human contact and training them to wear unfamiliar materials and instruments. 

Even with these efforts, a large amount of recorded data was then unusable due to cows 

rubbing electrodes off on gates, water buckets or when lying or moving, unpredictable cow 

behaviour, or issues with electrode impedance and the devices that could only be determined 

after the recording. We collected a total of 23,123 useable 30 s epochs (approximately 192 h) 

of PSG, HR, and activity data from a total of 12 cows in two different environments—housed 

indoors in the UK and on pasture in New Zealand. As there are no widely used scoring criteria 

for cows as there are for humans, previous work on  

 

https://orangedatamining.com/
https://orangedatamining.com/
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Awake 16,584 71.72% 
N1/2 4401 19.03% 
N3 1034 4.47% 
REM 1104 4.77% 
Total 23,123 100% 

Table 3.  Number of data points and overall percent of data points at each sleep stage in the 

dataset. 

 

cow  sleep10–12,28 as well as human American Association of Sleep Medicine (AASM)2018  

guidelines29 were used to define sleep stages. Previous cow PSG studies have only identified 

R M sleep,  W  and ‘drowsing’, however definitions of drowsing and implications for sleep 

and cow welfare are u nclear10,30. Labelling of the sleep stages based on visual analysis of the 

PSG traces is accepted as common practice in human sleep scoring, however, it can be 

somewhat subjective and there can be a degree of disagreement even between highly 

experienced human sleep scoring technicians using clearly defined c riteria31. A study of inter-

rater reliability of human sleep using AASM guidelines found an overall agreement of 82.0% 

and Cohen’s kappa = 0.7632 and a study of intra-expert scoring of spindles from light sleep 

found agreement of 72% with k = 0.6633. These kappa figures suggest high, but not perfect 

agreement between observers. Overall intra-observer agreement for scoring sleep/awake 

stages from the PSG traces in this study was 89.42%, however, N1 and N2 were the least 

reliable as only 32% of epochs were agreed, and 39% of N1 were re-scored as N2. Combining 

N1 and N2 improved agreement to 91.1%. Despite an ‘almost perfect’ level of intra-observer r 

eliability34, even when combining N1 and N2 stages, 8.9% of epochs were disagreed upon when 

re-scoring PSG. There is therefore a margin of error introduced into the model due to mistakes 

in scoring and labelling data from the P G which was used as the ‘ground truth’ with which to 

train the model. However, with visual analysis there is always likely to be a degree of human 

error associated with the scoring. 

Machine learning has also been used to classify sleep stages in animals such as m ice35 and  

rats36 using spectral aspects of the EEG signals, so this could be attempted in future sleep stage 

labelling of cow PSG data. 

Cows are ruminants and must regurgitate and re-chew their food to obtain energy. Because 

of their strong jaw muscle movements, distinct rhythmic chewing artefacts obscure the PSG 

traces making accurate identification of any potential sleep stages during rumination or 

chewing impossible. For this reason, epochs containing rumination were excluded from the 

dataset and therefore the current model is only able to identify vigilance state from data when 

rumination is absent. Future models could be modified to predict rumination, however sleep 

stage estimation during this time would be impacted by the artefacts on the EMG traces. 

The data set was heavily weighted to the awake stage. As shown in Table 3, around 70% of 

the data set consisted of awake data with the other 30% consisting of sleep, and less than 5% 

of data points being in REM or N3 sleep stages. We made recordings during both day and night 

and included all recorded data of sufficient quality in the data set. Most cow sleep occurs at 
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night-time, with small bouts of sleep during the day, and in total only about 4 h per day is spent 

s leeping11. Being so heavily weighted to the awake stage, the models had many more 

examples to learn from to identify Awake epochs, but far fewer examples from which to learn 

to identify N3 or REM sleep epochs. Balancing the dataset in terms of sleep and awake stages 

equally might help future models to learn better by having more examples of less common 

sleep stages. 

We used 15 different features of the heart rate and EMG data and the machine learning 

models were able to learn from this and discriminate between various sleep stages. 

