
Copyright is owned by the Author of the thesis. Permission is given for a 
copy to be downloaded by an individual for the purpose of research and 
private study only. The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



Efficient Markov bases for
Z-polytope sampling

A thesis presented in partial fulfilment of the requirements for the degree
of

Doctor of Philosophy
in

Mathematics

at Massey University
Manawatū
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Abstract

In this thesis we study the use of lattice bases for fibre sampling, with particular
attention paid to applications in volume network tomography. We use a geometric inter-
pretation of the fibre as a Z-polytope to provide insight into the connectivity properties
of lattice bases.

Fibre sampling is used when we are interested in fitting a statistical model to a random
process that may only be observed indirectly via the underdetermined linear system y =
Ax. We consider the observed data y and random variable of interest x to contain count
data. The likelihood function for such models requires a summation over the fibre Fy,
the set of all non-negative integer vectors x satisfying this equation for some particular
y. This can be computationally infeasible when Fy is large.

One approach to addressing this problem involves sampling from Fy using a Markov
Chain Monte Carlo algorithm, which amounts to taking a random walk through Fy. This
is facilitated by a Markov basis: a set of moves that can be used construct such a walk,
which is therefore a subset of the kernel of the configuration matrix A.

Algebraic algorithms for finding Markov bases based on the theory of Gröbner bases
are available, but these can fail when the configuration matrix is large and the calculations
become computationally infeasible. Instead, we propose constructing a sampler based on
a type of lattice basis we call a column partition lattice basis, defined by a matrix U .
Constructing such a basis is computationally much cheaper than constructing a Gröbner
basis.

It is known that lattice bases are not necessarily Markov bases. We give a condition
on the matrix U that guarantees that it is a Markov basis, and show for a certain class
of configuration matrices how a U matrix that is a Markov basis can be constructed.

Construction of lattice bases that are Markov bases is facilitated when the configu-
ration matrix is unimodular, or has unimodular partitions. We consider configuration
matrices from volume network tomography, and give classes of traffic network that have
configuration matrices with these desirable properties.

If a Markov basis cannot be found, one alternative is to sample from some larger set
that includes Fy. We give some larger sets that can be used, subject to certain conditions.
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Chapter 1

Introduction

In this thesis we are interested in methods for sampling from mathematical objects called
Z-polytopes. These consist of a set of points in some multi-dimensional space, each with
non-negative integer co-ordinates. The points are bounded by a collection of hyperplanes.
An example of a three-dimensional Z-polytope is shown in Figure 1.1. Z-polytopes gen-
erally lack a convenient representation for sampling directly, so we must instead turn to
a technique called Markov Chain Monte Carlo (MCMC).

Markov Chain Monte Carlo can be implemented by taking a random walk through
the Z-polytope, collecting the points visited along the way. These visited points then
become the sample. Constructing a walk with desirable properties is facilitated if we have
a Markov basis, a set of moves that can be used to take a step from one point in the
Z-polytope to another.

In order for a given set of moves to qualify as a Markov basis, it must be capable of
constructing a walk that can potentially visit every point in the Z-polytope. Whether a
set constitutes a Markov basis therefore depends on the structure of the Z-polytope in
question. In this thesis we are interested in how taking a geometric view might enable
Markov basis construction and identification. The population from which we wish to
sample is the non-negative integer vectors x such that Ax = y. We interpret this set
as a Z-polytope; the geometry of this Z-polytope may provide insight into Markov basis
construction and identification. In particular, we study a type of collection of moves we
call a column partition lattice basis, and evaluate their potential use as Markov bases.
The moves in a column partition lattice bases have a simple geometrical interpretation:
they are moves in co-ordinate directions when the Z-polytope is projected onto a subset
of the axes.

Our motivation for studying Z-polytope sampling comes from the study of statistical
linear inverse problems. These are described in Section 1.1, where an example from
network tomography is presented. The structure of the Z-polytopes that arise in statistical
linear inverse problems is determined by an underdetermined linear system Ax = y, where
A is a binary matrix and x and y are count vectors, so they contain only non-negative
integers. The Z-polytopes of interest are related to a translate of the kernel of A, where
the translation is determined by the vector y. Accordingly, whether or not a particular
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Figure 1.1: A three-dimensional Z-polytope.

collection of moves allows construction of a random walk that can visit every point in the
Z-polytope is determined by properties of this linear system, which is to say of the matrix
A and count vector y.

After the description of statistical linear inverse problems in Section 1.1, Section 1.2
gives an overview of Markov Chain Monte Carlo and takes a closer look at what a Markov
basis for Z-polytope sampling might contain.

In Section 1.3 we lay out the problems this thesis addresses. The most important
of these can be summarised as: given a configuration matrix A, how can we efficiently
find a Markov basis for A? We then cover some existing work on the problem of finding
Markov bases. This work tends to be algebraic rather than geometric. In particular, the
Fundamental Theorem of Markov Bases gives a correspondence between a Markov basis
and a generating set of an ideal in a polynomial ring. This approach is summarised in
more detail later in Section 2.4.

Section 1.4 introduces lattice bases. Their potential use as Markov bases is the main
topic of this thesis. This section covers some previous work on the use of lattice bases in
polytope sampling and discusses what advantages and disadvantages they might might
provide.

Section 1.5 describes three areas where statistical linear inverse problems arise: net-
work tomography (Section 1.5.1), contingency table resampling (Section 1.5.2), and mark-
recapture modelling in ecology (Section 1.5.3). Our main focus in this thesis is on network
tomography.

Finally, Section 1.6 gives an overview of the rest of thesis.



1.1. A TRAFFIC FLOW MODEL 3

1.1 A traffic flow model

Suppose that we are interested in building a statistical model for traffic flow on some
road network. The network consists of a set of cities, the roads connecting them, and a
collection of journeys that cars might make on those roads. Our model must provide a
means for estimating the number of cars making each potential journey.

We represent this network as a directed graph where the nodes are the cities and
the links are the roads. The potential journeys that cars on the network might make
are represented as paths on the graph. It is usually infeasible to count traffic on paths
directly: we can only observe the number of cars traversing each link during some time
interval. If we wish to evaluate a statistical model for traffic counts on the network’s
paths, we can use a likelihood function. This requires a set of data against which to
evaluate the model: in this case, a collection of traffic counts on each of the links in the
network.

We collect the observed link traffic counts into the vector y ∈ Zn≥0, where n is the
number of links in the network and each entry yi is a count of cars observed on the ith
link. We similarly collect a combination of potential path traffic counts into a vector
x ∈ Zr≥0, where there are r paths and each xi is the count of cars making the ith journey.
We know that multiple possible x vectors of path traffic counts can generate the same y
vector of link traffic counts, so we will define the y-fibre to be the set of potential count
vectors x that can result in y being observed, and denote it Fy. Then the likelihood
function for a path traffic count model is given by

L(θ) = f(y|θ)

=
∑

x∈Zr≥0

f(y|x, θ)f(x|θ)

=
∑
x∈Fy

f(x|θ),

(1.1.1)

where θ is a parameter vector for the model. In order to evaluate this, we need to be able
to determine the elements of Fy from a given y.

The relationship between a network’s path traffic counts and traffic counts on the
network’s links is given by the equation

Ax = y, (1.1.2)

where A is the link-path incidence matrix. There are n links in the network and r potential
paths so A has n rows and r columns. The entries of A are given by aij = 1 if the ith
link is traversed by car making the jth journey, and 0 otherwise.

The set of potential path traffic counts is defined by

Fy = {x ∈ Zr≥0 : Ax = y}.
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Figure 1.2: A representation of the three-link linear network, a traffic network with four
cities connected linearly by three links. The underbraces show the six allowed paths.

Example 1.1.1 (Three-link linear network). An example network, the three-link linear
network, is shown in Figure 1.2. We are interested in east-bound traffic only, so we only
show links connecting the cities in one direction. There are six potential journeys that
cars may make on this network.

On the three-link linear network we have three traffic link counts, but there are six
paths. This means that given some collection of traffic counts on links, multiple com-
binations of traffic counts on paths are possible. For example, suppose that one car is
observed on each link in the network. In terms of path traffic counts, this could mean for
example that there were three different cars that each drove a path consisting of just one
of the links; or that there was one car that drove the entire length of the network.

We record these path traffic counts in the vector y: in this case, we have y =[
1 1 1

]ᵀ
, and Fy is given by

Fy =




1
1
1
0
0
0

 ,


0
0
1
1
0
0

 ,


1
0
0
0
1
0

 ,


0
0
0
0
0
1




.

In this case Fy is small so we can enumerate it and we can evaluate the likelihood
function (equation (1.1.1)) directly for these data. However, as the entries in y grow,
and especially as the complexity of the network under study increases, the increased size
of Fy will make enumerating it computationally infeasible, making direct calculation of
the likelihood function impossible. Instead of summing over every element of Fy as in
equation (1.1.1), we can perform statistical inference by taking a representative sample
of the population Fy.

1.2 Markov Chain Monte Carlo

The lack of a convenient representation of Fy means that direct sampling is impossible.
Rejection sampling is impractical: the problems we are interested in are typically suf-
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ficiently large that it results in tiny acceptance rates. As a consequence, we resort to
Markov Chain Monte Carlo, in which we aim to sample from a probability distribution
fX|Y (x|y, θ) with support Fy by constructing a Markov chain with invariant distribution
equal to that target fX|Y .

The particular form of fX|Y is not usually a major problem, since we can sample
from some alternative proposal distribution q and then correct the sampling probabilities
by applying the standard Metropolis-Hastings acceptance probability. We will not be
particularly concerned with the functional form of q (it will generally suffice to think of it
as a uniform distribution on some subset of F). Our focus will be on the support of this
distribution, so as to ensure that the sampler converges to its target distribution.

The most popular algorithm for sampling from fibres is random walk Metropolis-
Hastings. This involves generating a random walk through the fibre using a Markov chain
where the state space is Fy. A key step in this algorithm is generating a proposed next
step x† ∈ Fy from the current state x ∈ Fy. This uses a finite set of moves B: for some
z ∈ B, we can generate the proposed next step with x† = x± z.

The sampling algorithm is set up so that the stationary distribution of the Markov
chain matches some desired distribution. This is achieved by setting the acceptance
probability α of a proposed next state x†, given that x is the current state, to

α = min

{
1,
fX|Y (x†|y, θ)q(x|x†)
fX|Y (x|y, θ)q(x†|x)

}
= min

{
1,
fX(x†|θ)q(x|x†)
fX(x|θ)q(x†|x)

}
.

Here, q is a proposal distribution supported within Fy [45, 26].
A move, then, is required to be something that when applied to x ∈ Fy produces

x† ∈ Fy. The moves are therefore elements of kerZ(A), the integer elements of the kernel
of the configuration matrix A.

In order for the sampler to converge to the desired distribution, the generated Markov
chain must be irreducible. Assuming moves are selected at random, this will be the case
if it is possible to eventually access every element of Fy from every other element of Fy

using only the moves in B and following a walk that never leaves Fy.
Given a matrix A, a vector y and a pair of points x1,x2 ∈ Fy, if some set of moves

B enables generation of a walk that starts at x1 and reaches x2 without leaving Fy, we
say that x1 and x2 are connected by B. If B connects all pairs of points in Fy, we say B
connects Fy and is a Markov sub-basis for A and y, or for Fy.

If B connects Fy for all y ∈ Zn≥0, we call B a Markov basis for A.

Example 1.2.1. Let A be the link-path incidence matrix of the two-link linear network
shown in Figure 1.3. Suppose that in some data set, three cars were observed on the first
link in the network and four cars on the second. Then A and y are given by

A =

[
1 0 1
0 1 1

]
, and y =

[
3
4

]
.
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A B C
1 2

1 2

3

Figure 1.3: The two-link linear network from Example 1.2.1. The underbraces show the
allowed paths.

The set of count vectors x such that Ax = y is given by

Fy =


0

1
3

 ,
1

2
2

 ,
2

3
1

 ,
3

4
0

 .

We require a set of moves that enables us to move between the elements of Fy. Let

z =

 1
1
−1

 ∈ kerZ(A) and B = {z} ⊆ kerZ(A).

Indexing the elements of Fy by their first entry, we have

x1 = x0 + z,

x2 = x0 + 2z,

x3 = x0 + 3z.

We can move from x0 to any other element of Fy by adding an integer multiple of z. Then
B connects x0 to each other element of Fy, and therefore connects every pair of elements
of Fy to each other. It follows that B is a Markov sub-basis for Fy.

If some set B contains moves that can be used to walk between two elements of some
Fy, this set is not guaranteed to connect these elements. It could be that every walk
between the two elements must step outside of Fy at some point, as illustrated by the
following example from Hazelton [25].

Example 1.2.2. Consider the triangular traffic network shown in Figure 1.4. Any path
on the graph is included in the network except for the path 3→ 1, consisting of only the
third link. The link-path incidence matrix is given by

A =

1 0 1 0 1
0 1 1 1 0
0 0 0 1 1

 .
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1

23

1

2

3

Figure 1.4: The triangular network from Example 1.2.2.

Setting y =
[
4 4 4

]ᵀ
produces the fibre

Fy =




0
4
0
0
4

 ,


1
3
0
1
3

 ,


2
2
0
2
2

 ,


3
1
0
3
1

 ,


4
0
0
4
0

 ,


0
2
1
1
3

 ,


1
1
1
2
2

 ,


2
0
1
3
1

 ,


0
0
2
2
2


 .

One potential set of moves is given by

B =




1
1
−1

0
0

 ,


0
2
−1
−1

1


 .

The set B makes up an integer basis for the integer kernel. The difference between every
pair of elements of Fy can be written as a sum of moves in B, so a walk between any
pair of points is possible. However, if one of the points is

[
0 4 0 0 4

]ᵀ
, the walk

necessarily leaves the polytope. Figure 1.5 shows Fy plotted on the x1 and x5 axes and
shows how this can happen. Superimposed on the polytope are some moves in B being
used to connect elements of Fy. Neither of the moves in B can be applied to the point at[
4 0 0 4 0

]ᵀ
without leaving the fibre.

The most important concern when selecting a collection of moves for use in fibre
sampling is connectivity, but we also want the sampler to be efficient to run. Ideally we
would like the sampled states to be independent, but because the proposed next steps
in the walk are generated by a Markov chain they are dependent on the current state.
Instead we must try to construct the sampler so that it minimises serial dependence as
much as possible: we say that a sampler that does this exhibits good mixing. The choice
of moves strongly affects the sampler’s mixing, as illustrated by the following example.

Example 1.2.3. Consider the transport network in Figure 1.6. The nodes labelled 1 and
2 are origins for traffic, and the nodes labelled 3, 4, and 5 are destinations. Travel is



8 CHAPTER 1. INTRODUCTION

0 1 2 3 4

0

1

2

3

4

x1

x5

Figure 1.5: The projection of Fy from Example 1.2.2 onto the x1 and x5 axes showing
the inaccessible vertex.

3

1 2

4 5

1 2

3 4

Figure 1.6: The transport network in Example 1.2.3.
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0 1 2 3 4 5

0

1

2

3

4

5

x1

x2

(a) Using moves in B1.

0 1 2 3 4 5

0

1

2

3

4

5

x1

x2

(b) Using moves in B2.

Figure 1.7: The fibre Fy from Example 1.2.3 plotted on the x1 and x2 axes comparing
the mixing properties of two sets of moves.

permitted between any origin/destination pair. The link-path incidence matrix for this
network is

A =


1 1 1 0 0 0
0 0 0 1 1 1
0 1 0 0 1 0
0 0 1 0 0 1

 .

Suppose the link traffic counts are given by y =
[
5 5 4 1

]ᵀ
. Then the fibre is given by

Fy =




0
4
1
5
0
0

 ,


1
4
0
4
0
1

 ,


1
3
1
4
1
0

 ,


2
3
0
3
1
1

 ,


2
2
1
3
2
0

 ,


3
2
0
2
2
1

 ,


3
1
1
2
3
0

 ,


4
1
0
1
3
1

 ,


4
0
1
1
4
0

 ,


5
0
0
0
4
1




.

In this case Fy is two-dimensional. Figure 1.7 shows Fy plotted on the x1 and x2 axes.

If we construct our walk using as steps integer multiples of the elements of an integer
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basis for the integer kernel of A, given by

B1 =




1
0
−1
−1

0
1

 ,


0
1
−1

0
−1

1




,

then when travelling around the fibre we are forced to zig zag. In Figure 1.7a, it takes
seven steps to travel between the two selected elements of Fy.

If instead we use integer multiples of

B2 =




1
−1

0
−1

1
0

 ,


0
1
−1

0
−1

1




,

then travel around Fy is much swifter. In Figure 1.7b, it takes only two steps with B2

to make the same journey that took seven steps with B1. In fact, using B2 it takes at
most three steps to move between any two states. This suggests that a sampler that uses
as steps integer multiples of moves in B2 would have better mixing than one that uses
integer multiples of moves in B1.

1.3 Finding Markov bases

Having a process for finding Markov bases and sub-bases for any particular problem is
a critical research area. There are several related problems in which we are interested.
First, recognising and constructing Markov bases: given a configuration matrix, how can
we find a Markov basis? Can we recognise that some proposed set is a Markov basis?
Second, given an algorithm for finding a Markov basis, can this algorithm be run on
configuration matrices encountered in real world problems efficiently? And third, are
there other desirable properties that a Markov basis might exhibit? What are these
properties, and how can we recognise when a proposed Markov basis has them?

Algorithms already exist for finding Markov bases for a given configuration matrix,
based on the algebraic work of Diaconis and Sturmfels in [19] and summarised in Sec-
tion 2.4. But as we will see they are not without problems. Briefly, the Fundamental
Theorem of Markov Bases, stated in this thesis as Theorem 2.4.5, identifies the kernel of
the configuration matrix with an ideal in a polynomial ring. The problem of finding a
Markov basis for a configuration matrix then becomes the problem of finding a generating
set for this ideal. Most commonly, a particular type of generating set called a Gröbner
basis is found.
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The software package 4ti2 [44] is standard for finding Markov bases. It implements an
algorithm [15] that is based on the work of Diaconis and Sturmfels [19]. While it is quick
to find Markov bases for small problems, the time required for finding bases increases
dramatically as the problem grows larger. Yoshida [50] observed that there are problems
where it can never compute a Markov basis, and that computing Markov bases is NP-hard
in general. Particular examples of problems where 4ti2 could not find a Markov basis in
a reasonable amount of time were encountered by Schofield and Bonner [39], del Campo
et al. [37], and Dinwoodie and Chen [21].

One of the examples in [21] where 4ti2 failed to find a Markov basis was for a three-
way contingency table of size 7 × 7 × 2. A database of Markov bases found by 4ti2 is
maintained at [30] and is limited to bases for similar sized contingency tables. The largest
four-way contingency table for which it provides a Markov basis is 3 × 3 × 3 × 3. The
basis provided contains 303921 elements, which is a very large collection of moves. The
database also contains Markov bases for some five-way and six-way tables with various
marginals, but none has any dimension in which it is of length greater than two.

Because of the difficulty of finding complete Markov bases, various other sampling
approaches have been tried. Dobra [22] observes full Markov bases found with the alge-
braic approach are particularly bad for sparse contingency tables, and proposes the use
of dynamic Markov bases. Instead of determining a Markov basis before beginning the
random walk, a walk using a dynamic Markov basis works by proposing a set of moves at
each step in the walk that connect the current state x to nearby candidate states in Fy.

1.4 Lattice bases

Other approaches to MCMC fibre sampling have been proposed using lattice bases.

Definition 1.4.1 (Lattice basis [3]). A set B forms a lattice basis of kerZ(A) if every
z ∈ kerZ(A) can be uniquely expressed as an integer combination of elements of B.

One approach due to Aoki and Takemura [3] is to run a Markov chain without using
a Markov basis. Proposing a move in their random walk involves randomly generating a
set of multipliers from a distribution supported on Z with randomly chosen signs for each
of the lattice basis elements, and summing them. The moves in their walk are therefore
linear combinations of the elements of the lattice basis.

While this method is capable of generating all differences between elements of Fy,
and therefore connecting Fy, it is not without problems. Suppose, for example, that the
random walk is at a point in the fibre whose co-ordinates in some subset of dimensions
are an extremum. In order to move from this point, the correct sign must be assigned to
each of the moves that have been assigned non-zero multipliers: if there are k such moves,
then the probability that the right sign is assigned to the relevant moves is 1

2k
, and it is

easy to see that in high dimensional problems, the walk may become stuck.
By contrast, our approach involves using a lattice basis directly. In this thesis, we

are interested in the use of lattice bases for selecting moves in a Z-polytope random walk
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sampler, where the steps in the walk are integer multiples of the lattice basis elements.
Lattice bases have a particularly clear geometric interpretation, and are therefore a very
attractive choice when developing samplers that respect the overall geometry of the Z-
polytope being sampled. We attempt to solve connectivity problems while still achieving
good mixing by setting up the lattice basis so that it takes into account the geometry
of the polytope. This generally involves including moves that sample in advantageous
directions [25].

Little research has been done on connectivity of lattice bases. Tebaldi and West [45]
developed the original version of the lattice polytope sampler we use. They claimed that
the sampler always generates an irreducible Markov chain, but as we will see this is not
the case. Aoki and Takemura [3] observe that while a Markov basis must always contain a
lattice basis, configuration matrices for two-way contingency tables have no lattice bases
that are Markov bases. They include little discussion of lattice bases beyond this.

Hazelton and co-authors [25, 26] developed a sampler which, during the random walk,
continuously updates the lattice basis used in response to the local geometry of the pro-
jected polytope at the current state of the walk. Adapting the configuration matrix means
finding a different lattice basis: this is sufficient in some cases to avoid some problems
with connectivity of lattice bases. The method given for deciding how to adapt the basis
also produces good mixing of the sampler [25].

Schofield and Bonner [39] found a method for constructing a single lattice basis that
is a Markov basis, however it requires that the configuration matrix contains the identity
matrix as a maximal submatrix. Their application was in capture-recapture studies in
ecology, where it generally is the case that the identity matrix is a maximal submatrix of
the configuration matrix [39]; this is not true for every application.

Samplers found using the algebraic approach may suffer due to inefficiency. For some
configuration matrices, y vectors may be found such that MCMC sampling using a basis
that does not take into account the polytope’s geometry is arbitrarily inefficient. For
example, if the vector y is such that for some index i, the entry yi = 0, then all of the
moves that involve altering an entry xj in x such that aij = 1 can never be applied to any
element of Fy. A sampler that must continually propose and reject such moves will not
be very efficient.

We may find Markov chains with better mixing by tailoring the basis used to a par-
ticular y vector of interest. For example, if the polytope is long and thin, a basis with
many moves in the dimensions in which the polytope is thin may decrease efficiency and
slow mixing, as many opportunities to move in the longer dimensions are wasted.

1.5 Applications

Statistical linear inverse problems occur in a range of fields. Often the nature of the
problem under study can imply some kind of structure on the associated configuration
matrix, which may be useful when studying their Markov bases. If it is found that
a configuration matrix having a particular structure implies that a collection of moves
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constructed in a certain way is a Markov basis, it is useful to know to which kind of
problems this can be applied. We will now give some examples of applications.

1.5.1 Network tomography

Network tomography is our main motivation for studying polytope sampling and is the
subject of Chapter 5. Generally it involves determining internal properties of a network
based on observed properties. The networks may be computer and electronic networks [32,
17] or traffic networks [25, 26, 35, 45, 49].

We are interested particularly in estimating traffic counts on paths in traffic networks,
as in the running example in Section 1.1, above. This particular type of network tomogra-
phy is known as volume network tomography. A traffic network is represented by a graph,
and a collection of paths on the graph. Given a vector of observed link traffic counts y,
we want to sample from the set Fy of potential path traffic counts that could have led to
y. The traffic count vectors on links y and on paths x are related by Ax = y, where A
is the link-path incidence matrix of the network.

The configuration matrices in network tomography are frequently unimodular. A
square matrix is unimodular if its determinant is ±1. It is usual for configuration matri-
ces to extend this definition to say that a rectangular matrix is unimodular if its invertible
maximal submatrices all have determinant ±1. This provides a large part of the motiva-
tion for our focus on unimodular matrices. Unimodularity of link-path incidence matrices
is discussed in Section 5.2.

1.5.2 Contingency tables resampling

A contingency table is a multi-dimensional array containing count data, together with
marginal totals. Markov Chain sampling methods are used to sample from the population
of tables that share the same marginal totals. Contingency table resampling is the most
common application and testing ground for theory around Markov bases, appearing as
the motivating example (shown in Table 1.1) in Diaconis and Sturmfels’ paper on the
Fundamental Theorem of Markov Bases [19]. Their stated aim here was to test the
independence of birthdays and deathdays.

Diaconis and Sturmfels proved that a set of moves defined by choosing two rows and
two columns of a two-way contingency table, and modifying the four entries where they
intersect with the moves

+ −
− +

and
− +
+ − (1.5.1)

produces an irreducible Markov chain whose state space is the space of all two-way tables
with the given marginal totals. These moves therefore constitute a Markov basis.

For example, for a small 2×3 contingency table, the contingency table representations
of the moves making up a full Markov basis are given by
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Month
of birth

Month of death
Jan Feb March April May June July Aug Sept Oct Nov Dec Total

Jan 1 0 0 0 1 2 0 0 1 0 1 0 6
Feb 1 0 0 1 0 0 0 0 0 1 0 2 5

March 1 0 0 0 2 1 0 0 0 0 0 1 5
April 3 0 2 0 0 0 1 0 1 3 1 1 12
May 2 1 1 1 1 1 1 1 1 1 1 0 12
June 2 0 0 0 1 0 0 0 0 0 0 0 3
July 2 0 2 1 0 0 0 0 1 1 1 2 10
Aug 0 0 0 3 0 0 1 0 0 1 0 2 7
Sept 0 0 0 1 1 0 0 0 0 0 1 0 3
Oct 1 1 0 2 0 0 1 0 0 1 1 0 7
Nov 0 1 1 1 2 0 0 2 0 1 1 0 9
Dec 0 1 1 0 0 0 1 0 0 0 0 0 3
Total 13 4 7 10 8 4 5 3 4 9 7 8 82

Table 1.1: The contingency table from Diaconis and Sturmfels [19] showing the months
of birth and death of 82 descendants of Queen Victoria.

+ −
− +

+ −
− +

+ −
− +

Diaconis and Sturmfels also looked at Markov bases for three-way contingency tables.
They found that for 3×3×3 tables, the reduced Gröbner basis contains 110 basic moves.
In fact, Markov bases for three-way contingency tables with two-way margins were found
to be arbitrarily complicated by De Loera and Onn [16].

Rapallo and Yoshida [38] looked at Markov bases for contingency tables which have
upper bounds on their cell entries as well as lower bounds, and found that the set of moves
in equation (1.5.1) is sufficient to connect Fy as long as none of the upper bounds is zero.
However, if some table entries are forced zeroes, a larger basis is required. Further work
on contingency tables appears for example in [20, 34, 33, 16, 38, 3].

The configuration matrix A for a contingency table is a cell-margin incidence matrix
for the contingency table. The vector x records the entries in the table and the vector y
records the marginal totals. For the 2× 3 table, this matrix is given by

A =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 ,
and x and y are represented on the table by

x1 x2 x3 y1

x4 x5 x6 y2

y3 y4 y5

.
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Figure 1.8: The traffic network corresponding to the 2× 3 two-way contingency table.

The configuration matrix of a two-way contingency table is not full rank, and we usually
remove a dependent row.

Two-way contingency tables are equivalent to a type of traffic network called a star
network, an example of which is shown in Figure 1.8. Any entry in the table corresponds
to a path in the network: the entry’s row corresponds to the origin node and the column
corresponds to the destination node. Thus the cell entry x4 which appears in row 2
(marginal y2), column 1 (marginal y3) corresponds to the path on the star network that
makes up column 4 of the configuration matrix, which travels from origin node 2 to
destination node 3. For this reason, their polytope representations are sometimes called
transportation polytopes.

1.5.3 Capture-recapture models

Another application comes from ecology. Identifying individual animals is an important
part of capture-recapture studies, used for example in estimating population sizes [36].
However, observed data may be inaccurate due to misidentification of animals: a captured
animal may be misidentified as one previously captured, when in reality two different
animals were observed.

In Link et al. [36], a vector y of counts of animals with each possible recorded ob-
servation history is related to the vector x of counts of animals with each possible true
observation history. Then x and y are related by Ax = y, where A is a binary matrix
containing a 1 in the entry at the ith row and jth column if true history i gives rise to
recorded history j, and 0 otherwise. The exact form of the matrix is given by particulars
such as the model being employed and the number of observation periods made. For
example, a catalogue of animals may or may not exist: if it does not, then an animal can
never be falsely identified the first time it is observed.

Statistical inference should be done for the count vector x, the entries of which are
counts partitioned by misidentification status. The statistical model being built can then
take into account the possibility of misidentification in the data, leading to more accurate
results [8, 39, 36].
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Example 1.5.1. Suppose we are performing a capture-recapture study. We make obser-
vations over two periods during each of which each animal in the population is observed
with some probability. An animal’s observation histories are written as a string of digits
which each represent the observation status of that animal during a survey: a 1 means the
animal was observed, a 0 means the animal was not observed, and a 2 means the animal
was observed but misidentified. The true capture histories are given by:

10: The animal is observed during the first period, but not the second. The recorded
history is 10.

01: The animal is observed during the second period, but not the first. The recorded
history is 01.

11: The animal is observed during both periods. The recorded history is 11.

12: The animal is observed during both periods, but is not recognised as the same animal.
One animal with history 10 and one animal with history 01 are recorded.

There are 3 possible recorded histories and 4 possible true histories, so the configuration
matrix A is 3× 4 and is given by

A =

1 0 0 1
0 1 0 1
0 0 1 0

 .
This assumes that no catalogue of animals is available. If such a catalogue does exist,

then animals may also be misidentified in the first observation period. Then the true
histories are given by 01, 10, 11, 20, 02, 12, 21 and 22, and the configuration matrix is
given by

A =

1 0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1 1
0 0 1 0 0 0 0 0 0

 .
The identity matrix occurs as a maximal submatrix in configuration matrices in

capture-recapture models when every possible recorded capture history is also a potential
true history [39].

1.6 Thesis overview

The aim of this thesis is to increase knowledge around finding bases suitable for use in
random walk fibre samplers, with a focus on lattice bases. The way this problem is usually
approached is with the algebraic methods introduced in Section 1.3 and discussed further
in Section 2.4. This involves a correspondence between a Gröbner basis of an ideal in a
polynomial ring, and a Markov basis for a configuration matrix.

By contrast, our approach involves lattice bases. It is generally much quicker to find
a lattice basis than to find a Markov basis using the algebraic methods, however lattice
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bases are not always themselves Markov bases. We are therefore interested in recognising
when a lattice basis is a Markov basis.

The type of lattice basis we use involves partitioning the columns of the configuration
matrix, where different choices of column partition produce different lattice bases. We are
also interested in which choices of column partition produce lattice bases that are Markov
bases, and which do not.

One of our tools is to represent fibres with a Z-polytope, defined in Section 2.2. The
Z-polytopes associated with any particular configuration matrix have much in common
geometrically. By looking at the geometry of a configuration matrix’s Z-polytopes, we
hope to gain insight into which collections of moves might constitute a Markov basis.

We focus mainly on configuration matrices that have at least one maximal square
submatrix that is unimodular, and so invertible over the integers. Configuration matrices
with this property seem to be common in network tomography applications (see Chap-
ter 5 for more information). The existence of a unimodular maximal submatrix means
that a lattice basis can be constructed that does not suffer from a particular kind of
disconnectedness, which is described in Section 2.5.1.

Some configuration matrices may have only unimodular invertible maximal subma-
trices, so we say the matrix is itself said to be unimodular. Unimodular configuration
matrices are the subject of Section 3.5. Unimodular configuration matrices have other
nice properties, and we will take a special interest in them.

Chapter 2 gives a review of previous work on the problem of finding Markov bases.
We begin in Section 2.2 by looking at geometric representations of fibres. We show the
correspondence between different lattice bases and different projections of the Z-polytope
representation of a fibre.

In Section 2.3, different kinds of collections of moves are defined. These include Markov
bases and sub-bases, the Graver basis, Gröbner bases, and lattice bases.

Gröbner bases and the Fundamental Theorem of Markov Bases are the subject of
Section 2.4. A Gröbner basis is a type of generating set for an ideal in a polynomial
ring. The Fundamental Theorem of Markov Bases lays out a correspondence between a
generating set of an ideal and Markov bases. In this section we review some of the algebra
around ideals and Gröbner bases.

Section 2.5 introduces column partition lattice bases. This is a type of lattice basis
formed from a partition of the columns of the configuration matrix, and it is the focus of
this thesis. A column partition lattice basis is not necessarily a Markov basis. We give
some examples of what can go wrong, and provide a geometric view of each.

Chapter 3 is all about column partition lattice bases. In Section 3.2 we show how they
are constructed, and in Section 3.3 we show the relationship between a column partition
lattice basis and a projection of a Z-polytope onto a lower dimensional space — the
connectedness of a column partition lattice basis is closely related to the geometry of the
corresponding projection of associated Z-polytopes.

A column partition lattice basis is defined by the columns of a matrix, which we call
U . Section 3.4 gives more information about U matrices and their columns. Section 3.5
looks at the impact unimodularity of a configuration matrix has upon its column partition
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lattice bases. A key result in this section concerns the relationship between the vectors
that make up a column partition lattice basis and a type of integer kernel element called
a circuit. For unimodular configuration matrices, the union of the column partition bases
equals the set of circuits, which is also equal to the Graver basis, which is known to be a
Markov basis.

Chapter 4 looks at connectivity of column partition lattice bases. We focus on column
partition lattice bases formed from unimodular column partitions. In Section 4.2 we build
on the method of Schofield and Bonner [39], who found that a column partition lattice
basis could be constructed when the configuration matrix has the identity matrix as a
maximal submatrix. We show that their condition can weakened, and the same line of
reasoning guarantees that the column partition lattice basis constructed is a Markov basis.

In Section 4.4 we give a still weaker condition on the matrix U that guarantees that
the column partition lattice basis it defines is a Markov basis, and we conjecture that
this is also a necessary condition. For both Section 4.2 and Section 4.4 we provide a
proof of connectivity using the Fundamental Theorem of Markov Bases. We also show
how the geometry of the associated Z-polytopes is affected by the conditions we give,
and use this to build a proof via distance reduction. We conclude this chapter with some
brief remarks on how column partition lattice bases that are not themselves Markov bases
might be combined to form a Markov basis.

Chapter 5 concerns our main motivating application, network tomography. The con-
figuration matrices of interest here are the link-path incidence matrices of traffic networks.
We focus on investigating how the properties of the network affect the determinants of
the maximal submatrices of the link-path incidence matrices. In particular, we look at
properties of the underlying graph of the network, and the influence of rules regarding
which paths are allowed routes for traffic in the network (which we term a routing policy).

We begin this chapter with a review of some relevant graph theory, including the
definition and an example of a link-path incidence matrix.

In Section 5.2 we look at what is currently known about the determinants of subma-
trices of link-path incidence matrices, in particular maximal submatrices. We find that
unimodularity is a common property of link-path incidence matrices arising in real world
problems, but it is not always guaranteed. Examples of traffic networks where there are
no unimodular maximal submatrices are given. We show by example that determinants
of maximal submatrices are unbounded in general.

Enforcing some kind of structure on the network’s graph can result in more well-
behaved link-path incidence matrices. In Section 5.3 we consider networks on a kind of
a graph called a polytree, which is a tree with directed links. We find that polytrees
have link-path incidence matrices that are not only unimodular, but totally unimodular,
meaning that all invertible submatrices have determinant ±1.

In Section 5.4 we turn our attention to traffic networks on symmetric directed graphs.
These appear to closely model real-world traffic networks, in that the connections in the
graph are bidirectional: if there exists a link connecting node A to node B, then there is
also a node connecting node B to node A.

Symmetric directed graphs for which the underlying graph is a tree do not in general
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have unimodular configuration matrices, but we show that given certain assumptions on
the routing on the network, unimodular partitions can be found. We speculate that this
result can be extended to all symmetric directed graphs.

Chapter 6 concerns an extension of the concept of a Markov basis to what we term
an m-Markov basis. For a collection of moves to be a Markov basis for a configuration
matrix A requires that for all y, they are capable of constructing a walk between any
pair of points in Fy such that the walk never visits a point with a negative entry in any
co-ordinate, which is to say it need never leave the Z-polytope. For m-Markov bases, this
condition is relaxed: an m-Markov basis for a configuration matrix A and a non-negative
integer vector m is a collection of moves such that for all y, it is capable of constructing
a walk that never visits any point x such that for any i, xi ≤ −mi. Any Markov basis is
therefore a 0-Markov basis.

An m-Markov basis can be used to sample from some fibre Fy by construct a walk
through this slightly larger Z-polytope, and discarding from the sample any elements that
have any negative co-ordinates.

Our main theme is the Minus One Conjecture (Conjecture 6.3.2). The claim of the
Minus One Conjecture is this: let A be a unimodular configuration matrix, let U be a
column partition lattice basis, and let y be given. Then for any x1,x2 ∈ Fy, U can be
used to construct a walk between x1 and x2 that never visits a point with an entry less
than −1 in the first n co-ordinates — these are the co-ordinates in the A1 part of the
configuration matrix. In real world problems this may represent a small portion of the
total number of co-ordinates. Typically these are chosen to be the co-ordinates with high
expected values — the busiest routes the a traffic network, for example [25]. Our hope is
that by restricting stepping outside the Z-polytope to these n dimensions, the proportion
of the sample that needs to be discarded is minimised.

We include proofs of a few cases of the Minus One Conjecture in Section 6.4. The
most important of these is when the configuration matrix, or the U matrix, is a network
matrix (defined in Definition 5.3.2). This is an important result because all link-path
incidence matrices for polytrees, and because it may provide a pathway to a proof for
the full minus one conjecture: network matrices are key building blocks for all totally
unimodular matrices.
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Chapter 2

Polytopes, bases, and algebra

2.1 Introduction

In this chapter we look in more detail at some of the previous work on the problem of
finding Markov bases. We first look at Z-polytopes, in Section 2.2. The Z-polytopes of
interest are geometric interpretations of Fy, the y-fibre from which we wish to sample.

In Section 2.3 we define some types of bases that may be of use. The bases of interest
consist of elements in the integer kernel of the configuration matrix that span that integer
kernel over Z. This is a minimum requirement for a set of moves to be a Markov basis.
Types of bases we cover include the Graver basis, Gröbner bases, and lattice bases.

Section 2.4 covers Gröbner bases in more detail. Gröbner bases representing the kernel
of the configuration matrix are the most commonly used type of Markov bases. This sec-
tion includes a statement of the Fundamental Theorem of Markov Bases (Theorem 2.4.5).

In Section 2.5 we turn to a type of basis that is the focus of this thesis, which we call
a column partition lattice basis. Column partition lattice bases are lattice bases that are
formed using a particular technique based on partitioning the columns of the configuration
matrix. A single configuration matrix may have many different suitable column partitions,
and therefore many different column partition lattice bases.

Column partition lattice bases are not necessarily Markov bases. In Section 2.5.1 we
look at some examples of column partition lattice bases that are not Markov bases, and
give a geometric interpretation of why this is.

Section 2.5.2 gives an example due to Schofield and Bonner [39] of a column partition
lattice basis that is a Markov basis.

2.2 Z-polytopes

In this section we give a review of Z-polytopes as geometric representations of y-fibres.
Recall from Section 1.1 that given a vector y, the y-fibre is the set of non-negative integer
vectors x ∈ Zr≥0 satisfying the linear equation Ax = y.

21
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Definition 2.2.1 (Fibre). Let A be an n×r matrix of rank n and let y ∈ Zn≥0 be a count
vector. Then the y-fibre, denoted Fy, is the set

Fy = {x ∈ Zr≥0 : Ax = y}.

These Z-polytopes are the intersection of a translate of the kernel of A with the non-
negative orthant and the integer lattice.

Any vector x such that Ax = y is equal to some particular solution x0 plus some
element of the kernel of A, which has dimension r− n. The set of solutions {x : Ax = y}
is equal to a translate of the kernel of A by x0, and is therefore an (r − n)-dimensional
affine subspace of Rr.

We are interested in the set of non-negative solutions to this system, which geo-
metrically is the intersection of this affine space with the non-negative orthant. In our
applications, configuration matrices A have the property that there is a positive vector
in the row space, so ker(A) intersects the non-negative orthant at the origin only. The
intersection of a translate of ker(A) with the non-negative orthant is therefore finite, and
is an (r − n)-dimensional polytope.

The set Fy contains only the integral elements of this polytope, so it is the intersection
of this polytope with the integer lattice [26].

Definition 2.2.2 (Z-polytope). A Z-polytope is the intersection of a polytope with the
integer lattice.

The Z-polytopes we are interested in have a convex underlying polytope that lies
entirely in the non-negative orthant.

We give an example of the construction of a Z-polytope from a configuration matrix
and vector y. The example is low dimensional to aid visualisation.

Example 2.2.3. Consider the configuration matrix

A =
[
1 1 1

]
,

and the vector y =
[
3
]ᵀ

. The solitary row vector
[
1 1 1

]
is orthogonal to the kernel of

A, which is shown in Figure 2.1a.
A particular solution to Ax = y is given by x0 =

[
3 0 0

]ᵀ
. The corresponding

translate of ker(A) is shown in Figure 2.1b, and the polytope comprising the intersection
of this translate with the non-negative orthant is shown in Figure 2.1c. In this case the
polytope is a triangle.

Figure 2.2a zooms in on the non-negative orthant to show the polytope. From there,
we intersect the polytope with the integer lattice to get the Z-polytope representation of
Fy. The set Fy is given by

Fy =


0

0
3

 ,
0

1
2

 ,
0

2
1

 ,
0

3
0

 ,
1

0
2

 ,
1

1
1

 ,
1

2
0

 ,
2

0
1

 ,
2

1
0

 ,
3

0
0

 ,

and these are the points shown in Figure 2.2b.
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(c) The non-negative part.

Figure 2.1: The construction of the polytope in Example 2.2.3.
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(b) The Z-polytope.

Figure 2.2: The construction of the Z-polytope in Example 2.2.3.
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2.3 Bases

In linear algebra, a basis is a set of vectors in some vector space such that each vector in
the vector space can be written uniquely as a linear combination of the elements of the
basis. The size of the basis is equal to the dimension of the vector space.

For the kinds of bases we discuss, this is not necessarily the case. A Markov basis for
a configuration matrix A requires a spanning set of the kernel of A, but as we will see,
more moves may be necessary. We will now describe some of the bases relevant to our
work.

2.3.1 Markov bases and sub-bases

Markov bases and sub-bases are collections of moves that enable construction of a walk
through a fibre that is capable of visiting every point in that fibre, while remaining at all
times within the fibre. The moves in the basis or sub-basis are therefore vectors in the
integer kernel of the configuration matrix.

We first define what it means for two points in a fibre to be connected.

Definition 2.3.1. Let A ∈ {0, 1}n×r be a configuration matrix and let y ∈ Zn≥0 be a
non-negative integer vector. Let B ∈ kerZ(A) be a collection of vectors. We say that
B connects two points x1,x ∈ Fy if there is a sequence of moves zi1 , . . . , zik ∈ B and a
sequence of signs ε1, . . . , εk ∈ {±1} such that

x1 +
k∑
j=1

εjzij = x2, (2.3.1)

and such that for all m = 1, . . . , k,

x1 +
m∑
j=1

εjzij ∈ Fy. (2.3.2)

The condition in equation (2.3.1) means that the moves take the walk from x1 to x2.
The condition in equation (2.3.2) means that the walk remains within F for its duration.

If a collection of moves B connects all of the points in some given fibre, then we say
that B is a Markov sub-basis for that fibre.

Definition 2.3.2 (Markov sub-basis). Let A ∈ {0, 1}n×r be a configuration matrix and
let y ∈ Zn≥0 be a non-negative integer vector. Let B ∈ kerZ(A) be a collection of vectors.
We say that B is a Markov sub-basis for A ∈ {0, 1}n×r and y, or equivalently for Fy, if
for each pair of points x1,x2 ∈ Fy, there is a sequence of moves zi1 , . . . , zik ∈ B and a
sequence of signs ε1, . . . , εk ∈ {±1} such that

x1 +
k∑
j=1

εjzij = x2,
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and such that for all m = 1, . . . , k,

x1 +
m∑
j=1

εjzij ∈ Fy.

Given a configuration matrix A and collection of moves B, we say that B is a Markov
basis for A if B is a Markov sub-basis for every fibre for A.

