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ABSTRACT 

 

Ambae is a small island in Vanuatu which in recent times has seen high levels of volcanic 

activity. Between August 2017 and December 2018, several volcanic eruptions occurred, 

some larger than others, but all with varying effects. A major eruption occurred in July 

2018, causing sediment build-up at different locations along the western coastline of the 

island. The sediment build-up appeared to increase over months, and receded over 

continuing months. 

Analyses were completed to assess and evaluate satellite platforms and their ability to 

aid in gaining an understanding of coastal change over the time period between August 

2017 and December 2018. Imagery from each platform was combined with the use of 

various water indices which aided in measuring the magnitude of coastal change over 

the time period. 

Sentinel-2, Landsat 8 and Planet satellite platforms were analysed for their effectiveness 

when used in conjunction with water indices, including the Normalised Difference Water 

Index (NDWI), Modified Normalised Difference Water Index (MNDWI), and Automated 

Water Index (AWEI). 

The Sentinel-2 platform with the NDWI water index was found to be the most effective 

for analysing the coastal change. The combination of this satellite platform with this 

index enabled a quantitative measurement of land change over a specific period of time 

(August 2017 to December 2018). 
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1 INTRODUCTION 

 

The coastline is the meeting point of the land and sea. It is an environment with constant 

changes due to the shifting of waves and sea-level, and variations in the supply and 

movement of sediment from land (Bryan et al., 2008). New Zealand is a country of islands 

in a highly tectonically active, volcanic environment which is susceptible to frequent 

coastal change. The impact of coastal sedimentation processes, including coastal 

erosion, could have negative physical implications enhancing sea-level rise, a greater 

prevalence of adverse weather conditions, and coastal flooding (Gallina et al., 2019). The 

negative implications of coastal erosion would also have an effect on coastal 

sedimentation, particularly with an increase in storm surges as this is the primary agent 

in coastal sediment transport (Davidson-Arnott, 2009). In New Zealand it is important to 

explore to understand how this sort of process would affect the environment in a short 

timeframe. This understanding could be used for coastal development planning, hazard 

zonation, and for the prediction of coastal change with future events (Maiti et al., 2007). 

Deposition, or sedimentation is a geological process where material is added to a 

landform (Jones, 2008) and “coastal sedimentation processes” refers to any force or 

activity which impacts the sediment along a coastline, whether this is the deposition, 

transportation or erosion of the sediment (Horikawa, 1981). Coastlines change often, 

and this change can occur quickly or over a long time. In the short term, change can occur 

due to high energy events such as storms and cyclones (Robertson et al., 2007). Usually, 

shoreline change from such events is caused by high wave action initiated by strong 

winds from the storms. These events are also often cyclical, occurring more frequently 

at certain times of the year when the weather is harsher and winds of certain directions 

are stronger, causing greater wave action and damage to the coastline (Ryabchuk, 2012). 

Short-term coastal change can act as an enabler for medium to long-term coastal change 

where an increased frequency of high energy events over a short time leads to longer- 

lasting change (Bryan et al., 2008). In cases like this, storm events may occur frequently 
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over one year, but the coastline may take several years to completely recover (Bryan et 

al., 2008). Coastal change at the medium to decadal scale can also be cyclic, where there 

are natural periods of coastal erosion followed by periods of progradation or sediment 

growth, however, these periods can also be influenced by external factors such as sea 

level and wave changes caused by climatic shifts, or due to a sea level rise (Bryan et al., 

2008). 

These studies mostly consider how coastal sediment processes may affect the existing 

coastal sedimentation, but there are few studies (e.g. Jones, 2008) which explore the 

possible changes of coastal sedimentation caused by changes to the supply of the 

sediment. Sediment supply can be long-term, where suspended sediment within rivers 

naturally flows to the coast and can be easily measured (Hicks et al., 2011) but short- 

term ‘shocks’ to supply are also important (Robinson et al., 2013). Events such as 

earthquakes, volcanic eruptions, or large landslides have the potential to significantly 

impact the sediment supply in an area, but the magnitude of change cannot be 

definitively measured without such an event occurring. It is, however, possible to predict 

the potential consequences from such events, which is important to do to understand 

how the landscape could change and in what ways (Robinson et al., 2013). 

Field surveys and aerial mapping provide a way to identify coastal changes over a small 

area in an effective and precise way, but often come at high cost. On the contrary, 

satellite remote sensing offers a way of gathering the same information at a larger scale 

and at a low (often free) cost (e.g. Guariglia et al, 2006). With satellite technologies 

advancing, the spatial and temporal resolutions mean that satellite remote sensing is 

now a reliable way to investigate and monitor coastline change. Previously, identifying 

short-term coastal change using satellite remote sensing has been difficult due to low 

temporal resolution (revisit time) of certain areas and poor-quality images due to low 

spatial resolution (Cao et al., 2019). With new technologies and an increased demand for 

satellite remote sensing, these are no longer issues. Satellite-captured imagery is widely- 

available at high temporal and spatial resolutions. For this, reason, it is now possible to 

identify short-term changes in coastline using satellite imagery. 