Classification models learn and perform well when there is a significant difference between 

features in various classes. Table 4 shows the rank of each feature calculated in terms of 

information gain (the expected amount of information or entropy), gain ratio (a ratio of the 

information gain and the attribute’s intrinsic information, which reduces the bias towards 

multivalued features that occurs in information gain) and ANOVA (the difference between 

average values of the feature in different classes). The features of our dataset that were the 

most informative for the machine learning models were mainly the Neck EMG features (Neck 

RMS, Neck Variance, and Neck Standard Deviation). The highest scoring features of our dataset 

were the Neck EMG features (Neck RMS, Neck Variance, and Neck Standard Deviation). A 

reduction of muscle tone in the neck muscles is a classical indicator used for the visual 

identification of REM sleep from PSG data. The higher AUC and accuracy values for the 

prediction of REM sleep compared to other sleep stages may be due to the high rank of the 

neck EMG features (Table 2). Mitsukura et al.27 predominantly used frequency domain features 

of the HRV signal for sleep stage classification in humans, and it is possible that frequency 

domain features could be useful for cow sleep staging as well. However, we only used time 

domain features of the HRV as we were working from 30 s epochs, which is arguably too short 

of a window to calculate frequency domain metrics from. Frequency metrics are usually 

calculated for 5 min periods, and while it could be possible to increase epoch size to 5 min to 

allow for these calculations, this would reduce the granularity and possibly result in longer 

epochs containing several sleep stages as some bouts of individual stages have durations of 

less than 2 min. Long epochs consisting of multiple stages could also introduce confusion into 

the model resulting in more misclassification. 

The classification models were developed with data from two separate groups of cows 

which were different in terms of breed, age, housing, and previous experience. All cows were 

non-lactating, but the Kiwi-cross (NZ) cows were also in mid-late pregnancy during the 

recording period. There were differences between the two populations in terms of average HR 

and the Kiwi-cross cows generally had a higher heart rate than the UK group. These differences 

could be due to age, size of cows and pregnancy status, but highlights the possibility of hidden 

batch  
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Table 4.  Ranking of features in the dataset from overall most informative to least and ranking 
by each calculation; info gain, gain ration and ANOVA (redlines). Table produced using Orange 
(version 3.26) https:// orangedata mining. com/. 

 

effects within the model. More training data from different populations of cows, and cows in 

different stages of lactation would be beneficial to increase confidence in the classification 

ability of the model. 

Sleep in mammals typically occurs in cycles with REM sleep following a bout of NREM 

however, NREM sleep can also occur on its own37. Sleep is regulated homeostatically, but 

achieving a certain amount of REM sleep does not necessarily mean that a proportionate 

amount of NREM will also be a chieved37. In the development of the models, we considered 

each 30 s epoch independently, however, they are in a time series and make up bouts lasting 

from a few minutes to a few hours. Preceding epoch classification therefore could have an 

influence on the classification decision for the successive epoch. Information on typical cow 

sleep patterns and bout lengths could possibly aid in future models to predict sleep stages in 

cows. 

The current model is a marked improvement over sleep staging models for cows using only 

accelerometers to predict NREM and REM developed in the past that were only able to predict 

up to 70% of sleep  correctly14. These models also used behavioural observations to label sleep 

stages, which has been shown to overestimate sleep in  cows13. Our models have been 

developed with sleep stages labelled using PSG rather than behavioural observations, and 

while not as simple as accelerometers, EMG and HR monitoring equipment are small and far 

easier to use with cows than a full PSG montage. 

We investigated the use of non-invasively acquired EMG and HR data to predict sleep stages 

from light N1/2 sleep to deep N3 and REM sleep in dairy cows. While these models have been 

developed with a small sample size, our classification models developed with Neural Network 

and Random Forrest algorithms achieved similar outcomes, both with good accuracy, 

suggesting neck EMG and HR data could be suitable to predict sleep stage with some reliability 

in dairy cows. More data from cows of different breeds, ages and lactation stages would be 

https://orangedatamining.com/
https://orangedatamining.com/
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beneficial to improve future models. We believe the use of HR and Neck EMG is promising for 

future identification of sleep stages in dairy cows from non-invasive physiological recording 

devices. This will enable future research into the effects of typical husbandry practices, 

transport and environment on cow sleep and the importance of sleep for cow health and 

welfare. 