Definition 2.3.3 (Markov basis). Let A ∈ {0, 1}n×r be a configuration matrix and let
B ∈ kerZ(A) be a collection of vectors. We say that B is a Markov basis for A ∈ {0, 1}n×r,
if for all y ∈ Zn≥0, for each pair of points x1,x2 ∈ Fy, there is a sequence of moves
zi1 , . . . , zik ∈ B and a sequence of signs ε1, . . . , εk ∈ {±1} such that

x1 +
k∑
j=1

εjzij = x2,

and such that for all m = 1, . . . , k,

x1 +
m∑
j=1

εjzij ∈ Fy.

2.3.2 The Graver basis

The Graver basis is known to be a Markov basis [3]. Defining the Graver basis requires
the definition of a conformal decomposition.

Definition 2.3.4. Let u ∈ Zr. A conformal decomposition of u is an expression u = v+w
where v,w ∈ Zr \ {0} and |ui| = |vi|+ |wi| for all i ∈ {1, . . . , r}.

Definition 2.3.5 (Graver basis [43]). Given a matrix A ∈ Zn×r, the Graver basis of A,
denoted GA, is the set of all nonzero g ∈ kerZ(A) such that g does not have a conformal
decomposition g = v + w with v and w in kerZ(A).

Clearly if for some A we have g ∈ GA, then −g ∈ GA. When enumerating Graver basis
elements, we will in general only write down one of the elements g,−g.

Using the Graver basis to construct a walk in a Z-polytope allows travel between any
pair of points such that no step moves in the wrong direction in any co-ordinate [3]. Too
see this, let A and y be given. Consider a pair of points x1,x2 ∈ Fy. Then z = x2−x1 ∈
kerZ(A), and steps in any walk connecting x1 and x2 must sum to z. If z ∈ GA, then
we are done. If not, then z can be conformally decomposed into Graver basis elements.
Suppose that this decomposition is given by

z =
∑
g∈GA

cgg,

where each cg ∈ Z≥0. The fact that the decomposition is conformal means that for g with
cg 6= 0, there is no mismatch between the signs of entries in g and those of z. Therefore
each step in the walk travels in the correct direction in every co-ordinate.
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Example 2.3.6. Let A be the link-path incidence matrix of the three-link linear network.
Then A is given by

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .
The Graver basis consists of the following vectors (and their negations):

GA =




−1

0
0
0
−1

1

 ,


0
−1

0
1
1
−1

 ,


0
0
−1
−1

0
1

 ,


1
1
0
−1

0
0

 ,


0
1
1
0
−1

0

 ,


1
1
1
0
0
−1

 ,


1
0
−1
−1

1
0




.

The first three elements of GA make up a lattice basis U for kerZ(A).
Suppose the difference between two points x1,x2 in some fibre is given by the integer

kernel element x2 − x1 =
[
−3 −2 0 2 −1 1

]ᵀ
. Writing x2 − x1 in terms of U we

have

x2 − x1 =


−3
−2

0
2
−1

1

 =


−1

0
0
0
−1

1

+


−1

0
0
0
−1

1

+


−1

0
0
0
−1

1

+


0
−1

0
1
1
−1

+


0
−1

0
1
1
−1

 .

For a lattice basis such as U , every element of the integer kernel can be written uniquely
as an integer combination of elements of U , so these moves are necessary when using U
to walk from x1 to x2. The second move

[
0 −1 0 1 1 −1

]ᵀ
travels in the wrong

direction in the fifth co-ordinate.
The vector x2−x1 can be conformally decomposed into Graver basis elements like so:

x2 − x1 =


−3
−2

0
2
−1

1

 =


−1

0
0
0
−1

1

+


−1
−1

0
1
0
0

+


−1
−1

0
1
0
0

 .

These moves can be used to construct a walk from x1 to x2 such that the walk never
travels in the wrong direction in any co-ordinate.

2.3.3 Gröbner bases

Gröbner bases are the current state of the art in Markov bases. The Fundamental Theorem
of Markov Bases, discussed in Section 2.4, relates the integer kernel of a configuration
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matrix to an ideal in a polynomial ring, and Markov bases to generating sets of this ideal.
Gröbner bases are generating sets that have particular properties.

Polynomial rings are a very well studied field. The correspondence established by
the Fundamental Theorem allows the importation of much of the machinery of abstract
algebra to the study of Markov bases. In particular, algorithms are available for finding
Gröbner bases which can then be employed in the search for Markov bases.

Gröbner bases are covered more fully in Section 2.4.3, but briefly, Gröbner bases are
defined relative to a term order > and a choice of ordering of the co-ordinates, which allows
one to order the points in the polytope. Different term orders and different orderings of the
co-ordinates will produce different Gröbner bases. A geometric interpretation of Gröbner
bases is that for any point x1 in the polytope that is not >-minimal, there exists a point
x2 such that x1 > x2 and it is possible to move from x1 to x2.

Example 2.3.7. Consider the link-path incidence matrix of the three-link linear network,
given by

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .
A Markov basis for A based on a Gröbner basis for the ideal generated by kerZ(A) is given
by

G =




−1
−1

0
1
0
0

 ,


0
−1
−1

0
1
0

 ,

−1
−1
−1

0
0
1




.

This basis uses lexicographic ordering with the term ordering t6 > t5 > · · · > t1.

Let y =
[
3 3 3

]ᵀ
, and consider x1 =

[
1 0 0 0 1 2

]
∈ Fy. The second move u2

and third move u3 in G can each be subtracted from x1 to form

x2 = x1 − u2 =


1
1
1
0
0
2

 and x3 = x1 − u3 =


2
1
1
0
1
1


Both of these vectors x2,x3 are such that x1 > x2,x3 under the given term ordering.

Using a different term ordering produces a different basis: for example, using the term
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ordering t1 > t2 > · · · > t6 produces the basis

G2 =




1
1
0
−1

0
0

 ,


1
0
0
0
1
−1

 ,


0
1
1
0
−1

0

 ,


0
1
0
0
1
−1

 ,


0
0
1
1
0
−1




.

2.3.4 Lattice bases

Lattice bases were introduced in Section 1.4 and defined in Definition 1.4.1. A lattice basis
B for a configuration matrix A is a collection of vectors such that any element of kerZ(A)
can be uniquely expressed as a sum of integer multiples of elements of B. Although it
is a basis for the integer kernel, a lattice basis does not necessarily contain only integer
valued vectors.

Example 2.3.8. Consider again the triangular network from Example 1.2.2. A link-path
incidence matrix for this network is given by

A =

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

 .
We have dim (ker(A)) = 3, so any lattice basis has three elements. One lattice basis is
given by

B =





1
2
1
2

−1
2

−1
0
0

 ,


1
2

−1
2
1
2

0
−1

0

 ,

−1

2
1
2
1
2

0
0
−1




.

If we were to multiply out the denominators, we would have the set

B2 =




1
1
−1
−2

0
0

 ,


1
−1

1
0
−2

0

 ,

−1

1
1
0
0
−2




.
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The integer kernel contains the element

z =


1
0
0
−1
−1

0

 ,

which cannot be expressed as an integer combination of elements of B2. This means
that B2 is not a lattice basis. However, z can be expressed as an integer combination of
elements of the lattice basis B: 

1
0
0
−1
−1

0

 =



1
2
1
2

−1
2

−1
0
0

+



1
2

−1
2
1
2

0
−1

0


.

A lattice basis are not necessarily a Markov basis, but every Markov basis must include
a lattice basis. The following list of inclusions is from Aoki, Hara, and Takemura [3]:

a lattice basis ⊆ a minimal Markov basis ⊆ a reduced Gröbner basis ⊆ the Graver basis.

The connectivity properties of lattice bases are the focus of this thesis.

2.4 Algebra and connectivity

In this section we introduce the Fundamental Theorem of Markov Bases [19]. The Funda-
mental Theorem of Markov Bases gives a correspondence between a Markov basis and a
generating set of an ideal in a polynomial ring. It is useful for determining the connected-
ness of any set Fy via any particular basis, and together with Buchberger’s algorithm [10,
13] can be used to find Markov bases [19, 20] for a given configuration matrix.

We begin in Section 2.4.1 by reviewing some of the relevant algebra. This includes the
definitions of polynomial rings, ideals, and generating sets.

In Section 2.4.2 we show how polynomials may represent vectors such as elements of
the kernel of a matrix, or a fibre, before giving a statement of the Fundamental Theorem
(Theorem 2.4.5). We show via examples how it may be used to demonstrate connected-
ness.

In Section 2.4.3 we take a more detailed look at Gröbner bases, and Theorem 2.4.15
gives Buchberger’s algorithm for finding a Gröbner basis. We then demonstrate how they
may be used to find a Markov basis for a given configuration matrix.
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2.4.1 Ideals

Recall the definitions of a polynomial ring, an ideal in a polynomial ring, and its genera-
tors.

Definition 2.4.1 (Polynomial ring [13]). Let k be a field, and let T = {t1, . . . , tr} be
a set of indeterminates. Then the polynomial ring k[T ] is the set of polynomials in the
indeterminates T with co-efficients in the field k with respect to the binary operations +
(polynomial addition) and × (polynomial multiplication).

Example 2.4.2. The polynomial ring Q[t1, t2] contains polynomials in the indeterminates
t1 and t2 with rational co-efficients. It contains polynomials such as

2t21t2 + t1t2 + 4t32 and
2

3
t1 + t22.

They are added and multiplied using the usual operations of polynomial addition and
multiplication.

Each of the terms in a given polynomial is a monomial. Give a non-negative integer
vector x, we will use the notation T x to mean the monomial given by the elementwise
exponentiation tx11 t

x2
2 . . . txrr : for example, if T = {t1, t2, t3} and x =

[
1 0 2

]ᵀ
, then

T x = t1t
2
3.

Definition 2.4.3 (Ideal [13]). Let k be a field, let T = {t1, . . . , tr} be a set of indeter-
minates, and let k[T ] be the polynomial ring over k in the indeterminates T . An ideal of
k[T ] is a subset I of k[T ] such that:

1. 0 ∈ I.

2. ∀f, g ∈ I : f + g ∈ I.

3. ∀f ∈ I, h ∈ k[T ] : hf ∈ I.

Definition 2.4.4 (Generators [13]). Let k[T ] be a polynomial ring, and let I be an ideal
of k[T ]. We say a set {f1, . . . , fs} ⊂ I generates I if for all f ∈ I, we can write:

f =
s∑
i=1

hifi where each hi ∈ k[T ].

Then we write I = 〈f1, . . . , fs〉.

2.4.2 The Fundamental Theorem of Markov Bases

The Fundamental Theorem of Markov Bases uses a correspondence between Markov bases
of configuration matrices and generating sets of an associated ideal in a certain polynomial
ring. We use the set of indeterminates T = {t1, . . . , tr} and identify a vector x ∈ Zr≥0 with
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the monomial formed by taking the elementwise exponentiation: T x = tx11 · · · txrr . Then
any element x of Fy can be identified with the monomial T x. With each configuration
matrix A we associate an ideal in k[T ], which we write as IA, and define as

IA = 〈T x1 − T x2 : Ax1 = Ax2〉,

where x1,x2 ∈ Zr≥0 (and so x1 − x2 ∈ kerZ(A)).
Any element u of a basis B can be identified with a monomial difference: we split u

into its positive and negative parts, u+ and u−, so that u = u+ − u−, and both u+ and
u− are in Zr≥0. The monomial difference representing u is therefore Tu+ − Tu−

. With
each basis B we associate an ideal in k[T ], which we write as IB, and define as

IB = 〈Tu+ − Tu−
: u ∈ B〉.

Given y and B, the Fundamental Theorem of Markov Bases says that two elements
x1,x2 ∈ Fy are connected by B if and only if their representation as a monomial difference
is in the ideal IB generated by the monomial difference representations of the elements of
B; that is

T x1 − T x2 ∈ IB.

So if for each x1,x2 ∈ Fy, there exist u1, . . . ,uk ∈ B and f1, . . . , fk ∈ k[T ], such that

T x1 − T x2 =
k∑
i=1

fi(T
u+
i − Tu−

i ),

then B is a Markov sub-basis for Fy. If B is a Markov sub-basis for Fy for all allowed y
for some configuration matrix A, then B is a Markov basis for A.

Theorem 2.4.5 (Fundamental Theorem of Markov Bases [19, 20]). A finite set of moves
B is a Markov basis for A if and only if the set of monomial differences {Tu+−Tu−

: u ∈
B} generates the ideal IA.

A path connecting two points x and xn in Fy is given by a telescoping series that
evaluates to T x1 − T x2 . Following Dinwoodie [20], suppose that there is a path from x to
xn using moves in B = {u1, . . . ,uk}. The path can be written

x, x1 = x− ε1ui1 , x2 = x− ε1ui1 − ε2ui2 , . . . , xn

where εi represents the sign + or − and xi ∈ Fy for each 1 ≤ i ≤ n. With the polynomial
notation, we can write

T x − T xn = (T x − T x1) + (T x1 − T x2) + · · ·+ (T xn−1 − T xn)

= ε1T
x−uε1i1 (Tu+

i1 − Tu−
i1 ) + · · ·+ εnT

xn−1−uεnin (Tu+
in − Tu−

in )

where uεi means u+ if εi = + and u− if εi = −. This shows that the monomial difference
T x1 − T xn is in IB.
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1 2 3 4
1 2 3

1 2 3

4 5

6

Figure 2.3: The three-link linear network from Example 2.4.6. The underbraces show
allowed paths.

Example 2.4.6. Consider the three-link linear traffic network shown in Figure 2.3

The link-path incidence matrix A is given by

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .
A lattice basis B is given by

B =




1
1
0
−1

0
0

 ,


0
1
1
0
−1

0

 ,


1
1
1
0
0
−1




⊂ kerZ(A).

If one car is observed on each link of the network, then y =
[
1 1 1

]ᵀ
, producing the

fibre

Fy =




1
1
1
0
0
0

 ,


1
0
0
0
1
0

 ,


0
0
1
1
0
0

 ,


0
0
0
0
0
1




.

Then we can see that
1
1
1
0
0
0

 =


1
0
0
0
1
0

+


0
1
1
0
−1

0

 =


0
0
1
1
0
0

+


1
1
0
−1

0
0

 =


0
0
0
0
0
1

+


1
1
1
0
0
−1

 .
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Indexing the elements ui ∈ B and xi ∈ Fy from the left gives

x0 = x1 + u2

= x2 + u1

= x3 + u3.

Because each element of Fy is connected to x0, they must all be connected to each
other, and so Fy is connected by B. In algebraic terms, B is represented with the monomial
differences t1t2 − t4, t2t3 − t5, and t1t2t3 − t6; and the elements of Fy by the monomials
t1t2t3, t1t5, t3t4, and t6. We can show that x1,x2, and x3 are connected to x0 by writing the
monomial difference representing the two elements as a sum of the monomial differences
representing the basis elements multiplied by some element of the polynomial ring:

T x0 − T x1 = t1t2t3 − t1t5 = t1(t2t3 − t5) = t1(Tu+
2 − Tu−

2 ),

T x0 − T x2 = t1t2t3 − t3t4 = t3(t1t2 − t4) = t3(Tu+
1 − Tu−

1 ),

T x0 − T x3 = t1t2t3 − t6 = t1t2t3 − t6 = Tu+
3 − Tu−

3 .

We can similarly show that these other elements T x1 , T x2 , and T x3 are connected to each
other:

T x2 − T x1 = t3t4 − t1t5
= −t3(t1t2 − t4) + t1(t2t3 − t5)

= −t3(Tu+
1 − Tu−

1 ) + t1(Tu+
2 − Tu−

2 ),

T x2 − T x3 = t3t4 − t6
= −t3(t1t2 − t4) + (t1t2t3 − t6)

= −t3(Tu+
1 − Tu−

1 ) + (Tu+
3 − Tu−

3 ),

T x1 − T x3 = t1t5 − t6
= −t1(t2t3 − t5) + (t1t2t3 − t6)

= −t1(Tu+
2 − Tu−

2 ) + (Tu+
3 − Tu−

3 ).

This shows that the monomial differences representing any two elements of Fy are in the
ideal generated by the monomial differences representing the basis elements, and so Fy is
connected by B by the Fundamental Theorem of Markov Bases. Therefore B is a Markov
sub-basis for Fy.

Note that this does not necessarily mean that B is a Markov basis, though. For B to
be a Markov basis, it must connect Fy for all allowed y.

2.4.3 Gröbner bases and Buchberger’s algorithm

The correspondence between Markov bases and generating sets of ideals given by the
Fundamental Theorem of Markov Bases means that ideas from abstract algebra can be
imported and used in order to understand and find Markov bases. Hilbert’s Basis Theorem
guarantees that a basis of finite size exists [13].
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Theorem 2.4.7 (Hilbert’s Basis Theorem). Let k be a field, let T = {t1, . . . , tr} be a set
of indeterminates, and let k[T ] be the polynomial ring over k in the indeterminates T .
Every ideal I ⊆ k[T ] has a finite generating set. In other words, I = 〈g1, . . . , gt〉 for some
g1, . . . , gt ∈ I.

This means that a finite basis for the ideal of monomial differences IA exists, and
therefore that a finite Markov basis exists for any configuration matrix.

Such a finite basis can be found using a process called Buchberger’s algorithm, which
produces a particularly useful kind of basis called a Gröbner basis. The definition of a
Gröbner basis is in terms of a monomial ordering, which is defined as follows:

Definition 2.4.8 (Monomial ordering [13]). Let k be a field, let T = {t1, . . . , tr} be a
set of indeterminates, and let k[T ] be the polynomial ring over k in indeterminates T . A
monomial ordering > on k[T ] is a relation > on Zr≥0, or equivalently, a relation on the
set of monomials T x, x ∈ Zr≥0, satisfying:

1. > is a total (or linear) ordering on Zr≥0, meaning it can be used to compare every
pair of elements in Zr≥0.

2. If x1 > x2 and x3 ∈ Zr≥0, then x1 + x3 > x2 + x3.

3. > is a well-ordering on Zr≥0. This means that every nonempty subset of Zn≥0 has a
smallest element under >. In other words, if A ⊆ Zn≥0 is nonempty, then there is
α ∈ A such that β > α for every β 6= α in A.

An example of a monomial ordering is lexicographic order. In lexicographic order,
monomials are compared by comparing the values of each entry in the term in some
order. Take as an example the elements of Fy from Example 2.4.6. These are

Fy =




1
1
1
0
0
0

 ,


1
0
0
0
1
0

 ,


0
0
1
1
0
0

 ,


0
0
0
0
0
1




.

We can order the elements of Fy with the term ordering t1 > t2 > t3 > t4 > t5 > t6,
which gives the order 

1
1
1
0
0
0

 >


1
0
0
0
1
0

 >


0
0
1
1
0
0

 >


0
0
0
0
0
1

 .
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Under >, the greatest term is t1, and we can see that under this term ordering every term
with x1 = 1 precedes every term with x1 = 0. In monomial terms, this ordering is

T x0 > T x1 > T x2 > T x3 .

In any polynomial, we can order the terms to find the leading term.

Definition 2.4.9 (Leading term [13]). Let k be a field, let T = {t1, . . . , tr} be a set of
indeterminates, and let k[T ] be the polynomial ring over k in the indeterminates T . In
any polynomial f ∈ k[T ], the leading term LT(f) with respect to some ordering > is the
term that is maximal with respect to > out of all terms in f .

Applying this definition to elements of B from Example 2.4.6, using again the lexico-
graphic order with term ordering t1 > t2 > t3 > t4 > t5 > t6 means that

LT(Tu+
1 − Tu−

1 ) = LT(t1t2 − t4)

= t1t2,

LT(Tu+
2 − Tu−

2 ) = LT(t2t3 − t5)

= t2t3.

We can now define a Gröbner basis.

Definition 2.4.10 (Gröbner basis [13]). A Gröbner basis with respect to a term ordering
> is a subset G = {g1, . . . , gn} of an ideal I such that

〈LT(g1), . . . ,LT(gn)〉 = 〈LT(I)〉,

where LT(g) means the leading term of the polynomial under >.

Dinwoodie [20] and Diaconis and Sturmfels [19] give a technique for finding a Markov
basis. They use another set of indeterminates S = {s1, . . . , sn} and identify the vector y ∈
Zn≥0 with the monomial formed by taking the elementwise exponentiation Sy = sy11 · · · synn .

Let > be any term ordering on T ∪ S such that for all s ∈ S and all t ∈ T , s > t.
Then a Gröbner basis for IA can be found by finding a Gröbner basis for the ideal

I = 〈T ei − SAei : i = 1, . . . , r〉,

and taking from this Gröbner basis only those elements for which all terms are in k[T ].
This basis may be calculated using Buchberger’s Algorithm, given for example in Cox

et al. [13], which requires the following definition.

Definition 2.4.11 (S-polynomial [13]). The S-polynomial of polynomials f and g in k[T ]
is given by

S(f, g) =
T γ

LT(f)
f − T γ

LT(g)
g

where T γ is the least common multiple of LT(f) and LT(g).
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The practical effect of taking an S-polynomial is to find a multiple of each of f and g
such that the leading terms cancel when the difference f − g is taken.

For example, consider the lattice basis from Example 2.4.6.

Example 2.4.12. Two of the lattice basis elements given for the three-link linear traffic
network in Example 2.4.6 have monomial difference representations

Tu+
1 − Tu−

1 = t1t2 − t4,

Tu+
2 − Tu−

2 = t2t3 − t5.

Under the term ordering t1 > · · · > t6, the S-polynomial S(Tu+
1 − Tu−

1 , Tu+
2 − Tu−

2 ) is
given by

S(Tu+
2 − Tu−

2 , Tu+
1 − Tu−

1 ) = t1(t2t3 − t5)− t3(t1t2 − t4)

= t1t2t3 − t1t5 − t1t2t3 + t3t4

= t3t4 − t1t5.

Buchberger’s algorithm requires the division algorithm, which requires the definition
of the multidegree of a polynomial. The multidegree is defined as follows:

Definition 2.4.13 (Multidegree [13]). Let f =
∑

x axT
x be a non-zero polynomial in

k[T ] and let > be a monomial order. The multidegree of f is

multidegree(f) = max{x ∈ Zn≥0 : ax 6= 0},

where the maximum is taken with respect to the term ordering.

We now give the division algorithm:

Theorem 2.4.14 (The Division Algorithm in k[T ] [13]). Let > be a monomial order on
Zr≥0, and let F = {f1, . . . , fs} be a collection of polynomials in k[T ]. Then every f ∈ k[T ]
can be written as

f = q1f1 + · · ·+ qsfs + r,

where qi, r ∈ k[T ] and either r = 0 or r is a linear combination, with coefficients in k, of
monomials, none of which is divisible by any of LT(f1), . . . ,LT(fs). We call r a remainder
of f on division by F . Furthermore, if qifi 6= 0, then

multidegree(f) ≥ multidegree(qifi).

We can now give Buchberger’s algorithm.

Theorem 2.4.15 (Buchberger’s Algorithm [13]). Let I = 〈f1, . . . , fs〉 6= {0} be a poly-
nomial ideal. Then a Gröbner basis for I can be constructed from the set of generators
F = {f1, . . . , fs} in a finite number of steps by the following algorithm:

1. Set G = F .
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2. For each pair {p, q} ∈ G, find a remainder r of S(p, q) when divided by the elements
of G. If r 6= 0, add r to G.

3. Repeat the previous step until r = 0 for all pairs {p, q} in G.

4. Return G, a Gröbner basis of I.

Example 2.4.16. Consider the link-path incidence matrix A of a three-link linear traffic
network, where the allowed paths are each single edge, and each pair of adjacent edges.
Then A is given by

A =

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

 .
Using indeterminates T to represent the x vectors and S to represent the y vectors, the
ideal I as defined by its generators is

I = 〈s1 − t1, s2 − t2, s3 − t3, s1s2 − t4, s2s3 − t5〉.

We use lexicographical ordering with s1 > s2 > s3 > t1 > t2 > t3 > t4 > t5. There are
ten pairs of distinct generators, which means at least ten S-polynomials to check.

The remainders of five of these S-polynomials when divided by the elements of G are
0. For example,

S(s1 − t1, s2 − t2) = s2(s1 − t1)− s1(s2 − t2)

= s2s1 − s2t1 − s1s2 + s1t2

= s1t2 − s2t1.

Dividing S(s1 − t1, s2 − t2) by s1 − t1 yields

s1t2 − s2t1 = t2(s1 − t1)− (s2t1 − t1t2),

and dividing the remainder −(s2t1 − t1t2) by s2 − t2 yields −t1 with no remainder.
The remainders of the other five S-polynomials when divided by the elements of G

are all in {±(t1t2 − t4),±(t2t3 − t5),±(t1t5 − t3t4)}. For example,

S(s2 − t2, s1s2 − t4) = s1(s2 − t2)− (s1s2 − t4)

= s1s2 − s1t2 − s1s2 + t4

= −(s1t2 − t4).

Dividing S(s2 − t2, s1s2 − t4) by s1 − t1 yields

−(s1t2 − t4) = −t2(s1 − t1)− (t1t2 − t4).

This remainder t1t2− t4 is not divisible by any element of G and so is added to G; so too
are t2t3− t5 and t1t5− t3t4, the remainders of the divisions of other S-polynomials by the
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elements of G. With three new elements in G there are eighteen new S-polynomials to
consider. Fortunately, all have a remainder of 0 when divided by elements of the updated
set G. Hence a Gröbner basis for I is given by

G = {s1 − t1, s2 − t2, s3 − t3, s1s2 − t4, s2s3 − t5, t1t2 − t4, t2t3 − t5, t1t5 − t3t4}.

Taking only the elements with all terms in T , we have

{t1t2 − t4, t2t3 − t5, t1t5 − t3t4},

which is a Gröbner basis for IA and hence the vectors


1
1
0
−1

0

 ,


0
1
1
0
−1

 ,


1
0
−1
−1

1




are a Markov basis for A.

This example illustrates how the algorithm works to produce a Markov basis. Although
there exist improvements and optimisations for Buchberger’s algorithm that are applicable
to the ideals of interest (for example, in Hemmecke and Malkin [28]), they are based on
Buchberger’s algorithm. This example also serves to demonstrate how difficult Markov
bases are to compute algebraically. Finding a Markov basis for this extremely simple 3×5
configuration matrix required polynomial long division of 25 S-polynomials by up to 8
basis elements.

2.5 Column partition lattice bases

In this section we introduce a type of lattice basis we will call a column partition lattice
basis, with the intention of using them in Z-polytope sampling. They will be covered in
more detail in Chapter 3. Column partition lattice bases enjoy the advantage of being
relatively computationally cheap to find compared to Gröbner bases as they require only
a matrix inversion and a matrix multiplication. They also have a simple geometric in-
terpretation: they are moves in co-ordinate directions when the Z-polytope is projected
onto a certain group of co-ordinates.

A column partition lattice basis is suitable for MCMC Z-polytope sampling if it is
a Markov basis or Markov subbasis. A particular column partition lattice basis may or
may not be a Markov basis: Section 2.5.2 gives a method for finding a column partition
lattice basis that is a Markov basis for a very specific set of configuration matrices, while
Section 2.5.1 gives some examples that are not Markov bases. The issue of connectedness
of column partition lattice bases is the subject of Chapter 4.

Using a column partition lattice basis as a collection of moves for MCMC Z-polytope
sampling is the approach favoured by Tebaldi and West [45] and Hazelton [25, 26].
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Column partition lattice bases are a type of lattice basis. Lattice bases are defined
in Definition 1.4.1, which says that a set B forms a lattice basis of kerZ(A) if every
z ∈ kerZ(A) is uniquely written as an integer combination of elements of B. The elements
of any lattice basis B span the kernel of the configuration matrix. If the configuration
matrix A is n × r and of full rank, then the kernel of A is of dimension r − n and any
lattice basis contains r − n elements.

Following the work of Tebaldi and West [45], we can construct a column partition
lattice basis with the following method: we partition the columns of the configuration
matrix A into A1 and A2, where A1 is an invertible maximal n × n submatrix and A2

is n × (r − n). We correspondingly partition x into x1 and x2. Then x2 gives a set of
co-ordinates of the solution x ∈ Fy which determine the value of x1: we have

Ax = y

A1x1 + A2x2 = y

A1x1 = y − A2x2

x1 = A−1
1 y − A−1

1 A2x2.

The columns of the matrix

U =

[
−A−1

1 A2

Ir−n

]
give a lattice basis for the kernel of A and for the set Fy. This process is described more
fully with examples in Section 3.2.

2.5.1 Connectivity problems

Having defined column partition lattice bases, we now turn to the question of whether or
not they are Markov bases. It turns out that this is not always the case. There are a few
kinds of problem that might occur. Some examples are presented here: we refer to them
as parity errors, isolated spaces, and reduced dimension.

Parity errors

From Definition 1.4.1, a lattice basis is a collection of kernel elements such that every
integer kernel element can be uniquely expressed as an integer combination of its elements.
This does not require that the elements of the lattice basis themselves are integral. Column
partition lattice bases are not guaranteed to contain only integer elements. When they
are not, a walk through a Z-polytope constructed with such a basis must use as steps
multiples of the basis elements. Suppose a walk on some fibre F is at some point x ∈ Fy,
so x must be integral. A proposed next step x† = x + z must also be integral: this can
only occur when the proposed move z is also integral.

If a column partition lattice basis is not integral, it may be the case that some stepping
stone required to connect two points is missing — although in this projection the stepping
stone has integer value co-ordinates, it is not an element of Fy because of a non-integer
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1

23
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Figure 2.4: The triangular network from Examples 2.5.1 and 2.5.2.

in one of the hidden co-ordinates. We refer to problems of this type as parity errors. We
illustrate this with an example from Hazelton and Bilton [26].

Example 2.5.1. Consider the traffic network consisting of three directed edges in a
triangle, as shown in Figure 2.4. The allowed paths are: the path consisting of only the
first link; the path consisting of only the second link; and the paths consisting of each
pair of edges. The link-path incidence matrix for this network is given by

A =

1 0 1 0 1
0 1 1 1 0
0 0 0 1 1


Suppose four cars are observed on each of the three links. Then the link count vector y
is given by y =

[
4 4 4

]ᵀ
, and the set Fy is given by

Fy =




0
4
0
0
4

 ,


1
3
0
1
3

 ,


2
2
0
2
2

 ,


3
1
0
3
1

 ,


4
0
0
4
0

 ,


0
2
1
1
3

 ,


1
1
1
2
2

 ,


2
0
1
3
1

 ,


0
0
2
2
2


 .

The column partition lattice basis for the partition π1 = ({3, 4, 5}, {1, 2}) is given by the
matrix

Uπ1 =


1 0
0 1
−1

2
−1

2
1
2
−1

2

−1
2

1
2

 .
If this basis is used to construct a walk through Fy, the steps must be even integer
multiples of the moves. In effect, this basis contains the moves

Uπ1
Z =


2 0
0 2
−1 −1

1 −1
−1 1

 .
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(a) Parity errors.
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(c) A connected projection.

Figure 2.5: Three projections of the Z-polytope in Examples 2.5.1 and 2.5.2.

This basis provides moves in co-ordinate directions when the Z-polytope representation
of Fy is projected onto the x1 and x2 co-ordinates, as shown in Figure 2.5a. We can see
that the elements of Fy are divided into two connected cliques that are not connected to
each other.

Isolated elements

A column partition lattice basis provides a limited collection of moves. It is possible that
for some fibre Fy and some column partition lattice basis U , there is some point x ∈ Fy

such that no other elements of Fy lie in any of the directions of the moves provided by U .
A walk in Fy using U either cannot access x, or is permanently stuck at x. We illustrate
this with an example.

Example 2.5.2. Consider again the traffic network on the graph in Figure 2.4 from
Example 2.5.1. A different column partition lattice basis using the partition π2 =
({2, 3, 4}, {1, 5}) is given by

Uπ2 =


1 0
1 2
−1 −1

0 −1
0 1

 .
This basis provides moves in co-ordinate directions when the Z-polytope representation
of Fy is projected onto the x1 and x5 co-ordinates, as shown in Figure 2.5b. Consider
the point x =

[
4 0 0 4 0

]ᵀ ∈ Fy. In Figure 2.5b this is the point at
[
4 0

]ᵀ
. This

element x cannot have any integer multiple of a column of Uπ2 added or subtracted from
it without returning a vector with a negative entry, so using this lattice basis x is an
isolated vertex.
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The situations in Examples 2.5.1 and 2.5.2 can be rescued by selecting the column
partition lattice basis given by

Uπ3 =


−1 −1
−1 1

1 0
0 −1
0 1

 ,
which provides co-ordinate direction moves when the Z-polytope is projected onto the
x3 and x5 co-ordinates. The result is shown in Figure 2.5c; these moves are sufficient to
connect all points in Fy. This column partition lattice basis is a Markov sub-basis for Fy.

The isolated part of a Z-polytope need not be only one vertex. The following example
shows that larger isolated cliques are also possible.

Example 2.5.3. Consider the configuration matrix

A =


1 0 0 0 0 0 1
0 0 1 1 1 0 0
0 1 0 1 0 1 0
0 0 0 0 1 1 0

 .
This matrix has a repeated column, which may occur under some models used in capture-
recapture studies in ecology. A column partition lattice basis for A is given by

U =



0 0 −1
1 0 0
1 2 0
−1 −1 0

0 −1 0
0 1 0
0 0 1


.

This basis provides moves in co-ordinate directions when the Z-polytope is projected
onto the x2, x6, and x7 dimensions. Setting y =

[
4 4 4 4

]ᵀ
produces a fibre whose

projected Z-polytope representation can be thought of as an extension of the Z-polytope
in Example 2.5.2 along an axis orthogonal to x1 and x5. The result is shown in Figure 2.6.
The points extending the isolated vertex at

[
4 0

]ᵀ
now make up a clique of connected

points that are isolated from the rest of the Z-polytope.

Reduced dimension

If the system involves a y vector that is sufficiently small, it is possible that the Z-polytope
representation of Fy is squashed down to d < r−n dimensions. Then in some projections
there may not be enough room in the required dimensions to move from one point in Fy

to another.
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Figure 2.6: The Z-polytope from Example 2.5.3 showing the isolated clique.

Example 2.5.4. Consider the 2 × 3 contingency table where each row and each of the
first two columns contains entries that sum to 2, forcing the sum of the third column to
be 0. The configuration matrix given by

A =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0

 ,
where we have removed the dependent fifth row, and the vector of marginal totals is given
by y =

[
2 2 2 2

]ᵀ
. The fibre Fy is given by

Fy =




2
0
0
0
2
0

 ,


1
1
0
1
1
0

 ,


0
2
0
2
0
0




,

which are the contingency tables

2 0 0 2
0 2 0 2

2 2 0

1 1 0 2
1 1 0 2

2 2 0

0 2 0 2
2 0 0 2

2 2 0
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The column partition lattice basis for the partition π = ({3, 4, 5, 6}, {1, 2}) is given by

Uπ1 =


1 0
0 1
−1 −1
−1 0

0 −1
1 1

 .

This basis gives co-ordinate direction moves when the Z-polytope representation of Fy

is projected onto the x1 and x2 dimensions: The moves in Uπ1 are represented on the
contingency table by

+ −
− +

+ −
− +

where the white cells represent the entries of x used as co-ordinates in the projected
polytope (those in the A1 part of A), and the grey cells represent the entries used to
maintain the marginal totals (those in the A2 part).

For all x ∈ Fy, we have x3 = x6 = 0, and so none of the moves in U can be applied
to any element of Fy. The problem is that the 0 in y forces the underlying polytope
for the Z-polytope representation of Fy to be one dimensional, instead of the full two
dimensions. The basis Uπ1 provides co-ordinate direction moves when the Z-polytope is
projected onto the x1 and x2 dimensions, shown in Figure 2.7a.

This problem can be avoided if the partition of A is chosen so that the projected
polytope is long in the dimensions chosen as co-ordinate directions. Forming a column
partition lattice basis with the partition π2 = ({1, 2, 3, 4}, {5, 6}) corresponds to projecting
Fy onto the x2 and x3 axes, and produces the basis Uπ2 , given by

Uπ2 =


1 1
−1 0

0 −1
−1 −1

1 0
0 1

 ,

and represented on the contingency table by

+ −
− +

+ −
− + .

The corresponding projection of Z-polytope is shown in Figure 2.7b, which shows that
the first move in Uπ2 enables movement between the elements of Fy.
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Figure 2.7: The Z-polytopes in Example 2.5.4.

This problem can also be avoided by restricting the use of column partition lattice
bases of this type to classes of y such that the corresponding underlying projected polytope
of Fy is of full dimension, as in Figure 2.7c; or aligned with the axes, as in Figure 2.7b.
That is, only use this lattice basis for sampling from fibres Fy such that it is a Markov
sub-basis for Fy.

2.5.2 A connected lattice basis

Schofield and Bonner [39] found a class of configuration matrices for which a column
partition lattice basis that is guaranteed to be a Markov basis can be constructed.

Theorem 2.5.5 (Schofield and Bonner’s Theorem 1 [39]). Let A be a configuration matrix.
Suppose that: (i) A contains only the values 0 and 1, and (ii) the columns of A contain
all the columns of the identity matrix. Then there exists a lattice basis for A that is also
a Markov basis for A.

Their application was in capture-recapture studies in ecology, discussed in Section 1.5.3.
They note that these conditions hold for many models in capture-recapture studies: in
particular, condition (ii) holds when every observable history is also a true history in
which there is no misidentification. This theorem may find use in other fields too: for ex-
ample, in volume network tomography, the configuration matrix contains all the columns
of the identity matrix when each link in the network is also an allowed path.

The lattice basis construct uses the identity matrix Ir−n as the A1 part. In Section 4.2
we build on this work. We show that condition (i) can be replaced with the condition that
A contains only non-negative integers. We then generalise the result to some configuration
matrices that do not contain the identity matrix as a maximal submatrix. Instead, we
require that the columns of A can be partitioned such that each column in the A2 part is
a non-negative integer sum of columns in the A1 part. This is guaranteed if the matrix
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contains only non-negative integers, and A1 is the identity matrix, but may hold under
weaker conditions.



Chapter 3

The column partition lattice basis

3.1 Introduction

In Section 2.5 we introduced a type of basis we called a column partition lattice basis and
proposed its use in Z-polytope sampling. In this chapter we take a closer look at column
partition lattice bases and demonstrate some of their properties. Of particular interest
are properties that may affect the basis’ utility in Z-polytope sampling.

Section 3.2 describes a method for finding a column partition lattice basis. This
method was previously covered in Section 2.5. Briefly, given a configuration matrix A and
a partition π of columns of A, a column partition lattice basis is given by the columns of
the matrix

Uπ =

[
−A−1

1 A2

I

]
,

where π partitions A into two matrices, A1 and A2, such that A1 is square and invertible.
Section 3.3 gives a geometric interpretation of the choice of partition. Recall from

Section 2.2 that given a suitable vector y, the fibre

Fy = {x ∈ Zr≥0 : Ax = y}

is geometrically a Z-polytope. Forming a column partition lattice basis Uπ with the
partition π = (S1, S2) corresponds to projecting the Z-polytope onto the subset of the
co-ordinates in S2. The moves in Uπ are then steps in co-ordinate directions. The effect
of both the choice of π and the value of y on the geometry of this projected polytope are
explored.

In Section 3.4 we look closer at the vectors that make up a column partition lattice
basis. We find that for any configuration matrix, the union of all column partition lattice
bases corresponds to the set of integer kernel elements called circuits. The entries in any
circuit of A are related to the determinants of the maximal submatrices of A — this fact
can help avoid the problem of parity errors described in Section 2.5.1.

In this thesis we are particularly interested in unimodular configuration matrices. A
unimodular matrix is one whose invertible maximal submatrices have a determinant of

47
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1 2 3 4
1 2 3

1 2 3

4 5
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Figure 3.1: A three-link linear network. The underbraces show the allowed paths.

±1. Properties particular to column partition lattice bases for unimodular configuration
matrices are examined in Section 3.5. We find that the main advantage unimodularity of
a configuration matrix confers on its column partition lattice bases is that parity errors
(described in Section 2.5.1) cannot occur. We also find that if a configuration matrix is
unimodular, then a matrix that defines a column partition lattice basis for it is totally
unimodular, meaning all invertible submatrices have determinant ±1.

Additionally, we find that the union of the column partition lattice bases of a unimod-
ular matrix is equal to the set of circuits, which for a unimodular configuration matrix
is equal to its Graver basis. The Graver basis is known to be a Markov basis. This has
important implications for the dynamic Markov basis of Hazelton et al. [27], discussed in
Section 3.5.2. For comparison, Section 3.5 also shows by example that column partition
lattice bases for non-unimodular matrices do not necessarily share these advantages.

3.2 Construction

A column partition lattice basis for a configuration matrix A =
[
A1 A2

]
is a lattice basis

for the kernel of A. It is formed by partitioning the columns of A into two parts, A1 and
A2. The A1 part must be invertible; the A2 part contains the balance of the columns.
Under the partition π, the column partition lattice basis is the collection of columns of
the matrix

Uπ =

[
−A−1

1 A2

I

]
.

Strictly speaking, Uπ is a matrix. We may refer to Uπ as a basis: in this case, we mean
the basis comprising the collection of columns of U .

This formula for writing Uπ assumes that A1 consists of the first n columns of A.
We will in general make this assumption, except when comparing two different column
partition lattice bases for the same configuration matrix. If A1 does not consist of the
first n columns of A, then the rows of Uπ as it appears above will need to be reordered
to match the original column ordering of A. We may also omit the superscript π in Uπ

when only one column partition lattice basis is being considered.
We illustrate the process of finding a column partition lattice basis with an example.
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Example 3.2.1. Consider a directed linear traffic network consisting of three links, where
travel between any pair of nodes is allowed, as shown in Figure 3.1. The link-path inci-
dence matrix A is given by

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .
We partition A without permuting the columns: π1 = ({1, 2, 3}, {4, 5, 6}). The parts are
given by

A1 =

1 0 0
0 1 0
0 0 1

 and A2 =

1 0 1
1 1 1
0 1 1

 .
This produces

A−1
1 A2 =

1 0 1
1 1 1
0 1 1

 ,
and the induced column partition lattice basis is given by the columns of the matrix

Uπ1 =


−1 0 −1
−1 −1 −1

0 −1 −1
1 0 0
0 1 0
0 0 1

 .

The moves in this basis are given by the set of vectors


−1
−1

0
1
0
0

 ,


0
−1
−1

0
1
0

 ,

−1
−1
−1

0
0
1




.

In terms of the linear traffic network, we can interpret the last column of Uπ1 as adding
to some path count vector x one car that drives the path made of all three links, and
compensating by removing three cars that each travel a path made of one distinct link of
the network. Thus the value of y, the counts of cars observed on each link in the network,
is unchanged.

Different partitions of the configuration matrix will typically yield different column
partition lattice bases. Taking another partition π2 = ({4, 5, 6}, {1, 2, 3}), we form

A1 =

1 0 1
1 1 1
0 1 1

 and A2 =

1 0 0
0 1 0
0 0 1


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so that

A−1
1 A2 =

 0 1 −1
−1 1 0

1 −1 1

 .
Negating and appending the identity matrix produces the matrix

0 −1 1
1 −1 0
−1 1 −1

1 0 0
0 1 0
0 0 1

 .

We need to reverse the column permutation by reordering the rows of this matrix to match
the original ordering, so the column partition lattice basis induced by this partition is given
by the columns of the matrix

Uπ2 =


1 0 0
0 1 0
0 0 1
0 −1 1
1 −1 0
−1 1 −1

 .

The columns of this matrix make up a basis because the identity matrix in the first
co-ordinates ensures independence.

3.3 Polytope geometry

In Section 2.2, we saw that for a configuration matrix A, and a count vector y, the Z-
polytope representation of Fy is the intersection of a translate of the kernel of A with the
non-negative orthant and the integer lattice. If A is of size n × r, then the underlying
polytope is an r−n dimensional object in r dimensional space. Using the r−n moves in a
column partition lattice basis, we can move around this Z-polytope in r− n independent
directions.

A column partition lattice basis is defined by the matrix

U =

[
−A−1

1 A2

I

]
.

We can select the ith column of U by multiplying by ei, so a move in U can be written
in the form

ui =

[
−A−1

1 A2ei
ei

]
.
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(a) The Z-polytope.
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(b) The projected Z-polytope.

Figure 3.2: The projection of the Z-polytope in Example 2.2.3, showing corresponding
column partition lattice basis moves.

Taking into account only the A2 co-ordinates, the move ui is a unit step in the (n+ i)th
direction, while the other co-ordinates are held constant.

If we plot the Z-polytope onto the A2 co-ordinates, then the moves in U are equivalent
to the set of steps in co-ordinate directions.