There are many satellite platforms and methods available for mapping coastline changes, 

but the most commonly used satellite platform for this is Landsat, including Thematic 
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Mapper (TM), Enhanced Thematic Mapper (ETM+), Multispectral Scanner (MSS), and 

Operational Land Imager (OLI). Most of these studies focus on coastal change that has 

occurred as a result of human activity or from natural causes like wave energy, sea level, 

or sediment supply (Kourosh Niya et al., 2013), but they have not been evaluated for 

their ability to identify short term ‘shocks’ in sediment supply. 

Through a case study at Ambae Island, Vanuatu, this study evaluates available techniques 

and satellite platforms to examine coastline changes caused by short term shocks in 

sediment supply. The use of remote sensing imagery to identify and measure changes in 

sediment supply over a short time that has resulted from a volcanic eruption is important 

as it is something that has occurred in New Zealand (Manville et al., 2005) and could 

occur again. The similar setting of a volcanic shock in sediment supply between Ambae 

and the New Zealand landscape means this case study can be used as an effective 

comparison for the impacts such an event could have. 
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1.1 Aims and Research Objectives 

The aim of this thesis is to assess and evaluate satellite platforms and their ability to aid 

in gaining an understanding of coastal change over a ~one-year time period due to 

short-term ‘shocks’ in sediment supply.. The satellite platforms will be assessed based 

on their effectiveness in displaying imagery of interest, as well as how they work when 

used to detect the coastal changes. The most important aspect of this will be the 

satellite platforms’ ability to allow for accurate measurement of the magnitude of 

change along the coastline due to increased sediment load produced by volcanic 

eruptions across the one-year period. It will also be important that the resulting data is 

easily interpreted and provides a clear and definitive analysis of the coastal change. 

To achieve this, the thesis has the following objectives: 

 
1. Collect and study multiple satellite imagery datasets and prepare them 

appropriately to be used for analyses 

2. Using each dataset, create a timeline to show predominately cloud-free areas 

over the course of the eruptions 

3. Find areas of interest (areas where coastal sediment has built up the most) within 

the cloud-free areas and conclude which dataset is the best to use 

4. Determine which water index will be the most effective to differentiate between 

water and sediment by testing each one (NDWI, MNDWI, AMERL, AWEI) on the 

chosen dataset 

5. Complete a change detection analysis to measure how and where the 

sedimentation has changed over time 

6. Determine the relationship between the sedimentation and the volcanic activity 

and what effects future eruptions may have on the island 
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Following these aims and objectives during the entirety of this study will help to 

effectively analyse the volcanic sedimentation on Ambae’s coast in a way that is relative 

to New Zealand’s environment. There are certain aspects of the aims and objectives 

where specificity is imperative. For example, the need to select cloud-free data is 

essential for making the processes within the analyses simpler and less time-consuming. 

To organise the cloud-free images across the desired timeframe is also important to 

ensure that adequate imagery has been obtained. The image acquisition dates across the 

timeframe must be variable enough so that significant changes in the environment can 

be identified. Lastly, the water indices listed in the Objectives section have been chosen 

based on their use in previous, similar studies to this one. It is still unknown whether the 

indices will be effective to complete what is desired in this study which is why they must 

all be tested. 
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1.2 Thesis Structure 

 
Chapter 1: Introduction 

 
Chapter one contains an introduction to coastline and the sediment processes which 

occur there. It also contains an introduction as to how satellites and satellite imagery can 

be used to capture the processes that occur at the coastline. As well as this, it contains 

the aims and objectives of this thesis, and an introduction to the study area and the 

volcanic eruptions that occurred on Ambae. 

 
 

Chapter 2: Literature review 

 
Chapter two contains an introduction to remote sensing, the different types of sensors 

and satellites available. It also contains a review of the potential remote sensing methods 

and processes that could be used during this study. 

 
 

Chapter 3: Data review 

 
Chapter three contains a review on the potential satellite image datasets which could be 

used for this study. It also discusses the suitability of each dataset with regard to the 

potential methods and processes, which is determined based on the ease of use of the 

data, and the specifications required for the remote sensing methods to be used. 

 
 

Chapter 4: Methods 

 
Chapter four describes how all aspects of this study were completed, including data 

collection, image processing, water index calculations, and further image analysis. The 

chapter provides the information necessary to understand how the results were found 

and the methods that were taken to reach those results. 
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Chapter 5: Results 

 
Chapter five contains the results from the completed methods which includes a visual 

comparison of the water indices as well as a visual timeline to show the coastal changes 

which occurred at Ambae due to the volcanic eruptions before, during and after this 

time period. The chapter also contains graphs which were created using the data from 

the water index images to statistically display the coastline changes over time. 

 
 

Chapter 6: Discussion 

 
Chapter six contains a discussion of the image platforms that were used including a 

comparison of each one to determine which was the most effective for this study. It also 

compares the water indices that were used, with a discussion of how each one 

performed, and ultimately which one provided the best results. 

 
 

Chapter 7: Conclusion 

 
Chapter seven contains a summary of the overall thesis, and links back to the aims and 

objectives which were discussed during this introduction. 
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1.3 Study Area 

The island of Ambae, located at approximately 15.389°S latitude and 167.835°E 

longitude, is the largest of 83 islands and islets in Vanuatu (Bani et al., 2009), (Figure 1 

below). It is the emergent part of the largest volume volcano in Vanuatu, Manaro Voui, 

which is a shield volcano (Cronin et al., 2004). The island itself is only around 400 km2 

and sits at an elevation of 1,496 m at the summit (Cronin et al., 2004). There are two 

major crater lakes at the summit, Manaro (50 million m3 water) and Vui (11 million m3 

water), which contain a variety of volcanic gases (Cronin et al., 2004). 