Methods 

Animals and on farm management. Ethical approval for all procedures involving animals was 

obtained from the UK Home Office (Project Licence P204B097E), SRUC Animal Ethics 

Committee (Ref. ED AE 03-2018) and Ruakura Animal Ethics committee (AE 14708) prior to 

study onset. All methods were carried out in accordance with UK and New Zealand animal 

welfare guidelines and regulations and the authors have complied with the ARRIVE guidelines. 

The indoor study was conducted with 6 non-pregnant, Holstein cows (average age 3.86 ± 

0.68 years) who were selected from the herd at SRUC Acrehead Farm (Dumfries, Scotland) 

based on farm staff knowledge of their approachable nature. When enrolled, the cows were 

either non-lactating or dried off according to routine farm practice prior to the study and were 

housed in a 20 m × 5 m group pen, deep bedded with straw, within the main barn and fed as 

per routine farm practice. A 5 m × 5 m test pen was located adjacent to the group pen, but 

could be separated by a buffer zone of approximately 2 m to reduce potential damage to 

recording equipment and disruptions to the recordings of other cows, while maintaining visual 

and auditory contact with the group (Fig. 2). 

The protocol was then repeated at pasture with six approachable, mid-late pregnant, non-

lactating three-yearold Kiwi-cross (Friesian-Jersey) cows selected from the herd at DairyNZ Lye 

Farm (Newstead, NZ). These cows were managed outdoors in a large (44 m × 29 m) group pen 

created with electric fencing that could be moved around within a larger paddock as ground 

conditions deteriorated. A 10 m × 10 m test pen was created with  
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Figure 2.  Diagrams of group and test pen design in the UK indoor housed study (a) and in the 
NZ outdoor pasture study (NZ) (b). During recordings, the test cow was moved into the test 
pen, when not recording, the cow was moved back into to the group pen. 

 

non-live electric fencing (to reduce potential electrical noise on physiological traces) on one 

side of the group pen. A 2 m buffer zone with live electric fencing was set up around the test 

pen, allowing for visual and auditory contact of the test cow with the group at all times (Fig. 

2). Cows were allowed to graze and were supplemented with silage ad libitum. All cows in both 

groups were trained and habituated to the recording devices and handling protocols for a 

minimum of 2 weeks prior to the start of data collection. 

Data collection methods. Polysomnography. PSG was recorded using a 10 electrode montage 

as described in Hänninen et al.12. This included 4 EEG, 2 EOG and 2 EMG electrodes as well as 

a ground and reference electrode attached to the head and neck of the cow (Fig. 3). Adhesive 

pre-gelled ECG electrodes (Natus neurology, Kanata, Canada) were used and secured to 

clipped and cleaned skin on the head and neck of the cow with a small amount of superglue 

(Loctite 454 or Loctite gel control, Henkel Corp., Dublin, Ireland). A stretchable  LeMieux® or 

Caribu Lycra horse hood (UK: Horse Health Wessex, Woodington, UK. NZ: Caribu AU, 

Truganina, Australia) was modified for the cow anatomy and worn on the head and neck over 

top of the electrodes to keep all wires close to the skin and avoid being tangled in the test pen. 
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After data collection was completed, all materials were removed and electrodes either came 

away easily or were gently removed using acetone or aqueous cream to soften the glue. Signals 

were sampled at 500 Hz and recordings ran for 10 h due to memory capacity of the Embletta 

MPR PG + ST proxy recording device (Embla, Natus Neurology, Kanata, Canada). The recording 

device was programmed, and data were downloaded using RemLogic 3.4.3 software (Embla 

Systems, Kanata, Canada). After downloading, a 50 Hz mains filter was applied to all traces to 

remove the background noise caused from electrical wires that are present in the environment 

and can be picked up by the PSG device, in the UK and NZ electrical mains frequencies are both 

at 50 Hz. EEG traces were high pass and low pass filtered at 0.3 Hz and 30 Hz, EOG traces were 

filtered at 0.15 Hz and 20 Hz and  MG at 10 Hz.  races were first inspected for quality, “good” 

quality recordings included those where impedance was within the acceptable range (> 14 Ω) 

and at least 2 EEG, 1 EMG and 1 EOG trace remained attached for the entire recording period. 