Observation 3.3.1. Given a configuration matrix A, a column partition π, and a vector
y, studying whether the column partition lattice basis Uπ connects the elements of Fy is
equivalent to studying whether the points in the projection of the Z-polytope onto the
A2 co-ordinates are connected by co-ordinate direction moves.

Figure 3.2 shows the two dimensional Z-polytope from Example 2.2.3. In Figure 3.2a
it is shown in its original three dimensions. In Figure 3.2b it is shown projected onto the
x2 and x3 dimensions — there are three choices of pairs of co-ordinates upon which to
project this Z-polytope, but due to symmetry all appear identical. The column partition
lattice basis elements corresponding to projecting onto x2 and x3 are shown in red and
green.

3.3.1 Bounding hyperplanes

We can get a better understanding of whether or not co-ordinate direction moves in a
projected Z-polytope can connect its points by looking at the geometry of the underlying
projected polytope. The projected Z-polytope in Figure 3.2 is bounded by the x1 axis
where x3 = 0, the x3 axis where x1 = 0, and by the diagonal line segment shown in black,
where x2 = 0. These lines correspond to the bounding hyperplanes of the Z-polytope.
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Definition 3.3.2 (Bounding hyperplane). The ith bounding hyperplane of a polytope is
the set {x : Ax = y, xi = 0}.

The ith bounding hyperplane is an affine subspace that divides the space into sets
that have xi < 0 and xi > 0. Therefore Fy lies entirely on one side of any face. The pro-
jection of the underlying polytope is the intersection of the positive sides of the bounding
hyperplanes, and part of a bounding hyperplane may make up a face of the underlying
polytope.

In Figure 3.2, every integral point within these bounding hyperplanes is a point in the
fibre, which is to say that this projection does not suffer from the problem of parity errors
described in Section 2.5.1. In this case, whether or not the column partition lattice basis
connects the fibre is entirely determined by the orientation and position of the bounding
hyperplanes.

The orientation and position of the bounding hyperplanes of a projected polytope
are given by the matrix U and the vector A−1

1 y. The bounding hyperplanes for A2 co-
ordinates are orthogonal to the corresponding axis and intersect the origin: in Figure 3.2,
the bounding hyperplane for x3 = 0 is the x1 axis. Together, these keep the projected
polytope boxed in to the non-negative orthant. For the A1 co-ordinates, the ith row
vector of U is normal to the bounding hyperplane for xi = 0, and together with the ith
entry of A−1

1 y gives the position for the first bounding hyperplanes.

Theorem 3.3.3. Let A be an n× r configuration matrix and let π partition the columns
of A into A1 and A2. Let C = A−1

1 A2, and let

U =

[
−C
I

]
be a column partition lattice basis for A. A normal vector ni to the ith bounding hyperplane
of the projection of the polytope onto the A2 co-ordinates is given by the ith row vector ci·
of C, or

ni = ci·.

The ith bounding hyperplane intersects the xn+j axis at

xn+j =
(A−1

1 y)i
(ci·)j

.

Proof. We have

Ax = y

A1x1 + A2x2 = y

A−1
1 (A1x1 + A2x2) = A−1

1 y

x1 + Cx2 = A−1
1 y
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Figure 3.3: The graph of the traffic network in Example 3.3.4. Nodes marked O are
origins for traffic, and nodes marked D are destinations.

Taking the ith row vector of this equation and setting xi = 0 gives an equation for the
ith bounding hyperplane:

ci· · x2 = (A−1
1 y)i.

This affine space is equal to the translated kernel of the row vector ci· (considered as a
matrix), which is orthogonal to the rowspace, which has the vector ci· as a basis. This
vector ci· is therefore normal to the ith bounding hyperplane.

To find the position of this face, we must find a particular solution x̂2 to

ci· · x2 = (A−1
1 y)i.

Let j be the index of a non-zero entry of ci·. Setting all except the (n + j)th element of
x̂2 to zero gives us the xn+j intercept. We have

x̂2 =
(A−1

1 y)i
ci,j

ej

where ej is the jth standard basis vector. Therefore, the ith bounding hyperplane inter-
sects the xn+j axis at

xn+j =
(A−1

1 y)i
ci,j

.

If A is unimodular, then by Theorem 3.5.5 the non-zero elements of C are all ±1 and
we have ci,j = ±1, and the xn+j intercept is at ±A−1

1 y.

Example 3.3.4. Consider the traffic network in Figure 3.3, which has configuration
matrix

A =


1 0 0 0 1 1
0 1 1 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1

 .
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If link traffic counts y =
[
3 3 2 2

]ᵀ
are observed, then

Fy =




2
0
2
1
0
1

 ,


1
1
2
0
0
2

 ,


2
0
1
2
1
0

 ,


1
1
1
1
1
1

 ,


0
2
1
0
1
2

 ,


1
1
0
2
2
0

 ,


0
2
0
1
2
1




.

We choose the column partition such that

A1 =


1 0 0 0
0 1 1 1
0 0 1 0
0 0 0 1

 .
Then the column partition lattice basis is given by

U =


−1 −1
−1 0

0 −1
1 1
1 0
0 1

 ,

of which the C part is given by

C =


1 1
1 0
0 1
−1 −1

 .
By Theorem 3.3.3, C and A−1

1 y =
[
3 −1 2 2

]ᵀ
give us the geometry of the projection

of the underlying polytope.

Figure 3.4 compares the bounding hyperplanes of the underlying projected polytope
with the elements of Fy. The first bounding hyperplane, labelled x1, has a normal vector
c1· =

[
1 1

]
and intercepts the x5 axis at

x5 =
(A−1

1 y)1

(c1·)1

=
3

1
= 3.
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Figure 3.4: The set Fy from Example 3.3.4 projected onto the x5 and x6 dimensions
showing the bounding hyperplanes of the underlying polytope.

The second bounding hyperplane, labelled x2, has a normal vector c2· =
[
−1 −1

]
and

intercepts the x5 axis at

x5 =
(A−1

1 y)2

(c2·)1

=
−1

−1

= 1.

For a given configuration matrix and column partition, the C matrices and therefore
the orientations of the bounding hyperplanes are the same for any y. Changing the value
of y changes the position of the faces relative to each other — this can result in underlying
polytopes not only of different sizes, but of different shapes for the same configuration
matrix.

Example 3.3.5. Consider again the three-link linear network in Figure 1.2, which has
configuration matrix

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .
We wish to project onto the x1, x2, and x3 axes, so we choose

A1 =

1 0 1
1 1 1
0 1 1

 ,
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Figure 3.5: The underlying projected polytopes from Example 3.3.5 projected onto the
x1, x2, and x3 dimensions.

inducing the column partition lattice basis

U =


1 0 0
0 1 0
0 0 1
0 −1 1
1 −1 0
−1 1 −1

 .

The last three rows of U give normal vectors to the x4, x5, and x6 bounding hyperplanes.
The positions of these bounding hyperplanes are given by A−1

1 y, so altering the values
of y will alter the positions of the bounding hyperplanes relative to each other. Some
underlying projected polytopes for different values of y for this system are shown in
Figure 3.5. These serve to demonstrate that altering the value of y can change the
geometry of a projected Z-polytope quite dramatically.

3.3.2 Constructing matrices from particular projected polytopes

In this thesis we are interested in applying geometric insight to the search for Markov
bases. In doing so, it can be useful to take a particular projected Z-polytope with proper-
ties that we wish to study, and see from which configuration matrices and column partition
lattice bases it might arise. Here we outline through a series of examples our technique for
finding a configuration matrix and column partition from a Z-polytope. The technique
is based on writing down normal vectors to the bounding hyperplanes of the polytope
we wish to study and collecting them as rows of a matrix. This matrix becomes the
foundation of our A−1

1 A2 matrix. This matrix is modified until it becomes an allowable
configuration matrix under the model of interest, which despite the modifications still
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Figure 3.6: The underlying projected polytope from Example 3.3.6.

produces the required Z-polytope. For most models, we require that the configuration
matrix A is such that A ∈ {0, 1}n×r. In each case, the column partition that produces
the required projection is given by setting A1 to be the first n columns of A.

Example 3.3.6. Consider an underlying projected polytope whose bounding hyperplanes
are given by the rows of the matrix

M =

0 1 −1
1 −1 1
0 1 0

 .
Each of these rows must appear in A−1

1 A2, and so this matrix M will become a submatrix
of A−1

1 A2. An example of a projected polytope that has bounding hyperplanes with these
normal vectors is shown in Figure 3.6. The bounding hyperplanes have been positioned
according to the corresponding entries of the vector A−1

1 y, which are
[
0 2 2

]ᵀ
. We

initialise A−1
1 A2 with the rows of M , and we have

A−1
1 A2 =

0 1 −1
1 −1 1
0 1 0

 .
We prepend the identity matrix and perform row operations to produce a {0, 1} matrix.
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Then

A−1
1 A =

1 0 0 0 1 −1
0 1 0 1 −1 1
0 0 1 0 1 0


A =

1 1 0 1 0 0
0 1 1 1 0 1
0 0 1 0 1 0

 .
This matrix has the problem that columns two and four are duplicates, which we will
generally want to avoid. We avoid this by adding a row to A−1

1 A2 to distinguish them,
which means adding a dummy bounding hyperplane to the projected polytope. This
dummy bounding hyperplane will not affect the projected Z-polytope if the corresponding
entry in y is such that the Z-polytope lies on its positive side. We append to A−1

1 A2 the
row vector

[
1 0 0

]
to get

A−1
1 A2 =


0 1 −1
1 −1 1
0 1 0
1 0 0

 .
Note that appending a standard basis vector does not affect the total unimodularity of a
matrix [40]. Prepending the identity matrix and performing row operations produces

A−1
1 A =


1 0 0 0 0 1 −1
0 1 0 0 1 −1 1
0 0 1 0 0 1 0
0 0 0 1 1 0 0

 ,

A =


1 1 0 0 1 0 0
0 1 1 0 1 0 1
0 0 1 0 0 1 0
0 0 0 1 1 0 0

 .
This matrix has all entries in {0, 1} and has no repeated or zero columns and is a poten-
tial configuration matrix for many applications. For example, this matrix is a link-path
incidence matrix for a four-link linear traffic network.

Another problem we might encounter is that it is not always possible to perform row
operations that produce a {0, 1} matrix with a sufficient number of unique rows.

Example 3.3.7. Consider a projected polytope with bounding hyperplanes that have
normal vectors given by the rows of the matrix

M =

[
1 −1
−1 1

]
.
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The only {0, 1} vector in the rowspace of M is
[
0 0

]
, while we require at least two unique

rows in the configuration matrix we are constructing. We can solve this by appending
standard basis vectors:

A−1
1 A2 =


1 −1
−1 1

1 0
0 1

 .
Then

A−1
1 A =


1 0 0 0 1 −1
0 1 0 0 −1 1
0 0 1 0 1 0
0 0 0 1 0 1



A =


1 0 0 1 1 0
0 1 1 0 0 1
0 0 1 0 1 0
0 0 0 1 0 1


which is a configuration matrix that meets our requirements. This particular matrix is
the configuration matrix of a 2× 3 contingency table.

The last problem we will consider may occur when the underlying projected polytope
has a face with a normal vector with entries other than 0 or ±1. By appending multiple
copies of the same standard basis row vectors, we produce a matrix that can be trans-
formed to a {0, 1} matrix through row operations. Again, provided we choose y carefully,
these extra rows will not affect the Z-polytope produced.

Example 3.3.8. Consider a projected polytope that has a bounding hyperplane with the
normal vector given by the row of the matrix

M =
[
5 1

]
.

We need to subtract 1 from the 5 four times to get it to a value in {0,±1}. If we simply
append the row

[
−1 0

]
, we end up with a 4 in the A1 part, and we are stuck with −1 in

the A2 part:

A−1
1 A =

[
1 0 5 1
0 1 −1 0

]
A =

[
1 4 1 1
0 1 −1 0

]
.
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Instead we append four copies of the row
[
−1 0

]
, and one copy of the row

[
1 0

]
. Then

A−1
1 A =


1 0 0 0 0 0 5 1
0 1 0 0 0 0 −1 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 −1 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 1 0



A =


1 1 1 1 1 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0

 ,

which is a configuration matrix with all {0, 1} entries, as required.

In each of these examples, adding a row vector to A−1
1 A2 does not mean it no longer

produces the polytope we are interested in. Choosing an appropriate entry for the y
vector means that the corresponding bounding hyperplane has no effect on the polytope.

3.4 Properties of U

In this section we prove some properties of column partition lattice bases. In Section 3.4.1
we look at properties of the matrix

U =

[
−A−1

1 A2

I

]
,

whose columns define the column partition lattice basis. Theorem 3.4.1 relates the deter-
minants of submatrices of A−1

1 A2 to the determinants of maximal submatrices of A. Of
particular interest are the determinants of 1× 1 submatrices: these are just the entries of
A−1

1 A2. This tells us what kind of entries a U matrix might contain, and has important
implications for the problem of parity errors described in Section 2.5.1.

We then show in Section 3.4.3 that each element of a column partition lattice basis is
a scaled circuit of the configuration matrix. The circuits of a configuration matrix are a
particular kind of minimal element of the integer kernel. The implications of these results
on unimodular configuration matrices will be explored in Section 3.5.

3.4.1 Submatrix determinants

We show that the determinant of any square submatrix of A−1
1 A2 is equal in absolute value

to the determinants of a maximal submatrix of A divided by det (A1). This includes the
1× 1 submatrices, which are simply the entries of A−1

1 A2.
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Theorem 3.4.1. Let A =
[
A1 A2

]
be an n × r configuration matrix. Let M be the

k × k square submatrix of A−1
1 A2 with row indices I = {i1, . . . , ik} and column indices

J = {j1, . . . , jk}. Let A
I\J
1 be the maximal square submatrix of A constructed by taking

A1 and removing columns with indices I, and appending columns from A2 with indices
J . Then

det (M) = (−1)p
det (A

I\J
1 )

det (A1)
,

where

p =
k(k − 1)

2
+
∑
i∈I

(n− i).

Proof. We form the matrix PA−1
1 A

I\J
1 by taking the identity matrix In and replacing

the columns with indices in I with the columns in A−1
1 A2 with indices in J . Here, P is

the permutation matrix that moves the columns with indices J to positions with indices
I. By Cramer’s rule PA−1

1 A
I\J
1 has determinant det (M). We multiply by P−1, which

reorders the columns so that the match the order in which they appear in A−1
1 A. This

requires switching

p =
k(k − 1)

2
+
∑
i∈I

(n− i)

pairs of columns. Each switch multiplies the determinant by −1, so A−1
1 A

I\J
1 has deter-

minant (−1)p det (M). This matrix A−1
1 A

I\J
1 includes the columns of I = A−1

1 A1 with
indices in I, and the columns of A−1

1 A2 with indices in J . Multiplying by A1, we have

A1A
−1
1 A

I\J
1 = A

I\J
1

det (A1A
−1
1 A

I\J
1 ) = det (A

I\J
1 )

det (A1) det (A−1
1 A

I\J
1 ) = det (A

I\J
1 )

det (A1)(−1)p det (M) = det (A
I\J
1 )

det (M) = (−1)p
det (A

I\J
1 )

det (A1)
.

Of particular interest are the determinants of the 1 × 1 submatrices, which are the
entries of A−1

1 A2. These are given by the following corollary.

Corollary 3.4.2. Let A =
[
A1 A2

]
be an n× r configuration matrix, where A1 is square

and invertible. If aij is the element in the ith row and jth column of A−1
1 A2, then

aij = (−1)n−i
det (A

i\j
1 )

det (A1)
,

where A
i\j
1 is the maximal square submatrix of A obtained by taking A1 and removing the

ith column, and appending the jth column of A2.
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Proof. We can apply Theorem 3.4.1, with M =
[
aij
]
. We have

aij = det (M)

= (−1)p
det (A

i\j
1 )

det (A1)
.

In this case k = 1 and I = {i}, so

p =
k(k − 1)

2
+
∑
i∈I

(n− i)

= n− i,

which produces

aij = (−1)n−i
det (A

i\j
1 )

det (A1)
.

as required.

The following example may help to provide clarity.

Example 3.4.3. Consider the matrix

A =

1 0 0 1 0 1
0 1 0 1 1 1
1 0 1 1 1 0

 .
If we partition A such that A1 consists of the first three columns, then det (A1) = 1 and

A−1
1 A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 −1

 .
We choose M to be the 2× 2 matrix in the bottom right hand corner of A−1

1 A, so

M =

[
1 1
1 −1

]
and det (M) = −2, whose row indices are I = {2, 3} and column indices are J = {2, 3}.

We construct the matrix A−1
1 A

I\J
1 by taking the first column of I = A−1

1 A1 and the
second and third columns of A−1

1 A2. Then

A−1
1 A

I\J
1 =

1 0 1
0 1 1
0 1 −1

 ,
and det (A−1

1 A
I\J
1 ) = −2.
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The matrix A
I\J
1 is obtained by taking the first, fifth and sixth columns of A, so

A
I\J
1 =

1 0 1
0 1 1
1 1 0

 ,
which has determinant −2.

We have

(−1)p
det (A

I\J
1 )

det (A1)
= (−1)p

−2

1

= −2,

where no column switches are required so p = 0. This equals the previously calculated
det (M) = −2, matching Theorem 3.4.1.

We include a more detailed calculation for a 1× 1 submatrix of some A−1
1 A2.

Example 3.4.4. When we construct a column partition lattice basis for a configuration
matrix A, we begin by row reducing A by finding

A−1
1 A =

[
A−1

1 A1 A−1
1 A2

]
=
[
I A−1

1 A2

]
.

The row operations transform A1 to I, which has determinant det (I) = 1, so the effect of
the row operations on the determinant was to divide it by det (A1). These row operations
have the same effect on the determinants of all of the maximal submatrices of A: if N is
a square maximal submatrix of A, then A−1

1 N is a square maximal submatrix of A−1
1 A

and

det (A−1
1 N) =

det (N)

det (A1)
.

One class of square maximal submatrices of A can be constructed by taking A1 and
removing the ith column and appending the jth column of A2. We will write this matrix
as A

i\j
1 . After row reducing A, this matrix is of the form

A−1
1 A

i\j
1 =



1 0 · · · 0 0 · · · 0 a1j

0 1 · · · 0 0 · · · 0 a2j
...

...
. . .

...
...

. . .
...

...
0 0 · · · 1 0 · · · 0 ai−1,j

0 0 · · · 0 0 · · · 0 aij
0 0 · · · 0 1 · · · 0 ai+1,j
...

...
. . .

...
...

. . .
...

...
0 0 · · · 0 0 · · · 1 anj


,
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where aj =
[
a1j . . . anj

]ᵀ
is the jth column of A−1

1 A2. We have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 a1j 0 · · · 0
0 1 · · · 0 a2j 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 ai−1,j 0 · · · 0
0 0 · · · 0 aij 0 · · · 0
0 0 · · · 0 ai+1,j 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 anj 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= aij

by Cramer’s rule. Then n − i column switches are required to place the columns in the
order in which they appear in A−1

1 A2, so

aij = (−1)n−i det (A−1
1 A

i\j
1 )

= (−1)n−i
det (A

i\j
1 )

det (A1)
.

Theorem 3.4.1 and Corollary 3.4.2 show a one-to-one correspondence between the
maximal square submatrices of A and the square submatrices of A−1

1 A2; and between the
elements of A1 × A2 (the ordered pairs of columns where one is from A1 and one is from
A2), and the entries in A−1

1 A2. If A is n × r, then A1 is n × n, and A2 and A−1
1 A2 are

both n× (r− n). We set k = r− n, and then the number of entries in A−1
1 A2 is given by

n× k. This matches the numbers of pairs of columns in A1 × A2.

The number of columns in A is n+ k, so there are
(
n+k
n

)
maximal square submatrices

in A. For each 0 ≤ i ≤ min(k, n), A−1
1 A2 contains

(
k
i

)
×
(
n
i

)
square submatrices of size

i× i. The number of square submatrices in A−1
1 A2 is therefore given by

min(n,k)∑
i=0

(
n

i

)(
k

i

)
,

producing the identity (
n+ k

n

)
=

min(n,k)∑
i=0

(
k

i

)(
n

i

)
.

This is a special case of Vandermonde’s identity,

(
k + q

n

)
=

k∑
i=0

(
k

i

)(
q

n− i

)
,
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where setting q = n produces (
k + n

n

)
=

k∑
i=0

(
k

i

)(
n

n− i

)

=
k∑
i=0

(
k

i

)(
n

i

)
.

3.4.2 Maximal submatrix determinants

One of the problems for connectivity of column partition lattice bases was the problem
of parity errors, explained in Section 2.5.1. Parity errors can be avoided if the column
partition can be chosen such that the U matrix has all integer entries. Section 3.4.1
showed that the determinants of the submatrices of a column partition lattice basis matrix
are related to the determinants of the maximal submatrices of the configuration matrix,
divided by the determinant of the A1 part under the partition used. This includes the
1 × 1 submatrices, the entries of U . The following theorem uses this fact to show how
non-integer entries in U might be avoided.

Theorem 3.4.5. Let A =
[
A1 A2

]
be a configuration matrix and a column partition

thereof, and let U be the corresponding column partition lattice basis. Let A
i\j
1 be the

maximal square submatrix of A obtained by taking columns of A1, removing the ith column,
and appending the jth column of A2. Let A1 be the set of all such matrices, so that

A1 = {Ai\j1 : i = 1, . . . , n; j = 1, . . . , r − n}.

Then U is integral if and only if det (A1) divides det (A
i\j
1 ) for all A

i\j
1 ∈ A1.

Proof. The column partition lattice basis matrix U is made by appending In to −A−1
1 A2.

If A−1
1 A2 is integral, then so is U . By Corollary 3.4.2, each entry aij of A−1

1 A2 is given by

aij = (−1)n−i
det (A

i\j
1 )

det (A1)
.

These matrices A
i\j
1 are the elements of A1, so if det (A1) divides det (A

i\j
1 ) for each

A
i\j
1 ∈ A1, then U is integral. If there is A

i\j
1 ∈ A1 such that A1 does not divide A

i\j
1 ,

then aij is not integral, and so U contains a non-integral entry.

Example 3.4.6. Consider the configuration matrix

A =


1 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 1 0 1
0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1 0
0 0 1 0 1 0 0 1 1

 .
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This is the configuration matrix discussed in Section 5.2 with some of the dependent rows
removed. Checking with a computer, there are sixteen maximal square submatrices with
determinant ±2 and one with determinant −4. There are also 67 singular maximal square
submatrices.

We choose as A1 the maximal square submatrix with determinant −4,
1 1 1 0 0 0
1 0 0 0 1 0
0 0 1 1 0 1
1 0 0 1 0 0
0 0 0 1 1 0
0 1 0 0 1 1

 .

Then the determinant of A1 does not divide the determinant of any other invertible
maximal submatrix, and the induced column partition lattice basis should contain non-
integer values. This basis is

U1 =



1 0 0
0 1 0
0 0 1
0 0 0
−1

2
1
2
−1

2

−1
2
−1

2
1
2

0 0 0
0 0 0
1
2
−1

2
−1

2


.

If instead we choose the maximal square submatrix
1 0 0 1 0 0
0 0 0 1 0 1
0 1 0 0 1 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 1 0 0 1


as the A1 part, then det (A1) = 2, which divides the determinants of all other invertible
maximal square submatrices. This induces the column partition lattice basis

U2 =



−1 −1 0
0 −1 −1
−1 0 −1

0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1


,
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which has all integral entries.

3.4.3 Circuits

Scaled basis elements

In Section 3.4.2 we saw that the matrix

U =

[
−A−1

1 A2

I

]
which defines a column partition lattice basis may have non-integer entries. When con-
structing a random walk between the points in a fibre, we must step from integer point
to integer point, so the moves used to step must themselves be integral. If U is used to
construct a random walk through a fibre, then the steps used must be integer multiples
of the columns of U where the denominators have been multiplied out. We will say that
these integer multiples are scaled column partition lattice basis elements.

Definition 3.4.7 (Scaled column partition lattice basis vectors). Let A be a configura-
tion matrix, and let the columns of U be a column partition lattice basis for A. The
corresponding scaled column partition lattice basis vectors are given by the matrix UZ,
which is constructed by multiplying each column of U by the lowest common multiple of
the denominators of the entries of that column.

The scaled column partition lattice basis vectors are the shortest allowed moves in
co-ordinate directions. If some column partition lattice basis U has all integer entries,
then U = UZ.

Example 3.4.8. Consider the configuration matrix

A =

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

 ,
for which

U =


−1

2
−1

2
1
2

−1
2

1
2
−1

2
1
2
−1

2
−1

2

1 0 0
0 1 0
0 0 1


is a column partition lattice basis. The corresponding scaled column partition lattice
elements are given by the matrix

UZ =


−1 −1 1
−1 1 −1

1 −1 −1
2 0 0
0 2 0
0 0 2

 ,
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where each column of U has been multiplied by two to give the corresponding column of
UZ.

The scaled elements of a column partition lattice basis do not necessarily constitute a
lattice basis themselves. Considering again A and U from Example 3.4.8, take the integer
kernel element z ∈ kerZ(A) given by

z =


−1

0
0
1
1
0

 =


−1

2

−1
2
1
2

1
0
0

+


−1

2
1
2

−1
2

0
1
0

 ,

where z is expressed in terms of the basis as the sum of the first two columns of U .
In terms of columns of UZ, we have

z =


−1

0
0
1
1
0

 =
1

2


−1
−1

1
2
0
0

+
1

2


−1

1
−1

0
2
0

 .

This means that z is not expressible as an integer combination of scaled basis elements,
so by Definition 1.4.1, UZ is not a lattice basis.

Circuits

The scaled elements of the column partition lattice bases of a configuration matrix corre-
spond to elements of the integer kernel called circuits. The definition of a circuit requires
the definition of the support of a vector.

Definition 3.4.9 (Support). The support of a vector u, written supp(u), is the set of
indices i such that ui 6= 0.

When dealing with partitions of a matrix, we will also write supp(Ai) = {j : aj ∈ Ai},
where aj is a column of Ai. This set supp(Ai) is therefore the set of indices of the columns
of A in Ai.

Definition 3.4.10 (Circuit [18]). A circuit of a matrix A is a vector u ∈ kerZ(A) such
that its entries ui are relatively prime and the support supp(u) is minimal with respect
to inclusion.

We will write CA for the set of circuits of the matrix A.
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Theorem 3.4.11. Let A be an n× r configuration matrix, and let Π be the collection of
column partitions of A. Then the union over Π of the scaled column partition lattice bases
of A is equal to the set CA, or

CA =
⋃
π∈Π

Uπ
Z ,

where each Uπ
Z is considered as the set of its columns, and each element is ordered with

respect to the original ordering of the columns of A.

Proof. First, we show that
⋃
π∈Π U

π
Z ⊂ CA. Let u ∈ Qr be an element of a column

partition lattice basis U of A under partition of the columns of A into A1 and A2. Let uZ
be formed by multiplying u by the least common multiple of the denominators of entries
in u, so u ∈

⋃
π∈Π U

π
Z . Then supp(uZ) ⊂ supp(A1) ∪ {i} for some i ∈ supp(A2). The

the entries of uZ are integers and relatively prime, so to show that uZ ∈ CA we need only
show that supp(uZ) is minimal with respect to inclusion.

Suppose that this is not the case: then there exists a non-zero z ∈ ker(A) such that
supp(z) ( supp(uZ) ⊂ supp(A1) ∪ {i}. We claim that i /∈ supp(z). If it were not, then
z ∈ ker(A), so

0 = Az

= A1z1 + A2z2.

If i /∈ supp(z), then z2 = 0, so

0 = A1z1.

The matrix A1 is invertible, so

z1 = A−1
1 0

= 0.

Then z1 = z2 = 0 and so z = 0, contradicting our assumption. Therefore, i ∈ supp(z).

Then z(i) 6= 0. Let v = u
(i)
Z z − z(i)uZ. This vector v is a linear combination of kernel

elements, so it must also be in the kernel. The subtraction cancels the ith elements and
supp(v) ⊆ supp(A1). Then A1v1 = 0, and so v = 0. Then supp(z) = supp(uZ), and so
uZ ∈ CA.

We now need to show that CA ⊂ UZ. Diaconis and Sturmfels give a formula [18, page
15] that produces integer multiples of every circuit of an n × r integer matrix A. The
formula is

kcτ =
n+1∑
i=1

(−1)i det(Aτ\{τi})eτi . (3.4.1)

The variable τ ranges over each (n + 1)-element subset {τ1, . . . , τn+1} of {1, . . . , r}, and
Aσ denotes the submatrix of A found by taking the columns with indices belonging to σ.
The multiplier k is the greatest common divisor of |det(Aτ\{τi})| for each τi ∈ τ .
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Let c ∈ CA, so it can be written in the form in equation (3.4.1). Then |supp(c)| ≤ n+1.
Choose some τk ∈ τ such that cτk 6= 0. Since cτk is non-zero, det(Aτ\{τk}) must be non-zero
and so the columns of Aτ\{τk} are linearly independent.

Partition A such that A1 = Aτ\{τk} and find the matrix U whose columns are the
induced lattice basis. The column uτk represents a move in the τk dimension in this
projection and has supp(uτk) ⊆ τ . The corresponding scaled column partition lattice
basis element is found by multiplying this column by the least common multiple m of its
denominators. This produces an integer vector muτk whose entries are relatively prime
and whose other entries are determined by the τkth entry, and so muτk can only be c.

The elements of a column partition lattice basis correspond to the circuits in the
following way:

Remark 3.4.12. The elements of a column partition lattice basis are circuits that are
scaled so that the entry corresponding to a column of the A2 partition is 1.

Circuits as polytope edges

One of the defining features of circuits is that their support is minimal by inclusion. For
any underlying polytope or projected polytope, a vector directed along an edge of the
polytope is a multiple of a circuit of the configuration matrix [9].

Example 3.4.13. Consider the three-link linear network. The configuration matrix is

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 ,
and the circuits are given by

CA =




0
0
1
1
0
−1

 ,


0
1
0
−1
−1

1

 ,


0
1
1
0
−1

0

 ,


1
0
−1
−1

1
0

 ,


1
0
0
0
1
−1

 ,


1
1
0
−1

0
0

 ,


1
1
1
0
0
−1




.

If any underlying polytope for this configuration matrix is projected onto the x1, x2, and
x3 co-ordinate subspace, the edges are given by the x1, x2, and x3 parts of the circuits.
The edges are therefore given by the vectors

 0
0
1

 ,
 0

1
0

 ,
 0

1
1

 ,
 1

0
−1

 ,
 1

0
0

 ,
 1

1
0

 ,
 1

1
1

 .

Several potential underlying polytopes for A with different values of y are shown pro-
jected onto the x1, x2 and x3 axes in Figure 3.7. These are the polytopes that appear in
Example 3.3.5. Note that a circuit may appear as an edge more than once in a polytope,
or it may not appear at all.
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Figure 3.7: The edges of some of the underlying projected polytopes in Example 3.4.13.

3.5 Unimodularity

In this thesis we are particularly interested in unimodular matrices. Unimodular matrices
occur frequently in statistical inverse problems: the configuration matrix for a two-way
contingency table is unimodular, as are the link-path incidence matrices of many traf-
fic networks (see Section 5.2, below). More examples are given in Section 1.5. In this
section we look at some properties of column partition lattice bases of unimodular con-
figuration matrices. In doing so, we demonstrate the effect of some of the theorems in
Sections 3.3 and 3.4 on unimodular configuration matrices. We begin with the definition
of a unimodular matrix.

Definition 3.5.1 (Unimodular matrix). A square matrix is unimodular if its determinant
is ±1.

It is common to extend the definition of unimodularity to rectangular matrices: a
rectangular matrix is unimodular if each of its invertible maximal square submatrices is
unimodular.

3.5.1 Total unimodularity of U

Airoldi [2] and Hazelton [25] noted that for a particular class of unimodular matrices
called totally unimodular matrices, any column partition lattice basis matrix will contain
all entries in {0,±1}, and will itself be totally unimodular.

Definition 3.5.2 (Total unimodularity). A matrix is totally unimodular if the determi-
nant of every invertible square submatrix is ±1.

Totally unimodular matrices have some useful properties, listed for example in Schri-
jver [40]. We state these properties in Theorem 3.5.4. We will require the definition of an
Eulerian matrix:
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Definition 3.5.3 (Eulerian matrix). A matrix A ∈ {0,±1}n×r is Eulerian if for each row
and column, the sum of the entries is a multiple of two.

Theorem 3.5.4. Let A be a matrix with all entries in {0,±1}. Then the following
statements are equivalent.

1. A is totally unimodular.

2. Every square Eulerian submatrix of A is singular (Camion [11]).

3. The sum of the entries of each square Eulerian submatrix of A is divisible by four
(Camion [11]).

4. For every subset A of the columns of A, each column a ∈ A can be assigned a
multiplier εa ∈ {±1} such that ∑

a∈A

εaa ∈ {0,±1}n

(Ghouila-Houri [23]).

5. The matrix
[
I A

]
is unimodular.

We claim that if a configuration matrix is unimodular, then any column partition
lattice basis matrix will be totally unimodular and contain only {0,±1} entries. In fact,
this property holds when all non-zero n× n minors of A have the same absolute value.

Theorem 3.5.5. Let A be a configuration matrix, and suppose that the determinants of
all maximal invertible submatrices of A are ±d. Then the matrix

U =

[
−A−1

1 A2

I

]
is totally unimodular.

Proof. We first show that A−1
1 A2 is totally unimodular. Theorem 3.4.1 says that the

determinant of a submatrix M of A−1
1 A2 is given by

det (M) = (−1)p
det (A

I\J
1 )

det (A1)
,

where

p =
k(k − 1)

2
+
∑
i∈I

(n− i).

So the determinant of M is equal to plus or minus the ratio of the determinants of two
maximal submatrices of the configuration matrix A. These determinants are all ±d, so
this ratio is ±1. Therefore the determinant of any submatrix of A−1

1 A2 is ±1.
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The matrix

U =

[
−A−1

1 A2

I

]
is also totally unimodular since appending an identity matrix does not affect total uni-
modularity.

We can also prove Theorem 3.5.5 using the fifth property of totally unimodular ma-
trices listed in Theorem 3.5.4.

Alternative proof of Theorem 3.5.5. The maximal invertible square submatrices of A all
have determinant ±d. This includes A1, and so multiplying A by A−1

1 has the effect of
dividing the determinants of the maximal submatrices of A by±d. The invertible maximal
submatrices of A all have determinant ±d, and so the Hermite normal form

[
I A−1

1 A2

]
is unimodular. Property 5 of totally unimodular matrices from Theorem 3.5.4 says that a
matrix A is totally unimodular if the matrix

[
I A

]
is unimodular. Substituting A−1

1 A2 for
A shows that A−1

1 A2 is totally unimodular, and it follows that U is totally unimodular.

We illustrate this with an example.

Example 3.5.6. Consider the configuration matrix

A =


1 0 0 1 1 1 0
1 0 1 0 1 0 1
1 1 0 0 0 1 1
1 1 1 1 0 0 0

 .
The determinants of the invertible maximal submatrices are all ±2. This includes A1 in
the following partition, we will use to construct our column partition lattice basis:

A1 =


1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

 , A2 =


1 1 0
1 0 1
0 1 1
0 0 0

 .
The matrix A−1

1 has all entries ±1
2
:

A−1
1 =


1
2

1
2

1
2
−1

2

−1
2
−1

2
1
2

1
2

−1
2

1
2
−1

2
1
2

1
2
−1

2
−1

2
1
2

 .
Every entry in the matrix A−1

1 A2 is equal to ±1
2
± 1

2
, so the matrix

U =



1 1 1
−1 0 0

0 −1 0
0 0 −1
−1 0 0

0 −1 0
0 0 −1


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has all entries equal to 0 or ±1. This matrix is also totally unimodular.

3.5.2 Circuits and the Graver basis

We saw in Section 3.4.3 how the elements of a column partition lattice basis correspond
to circuits of the configuration matrix: each column partition basis element is a circuit
that has been scaled so that the entry corresponding to a column in A2 under the current
partition is 1. If the n × n minors of A are the same in absolute value, these entries are
already 1, and so the set of circuits is equal to the column partition lattice bases.

Theorem 3.5.7. Let A be a configuration matrix of rank n, and suppose the non-zero
n× n minors of A are the same in absolute value. Let Π be the set of column partitions
of A such that A1 is square and invertible. Then

CA =
⋃
π∈Π

Uπ.

Proof. By Theorem 3.4.11,

CA =
⋃
π∈Π

Uπ
Z .

By Theorem 3.5.5, U ∈ {0,±1}r×(r−n), and so U = UZ. It follows that

CA =
⋃
π∈Π

Uπ.

Example 3.5.8. Consider again the system from Example 3.5.6, where

A =


1 0 0 1 1 1 0
1 0 1 0 1 0 1
1 1 0 0 0 1 1
1 1 1 1 0 0 0

 .
The column partition π = ({1, 2, 3, 4}, {5, 6, 7}) induces the column partition lattice basis

Uπ =



1 1 1
−1 0 0

0 −1 0
0 0 −1
−1 0 0

0 −1 0
0 0 −1


.
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The set of circuits for this system is given by

CA =





−1
1
0
0
1
0
0


,



−1
0
1
0
0
1
0


,



−1
0
0
1
0
0
1


,



0
1
−1

0
1
−1

0


,



0
1
0
−1

1
0
−1


,



0
0
1
−1

0
1
−1




.

Consider the column partitions

π1 = ({2, 3, 4, 5}, {1, 6, 7})
π2 = ({3, 4, 5, 6}, {1, 2, 7}).

The column partition lattice bases they induce are

Uπ1 =



−1 0 0
1 1 1
0 −1 0
0 0 −1
1 1 1
0 −1 0
0 0 −1


, Uπ2 =



−1 0 0
0 −1 0
1 1 1
0 0 −1
0 −1 0
1 1 1
0 0 −1


.

We can see that the union of Uπ, Uπ1 , Uπ2 contains every circuit.
Any other column partition lattice basis is a collection of these (possibly negated)

vectors. For example, π3 = ({4, 5, 6, 7}, {1, 2, 3}) induces

Uπ3 =



−1 0 0
0 −1 0
0 0 −1
1 1 1
0 −1 0
0 0 −1
1 1 1


,

which takes the third, fifth, and sixth elements of CA as listed above.

Theorem 3.5.7 states that for configuration matrices whose n×n minors are the same
in absolute value, the union of the column partition lattice bases is equal to the set of
circuits of A. We can combine this fact usefully with the following property of such
matrices given by Sturmfels [42].

Theorem 3.5.9. Let A be a configuration matrix. If the non-zero n× n minors of A are
the same in absolute value, then the set of circuits CA equals the Graver basis GA.
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Together, these imply the following:

Theorem 3.5.10. Let A be a configuration matrix such that all the non-zero n×n minors
of A are the same in absolute value. Then the union of the column partition lattice bases
is equal to the Graver basis:

GA =
⋃
π∈Π

Uπ,

where Π is the set of column partitions of A such that A1 is invertible.

It is not true in general that taking the union of the column partition lattice bases
produces the Graver basis, as illustrated by the following example.

Example 3.5.11. Consider the matrix

A =


1 0 0 0 1 0
0 1 1 1 1 0
0 0 1 0 0 1
0 0 0 1 0 1

 .
This matrix has fifteen maximal submatrices of which four are singular and nine are
unimodular; the other two have determinant ±2. The circuits of this matrix are given by
the columns of the matrix 

0 1 2
2 1 0
−1 0 1
−1 0 1

0 −1 −2
1 0 −1

 .

The vector
[
−1 1 −1 −1 1 1

]ᵀ
is also in the integer kernel, but can not be confor-

mally composed of circuits. Therefore the set of circuits of A does not include all of the
elements of the Graver basis of A.

The Graver basis and the adaptive sampler

Theorem 3.5.10 states that for a unimodular configuration matrix, the union of the column
partition lattice bases is the Graver basis. The Graver basis is known to be a Markov
basis [3].

One application for this fact can be found in the dynamic lattice basis sampler of
Hazelton et al. [27]. This sampler uses a column partition lattice basis to sample from
the fibre, but frequently changes which column partition is used to generate the lattice
basis. This is done in response to the sampler’s current position in the fibre. All column
partitions have a non-zero probability of being selected, so this sampler can generate all
column partition lattice bases. If the configuration matrix is unimodular, then all Graver
basis elements are accessible by the sampler, and so irreducibility of the Markov chain
is guaranteed. This methodology can be tailored to select geometrically advantageous
column partition bases with high probability, hence facilitating quick mixing [27].
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3.5.3 The Graver basis

Any element of the integer kernel of a configuration matrix can be expressed in terms
of a column partition lattice basis. These elements include other circuits. One of the
themes we explore later in this thesis is that of using a column partition lattice basis
that is not necessarily a Markov basis to simulate moves in a known Markov basis. In
Chapter 4 we use this idea to prove that a column partition lattice basis is a Markov basis
by showing that it can simulate each move in a Graver basis. In Chapter 6, we use the
idea of simulating a Graver basis move when considering random walks that may visit
particular points outside of the fibre in order to visit every point in the fibre.

In this section we examine how Graver basis elements of a unimodular matrix can be
expressed in terms of a column partition lattice basis. In doing so, we rely on the fact
that for a unimodular matrix, each element of the Graver basis requires at most one copy
of each element of any column partition lattice basis:

Theorem 3.5.12. Let A be an n×r unimodular configuration matrix and let the columns
of U define a column partition lattice basis U . Each element of GA, the Graver basis of
A, is a sum of at most one signed copy of each element of U .

Proof. The basis U is a column partition lattice basis, so the entries of any element z of
kerZ(A) corresponding to the columns of A in the A2 partition tell us which lattice basis
elements need to be combined to get z. Let g be an element of the Graver basis of A.
Then since A is unimodular, all entries of g are in {0,±1}. It is therefore as sum of at
most one signed copy of each element of U , as required.

This is not in general true for all configuration matrices as illustrated by the following
example.

Example 3.5.13. Consider the configuration matrix

A =


1 1 1 1 1 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0

 ,

whose entries are all zero or one. A column partition lattice basis is given by

U =



4 −1
0 1
−1 0
−1 0
−1 0

1 0
−1 0

0 −1


.
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The vector
c =

[
0 4 −1 −1 −1 1 −1 −4

]ᵀ
is circuit of A that is not in U , and the vector

g =
[
2 2 −1 −1 −1 1 −1 −2

]ᵀ
is in the Graver basis but is not a circuit. Expressing these two vectors in terms of U , we
have c = u1 + 4u2, and g = u1 + 2u2. In each case we need more than one copy of some
element of U to construct the required vector.

In fact, we cannot express g as a sum of plus or minus one copy of each vector in a
subset of circuits of A either. The set of circuits of A is CA = {u1,u2, c}. We have

g = u1 + 2u2

= c− 2u2

=
u1 + c

2
.

The first property of Graver bases of unimodular configuration matrices that we will
demonstrate is to show that if a signed sum of a certain combination of column partition
lattice basis elements produces some Graver basis element, then a different signed sum of
the same combination cannot produce a different Graver basis element.

Theorem 3.5.14. Let A be an n × r unimodular configuration matrix and let U be a
column partition lattice basis. Suppose g ∈ GA is a signed sum of some subset Ug of U ,
so that

g =
∑
u∈Ug

εuu

where εu ∈ {±1} for all u ∈ Ug. Then no other signed sum of the elements of Ug has all
entries 0 or ±1, and therefore none of them is in GA.

Proof. Without loss of generality, let εu = 1 for all u ∈ Ug. Let

z =
∑
u∈Ug

µuu

for some other collection of multipliers µu for each u ∈ Ug with not all µu = εu. We need
to show that z /∈ {0,±1}r.

We sum the elements of Ug with positive µu, and those with negative µu, to obtain

v =
∑

u:µu=1

u and w =
∑

u:µu=−1

u,

so that g = v + w and z = v −w.
From the definition of the Graver basis v + w cannot be a conformal decomposition

of g, so there is some index i where the entries of v and w have opposite signs. When we
take the difference z = v − w, at index i there is a sum of two elements with the same
sign, so |zi| > 1 and z /∈ {0,±1}. Therefore z /∈ GA, as required.
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For unimodular matrices, the Graver basis is equal to the set of circuits. The circuits
are defined by having minimal support: for an n×r configuration matrix, each circuit has
at most n + 1 non-zero elements. We can use this fact to give a limit on the number of
column partition basis elements we need to combine to produce any Graver basis element.