 
 

 

FIGURE 1 THE GEOGRAPHICAL LOCATION OF AMBAE, VANUATU AND SURROUNDING ISLAND NATIONS 

 

Much like New Zealand, Ambae is a region with high levels of tectonic activity. As well as 

this, the weather patterns across Ambae are like New Zealand. For example, the area is 

often under cloud cover, particularly over the volcano itself. Due to these factors, Ambae 

is highly comparable to New Zealand, and so situations in which remote sensing is used 

could also be applied to situations in New Zealand. An example of this is the ability to 

retrieve cloud-free remotely sensed images – often it can be difficult to find images of 

specific locations that are free of or low in cloud. For this reason, methods and ideas used 

during this project could be used in similar ways in a New Zealand application. 
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1.3.1 Timeline of eruption events on Ambae 

 
The period of eruptive activity on Ambae, Vanuatu began in September 2017 and lasted 

for approximately one year. The eruptive activity increased and decreased in intensity at 

various times throughout this time period, with the most intense eruptive episode 

occurring during July and August of 2018. 

The timeline below highlights the most significant events that occurred during the one- 

year time period. 

September 2017 – In early September the potential for eruptive activity began to 

increase due to the changing conditions at Aoba. The alert level was raised to 3 (out of 

5) on September 6 which signified the volcano was in a minor eruptive phase. The 

volcanic activity continued to increase, and the alert level was raised to 4 on September 

23. Between September 24 and October 5, ash plumes and lava fountains were observed 

rising from the vent (Global Volcanism Program, 2017). 

 
October 2017 – On October 6, the alert level was decreased to 3 as there was no evidence 

of the eruption escalating. However, ash plumes of up to 3.7 km above sea level were 

observed via satellite imagery during October 10-11. Throughout the month of October, 

ash plumes continued to be observed via satellite imagery on various dates, some of 

which reached heights of approximately 9 km above sea level (Global Volcanism 

Program, 2017). 

 

November 2017 – Ash plumes from the volcano continued to be observed across the 

month of November, however these were much lower, only reaching approximately 3.7 

km above sea level at maximum. By the end of November, the eruptive activity had 

decreased even further, so the alert level was lowered to 2 on December 7 (Global 

Volcanism Program, 2017). 

 
February 2018 – Across the month of February, eruptive activity was again observed, 

with ash plumes rising up to approximately 5 km above sea level recorded (Global 

Volcanism Program, 2018). 
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March 2018 – The eruptive activity continued into March. This activity was similar to 

what was observed during October 2017, and therefore the alert level was again raised 

to 3 (Global Volcanism Program, 2018). 

 

April 2018 – The eruptive activity continued throughout April, with ash plumes rising, as 

well as some lava fountaining. As well as this, ash, scoria, and acid rain fell across the 

island. Further observations confirmed that the cone of Aoba had grown, and the crater 

was larger (Global Volcanism Program, 2018). 

 
May 2018 – Eruptive activity began to decrease over this month, and the alert level was 

lowered to 2. By June, the activity had stopped (Global Volcanism Program, 2018). 

 
July 2018 – Minor eruptive activity was observed at the beginning of July, and intensified 

throughout the month. By mid-July, the alert level was raised to 3, with eruptive activity 

becoming even more intense. Ash plumes became more frequent and there was 

sustained ash cover across the island, causing daylight hours to become dark. Explosions 

were observed on July 26 and 27, as well as large ash plumes causing heavy ashfall in 

neighbouring islands. After these events, an island-wide evacuation order was in place 

(Global Volcanism Program, 2018). 

 

August 2018 – The large ash plumes continued to rise from the crater throughout the 

month of August, some of which rose approximately 11 km above the crater rim (Global 

Volcanism Program, 2018). 

 

September 2018 – The eruptive activity began to decrease over this month, and on 

September 21 the alert level was lowered to 2. From this date, only steam emissions 

were observed, and the eruption was considered to have ceased (Global Volcanism 

Program, 2018). 



11  

2 REVIEW OF REMOTE SENSING PROCESSES 

 
2.1 Introduction to remote sensing 

Remote sensing is the capturing of images of the earth and its environments using 

remotely managed technologies (Manolakis et al., 2016). This chapter will review existing 

remote sensing sensors, platforms, processes and methods which can be used to detect 

coastline changes. One example of remote sensing is using satellites to capture the 

imagery. The satellite platforms and the sensors onboard those will be the main focus in 

this review. 

 

Remote sensing is useful because it allows us to see and gather information on areas of 

the world that cannot be easily accessed. Sensors on-board the satellites capture images 

by measuring reflectance of electromagnetic energy. There are different sensors which 

measure this energy at different wavelengths, resulting in different images. The sensors 

can also be active or passive, which will again impact the resulting image. 