“Poor” quality recordings were not scored and occurred when impedance was too high, there 

was noise on the traces, many artefacts obscured the data or electrodes became detached 

during the recording. Traces were then scored  

 

Figure 3.  (a) Diagram indicating electrode placement on the head and neck of the cow for PSG 
data acquisition. Four EEG electrodes (C3, C4, F3 & F4) and a reference (REF) electrode were 
placed on the forehead. PGND- patient grounding electrode was placed behind the poll on the 
top of the head. Two EOG electrodes were placed beside the eyes and two EMG electrodes 
were placed on the mid-trapezius muscle on either side of the neck. (b) Diagram indicating 
placement of the heart rate monitoring girth strap, leg mounted accelerometer, and PSG 
electrodes on the whole cow. 

 

visually in 30 s epochs into 4 stages of sleep (N1, N2, N3, REM), wakefulness (W) and 

rumination (RNT) by a single scorer trained in human sleep staging, according to staging criteria 

developed from previous work on cow  sleep10–12,28 as well as human American Association of 

Sleep Medicine 2018  guidelines29. 

Heart rate. Heart rate (HR) and inter-beat intervals (between R peaks of the heart beat signal: 

(R-R)) were recorded using a Polar equine monitoring girth strap with electrodes near the heart 

and the reference electrode near the shoulder (Fig. 3) and logged with the Polar RS800CX 

Watch (Polar Electro Oy, Kempele, Finland). The time was synchronized between the watch 

and PSG recording devices. Ultrasound gel (Aquasonic 100 gel, Parker Laboratories, NJ, USA) 
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was applied liberally at electrode locations. Data were downloaded using Polar Pro-Trainer 5 

software (Polar Electro Oy, Finland). After downloading, the signal was filtered using Polar 

Protrainer 5 at a moderate filter power with a minimum protection zone of 6 bpm. Only traces 

containing less than 1% identified errors were used for analysis. The filtered data were then 

extracted, and statistics were calculated in 30 s epochs corresponding to the timestamps of 

the PSG epochs. Only the time domain metrics of the heart rate variability were calculated, as 

the validity of frequency domain metrics in intervals smaller than the 5 min standard are q 

uestionable38. 

Lying behaviour. Lying and standing times were recorded continuously using an accelerometer 

(UK; IceTags (Ice Robotics, Edinburgh, Scotland), NZ; Onset Pendant G data loggers (64 k, Onset 

Computer Corporation, Bourne, MA) attached on the lower hind leg (Fig. 3). The data were 

downloaded using IceManager Software (Ice Robotics, Edinburgh, Scotland) or HOBOware Pro 

software (Onset Corp., Pocasset, MA). Lying and standing behaviour were determined from 

the data-logger files in 30 s epochs corresponding to the PSG epochs. 

Data pre-processing and segmentation. Neck muscle activity data was extracted from a single 

good quality EMG trace per recording. Statistics were calculated for each epoch, including 

mean, maximum (max), minimum (min), median (med), standard deviation (SD), variance (Var) 

and root mean square (RMS) using RemLogic software. 

Mean HR, mean R-R interval, Standard deviation of RR intervals (SDRR) and Root Mean 

Square of Successive Differences (RMSSD) (Eq. 1) were calculated from the exported and 

filtered polar heart rate data for each 30 s epoch corresponding to the PSG epochs. 

 RMSSD  (1) 

Normalized HR mean, RMSSD, EMG mean, and EMG RMS values were also calculated by 

dividing the data by the largest point for each individual recording as a way of removing some 

of the variation between cows and between recordings. All 15 parameters or ‘features’ from 

the HR, HRV, EMG and lying behaviour data were merged and matched with the scored sleep 

stage epochs using R Studio (Version 1.3.959) using time stamps and epoch numbers. 