Theorem 3.5.15. Let A be an n × r unimodular configuration matrix and let U be a
column partition lattice basis. Let g ∈ GA, and let Ug be the columns of U such that

g =
∑
u∈Ug

εuu

where each εu ∈ {±1}. Then Ug has at most min (r − n, n+ 1) elements.

Proof. The set Ug is a subset of U , which has r − n elements. Each element is used at
most once, so g is a sum of at most r − n elements of U .

The matrix A is unimodular, so by Theorem 3.5.9, g is a circuit and has at most n+1
non-zero elements. The basis U is a column partition lattice basis, so the elements of g
corresponding to the A2 partition of A give co-ordinates for expressing g in terms of U .
This means that g is a sum of at most n+ 1 elements of U .

Combining these two upper limits means that g is a sum of at most min (r − n, n+ 1)
elements of U , as required.

Taken together, these three theorems mean that for a unimodular configuration matrix
A, the elements of GA can be found with the following method:

1. Take a subset of at most min (r − n, n+ 1) elements of U .

2. Check if the collection of multipliers ε = ±1 of these elements that give a vector in
{0,±1}r is unique.

3. If so, this vector is an element of GA.

This also gives an upper bound for the size of GA.

Corollary 3.5.16. Let A ∈ {0, 1}n×r be a unimodular configuration matrix, and let m =
min (r − n, n+ 1). Then

|GA| ≤
m∑
i=1

(
r − n
i

)
.

3.5.4 Algebra

In Section 2.4 we saw how elements of kerZ(A) for a configuration matrix A can be
represented as monomial differences. This includes elements of a column partition lattice
basis whose elements are integral, for example a basis for any unimodular configuration
matrix.
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Figure 3.8: The graph from the transport network in Example 3.5.17.

Let U ∈ Zr×(r−n) be a column partition lattice basis for A, and let

F = {Tu+ − Tu−
: u ∈ U}

be the monomial difference representations of U . This set F generates an ideal, IU ⊆ IA,
with equality when U is a Markov basis.

The ideal IU has a Gröbner basis. Recall from Definition 2.4.10 that a Gröbner basis
is a subset G = {g1, . . . , gn} of an ideal I such that

〈LT(g1), . . . ,LT(gn)〉 = 〈LT(I)〉.

An interesting question is: is F necessarily a Gröbner basis for IU? It turns out that
this is not the case, as shown by the following counterexample.

Example 3.5.17. Consider the traffic network shown on the graph in Figure 3.8 which
has the unimodular configuration matrix

A =


1 0 0 0 0 1 1 1
0 1 1 1 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1

 .
In this network, nodes 1 and 2 may be used as origins for traffic, and nodes 3, 4, 5 and 6
may function as destinations.

A column partition lattice basis is given by

U =



1 1 1
−1 −1 −1

1 0 0
0 1 0
0 0 1
−1 0 0

0 −1 0
0 0 −1


.
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The monomial difference representations of U are given by

F = {t1t3 − t2t6, t1t4 − t2t7, t1t5 − t2t8}.

We claim that F is not a Gröbner basis for IU under any term ordering.
There are eight indeterminates, so even considering only lex order there are 8! possible

term orderings; fortunately we need not check them all. For any term ordering, the lead
term of Tu+ − Tu−

is either Tu+
or Tu−

. There are three monomial differences in F , and
therefore eight combinations of potential leading terms. We will show that for each of
the eight, there is a polynomial p ∈ IU such that LT(p) is not divisible by LT(f) for any
f ∈ F . This implies that F is not a Gröbner basis under any term ordering.

The polynomials we require are S-polynomials of pairs of elements

Tu+
i − Tu−

i , Tu+
j − Tu−

j ∈ F

such that
gcd (LT(Tu+

i − Tu−
i ),LT(Tu+

j − Tu−
j )) 6= 1.

Recall from Definition 2.4.11 that the S-polynomial of two polynomials f and g in k[T ]
under a given term ordering is given by

S(f, g) =
T γ

LT(f)
f − T γ

LT(g)
g,

where T γ is the least common multiple of LT(f) and LT(g).
The combinations of leading terms of elements of F and the required S-polynomials

are given in the following table:

t1t3 − t2t6 t1t4 − t2t7 t1t5 − t2t8 S-polynomial

t1t3 t1t4 t1t5 S(t1t3 − t2t6, t1t4 − t2t7) = t2t3t7 − t2t4t6
t1t3 t1t4 −t2t8 S(t1t3 − t2t6, t1t4 − t2t7) = t2t3t7 − t2t4t6
t1t3 −t2t7 t1t5 S(t1td − t2t6,−t2t8 + t1t5) = t2t3t8 − t2t5t6
t1t3 −t2t7 −t2t8 S(−t2t7 + t1t4,−t2t8 + t1t5) = t1t4t8 − t1t5t7
−t2t6 t1t4 t1t5 S(t1t4 − t2t7, t1t5 − t2t8) = t2t4t8 − t2t5t7
−t2t6 t1t4 −t2t8 S(−t2t6 + t1t3,−t2t8 + t1t5) = t1t3t8 − t1t5t6
−t2t6 −t2t7 t1t5 S(−t2t6 + t1t3,−t2t7 + t1t4) = t1t3t7 − t1t4t6
−t2t6 −t2t7 −t2t8 S(−t2t6 + t1t3,−t2t7 + t1t4) = t1t3t7 − t1t4t6

We can see that no term in any of the given S-polynomials is divisible by the leading
term of an element of F ; and so no matter the term ordering, there is an S-polynomial
whose terms are not divisible by the leading term of an element of F . Therefore F is not
a Gröbner basis.
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Chapter 4

Connectivity

4.1 Introduction

In this chapter we present some results on the main theme of this thesis, which is whether
or not a column partition lattice basis is a Markov basis. Our main result is a condition
on the matrix

U =

[
−A−1

1 A2

I

]
that guarantees that U is a Markov basis. The statement and proof of this are in Sec-
tion 4.4.4.

Other results in this chapter include a stronger condition on the matrix U that also
guarantees that it is a Markov basis, which has other advantages and can be found in
Section 4.2; and a simpler method for showing that a set of moves is a Markov basis, which
can be found in Section 4.3. We also collect some results on potentially using collections
of column partition lattice bases as a Markov basis, which can be found in Section 4.5.

In this chapter we assume an integral U matrix. This is guaranteed for unimodular
configuration matrices. Non-unimodular configuration matrices may also have column
partition lattice basis matrices that are integral — a condition that guarantees this for
non-unimodular configuration matrices was given previously in Theorem 3.4.5. Having
an integral U avoids the problem of parity errors described in Section 2.5.1.

The first result, presented in Section 4.2, gives a condition on the matrix U that
guarantees that it is a Markov basis. This condition enjoys the advantage of translating
simply into a condition on the column partition used, so it also provides a method of
partitioning that produces such a U matrix. However, the availability of such a partition
is not always guaranteed. This result generalises a result that was previously found by
Schofield and Bonner [39].

Section 4.3 gives a simpler condition for a set of moves to be a Markov basis that can
be used when some other Markov basis is known. From the definition of a Markov basis,
a set B is a Markov basis for a configuration matrix A if B connects all a,b ∈ Fy for all
y ≥ 0. This is implied if B connects z− and z+ for all z ∈ M, where M is some known
Markov basis. We can think of this as being able to use the moves in B to simulate any

83
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move inM. This will be the case if the geometry of the Z-polytope is such that whenever
it contains two points separated by z, it is guaranteed that there is enough wiggle room
to use the required moves in B to travel between these points.

If no known Markov basis is available, we may instead consider applying the idea to
general elements of the integer kernel. The idea of simulating moves in a known Markov
basis is revisited in Section 6.2.2.

Markov basis simulation is used in Section 4.4 to give a weaker condition on the matrix
U matrix for a column partition lattice basis being a Markov basis. This result is based on
the understanding of the geometry of projected Z-polytopes representing fibres developed
in Section 3.3. We conjecture that for unimodular configuration matrices, this condition
on U is equivalent to U being a Markov basis.

Finally, Section 4.5 uses results from Section 3.5 concerning unimodular configuration
matrices, circuits, and Graver bases to investigate how best to combine column partition
lattice bases to get a Markov basis.

4.2 Column sums

One type of column partition lattice basis that is a Markov basis is that defined by some
matrix

U =

[
−A−1

1 A2

I

]
where −A−1

1 A2 ≤ 0 and integral, and the inequality is componentwise. We state this as
a theorem.

Theorem 4.2.1. Let A ∈ {0, 1}n×r be a configuration matrix of rank n, and let r > n.
Let the columns of A be a partitioned so that each of the r − n columns of A2 can be
written as a non-negative combination of the n columns of A1. Let U , the induced column
partition lattice basis, be integral. Then U is a Markov basis.

In this section we give a proof of this fact.

A condition for the entries of U being integral can be found in Theorem 3.4.5. The
entries of U are non-negative if the column partition is such that each column in the A2

part of A is a non-negative combination of columns of A1. This result is a generalisation
of a result of Schofield and Bonner [39], who proved the case where A1 is the identity
matrix.

Schofield and Bonner made use of their result in capture-recapture modelling. It can
also often be applied in network tomography: for example, if on some traffic network, each
link in the network is an allowed path, then the identity matrix is a maximal submatrix
and the condition in Theorem 4.2.1 holds. This and other applications are discussed in
Section 4.2.5.

We give here an example of this theorem in action using the link-path incidence matrix
of the three-link linear network.
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Example 4.2.2. Let

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .
The columns of A are partitioned such that A1 is the identity matrix. This induces the
column partition lattice basis defined by the columns of

U =


−1 0 −1
−1 −1 −1

0 −1 −1
1 0 0
0 1 0
0 0 1

 .

This matrix is integral and the −A−1
1 A2 part is non-positive, so by Theorem 4.2.1, it

defines a Markov basis.
Using the techniques of Diaconis and Sturmfels [19] from Section 2.4, a Gröbner basis

for IA under lex term ordering and t6 > t5 > t4 > t3 > t2 > t1 is given by

{t6 − t1t2t3, t5 − t2t3, t4 − t1t2}.

This is the monomial difference representation of U , above. This is also the Markov basis
for A given by 4ti2 [44].

4.2.1 A non-negative A−11 A2

The first step in the proof of Theorem 4.2.1 is showing that it if the condition on the
columns of A1 and A2 holds, then A1 is invertible and we can therefore use the partition
to make a column partition lattice basis. This is stated in the following lemma.

Lemma 4.2.3. Let A be an n × r matrix of full rank where r > n. Let the columns of
A be partitioned such that each of the r − n columns in A2 can be written as a linear
combination of the n columns of A1. Then A1 is invertible.

Proof. The matrix A is n× r and of full rank, so rank(A) = n. The matrix A1 is n× n.
The columns in A2 are each a linear combination of columns in A1, so columns of A1 span
CS(A). This implies rank(A1) = rank(A) = n, and so A1 is invertible.

The following example gives two partitions of a configuration matrix for which the
condition does and does not hold.

Example 4.2.4. Let A be the link-path incidence matrix of the three-link linear network.
Then

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .
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This matrix is of full rank. Choosing the partition so that

A1 =

1 1 1
0 1 1
0 0 1


and

A2 =

0 0 0
1 0 1
0 1 1


means that each column of A2 can be written in terms of columns of A1. In order,0

1
0

 = −

1
0
0

+

1
1
0

 =

1 1 1
0 1 1
0 0 1

−1
1
0


0

0
1

 = −

1
1
0

+

1
1
1

 =

1 1 1
0 1 1
0 0 1

 0
−1

1


0

1
1

 = −

1
0
0

+

1
1
1

 =

1 1 1
0 1 1
0 0 1

−1
0
1



The matrix A1 is invertible.
Choosing instead the partition which switches the two parts, so that

A1 =

0 0 0
1 0 1
0 1 1


and

A2 =

1 1 1
0 1 1
0 0 1


means that no column in A2 can be written in terms of columns of A1, and A1 is not
invertible.

If A is partitioned so that the conditions of Theorem 4.2.1 hold, then A1 is invertible,
and we can use the partition to create a column partition lattice basis for A. Theorem 4.2.1
requires that each column of A2 is a non-negative combination of columns of A1. The
following lemma implies that if this condition is met, then the partition induces a column
partition lattice basis such that the −A−1

1 A2 part of U is non-positive.

Lemma 4.2.5. Let An×r≥0 be of full rank, and let r > n. Let the columns of A be par-
tititioned such that each column of A2 is a non-negative combination of columns of A1.
Then A−1

1 A2 is non-negative.
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Proof. Let ai mean the ith column of A2 under the column partition. Each such column of
A2 can be written as a non-negative combination of columns of A1. We can therefore write
ai = A1ci, where ci is a non-negative vector that creates the linear combination of columns
of A1 that sum to ai. The matrix C =

[
c1 c2 · · · cr−n

]
is therefore non-negative. We

have

A1C = A2

A−1
1 A1C = A−1

1 A2

C = A−1
1 A2,

and so all of the entries of A−1
1 A2 are non-negative too.

As an example, consider the link-path incidence matrix of the three-link linear network.

Example 4.2.6. We partition the columns of

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 ,
so that A1 is the identity matrix and

A2 =

1 0 1
1 1 1
0 1 1


Each column of A2 is a non-negative combination of the columns of A1. Clearly A−1

1 A2 =
A2, which is non-negative.

This example was quite simple in that the A1 part was the identity matrix; here is a
non-trivial example.

Example 4.2.7. Let

A =


1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1
0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1

 .

This is the link-path incidence matrix for a six link linear network in which the first four
nodes function as origins for traffic and the last five function as destinations (so that two
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nodes function as both). Partitioning the columns so that A1 is made of the first six
columns of A, we have

A1 =


1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1


and the remaining columns make up the A2. Each of the columns of A2 is a sum of
columns in A1. Then

A−1
1 A2 =


1 0 0 0 0 0
−1 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 0 0 1




1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 1 1 1 1
0 0 1 1 0 0 1 1 0 1 1
0 0 0 1 0 0 0 1 0 0 1



=


1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 1 0 0 1

 .

This matrix A−1
1 A2 is non-negative.

The following lemma says that if some point x ∈ Fy, then in the projected space all
the points that lie between x and the origin are also in Fy.

Lemma 4.2.8. Let A be a configuration matrix, and let the column partition into A1 and
A2 be such that A−1

1 A2 has all non-negative integer entries. Let x ∈ Fy for some y ∈ Zn≥0,
and let x be partitioned into x1,x2 according to the column partition of A. Let m2 ∈ Zr−n≥0

be such that 0 ≤m2 ≤ x2, and let

m =

[
x1 + A−1

1 A2(x2 −m2)
m2

]
.

Then m ∈ Fy.

Proof. Let m2 be given, and set m1 = x1 + A−1
1 A2(x2 −m2). Each of x1, A

−1
1 A2, and
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x2 −m2 are non-negative and integral, so m1 is non-negative and integral. We have

Am = A1m1 + A2m2

= A1

(
x1 + A−1

1 A2(x2 −m2)
)

+ A2m2

= A1x1 + A2(x2 −m2) + A2m2

= A1x1 + A2x2

= Ax

= y.

Therefore, m ∈ Fy.

In particular, if m2 = 0, then

m =

[
x1 + A−1

1 A2x2

0

]
∈ Fy.

We demonstrate with the following example.

Example 4.2.9. Consider again the three-link linear network, which has configuration
matrix

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1


and a column partition lattice basis

U =


−1 0 −1
−1 −1 −1

0 −1 −1
1 0 0
0 1 0
0 0 1

 .

We set y =
[
2 3 2

]ᵀ
. We have

x =


0
0
0
1
1
1

 ∈ Fy.

The last three co-ordinates give x2 =
[
1 1 1

]ᵀ
. The fibre Fy also contains the vectors


2
3
2
0
0
0

 ,


1
2
1
0
0
1

 ,


2
2
1
0
1
0

 ,


1
1
0
0
1
1

 ,


1
2
2
1
0
0

 ,


0
1
1
1
0
1

 ,


1
1
1
1
1
0




,
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which includes all vectors {m ∈ Z6 : Am = y} such that 0 ≤m2 ≤ x2.

4.2.2 Distance reducing proof of Theorem 4.2.1

Theorem 4.2.1 states that if the columns of a configuration matrix A are partitioned such
that each of the columns of A2 is a non-negative combination of columns of A1, and U
is integral, then U is a Markov basis. We present proofs for this using both distance
reduction and ideal membership.

Here is the distance reducing proof.

Proof. Let a configuration matrix A ∈ {0, 1}n×r be partitioned such that each column of
A2 is a non-negative combination of columns of A1. By Lemmata 4.2.3 and 4.2.5, this
partition induces a column partition lattice basis

U =

[
−A−1

1 A2

I

]
,

where −A−1
1 A2 ≤ 0. Let this U be integral. We will show that U is a Markov basis

by taking a pair of arbitrary points a,b in an arbitrary fibre and showing that moves
in U can be used to reduce the distance from either point to another point m, where
m2 = min(a2,b2).

Let y ∈ Zn≥0 be given, and let a,b be distinct points in Fy. By Lemma 4.2.8, the
point

m =

[
a1 + A−1

1 A2(a2 −m2)
m2

]
∈ Fy.

The moves required to get from a to m using U are given by

m− a =
r−n∑
i=1

(m− a)n+iui.

For the distance measurement we use the L1 norm in the projected co-ordinates,

d(a,b) =
r∑

i=n+1

|a− b|i .

This is the number of steps in a direct walk using between the two points using U . Because
m2 ≤ a2, the distance between a and m is given by

d(a,m) =
r∑

i=n+1

(a−m)i.

We choose any integer k ∈ {(n + 1), . . . , r} such that (a −m)k 6= 0 (i.e., a and m
differ in co-ordinate k), and set a† = a− uk. By Lemma 4.2.8, a†2 ≤ a2 implies a† ∈ Fy.
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The distance between a† and m is

d(a†,m) =
r∑

i=n+1

(a† −m)i

= d(a,m)− 1

and we have reduced the distance from a to m, proving that a is connected to m.
The same is true for b. Since both a and b are connected to m, a and b are connected

to each other by transitivity. The basis U is therefore a Markov basis.

We illustrate this proof using again the example of the three-link linear network.

Example 4.2.10. Consider the configuration matrix

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 ,
and the column partition lattice basis

U =


−1 0 −1
−1 −1 −1

0 −1 −1
1 0 0
0 1 0
0 0 1

 .

We set y =
[
2 2 2

]ᵀ
and choose two points from Fy,

a =


1
0
0
0
1
1

 and b =


0
0
2
2
0
0

 .

We set m2 = min(a2,b2), so

m =


2
2
2
0
0
0

 .
Then

m = a− u2 − u3

m = b− 2u1
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Figure 4.1: The Z-polytope in Example 4.2.10 showing the distance reducing moves for
a (green) and b (red).

and so

d(a,m) = 2

d(b,m) = 2.

Setting a† = a− u3 and b† = b− u1, we have

m = a† − u2

m = b† − u1,

so the distance from each point to m has been reduced to

d(a†,m) = 1

d(b†,m) = 1.

From Lemma 4.2.8, 0 ≤ a†2 ≤ a2 and 0 ≤ b†2 ≤ b2 means that a†,b† ∈ Fy, and we have
used U to reduce the distance to from both a and b to m. Both a and b are connected
to m by U , and so they must be connected to each other.

4.2.3 Algebraic proof of Theorem 4.2.1

Theorem 4.2.1 states that if a column partition lattice basis U for a configuration matrix
A is such that each of the colums of A2 is a non-negative combination of columns of
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A1, and U is integral, then U is a Markov basis. A distance reducing proof was given in
Section 4.2.2. Here we give an inductive proof using the Fundamental Theorem of Markov
Bases (Theorem 2.4.5).

Proof. Let a column partition of a configuration matrix A ∈ {0, 1}n×r be such that each
column of A2 is a non-negative combination of columns of A1. By Lemmata 4.2.3 and 4.2.5,
this partition induces a column partition lattice basis

U =

[
−A−1

1 A2

I

]
,

and −A−1
1 A2 ≤ 0. Let U be integral.

We split each vector in Zr in accordance with the column partition so that

a =

[
a1

a2

]
,

and we correspondingly split the collection of indeterminates T = {t1, . . . , tr} into T1 =
{t1, . . . , tn} and T2 = {tn+1, . . . , tr}, so that

T a = T a1
1 T a1

2 .

Splitting a vector ui into its positive and negative parts ui = u+
i − u−i produces

u+
i =

[
0
ei

]
and u−i =

[
A−1

1 A2ei
0

]
.

The monomial difference form of this is

Tu+
i − Tu−

i = T ei
2 − T

A−1
1 A2ei

1 .

In these equations ui denotes the ith column of U , and ei is the ith standard basis vector.
The ideal IU is generated by the monomial difference representations of U , and we can

write

IU = 〈Tu+ − Tu−
: u ∈ U〉

= 〈T ei
2 − T

A−1
1 A2ei

1 : i = 1, . . . , r − n〉.

By the Fundamental Theorem of Markov Bases (Theorem 2.4.5), we need to show that
for any y ∈ Zn≥0, the monomial difference representation T a − Tb of any pair of points
a,b ∈ Fy is in the ideal IU . We set m2 = 0, and

m =

[
a1 + A−1

1 A2a2

0

]
∈ Fy

by Lemma 4.2.8. We have T a − Tb = T a − Tm + Tm − Tb. The element a represents
an arbitrary point in Fy, so if we can show that T a − Tm ∈ IU , then automatically
Tb − Tm ∈ IU and so T a − Tb ∈ IU .
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We have

T a − Tm = T a1
1 T a2

2 − T
a1+A−1

1 A2a2

1 T 0
2

= T a1
1 (T a2

2 − T
A−1

1 A2a2

1 ),

so if we can show that T a2
2 − T

A−1
1 A2a2

1 ∈ IU for all a2 ∈ Zr−n≥0 , then T a − Tb ∈ IU for all
a,b ∈ Fy for all y, and U is a Markov basis.

We proceed via induction. For the base case, let a2 = ek for some k ∈ {1, . . . , r − n}.
Clearly

T a2
2 − T

A−1
1 A2a2

1 = T ek
2 − T

A−1
1 A2ek

1

∈ 〈T ei
2 − T

A−1
1 A2ei

1 : i = 1, . . . , r − n〉.

For the induction, suppose that T a2
2 − T

A−1
1 A2a2

1 ∈ IU . We need to show that

T
(a2+ek)
2 − TA

−1
1 A2(a2+ek)

1 ∈ 〈T ei
2 − T

A−1
1 A2ei

1 : i = 1, . . . , r − n〉.

For any k ∈ {1, . . . , r − n},

T
(a2+ek)
2 − TA

−1
1 A2(a2+ek)

1 = T
(a2+ek)
2 − T a2

2 T
A−1

1 A2ek
1 + T a2

2 T
A−1

1 A2ek
1 − TA

−1
1 A2(a2+ek)

1

= T a2
2 (T ek

2 − T
A−1

1 A2ek
1 )− TA

−1
1 A2ek

1 (T a2
2 − T

A−1
1 A2a2

1 )

∈ 〈T ei
2 − T

A−1
1 A2ei

1 : i = 1, . . . , r − n〉,

completing the proof.

We demonstrate this proof with an example.

Example 4.2.11. Consider again the three-link linear network, which has the configura-
tion matrix

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 ,
and a column partition lattice basis

U =


−1 0 −1
−1 −1 −1

0 −1 −1
1 0 0
0 1 0
0 0 1

 .

The monomial difference representation of U is given by

{t4 − t1t2, t5 − t2t3, t6 − t1t2t3}.
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For our induction, we assume the monomial difference

T a2
2 − T

A−1
1 A2a2

1 = ta14 t
a2
5 t

a3
6 − ta1+a2

1 ta2+a3
2 ta1+a2+a3

3

lies in the ideal IU . We will show that T a2+ei
2 − TA

−1
1 A2(a2+ei)

1 ∈ IU for i = 1. We have

T a2+e1
2 − TA

−1
1 A2(a2+e1)

1 = t
(a1+1)
4 ta25 t

a3
6 − t

(a1+1)+a2
1 ta2+a3

2 t
(a1+1)+a2+a3
3

= t
(a1+1)
4 ta25 t

a3
6 − t1t2ta14 t

a2
5 t

a3
6 + t1t2t

a1
4 t

a2
5 t

a3
6

− t(a1+1)+a2
1 ta2+a3

2 t
(a1+1)+a2+a3
3

= ta14 t
a2
5 t

a3
6 (t4 − t1t2) + t1t2(ta14 t

a2
5 t

a3
6 − ta1+a2

1 ta2+a3
2 ta1+a2+a3

3 )

= T a2
2 (T e1

2 − T
A−1

1 A2e1
1 ) + T

A−1
1 A2e1

1 (T a2
2 − T

A−1
1 A2a2

1 ).

We can demonstrate this for specific a too. We choose a =
[
1 0 0 0 1 1

]ᵀ
. We set

m2 = 0, so

m =

[
a1 + A−1

1 A2a2

0

]

=


2
2
2
0
0
0

 ,

and we assume that
T a − Tm = t1t5t6 − t21t22t22 ∈ IU .

Choosing k = 1, we want to show that

T a2+e1
2 − TA

−1
1 A2(a2+e1)

1 = t1t4t5t6 − t31t32t23 ∈ IU .

We have

T a2+e1
2 − TA

−1
1 A2(a2+e1)

1 = t1t4t5t6 − t31t32t23
= t1t4t5t6 − t21t2t5t6 + t21t2t5t6 − t31t32t23
= t1t5t6(t4 − t1t2) + t1t2(t1t5t6 − t21t22t23)

∈ IU ,

and so U connects a to m.

We can write down an expression for T a−Tb in terms of the monomial difference repre-
senation of U . Such an expression is a telescoping series where the cancelling intermediate
points define a path from b to a through Fy.
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While walking from m to a, each move ui is used ai times for each ai ∈ a2. In a
projection of a Z-polytope where −A−1

1 A2 is non-positive, these moves may be made in
any order and the walk will still stay within Fy. In order to write T a − Tm in terms of
elements of U , an ordering for the moves must be chosen. In our expression we perform
the moves in the order u1, . . . ,ur−n.

If we are at a point p in the walk where we have completed all usages of u1, . . . ,uk−1,
and the first ` usages of uk, then

p = m + a1u1 + · · ·+ ak−1uk−1 + `uk

= m +
k−1∑
i=1

aiui + `uk,

where the ai are elements of a2 and are indexed by their position therein. Recalling that

m =

[
a1 + A−1

1 A2a2

0

]
,

and so

Tm = T a1
1 T

A−1
1 A2a2

1 ,

point p has the monomial representation

Tp = Tm+
∑k−1
i=1 aiui+`uk

= T a1
1 T

A−1
1 A2a2

1 T
∑k−1
i=1 aiuiT `uk

= T a1
1 T

A−1
1 A2a2

1

T
∑k−1
i=1 aiei

2

T
∑k−1
i=1 aiA

−1
1 A2ei

1

T `ek2

T
`A−1

1 A2ek
1

= T a1
1 T

A−1
1 A2a2

1

(
k−1∏
i=1

T aiei2

T
aiA

−1
1 A2ei

1

)
T `ek2

T
`A−1

1 A2ek
1

= T a1
1

(
k−1∏
i=1

T aiei2

)
T `ek2 T

(ak−`)A−1
1 A2ek

1

(
r−n∏
i=k+1

T
aiA

−1
1 A2ei

1

)
.

The step in the walk between m and a that steps from p has the monomial difference
representation

Tp+uk − Tp = T a1
1

(
k−1∏
i=1

T aiei2

)
T

(`+1)ek
2 T

(ak−`−1)A−1
1 A2ek

1

(
r−n∏
i=k+1

T
aiA

−1
1 A2ei

1

)

− T a1
1

(
k−1∏
i=1

T aiei2

)
T `ek2 T

(ak−`)A−1
1 A2ek

1

(
r−n∏
i=k+1

T
aiA

−1
1 A2ei

1

)
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= T a1
1

(
k−1∏
i=1

T aiei2

)
T `ek2 T

(ak−`−1)A−1
1 A2ek

1

(
r−n∏
i=k+1

T
aiA

−1
1 A2ei

1

)
×
(
T ek

2 − T
A−1

1 A2ek
1

)
.

The part of the walk that comprises of all steps uk begins at the point

p = m +
k−1∑
i=1

aiui

and is described by

Tp+akuk − Tp =

ak∑
`=0

(
T a1

1

(
k−1∏
i=1

T aiei2

)
T `ek2 T

(ak−`−1)A−1
1 A2ek

1

×

(
r−n∏
i=k+1

T
aiA

−1
1 A2ei

1

)(
T ek

2 − T
A−1

1 A2ek
1

))
.

The path from m to a is taken by summing the above expression over all moves uk:

Tm − T a =
r−n∑
k=1

(
ak∑
`=0

(
T a1

1

(
k−1∏
i=1

T aiei2

)
T `ek2 T

(ak−`−1)A−1
1 A2ek

1

×

(
r−n∏
i=k+1

T
aiA

−1
1 A2ei

1

)(
T ek

2 − T
A−1

1 A2ek
1

)))
.

Finally, a path connecting two a,b ∈ Fy is given by

Tb − T a = (Tm − T a)− (Tm − Tb)

=
r−n∑
k=1

(
ak∑
`=0

(
T a1

1

(
k−1∏
i=1

T aiei2

)
T `ek2 T

(ak−`−1)A−1
1 A2ek

1(
r−n∏
i=k+1

T
aiA

−1
1 A2ei

1

)(
T ek

2 − T
A−1

1 A2ek
1

)))

−
r−n∑
k=1

(
bk∑
`=0

(
Tb1

1

(
k−1∏
i=1

T biei2

)
T `ek2 T

(bk−`−1)A−1
1 A2ek

1(
r−n∏
i=k+1

T
biA

−1
1 A2ei

1

)(
T ek

2 − T
A−1

1 A2ek
1

)))
.

This path visits the origin, and is not necessarily the shortest path between a and b.
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4.2.4 A geometric interpretation

The non-negativity condition on A−1
1 A2 in Theorem 4.2.1 has an interesting geometric

interpretation. From Section 3.3 we know that the row vectors of U are the normal vectors
to the bounding hyperplanes of the projected Z-polytope. If these normal vectors are
non-positive, then when their corresponding bounding hyperplane is in the non-negative
orthant, they all point towards the origin. None of their bounding hyperplanes cuts any
point in the projected Z-polytope off from the origin. We will see this in the following
example.

Example 4.2.12. Consider the configuration matrix of the three-link linear network

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .
We partition A such that A1 is the identity matrix. Clearly this partition meets the
conditions of Theorem 4.2.1.

This partition induces the column partition lattice basis

U =


−1 0 −1
−1 −1 −1

0 −1 −1
1 0 0
0 1 0
0 0 1

 .

The bounding hyperplanes whose normal vectors are the first three rows of U are shown
in Figure 4.2. We can see that none of these bounding hyperplanes can be positioned so
that in the non-negative orthant, a point on the positive side of the hyperplane is on the
opposite side of the hyperplane to the origin.

Some example Z-polytopes are shown in Figure 4.3. For each point in each Z-polytope,
it is possible to move towards the origin in any co-ordinate direction.

4.2.5 Applications

If a configuration matrix A contains an n × n identity matrix as a maximal submatrix,
then this theorem implies that partitioning such that A1 = I induces a lattice basis that
is a Markov basis. This has applications in capture-recapture models, as observed by
Schofield and Bonner [39]. In network tomography, if a network is such that each edge
is by itself an allowed path, then the identity matrix is a maximal submatrix and this
theorem can also be applied.

Of course, a link-path incidence matrix that can be partitioned such that each column
of A2 is a positive sum of a selection of columns of A1 need not have the identity matrix
as a maximal submatrix. A one-way linear network such that the first k nodes can be
origins, and the last l nodes can be destinations also has this property, a long as there is
at least one vertex that is both an origin and a destination.
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Figure 4.2: The bounding hyperplanes of the Z-polytope in Example 4.2.12.
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Figure 4.3: The Z-polytopes from Example 4.2.12.
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Example 4.2.13. Consider this link-path incidence matrix for a five link network:

A =


1 0 0 0 0 1 1 0 0 0 0
1 1 0 0 0 1 1 1 1 0 0
1 1 1 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 0 1 0 1 0 1

 .
There are six nodes: the first three nodes are origins for traffic, then fourth node is both
an origin and destination, and the last three are destinations. Under the given column
ordering, the induced column partition lattice basis U is given by the columns of the
matrix

U =



−1 −1 0 0 0 0
0 0 −1 −1 0 0
0 0 0 0 −1 −1
−1 0 −1 0 −1 0

0 −1 0 −1 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

Each move in U is equivalent to adding a car to some path that passes the node that is
both an origin and a destination, and compensating by removing: one car that starts at
the same origin node and stops at this central node; and one car that starts at the central
node and stops at the same destination.

Suppose that the numbers of cars observed on links in this network is given by y =[
3 4 5 5 2

]ᵀ
. Then the vectors 

0
0
0
0
0
1
2
2
0
1
0


,



1
0
0
1
0
2
0
0
1
0
1


∈ Fy,

and we will name them a and b respectively.
When traffic counts in a are observed, six cars are traversing paths in the A2 part. Of

these, only one of the two cars sixth path in A consisting of the first four links is common
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with b. The other five are reduced down the paths in A1 using u1 and u5 once each, and
u2 and u3 twice each. This reduction is equivalent to a walking through the Z-polytope
to the point

m = a− u1 − 2u2 − 2u3 − u5.

Then m =
[
2 1 1 2 2 1 0 0 0 0 0

]ᵀ
. The walk then continues to b using the

moves u1,u4 and u6 once each.

The point m that is visited is the same point m in the proof of Theorem 4.2.1 in
Section 4.2.2: each of the A2 co-ordinates of m is the minimum of the corresponding
co-ordinates of a and b.

A Z-polytope walk constructed along the lines of the walk used in the algebraic proof
in Section 4.2.3 would visit the point

[
3 1 1 3 2 0 0 0 0 0 0

]ᵀ
, whose A2 co-

ordinates are all 0, and would require an additional use of −u1 and an additional use of
u1 to construct.

4.3 Markov basis simulation

One way of showing that some set of moves in kerZ(A) is a Markov basis is to show
that it is capable of simulating the moves in some other known Markov basis. Given
a configuration matrix A and a vector y, if a set M is a Markov basis for A then it
can be used to construct a walk between any pair of points x1,xk in the fibre Fy that
stays within Fy. This walk may be constructed by stepping between intermediate points
x1,x2, . . . ,xk ∈ Fy.

Suppose there is another set B, and that B can be used to construct a walk between
each pair of points xi,xi+1 ∈ Fy. Then B connects x1 and xk, too. If B can do this for
all pairs of sequential points in all walks using a Markov basis in all fibres for A, then B
must also be a Markov basis for A.

Suppose we have a set B, and a walk in a fibre which we wish to simulate. Let
xi,xi+1 ∈ Fy be a sequential pair of points in this walk, and suppose that z is the move
in M used to step between them. Then it must be the case that z− ≤ xi and z+ ≤ xi+1.

If z = u1 + · · · + u` where each uj ∈ B, then we may wish to use these moves to
simulate z in our walk. If u−1 ≤ xi, then we can use u1 as the first step in our simulated
walk — after taking the step u1 from xi, we are guaranteed to be at a point within the
fibre. Then if u−1 ≤ z−, we can use u1 as the first step in any walk that simulates the
step z.

The simulated walk is now at the point xi + u1 ∈ Fy. Similarly, if u−2 ≤ xi + u1, then
adding u2 will produce a point in Fy, and u2 may be used to continue the walk; and if
u−2 ≤ z− + u1, then it can be used as the second step in any walk that simulates the step
z and begins with u1.

If u−m ≤ z−+
∑m−1

j=1 uj for all m = 1, . . . , `, then these moves can be used in the order
u1, . . . ,uk−1 to walk not only from xi to xi+1 in our original walk, but between any pair
of points that are separated by z in any fibre. If all moves in M can be simulated by B
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1 2 3 4
1 2 3

1 2 3

4 5

Figure 4.4: A three-link linear network. The underbraces show the allowed paths.

in this way, then B connects all pairs of points thatM does, and so B must be a Markov
basis.

On the other hand, if there is some z ∈M such that B cannot be used to construct a
walk from z− to z+, then choosing y = Az− means that Fy contains two points that are
not connected by B, so B is not a Markov basis.

We illustrate this with an example.

Example 4.3.1. Let A be the link-path incidence matrix of a three-link linear network
where travel is allowed between any pair of nodes except for from the first to the last
node, as in Figure 4.4. We form the column partition lattice basis U by taking the A1

partition to be the identity matrix. Then

A =

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

 , and U =


−1 0
−1 −1

0 −1
1 0
0 1

 .
The Graver basis is known to be a Markov basis. It consists of the two elements of B and
g = −u1 + u2. It is given by

GA =




−1
−1

0
1
0

 ,


0
−1
−1

0
1

 ,


1
0
−1
−1

1


 .

As in Theorem 3.3.3, the row vectors of the U matrix give the faces of the Z-polytope
and their positions are given by the A−1

1 y vector. We take A−1
1 y = y =

[
6 8 4

]t
. The

projection of the Z-polytope corresponding to this choice of column partition lattice basis
is given in Figure 4.5.

Some of the elements of Fy are given by


0
1
3
6
1

 ,


0
0
2
6
2

 ,


1
0
1
5
3

 ,


2
0
0
4
4


 ,
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Figure 4.5: The Z-polytope from Example 4.3.1. The lattice basis elements are shown in
blue; the remaining Graver basis element is shown in red.

which we name x1,x2,x3 and x4 respectively.
We can use GA to walk from x1 to x4 via x2 and x3 using the sequence of moves

u2,g,g. We can attempt to simulate this walk using only moves in U . We know we can
perform u2 because it is in U . The two uses of g take the walk from

0
0
2
6
2

 to


1
0
1
5
3

 , and from


1
0
1
5
3

 to


2
0
0
4
4

 .
The moves in U required to simulate g are −u1 and u2. In both cases if we perform
−u1 before u2, we are able to perform this sequence without leaving the Z-polytope,
and therefore we can simulate the entire walk without leaving the Z-polytope. In this
projection of the Z-polytope, if the points x,x−g ∈ Fy for some x, then x−u1 ∈ Fy too.
In fact, the arrangement of the faces in this projection mean that we can always perform
the sequence −u1,u2 whenever we can perform g in all Z-polytopes associated with this
configuration matrix. Whenever we perform g, we must start from a point that is at least
g− =

[
0 0 1 1 0

]ᵀ
. The 1 in the 4th co-ordinate of g− means that performing −u1

is always possible. This vector g is the only element of GA that is not in U , and so B is a
Markov basis.

We state this result as a theorem.

Theorem 4.3.2. Let A be a configuration matrix and let M be a Markov basis for A.
Let B be a set of moves in kerZ(A). Then B is a Markov basis for A if and only if B
connects z− and z+ for all z ∈M.
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For the proof we use the Fundamental Theorem of Markov Bases.

Proof. Suppose that B connects z− to z+ for each z ∈ M, so T z− − T z+ ∈ IB by The-
orem 2.4.5. The set {T z− − T z+ : z ∈ M} generates IM, so IM ⊆ IB. The set M is
a Markov basis for A, so we have IM = IA, and IB ⊆ IA is always true, so IB = IA.
Therefore B is a Markov basis, as required.

Conversely, suppose there exists z ∈M such that the lattice basis B does not connect
z− to z+. Then by definition, B is not a Markov basis.

We may not always have knowledge of a Markov basis that we can simulate: the same
line of reasoning shows that in order to show that some B is a Markov basis, we need only
show that B connects x1,x2 ∈ Fy when x1 and x2 have disjoint support.

Corollary 4.3.3. Let A be a configuration matrix and let B be a set of moves in kerZ(A).
Then B is a Markov basis for A if and only if B connects z− and z+ for all z ∈ kerZ(A).

4.4 Connectivity of lattice bases

A column partition lattice basis for a configuration matrix A is given by the columns of a
matrix U . In this section we give a sufficient condition on a matrix U that can determine
if it is a Markov basis.

When checking if a matrix U meets this condition, we search it for a particular type of
submatrix. If no such submatrix can be found, then U is a Markov basis. This is stated
formally as Theorem 4.4.14. In this section we present and prove this condition.

The condition as we state and prove it requires all entries of U to be in {0,±1}. It can
therefore be applied to all column partition bases of unimodular configuration matrices.
However, the idea does extend intuitively to matrices with larger integer entries.

The submatrices we are concerned with are non-zero Eulerian submatrices whose
columns each contain entries that sum to zero, which we will call zero column sum Eule-
rian, or c0-Eulerian matrices. Recall from Definition 3.5.3 that a matrix A ∈ {0,±1}n×r
is Eulerian if for each row and column, the sum of the entries is a multiple of two.

Definition 4.4.1 (Zero column sum Eulerian). We say a non-null matrix M is zero
column sum Eulerian, or c0-Eulerian, if:

• M is Eulerian,

• the entries within each column of M sum to zero.

Examples of c0-Eulerian matrices include

[
1 1
−1 −1

]
,

[
1 −1
−1 1

]
, and

 1 1 0
−1 0 1

0 −1 −1

 .
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The matrix [
1 −1
1 −1

]
,

is also Eulerian, but the sums of the entries in each column are 2 and −2 respectively, so
its presence as a submatrix of some matrix U does not affect whether or not it defines a
Markov basis.

We also define zero column and row sum Eulerian matrices, or cr0-Eulerian matrices,
for which the zero summing property holds for rows as well.

Definition 4.4.2 (Zero column and row sum Eulerian). We say a matrix M is zero
column and row sum Eulerian, or cr0-Eulerian, if:

• M is Eulerian,

• M does not have all entries equal to zero,

• the entries within each column of M sum to zero,

• the entries within each row of M sum to zero.

Clearly all cr0-Eulerian matrices are also c0-Eulerian.
The condition presented in this section is stated in Theorem 4.4.14, and claims that if

a matrix U which defines a column partition lattice basis for a unimodular configuration
matrix contains no c0-Eulerian submatrix, then its columns define a Markov basis.

We begin in Section 4.4.1 by looking at the geometric intuition behind this condition.
This is based on Section 3.3 which discusses how the rows of U relate to the bounding
hyperplanes of the corresponding projection of associated Z-polytopes. Examples are
presented in which connectivity problems (other than parity errors) appear when the
matrix U contains a c0-Eulerian submatrix.

We then look at some examples of what happens when a matrix fails this condition.
Two and three dimensional examples are presented in Section 4.4.2 in which we are given
a U matrix that contains a c0-Eulerian submatrix, and we attempt to construct a walk
between particular pairs of points. In each case, any walk must necessarily step outside
of the Z-polytope to a point with at least one negative co-ordinate. This interpreta-
tion of effect of the c0-Eulerian submatrices of U is more in line with how the proof of
Theorem 4.4.14 works.

Section 4.4.4 gives a statement and proof of Theorem 4.4.14. Proving the validity of
this condition requires some lemmata which are combinatorial in nature and are to do
with how columns of U -style matrices can be ordered to meet certain conditions. The idea
is that for any collection of moves used in any orientation, there exists an ordering such
that a walk that uses that ordering involves visiting a sequence of points whose entries
are non-decreasing, and then non-increasing, in each co-ordinate. This means that such a
walk never visits a point with a negative co-ordinate. Since this is true for any collection
of moves, for any pair of points in any Z-polytope there is an ordering for the collection
of moves that connects them, and so U is a Markov basis.
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Section 4.4.5 discusses the theorem in terms of polynomial ideals. The Fundamental
Theorem of Markov Bases (Theorem 2.4.5) gives a correspondence between a Markov
basis for Z-polytopes and a generating set of an ideal in a polynomial ring. Here, we
show using induction that if the type of ordering of moves in Section 4.4.4 exists then the
monomial difference representation of any combination of moves in U is in IA, the ideal
generated by the kernel of A. This is in line with the Fundamental Theorem.

Section 4.4.6 gives another geometric interpretation comparing the kinds of Z-polytopes
associated with U matrices that pass our condition, with the Z-polytopes discussed in Sec-
tion 4.2, in which −A−1

1 A2 was non-positive. The Z-polytopes from Section 4.2 can be
thought of as a special case of those in this section.

In Section 4.4.7 we conjecture that the reverse of the implication in Theorem 4.4.14
is also true: that is, if U does contain a c0-Eulerian submatrix, then U is not a Markov
basis.

Finally, Section 4.4.8 looks at how the theorem might be extended from {0,±1} matri-
ces to matrices with entries in Z by looking at c0-Eulerian submatrices in U ε, the matrix
of signs of U .