 

2.1.1 Active vs. passive sensors 

In remote sensing, the system used is either active or passive. An active sensor is one 

which emits its own energy source towards a target and measures the energy that is 

reflected back from that object (Manolakis et al., 2016). Because an active sensor 

produces its own energy source, images can be taken day or night. An example of an 

active sensor is radar. A passive system does not have its own energy source, instead, it 

measures naturally occuring radiation that has been reflected (e.g. light from the sun) or 

emitted (e.g. heat) from its source (Manolakis et al., 2016). This study will focus on 

passive sensors. 
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2.2 Remote Sensing Sensors 

2.2.2 Multispectral sensors 

An important aspect of multispectral sensors is their ability to sample the 

electromagnetic spectrum measuring a larger range of electromagnetic radiation, or 

light. The spectrum ranges from radio waves to gamma rays, however the most 

important section in remote sensing is that of the infrared – UV zone (Manolakis et al., 

2016). A multispectral sensor can detect radiation within the entirety of this zone, which 

is why there are various imagery types available. 

 

2.2.3 Visible light sensors 

Within a multispectral sensor there are bands that detect light within the visible part of 

the electromagnetic spectrum (Manolakis et al., 2016). This visible light is seen as the 

red, blue and green bands. 

 

2.2.4 Thermal Infrared sensors 

Most multispectral sensors collect data from the visible and near-infrared spectrum as 

well as the thermal-infrared. However, there are also some satellites which have a 

separate sensor measuring the thermal-infrared spectrum only, such as Landsat-8’s 

thermal infrared sensor (TIRS) (Kuenzer & Dech, 2013). The Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) sensor on-board the Terra satellite 

also collects thermal infrared data. Thermal infrared sensors detect radiant energy which 

is emitted from earth and can be used to measure relative surface temperatures 

(Kuenzer & Dech, 2013). It can be difficult to measure surface temperatures over land, 

but over water it is much easier as there is a known emissivity. 

 

Most multispectral sensors are passive systems, so they will only measure the 

reflectance of the surface below them and for this reason, imagery can be negatively 

affected by atmospheric conditions such as clouds. 

 

There are various multispectral sensors which can and have been used for a variety of 

tasks in different industries, with certain bands being of greater importance to particular 
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tasks and industries. For example, wavelengths in the near-infrared portion of the 

spectrum strongly reflect vegetation so are useful in industries such as forestry and 

agriculture. The wavelength of water emissivity = 0.98 µm, and of healthy plant leaves 

emissivity = 0.96 – 0.99 µm (Kuenzer & Dech, 2013) which is why differences can be 

recognised through satellite imagery. 

 
 
 
 

 

FIGURE 2: THE ELECTROMAGNETIC SPECTRUM HELPS TO VISUALLY UNDERSTAND THE TYPES OF WAVES THAT ARE 

USED BY MULTISPECTRAL SENSORS, AND WHERE THE WAVELENGTHS SIT ON THE SPECTRUM. FROM: KHAN 

ACADEMY 

 

 

Landsat-8 and Sentinel-2 multispectral imagery can be used in various ways, including 

tasks involving vegetation, but also for the mapping of water bodies and detection of 

coastlines. These such tasks have been previously completed in various studies (e.g. Du 

et al., 2016; Rokni et al., 2014); however, it is Landsat imagery that has most often been 

used. 

 

2.2.5 RADAR sensors 

It is significant that SAR imagery can be used for extraction of coastline and change 

detection, because this makes it an important prospective data type since it also is not 

affected by cloud. 
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Radar, in particular synthetic aperture radar (SAR) is an example of an active sensor. The 

sensor sends microwave (radio) signals downward and detects the backscatter waves 

that are reflected back to it from objects on the ground (Meyer, 2019). Sentinel-1a and 

1b are satellites which both have SAR instruments on-board. Being an active system, SAR 

is useful because it has the ability to operate day or night as it is not reliant on sunlight 

(Meyer, 2019). Because the wavelength of SAR is longer than other sensors (for example, 

SAR is between 1mm and 1cm, all others are below 1mm), it is not susceptible to 

atmospheric scattering like shortwave sensors (Meyer, 2019). This gives SAR the ability 

to penetrate through clouds and almost any weather condition except for heavy rainfall 

(Meyer, 2019). 

 

SAR imagery has been used for the delineation of water bodies or water extent, as well 

as processes involving change detection of land over time. Huang et al. (2018) 

developed an algorithm which can be used to automatically extract the extent of the 

surface water of small water bodies in North America. Their methods involved using 

Sentinel-1 data to identify the extent of wetlands and distinguish between water and 

non-water areas. 

 
 
 

2.3 Water indices 

The literature which describes the development of methods to extract water features 

using water indices (for example, Normalised Difference Water Index, Modified 

Normalised Difference Water Index, Automated Water Extraction Index, and the 

Automated Method for Extracting Rivers and Lakes) have all been completed using 

Landsat imagery, but this is not to say they cannot be used with another satellite 

platform. The use of water indices will support the identification of features of interest 

(e.g. water, land, vegetation) through relative measures of reflectance at specific 

wavelengths. Most images separate these wavelengths into ‘bands’ representing the 

main emission (e.g. ‘red’ bands typically around 650 nm). 