Intra-observer reliability was calculated using Cohen’s kappa in the “irr” package in R 

(Version 4.0.2). Overall agreement was 89.4% with k = 0.83however, N1 and N2 were the least 

reliable as only 32% of epochs were agreed, and 39% were misidentified as N2. In exploration 

of the physiological data, N1 and N2 were not vastly visually different in terms of mean and 

variance (Fig. 4), and so were combined into a new stage of light sleep named  
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Figure 4.  Box and whisker plots of each feature (titles), with sleep stage on the x-axis and 
relevant units on the y-axis. The y-axis of HR mean, and Norm HR mean are expressed as 
beats per minute (BPM), while RMSSD, RRSD and the normalized graph of these are 
expressed in milliseconds. The y-axis of all EMG graphs is expressed in microvolts (µV)Figure 
produced in R version 4.0.2 using ggplot2 package https:// cran.r- proje ct. org/ web/ packa 
ges/ ggplo t2/ index. html. 

 

‘N1/2’- to improve classification performance. Combination of N1 and N2 improved overall 
agreement to 91.1% (k = 0.86). Rumination causes rhythmic chewing activity artefacts that 
obscure the PSG traces and make it impossible to determine brain activity and sleep stage. It 
is possible that cows could achieve sleep during rumination, which could create confusion and 
misclassification of the data, so for this reason it was removed from the data set. Dairy cows 
must lie down to s leep5, therefore epochs determined as ‘standing’ from the accelerometer 
data were also removed from the data set. 

From visual and exploratory analysis of the data set, there were no clear differences 

between sleep stages for any of the features. There were minor differences such as REM sleep 

tending to have a higher RMSSD than other sleep stages, and the means of W were higher for 

max EMG, RMS EMG and SD EMG than for the other sleep stages (Fig. 4). 

https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
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Altogether there were 23,120 data points labelled into 4 different sleep stages (Awake, 

N1/2, N3 and REM) each with corresponding data from the 15 different features (HR Mean, RR 

Mean etc.). Table 3 shows number of data points for each sleep stage, the awake category has 

the greatest number (16,584) of data points, while the combination of N1 and N2 (N1/2) had 

4401 data points, REM had 1104 and N3 had 1034 data points. 

Machine learning method for sleep stages. To predict cow sleep stages using only heart and 

neck muscle data, we considered two machine learning techniques: Neural  Network39, and 

Random  Forest40. Both the machine learning models were implemented using the open source 

Orange machine learning platform (Version 3.26)41. Stratified tenfold cross-validation was 

used to train and test the models. 

Architecture of the Neural Network Model: 

Number of neurons in hidden layers: 500. 

Activation function: ReLu. 

Solver: Adam. 

Regularization: 0.0001. 

Maximal number of epochs/iterations: 2000. 

During the cross-validation process, the whole dataset was randomly split into a labelled or 

‘known sleep stage’ data set to train the model with, the remaining data having the labels 

hidden and used to test the model with. For example, REM had 1104 observations, 

approximately 110 observations were used for testing and rest were used for training and this 

process was repeated 10 times for each sleep stage.  he model’s predictions were then 

compared with the actual labelled sleep stages to test and compare the models. Classification 

accuracy (CA) (the number of correct predictions divided by the total number of predictions), 

recall (sensitivity or true positive rate), precision (a measure of the model’s exactness), F1 

score (the balance between Precision and Recall) and area under the curve (AUC) determined 

from the receiver operator curve (ROC) values from each model were used to measure the 

performance. The classification accuracy (Eq. 2), precision (Eq. 3), recall (Eq. 4) and F1 score 

(Eq. 5) were obtained from true negative (TN), false negative (FN), true positive (TP), and false 

positive (FP) values.  his process was repeated for 10 random splits or ‘folds’ and classification 

accuracy of each machine learning technique was measured by taking the average across the 

10 folds. 

TP + TN 

 Classification Accuracy (CA) =  (2) 

TP + TN + FP + FN 

TP 

 Precision =  (3) 

TP + FP 

TP 
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 Recall =  (4) 

TP + FN 

2TP 

 F1 Score = 2 TP +FP +FN (5) 
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