4.4.1 Geometric intuition

In Section 2.5.1 we presented three potential reasons that a given column partition lattice
basis might not be a Markov basis. We referred to them as parity errors, isolated spaces,
and reduced dimension. If we are to show that some column partition lattice basis is a
Markov basis, we must at a minimum show that these three problems cannot occur.

The first of these, parity errors, can be avoided if the matrix U which defines the
column partition lattice basis contains only integers. Theorem 3.4.5 gives a condition on
the column partition which guarantees this. The idea is that the I part of

U =

[
−A−1

1 A2

I

]
corresponds to the co-ordinates upon which the Z-polytope is being projected and its non-
zero entries are always 1. This means that unit sized steps in co-ordinate directions are
always possible, provided the walk stays within the Z-polytope’s bounding hyperplanes.
Our concern in this section is therefore with staying within these boundaries: that is,
with avoiding the problems we labelled isolated spaces and reduced dimension.

Of these other problems, the simplest to address is reduced dimensionality. We will
look again at the traffic network from Example 3.3.4.

Example 4.4.3. Consider the configuration matrix

A =


1 0 0 0 1 1
0 1 1 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1

 .
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Figure 4.6: A Z-polytope from Example 4.4.3 projected onto the x5 and x6 dimensions
showing the bounding hyperplanes.

We choose the column partition such that

A1 =


1 0 0 0
0 1 1 1
0 0 1 0
0 0 0 1

 .
Then the column partition lattice basis is given by

U =


−1 −1

1 1
−1 0

0 −1
1 0
0 1

 ,

which corresponds to a projection of the Z-polytope onto the x5 and x6 co-ordinates. An
example polytope for this projection with y =

[
3 3 2 2

]ᵀ
is shown in Figure 4.6. The

bounding hyperplanes for x1 and x2 oppose each other, and are not parallel to any axis.
If y is such that these two bounding hyperplanes are in contact, then the underlying
projected polytope is a diagonal line segment, and co-ordinate direction moves cannot
connect the lattice points within.

The submatrix of U formed by taking the rows corresponding to these bounding hy-
perplanes is given by

M1 =

[
−1 −1

1 1

]
.
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We note that the same effect would be achieved if the bounding hyperplanes were rotated
ninety degrees — that is, if U contained the submatrix

M2 =

[
−1 1

1 −1

]
.

We note that both M1 and M2 are c0-Eulerian matrices.

A reduced dimension Z-polytope may also arise when there are no bounding hyper-
planes that directly oppose each other. The following is an example in three dimensions.

Example 4.4.4. Consider the configuration matrix

A =


1 1 0 0 1 0 0
0 1 1 0 1 0 1
0 0 1 0 0 1 0
0 0 0 1 1 0 0

 .
This matrix is a potential link-path incidence matrix for a traffic network on a four-link
linearly connected directed tree. Choosing the column partition such that A1 is made of
the first four columns of A induces the basis

U =



0 −1 1
−1 1 −1

0 −1 0
−1 0 0

1 0 0
0 1 0
0 0 1


.

The −A−1
1 A2 part of this matrix contains no pair of rows ui·,uj· such that ui· = −uj·, and

so none of the bounding hyperplanes directly opposes another in the corresponding projec-
tion of an associated Z-polytope. The Z-polytopes for this system for y =

[
1 3 2 1

]ᵀ
and y =

[
0 2 2 1

]ᵀ
are shown in Figure 4.7. Figure 4.7a shows that the Z-polytope

for y =
[
1 3 2 1

]ᵀ
does not suffer from the problem of reduced dimension, and U is a

Markov subbasis for this fibre.
The points in the Z-polytope for y =

[
0 2 2 1

]ᵀ
are given by

Fy =





0
0
2
1
0
0
0


,



0
0
1
1
0
1
1


,



0
0
0
1
0
2
2




.
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(b) The Z-polytope for y =[
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(c) The Z-polytope for y =[
0 2 2 1

]ᵀ
.

Figure 4.7: The Z-polytopes from Example 4.4.4

This Z-polytope appears in Figure 4.7c, which shows that it is one dimensional and not
aligned with the axis, and therefore that U is not a Markov basis.

The matrix U contains the submatrix

M =

[
1 −1
−1 1

]
in the x1 and x2 co-ordinates of the columns corresponding to co-ordinate moves in the
x6 and x7 directions. The x1 and x2 bounding hyperplanes do not directly oppose each
other, but do oppose each other when considering only the x6 and x7 dimensions.

The third problem for column partition lattice bases’ connectivity in Section 2.5.1 is
the problem of isolated spaces. The example given is for a two-dimensional Z-polytope.
In order to obtain a two-dimensional Z-polytope with an isolated vertex, we need a con-
figuration matrix that was not unimodular. In three or more dimensions, unimodular
configuration matrices can also produce Z-polytopes with isolated vertices, as illustrated
the following example.

Example 4.4.5. Consider the three-link linear network. The totally unimodular link-
path incidence matrix for this network is

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .
We choose the partition such that

A1 =

1 0 1
1 1 1
0 1 1

 ,
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Figure 4.8: The Z-polytope from Example 4.4.5.

and the induced column partition lattice basis U is given by the columns of the matrix

U =


1 0 0
0 1 0
0 0 1
0 −1 1
1 −1 0
−1 1 −1

 .

If two cars are observed on each link in the network, we have y =
[
2 2 2

]ᵀ
, and the

corresponding project of the Z-polytope for Fy is shown in Figure 4.8a. The point at[
2 2 2

]ᵀ
in the projected space is not connected to the rest of the Z-polytope. In a

sense this is because the bounding hyperplanes representing x5 and x6 oppose each other
when considering only the x1 and x2 dimensions; and because the x4 and x6 bounding
hyperplanes are opposed to each other in the x2 and x3 dimensions. This can be seen in
Figure 4.8b. The matrix U contains the submatrices

M1 =

[
1 −1
−1 1

]
in the x5 and x6 co-ordinates of the first and second columns, and

M2 =

[
−1 1

1 −1

]
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in the x4 and x6 co-ordinates of the second and third columns.

In both Example 4.4.4 and 4.4.5, the column partition lattice basis chosen corresponds
to a projection of the Z-polytope where a pair of faces meet at awkward angles, denying
access to part of the Z-polytope. In each case, the submatrices of U that corresponds
to the relevant bounding hyperplanes and projected space co-ordinates are c0-Eulerian
matrices.

The idea that a column partition lattice bases that is not a Markov basis — despite
not being afflicted by parity errors — corresponds to a projection of the Z-polytope where
the bounding hyperplanes meet at awkward angles, and with U containing a c0-Eulerian
submatrix, extends to three dimensions too. This can be seen in the following example.

Example 4.4.6. Consider the link-path incidence matrix for a three-link linear network

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .
We choose the partition such that

A1 =

0 0 1
0 1 1
1 1 1


to get the column partition lattice basis

U =


1 0 0
0 1 0
0 1 1
0 0 1
1 −1 0
−1 0 −1

 .

This matrix contains the 3× 3 c0-Eulerian submatrix

M =

 0 1 1
1 −1 0
−1 0 −1

 .
Choosing y =

[
1 1 0

]ᵀ
means that

Fy =




1
1
0
0
0
0

 ,


0
0
0
1
0
0




.
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Figure 4.9: The action of each of the bounding hyperplanes on the projected Z-polytope
from Example 4.4.6.

This Z-polytope lies entirely with the unit cube. Figure 4.9 shows the effect of each of the
bounding hyperplanes and which points in the unit cube they remove from the Z-polytope.
Highlighted are the two vertices that are non-negative with respect to every bounding
hyperplane. Their combined effect is to produce a Z-polytope of reduced dimension that
in this projection is not parallel to any of the axis. Therefore the moves in U , which are
all in co-ordinate directions, cannot be used to move between them, and so U is not a
Markov basis.

Together these examples illustrate the intuition behind Theorem 4.4.14. Examples 4.4.4
and 4.4.5 demonstrated that connectivity problems presented in Section 2.5.1 that column
partition lattice bases might encounter other than parity errors might correlate with the
presence of a c0-Eulerian submatrix in U . Example 4.4.6 suggested that this association
might generalise to larger submatrices.

4.4.2 Eulerian submatrices

The presence of c0-Eulerian submatrices in column partition lattice bases has another
interpretation, which we will explore in this section. In Section 4.4.1 we focussed on the
rows of U and the interaction of the corresponding bounding hyperplanes. This section
focuses more on the columns of the matrix U and their use as moves in a walk. This
interpretation hints at the method of proof that we employ.

Suppose we have some matrix U that contains a c0-Eulerian submatrix. We are
interested in what happens when we attempt use U to construct a walks in arbitrary
Z-polytopes, but fail. Potential endpoints of a walk that uses a collection of moves can
be found by summing the required integer multiple of each of the columns of U .
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Let the Eulerian submatrix of U be M . We claim that we can sum a ±1 multiple of
each of the columns of U that appear in M to a get a vector z ∈ kerZ(A) that has zeroes
in the entries corresponding to the rows of U that are in M . Let R and C be respectively
M ’s row and column indices in U . Then

z =
∑
i∈C

εiui,

where each εi ∈ ±1 and zj = 0 for each j ∈ R. It is important that the εi are chosen so
that the non-zero entries in each row cancel.

The vectors z−, z+ ∈ Fy for y = Az+. Constructing a path from z− to z+ using U
requires the use of the columns of U with indices in C, and none of these moves can be
applied because each ui has a −1 where z− has a zero. Applying any of them requires
moving outside of the Z-polytope.

Example 4.4.7. Consider the link-path incidence matrix and column partition lattice
basis from Example 4.4.4. We had

A =


1 1 0 0 1 0 0
0 1 1 0 1 0 1
0 0 1 0 0 1 0
0 0 0 1 1 0 0


and

U =



0 −1 1
−1 1 −1

0 −1 0
−1 0 0

1 0 0
0 1 0
0 0 1


.

The c0-Eulerian submatrix of concern was in the second and third columns, in rows one
and two. The column multipliers necessary to make these entries cancel when we sum the
columns are both 1. Setting z = u2 + u3, we have

z =



0
0
−1

0
0
1
1


.
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Splitting z into positive and negative parts produces

z− =



0
0
1
0
0
0
0


, z+ =



0
0
0
0
0
1
1


.

These are the endpoints of a potential walk in the Z-polytope for y = Az− =
[
0 1 1 0

]ᵀ
.

The moves in U necessary for walking between z− and z+ are u2 and u3. There are two
possible orderings of these moves, shown in Table 4.1. We cannot walk from z− to z+

−z z− u2 u3 −z+

0 0 −1 1 0
0 0 1 −1 0
1 1 −1 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 1 0 −1
−1 0 0 1 −1

−z z− u3 u2 −z+

0 0 1 −1 0
0 0 −1 1 0
1 1 0 −1 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 1 −1
−1 0 1 0 −1

Table 4.1: The two potential orderings of moves from the walk in Example 4.4.7.

using either of these orderings of moves while remaining within the Z-polytope because
of the −1s in u2 and u3 where z− has a zero. The fact that in the c0-Eulerian submatrix
M , each column contains entries that sum to zero ensures that each column contains a
−1. The fact that it is Eulerian and each of the other columns also contains a −1 ensures
that the signed sum of the entries in each row of M is zero. Together these conditions
mean that we cannot use u2 and u3 to walk directly from z− to z+.

This works for larger Eulerian submatrices as well.

Example 4.4.8. Recall the system in Example 4.4.6. The configuration matrix was

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1


and the column partition lattice basis chosen was

U =


1 0 0
0 1 0
0 1 1
0 0 1
1 −1 0
−1 0 −1

 .



4.4. CONNECTIVITY OF LATTICE BASES 115

The third, fifth, and sixth rows of U were made up of the 3× 3 c0-Eulerian submatrix

M =

 0 1 1
1 −1 0
−1 0 −1

 .
When we assign the multipliers ε1 = ε2 = 1, ε3 = −1 to the columns of U and take the

sum, the entries in these rows cancel and we have

z =


1
1
0
−1

0
0

 =


1
0
0
0
1
−1

+


0
1
1
0
−1

0

+


0
0
−1
−1

0
1

 .

Splitting z into its positive and negative parts produces two points in Fy for y = Az− such
that a walk connecting them using U requires the moves u1,u2,−u3, shown in Table 4.2.
None of these moves can be applied to z−, so a direct walk from z− to z+ using U is not

−z z− u1 u2 −u3 −z+

−1 0 1 0 0 −1
−1 0 0 1 0 −1

0 0 0 1 −1 0
1 1 0 0 −1 0
0 0 1 −1 0 0
0 0 −1 0 1 0

Table 4.2: The potential walk between z− and z+ from Example 4.4.8.

possible.

4.4.3 Combinatorial Lemmata

In this section we state and prove several lemmata required for the proof of Theo-
rem 4.4.14, which can be found in Section 4.4.4. Theorem 4.4.14 is the condition for
whether a column partition lattice basis U is a Markov basis. The basic idea is that
if U contains a c0-Eulerian submatrix, then any collection of columns of U where each
column is multiplied by ±1 can be ordered so that in each row, the 1s precede the −1s.
If the collection of columns gives the moves required to move between two points in some
Z-polytope, then under such an ordering the walk given by the ordering never crosses
any of the bounding hyperplanes. This means that it never visits a point with a negative
co-ordinate. If U has only {0,±1} entries, then the walk visits only points with integer
co-ordinates. Because this is true for any collection of moves, and therefore any pair of
points in any fibre, U is a Markov basis.
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We start by proving several lemmata concerning c0-Eulerian matrices. It is possible
to assign ±1 multipliers to the columns of a c0-Eulerian matrix to obtain a cr0-Eulerian
matrix, so a matrix recording a collection of steps in a walk using U may have a cr0-
Eulerian matrix as a maximal submatrix.

The lemmata look at how the columns of ±1 multiples of c0-Eulerian matrices may
be ordered to conform to certain conditions; this corresponds to orderings of steps in a
walk in a Z-polytope and the conditions guarantee that after each step, we are at a point
in the Z-polytope (that is, a point with non-negative integer co-ordinates).

The notation used in the proof is as follows: mi· denotes the ith row of the matrix M ,
and m·j denotes the jth column. The notation mi,j denotes the element in the ith row
and jth column of M , or alternatively the ith element of the vector m·j.

We begin with a lemma concerning cr0-Eulerian matrices.

Lemma 4.4.9. A matrix U ∈ {0,±1}n×r that contains a cr0-Eulerian submatrix cannot
have its columns reordered so that the 1s all precede the −1s in every row.

Proof. The proof is by contradiction. Let U be a matrix containing a cr0-Eulerian sub-
matrix, V . Suppose that we can reorder the columns of U such that 1s all precede the
−1s in every row.

Under this reordering, let v·j be the first column of V that contains a non-zero entry.
The entries of v·j sum to zero, so it must contain at least one 1 and one −1.

Let i be an index such that vi,j = −1. The entries of the ith row also sum to zero, so
the ith row must also contain a 1.

But v·j is the first column of V that contains non-zero entries, and so the 1 in the ith
row must be in a column that succeeds the jth column.

Therefore, the ith row of V has a −1 that precedes a 1. Since V is a submatrix of U ,
it also has a row with a −1 that precedes a 1. This contradicts our hypothesis, and so U
cannot be ordered so the the 1s precede the −1s in every row.

We now prove the converse.

Lemma 4.4.10. A matrix U ∈ {0,±1}n×r that cannot have its columns reordered so that
the 1s all precede the −1s in every row must contain a cr0-Eulerian submatrix.

Proof. Let < over {0,±1}r define a binary relation such that u < v if uk = 1 and vk = −1
for some k ∈ {1, . . . , n}. Let ≺ be the transitive closure of <. It is therefore a binary
relation over {0,±1}r where u ≺ v if u < v or if u < · · · < v.

If ≺ is a strict partial order over U , the set of columns of U , then any reordering of U
that conforms to ≺ satisfies the condition that no −1 precedes a 1 in any row. Conversely,
if ≺ is not a strict partial order over U , then no such reordering of columns is possible.
Recall that a strict partial order ≺ is a binary relation over a set S with the following
properties:

1. ∀s ∈ S : ¬(s ≺ s) (irreflexivity)

2. ∀r, s, t ∈ S : (r ≺ s) ∧ (s ≺ t)⇒ (r ≺ t) (transitivity)
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Suppose that ≺ does not define a strict partial ordering over U . Then the irreflexivity
property must have been violated: transitivity cannot have been violated because it is
part of how we defined ≺. If irreflexivity has been violated and some u·j1 ≺ u·j1 , then
either u·j1 < u·j1 , or u·j1 < · · · < u·jm < u·j1 for some m ∈ Z+. It cannot be u·j1 < u·j1 ,
since that would imply that there is an index k such that uk,j1 = 1 and uk,j1 = −1,
which is a contradiction. Therefore the second condition must be true, and we choose
{u·j1 , . . . ,u·jm} such that m is the minimum over all such sets. In what follows we consider
the indices on the jk modulo m, so that jm+1 = j1.

We claim that each of the jk are distinct. If the jk were not distinct and jp = jq for
some p < q, then we would have u·j1 < · · · < u·jp < u·jq+1 < · · · < u·jm < u·j1 and m
would not be minimal.

From the definition of <, for every k ∈ {1, . . . ,m} there is ik such that uik,jk = 1 and
uik,jk+1

= −1. We claim that each of the ik are distinct. If the ik were not distinct and
ip = iq for some p < q, then we would have uip,jp−1 = 1 and uip,jp = −1, and uiq ,jq−1 = 1,
and uiq ,jq = −1. Then we would have u·j1 < · · · < u·jp−1 < u·jq < · · · < u·jm < u·j1 and
m would not be minimal.

We construct a submatrix V of U by taking the ikth rows and jkth columns of U for
k ∈ {1, . . . ,m}. We claim that the entries of this matrix not already defined by vik,jk = 1
and vik,jk+1

= −1 are all 0. To the contrary, if one of these entries viq ,jq = 1 where p 6= q
and p + 1 6= q, then u·jq < u·jp+1 , which if q < p produces u·j1 < · · · < u·jq < u·jp+1 <
· · · < u·im < u·i1 ; or if p < q produces u·jq < · · · < u·jp+1 < u·jq and m was not minimal.
On the other hand, if one of these entries viq ,jq = −1 where p 6= q and p + 1 6= q, then
u·jp < u·jq , which if p < q produces u·j1 < · · · < u·jp < · · · < u·jq < · · · < u·jm < u·j1 , and
m was not minimal; or if q < p produces u·jq < · · · < u·jp < u·jq , and again m was not
minimal.

Then the matrix V contains rows and columns that each contain one 1 and one −1,
with all other entries equal to 0, and so the sum of each row or column of V is 0. This
means V is a cr0-Eulerian matrix. This matrix V is a submatrix of U , so U contains a
cr0-Eulerian submatrix.

Lemmata 4.4.9 and 4.4.10 are combined into the following theorem.

Theorem 4.4.11. A matrix with {0,±1} entries cannot have its columns reordered so
that the 1s all precede the −1s in every row if and only if it contains a cr0-Eulerian
submatrix.

Having established this result, we now establish which column partition lattice basis-
defining matrices it is applicable to.

Theorem 4.4.12. Let U ∈ {0,±1}n×r be a matrix that contains no c0-Eulerian subma-
trix. Let Uσ be a matrix obtained from U by independently multiplying each column of U
by ±1. Then Uσ contains no cr0-Eulerian submatrix.

Proof. Suppose that the theorem is false, and we have a matrix Uσ that contains a cr0-
Eulerian submatrix V σ. All entries of V σ are in {0,±1}, so in each row the count of 1s
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must equal the count of −1s. Therefore, each row of V σ has an even number of non-zero
entries.

Since Uσ was constructed by multiplying columns of U by ±1, the original U can
be found by performing the same multiplications on Uσ, and U contains a submatrix V
corresponding to V σ.

The sum of each column of V σ is 0. Multiplying any particular column of V σ by ±1
does not change this, so each column of V sums to 0.

Each row of V σ contains an even number of non-zero entries, so each row of V contains
an even number of non-zero entries. The count of 1s and the count of −1s in any row of
UM must be either both even, or both odd. Therefore the sum of the entries of each row
of V must be a multiple of 2.

The matrix U must therefore contain a non-zero submatrix V whose columns sum to
0 and whose rows sum to a multiple of 2. This submatrix is therefore c0-Eulerian, and
we have a contradiction.

4.4.4 Main theorem

We can now give a condition on a column partition lattice basis U ∈ {0,±1}r×(r−n) of a
unimodular configuration matrix that guarantees it will be a Markov basis.

Theorem 4.4.13. Let U be a column partition lattice basis for a unimodular configuration
matrix An×r, and let U contain no c0-Eulerian submatrix. Then U is a Markov basis.

Proof. By Corollary 4.3.2, we need only show that U connects the positive and negative
parts z− and z+ of each z in some known Markov basis for A. We choose GA, the Graver
basis of A. For a unimodular A, each z ∈ GA has all entries in {0,±1}.

Choose any z ∈ GA. Since U is a column partition lattice basis for kerZ(A) we can
write z as a combination of {0,±1} multiples of a subset of columns of U , or

z =
r−n∑
i=1

εiui,

where εi ∈ {0,±1} gives either the required multiplier.
We can construct a new matrix U ε by multiplying the ith column of U by the corre-

sponding sign εi and concatenating these columns. We exclude columns with a multiplier
of zero. If this matrix has k columns and uεi is the ith column of U ε, then we can write

z =
k∑
i=1

uεi

without requiring signs. The matrix U contains no c0-Eulerian submatrix, so by Theo-
rem 4.4.12, U ε contains no cr0-Eulerian submatrix. By Theorem 4.4.11, we can reorder
the columns of U ε such that no −1 precedes a 1 in any row.
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This ordering of the columns of U ε gives the order in which the moves in U should
be applied to get from z− to z+ without leaving the fibre. After each step we are at an
integer point, and using this ordering of the columns means that in every co-ordinate, any
moves that decrease the entry come after the moves that increase the entry. If after some
step we are at position x̂, then the ith entry of x̂ is an integer greater than or equal to
min(z−i , z

+
i ) ≥ 0. We can do this for any z ∈ GA, a known Markov basis, and therefore U

is also Markov basis.

The idea extends naturally to column partition lattice bases U ∈ {0,±1}n×r of non-
unimodular matrices, using Corollary 4.3.3.

Theorem 4.4.14. Let U ∈ {0,±1}r×r−n be a column partition lattice basis for a config-
uration matrix An×r, and let U contain no c0-Eulerian submatrix. Then U is a Markov
basis.

Proof. By Corollary 4.3.3, we need only show that U connects the positive and negative
parts z− and z+ of each z ∈ kerZ(A).

Choose any such z. Since U is a lattice basis for kerZ(A) we can write

z =
r−n∑
i=1

εiaiui,

where εi ∈ {±1} gives the sign and a ∈ Zr−n+ gives the number of copies of ui required.
We can construct a new matrix U ε by multiplying the ith column of U by the corre-

sponding sign εi. Then we can write

z =
r−n∑
i=1

aiu
ε
i

without a sign. From Theorem 4.4.12, this matrix U ε contains no cr0-Eulerian submatrix.
By Theorem 4.4.11, we can reorder the columns of U ε such that no −1 precedes a 1 in
any row.

This ordering of the columns of U ε gives the order in which the moves in U should
be applied to get from z− to z+ without leaving the fibre: after each step we are at
an integer point, and the ordering of the columns means that in every co-ordinate, any
moves that decrease the entry come after the moves that increase the entry. If after some
step we are at position x̂, then the ith entry of x̂ is an integer greater than or equal to
min(z−i , z

+
i ) ≥ 0. We can do this for any z ∈ kerZ(A), therefore U is a Markov basis.

4.4.5 Ideal membership

The Fundamental Theorem of Markov Bases (Theorem 2.4.5) says that a set B connects
two points a,b ∈ Fy if and only if

T a − Tb ∈ IB,
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where IB is the ideal generated by the monomial difference representations of the elements
of B.

According to Theorem 4.4.14, if U is a column partition lattice basis containing only
{0,±1} entries, and it contains no c0-Eulerian submatrix, then U is a Markov basis. We
can use the property of ordering columns of c0-Eulerian matrices in Theorem 4.4.11 to
show that if a,b ∈ Fy, then T a− Tb ∈ IU when U has this property. By Corollary 4.3.3,
we need only show this when a and b have disjoint support, so we will write a = z− and
b = z+, and z ∈ kerZ(A).

Let z ∈ kerZ(A) be given, and write

z =
r−n∑
i=1

εiaiui.

We write U ε for the matrix made by concatenating the columns εiui such that ai 6= 0.
This matrix U ε contains ±1 multiples of columns of U , which is a matrix with no c0-
Eulerian submatrix. By Theorems 4.4.11 and 4.4.12, the columns of U ε can be reordered
so that the 1s precede the −1s in every row. Let V be the matrix containing the columns
of U ε in such an order.

We correspondingly reorder the elements of a so that

z =
r−n∑
i=1

aivi

= V a.

Using V as a set of moves means using a subset of the moves in U . We can now show
ideal membership using induction on the vector a. Let

IV = 〈T v+
i − T v−

i : i = 1, . . . , r − n〉

be the ideal generated by the monomial difference representations of the columns of V .
Then IV ⊆ IU . First the base case: suppose that a = ek, the vector with a 1 at the kth
co-ordinate and 0 elsewhere, so that z = V ek = vk. Then

z+ = v+
k and z− = v−k

and we can see that
T z+ − T z− = T v+

k − T v−
k ∈ IV .

Now the induction: suppose that for some z = V a with a ∈ Zr≥0 we know that

T z+ − T z− ∈ IV .

Consider x = V (a + ei) = z + vi for some i such that i ≥ j for all j ∈ supp(a).
This restriction on i together with the ordering of the columns of V means that V e1

cannot contain a positive value where V a contains a negative value, which is to say
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supp(v+
1 )∩ supp(z−) = ∅. If z contains a negative entry z(k), then at least one of u

(k)
j for

some j ≤ i must have been negative, and so u
(k)
i must not be positive.

We need to show that T x+ − T x− ∈ IV too. Given that x+ − vi = x− + z, we have

T x+ − T x−
= T x+ − T x+−vi + T x+−vi − T x−

= T x+ − T x+−vi + T x−+z − T x−

= T x+−v+
i +v+

i − T x+−v+
i +v−

i + T x−−z−+z+ − T x−−z−+z−

= T x+−v+
i (T v+

i − T v−
i ) + T x−−z−(T z+ − T z−)

which is in the ideal IV if x+ − v+
i and x− − z− are both non-negative.

Taking the positive part of x shows

x = z + vi

= z+ − z− + v+
i − v−i

x+ = (z+ − z− + v+
i − v−i )+.

The fact that z− has disjoint support with both positive components z+ and v+
i mean

that it contributes nothing to the positive part of the vector and can be ignored.

x+ = (z+ + v+
i − v−i )+.

The vector v+
i has disjoint support with v−i , so it can be taken outside the brackets.

x+ = v+
i + (z+ − v−i )+

x+ − v+
i = (z+ − v−i )+

≥ 0.

Similarly for the negative part of x,

x− = (z+ − z− + v+
i − v−i )−

= (z+ − z− − v−i )−

= z− + (z+ − v−i )−

x− − z− = (z+ − v−i )−

≥ 0,

and so both of these vectors are non-negative. Then

T x+ − T x− ∈ IV

which means that x+ and x− are connected by U by induction. This is true of all vectors
x+,x− with disjoint support such that Ax+ = Ax−, and so by Theorem 4.4.11, U is a
Markov basis.

We will demonstrate this with the three-link linear network.



122 CHAPTER 4. CONNECTIVITY

Example 4.4.15. Consider the three-link linear network, whose configuration matrix is
given by

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 ,
and a column partition lattice basis is given by

U =


1 0 0
1 −1 0
0 −1 −1
−1 0 −1

0 1 0
0 0 1

 .

This matrix contains no c0-Eulerian submatrix. The monomial difference representation
of U is

{t1t2 − t4, t5 − t2t3, t6 − t3t4}.

We choose arbitrary column multipliers εi so that ε =
[
−1 −1 1

]ᵀ
, and

U ε =


−1 0 0
−1 1 0

0 1 −1
1 0 −1
0 −1 0
0 0 1

 .

This matrix has a −1 preceeding a 1 in the second row, so we reorder these columns to
get

V =


0 −1 0
1 −1 0
1 0 −1
0 1 −1
−1 0 0

0 0 1

 ,

where the 1s preceed the −1s in every row. This matrix V defines the same set of moves
that U does.

We choose an arbitrary non-negative integer vector a =
[
2 3 0

]ᵀ
, which generates

the kernel element

z = V a

=
[
−3 −1 2 3 −2 0

]ᵀ
,

which has the monomial difference representation T z+ − T z− = t23t
3
4 − t31t2t25.
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For our induction, we need to choose a vector ei such that i ≥ j for all j ∈ supp(a):
both e2 and e3 meet this condition. We will assume that T z+ − T z+ ∈ IU and show that
both T (z+v2)+ − T (z+v2)− ∈ IU and T (z+v3)+ − T (z+v3)− ∈ IU . For e2, we have

T (z+v2)+ − T (z+v2)− = t23t
4
4 − t41t22t25

= t23t
4
4 − t1t2t23t34 + t1t2t

2
3t

3
4 − t41t22t25

= t23t
3
4(t4 − t1t2) + t1t2(t23t

3
4 − t31t2t25)

= t23t
3
4(T v+

2 − T v−
2 ) + t1t2(T z+ − T z−),

and so T (z+v2)+ − T (z+v2)− ∈ IU .
For e3,

T (z+v3)+ − T (z+v3)− = t33t
4
4 − t31t2t25t6

= t33t
4
4 − t23t34t6 + t23t

3
4t6 − t31t2t25t6

= t23t
3
4(t3t4 − t6) + t6(t23t

3
4 − t31t2t25)

= t23t
3
4(T v+

3 − T v−
3 ) + t6(T z+ − T z−),

and so T (z+v3)+ − T (z+v3)− ∈ IU too.

4.4.6 A geometric interpretation

Theorem 4.4.14 can also be as a generalisation of the idea presented in Section 4.2. In that
section, Theorem 4.2.1 stated that for a configuration matrix A and partition of columns
of A, if the entries of A−1

1 A2 are non-negative, then U is a Markov basis. One way to
understand this is to see that from any point in any associated fibre, it is always possible
to use U to move in any dimension through the projected space towards the origin.

One example of this is the three-link linear network.

Example 4.4.16. Consider the configuration matrix

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 ,
and the column partition lattice basis

U =


−1 0 −1
−1 −1 −1

0 −1 −1
1 0 0
0 1 0
0 0 1

 .

Then A−1
1 A2 is non-negative, and by Theorem 4.2.1 U is a Markov basis. The Z-polytope

for this system for y =
[
2 2 2

]ᵀ
is shown in Figure 4.10a. We can see that from any
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Figure 4.10: Three projected Z-polytopes for which the corresponding column partition
lattice basis is a Markov basis.

point in the Z-polytope, we can always use co-ordinate direction moves to move towards
the origin.

The same idea should work if the origin is not necessarily the privileged point, as
shown by the following example.

Example 4.4.17. In Figure 4.10b, we see a rotation of the Z-polytope from Exam-
ple 4.4.16. In this projection of a Z-polytope, from any point in this Z-polytope, we can
use co-ordinate direction steps to move towards the point at

[
2 0 0

]ᵀ
in the projected

space. The column partition lattice basis corresponding to this projection should also be
a Markov basis. This projected Z-polytope may potentially arise for the configuration
matrix

A =


1 1 0 0 0 1 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1

 ,
with the vector y =

[
2 2 2 2

]ᵀ
, when we choose the column partition lattice basis

U =



1 −1 −1
−1 0 0

0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1


.
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In both Examples 4.4.16 and 4.4.17, the order of the moves used did not matter.
However, the restrictions required on U matrices in order to be a Markov basis are weaker
if we allow projections of Z-polytopes where the order of the moves used to reach the
privileged point does matter.

Example 4.4.18. In Figure 4.10c, we see a projection of a Z-polytope where from any
point we can always move towards, for example, the origin of the projected space using
co-ordinate direction moves moves, provided they are ordered correctly. In this example,
choosing x7, then x6, then x5 directed moves will do. This Z-polytope may appear when
studying the configuration matrix

A =


1 1 1 0 0 0 1
0 1 1 0 0 1 0
0 0 1 0 1 0 0
0 0 0 1 0 0 1


and the vector y =

[
2 2 2 2

]ᵀ
, and choosing the column partition lattice basis

U =



0 1 −1
1 −1 0
−1 0 0

0 0 −1
1 0 0
0 1 0
0 0 1


.

We note that none of the U matrices in Examples 4.4.16, 4.4.17, or 4.4.18 contains a
c0-Eulerian submatrix.

4.4.7 Reverse implication

Theorem 4.4.13 says that if a column partition lattice basis for a unimodular configuration
matrix contains no c0-Eulerian submatrices, then it is a Markov basis. We conjecture that
the reverse implication is also true.

Conjecture 4.4.19. Let U be a column partition lattice basis for a unimodular configu-
ration matrix, and suppose U contains a c0-Eulerian submatrix. Then U is not a Markov
basis.

This clearly holds when the c0-Eulerian submatrix is maximal.

Example 4.4.20. Consider the configuration matrix

A =

1 0 1 1 0
1 1 0 0 0
0 0 1 0 1

 ,
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which has a column partition lattice basis

U =


−1 1

1 −1
0 −1
1 0
0 1

 .
Setting y =

[
1 0 1

]ᵀ
produces the fibre

Fy =




0
0
1
0
0

 ,


0
0
0
1
1


 .

These vectors are respectively the negative and positive parts of z = u1 + u2, so to walk
from z− to z+ using U , we require the moves u1 and u2. Neither of these moves can be
applied to z−, so U does not connect z− to z+ and is not a Markov basis.

It is not so clear that the presence of a c0-Eulerian submatrix precludes U from being
a Markov basis when the c0-Eulerian submatrix is not maximal. If some pair of points
in some Fy is not connected by U with a direct walk, it may still be possible to walk
between them by performing a detour into some part of Fy with more space to perform
the required moves. Suppose that in Example 4.4.20, the basis contains another move c
that had a 1 in the first entry. It may then be possible to conjugate the sequence of moves
(u1,u2) by c ∈ U in order to walk from z− to z+. Then y = Az− would not provide a
counterexample to U being a Markov basis.

In this section we will consider bases containing c0-Eulerian submatrices and attempt
to find a conjugating move or moves. We refer to these moves with the vector c, or
ci, to distinguish from the required moves ui, although all ci and ui are columns of U ,
and therefore elements of the column partition lattice basis under consideration. We will
assume:

1. U will define a potential column partition lattice basis for a unimodular configuration
matrix.

2. U will contain a 2× 2 cr0-Eulerian submatrix in u1 and u2.

3. The positive and negative parts of z = u1 + u2 will be connected by U .

These conditions imply that U will be totally unimodular; that z and each column of U
will each contain at least one 1 and one −1; and U and z will have all {0,±1} entries.

The matrix U defines a column partition lattice basis, so any conjugating move such
as c has a 1 in the A2 co-ordinates where every other move has a 0. This means that
the moves c and −c must be used in that order, in order to avoid visiting a point that
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is negative in that co-ordinate. When initially listing the permutation of the moves used,
the necessary moves ui are interchangeable and we will adopt the convention that the
lowest indexed move is used first. Each move ui could also in fact be −ui: we use ui by
convention. The same is true for conjugating moves ci.

We begin with a three column U matrix. The non-maximal c0-Eulerian submatrix
takes up exactly two columns, leaving only one column for conjugation.

Example 4.4.21. If U has three columns, the moves must be performed in the order
(c,u1,u2,−c); any other ordering requires that either u1 or u2 is applied to z− or z+,
which we have claimed is impossible.

We have begun to fill in the columns of U in Table 4.3. We have included −z, z−, and
−z+ in this table: this makes it easier to see when the walk is in danger of visiting a point
that is negative in some co-ordinate. The vector z is shown as its negation −z so that its
entries match z− and −z+. Then each row (excluding −z) must sum to zero, and since
z− provides the starting point for the walk, the partial sums of the columns (excluding
−z) must always be non-negative. Therefore each row must have a 1 as its first non-zero
entry, and a −1 as its last non-zero entry. We first place the cr0-Eulerian submatrix in

−z z− c u1 u2 −c −z+

0 0 1 −1 0
0 0 −1 1 0

−1 1

Table 4.3: An attempted detour using a three column U matrix.

rows 1 and 2 of columns u1 and u2. We have z = u1 + u2, so this forces the values of
z, z−, and −z+ in this co-ordinate. The vector c requires a −1, so we place this in row
three. It may be that this −1 appears in the same row as the cr0-Eulerian submatrix: in
this case, row three will end up being identical to row one or row two.

−z z− c u1 u2 −c −z+

0 0 1 −1 0
0 0 1 −1 1 −1 0
1 1 −1 1 0

Table 4.4: An attempted detour using a three column U matrix.

Table 4.4 shows a more complete U . The second entry of c must be 1 to avoid a
negative partial sum in this co-ordinate, and we can also add a corresponding −1 to −c.
The third entry of z− be 1 must too, which forces −z+ to be zero. This means the third
row ends with a 1, and as the row sums to zero this means the penultimate partial sum
must be −1 in this co-ordinate. The sequence of moves c,u1,u2,−c does not connect the
points z− to z+ for z = u1 + u2, and this was the only sequence of moves that potentially
might connect them. Therefore U is not a Markov basis.
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Furthermore, the cr0-Eulerian submatrix in U is the only non-maximal cr0-Eulerian
submatrix of a three column matrix, and so Conjecture 4.4.19 holds for three column U
matrices.

We will attempt to fill in four column U matrices that contain 2 × 2 cr0-Eulerian
submatrices. With four columns, there are more possibilities for ordering the moves.
There are 720 permutations for the moves {c1, c2,u1,u2,−c1,−c2}. Many of these violate
our convention that u1 precedes u2. Many are impossible, for example those that use u1

as the first move or use −c1 before c1. Removing all these leaves five permutations:

P1 = (c1, c2,u1,u2,−c2,−c1),

P2 = (c1, c2,u1,−c2,u2,−c1),

P3 = (c1, c2,u1,−c1,u2,−c2),

P4 = (c1, c2,u1,u2,−c1,−c2),

P5 = (c1,u1, c2,−c1,u2,−c2).

Example 4.4.22. Consider the sequence of moves P1 = (c1, c2,u1,u2,−c2,−c1). In
Table 4.5 we have begun to fill in some of the rows that may be necessary in any U
matrix for this ordering of the moves. We have filled in the cr0-Eulerian submatrix and

−z z− c1 c2 u1 u2 −c2 −c1 −z+

0 0 1 −1 0
0 0 −1 1 0

−1 1
1 1 −1 1 0

Table 4.5: An attempted detour P1 using a four column U matrix.

the required −1s in c1 and c2. The −1 in c1 forces a 1 in z−, which must have come from
a −1 in u1 or u2.

This is sufficient to show that this ordering of moves cannot connect z− and z+. In
row four, the 1 in −c1 means that before taking this step, the partial sum must have been
−1 in this co-ordinate. This sequence of moves cannot connect z+ and z−.

Example 4.4.23. Consider the sequence of moves P2 = (c1, c2,u1,−c2,u2,−c1). Ta-
ble 4.6 shows that this ordering of moves suffers from the same problem as P1. We have

−z z− c1 c2 u1 −c2 u2 −c1 −z+

0 0 1 −1 0
0 0 −1 1 0
1 1 −1 1 0

Table 4.6: An attempted detour P2 using a four column U matrix.

filled in the cr0-Eulerian submatrix and the required −1s in c1. Again, this is sufficient
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to show that this ordering of moves cannot connect z− and z+. In row three, the 1 in −c1

means that before taking this step, the partial sum must have been −1 in this co-ordinate.
This sequence of moves cannot connect z+ and z−.

Example 4.4.24. Consider the sequence of moves P3 = (c1, c2,u1,−c1,u2,−c2). In
Table 4.7 we have begun to fill in the potential entries of U .

−z z− c1 c2 u1 −c1 u2 −c2 −z+

0 0 1 −1 0
0 0 −1 1 0

−1 1
−1 1

Table 4.7: Two potential detours P3 using a four column U matrix.

The −1 in c1 and the 1 in −c2 force a 1 in z− and a −1 in −z+ respectively. These
entries force the remaining entries of z− and z+. Similarly, the third entry of c1 must be
1 and the second entry of −c2 must be −1, and the respective entries in −c1 and c2 can
be filled as well. The potential U matrix as it now stands is shown in Table 4.8.

−z z− c1 c2 u1 −c1 u2 −c2 −z+

0 0 1 −1 0
0 0 1 −1 1 −1 0
−1 0 1 −1 −1 1 −1

1 1 −1 1 0

Table 4.8: Two potential detours P3 using a four column U matrix.

The second entry of c1 must be 0: the row cannot start with a −1, and setting this
entry to 1 would mean a non-unimodular submatrix. The first entry of −c2 cannot be ±1
for similar reasons. The third entry of u1 must be 1 to avoid a negative entry in the partial
sum. The third entry of u2 must therefore be 0, maintaining the value of z = u1 + u2.
All forced entries are now shown: the current state of U is shown in Table 4.9.

−z z− c1 c2 u1 −c1 u2 −c2 −z+

0 0 0 1 −1 0 0
0 0 0 1 −1 0 1 −1 0
−1 0 1 −1 1 −1 0 1 −1

1 1 −1 1 0

Table 4.9: Two potential detours P3 using a four column U matrix.

We now branch on which of u1 and u2 are −1 and 0 in the fourth co-ordinate. The
two cases are shown in Table 4.10. In each case, the remaining entries are forced by the
need to avoid negative partial sums and non-unimodular matrices. This produces the
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−z z− c1 c2 u1 −c1 u2 −c2 −z+

0 0 0 0 1 0 −1 0 0
0 0 0 1 −1 0 1 −1 0
−1 0 1 −1 1 −1 0 1 −1

1 1 −1 0 0 1 −1 0 0
0 0 0 0 1 0 −1 0 0
0 0 0 1 −1 0 1 −1 0
−1 0 1 −1 1 −1 0 1 −1

1 1 −1 1 −1 1 0 −1 0

Table 4.10: Two potential detours P3 using a four column U matrix.

following two matrices, which may be submatrices of a column partition lattice basis:

U1 =


0 0 1 −1
0 1 −1 1
1 −1 1 0
−1 0 0 −1

 and U2 =


0 0 1 −1
0 1 −1 1
1 −1 1 0
−1 1 −1 0

 .
For each of these bases, the points z− and z+ are connected via an indirect path. However,
in each case the conditions force the creation of more c0-Eulerian submatrices. Setting
z2 = c1 + c2 + u1 + u2 produces a z−2 with 0 in each of these four entries. Then z+

2 is
another point in the same fibre, and U cannot connect this new pair of points without
conjugating by some other moves. If the four columns shown are the only columns in U ,
then U is not a Markov basis, although z = u1 +u2 does not provide the counterexample.

Example 4.4.25. Consider the sequence of moves P4 = (c1, c2,u1,u2,−c1,−c2). In
Table 4.11 we have begun to fill in the potential entries of U . In the third row we must

−z z− c1 c2 u1 u2 −c1 −c2 −z+

0 0 1 −1 0
0 0 −1 1 0
−1 0 1 −1 1 1 −1

1 1 −1 1 1 −1 0

Table 4.11: Two potential detours P4 using a four column U matrix.

choose which of u1 and u2 contains a 0 and which contains a 1. This choice forces the rest
of the entries, as shown in Table 4.12. This produces the following two matrices, which
may be submatrices of a column partition lattice basis:

U1 =


0 0 1 −1
1 0 −1 1
1 −1 0 1
−1 1 0 −1

 and U2 =


0 0 1 −1
0 1 −1 1
1 −1 1 0
−1 1 −1 0

 .
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−z z− c1 c2 u1 u2 −c1 −c2 −z+

0 0 0 0 1 −1 0 0 0
0 0 1 0 −1 1 −1 0 0
−1 0 1 −1 0 1 1 1 −1

1 1 −1 1 0 −1 1 −1 0
0 0 0 0 1 −1 0 0 0
0 0 0 1 −1 1 0 −1 0
−1 0 1 −1 1 0 1 1 −1

1 1 −1 1 −1 0 1 −1 0

Table 4.12: Two potential detours P4 using a four column U matrix.

For each of these bases, the points z− and z+ are connected via an indirect path. As in
Example 4.4.24, the conditions force the creation of more c0-Eulerian submatrices.

For U1, we set z1 = c2 +u1 +u2. This produces z−1 with 0 in each of these four entries.
Neither a direct path, nor an indirect path conjugating by c1 can connect z−1 and z+

1 . The
same is true for U2 and z2 = −c1 +u1 +u2. Again, if the four columns shown are the only
columns in U , then U can not be Markov basis, although z = u1 + u2 does not directly
provide the counterexample.