 

The Normalised Difference Water Index (NDWI) was developed by McFeeters (1996) to 

help with delineation of open water features. The method uses reflected near-infrared 
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radiation as it is readily absorbed by water (so will have a lower reflectance on the 

sensor) and reflected by vegetation and dry soil (so will have a higher reflectance on the 

sensor) just as readily (McFeeters, 1996). However, there are some limitations with this 

method. The NDWI works well when only water and vegetation are involved, but not as 

well in urban areas, which can act similarly to areas along coastlines where there is 

bare land with high reflection. To combat this issue, Xu et al. (2006) developed a 

modification of the normalised difference water index (MNDWI). This method also used 

Landsat imagery, however, middle infrared radiation (MIR) was used in place of near 

infrared radiation (NIR). The reason MIR was used instead of NIR is because water 

absorbs more MIR light than NIR so the water will have greater positive values than 

those of the NDWI. As well as this, areas of built up land will have negative values 

compared to the NDWI where this type of land was often mixed up with water. 

Vegetation will also still have negative values. 

 

Like both the NDWI and MNDWI methods, the Automated Water Extraction Index (AWEI) 

developed by Feyisa et al. in 2013. Again, using Landsat data, their idea was to increase 

the contrast between water and non-water surfaces in order to maximise their 

separation. 

 

The automated method for extracting rivers and lakes from Landsat imagery (AMERL) 

was created by Jiang et al. (2014). Although the focus was on small water bodies, it would 

be possible to apply this method to larger water features such as a sea or ocean. The 

AMERL is different to the methods previously mentioned as it can be used to identify 

mixed water pixels which often occur in shallow or narrow water bodies (Jiang et al., 

2014). 

 

These examples (NDWI, MNDWI, AMERL) all used Landsat sensor platforms, however 

could be used with other platforms (e.g. Sentinel-2, Du et al., 2016) or with multispectral 

sensors. Using Sentinel-2 imagery, Du et al. (2016) applied the MNDWI method by pan- 

sharpening the short-wave infrared (SWIR) and visible and near-infrared (VNIR) bands 

to match the resolution of the visible bands. Pan-sharpening of these bands has been 

completed in the past using various methods, Park et al. (2017) most recently.  
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2.3.1 NDWI 

The normalised difference water index (NDWI) is an equation which is calculated on a 

satellite image to try to delineate open water features of the image. It is based on similar 

ideas as the NDVI, which aims to highlight vegetated areas of an image, but by reversing 

the NDVI equation, open water features can instead be highlighted. 

The NDWI equation is as follows: 
 

 
 

𝑁𝐷𝑊𝐼 = 
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅 

 
 

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅 
 

 

The near infrared band is used because water strongly absorbs NIR and vegetation 

strongly reflects NIR. The green band is used because it holds reflected green light, and 

these green wavelengths are able to maximise the reflectance of water. Overall, the 

equation will 1) maximise the typical reflectance of water features by using green light 

wavelengths, 2) minimise the low reflectance of NIR by water features, and 3) take 

advantage of the high reflectance of NIR by terrestrial vegetation and soil features (Xu, 

2006). Once an image has been processed with the equation, water features will have 

positive values while soil and terrestrial vegetation features will have zero or negative 

values. 

 

2.3.1 MNDWI 

The modification of normalised difference water index (MNDWI) was created as the 

NDWI cannot effectively distinguish between built-up land noise and extracted water 

features which causes them to become mixed up (Xu, 2006) which could be an issue 

when measuring coastline changes. The pixels become mixed because the green band 

and the NIR band have a similar reflectance pattern for built-up land and water, where 

they both reflect green light more than they reflect infrared light (Xu, 2006). This results 

in positive values for both water and built-up land. 

The MNDWI equation is as follows: 
 

 
 

𝑀𝑁𝐷𝑊𝐼 = 
(𝐺𝑟𝑒𝑒𝑛 − 𝑀𝐼𝑅) 

(𝐺𝑟𝑒𝑒𝑛 + 𝑀𝐼𝑅) 
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The equation shows that the middle-infrared band is used in place of the near-infrared 

band. By using the MIR band, the built-up land areas should have negative values instead 

of positive. This is because the average digital number of the MIR band is much greater 

than that of the green band. When the MNDWI is computed, it should result in: 1) water 

having greater positive values than in the NDWI as it absorbs more MIR light than NIR 

light; 2) built-up land having negative values, and 3) soil and vegetation also having 

negative values as soil reflects MIR light more than NIR light and vegetation reflects MIR 

light more than green light (Xu, 2006). These factors should result in there being greater 

contrast between the water features and the built-up land features. 

 

2.3.2 AWEI 

The Automated Water Extraction Index (AWEI) was created to try and improve the 

accuracy of surface water mapping by automatically suppressing classification noise from 

shadow and other non-water dark surfaces such as asphalt or dark coloured rooves 

(Feyisa et al., 2014). As well as this, it aims to show effectively this new method would 

work under different environmental conditions and to compare it against existing 

methods. When the AWEI was created, the images used were of various water bodies in 

different areas and conditions from five different countries. The range of test sites 

broaden the applicability of this equation to work with accuracy no matter what the 

conditions of the image were like. To maximise the separability of water and non-water 

pixels, band differencing, addition, and the application of different coefficients were 

used (Feyisa et al., 2014). This has resulted in the creation of two separate equations to 

ensure maximum effectiveness. The two AWEI equations are as follows: 

 
𝐴𝑊𝐸𝐼𝑛𝑠ℎ = 4 × (𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑆𝑊𝐼𝑅1) − (0.25 × 𝜌𝑁𝐼𝑅 + 2.75 × 𝜌𝑆𝑊𝐼𝑅2) 

 
 

 
𝐴𝑊𝐸𝐼𝑠ℎ = 𝜌𝑏𝑙𝑢𝑒 + 2.5 ×  𝜌𝑔𝑟𝑒𝑒𝑛 − 1.5 × (𝜌𝑁𝐼𝑅 +  𝜌𝑆𝑊𝐼𝑅1) − 0.25 ×  𝜌𝑆𝑊𝐼𝑅2 

 
 
 

The coefficients used in the equations and the combinations of the bands were chosen 

based on the reflectance properties of different land cover types. Particular importance 
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was placed on the need to enhance the separability of water and dark surfaces such as 

shadow and built-up areas as they are often difficult to distinguish as they have similar 

reflectance patterns. The coefficients were also chosen so that non-water pixels would 

be forced below zero, and water pixels above zero in order to increase the stability of 

the equations (Feyisa et al., 2014). 

 

The AWEInsh equation should effectively eliminate non-water pixels, including dark built 

surfaces in areas with urban background and is best used for areas without shadow. The 

AWEIsh helps to improve accuracy by removing shadow pixels that AWEInsh may not be 

able to, so is best used for areas with shadow and/or other dark surfaces as it could 

misclassify water surfaces where there are other highly reflective surfaces such as snow, 

ice, and reflective roof tops in urban areas. In terms of coastline change, the AWEInsh is 

likely to be useful for analysing coastline change as there would not usually be any 

features that are likely to cause shadow, like large buildings. The AWEIsh could be useful 

for analysing coastline change in areas where the coast is next to highly forested areas. 

 

2.3.3 AMERL 

The automated method for extracting rivers and lakes (AMERL) was developed by 

combining water indices with digital image processing techniques to identify water 

pixels, particularly mixed water pixels in shallow or narrow water bodies (Jiang et al., 

2014). The aim of the AMERL was to properly identify mixed water pixels and to capture 

the mixed water pixels with minimal noise; two issues which often occur when using 

water indices. 

 

To achieve the AMERL, pure water pixels were extracted using a deliberately selected 

strict threshold (Thdpure) (Jiang et al., 2014). They tested Thdpure for each WI (NDWI, 

MNDWI, AWEIsh, and AWEInsh) using a number of training images with stable 

characteristics (Jiang et al., 2014). Next, a watershed segmentation method was used to 

identify mixed water pixels at the edges of lakes or wide rivers (Jiang et al., 2014). Then, 

a method based on linear feature enhancement was used to identify water pixels from 

narrow rivers (Jiang et al., 2014). Lastly, the extracted water features were combined to 

produce a final water body (Jiang et al., 2014). 



19  

2.4 Remote sensing processes 

2.4.1 Extraction of coastline/water bodies 

There is no single method to be used for shoreline modelling or coastline extraction, 

however, the use of remote sensing has become one of the most effective ways to do 

so (Dominici et al., 2019). By using remote sensing for this type of process, various 

methods can be explored to determine which of these are appropriate in situations 

where the coastal change is caused by a natural disaster. 

 

Satellite imagery from WorldView-2 has previously been used in studies where it was 

necessary to identify or extract the coastline. In one study, this was completed using 

NDVI and NDWI water indices to classify images to show sea, land, and vegetation 

(Maglione et al., 2014). Normally, NDVI is used to estimate vegetation density, but it is 

also able to distinguish between water and bare soil (Maglione at al., 2014), which is why 

it was used in this case. After calculating the NDVI and NDWI for the images, a Maximum 

Likelihood criterion was applied to find the threshold values for each index (Maglione et 

al., 2014) and the resulting images were vectorised to show the three classes only. By 

comparing the vector images with pan-sharpened RGB (regular coloured) images of the 

same locations, it was possible to see which index was able to most effectively identify 

the coastline (Maglione et al., 2014). 

 

WorldView-2 imagery was also used to extract the shoreline using New Enhancement 

Algorithms (Dominici et al., 2019). The Coastal Band available with WorldView-2 imagery 

makes the use of the NDWI equation more effective at differentiating between water 

and land due to the large difference between the Coastal Band and the NIR band 

(Dominici et al., 2019). A classification process is often used in conjunction with 

equations such as NDWI, however it can be difficult to decide on the number of classes 

to use, and what type of classes these should be (Dominici, 2019). For this reason, a 

new method for shoreline extraction was developed which involves the comparison of 

Active Connection Matrix (ACM) filters (Dominici et al., 2019). First, the images in use 

had common filters applied to them to find the most effective ones for showing a 

clearly defined shoreline. These filters included a Principle Components Analysis (PCA), 

Normalised Difference Vegetation Index (NDVI), WorldView Water Index (WV-WI), and 
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Unsupervised and Supervised Classifications. It was found that the WorldView Water-

Index (WV-WI), which uses WorldView-2 bands to highlight areas of standing water 

greater than one pixel in size, was the most effective of these methods at defining the 

shoreline (Dominici et al., 2019). 

The ACM system was next used in the processing of the images which involved testing 

some experimental algorithms to determine their effectiveness for the study (Dominici 

et al., 2019). In the ACM system, an image is considered to be a network that changes 

over time where the pixels are the connected elements within the network (Dominici et 

al., 2019). In other words, the pixels act as a neighbourhood, whereby if one pixel 

contains the value equal to “vegetation” the surrounding pixels can be compared to that 

one to find the likelihood that they are also “vegetation.” 