Example 4.4.26. Consider the sequence of moves P5 = (c1,u1, c2,−c1,u2,−c2). All
entries of these moves are forced. These are shown in Table 4.13. This means we are

−z z− c1 u1 c2 −c1 u2 −c2 −z+

0 0 0 1 0 0 −1 0 0
0 0 1 −1 1 −1 1 −1 0
−1 0 0 1 −1 0 0 1 −1

1 1 −1 0 0 1 −1 0 0

Table 4.13: A potential detour P5 using a four column U matrix.

dealing with a column partition lattice basis containing the submatrix

U =


0 1 0 −1
1 −1 1 1
0 1 −1 0
−1 0 0 −1

 .
Setting z = −c1 +c2 +u1 +u2 provides us with points z− and z+ that U does not connect:
z− has zeroes in each of the four indices shown, and so none of the moves shown in U can
be applied to z−. If there are only four moves in the basis, then it is not a Markov basis.

We have shown that if a c0-Eulerian submatrix spans two columns of a four column
basis U , then U cannot be a Markov basis. If U contains a maximal c0-Eulerian submatrix
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then it cannot be a Markov basis. In order to prove Conjecture 4.4.19 for four column U
matrices, we need to show that it holds for three column c0-Eulerian submatrices.

If a c0-Eulerian submatrix spans three of the four columns in a column partition
lattice basis, then there is only one column left to conjugate by. This suffers from the
same problem as P1 and P2 in Examples 4.4.22 and 4.4.23 above. There is only one
permutation of moves to consider: (c,u1,u2,u3,−c). There are different permutations of
columns of the cr0-Eulerian submatrix involved, but we can skip these as only the −1 in
c requirement is necessary to show that in this case, U does not connect z− and z+.

Example 4.4.27. Consider the sequence of moves P = (c,u1,u2,u3,−c). Table 4.14
shows that under P , U does not connect z− and z+ for z = u1 + u2 + u3. The 1 in −c

−z z− c u1 u2 u3 −c −z+

1 1 −1 1

Table 4.14: An attempted detour P using a five column U matrix.

means −z+ must be −1 in this co-ordinate. However the −1 in c means we have already
assigned a non-zero value to z−, and the parts of z must have disjoint support. This
sequence of moves cannot connect z+ and z−.

With these examples we have proved Conjecture 4.4.19 for column partition lattice
bases with up to four elements.

4.4.8 Extension to Z
The idea of ordering columns so that the positive entries precede the negative entries in
every row generalises to U matrices in Zr×(r−n) too. The requirement that U have integer
entries is to avoid the problem of parity errors described in Section 2.5.1.

Remark 4.4.28. Let U ∈ Zr×(r−n) be column partition lattice basis. Let Uσ ∈ {0,±1}n×r
be the matrix of signs of U , so that

uσi,j =


ui,j = 0 0,

ui,j < 0 −1,

ui,j > 0 1.

If Uσ contains no c0-Eulerian submatrix, then U is a Markov basis.

The matrix U gives a lattice basis, given y ∈ Zn≥0, the difference between any pair of
points a,b ∈ Fy can be written in the form

b− a =
r−n∑
i=1

aiεiui.

A collection of U moves required to walk from a to b are given by this sum: each move
ui must be used in the εi orientation ai times. This collection of moves can be ordered so
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that in each row, the positive entries precede the negative entries exactly if ±1 multiples
of the moves in Uσ can: that is, if Uσ contains c0-Eulerian submatrix. If this condition
holds, then U is a Markov basis.

We give an example, but provide no configuration matrix.

Example 4.4.29. Consider the column partition basis U and the matrix Uσ, given by

U =



−2 −4 0 −1
1 0 0 −3
0 −5 −3 0
−1 0 2 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and Uσ =



−1 −1 0 −1
1 0 0 −1
0 −1 −1 0
−1 0 1 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


.

The matrix Uσ contains no c0-Eulerian submatrix so by Remark 4.4.28, U is a Markov
basis.

Suppose that for some y ∈ Zn≥0, the pair of points a,b ∈ Fy has the difference

b− a = −2u1 + u2 − u3.

The collection of moves required to walk from a to b is given by



2
−1

0
1
−1

0
0
0


,



2
−1

0
1
−1

0
0
0


,



−4
0
−5

0
0
1
0
0


,



0
0
3
−2

0
0
−1

0




.

Writing z = −2u1 + u2 − u3, we have a ≥ z− and b ≥ z+. We can order the moves as in
Table 4.15 to get a walk from z− to z+ that visits only points with non-negative integer
co-ordinates. Since a ≥ z− and b ≥ z+, the walk from a to b that uses this ordering of
moves stays within Fy.

If U ∈ Zr×(r−n) contains a c0-Eulerian submatrix, then there exists a pair of points in
some fibre between which a direct walk is not possible.

Example 4.4.30. Consider the potential column partition lattice basis

U =


2 3
−3 −1
−1 0

0 −1
1 0
0 1

 .
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−z z− −u1 −u1 u3 −u2 −z+

0 0 2 2 0 −4 0
2 2 −1 −1 0 0 0
2 2 0 0 3 −5 0
0 0 1 1 −2 0 0
2 2 −1 −1 0 0 0
−1 0 0 0 0 1 −1

1 1 0 0 −1 0 0
0 0 0 0 0 0 0

Table 4.15: A walk from a to b using an integral U as a Markov basis.

Then

Uσ =


1 1
−1 −1
−1 0

0 −1
1 0
0 1

 .
This matrix has a c0-Eulerian submatrix in the first two rows. We can combine the
two columns such that there is cancellation in both rows: z = u1 − u2. Then z =[
−1 −2 −1 1 1 −1

]ᵀ
can be split into

z− =


1
2
1
0
0
1

 and z+ =


0
0
0
1
1
0

 .

Neither u1 nor −u2 can be applied to z− without ending at a point with a negative
co-ordinate, and so a direct walk from z− to z+ that stays within the fibre is impossible.

4.5 Collections of lattice bases

We have seen in Section 3.4.3 that the union of the integer valued column partition lattice
bases of some configuration matrix A is the set of circuits CA, and in Section 3.5.2 that if
A is unimodular then CA is equal to the Graver basis GA. This implies that the union of
the lattice bases is a Markov basis.

Section 4.2 showed that there exist lattice bases that are Markov bases. An interesting
question is given a configuration matrix, how many and which lattice bases do we need
to combine to get a Markov basis, or the Graver basis?

We will first consider an example.
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Example 4.5.1. Let A be the link-path incidence matrix of the three-link linear network,
so

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .
There are

(
6
3

)
= 20 possible partition choices of which 16 lead to invertible A1 parts, and

therefore 16 distinct column partition lattice bases. Each one contains three elements.
There are seven distinct Graver basis elements:

GA =




1
0
0
0
1
−1

 ,


0
1
0
−1
−1

1

 ,


0
0
1
1
0
−1

 ,

−1
−1

0
1
0
0

 ,


0
−1
−1

0
1
0

 ,

−1
−1
−1

0
0
1

 ,

−1

0
1
1
−1

0




.

Corollary 3.5.16 gives an upper limit on the size of the GA,

|GA| ≤
m∑
i=1

(
r − n
i

)
where m = min (r − n, n+ 1). Here, m = min (3, 4) = 3, so

|GA| ≤
m∑
i=1

(
r − n
i

)

≤
3∑
i=1

(
3

i

)
≤ 3 + 3 + 1

≤ 7

and the size of GA is exactly this upper bound.
Each lattice basis has three elements, so to get the entire Graver basis we need to

combine at least three lattice bases. It turns out that three lattice bases are sufficient.
The two column partitions formed by taking the last three columns of A, and then the
first three columns of A, as the A1 part respectively produce

1 0 0
0 1 0
0 0 1
0 −1 1
1 −1 0
−1 1 −1

 and


−1 0 −1
−1 −1 −1

0 −1 −1
1 0 0
0 1 0
0 0 1

 ,
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which together give us the first six elements of GA as listed above. The last element can
be had by choosing any column partition lattice basis that contains it.

For this configuration matrix, only one lattice basis is required to get a Markov basis:
Section 4.2 shows that the second of the above matrices is a Markov basis.

Suppose that for some reason we had access to the first of these two lattice bases but
not to the second. We want an upper bound on the number of other lattice bases we
need to combine with this basis get a Markov basis. Call this lattice basis B. We know
from Section 4.3 that some elements of GA that are not in B may not be necessary for a
Markov basis because we can simulate them with elements of B. From Theorem 4.4.14
any element of GA that cannot be simulated by B is a sum of columns of U that contain
an Eulerian submatrix whose columns sum to zero. Therefore to get a Markov basis, we
need only to combine these Graver basis elements with B, and not necessarily the full
Graver basis.



Chapter 5

Network tomography

5.1 Introduction

One application for our sampling methods is volume network tomography [25, 26, 45].
Volume network tomography is the art of estimating traffic flow volume on various po-
tential journeys on a traffic network, given observed traffic volume at different locations
on the network. In this chapter we will look at what properties the kinds of configura-
tion matrices that arise in network tomography might have, particularly those that might
affect column partition lattice bases.

We represent a real world network with a digraph, or directed graph, and a collection
of paths on the graph.

Definition 5.1.1 (Digraph [31]). A digraph D consists of a non-empty finite set V to-
gether with a set E of ordered pairs of distinct elements of V .

The set V is the set of vertices, or nodes, of the digraph, and E is the set of directed
edges, or links. This definition implies that a digraph has no loops (self-connected ver-
tices), and that there is at most one directed link from any node to any other node. How
the vertices and links of a digraph correspond to elements of the transport network being
modelled varies, but generally the vertices represent cities, intersections, or stations; while
the links represent the roads or rails connecting them.

Particular journeys in a network are represented by a kind of walk in the digraph
called a path.

Definition 5.1.2 (Walk [31]). A walk in a digraph is a finite sequence of vertices v0, v1, . . . , vk,
where for each i = 0, 1, . . . , k − 1, the pair (vi, vi+1) is a link.

Definition 5.1.3 (Path [31]). A path is a walk in which all the visited vertices are distinct.

This is often referred to as an acyclic path in the transport literature. We will in
general be considering only networks on connected graphs.

The configuration matrices of interest here are the link-path incidence matrices.

137
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1 2 3 4
1 2 3

1 2 3

4 5

6

Figure 5.1: A representation of the three-link linear network, a traffic network with four
nodes connected linearly by three links. The underbraces show the six allowed paths.

Definition 5.1.4 (Link-path incidence matrix). The link-path incidence matrix of a traffic
network with n links and r paths is a matrix A ∈ {0, 1}n×r such that aij = 1 if the ith
link is in the jth path, and aij = 0 otherwise.

Different labellings of the network’s links and paths correspond to reorderings of the
configuration matrix’s rows and columns. The structure of a link-path incidence matrix
is partly dependent on the routing policy of the network, which is to say the choice of
routes (or set of allowed paths). This is essentially arbitrary. This is unlike other matrices
derived from graphs, such as vertex-edge incidence matrices, which is uniquely determined
by the network topology. As the chapter progresses, we will at times look at link-path
incidence matrices that arise given certain assumptions on the choice of routes. Such a
set of assumptions will be termed a routing policy.

Example 5.1.5. Consider the three-link linear network, shown in Figure 5.1. This net-
work previously appeared in Examples 2.4.6 and 3.2.1. Traffic on the network must follow
the orientations of the links, so only eastward travel is possible.

This network could use nodes to represent cities and links to represent the highways
connecting them. Suppose that one car is observed on each link in the network. We
represent this with the vector y =

[
1 1 1

]ᵀ
, where there are yi cars observed on the ith

link. There are multiple possible combinations of path car counts that could cause this.
For example, there could be one car that drives the entire length of the network, or there
could be three cars that drive a path consisting of only one link.

For each combination, we collect the number of cars driving each link into the vectors
x, where xi records how many cars drive the ith path. The set Fy gives the possible
path traffic count vectors x that could result in the link traffic count vector y. For
y =

[
1 1 1

]ᵀ
, we have

Fy =




0
0
0
0
0
1

 ,


0
0
1
1
0
0

 ,


1
0
0
0
1
0

 ,


1
1
1
0
0
0




.
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Then each x ∈ Fy is related to y by the equation Ax = y, where

A =

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1


is the link-path incidence matrix for the network.

We are interested in sampling from this set Fy of path traffic counts given y, the link
traffic counts. This is a critical step in performing Bayesian network tomography — see
for example Tebaldi and West [45] and Hazelton [25].

In Section 5.2 we consider what properties link-path incidence matrices might have
in relation to unimodularity. We show using examples that they may or may not be
unimodular or totally unimodular, and may or may not have unimodular partitions.

In Section 5.3 we look at traffic networks on a particular type of graph called a poly-
tree. Polytrees include many important types of graph including linear networks and star
networks. We find that all link-path incidence matrices of polytrees are network matrices,
which are known to be totally unimodular. We give two new proofs that link-path inci-
dence matrices of polytrees are totally unimodular. We also provide some observations
concerning paths and circuits on polytrees that are of use in Chapter 6.

In Section 5.4 we consider a type of traffic network we call symmetric directed network.
We begin with a type of symmetric directed network we call a peripheral bidirectional
tree network, which can be thought of as a star network with some interior structure.
Symmetric directed tree networks include the Monroe network [45], shown in Figure 5.15.
We show how symmetric directed trees may be combined to form symmetric digraphs.
We prove that the link-path incidence matrices of symmetric directed networks contain
unimodular maximal submatrices.

5.2 Unimodularity

In Section 2.5.1 we discussed a type of problem for connectivity of fibres under column
partition lattice bases that we called parity errors. We found that parity errors can be
avoided if the determinant of the A1 matrix divides the determinant of the other maximal
submatrices; this is guaranteed if A1 is unimodular. Moreover, no column partition lattice
basis can suffer from parity errors if A as a whole is unimodular, meaning that every
maximal invertible submatrix is unimodular. We are therefore interested in which traffic
networks are unimodular, or have unimodular maximal submatrices.

Unimodularity and even total unimodularity seem to be common properties of link-
path incidence matrices. Airoldi and Haas [2] conjectured that most reasonable link-path
incidence matrices encountered in practice would be totally unimodular, and noted that
they had not found a counterexample. Airoldi and Blocker [1] noted that all the link-path
incidence matrices they encountered in the literature were unimodular.
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Figure 5.2: The graph of the network in Example 5.2.1.

Hazelton and Bilton [26] considered several networks that do not have unimodular
link-path incidence matrices. Of those they looked at, the highest percentage of non-
unimodular invertible maximal submatrices of any network was 3.7%. However, they
were able to construct a network with a link-path matrix with no unimodular invertible
maximal submatrices.

Example 5.2.1. Consider a traffic network on the graph shown in Figure 5.2. The
link-path incidence matrix is given by

A =


1 1 0 1 1 0 0
1 1 0 0 1 1 0
0 0 1 1 0 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1
1 0 1 0 0 0 0

 .

This matrix has seven maximal submatrices of which three are invertible: all three have
determinant −2. This matrix has no unimodular partitions. Although A is not unimod-
ular, its maximal invertible submatrices do have determinants that are equal in absolute
value. This is, for the purposes of constructing a column partition lattice basis, as good
as unimodularity. By Theorem 3.5.5, any column partition lattice basis will not only be
integral but the U matrix that defines it will be totally unimodular. The kernel of A is
one dimensional, so A has one circuit that comprises every column partition lattice basis
for A. This is c =

[
0 1 0 0 −1 0 −1

]ᵀ
.

Hazelton and Bilton note that the routing scheme in the network in Example 5.2.1 is
quite perverse. For example, travel is permitted from node 1 to node 4 via node 2, and
from node 2 to node 5 via node 4; so clearly node 2 may function as an origin for traffic
that uses link 3, and node 4 may function as a destination for traffic that arrives via link
3. But traffic is not permitted to travel from node 2 to node 4 along link 3. Here is
an example of a network with a more sensible routing scheme whose link-path incidence
matrix has no unimodular maximal submatrices.

Example 5.2.2. Consider a traffic network on the digraph in Figure 5.3. The routing
policy is as follows: the nodes marked with A, B, and C may function as both an origin
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Figure 5.3: A triangular network whose configuration matrix contains no unimodular
maximal submatrices.

or a destination for traffic. Any path from an origin to a destination that follows the
directions on the links is permitted.

For traffic starting at node A, there are three possible paths: one path to each of nodes
B and C that involve clockwise travel around the perimeter of the network, and one that
zigzags through the centre of the network to node B. These three paths make up the first
three columns of the configuration matrix. By symmetry, there are nine paths in the full
network and the full configuration matrix is

1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1 1
0 1 0 1 1 1 0 0 0
0 1 1 1 1 0 0 0 0
0 0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1 0
0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1


.

This matrix has rank six, and so a maximal square submatrix after deleting dependent
rows is 6 × 6. Checking the determinants of the invertible 6 × 6 submatrices with a
computer shows that 800 have determinant ±2 and 50 have determinant ±4. There is no
maximal unimodular submatrix.

There is no upper limit on the absolute value of the determinant of a maximal invertible
submatrix of link-path incidence matrices.

Observation 5.2.3. The determinants of maximal submatrices of link-path incidence ma-
trices may be arbitrarily large in absolute value.

Consider a traffic network on the directed cycle graph with n links Cn, where all paths
of length n−1 are permitted routes. A maximal submatrix of a link-path incidence matrix
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Figure 5.4: The cyclic graph C5.

for a network on this graph is given by the n× n matrix

M =



0 1 1 . . . 1 1
1 0 1 . . . 1 1
1 1 0 . . . 1 1
...

...
...

. . .
...

...
1 1 1 . . . 0 1
1 1 1 . . . 1 0


.

Matrices of this type have determinant det (M) = (−1)(n−1)(n − 1). For example, the
cycle graph C5 is shown in Figure 5.4. There are five paths of length four, one originating
at each node. The part of the link-path incidence matrix corresponding to these paths is
given by

A =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 .
This matrix has det (A) = 4.

Hazelton and Bilton [26] did find two types of traffic network for which the link-path
incidence matrices are guaranteed to be totally unimodular.

Proposition 5.2.4 (Hazelton and Bilton’s Proposition 1). The link-path incidence matrix
A is totally unimodular in the following cases:

1. The network is a linear highway in which we observe traffic counts on a sequence of
unidirectional links connected in series.

2. The network has star topology, with routes connecting every pair of peripheral nodes
via the central node.

Some example linear and star networks are shown in Figure 5.5.
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(b) A star network.

Figure 5.5: Some examples of polytrees.

5.3 Polytrees

One type of graph we will consider is called a polytree. A polytree is a tree whose links
are directed; it differs from a directed tree in that all of the links in a directed tree must
be directed either towards or away from a particular vertex, called the root. Any directed
tree is also a polytree. The graph in Figure 5.5b is a polytree but is not a directed tree.

Definition 5.3.1 (Polytree [14]). A polytree is a directed acyclic graph with the property
that ignoring the directions on links yields a graph with no undirected cycles.

Polytrees therefore include linear networks and star networks, shown in Figure 5.5.
Link-path incidence matrices for polytrees are examples of network matrices.

Definition 5.3.2 (Network matrix [40]). Let V be a collection of vertices, and let E and
P be collections of directed links on V such that T = (V,E) is a polytree and D = (V, P )
is a digraph. Digraph D is not necessarily connected. Let A be the matrix defined by, for
p = (u, v) ∈ P and e ∈ E:

Ae,p = 1 if the unique u—v path in T passes through e in the direction of its
orientation;

Ae,p = −1 if the unique u—v path in T passes through e in the opposite direction
to its orientation;

Ae,p = 0 if the unique u—v path in T does not pass through e.

Matrices arising in this way are called network matrices.

A network matrix is a variation of a link-path matrix for a polytree where we allow
paths to traverse edges in the opposite direction to their orientation, and we denote this
with a −1 entry in the matrix. This implies the following fact.
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(b) The graph D.

Figure 5.6: The graphs from Example 5.3.4.

Observation 5.3.3. A link-path incidence matrix for a polytree corresponds to a network
matrix where every link in D has a corresponding path in P whose direction matches the
orientation of every link.

Example 5.3.4. Consider the network shown in Figure 5.6. The network matrix for P
and D is given by

A =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0
0 1 0 1 0 1

 .
The paths in P corresponding to the links in D follow the orientations of the links in
P , so A is non-negative. Therefore A is also the link-path incidence of a traffic network
on T where nodes A, B and C function as origins for traffic, and E and F function as
destinations.

Tutte [46] has shown that network matrices are totally unimodular, so link-path in-
cidence matrices of polytrees are too. We give two independently found proofs that the
link-path incidence matrices of polytrees are totally unimodular.

Theorem 5.3.5. Any link-path incidence matrix for a polytree is totally unimodular.

The first proof uses the following property of totally unimodular matrices, given in
Section 3.5.1:

Theorem 5.3.6. A matrix A ∈ {0,±1}n×r is totally unimodular if and only if every
square Eulerian submatrix is singular.

Proof of Theorem 5.3.5 using Theorem 5.3.6. Let A be a link-path incidence matrix for
a polytree P . If we delete a column from A, the resulting matrix is a valid link-path
incidence matrix for P . If we delete a row from A, the resulting matrix is a valid link-
path incidence matrix for the minor of P found by contracting the corresponding link of
P . Any minor of P constructed in this way must also be a polytree.
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If A has no Eulerian submatrices, then we are done. If not, take any Eulerian subma-
trix of A and call it M , and let PM be the minor of P constructed by contracting the links
in M corresponding to rows of A not included in M . We label some link L of PM with a
1. Then at the two vertices adjoining L, we label any other adjoining links with a 1 if the
link has the same orientation as L relative to their shared vertex (either towards, or away
from), or with a −1 if it has the opposite orientation. We propagate this labelling system
through PM — this is always possible because PM is a tree, and so no contradiction in
how to label any link can occur. Then each path through PM passes through a series of
links whose labels alternate between 1 and −1.

Construct the row vector z where zi takes the value of the label of the link correspond-
ing to row i of M . Because M is Eulerian, every path contains an even number of links.
The sum of the labels of any path is therefore 0.

The vector z 6= 0 is therefore in the left nullspace of M , and so det (M) = 0. Because
we can follow this procedure with any square Eulerian submatrix of A, every square
Eulerian submatrix of A is singular, and so by Theorem 5.3.6 A is totally unimodular.

Our second proof of Theorem 5.3.5 uses a different property of totally unimodular
matrices due to Ghouila-Houri [23]:

Theorem 5.3.7. A matrix A with n rows (columns) is totally unimodular if and only if
for every subset A of the columns (rows) of A, each column (row) a ∈ A can be assigned
a multiplier εa ∈ {±1} such that ∑

a∈A

εaa ∈ {0,±1}n.

The proof of Theorem 5.3.5 using Theorem 5.3.7 is as follows:

Alternative proof of Theorem 5.3.5 using Theorem 5.3.7. Let A be a link-path incidence
matrix for a polytree P . If we delete a row from A, the resulting matrix is a valid link-
path incidence matrix for the minor of P found by contracting the corresponding link of
P . Any minor of P constructed in this way must also be a polytree.

Take any submatrix of A formed by choosing a subset of the rows, and call it M .
Let PM be the minor of P constructed by contracting the links in P corresponding to
rows of A not included in M . We label some link L of PM with a 1. Then at the two
vertices adjoining L, we label any other adjoining links with a 1 if the link has the same
orientation as L relative to their shared vertex (either towards, or away from), or with a
−1 if it has the opposite orientation, and we propagate this labelling system through PM
— this is always possible because PM is a tree, and so no contradiction in how to label
any link can occur.

Each path passes through a series of links such that the labels alternate between 1
and −1. The sum of the labels is 0 if the path contains an even number of links, or ±1
otherwise.
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Figure 5.7: The polytree P from Example 5.3.8.

These labels therefore assign a multiplier to each row of M such that∑
m∈M

εmm ∈ {0,±1}r.

We can follow this procedure with any subset of the rows A, so A is totally unimodular.

We illustrate both proofs of Theorem 5.3.5 with the following example.

Example 5.3.8. Consider the polytree network P shown in Figure 5.7. The link-path
incidence matrix is given by

A =


1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1

 .

First proof: Consider the highlighted Eulerian submatrix,

M =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 .
We construct the polytree PM which has link-path incidence matrix M by contract-
ing links 3 and 6. This has the effect of merging nodes C and D, and nodes F
and G. Link 1 is labelled with a 1, and the other links are labelled as prescribed
in the proof. The result is shown in Figure 5.8. We collect these labels into the
vector z =

[
1 1 −1 −1

]ᵀ
. Each column of M refers to a path in PM , and sums

an alternating sequence of ±1s. Because M is Eulerian, each sequence has an even
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(b) The polytree PM with its links labelled.

Figure 5.8: The polytree PM from Example 5.3.8.

number of elements and so it sums to 0, and we have

zᵀM =
[
1 1 −1 −1

] 
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


=
[
0 0 0 0

]
,

so z is in the left nullspace of M , and M is singular.

Second proof: Consider the submatrix comprising the first four rows of A,

A4 =


1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0

 .
This is the link-incidence matrix of a traffic network on the minor of P formed by
contracting links 5 and 6, which we will call P4. Contracting these links means
merging nodes D, F , and G. Link 1 is again labelled with a 1, and the other links
are labelled as prescribed in the proof. The result is show in Figure 5.9. The rows
of A4 are collected into the set A = {a1, a2, a3, a4}. Each row in this collection is
assigned as a multiplier the label of the corresponding link in P4. The signed sum
in the alternative proof of Theorem 5.3.5 is given by∑

a∈A

εaa = a1 + a2 − a3 + a4

=
[
1 1 −1 1 0 0 0 1 0 0 0 1 0 0 0 −1 −1 0

]
,

and every entry in this vector is 0 or ±1.

The converse of Theorem 5.3.5 is not necessarily true: given a totally unimodular
matrix A, there is not necessarily a polytree for which A is a link-path incidence matrix.
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Figure 5.9: The polytree P4 from Example 5.3.8.

We claim that there is no polytree for which the following totally unimodular matrix is a
valid link-path incidence matrix:

A =


1 1 0 0 1
0 0 1 1 1
1 0 1 0 1
0 1 0 1 1

 .
Let P be a polytree for which A is a valid link-path incidence matrix. We will demonstrate
that P cannot exist. The fifth column of A says that there is a path in P that includes
all four links. The four links must therefore be connected linearly, and there must be two
links at the ends that are adjacent to only one of the other three links.

The first four columns of A each describe two link paths in P , so each column gives
a pair of adjacent links. But each link appears twice in these columns, each time paired
with a different link. This contradicts the linearity of P , so P cannot exist.

5.3.1 Reduced echelon normal form

It can be shown that the reduced row echelon form of a network matrix is also a network
matrix. Schrijver [40, Section 19.3, (36)] notes that two network matrices A and A−1

1 A
are related in the following way:

Theorem 5.3.9. If A is a network matrix of full row rank, and A1 is a basis for the
column space of A, then A−1

1 A is a network matrix again. If A is represented by the
polytree P = (V,E) and the digraph D = (V, P ), then the columns in A1 correspond to the
links E1 of a spanning polytree, say P1, in D, and A−1

1 A is represented by P1 = (V,E1)
and D.

Example 5.3.10. Consider the traffic network from Example 5.3.4 which had network
matrix

A =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0
0 1 0 1 0 1

 .
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(b) The graph D showing the spanning tree P1.

Figure 5.10: The graphs from Example 5.3.10.

The fifth row is omitted to obtain a matrix of full row rank, and we redefine A to be

A =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0

 .
This is the network matrix represented by the polytree P and digraph D, show in Fig-
ure 5.10. We choose the spanning tree P1 consisting of links 1, 2, 3, and 5, shown
highlighted in red in Figure 5.10. We partition A accordingly, and we have

A1 =


1 1 0 0
0 0 1 0
0 0 0 1
1 0 1 1

 .
Then the network matrix represented by the polytree P1 and the digraph D is given by

A−1
1 A =


1 0 0 −1 0 −1
0 1 0 1 0 1
0 0 1 1 0 0
0 0 0 0 1 1

 .
Each column in A−1

1 A gives the corresponding link in D in terms of the spanning polytree
P1. Links 1, 2, 3, and 5 are each in P1, so their columns in A−1

1 A are standard basis
vectors. Link 4 in G connects node B to D, so column 4 in A−1

1 A gives the unique
B → D path in P1, which comprises links 3, 1, and 2, where link 1 is traversed in the
opposite direction to its orientation, so its entry in the fourth column of A−1

1 A is negative.

5.3.2 Polytree circuits

An element of the integer kernel of a link-path incidence matrix specifies a collection
of paths, each with an orientation and a traversal count, such that, when each path is
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traversed the specified number of times in the specified direction, the signed sum of the
traversals of each link is zero. If the traffic network is on a polytree, and the integer kernel
element is a circuit, then the paths can be placed nose to tail to form a closed walk. We
will prove this property for network matrices, which are a superset of polytree link-path
incidence matrices.

Theorem 5.3.11. Let A ∈ {0,±1}n×r be a network matrix represented by polytree P and
digraph D, and let c be a circuit of A. Form the matrix Ac =

[
−ciai

]
for i ∈ supp(c).

Then the oriented paths in P specified by Ac can be joined nose to tail to form a closed
walk.

Proof. Let P and D be the incidence matrices of P and D respectively. We claim that
ker(D) = ker(A). Since PA = D and we have ker(PA) = ker(D). The graph P is a tree,
so ker (P ) = {0}. Suppose z ∈ ker(D) = ker(PA). Then we have

PAz = 0 ⇐⇒ Az ∈ ker(P ) ⇐⇒ Az = 0 ⇐⇒ z ∈ ker(A).

The vector c is a circuit of A, so it is a circuit of D too. Since A is totally unimodular,
c has all entries in {0,±1}. We form Dc =

[
−cidi

]
, and from this we form Dc, the

subgraph of D containing only the links in Dc, where each ith link is reoriented according
to ci. The entries in each row of Dc sum to 0, so the indegree of each node in Dc is equal
to the outdegree and the digraph is balanced. The link set can therefore be expressed as
a disjoint union of directed cycles, and each connected component of Dc has an Eulerian
walk. We claim there is only one connected component in Dc: if there were more than
one, then the support of c would not minimal by inclusion, and so c would not be a
circuit.

The links in Dc correspond to paths in P , so the Eulerian walk on Dc specifies an
order in which these paths in P can joined nose to tail to form a closed walk.

Example 5.3.12. Consider the network matrix from Example 5.3.10,

A−1
1 A =


1 0 0 −1 0 −1
0 1 0 1 0 1
0 0 1 1 0 0
0 0 0 0 1 1

 .
This matrix is represented by the polytree P1 and digraph D, show in Figure 5.11. The
vector c =

[
1 −1 −1 1 0 0

]ᵀ
is a circuit of A−1

1 A. On D, c corresponds to the closed
path A → E → B → D → A. On P1, c corresponds to the closed walk A → E → B →
D → (B) → (E) → A, where nodes in parenthesis indicate that a path passes through
that node but does not terminate there. These two walks are shown in Figure 5.11.

Theorem 5.3.11 does not hold for general networks on digraphs, as demonstrated by
the following example.
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(a) The polytree P1. Numbers on the coloured
arrows give the order of their traversal when laid
nose to tail.
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(b) The graph D.

Figure 5.11: The graphs from Example 5.3.12 with walks corresponding to the circuit
c. Green arrows show links that are traversed in the direction of their orientation; red
arrows show links that are traversed against the direction of their orientation.
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Figure 5.12: The graph of the network in Example 5.3.13.
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Figure 5.13: An example of a symmetric digraph.

Example 5.3.13. Consider a transport network on the graph in Figure 5.12. Part of the
link-path incidence matrix is given by the columns of

A =



1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1


.

The paths in this matrix consist of two different paths from node A to node G, and two
different paths from node B to node H. The vector z =

[
1 −1 −1 1

]ᵀ
is in the kernel

of A, and would correspond to a circuit of the full link-path incidence matrix. Unlike the
polytree network in Example 5.3.12, there is no closed walk that uses all of the paths,
and neither of the two closed walks corresponding to z corresponds to an element of the
kernel of A.

5.4 Symmetric directed networks

We turn now to networks on symmetric directed graphs, or symmetric digraphs.

Definition 5.4.1 (Symmetric digraph [31]). A symmetric digraph D is a digraph such
that (u, v) is a link in D whenever (v, u) is.

The notation (u, v) means a directed link from a node u to a node v. In this case,
(u, v) and (v, u) are called a symmetric pair of links. A symmetric digraph is therefore
the graph obtained by taking a simple undirected graph and replacing each link with a
symmetric pair of links. The graph G from which the symmetric digraph D is obtained
is called the underlying graph of D. An example of a symmetric digraph is shown in
Figure 5.13.
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We are interested in networks in which every node is designated as either a station or a
junction. Stations will function as both origins and destinations for traffic, and junctions
will function as neither. The routing policy we use will be as in the triangular network
in Example 5.2.2, above: travel is permitted between any pair of stations along any path
that visits each node at most once. We will call traffic networks with this routing policy
symmetric directed networks.

Definition 5.4.2 (Symmetric directed network). A symmetric directed network is a traffic
network on a symmetric directed graph that has the following properties:

1. Each peripheral node is designated as a station.

2. All other nodes are designated as either a station or a junction.

3. Travel between any distinct pair of stations along any path is permitted.

4. Every cycle on the graph that uses at most one of each pair of symmetric edges
visits at least two stations.

Our aim in this section is to investigate whether traffic networks on symmetric digraphs
have link-path incidence matrices that contain maximal unimodular submatrices. This
implies the existence of column partitions for A for which A1 is unimodular, and hence
for which the parity problems described in Section 2.5.1 cannot occur.

We will begin in Section 5.4.1 with star networks that can considered as symmetric
digraphs. Star networks can also be considered as polytrees, so their link-path incidence
matrices are totally unimodular by Theorem 5.3.5.

In Section 5.4.2 we will add internal structure to the graphs of star networks to form
bidirectional trees. Traffic networks on bidirectional trees whose stations are all peripheral
stations we will call peripheral bidirectional tree networks. We will show that any link-
path incidence matrix of a peripheral bidirectional tree network has at least one maximal
unimodular submatrix. We will additionally show that there is good reason to think there
are very many maximal unimodular submatrices.

In Section 5.4.3 we combine collections of peripheral bidirectional tree networks to
create bidirectional tree networks. These can be thought of as peripheral bidirectional
tree networks, but where internal nodes may also be designated as stations. We show
that such networks also have maximal unimodular submatrices.

In Section 5.4.4 we look at general symmetric directed networks. These are networks on
symmetric digraphs which differ from bidirectional tree networks in that their underlying
graphs may contain cycles. Again, these may be formed by combining bidirectional tree
networks. We prove that the link-path incidence matrices of symmetric directed networks
also contain maximal unimodular submatrices.

5.4.1 Star networks

We first consider symmetric digraphs whose underlying graph is that of a star network.
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(b) The polytree star network.

Figure 5.14: The equivalence between the symmetric directed and polytree forms of a star
network.

Definition 5.4.3 (Star network). A star network is a symmetric directed network on a
symmetric digraph consisting of one central junction connected to n peripheral stations.

The routes on this network are the paths that connect each pair of stations.
The link-path incidence matrix for this is shown by Hazelton [26] to be totally uni-

modular. It is also totally unimodular by Theorem 5.3.5, since it is a valid link-path
matrix for the polytree constructed by splitting each peripheral node in two: one origin
node with a link pointing towards the central node; and one destination node with one
link pointing away from the central node.

Figure 5.14 shows this equivalence. On the symmetric directed star network (Fig-
ure 5.14a), travel between any pair of peripheral nodes is allowed. On the polytree star
network (Figure 5.14b), travel between any origin and destination pair (Oi, Dj) is allowed
except when i = j. Then the link-path incidence matrices for both networks are given by

A =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0

 .

The rank of a link-path incidence matrix is given by the following theorem.

Theorem 5.4.4. The link-path incidence matrix of a star network with s peripheral nodes
has rank 2s− 1.

Proof. A star network with s peripheral nodes has 2s links. The central node is a junction,
and so no path can begin or end there. Therefore the sum of the traffic counts on the
paths directed towards the central node is equal to the traffic counts directed away from
the central node, and so rank(A) < 2s.
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To complete the proof we will show that there are 2s − 1 independent columns. We
label the s links of the graph that are directed towards the central node e1, . . . , es, and the
s links of the graph that are directed away from the central node f1, . . . , fs. We order the
rows of A so that they correspond to the ordering of the links e1, . . . , es, f1, . . . , fs−1, and
exclude the row fs because of the rank deficiency. We take the submatrix of A formed by
collecting the columns corresponding to the following paths:

1. The paths (ei, fs) for i = 1, . . . , s− 1. With the row corresponding to fs excluded,
these columns are the standard basis vectors ei for i = 1, . . . , s− 1.

2. The path (e2, f1). This column is the sum of the two standard basis vectors e2+es+1.

3. The paths (es, fi) for i = 1, . . . , s−1. Each of these columns is the sum of es +es+i,
two standard basis vectors.

The matrix is

A =



1 0 . . . 0 0 0 0 . . . 0
0 1 . . . 0 1 0 0 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . 1 0 0 0 . . . 0
0 0 . . . 0 0 1 1 . . . 1
0 0 . . . 0 1 1 0 . . . 0
0 0 . . . 0 0 0 1 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . 0 0 0 0 . . . 1


.

Subtracting the (s+ 1)th column from the sth column does not change the determinant,
and produces the following upper triangular matrix:

A′ =



1 0 . . . 0 0 0 0 . . . 0
0 1 . . . 0 1 0 0 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . 1 0 0 0 . . . 0
0 0 . . . 0 −1 1 1 . . . 1
0 0 . . . 0 0 1 0 . . . 0
0 0 . . . 0 0 0 1 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . 0 0 0 0 . . . 1


.

Then det (A) = det (A′) = −1, so there are 2s− 1 independent columns, completing the
proof.
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Figure 5.15: The graph from the Monroe network, used in Tebaldi and West’s seminal
paper on Bayesian network tomography [45]. The red links correspond to rows of a
submatrix of the link-path incidence matrix with determinant −2.

5.4.2 Peripheral bidirectional tree networks

We turn now to a type of network we call a bidirectional tree network. These can be
thought of as a star network with some internal structure. We will call the graph for this
type of network a bidirectional tree.

Definition 5.4.5 (Bidirectional tree). A bidirectional tree is a symmetric digraph whose
underlying graph is a tree.

In accordance with the routing policy, the leaves of the underlying tree are designated
as stations. We do not designate any internal stations.

Definition 5.4.6 (Peripheral bidirectional tree network). A peripheral bidirectional tree
network is a network on a bidirectional tree where the stations are the peripheral nodes.

We omit trees containing nodes of degree 2: the routing policy states that no such
nodes can be a station. Therefore on the induced symmetric digraph, the traffic counts
on either of the two pairs of symmetric links can be determined from the other, and so
one pair is redundant.

Example 5.4.7 (The Monroe network [45]). The graph from the Monroe network is an
example of a bidirectional tree. The Monroe network with traffic demand as specified
by Tebaldi and West [45] excludes some pairs of peripheral nodes as origin/destination
pairs and so does not follow our routing policy and is not a peripheral bidirectional tree
network. The Monroe network is shown in Figure 5.15.

Matrices for peripheral bidirectional tree networks fail to be totally unimodular when
they contain more than one junction. To see this, consider the submatrix M of the link-
path incidence matrix containing the rows corresponding to links 3, 13, 15, 19, and 20;
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and the columns corresponding to paths 8 → 7, 11 → 12, 7 → 12, 7 → 11; and 8 → 11.
This produces the matrix

M =


1 1 0 0 0
1 0 0 0 1
0 0 1 0 1
0 0 1 1 0
0 1 0 1 0

 .
This submatrix has determinant −2, so any link-path incidence matrix that contains it is
not totally unimodular. This or a similar submatrix exists whenever there is at least one
internal bidirectional link and two stations connected (perhaps via other links) to each
end. The matrix M , or a reordering of it, therefore appears in any link-path incidence
matrix for a peripheral bidirectional tree network.

Peripheral bidirectional tree networks do not in general have unimodular link-path
incidence matrices either, as demonstrated by the following example.

Example 5.4.8. Let A be the link-path incidence matrix of the 10 link peripheral bidi-
rectional tree network in Figure 5.16, given by

A =



1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 1 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 1 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 1 0 0 1
0 1 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 1 1 0 0 0 0 0


.

This matrix contains eight 5× 5 and eight 7× 7 non-singular Eulerian submatrices so it
is not totally unimodular. The rank of the matrix is rank(A) = 8, so the potential A1

partitions are the 8 × 8 non-singular submatrices. Checking all 8000 such submatrices
with a computer we find that only 64 are non-unimodular — all 64 have determinant ±2.

We first determine the rank of the link-path incidence matrix of a peripheral bidirec-
tional tree network. The rank determines the size of a maximal invertible submatrix.

Theorem 5.4.9. The link-path incidence matrix of a peripheral bidirectional tree network
with s stations and j junctions is of rank 2s+ j − 2.

Proof. Given a peripheral bidirectional tree with s stations and j ≥ 2 junctions, we can
merge two adjacent junctions to form a smaller peripheral bidirectional tree with s stations
and j − 1 junctions. The proof is by induction on the number of junctions.
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Figure 5.16: The graph for the network in Example 5.4.8.

For the base case we consider a star network, which is a peripheral bidirectional tree
network with s stations and j = 1 junction. By Theorem 5.4.4 we have

rank(A) = 2s− 1

= 2s+ j − 2.

For the induction, consider a peripheral bidirectional tree network on a bidirectional
tree T containing j > 2 junctions and s stations. A pair of adjacent junctions J1 and
J2 are connected by a pair of links e12 and e21, which run from J1 to J2 and from J2 to
J1 respectively. Let T1 and T2 be the parts of T connected to J1 and to J2 respectively
when links e12 and e21 are removed. Links e12 and e21 can be contracted to form another
peripheral bidirectional tree T ′. There are still s stations in T ′, so the origin/destination
pairs in the network remain unchanged. There are j − 1 junctions in T ′ since J1 and
J2 have merged to form the junction J . The relationship between T and T ′ is shown
in Figure 5.17. If T ′ has link-path incidence matrix A′, then T has link-path incidence
matrix

A =

A′r12

r21

 ,
where r12 and r12 are rows corresponding to links e12 and e21 respectively. The row
vector r12 contains 1s in the columns corresponding to paths that originate in T1 and
whose destination lies in T2, and 0s elsewhere. Similarly, r21 contains 1s in the columns
corresponding to paths that originate in T2 and whose destination lies and T1, and 0s
elsewhere. Appending these two rows to A′ either leaves the rank of the matrix unchanged;
or increased it by one or by two. We need to show that the rank of the matrix has increased
by one, which we will do by showing there is a dependency involving these rows, and by
showing that we have removed a linear dependence amongst the columns.

Let Rα be the set of row vectors in A corresponding to the links in T1 that enter J1,
and let Rω denote the set of row vectors in A corresponding to the links in T1 that exit
J1. The net flow through J1 is given by∑

r∈Rα

r + r21 =
∑
r∈Rω

r + r12,
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J1 J2

T1 T2

e12

e21

(a) The graph T .

J

(b) The graph T ′.

Figure 5.17: Contracting links e12 and e21 of T to form T ′, as described in the proof of
Theorem 5.4.9.

which shows a linear dependence involving the newly appended rows.
We now need to show that by appending r12 and r21 to A′ we have removed a linear

dependence amongst the columns. Choose one origin O1 and one destination D1 from
the designated stations in T1 such that the path from O1 to D1 passes through J1, and
similarly choose O2 and D2 from T2 so that the connecting path passes through J2. A
representation of these paths on T ′ and T are shown in Figure 5.18.

If a′ij is the column of A′ corresponding to the path from Oi to Dj, then clearly

a′11 + a′22 = a′12 + a′21.

In the corresponding columns of A, only a12 has a 1 in the entry corresponding to e12;

J

O1 O2

D1 D2

(a) The paths on T ′.

J1 J2

O1 O2

D1 D2

(b) The paths on T .

Figure 5.18: The paths showing the eliminated linear dependence.
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the other columns have 0. Appending these rows therefore removes a linear dependence
amongst the columns of A′, so rank(A) ≥ rank(A′)+1. By hypothesis we have rank(A′) =
2s+ (j − 1)− 2, so we have rank(A) = 2s+ j − 2 as required.

We now use Theorem 5.4.9 to prove that there is a unimodular partition.

Theorem 5.4.10. Let A be the link-path incidence matrix of a peripheral bidirectional
tree network. Then A has a maximal unimodular submatrix.

Proof. The proof will work as follows: we take an arbitrary peripheral bidirectional tree
network T and its link-path incidence matrix A. We delete links from T to form a polytree
P , and form the full-rank submatrix AS1 of A by deleting the corresponding rows of A..
We select paths in T to construct a maximal invertible submatrix M of AS1 . We then
show that we can transform M to a link-path incidence matrix M ′ for P without altering
the determinant. Then since M ′ is totally unimodular, we have det (M) = ±1.

Consider a peripheral bidirectional tree network on a bidirectional tree T which has
link-path incidence matrix A. The network has s stations and j junctions and therefore
2(s + j − 1) links and s(s − 1) paths, so A has 2s + 2j − 1 rows and s(s − 1) columns.
By Theorem 5.4.9, we have rank(A) = 2s+ j − 2. Following the proof of Theorem 5.4.9,
a full rank submatrix of A can be found by removing rows corresponding to one of each
symmetric pair of links connecting pairs of junctions, and one row corresponding to a link
connecting to any station.

We designate the stations Si and the junctions Ji. The link from node Ni to Nk is
NiNk. Each station is connected to only one junction, so we will use SiJ and JSi to mean
the links connecting Si to its junction.

We designate one station, say S1, as the root station. We say a node Ni is an ancestor
of another node Nk if Ni lies between Nk and S1. We will extend this definition for
stations, and say that Si is an ancestor of Sk if the junction that Si is connected to is
an ancestor of Sk. Note that it is possible for two stations to be each other’s ancestors if
they are connected to the same junction.

We form the subgraph TS1 of T by deleting from T the link JS1, and all links JiJk such
that Jk is an ancestor of Ji. An example of the formation of TS1 is shown in Figure 5.19b.
The junction-to-junction links and the link JS1 form a directed tree rooted at S1 that
spans S1 and the junctions.

We form the polytree PS1 from TS1 by splitting each station Si (except for S1) into
two nodes, one connected by the link SiJ and the other by the link JSi. An example of
the formation of TS1 from TS1 is show in Figure 5.19c. Any link path incidence matrix of
TS1 is also a link path incidence matrix for PS1 .

The paths in the network on T are represented on TS1 in the following ways.

• Any path Si → Sk such that Si is an ancestor of Sk is also a path on TS1 .

• Any path Si → S1 is represented on TS1 by the path comprising only the link SiJ .
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(c) The polytree PS1 .

Figure 5.19: Formation of the graphs used in the proof of Theorem 5.4.10.

• Any other path Si → Sk such that Si is not an ancestor of Sk is represented by
two disjoint paths: one comprising only the link SiJ , and the other being the path
LCA(Si, Sk)→ Sk, where LCA returns the least common ancestor of its arguments.

We form the submatrix AS1 of A by including only the rows corresponding to links
that are included in TS1 . Following the proof of Theorem 5.4.9, this matrix AS1 is of full
rank. We choose a full rank maximal submatrix M of AS1 such that if M contains the
column corresponding to the path Si → Sk where Si is not an ancestor of Sk, then the
column corresponding to the path Si → S1 is also in M . This is guaranteed if all (s− 1)
paths terminating at S1 are included in the (2s + j − 2) paths in M . The column of
AS1 corresponding to the path Si → S1 has one non-zero entry, which is a 1 in the row
corresponding to the link SiJ . This link is unique among paths terminating at S1, so the
columns are all linearly independent.

We claim that this matrix has det (M) = ±1. We have chosen M to be full rank,
so we now show that it can be transformed to a totally unimodular matrix M ′ without
changing the determinant.

Each column in M corresponds to a path in T . We form M ′ from M by subtracting
from each column corresponding to a path Si → Sk, where Si is not an ancestor of Sk,
the column corresponding to the path Si → S1. This column now corresponds to a path
LCA(Si, Sk) → Sk on TS1 . These operations do not affect the determinant, so we have
det (M) = det (M ′).

Each column in M ′ corresponds to a path in TS1 , or equivalently in PS1 . Then M ′ is a
link-path incidence matrix for a polytree, so by Theorem 5.3.5 M ′ is totally unimodular.
We have det (M) = det (M ′), and M is of full rank, so det (M) = ±1 and A contains a
maximal unimodular submatrix.

In practice there will be many maximal unimodular submatrices. We expect that
different choices of station as root, forming TS1 by including junction links directed towards
rather than away from the root, and including a different selection of paths in M will all
result in different M matrices.



162 CHAPTER 5. NETWORK TOMOGRAPHY

1 2 3 4 5

6

789

10 11 12

13

1 6

78910

11

12

13

14

15

16 17

18

19 2021

22 23

24

Figure 5.20: The graph T6 from Example 5.4.11. Node 13 is an ancestor of every other
node, so any path in T originating at node 13 is also a valid path on T6.

Example 5.4.11 (The Monroe network revisited). Consider the peripheral bidirectional
tree network on the graph of the Monroe network, introduced in Example 5.4.7, and whose
graph is shown in Figure 5.15. This network has nine stations and four junctions, with 24
links and 72 paths. The full link-path incidence matrix has rank 20. We choose node 6
as the root and form the polytree T6 by deleting links 2, 3, 4 and 5, shown in Figure 5.20.
There are 42 paths that originate at an ancestor of the path’s destination, and seven paths
(other than 13→ 6, since 13 is an ancestor of 6) terminating at node 6, making 49 paths
on T that are also valid paths on T6. Collecting the columns corresponding to these paths
produces a totally unimodular 20 × 49 submatrix of full rank, so any full rank maximal
submatrix has determinant ±1.

If not every junction is connected to a station, then collecting the columns of AS1

corresponding to the paths that are also valid paths on TS1 will not produce a matrix of
full row rank. These are the paths that originate at an ancestor of the destination, and
the paths that terminate at the root. It is then necessary to include other paths from T
in the submatrix M . The remaining choices are paths in T are those that do not originate
at an ancestor of the destination, and do not terminate at the root. These paths are not
paths in TS1 — they include links that were deleted during the formation of TS1 , and so
on TS1 the remaining included links make up a disjoint union of paths. We illustrate this
with the following example.

Example 5.4.12. Consider the bidirectional tree network T shown in Figure 5.21a. There
are 18 links and 30 paths. The full link-path incidence matrix is of rank 14. Choosing
node 1 as the root, we form T1 by deleting links 2, 14, 15 and 17. The submatrix of A
formed by including only rows and columns corresponding to links and paths in T1 is
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Figure 5.21: The graphs from Example 5.4.12.

given by the 14× 18 matrix

A′ =



1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0



.

This matrix is rank 13, so in order to make a full rank maximal submatrix we need to
include paths in T that are not paths in T1: these are the paths Si → Sk with k 6= 1
such that Si is not an ancestor of Sk. A maximal submatrix M that includes such paths
will still be unimodular if for i, k 6= 1, the column corresponding to the path Si → S1

is in M whenever the column corresponding to the path Si → Sk. Using a computer to
check the determinants of all maximal submatrices of AS1 that include all of the columns
corresponding to paths terminating at the root, we find that 2, 190, 110 are singular and
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119, 536 have determinant ±1. In particular, the submatrix

M =



1 0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0 0 1


has determinant det (M) = −1, and includes as column 14 the path 3 → 5. Node 3 is
not an ancestor of node 5. This path includes links 5, 15, 18 and 10, although row 15 is
not included in AS1 . This path is highlighted in Figure 5.21. Column 7 corresponds to
the path 3 → 1, and so in this submatrix includes only link 5. Subtracting column 9
from column 14 produces a link-path incidence matrix for the graph T1, which is also a
link-path incidence matrix for the polytree formed by splitting the stations into an origin
and a destination node, so it is totally unimodular.

5.4.3 Bidirectional tree networks

Real networks on bidirectional trees may include internal stations.

Definition 5.4.13 (Bidirectional tree network). A bidirectional tree network is a network
on a bidirectional tree where all peripheral nodes are stations, and internal nodes may be
designated as stations.

All peripheral nodes are designated stations — if they are not, then because they
have no through-traffic, they are superfluous and may be omitted from the network. Any
bidirectional tree network T with an internal station S could be decomposed into two
smaller networks T1, T2 by splitting S into two stations. The set of allowed paths on one
of the new networks Ti is the subset of the paths on T that use only links in Ti.

The two smaller networks will themselves be either bidirectional tree networks, or
bilateral networks.

Definition 5.4.14. A bilateral network is a network consisting of two stations joined by
a symmetric pair of links.
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Observation 5.4.15. The link-path incidence matrix of a bilateral network is

A =

[
1 0
0 1

]
.

This matrix is unimodular.

If T1 or T2 also has an internal station, it can also be decomposed into two smaller
networks. Any bidirectional tree can therefore be recursively decomposed into a collection
of peripheral bidirectional trees networks and bilateral networks.

Theorem 5.4.16. The link-path incidence matrix of a bidirectional tree network has at
least one unimodular maximal invertible submatrix.

Proof. Suppose the bidirectional tree network T is constructed from a collection of k
peripheral bidirectional tree networks and bilateral networks {T1, . . . , Tk}, where Ti has
link-path incidence matrix ATi . Then the link-path incidence matrix A of T is

A =


AT1 0 · · · 0

AT1···k0 AT2 · · · 0
...

...
. . .

...
0 0 · · · ATk


where the columns of AT1···k correspond to paths that span multiple subnetworks Ti. Each
ATi has a unimodular maximal submatrix by Theorem 5.4.10 or by Observation 5.4.15.
We partition each ATi into ATi1 and ATi2 such that ATi1 is unimodular, and include the
corresponding columns of A in the A1 partition. This produces the partition

A =


AT11 0 · · · 0 AT12 0 · · · 0

AT1···k0 AT21 · · · 0 0 AT22 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · ATk1 0 0 · · · ATk2

 .
The A1 part of this matrix is block diagonal, where each block has determinant ±1, so it
also has determinant det (A1) = ±1.

The construction of such a unimodular maximal submatrix is illustrated by the fol-
lowing example.

Example 5.4.17. Consider the peripheral bidirectional tree T shown in Figure 5.22b.
The bidirectional tree network T can be formed by identifying station 3 in T1 with station
4 in T2.

The networks T1 and T2 are both peripheral bidirectional tree networks, so their re-
spective link-path incidence matrices AT1 and AT2 have at least one unimodular maximal
submatrix. These become AT11 and AT12 . Then the matrix

A1 =

[
AT11 0

0 AT21

]
is a maximal submatrix of A, the link-path incidence matrix of T , and det (A1) = ±1.
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1

2

3 4 5

6 7

(a) The star network T1 and peripheral bidirec-
tional tree network T2.

.

1

2

3/4 5

6 7

(b) The bidirectional tree network T , which in-
cludes node 3/4 as an internal station.

Figure 5.22: The graphs from Example 5.4.17.

3/4 5

2/6 7

1

Figure 5.23: The symmetric directed network D from Section 5.4.4.
.

5.4.4 Symmetric directed networks

We now give a brief discussion of how the techniques of this section might be extended
to more general symmetric directed networks. As an example, consider again the bidirec-
tional tree networks T1 and T2 from Example 5.4.17 in Figure 5.22. As well as identifying
stations 3 and 4, we can also identify stations 2 and 6 to construct a symmetric directed
network, D, whose underlying graph is not a tree. The network D is shown in Figure 5.23.
As before, the set of paths on T1 and T2 are also allowed on D. For this to work, it must
be the case that every cycle in the underlying graph includes at least two stations —
this guarantees that no station has been identified with another on its own network. If a
symmetric digraph D is constructed by identifying some station S1 in a bidirectional tree
network T1 with another station S2 in T , then the path S1 → S2 in T is not an allowed
path in D. Then a version of Theorem 5.4.16 for symmetric directed networks would not
guarantee that the link-path incidence matrix of D has a unimodular maximal submatrix.



Chapter 6

Chapter minus one

6.1 Introduction

If a lattice basis is not a Markov basis it can still be used to construct a walk between
any two points in any associated fibre, provided the walk is allowed to visit points with
negative co-ordinates. For such a walk to be useful for sampling, a lower bound on the
co-ordinates of visited points must be known. Using lower bounds on co-ordinates that
are less than zero enables the walk to visit more points — some of these points may then
function as stepping stones between fibre elements that are not connected by a walk with
a lower bound of zero.

For any particular fibre, a lower bound must exist because there is a finite distance
between any pair of points. We may be able to compute this lower bound, and sampling
from the fibre may commence. However, knowing a priori that a lower bound for all fibres
exists, and what it is, saves us the computational work for the fibre in question, and can
provide the foundations for development of new samplers.

When using MCMC sampling methods, the connectedness of walks on the fibre being
sampled are generally unknown. For walks that use a lower bound less than zero to be
useful, we must have a lower bound that we know is uniform across all potential fibres.

In this chapter we discuss such lower bounds.

Example 6.1.1. Consider the configuration matrix

A =

0 1 1 0 1
1 1 1 1 0
0 0 1 1 0

 .
This is a link-path incidence matrix for the three-link linear network that appears in the
example in Section 1.1, where we have removed the path consisting of just the third link.
The network is shown in Figure 6.1.

Partitioning the columns of A such that

A1 =

0 1 1
1 1 1
0 0 1


167
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1 2 3 4
1 2 3

5 1

2 4

3

Figure 6.1: The three-link linear network from Example 6.1.1. Note that the third link is
not itself an allowed path.

induces the column partition lattice basis

U =


−1 1

1 −1
−1 0

1 0
0 1

 .
Setting y =

[
1 1 1

]ᵀ
, we have

Fy =




0
0
0
1
1

 ,


0
0
1
0
0


 .

If we were to construct a direct walk between these two points using U , we would need
to use each move exactly once. Such a walk necessarily leaves the fibre because both of
these two points have zeroes in the first and second co-ordinates, and each move in U
has a −1 at one of them. However, if we were to allow walks that visit a point such as[
−1 1 0 1 0

]ᵀ
or
[
1 −1 1 0 1

]ᵀ
, both of which have a −1 in some co-ordinate,

then such a walk would connect the two elements of Fy.

In Example 6.1.1 the two points are connected by a walk that is allowed to visit points
that have −1 in either of the first two co-ordinates. In fact, for this configuration matrix
this condition is sufficient to connect all pairs of points in all fibres using moves in U .

Two of the standard basis vectors are e1 =
[
1 0 0 0 0

]ᵀ
and e2 =

[
0 1 0 0 0

]ᵀ
.

We will say that U is both an e1-Markov basis and an e2-Markov basis, because both −e1

and −e2 are lower bounds on visited points that guarantee for every fibre, a walk using
U can visit every point in the fibre.

More generally, we make the following definition:

Definition 6.1.2 (An m-Markov basis). Let An×r be a configuration matrix, let B be a
set of moves, and let m ∈ Zr≥0 be a non-negative integer vector. If for all y ∈ Zn≥0, the
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basis B can be used to construct a walk between any pair of points in Fy such that the
walk visits only points that are elementwise at least −m, then B is an m-Markov basis.

Often, vectors m will have all entries the same, which prompts the following definition.

Definition 6.1.3 (An m-Markov basis). Let B be an m-Markov basis, and suppose that
m has all entries equal to m. Then we will say B is an m-Markov basis.

By these definitions, a true Markov basis is both a 0-Markov basis and a 0-Markov
basis. In Example 6.1.1, the basis B is also an 1-Markov basis, because m1 ≤ 1, or
because m2 ≤ 1.

We can also define analogous versions of Markov sub-bases.

Definition 6.1.4 (An m-Markov sub-basis). Let An×r be a configuration matrix, let B
be a set of moves, and let m ∈ Zr≥0 and y ∈ Zn≥0 be non-negative integer vectors. If B can
be used to construct a walk between any pair of points in Fy such that the walk visits
only points that are elementwise at least −m, then B is an m-Markov sub-basis for y.

The scalar version is an m-Markov sub-basis.

Definition 6.1.5 (An m-Markov sub-basis). Let B be an m-Markov sub-basis for some
configuration matrix A and vector y ∈ Zn≥0, and suppose that m has all entries equal to
m. Then we will say B is an m-Markov sub-basis for y.

The focus of this chapter is m-Markov bases and m-Markov bases of unimodular
matrices. The main topic of this chapter is the Minus One Conjecture (Conjecture 6.3.2),
found in Section 6.3. The Minus One Conjecture claims that for unimodular configuration
matrices, any column partition lattice basis is a 1-Markov basis. In fact it is slightly
stronger — it says that only the entries corresponding to the A1 part of the column
partition need drop down to −1. That is, for any fibre and any column partition lattice
basis of any unimodular configuration matrix, a random walk that can visit points whose
co-ordinates are all at least −1 in their A1 co-ordinates (and at least 0 in their A2 co-
ordinates) is guaranteed to be able to visit, and therefore sample, any point in the fibre.

We begin in Section 6.2 by looking at m-Markov bases generally. In Section 6.2.1 we
discuss two interpretations of the idea of an m-Markov basis. These are:

• For any fibre for the given configuration matrix, the basis allows construction of a
walk that can visit every point if the walk may visit points outside the fibre that
are at least −m.

• For any fibre for the given configuration matrix, the basis allows construction of
a walk that can visit every point in the fibre that is greater than or equal to m,
without ever leaving the fibre.

Theorem 4.3 says that in order to show that a set of moves B is a Markov basis, we need
only show that B connects the positive and negative parts of each element of some other
known Markov basis. In Section 6.2.2 we extend this principle to m-Markov bases.
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Section 6.3 concerns the Minus One Conjecture, which is stated in Conjecture 6.3.2.
We then give a justification for why we are only concerned with the A1 co-ordinates.

The interpretations of an m-Markov basis given in Section 6.2.1 are specialised for
unimodular configuration matrices in Section 6.3.1. One interpretation says that the
points in any fibre that are at least m are connected by any m-Markov basis. The Minus
One Conjecture claims that a column partition lattice basis of a unimodular configuration
matrix is an m(1,0)-Markov basis. The vector m(1,0) is defined in Definition 6.3.1. With
this choice of m, the points in the fibre that are at least m become the points in the Z-
polytope that do not lie on a bounding hyperplane that corresponds to an A1 co-ordinate.

In Section 6.3.2 we prove a theorem that reduces the problem of proving that a partic-
ular move can be simulated using a column partition lattice basis to a problem of ordering
columns of a submatrix of A−1

1 A. This has a few advantages over using the definition of
a Markov basis directly.

These advantages will be put to use in Section 6.4, where we prove some specific cases
of the Minus One Conjecture. We begin by looking at a known 1-Markov basis from
Chen, Dinwoodie and Yoshida [12]. Their Proposition 0.2.1 states that if the monomial
difference representations of a set of moves B generates a radical ideal, then B is a 1-
Markov basis. We provide a more detailed proof of this in Section 6.4.1. We then specialise
the proposition for column partition lattice bases. If it were shown that any column
partition lattice basis of a unimodular configuration matrix generates a radical ideal,
then the Minus One Conjecture would have been proved.

In Section 6.4.2, we prove the Minus One Conjecture for the case of traffic networks
on polytrees (Theorem 6.4.5). Polytrees are a kind of graph that were described in more
detail in Section 5.3. The proof is valid for all network matrices, which are a generalisation
of polytree link-path incidence matrices. Apart from being directly useful for analysis of
traffic on polytree networks, many other kinds of problems may have network matrices
as configuration matrices. These include configuration matrices of two-way contingency
tables. Schrijver [40, Section 20.1] notes the existence of several algorithms for recognising
network matrices that work in polynomial time. This is useful because the Minus One
Conjecture automatically holds for any configuration matrix or column partition lattice
basis matrix recognised as a network matrix by one of these algorithms.

In Section 6.4.3, we give a weaker lower bound for column partition lattice bases of uni-
modular configuration matrices that depends on the size and nullity of the configuration
matrix. This is based on the work in Theorem 3.5.15 and Section 4.3.

In Section 6.4.4 we show that if the number of column partition lattice basis elements
required to simulate some move is sufficiently few, and if every ordering of these moves
necessarily breaks the minus one lower bound, then the matrix containing this collection
of moves can not be totally unimodular. A limit on the number of moves necessary to
simulate a Graver basis element based on the number of rows in the configuration matrix
is given in Theorem 3.5.15. Section 6.4.4 can therefore be taken as a proof of the Minus
One Conjecture for small configuration matrices as measured by number of rows.

Section 6.4.2 contains the proof of the Minus One Conjecture for network matrices.
As well as being useful in its own right for configuration matrices that are network matri-
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ces, such as link-path incidence matrices of polytrees, the material in Section 6.4.5 may
also provide a useful stepping stone towards a proof of the full Minus One Conjecture.
Seymour [41] showed that all totally unimodular matrices arise from network matrices
and certain 5 × 5 totally unimodular matrices using a certain set of operations. If it
were shown that these operations preserve the minus one property, this would constitute
a proof the Minus One Conjecture.

6.2 Alternative lower bounds

In this section we look at m-Markov bases generally, before moving on to the specific case
of the Minus One Conjecture. Recall from Definition 6.1.2 that an m-Markov basisM is
a set of moves such that for all y ∈ Zn≥0,M can be used to construct a walk between any
pair of points in Fy that only visits points that are elementwise at least −m.

6.2.1 Interpretations

There are two ways to interpret some set B being an m-Markov basis for some m ∈ Zr≥0.
The first is as above, which says that for all y ∈ Zn≥0, B can be used to construct a walk
that may visit points whose co-ordinates are at least −m that connects a set that includes
Fy. This is how for example Yoshida’s Proposition 1 [50], discussed in Section 6.4.1, is
phrased.

The second is given by the Theorem below. It claims that B connects points that are
in some sense internal to the polytope, with respect to co-ordinates whose entry in m is
not zero.

Theorem 6.2.1. Let A be a configuration matrix, and let the vector m ∈ Zr≥0. A set of
moves B is an m-Markov basis for A if and only if for all y ∈ Zn≥0, B connects all pairs
of points in Fy that are at least m with a walk that remains within Fy.

Proof. We first show that if B is an m-Markov basis, then it connects all pairs of points
that are at least m. Let y be such that Fy has at least two points that are at least m,
and write them as x0 + m and xk + m, where x0,xk ∈ Zr≥0. We need to show that there
exists a walk in Fy using B that connects these two points.

Let y0 = Ax0 = Axk, and construct the fibre Fy0 . The points x0 and xk are both in
this Fy0 .

Because B is an m-Markov basis, there is a walk using B connecting x0 to xk that
only visits points that are each at least −m. This walk can be written

x0,x1,x2, . . . ,xk.

Then the walk

x0 + m,x1 + m,x2 + m, . . . ,xk + m
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in Fy travels from x0 + m to xk + m using only moves in B. Each point is at least 0
because each xi ≥ −m. The points x0 and xk can be any that are at least m, so all such
points are connected, as required.

Suppose now that in any fibre, a set B connects all pairs of points that are at least m.
We need to show that B is an m-Markov basis.

Let y be given, and let x0 and xk be any two points in Fy. Set ym = A(x0 + m), and
construct the fibre Fym . The points x0 + m and xk + m are both in Fym .

In any fibre, the set B connects every pair of points that are each at least m, so there
is a walk from x0 + m and xk + m which we can write as

x0 + m,x1 + m,x2 + m, . . . ,xk + m,

where each xi is at least −m. Then there is a walk from x0 to xk that visits only points
that are at least −m, which we can write as

x0,x1,x2, . . . ,xk.

This walk visits only points that are at least −m, and because for any fibre, x0 and xk
can be any points in the fibre, B is an m-Markov basis as required.

We illustrate this with the following example.

Example 6.2.2. Consider the configuration matrix

A =


1 0 1 1 1 0 0
1 1 0 0 0 0 0
0 0 1 0 0 1 1
0 0 0 1 0 1 0
0 0 0 0 1 1 0

 ,
and the vector y1 =

[
2 0 3 1 1

]ᵀ
, which produces the fibre

Fy1 =





0
0
2
0
0
1
0


,



0
0
0
1
1
0
3




.

We select the column partition lattice basis defined by

U =



3 1
−3 −1
−1 −1
−1 0
−1 0

1 0
0 1


.
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(a) The Z-polytope for y =
[
2 0 3 1 1

]ᵀ
.
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(b) The Z-polytope for y =
[
10 4 9 5 5

]ᵀ
.

Figure 6.2: The Z-polytopes from Example 6.2.2 showing the two interpretations of a
2-Markov sub-basis.

This matrix U is a 2-Markov sub-basis for y. The first interpretation of this is that U
connects Fy1 with walks that are allowed to visit points that are at least −2 in each
co-ordinate. The projected Z-polytope of Fy under U is shown in Figure 6.2a. We can
see that using U to construct a direct walk between the elements of Fy (in blue) requires
that we visit one of the points with projected co-ordinates

[
0 1

]ᵀ
or
[
1 2

]ᵀ
. These

points, and the others with all co-ordinates at least −2 which we may also visit, are
shown in grey. The full co-ordinates of these points are

[
−2 2 2 1 1 0 1

]ᵀ
and[

2 −2 0 0 0 1 2
]ᵀ

, so each has a −2 in some co-ordinate.

The second interpretation of an m-Markov sub-basis is that it connects all of the points
in the fibre that are at least m with a walk that remains within the fibre. To illustrate,
consider

y2 = y1 + A
[
2 2 2 2 2 2 2

]ᵀ
=
[
10 4 9 5 5

]ᵀ
.
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The matrix U is also a 2-Markov sub-basis for this fibre, which is given by

Fy2 =





0
4
0
5
5
0
9





0
4
2
4
4
1
6





1
3
1
4
4
1
7





2
2
0
4
4
1
8





0
4
4
3
3
2
3





1
3
3
3
3
2
4





2
2
2
3
3
2
5





3
1
1
3
3
2
6





4
0
0
3
3
2
7





0
4
6
2
2
3
0





1
3
5
2
2
3
1





2
2
4
2
2
3
2





3
1
3
2
2
3
3





4
0
2
2
2
3
4





3
1
5
1
1
4
0





4
0
4
1
1
4
1




.

Only two of these elements are at least 2 in every co-ordinate:

2
2
2
3
3
2
5


, and



2
2
4
2
2
3
2


.

These are the two elements of Fy1 with two added in every co-ordinate. Figure 6.2b
shows these two elements in blue, and the other elements of Fy2 in grey, and comparing
the two panels shows the obvious correspondence between these two interpretations of an
m-Markov sub-basis.

6.2.2 m-Markov basis simulation

In Section 4.3 we saw that for a set to be a Markov basis, we need only show that it
connects z− to z+ for each element z of some other known Markov basis, such as the
Graver basis. The same argument applies when determining whether, given some m ≥ 0,
a set B is an m-Markov basis. If we can show that for each element z of some known
Markov basis M, we can use B to construct a walk between z− and z+ that only visits
points that are each at least −m, then B is an m-Markov basis.

Theorem 6.2.3. Let A be a configuration matrix and let M be a Markov basis for A,
and let m ≥ 0. Let B be a set of moves in kerZ(A). Then B is an m-Markov basis if
and only if for all z ∈M, moves in B can be used to construct a walk from z− to z+ that
visits only points that are at least −m.

Proof. Suppose first that for each z ∈ M, B can be used to construct a walk from z−

to z+ that only visits points that are at least −m. By the proof of the Fundamental
Theorem of Markov Bases (Theorem 2.4.2),

Tm+z− − Tm+z+ ∈ IB.

By Theorem 6.2.1, in order to show that B is an m-Markov basis we must show that in
all fibres, B connects all pairs of points m + x1, m + x2 where x1,x2 ∈ Zr≥0. Given such
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a pair, the set M is a Markov basis, so we have T x1 − T x2 ∈ IM, and we can factor out
common factors, leaving the positive and negative parts of a kernel element z:

T x1 − T x2 =
∑
z∈M

T x0(T z− − T z+)

for some x0 ∈ Zr≥0. Multiplying by Tm, we have

Tm(T x1 − T x2) =
∑
z∈M

T x0Tm(T z− − T z+) ∈ IB,

since Tm(T z− − T z+) ∈ IB for each z ∈M. Therefore,

Tm(T x1 − T x2) ∈ IB,

so B is an m-Markov basis as required.
Suppose now that there exists z ∈ M such that B cannot connect z− to z+ with a

walk that visits points that are at least −m. Then there exists y = Az+ = Az− that
contains two points z−, z+ ∈ Fy that are not connect by a walk using B that only visits
points that are at least −m. Then by definition B is not an m-Markov basis.

Using this theorem requires that we have knowledge of some Markov basis. Failing
this, we can instead prove connectivity via simulating elements of the integer kernel.

Theorem 6.2.4. Let A be a configuration matrix, let m ∈ Zn≥0, and let B be a set of
moves in kerZ(A). Then B is an m-Markov basis if and only if for all z ∈ kerZ(A), moves
in B can be used to construct a walk from z− to z+ that only visits points that are at least
−m.

Proof. Suppose first that B is an m-Markov basis. For any z ∈ kerZ(A), we can set
y = Az+ = Az−, and z−, z+ ∈ Fy. From the definition of an m-Markov basis, B connects
z− to z+ with a walk that visits only points that are at least −m.

Suppose now that for any z ∈ kerZ(A), B can be used to construct a walk from z− to
z+ that only visits points that are at least −m. By the Fundamental Theorem of Markov
Bases 2.4.5,

Tm(T z+ − T z−) ∈ 〈Tu+ − Tu−
: u ∈ B〉 = IB.

We need to show that B is an m-Markov basis. Let y ∈ Zn≥0 be given. If Fy is empty
or contains only one element, we are done. If not, let x1,x2 be any pair of points in Fy.
We can write x1−x2 = z = z+− z−, where z ∈ kerZ(A). We set x0 = x1− z+ = x2− z−.
Then

Tm(T x1 − T x2) = T x0Tm(T z− − T z+) ∈ IB,

so x1 and x2 are connected by a walk using B that only visits points that are at least
−m. Therefore B is an m-Markov basis, as required.
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6.3 The Minus One Conjecture

Following Definition 6.1.3, a 1-Markov basis for a configuration matrix A is a collection
of moves that, given any y ∈ Zn≥0, can be used to construct a random walk that visits
every point in Fy if we allow the walk to step outside Fy to also visit points with a −1
in some co-ordinate.

We conjecture that any column partition lattice bases of a unimodular configuration
matrix is a 1-Markov basis. In fact, due to the nature of column partition lattice bases,
we can strengthen this conjecture. Suppose that a column partition lattice basis U of a
configuration matrix A is a 1-Markov basis, and suppose that in order to walk between
any pair of points we can construct the walk such that there are no moves that are later
undone. Then we know that during the walk, each of the co-ordinates corresponding to
columns of A in the A2 partition move from either 1 to 0, or 0 to 1, if they move at all.
We never visit a point whose value in this co-ordinate is anything other than zero or one.
For the purposes of lower bounds we are therefore only concerned with the co-ordinates
corresponding to the columns of A1. Depending on the dimensions of the configuration
matrix, this can be a very small proportion of the total number of co-ordinates.

The Minus One Conjecture requires the following definition:

Definition 6.3.1 (The vector m(1,0)). Let A be a configuration matrix. Given a par-
tition of the columns of A into A1 and A2, the vector m(1,0) is the vector containing 1
in the entries corresponding to columns of A in the A1 partition, and 0 in the entries
corresponding to columns in the A2 partition.

Conjecture 6.3.2 (The Minus One Conjecture). Let A ∈ {0, 1}r×n be a unimodular
configuration matrix and let U be a column partition lattice basis for A. Then U is an
m(1,0)-Markov basis.

Example 6.3.3. Consider again the unimodular configuration matrix and column parti-
tion lattice basis from Example 6.1.1, where

A =

0 1 1 0 1
1 1 1 1 0
0 0 1 1 0


and

U =


−1 1

1 −1
−1 0

1 0
0 1

 .
Then the vector m(1,0) is given by m(1,0) =

[
1 1 1 0 0

]ᵀ
. This column partition lattice

basis is an e1-Markov basis. Since m(1,0) ≥ e1, this basis is also an m(1,0)-Markov basis.

For larger matrices, the order in which the moves are used may be important, as
illustrated by the following example.
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1 2 3 4 5
1 2 3 4

1 2 3 4

5 6 7

8 9

10

Figure 6.3: The four-link linear network in Example 6.3.4. Underbraces show the allowed
paths.

Example 6.3.4. Let A be the link-path incidence matrix of the four-link linear traffic
network shown in Figure 6.3. Then

A =


1 0 0 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1
0 0 1 0 0 1 1 1 1 1
0 0 0 1 0 0 1 0 1 1

 ,
and A is totally unimodular. The matrix

U =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 −1 0 1 0
0 0 −1 1 0 −1
1 −1 0 0 0 −1
−1 0 1 −1 −1 1


defines a column partition lattice basis. Setting y =

[
1 1 1 0

]ᵀ
, we have

Fy =





0
0
1
0
1
0
0
0
0
0


,



1
0
0
0
0
1
0
0
0
0


,



1
1
1
0
0
0
0
0
0
0


,



0
0
0
0
0
0
0
1
0
0





.
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We will call the first two elements of Fy x1 and x2 respectively. We wish to see if U
connects x1 to x2 with a walk with a lower bound of −1.

The signed moves in U required to walk from x1 to x2 are given by the columns of the
matrix

Ux =



1 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 0
0 0 −1 0
0 0 0 1
0 1 −1 0
0 1 0 −1
1 0 0 −1
−1 −1 1 1


.

If the moves are used in the order given, then after two steps the walk is at a point with
−2 in the tenth co-ordinate. Switching either of the first two columns with either of the
last two columns gives an ordering of moves such that the walk visits only points with at
least −1 in all co-ordinates.

The following example shows that the U matrix having all entries in {0,±1} does not
guarantee that the column partition lattice basis it defines is an m(1,0)-Markov basis.

Example 6.3.5. Consider the matrix

A =



1 0 0 0 0 0 1 1 0 0 0 0 1 1
0 1 0 0 0 0 1 0 1 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1 0 1 1 0
0 0 0 1 0 0 0 1 1 0 1 0 0 1
0 0 0 0 1 0 0 1 0 1 1 0 1 0
0 0 0 0 0 1 0 0 1 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1


,
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which has a column partition lattice basis

U =



−1 −1 1 1
−1 1 −1 1
−1 1 1 −1

1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1



.

Setting y =
[
2 2 2 2 2 2 1 1 1 1

]ᵀ
, we have

Fy =
{[

0 0 0 0 0 0 1 1 1 1 0 0 0 0
]ᵀ
,[

0 0 0 0 0 0 0 0 0 0 1 1 1 1
]ᵀ}

.

Every walk between the two elements of Fy using only moves in U must visit a point with
a −2 in one of the first six co-ordinates. Therefore U is not an m(1,0)-Markov basis. The
matrix U is non totally unimodular, so it does not constitute a counterexample to the
Minus One Conjecture.

6.3.1 The internal points

In Section 6.2.1 we discussed two possible interpretations of an m-Markov basis. The
second is that in any given fibre, B connects all of the points that are at least m to each
other with a walk that does not leave the fibre. These points are in some sense internal
to the polytope. In terms of column partition lattice bases that are m(1,0)-Markov bases,
this means all of the points in Fy that do not have a zero in any of the A1 co-ordinates.
Geometrically, these are the points that do not lie on one of the A1 bounding hyperplanes.

We demonstrate these two interpretations with an example.

Example 6.3.6. Consider again the configuration matrix from Example 6.1.1,

A =

0 1 1 0 1
1 1 1 1 0
0 0 1 1 0

 .
This is a link-path incidence matrix for the three-link linear network, where we have
removed the path consisting of just the third link. The column partition lattice basis in
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0 1 2 3

0

1

2

3

x4

x5

(a) The Z-polytope for y =
[
1 1 1

]ᵀ
.

0 1 2 3

0

1

2

3

x4

x5

(b) The Z-polytope for y =
[
3 4 2

]ᵀ
.

Figure 6.4: The Z-polytopes from Example 6.3.6 showing the two interpretations of a
m(1,0)-Markov sub-basis.

that example is given by

U =


−1 1

1 −1
−1 0

1 0
0 1

 .
Setting y1 =

[
1 1 1

]ᵀ
produces the fibre

Fy1 =




0
0
0
1
1

 ,


0
0
1
0
0


 .

This fibre is shown Figure 6.4a. The elements of Fy1 are shown in blue; the points in grey
are the solutions to Ax = y for y =

[
1 1 1

]ᵀ
that are at least −1 in the A1 co-ordinates.

A walk that may also visit the grey points can connect the elements of Fy1 .
In Figure 6.4b, we see the Z-polytope for

y2 = y1 + A1

[
1 1 1

]ᵀ
=
[
3 4 2

]ᵀ
.

The points in Fy2 that are at least 1 in the A1 co-ordinates are shown in blue. A random
walk through the fibre can connect these points. Note the correspondence between the
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points that are guaranteed to be connected and the points used to connect them under
each interpretation.

6.3.2 Column orderings

Theorem 6.2.3 states that we can prove that a collection of moves is an m-Markov basis
by showing that it can simulate any move in some known Markov basis M with a walk
that visits only points that are at least −m. If we have a column partition lattice basis
and wish to prove that it is an m-Markov basis, we may need to show that we can simulate
particular Markov basis moves. In this section we look at simulating an integer kernel
element z using moves from a column partition lattice basis U , and present a condition
for z+ and z− to be connected with a walk that uses U and only visits points that are at
least m.

We first give a general theorem for column partition lattice bases with all integer
entries. A condition on the configuration matrix and choice of partition that guarantees
that U has all integer entries can be found in Theorem 3.4.5.

Theorem 6.3.7. Let A be an n×r configuration matrix and let π be a partition of columns
of A. Let U ∈ Zr×(r−n) be the column partition lattice basis for A induced by π.

Let m ∈ Zn≥0 be a vector, and construct the vector

m0 =

[
m
0

]
∈ Zr≥0.

Let z be an element of kerZ(A).
Construct the matrix (A−1

1 A)z by collecting |zi| copies of the ith column of A−1
1 A for

i = 1, . . . , r, where each column is signed according to the sign of −zi. If we can place
the s columns of (A−1

1 A)z in an order a1, . . . , as (reindexed to reflect this order) such that
each of the sums

∑j
i=1 ai satisfies

j∑
i=1

ai ≥ −m for j = 1, . . . , s,

then U can simulate z with a walk that only visits points that are at least −m0.

Proof. We need to show that z− and z+ are connected with a walk that visits points
that are at least m0. The matrix U is a column partition lattice basis, so the moves
in U required to simulate z are given by z2, the co-ordinates of z correspond to the A2

part of A. The moves required are ziui for each zi ∈ z2, so we need to show that these
moves can be ordered ui1 , . . . ,uik such that for each j = 1, . . . , k, each of the partial sums
z− +

∑j
m=1 zimuim satisfies

z− +

j∑
i=1

ziui ≥ −m.
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By hypothesis, for each j = 1, . . . , s, we have

j∑
i=1

ai ≥ −m.

If some ap ≥ 0, then for j = 1, . . . , p− 1 we have

ap +

j∑
i=1

ai ≥ −m.

In other words, we can move all of the non-negative ai to the start of the sequence without
breaking the inequalities.

We can move the non-positive entries to the end of the sequence, too. If for some q
we have aq ≤ 0, then for j = q + 1, . . . , s we have

q−1∑
i=1

ai +

j∑
q+1

ai ≥ −m.

The columns of A−1
1 Az that derive from the A1 part of A all have one non-zero entry,

so they all meet one of these two conditions. We move the non-negative columns that
derive from the A1 part of A to the beginning of the sequence and combine them by
summing, and the non-positive ones to the end and sum them. The sequence is now of
the form  ∑

ei∈A−1
1 Az

ei

 , ap, . . . , aq,

 ∑
−ei∈A−1

1 Az

−ei


for some indices p and q. Each vector ai is equal to the first n entries of a vector u ∈ U .
The sum of this sequence is 0, and the sum of those elements ai is equal to the first n
entries of z, so ∑

ei∈A−1
1 Az

ei = ẑ− and
∑

−ei∈A−1
1 Az

ei = ẑ+,

where the caret means only the first n entries. Rewriting the sequence in these terms
gives

ẑ−, ûp, . . . , ûq, ẑ
+,

and each of the partial sums is at least −m.
When proving that a column partition lattice basis is an m0-Markov basis, we are

only interested in the first n terms. This means that there is a sequence

z−,up, . . . ,uq, z
+,

such that each of the partial sums is a least −m, so U is an m0-Markov basis.
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This theorem can be simplified when applied to proving Conjecture 6.3.2. If the
configuration matrix is unimodular, we can choose the Graver basis as our Markov basis.
Each g ∈ GA has all entries either zero or ±1, and so at most one copy of each column of
A−1

1 A is needed to construct (A−1
1 A)g.

Corollary 6.3.8. Let A be an n× r unimodular configuration matrix, let π be a partition
of the columns of A, and let m(1,0) be defined as in Definition 6.3.1. Let g be an element
of GA, and let U be the column partition lattice basis for A induced by π. Construct the
matrix (A−1

1 A)g by collecting the columns −giai for each i ∈ supp(g), where ai is the ith
column of A−1

1 A. If we can place the columns of (A−1
1 A)g in an order a1, . . . , as such that

for j = 1, . . . , s, each of the sums
∑j

i=1 ai is at least −1, then U connects g− to g+ with
a walk that only visits points whose co-ordinates are at least −m(1,0).

There are a few advantages of using this condition over the usual condition of finding
an ordering of the necessary moves ui ∈ Ug in U such that each of the partial sums
g− +

∑j
i=1 ui satisfies

g− +

j∑
i=1

ui ≥m(1,0) for j = 1, . . . , k.

Some of these are:

1. The matrix (A−1
1 A)g is totally unimodular.

2. The sum of the entries in each row of (A−1
1 A)g is zero.

3. If A is the link-path incidence matrix of a polytree, then the columns of A−1
1 A and

(A−1
1 A)g correspond to paths on another related polytree (see Section 5.3.1).

The first property is true of the matrix Ug, but not the augmented matrix
[
g− Ug g+

]
;

and the second is true of
[
g− Ug g+

]
but not Ug. In the proofs in Section 6.4.4, these

two properties mean that operating on columns of (A−1
1 A)g instead of Ug or

[
g− Ug g+

]
significantly reduces the number of calculations required.

The third property is used in the proof of Theorem 6.4.5.

We illustrate the correspondence between ordering columns of Ug and columns of
(A−1

1 A)g with the following example.

Example 6.3.9. Consider the four-link linear network from Example 6.3.4. The config-
uration matrix is

A =


1 0 0 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1
0 0 1 0 0 1 1 1 1 1
0 0 0 1 0 0 1 0 1 1

 ,
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and a column partition lattice basis is given by

U =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 −1 0 1 0
0 0 −1 1 0 −1
1 −1 0 0 0 −1
−1 0 1 −1 −1 1


.

Suppose we wish to simulate the move g =
[
0 1 1 0 0 0 0 −1 −1 1

]ᵀ ∈ GA.

The moves in U required are u2 and u3. If we want to simulate g using U , we need to
place the moves

εi1ui1 , εi2ui2

in an order such that the partial sums

g−

g− + εi1ui1
g− + εi1ui1 + εi2ui2

never drop below −1 in any entry. The εi represent the signs of the moves.

Together with g− and g+, the list of columns to be ordered is as shown in Table 6.1.
When the moves are ordered (u2,u3), the partial sums never go below −1 in any co-

−g g− u2 u3 −g+

0 0 0 0 0
−1 0 1 0 −1
−1 0 0 1 −1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 −1 0
1 1 0 −1 0
1 1 −1 0 0
−1 0 0 1 −1

Table 6.1: The moves required to simulate g in Example 6.3.9.
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ordinate. The matrix A−1
1 A is given by

A−1
1 A =


0 −1 1 0 −1 0 1 0 0 0
0 0 1 −1 0 1 0 1 0 0
−1 1 0 0 0 1 0 0 1 0

1 0 −1 1 1 −1 0 0 0 1

 ,
so the columns of A−1

1 A that g specifies sum to 0 are given by

(A−1
1 A)g =


1 −1 0 0 0
0 −1 1 0 0
−1 0 0 1 0

0 1 0 0 −1

 .
Under this ordering of columns, no partial sum goes below −1.

Clearly, we can then move any column ei to the beginning and −ei to the end of the
sequence. Doing so can only increase or leave unchanged the partial sums. Keeping the
order of the two remaining columns produces

0 0 1 −1 0
1 0 0 −1 0
0 1 −1 0 0
0 0 0 1 −1

 .
Again, the sequence of partial sums of this ordering of columns never goes below −1.