WorldView-2 imagery was also used in a study (Jawak & Luis, 2015) that was looking to 

find a way to semi- automatically extract water features in harsh environments that are 

difficult to access. It is recognised that water indices such as NDWI are commonly used 

for feature extraction and shoreline delineation (Jawak & Luis, 2015). The use of such a 

process is unlikely to be effective in Antarctic conditions due to the frozen environment 

potentially having similar spectrum characteristics as diverse ground targets that would 

ordinarily be differentiated in indices such as NDWI (Jawak & Luis, 2015). In this study, a 

new NDWI model was designed to extract water features using pixel-wise methods 

(Jawak & Luis, 2015). The new NDWI method was also compared against supervised 

feature extraction algorithms using visual and statistical accuracy (Jawak & Luis, 2015). 

A PAN-sharpened multispectral image was used to process 14 semi-automatic feature 

extraction methods which were categorised as either: a) Modified NDWI methods, b) 

Spectral matching methods, or c) Target extraction methods (Jawak & Luis, 2015). 

Visual inspection was used to find the best spectral bands for differentiating water 

bodies, and these were used to create the modified NDWI (Jawak & Luis, 2015). Manual 

thresholding was used on images with areas where meltwater on the snow surfaces 

could have been confused for water bodies (Jawak & Luis, 2015). Each image was then 

classified using the modified NDWI to extract the 36 water bodies, and these were then 

vectorised so that the area of each one could be calculated (Jawak & Luis, 2015). 



21  

Multitemporal Landsat ETM+, TM, and OLI imagery was used in a study (Rokni et al., 

2014) which aimed to find an effective technique for measuring surface water changes 

at Lake Urmia in Iran between 2000-2013. This study recognised that there have been 

several image processing techniques introduced in recent times, but many of them are 

single-band methods that make use of a selected threshold value to extract water 

features. Such a processing method can have errors, as water pixels can often be mixed 

with pixels of other cover types (Rokni et al., 2014). The use of multi-band methods can 

improve surface water extraction, for example, NDWI, MNDWI etc.  

 

For the Lake Urmia study, a new technique to measure surface water change was 

developed, based on Principal Components of multi-temporal NDWI (NDWI-PCS) (Rokni 

et al., 2014). The NDWI-PCS method itself was first tested for water-extraction suitability, 

but as it is usually used for forest-fire detection, it was unsuitable (Rokni et al., 2014). 

NDWI, MNDWI, WRI, NDVI, and AWEI were also all tested for suitability, and accuracy 

assessment showed NDWI to be the most effective (Rokni et al., 2014). The Normalised 

Difference Moisture Index (NDMI), which is normally used to measure the water content 

of vegetation (Rokni et al., 2014) was then reformulated for surface water extraction by 

substituting it with NDWI (Rokni et al., 2014). From here, the water surface of the lake 

was individually extracted from each image over the time period to compare the 

performance of each water index (Rokni et al., 2014). A land-water threshold 

(determined using trial and error by comparison to reference maps) was then manually 

applied to each image to classify them to show land and water only (Rokni et al., 2014). 

The NDWI-PCs was developed because manual thresholding is time consuming. To 

complete the NDWI-PCs, the NDWI images were first stacked into one composite file, 

and then the Principal Components Analysis was performed to turn the composite image 

into a new PCA space (Rokni et al., 2014). 

 

The Planet CubeSat imagery has also been used for a study (Cooley et al., 2017) 

involving the tracking of surface water extent in dynamic, high altitude areas. It was 

chosen for its high temporal 
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and high spatial resolution. Often, it is necessary to compromise between these two 

factors. For example, Landsat, Sentinel-2, and MODIS can and have all been used to track 

surface water extent and/or changes, but there is a combination of issues with these 

imagery types involving spatial and temporal resolutions, as well as atmospheric issues 

such as high cloud cover. For these reasons, none of these satellites are completely 

reliable for this sort of task. It is necessary to observe areas surface water frequently, 

particularly where the surface water extent is dynamic and at a high latitude. Often, in 

areas like this, the water bodies are much smaller, and therefore unvisited and unstudied 

(Cooley et al., 2017). A variety of factors cause this type of water body to change rapidly, 

such as melting permafrost, or a shorter duration of snow-cover (Cooley et al., 2017). In 

this study, the Planet CubeSat imagery was used to track changes in surface water extent 

in a 625 km2 area within the Yukon Flats of north Central Alaska (Cooley et al., 2017). A 

number of steps were taken to classify the images into open water and 

vegetation/surrounding land. These steps included looking for images with less cloud 

cover and altering these images so that the cloud cover was masked out. 