There are two columns ei at the beginning of the sequence; summing these produces
the A1 part of g−. The A1 part of −g+ is given by the fifth column. This ordering then
corresponds to using the move u2 first and the move u3 second to simulate g with U .

6.4 Proofs

In this section we give some proofs of specific cases of the Minus One Conjecture, and
in Section 6.4.3 we give a proof of a weaker lower bound for unimodular configuration
matrices.

6.4.1 Radical ideals

One condition that guarantees that a lattice basis is a 1-Markov basis is given by Chen
et al. [12]. Chen et al. were focused solely on resampling contingency tables, but their
result applies to configuration matrices for general statistical linear inverse problems. The
condition requires the following definition.

Definition 6.4.1 (Radical ideal [13]). An ideal I is radical if fm ∈ I for some integer
m ≥ 1 implies f ∈ I.
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Proposition 6.4.2 (Proposition 0.2.1 in Chen et al. [12]). Suppose IB is a radical ideal,
and suppose the moves in B form a lattice basis. Then for any y ≥ 0 the Markov chain
using the moves in B that allows entries to drop down to −1 connects a set that includes
the set Fy.

Any column partition lattice basis that generates a radical ideal is therefore a 1-
Markov basis. As we will see, because it is a column partition lattice bases, it is also a
m(1,0)-Markov basis. If a proof could be found that all column partition lattice basis of
unimodular configuration matrices generate radical ideals, this would constitute a proof
of the Minus One Conjecture.

To prove Proposition 6.4.2 we require the following lemma, which is a standard fact
of factor ring multiplication.

Lemma 6.4.3. Let I be an ideal, let X − Y ∈ I, and let a ∈ N. Then Xa − Y a ∈ I.

Proof. Because X − Y ∈ I, we have

Xa − Y a = (X − Y )(Xa−1 +Xa−2Y +Xa−3Y 2 + · · ·+X2Y a−3 +XY a−2 + Y a−1)

∈ I
as required.

We can now give the proof.

Proof of Proposition 6.4.2. Using the proof of Theorem 2.4.5, we need to show that
T 1(T x1 − T x2) ∈ IB whenever Ax1 = Ax2. First we will show that a monomial mul-
tiple of T x1−x2 lies in IB.

The moves in B form a lattice basis, so for any two points x1,x2 ∈ Fy we have

x2 − x1 =
k∑
i=1

aiui

for ai ∈ Z and ui ∈ B. We will assume without loss of generality that the lattice basis
elements ui are oriented in the direction we wish to use them, so that each ai ∈ N. Then

x1 − x2 =
k∑
i=1

ai(u
+
i − u−i )

T x1−x2 =
k∏
i=1

T ai(u
+
i −u

−
i )

T x1

T x2
=

k∏
i=1

T aiu
+
i

T aiu
−
i

T x1−x2 − 1 =
k∏
i=1

T aiu
+
i

T aiu
−
i

− 1

T x1 − T x2 = T x2

(
k∏
i=1

T aiu
+
i

T aiu
−
i

− 1

)
.
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So we need to show that there is a monomial Tmk such that

TmkT x2

(
k∏
i=1

T aiu
+
i

T aiu
−
i

− 1

)
∈ IB.

We will proceed using induction. For the base case, let k = 1 and choose Tm1 = T a1u
−
1 .

Then

Tm1T x2

(
k∏
i=1

T aiu
+
i

T aiu
−
i

− 1

)
= T a1u

−
1 T x2

(
T a1u

+
1

T a1u
−
1

− 1

)
= T x2

(
T a1u

+
1 − T a1u

−
1

)
∈ IB

by Lemma 6.4.3, since Tu+
1 − Tu−

1 ∈ IB.
For the induction, we assume that there is Tmk−1 such that

Tmk−1T x2

(
k−1∏
i=1

T aiu
+
i

T aiu
−
i

− 1

)
∈ IB.

We now need to show the same is true for k, and we choose Tmk = Tmk−1
∏k

i=1 T
aiu

−
i .

Then

TmkT x2

(
k∏
i=1

T aiu
+
i

T aiu
−
i

− 1

)
= TmkT x2

(
k∏
i=1

T aiu
+
i

T aiu
−
i

−
k−1∏
i=1

T aiu
+
i

T aiu
−
i

+
k−1∏
i=1

T aiu
+
i

T aiu
−
i

− 1

)

= TmkT x2

(
T aku

+
k

∏k−1
i=1 T

aiu
+
i∏k

i=1 T
aiu

−
i

− T aku
−
k

T aku
−
k

k−1∏
i=1

T aiu
+
i

T aiu
−
i

+
k−1∏
i=1

T aiu
+
i

T aiu
−
i

− 1

)

= TmkT x2

(
T aku

+
k

∏k−1
i=1 T

aiu
+
i∏k

i=1 T
aiu

−
i

− T aku
−
k

∏k−1
i=1 T

aiu
+
i∏k

i=1 T
aiu

−
i

+
k−1∏
i=1

T aiu
+
i

T aiu
−
i

− 1

)

= TmkT x2

(∏k−1
i=1 T

aiu
+
i∏k

i=1 T
aiu

−
i

(
T aku

+
k − T aku

−
k

)
+

k−1∏
i=1

T aiu
+
i

T aiu
−
i

− 1

)

= T x2Tmk−1

(
k−1∏
i=1

T aiu
+
i

)(
T aku

+
k − T aku

−
k

)
+

(
k∏
i=1

T aiu
−
i

)
T x2Tmk−1

(
k−1∏
i=1

T aiu
+
i

T aiu
−
i

− 1

)
.

Because both T aku
+
k −T aku−

k ∈ IB by Lemma 6.4.3 and Tmk−1

(∏k−1
i=1

Taiu
+
i

Taiu
−
i

− 1

)
∈ IB, we

have

TmkT x2

(
k∏
i=1

T aiu
+
i

T aiu
−
i

− 1

)
∈ IB
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as required.
We have shown that for any x1,x2 ∈ Fy, there is a monomial Tm such that

Tm(T x1 − T x2) ∈ IB.

We now need only to show that if IB is radical, then this implies that

T 1(T x1 − T x2) ∈ IB.

Let n = maxm∈mm, and let n be the vector whose entries are all n. Then

Tn(T x1 − T x2) ∈ IB
Tn(T x1 − T x2)n ∈ IB

(T 1(T x1 − T x2))n ∈ IB.

But IB is radical, so T 1(T x1 − T x2) ∈ IB as required.

We can apply this result to prove the Minus One Conjecture in cases where the column
partition lattice basis generates a radical ideal.

Theorem 6.4.4 (The Minus One Theorem for column partition lattice bases that generate
a radical ideal). Let A ∈ {0, 1}r×n be a unimodular configuration matrix and let U be a
column partition lattice basis for A. Suppose that the ideal IU is radical. Then for all
y ∈ Zn≥0, the Markov chain using the moves in U that allows entries to drop down to −1
in the first n co-ordinates connects a set that includes the set Fy.

Proof. Following the proof of Proposition 6.4.2, we can see that each move ui is required
exactly ai times, and no other moves are required. This means that there is a path
between x1 and x2 that requires no detours, or moves that are later undone.

By Proposition 6.4.2, none of the entries in any co-ordinate drops below −1, so it
remains to check that none of the co-ordinates n+ 1, . . . , r drops below 0. In a path that
uses a column partition lattice basis, for i = n+1, . . . , r the ith co-ordinate is affected only
by the basis element un−i. When following such a path, the entries in the ith co-ordinate
make up either a non-increasing or non-decreasing sequence from xi1 to xi2 using steps of
size uin−i. Because xi1,x

i
2 ≥ 0, the ith entry never goes below zero, as required.

6.4.2 Network matrices

One of our key motivating applications in studying Markov bases comes from network
tomography. Link-path incidence matrices, the configuration matrices of interest in net-
work tomography, were the subject of Chapter 5. Section 5.3 covered traffic networks on
a type of graph called a polytree. The link-path incidence matrices of polytrees are non-
negative network matrices. Theorem 5.3.5 shows that they are totally unimodular. In this
section we prove the Minus One Conjecture for the particular case of network matrices
(Definition 5.3.2), and therefore for the link-path incidence matrices of polytrees.
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Schrijver [40, Section 20.1] notes the existence of polynomial time algorithms for recog-
nising network matrices, designed by Auslander and Trent [4, 5], Gould [24], Tutte [47, 46,
48], and Bixby and Cunningham [7]. As well as being useful for analysis of traffic on poly-
trees, this theorem also shows that the Minus One Conjecture holds for any configuration
matrix or U matrix that these algorithms recognise as a network matrix.

Theorem 6.4.5. Let A be a network matrix, and let U be a column partition lattice basis
for A. Then U is an m(1,0)-Markov basis, where m(1,0) is as defined in Definition 6.3.1.

Proof. Let PA be a polytree with link-path incidence matrix A. Then A is also a net-
work matrix represented by the polytree PA, and G, the graph whose edges show the
origin/destination pairs of the allowed paths in the network. By Theorem 5.3.5, A is
totally unimodular. Let U be a column partition lattice basis for A under the column
partition π. By Theorem 5.3.9, A = A−1

1 A =
[
I C

]
is a network matrix represented by

another polytree PA−1
1 A and G.

Let g ∈ GA be given — the unimodularity of A means g ∈ {0,±1}r. This g takes a
subset of columns of A−1

1 A and assigns them a multiplier of ±1 such that the sum is 0.
Construct the matrix (A−1

1 A)g by taking this subset of signed columns of A−1
1 A. By

Theorem 6.3.7, we must show that the k columns of (A−1
1 A)g can be ordered

ai1 , . . . , aik

so that the sequence of partial sums
∑m

j=1 aij satisfies

m∑
j=1

aij ≥ −1

for m = 1, . . . , k, where 1 is the vector with all entries equal to 1.
By Corollary 5.3.11, we can order the columns of (A−1

1 A)g so that the corresponding
paths on PA−1

1 A are joined nose to tail. If we follow the journey they define, then we
must traverse any particular edge in alternate directions each time we encounter it. In
any row of (A−1

1 A)g, the non-zero entries record in which paths the corresponding edge
is traversed, and the sign gives the direction. Therefore in every row the non-zero entries
alternate in sign.

Such an ordering of the columns of (A−1
1 A)g gives an ordering of the columns of U

such that in the sequence of partial sums, all entries alternate between either 0 and 1 or
0 and −1.

We illustrate this proof with the following example.

Example 6.4.6. Consider the four-link linear network and column partition lattice basis
from Example 6.3.9. Then the configuration matrix A is given by

A =


1 0 0 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1
0 0 1 0 0 1 1 1 1 1
0 0 0 1 0 0 1 0 1 1


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A B C D E

1

2 3

4

Figure 6.5: The polytree PA−1
1 A from Example 6.4.6.

and the matrix A−1
1 A is given by

A−1
1 A =


0 −1 1 0 −1 0 1 0 0 0
0 0 1 −1 0 1 0 1 0 0
−1 1 0 0 0 1 0 0 1 0

1 0 −1 1 1 −1 0 0 0 1

 .
The matrix A−1

1 A is a network matrix represented by the polytree PA−1
1 A and the graph

G, shown in Figure 6.5.
Suppose we wish to simulate the move g =

[
1 0 0 1 0 1 0 0 0 −1

]ᵀ ∈ GA.
Then the matrix (A−1

1 A)g is given by

(A−1
1 A)g =


0 0 0 0
0 1 −1 0
1 0 −1 0
−1 −1 1 1

 .
The partial sums of these columns in the order given includes a −2 in the fourth co-
ordinate.

The columns of (A−1
1 A)g refer to a closed walk on PA−1

1 A. Respectively, they refer to
the paths:

• (B)→ (A)

• (E)→ (D)

• (D)→ (B)

• (A)→ (E)

These paths can be placed nose to tail in the following order:

(A)→ (E)→ (D)→ (B)→ (A),

which requires use of the edges in PA−1
1 A in the order (4,−4, 2,−2, 4,−3, 3,−4), where a

negative sign indicates the edge is traversed in the opposite direction to its orientation.
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Each edge in PA−1
1 A is traversed in alternating directions each time it is encountered.

Ordering the columns of (A−1
1 A)g accordingly produces the matrix

0 0 0 0
0 0 −1 1
0 1 −1 0
1 −1 1 −1

 ,
where in each row the non-zero entries alternate in sign. In each row, the sequence of
partial sums therefore alternates between 0 and 1, or 0 and −1, and therefore never drops
below −1.

6.4.3 A weaker lower bound

In this section we give a lower bound on the co-ordinates of points we are required to
visit in a walk connecting any two points in any given fibre using a column partition
lattice basis for a unimodular configuration matrix. The lower bound comes from the
upper limit on the number of column partition lattice basis steps required to simulate any
Graver basis element given in Theorem 3.5.15.

Theorem 6.4.7. Let A be a unimodular configuration matrix and let U be a column
partition lattice basis for kerZ(A). Then U is an m0-Markov basis, where m0 is the vector
made up of m in the first n entries and 0 in the other entries, where

m = min

(⌊
r − n

2

⌋
,

⌊
n+ 1

2

⌋)
.

Proof. The matrix U is a column partition lattice basis, so in co-ordinates n+1, . . . , r, the
moves simulating a direct walk (that is, one with no moves that are later undone) all have
the same sign. In these co-ordinates the walk travels from x1 to x2 in a non-decreasing
or non-increasing sequence, so they never go below 0. We are therefore only concerned
with co-ordinates 1, . . . , n. By Theorem 6.2.3, we only need to worry about simulating
elements of a known Markov basis. We choose the Graver basis, GA.

The matrix A is unimodular, so by Theorem 3.5.9 any g ∈ GA is a circuit, and it
has all entries in {0,±1}. Therefore each step in a walk using a column partition lattice
basis alters each co-ordinate by at most ±1. By Theorem 3.5.15, there are at most
k = min(r − n, n+ 1) steps in any direct walk that simulates a Graver basis element.

Suppose to the contrary that there is a Graver basis element g such that a direct walk
W simulating g visits a point x with ith co-ordinate less than −m. Since g−i ,g

+
i ≥ 0;

xi ≤ −m − 1; and the ith co-ordinate can change by at most 1 at each step, there must
be at least m + 1 steps from g− to x and then at least m + 1 steps from x to g+. But
then W is at least 2m+ 2 > k steps long, contradicting Theorem 3.5.15.
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Example 6.4.8. Consider the four-link linear network which has unimodular configura-
tion matrix

A =


1 0 0 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1
0 0 1 0 0 1 1 1 1 1
0 0 0 1 0 0 1 0 1 1

 ,

and a column partition lattice basis

U =



−1 0 0 −1 0 −1
−1 −1 0 −1 −1 −1

0 −1 −1 −1 −1 −1
0 0 −1 0 −1 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

For this configuration matrix we have n = 4 and r = 10, so by Theorem 6.4.7 a direct
walk between any pair of points can visit at worst a point with some co-ordinate −m,
where

m = min

(⌊
r − n

2

⌋
,

⌊
n+ 1

2

⌋)
= min

(⌊
6

2

⌋
,

⌊
5

2

⌋)
= min (3, 2)

= 2.

We may wish to simulate g =
[
0 0 0 1 1 1 −1 −1 0

]ᵀ ∈ GA. Then the points
g− and g+, and the moves in U required to connect them, are given in Table 6.2.
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−g g− u1 u2 u3 −u4 −u5 −g+

0 0 −1 0 0 1 0 0
0 0 −1 −1 0 1 1 0
0 0 0 −1 −1 1 1 0
0 0 0 0 −1 0 1 0
−1 0 1 0 0 0 0 −1
−1 0 0 1 0 0 0 −1
−1 0 0 0 1 0 0 −1

1 1 0 0 0 −1 0 0
1 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0

Table 6.2: The moves required to simulate g in Example 6.4.8.

With this ordering of moves the walk visits points with −2 in the x2 and x3 co-
ordinates. It is not possible to reorder the columns such that the walk visits a point with
−3 in some co-ordinate.

Of course, a walk between g− and g+ need not step outside the fibre at all, since U is
a Markov basis by Theorem 4.2.1.

6.4.4 Proofs for small matrices

In this section we give a proof that for any unimodular configuration matrix A, for column
partition lattice basis U , if some Graver basis element g has supp(g) ≤ 6, then it can be
simulated using U with a walk that only visits points that are at least m(1,0). That is,
it can be simulated under the conditions of the Minus One Conjecture. For unimodular
matrices, any Graver basis element is also a column partition lattice basis element and so
by Theorem 3.5.10 it has support of size at most n+ 1, where n is the number of rows of
A. Therefore, the Minus One Conjecture holds for all unimodular configuration matrices
with five or fewer rows.

In Example 6.3.5 we gave an example of a column partition lattice basis U ∈ {0,±1}r×(r−n)

that is not an m(1,0)-Markov basis. The first six rows of the matrix U were made up of
the submatrix

R =


−1 −1 1 1
−1 1 −1 1
−1 1 1 −1

1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

 .

The move z =
∑4

i=1 ui is a counterexample to U being a m(1,0)-Markov basis. This is
because the moves required to simulate z with U are u1, u2, u3 and u4, and any ordering
of these moves means that in one of the co-ordinates in R, the −1 lower bound is broken.
The sum of the entries in each row of R is equal to 0, so in co-ordinates i = 1, . . . , 6, we
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have z−i = z+
i = 0. For any permutation π of the columns of U , there is a row r in R

such that π(r) =
[
−1 −1 1 1

]
, and the walk corresponding to the ordering π breaks

the −1 lower bound in that co-ordinate.
Every row in R is required to be in U for the walk simulating z to necessarily break

the −1 lower bound. If some row r in R were not in U , then the column permutation π
for which π(r) =

[
−1 −1 1 1

]
would no longer break the −1 lower bound. Moreover,

when using a column partition lattice basis U ∈ {0,±1}r×4 to simulate a move z that
requires all four moves from U ,

[
−1 −1 1 1

]
is the only potential row of a reordered

U that breaks the −1 lower bound.

Observation 6.4.9. If a column partition lattice basis U ∈ {0,±1}r×4 is not an m(1,0)-
Markov basis, it must have R as a submatrix.

The matrix R is not totally unimodular, and so neither is U . For any row r in
R, there is only one other row that when paired with r does not yield a non-totally
unimodular submatrix. For any given U , we need only check, for example, that for the
column permutations π1 = 1234 and π2 = 1324 there exist rows r1 and r2 of U such that
π1(r1) = π2(r2) =

[
−1 −1 1 1

]
before we find a non-totally unimodular matrix.

In this section we aim to generalise this approach to show that column partition lattice
bases meeting certain conditions are m(1,0)-Markov basis. We demonstrate that for a
unimodular configuration matrix A and column partition lattice basis U , we can simulate
any Graver basis element g ∈ GA with a walk using U that never visits points less than
m(1,0) if g has sufficiently small support. We use k to mean the largest possible size of the
support of g, so it is equal to the number of columns of (A−1

1 A)g. We demonstrate this
by contradiction: we assume that some k column matrix (A−1

1 A)g breaks the m(1,0) lower
limit for every ordering of its columns, and show by enumeration of cases that (A−1

1 A)g
cannot be totally unimodular.

The Graver basis is known to be a Markov basis. By Theorem 6.2.3, if we can show
that U is capable of simulating all of the moves in the Graver basis with a walk that only
visits points that are at least −m(1,0), then U is an m(1,0)-Markov basis. The matrix A is
unimodular, so by Theorem 3.5.10, g is also an element of some column partition lattice
basis of A and therefore k ≤ n+ 1. A proof that all Graver basis elements g with at most
k non-zero entries can be simulated in this way is therefore a proof of the Minus One
Conjecture for configuration matrices where the number of rows n satisfies n ≤ k − 1.

By Corollary 6.3.8, we can simulate g if we can place the k columns of (A−1
1 A)g in an

order
ai1 , . . . , aik

such that for m = 1, . . . , k the partial sums
∑m

j=1 aij satisfy the inequality

m∑
j=1

aij ≥ −1. (6.4.1)

For a given k, we will take an arbitrary (A−1
1 A)g matrix and assume that it cannot

have its columns ordered in such a way that inequality 6.4.1 is satisfied. If this is the



6.4. PROOFS 195

case, then for every ordering of the columns there must be at least one row in (A−1
1 A)g

that breaks the inequality. For each k, there is a finite number of rows that do this; for
every ordering, at least one of these must appear. We can enumerate the potential rows
and collect them into the matrix Rk. For example, if k = 4, then to break the inequality
every ordering of the columns of (A−1

1 A)g must contain the row

R4 =
[
−1 −1 1 1

]
,

and if k = 5, every ordering of columns of (A−1
1 A)g must contain at least one row of the

matrix

R5 =


−1 −1 1 1 0
−1 −1 1 0 1
−1 −1 0 1 1
−1 0 −1 1 1

0 −1 −1 1 1

 .
We will show that for k = 4, 5, and 6, for every combination of such rows, there must be
a submatrix with a determinant that is not 0 or ±1, and so (A−1

1 A)g cannot be totally
unimodular and therefore A cannot be unimodular.

Algorithm 1: Proofs for small matrices algorithm

Data: Πk, Rk, Mk.
S ← {Mk};
for π ∈ Πk do
S ′ ← ∅;
for M ∈ S do

if rows(π(M)) ∩ rows(Rk) 6= ∅ then
S ′ ← S ′ ∪ {M};

else
for r ∈ rows(Rk) do

if

[
π(M)

r

]
is totally unimodular then

S ′ ← S ′ ∪
{[

M
π−1(r)

]}
;

end

end

end

end
S ← S ′;

end
return S;

Algorithm 1 performs this check. The algorithm is initialised with the data Πk, Rk,
and Mk. Here, Πk is the symmetric group on k elements; it acts on matrices with k
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columns by permuting the columns. The matrix Rk comprises all of the potential rows
r ∈ {0,±1}k that violate inequality 6.4.1; and Mk is the empty matrix with k columns to
which we will append potential rows. This matrix Mk is stored in the collection S.

The algorithm then iterates through every column permutation of a k column ma-
trix, forming from the elements of S a new generation of matrices S ′. For the column
permutation π, the new generation S ′ is formed by taking each matrix M currently in
S and ensuring that π(M) violates inequality 6.4.1. This is achieved by first checking if
it already violates inequality 6.4.1, and carrying it forward to the next generation S ′ if
it does; or by forming new matrices by appending each row in Rk in turn. The inverse
permutations of matrices generated in this way that are totally unimodular are included
in S ′, and the iteration continues with the next column permutation.

When the iteration through column permutations is complete, the collection of surviv-
ing matrices S is returned. Any k column (A−1

1 A)g matrix that violates inequality 6.4.1
must contain some matrix in S as a submatrix. If, however, the returned collection S
is empty, then the conditions of the Minus One Conjecture are met by all potential k
column (A−1

1 A)g matrices.
Algorithm 1 can potentially generate matrices (A−1

1 A)g with all-zero columns. Prac-
tically, if the returned collection S includes such an (A−1

1 A)g, then the c all-zero columns
can be dropped, leaving a c column matrix that is totally unimodular that violates in-
equality 6.4.1 for every ordering of its columns. This means that if Algorithm 1 terminates
for some k with an empty S, then for any unimodular configuration matrix A and any
column partition lattice basis U , any Graver basis element g ∈ GA with support size
|supp(g)| ≤ k can be simulated with a walk using U under the conditions of the Minus
One Conjecture.

Theorem 3.5.10 says that for a unimodular configuration matrix, any Graver basis
element g is also an element of some column partition lattice basis. If the configuration
matrix has n rows, then g has support of size at most n + 1. Therefore, if Algorithm 1
terminates for some k with an empty S, then the Minus One Conjecture holds for config-
uration matrices with n ≤ k − 1 rows.

Four column matrices

Theorem 6.4.10. Suppose A is a configuration matrix, U is a column partition lattice
basis, and g is an element of the Graver basis of A such that |supp(g)| ≤ 4. Then g can
be simulated by a walk using U that satisfies inequality 6.4.1.

Proof. We run Algorithm 1 with k = 4. The initial data is given by

Π4 = (1234, 1243, 1324, . . . , 4321) ,

R4 =
[
−1 −1 1 1

]
,

M4 =
[ ]

, an empty matrix with four columns.

The permutations in Π4 are ordered lexicographically. We initialise S = {M4}.
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The first column permutation is the identity permutation, π1 = 1234. There is only
one element in S, which is the empty matrix M4. The matrix π1(M) has no rows in
common with R4, so we append the only row of R4 to π1(M4) and apply the permutation
π−1

1 to form
[
−1 −1 1 1

]
. This matrix is totally unimodular, so it is added to S ′. We

have completed iteration through the elements of S for this permutation, so we set S to
the new generation S ′ with S ← S ′, and move on to the next column permutation.

The second column permutation is π2 = 1243. We set S ′ ← ∅. There is one ele-
ment in S, which is M =

[
−1 −1 1 1

]
. The matrix π2(M) contains only the row[

−1 −1 1 1
]
, which violates inequality 6.4.1. This M is added to S ′, and iteration

through S is complete, and S ′ is moved to S.
The next column permutation is 1324. Again, the collection S contains one ele-

ment, M =
[
−1 −1 1 1

]
. We form π3(M) =

[
−1 1 −1 1

]
and find rows(π3(M))∩

rows(R4) = ∅. We append r =
[
−1 −1 1 1

]
to form the matrix[

π(M)
r

]
=

[
− 1 1 −1 1
−1 −1 1 1

]
.

The highlighted submatrix has determinant 2, so this matrix is not totally unimodular
and is discarded. This concludes iteration through S for π3 and we are left with S ′ = ∅.

Because S is now empty, no other permutations have any effect on S and the algorithm
terminates with S = ∅. This proves the case for k = 4.

Five column matrices

In Section 6.4.4 we ran Algorithm 1 with k = 4. The second iteration through column
permutations Π4 used the permutation π2 = 1243. This iteration left the collection S
unchanged. Algorithm 1 with k = 4 would have terminated more quickly had we selected
π3 = 1324 for the second iteration. We may be able demonstrate that the algorithm
terminates with S = ∅ more efficiently through judicious choice of column permutation
ordering.

Theorem 6.4.11. Suppose A is a configuration matrix, U is a column partition lattice
basis, and g is an element of the Graver basis of A such that |supp(g)| ≤ 5. Then g can
be simulated by a walk using U that satisfies inequality 6.4.1.

Proof. We will prove that for k = 5, Algorithm 1 terminates with S = ∅. The potential
rows of M that violate inequality 6.4.1 are given by

R5 =


−1 −1 1 1 0
−1 −1 1 0 1
−1 −1 0 1 1
−1 0 −1 1 1

0 −1 −1 1 1

 .
Each row of R5 contains the same elements in a different order, so any one can be permuted
to form any of the others, so any M must contain a row that can be permuted to form
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−1 −1 0 1 1

]
. Without loss of generality, we initialise M5 to be this row, rather

than the empty matrix. The collection S is initialised as
{[
−1 −1 0 1 1

]}
.

We begin iterating over Π5. We choose π1 = 14325 and form

π2(M) =
[
−1 1 0 −1 1

]
.

Appending each row of R5 in turn produces the matrices[
− 1 1 0 −1 1
−1 −1 1 1 0

]
,

[
− 1 1 0 −1 1
−1 −1 1 0 1

]
,

[
− 1 1 0 −1 1
−1 −1 0 1 1

]
,[

−1 1 0 − 1 1
−1 0 −1 1 1

]
, and

[
−1 1 0 − 1 1

0 −1 −1 1 1

]
.

The highlighted submatrices each have determinant ±2, so none of the generated matrices
is totally unimodular, and so Algorithm 1 terminates with S = ∅. This proves the case
for k = 5.

Six column matrices

Theorem 6.4.12. Suppose A is a configuration matrix, U is a column partition lattice
basis, and g is an element of the Graver basis of A such that |supp(g)| ≤ 6. Then g can
be simulated by a walk using U that satisfies inequality 6.4.1.

Proof. We will prove that Algorithm 1 with k = 6 terminates with S = ∅. The potential
rows of M that violate inequality 6.4.1 are given by

R6 =



−1 −1 1 1 0 0
−1 −1 1 0 1 0
−1 −1 1 0 0 1
−1 −1 0 1 1 0
−1 −1 0 1 0 1
−1 −1 0 0 1 1
−1 0 −1 1 1 0
−1 0 −1 1 0 1
−1 0 −1 0 1 1
−1 0 0 −1 1 1

0 −1 −1 1 1 0
0 −1 −1 1 0 1
0 −1 −1 0 1 1
0 −1 0 −1 1 1
0 0 −1 −1 1 1
1 −1 −1 −1 1 1
−1 1 −1 −1 1 1
−1 −1 1 1 1 −1
−1 −1 1 1 −1 1
−1 −1 1 −1 1 1
−1 −1 −1 1 1 1



.
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We initialise

S =
{[
−1 −1 0 0 1 1

]
,
[
−1 −1 −1 1 1 1

]}
for similar reasons to those given in the proof of Theorem 6.4.11.

We specify that the initial row chosen contains the minimum number of zeroes over all
rows of (A−1

1 A)g. Then we run the algorithm in two parts: once with S = {
[
−1 −1 0 0 1 1

]
}

and R6 as above; and once with S = {
[
−1 −1 −1 1 1 1

]
}, and use

R′6 =


1 −1 −1 −1 1 1
−1 1 −1 −1 1 1
−1 −1 1 1 1 −1
−1 −1 1 1 −1 1
−1 −1 1 −1 1 1
−1 −1 −1 1 1 1

 .

We first address the case where S =
[
−1 −1 −1 1 1 1

]
. We choose as the

first permutation π = 153426, and form π(M) =
[
−1 1 −1 1 −1 1

]
. Appending

each row of R′6 to π(M) in turn forms only non-totally unimodular matrices. To see
this, note that π(M) begins and ends with

[
−1 1

]
, while each row of R′6 either begins

with
[
−1 −1

]
or ends with

[
1 1

]
. These combine to form a non-totally unimodular

submatrix. For example, appending the first row of R′6 produces

[
− 1 1 −1 1 −1 1
−1 −1 −1 1 1 1

]
.

The highlighted submatrix has determinant 2, so this matrix is not totally unimodular.

We now turn to S = {
[
−1 −1 0 0 1 1

]
}. We note that almost every row of R6

either begins or ends with
[
±1 ±1

]
. Suppose that there is a column permutation π such

that for all M ∈ S, π(M) begins and ends with
[
±1 ∓1

]
. Then appending a row of

R6 that either begins or ends with
[
±1 ±1

]
or ends with

[
1 1

]
produces a non-totally

unimodular matrix. Under such a column permutation we need only concern ourselves
with rows of R6 that do not begin or end with

[
±1 ±1

]
, which are


−1 0 −1 1 1 0
−1 0 −1 1 0 1

0 −1 −1 1 1 0
0 −1 −1 1 0 1

 .

We choose the permutation π1 = 153426 and form π1(M) =
[
−1 1 0 0 −1 1

]
.



200 CHAPTER 6. CHAPTER MINUS ONE

Appending each of the four rows of R′6 in turn produces the following matrices:[
− 1 1 0 0 − 1 1
−1 0 −1 1 1 0

]
[
−1 1 0 0 −1 1
−1 0 −1 1 0 1

]
[
−1 1 0 0 −1 1

0 −1 −1 1 1 0

]
[
−1 1 0 0 −1 1

0 −1 −1 1 0 1

]
.

Submatrices with determinant ±2 are shown in two of these matrices. By Theorem 3.5.4,
these matrices are not totally unimodular. We set S ′ to contain the other two matrices
with their original column orderings:

S =

{[
−1 −1 0 0 1 1
−1 0 −1 1 0 1

]
,

[
−1 −1 0 0 1 1

0 1 −1 1 −1 0

]}
.

Then S ′ is stored in S.
Next we choose permutation π2 = 154326. Again, this permutation of each matrix

in S has
[
−1 1

]
at the beginning and end of each row, so appending any row of R6

that begins or ends with ±
[
1 1

]
will result in a matrix that is not totally unimodular;

consequently, these rows can be ignored. Appending each of the other rows of R′6 to each
of the permuted matrices in S produces the matrices: −1 1 0 0 −1 1
− 1 0 1 −1 0 1
−1 0 −1 1 1 0

 ,
 −1 1 0 0 −1 1
− 1 0 1 −1 0 1
−1 0 −1 1 0 1

 ,
− 1 1 0 0 −1 1
−1 0 1 −1 0 1

0 −1 −1 1 1 0

 ,
− 1 1 0 0 −1 1
−1 0 1 −1 0 1

0 −1 −1 1 0 1

 ,
− 1 1 0 0 −1 1

0 −1 1 −1 1 0
−1 0 −1 1 1 0

 ,
− 1 1 0 0 −1 1

0 −1 1 −1 1 0
−1 0 −1 1 0 1

 ,
−1 1 0 0 −1 1

0 − 1 1 −1 1 0
0 −1 −1 1 1 0

 , and

−1 1 0 0 −1 1
0 − 1 1 −1 1 0
0 −1 −1 1 0 1

 .
In each case there is a highlighted submatrix with determinant ±2, so none of these
matrices is totally unimodular and the algorithm terminates with S = ∅. This proves
the case k = 6.

We have shown for a unimodular configuration matrix A, column partition lattice
basis U , and Graver basis element g that if |supp(g)| ≤ 6, then g can be simulated with
U with a walk that only visits points that are at least m(1,0). If A has at most five
rows, then |supp(g)| ≤ 6 is guaranteed. Therefore, any column partition lattice basis of
a unimodular configuration matrix with five or fewer rows is an m(1,0)-Markov basis.
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6.5 A possible way forward

In Section 6.4.2 we proved the Minus One Conjecture for network matrices. Although
as we showed in Section 5.3 network matrices do not account for all totally unimodular
matrices, they do act as important building blocks. This suggests another possible method
by which the full Minus One Conjecture might be proved.

Hoffman [29] and Bixby [6] gave the two matrices

F1 =


1 −1 0 0 −1
−1 1 −1 0 0

0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1


and

F2 =


1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1


as examples of totally unimodular matrices such that neither they nor their transposes are
network matrices. Seymour [41] showed that these two matrices together with network
matrices can be combined using a certain collection of operations and compositions to
produce all totally unimodular matrices. These are listed in Schrijver [40]. The operations
are:

1. permuting rows or columns;

2. taking the transpose;

3. multiplying a row or column by −1;

4. pivoting, i.e. replacing [
ε cᵀ

b D

]
by

[
−ε εcᵀ

εb D − εbcᵀ

]
,

where ε = ±1, b is a column vector, cᵀ is a row vector, and D is a matrix;

5. appending an all-zero row or column; or appending a row or column with one non-
zero, being ±1;

6. repeating a row or column.

The compositions are:
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1. 1-sum:

A⊕1 B :=

[
A 0
0 B

]
2. 2-sum: [

A a
]
⊕2

[
bᵀ

B

]
:=

[
A abᵀ

0 B

]
3. 3-sum: [

A a a
cᵀ 0 1

]
⊕3

[
1 0 bᵀ

d d B

]
:=

[
A abᵀ

dcᵀ B

]
where A and B are matrices, a and d are column vectors, and bᵀ and cᵀ are row vectors.
These compositions are only applied if for both A and B, the number of rows plus the
number of columns is at least four.

The matrices F1 and F2 have at most one row that contains more than one non-
zero entry, so it seems likely that they would meet the conditions of the Minus One
Conjecture. The Minus One Theorem for network matrices (Theorem 6.4.5) may make
up another important building block towards proof of the full Minus One Conjecture
based on Seymour’s work. We leave this as a possible future research direction.



Chapter 7

Discussion

We conclude the thesis by summarising the main contributions.

7.1 Z-polytope samplers

In this thesis we looked at random walk fibre sampling for statistical inverse problems
using Markov bases. The way this problem is usually approached is algebraic and based
on the Fundamental Theorem of Markov Bases. This involves a generating set for an ideal
in a polynomial ring. The kernel of the configuration matrix corresponds to the ideal,
and Markov bases correspond to generating sets of this ideal. Finding Markov bases with
this approach involves finding such a generating set, such as a Gröbner basis. This is
computationally expensive, often prohibitively so.

In contrast, our aim was to determine whether representing the fibre geometrically as
a Z-polytope can provide insight into whether or not any particular collection of moves is
a Markov basis. We studied a particular type of potential Markov basis that we called a
column partition lattice basis. Column partition lattice bases have a simple geometric in-
terpretation, which is that they provide co-ordinate direction moves when the Z-polytope
is projected onto a subset of the co-ordinates. Constructing a column partition lattice ba-
sis involves one matrix inversion and one matrix multiplication, which on medium to large
problems should make it much more computationally efficient to find a column partition
lattice basis than a Gröbner bases.

7.1.1 Markov basis results

Our aim was to find a general method for determining when a column partition lattice
basis is a Markov basis, and to investigate ways of constructing lattice bases that guarantee
that they are Markov bases. We identified several problems that can prevent a column
partition from being a Markov basis.

The first problem we discussed was one we called parity errors (Section 2.5.1). This
occurs when the elements of the basis are non-integral, and the Z-polytope is split into
two or more cliques that are not connected to each other. We proved that non-integral

203
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column partition lattice basis matrices are avoided when the column partition is such that
the determinant of A1 divides the determinants of the other maximal submatrices (The-
orem 3.4.1). We also proved that if the determinants of each of the maximal invertible
submatrices are equal in absolute value, then every column partition lattice basis is inte-
gral, and the matrix that defines the column partition lattice basis is totally unimodular.

If the column partition lattice basis is integral, then every lattice point in the projected
space that is within the bounding hyperplanes is an element of the fibre. The question
of connectivity then comes down to the geometry of the projected polytope. We found
that the choice of the column partition determines the angles between the faces of the
projected polytope, as discussed in Section 3.3. The angles between the faces of the
projected polytope are important in determining whether a walk constructed with co-
ordinate direction moves will be able to access all the points in the projected polytope:
faces coming together at acute angles can result in some vertices or cliques of vertices
being inaccessible.

We found that there are conditions that guarantee that we can construct a column
partition lattice basis that is a Markov basis. Section 4.2 gives one condition, concerning
the case where we can partition the columns of the configuration matrix A such that
each column of the A2 partition is a positive sum of columns of the A1 partition. This
is applicable for example when the configuration matrix has the identity matrix as a
maximal submatrix, a situation common in capture-recapture models. This situation
also appears in link-path incidence matrices in network tomography when each edge is
an allowed path, or more generally each of the A2 paths can be constructed by linking
together paths in A1.

Generalising this result produced a test that can be used to determine whether a
column partition lattice basis is a Markov basis. This is detailed in Theorem 4.4.14. If U
is a column partition lattice basis with all entries in {0,±1}, then this theorem states:

U contains no non-zero Eulerian submatrix whose columns each sum to zero
=⇒

U is a Markov basis.

We conjectured that this implication is bidirectional.
We extended this idea to general integral U matrices: in that case, we must take Uσ,

the matrix of signs of the entries of U . The theorem becomes:

Uσ contains no non-zero Eulerian submatrix whose columns each sum to zero
=⇒

U is a Markov basis.

7.1.2 Walks with other lower bounds

In Chapter 6 we discussed the possibility of using polytope samplers that may visit points
that are not in the polytope, although such points are not included in the obtained
sample. The use of such a sampler requires knowledge of a lower bound on the co-
ordinates of points the sampler needs to visit in order to be able to visit every point in
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the Z-polytope. For column partition lattice bases, it is known that the lower bound for
the r − n co-ordinates in the A2 part is 0.

We gave a lower bound for column partition lattice bases where the non-zero entries
of the U matrix are all ±1, which is guaranteed if the configuration matrix is unimodular.
For an n× r configuration matrix, this lower bound is

−min

(⌊
r − n

2

⌋
,

⌊
n+ 1

2

⌋)
for the n co-ordinates in the A1 part. We proved this lower bound in Section 6.4.3.

We gave a conjecture we called the Minus One Conjecture (Conjecture 6.3.2). This
conjectures that for unimodular configuration matrices, this lower bound can be strength-
ened to −1 in the n A1 co-ordinates and 0 in the r − n A2 co-ordinates. This is known
to be the case for two-way contingency tables, whose configuration matrices are totally
unimodular.

In Section 6.4 we proved the Minus One Conjecture in a few specific cases. It is known
that a lower bound of −1 applies for any basis which contains a lattice basis if the ideal
generated by the monomial difference representations of the basis elements is radical. In
Section 6.4.1, we apply this result to column partition lattice bases. In the case of column
partition lattice bases, the lower bound of −1 would only apply to the n co-ordinates in
the A1 part; the lower bound for the r − n co-ordinates in the A2 part is 0.

In Section 6.4.4 we prove the Minus One Conjecture for configuration matrices with
n ≤ 5 rows. For such matrices each circuit (or Graver basis element) is a sum of at most
six columns of the reduced row echelon form of the configuration matrix. By enumerating
the possible combinations of rows of this matrix we showed that if the lower bound of
minus one does not hold, then this matrix must not be totally unimodular and hence the
configuration matrix is not unimodular.

We also proved a lower bound of −1 for the link-path incidence matrices of polytrees,
which are totally unimodular. The proof is given in Section 6.4.2. It is in fact a proof of the
−1 lower bound for network matrices. Polynomial time algorithms exist for recognising
network matrices, so this result is applicable not only to polytrees in network tomography,
but also to any configuration matrix recognised as a network matrix by these algorithms.

The proof for network matrices also provides a possible research avenue for a proof
of the Minus One Conjecture in full. Network matrices are an important building block
for all totally unimodular matrices. Together with two certain 5 × 5 matrices, they can
be combined using a certain set of operations to produce any totally unimodular matrix.
If it could be shown that these operations preserve properties that imply the −1 lower
bound, it could lead to a proof of the Minus One Conjecture.

7.1.3 Other results

In Section 3.5.2 we prove that for a configuration matrix A, if the determinants of all of
the invertible maximal submatrices are equal in absolute value, the union of all column
partition lattice bases of A is equal to the set of circuits of A, and hence the Graver
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basis of A. One application of this is in the adaptive lattice basis sampler of Hazelton
et al. [27]. This theorem guarantees that a Z-polytope sampler that dynamically changes
which column partition lattice basis it uses, but is capable of accessing all column partition
lattice bases, will be capable of sampling every point in the Z-polytope and hence generate
an irreducible Markov chain.

7.2 Applications

The Fundamental Theorem of Markov Bases was originally developed for work on contin-
gency tables [19]. Much subsequent work has focussed on these, and they are frequently
used as examples in the literature. There are other applications: Markov Chain Monte
Carlo is applicable to a range of statistical linear inverse problems, which includes capture-
recapture models in ecology and network tomography.

This thesis has a particular focus on volume network tomography, where the config-
uration matrices are the link-path incidence matrices of the network. We found several
conditions on traffic networks that guarantee favourable properties in the configuration
matrix. One important result is that the link-path incidence matrices for a network on a
polytree, defined and discussed in Section 5.3, is totally unimodular. We gave two new
proofs of this fact. We also demonstrated that link-path incidence matrices for polytrees
are a subset of network matrices, which are known to be totally unimodular.

In Section 5.4 we looked at networks on symmetric digraphs, a type of graph that
closely models real world traffic networks, which are not in general totally unimodular.
We showed that when the underlying graph is a tree and the collection of allowed paths
conforms to a certain set of rules, there exist many unimodular maximal submatrices. We
speculated that this is true for all symmetric digraphs.

7.3 Avenues for future research

In this thesis we have made some conjectures which may provide avenues for future re-
search. We collect them here.

Theorem 4.4.14 gives a condition that guarantees that a column partition lattice basis
for a unimodular configuration matrix is a Markov basis. It states that if the matrix U
that defines the basis contains no Eulerian submatrices M such that for each column mi

of M , the sum of the entries in mi is zero, then U is a Markov basis. Conjecture 4.4.19
claims that the implication is bidirectional.

In Section 5.4 we looked at link-path incidence matrices of traffic networks on sym-
metric digraphs that have a certain routing policy. We found that if the underlying graph
of the network is a tree, there are many different maximal unimodular submatrices. In
Section 5.4.4, we speculate that this result extends to traffic networks on any symmetric
digraph that follow the routing policy.

In Chapter 6 we gave the Minus One Conjecture (Conjecture 6.3.2). This conjecture
claims that all column partition lattice bases of unimodular configuration matrices are
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what we called m(1,0)-Markov bases. This means that for any y-fibre, they can be used to
construct a walk between any pair of points such that the walk only visits points that are
at least −1 in the first n co-ordinates, and non-negative elsewhere. If true, the Minus One
Conjecture has consequences both for constructing walks that connect a set that includes
the fibre of interest; and for approximate samplers, which are only concerned with visiting
points that are internal to the polytope, which for many models is where the vast bulk of
the probability might lie.
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