 
 

 
2.2.2 Landscape change analysis for volcanic events 

Torres et al. (2004) used remote sensing data to monitor changes to an alluvial fan that 

evolved after the eruption of Mount Pinatubo in 1991. The study involved collating 10 

years’ worth of remote sensing imagery to attempt to understand the erosion and 

deposition processes of the ignimbrite and lahars in a way so that extensive and difficult 

field work would not be necessary. The imagery collected was from various satellite 

platforms due to the different bands available on these platforms. For example, Landsat 

TM, SPOT, and ASTER can be used to identify areas with and without vegetation using 

their visible and near-infrared bands, and this can provide information about whether 

sections of the lahar deposits are older or younger (Torres et al., 2004). RADAR is useful 

because it can detect variations in surface roughness – these variations can be 

dependent on the moisture content within the lahar deposit (Torres et al., 2004), so 

again, the age of the deposits can be compared. The remote sensing observations made 

were done so by completing analyses such as Principle Components Analysis (PCA) which 
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can be used to create image difference maps, where changes in the landscape over time 

are highlighted using different colours. 

 
 

Wahab et al., (2019) recognises how devastating a volcanic eruption can be to an 

environment and the importance of the need to monitor volcanic environments due to 

the level of change that may occur over such short timeframes. This recognition came 

from the eruption of Mount Agung, Indonesia in 2017, and the changing environment 

due to the eruption has been the main focus for this study. Wahab et al., (2019) 

completed supervised classifications of Landsat 8 imagery to identify the current 

landcover around the volcano and compared this to previous landcover information 

using web-based GIS application REMAP. The vegetation density around the volcano was 

also identified using NDVI calculations (Wahab et al., 2019). The results of the study 

found that there were five main landcover types surrounding the volcano, and there 

were areas of high, medium and low vegetation density (Wahab et al., 2019). It is thought 

that the areas with no vegetation density could be indicative of the direction of the 

eruption flows (Wahab et al., 2019). 

 
 

Another method of measuring the change in an environment due to volcanic activity is 

through change detection analysis. Singh (1989) defines change detection as “the 

process of identifying differences in the state of an object or phenomenon by observing 

it at different times.” In other words, and in terms of remote sensing, it is the use of 

satellite images of an area over multiple dates in order to measure changes that may 

have occurred in the area over time. There are many factors which must be considered 

before undertaking a change detection analysis, such as what specific points in the image 

are of interest and which points are not of interest. When completing the change 

detection analysis, it is the change in reflectance values over the time period that will be 

measured, so it is also important to choose a change detection method that is suitable 

for the data and task. 
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3 REVIEW OF SATELLITE PLATFORMS 

The data that is chosen for this project will have certain requirements for its use to be 

worthwhile. Firstly, the spatial resolution needs to be high enough so that small areas on 

the island of Ambae can be easily seen. Secondly, the data needs to have the correct 

bands so that it can be processed with the various water indices that are of interest, 

including NDWI, MNDWI, and AWEInsh and AWEIsh. The bands needed for these indices 

include blue, green, NIR, MIR, and SWIR. Lastly, the satellite that provides the data needs 

to have a sufficient return time and low cloud cover to identify the coastal change. 

 

Landsat, Sentinel and Planet satellite platforms were identified as viable options for data 

provision based on their use in literature, available bands, and return time. The use of 

multiple platforms will provide a comparison of the spectral resolution, spatial resolution 

and return time of each respective satellite. Completing analysis with multiple satellites 

may also help to combat issues which could arise if platforms are inhibited by cloud 

cover, spatial extent or return times. 

 

3.1 Landsat 8 

There have been many similar studies previously completed using Landsat data which 

suggests it would be a good choice to use for this study. Where “similar studies” are 

those which involve the extraction of surface water, the use of water indices to measure 

water bodies in some way, and/or also completing a change detection analysis on these 

water bodies. In fact, when searching for articles of these similar studies, the majority of 

them were completed using Landsat data which is perhaps because the data requires the 

least complicated pre-processing. Some of these studies were mentioned previously in 

chapter 2, for example, Rokni et al. (2014) used Landsat data to complete a study of 

water surface change at Lake Urima, Iran using various water indices. 

 

Landsat 8 OLI/TIRS C1 Level-1 data was downloaded from the USGS website 

EarthExplorer. The downloaded data dates ranged from July 2017 – March 2019 with 
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varying levels of scene cloud cover, but with medium low levels of cloud cover over the 

island of Ambae. It was very difficult to find imagery with low scene cloud cover, so often 

it was more important to find images only without cloud over the areas of interest on 

the island. The areas of interest on Ambae are very small so Landsat’s low spatial 

resolution of 30 m is not effective at capturing a clear image of these areas. However, 

Landsat 8 does have a PAN band of 15 m spatial resolution, which – with extra processing 

– gives the data the potential to be equally as useful as higher resolution imagery. 

Landsat is also useful as it has a full range of spectral bands (Table 1) needed for the water 

index processing and these are all at the same resolution so they can be used as they are. 

As well as this, the Landsat data collected are all uniform in size and shape which makes 

it easy to alter across each image if needed. 

 
 

Landsat 8 

Band number Central wavelength 
(nm) 

Bandwidth (nm) Spatial resolution 
(m) 

1 Coastal/Aerosol 443 20 30 

2 Blue 482.5 65 30 

3 Green 562.5 75 30 

4 Red 655 50 30 

5 Near infrared 865 40 30 

6 SWIR 1610 100 30 

7 SWIR 2200 200 30 

8 Panchromatic 590 180 15 

9 Cirrus 1375 30 30 

TABLE 1 SPECTRAL RESOLUTION (BANDWIDTH) AND SPATIAL RESOLUTION FOR LANDSAT 8 BANDS 



26  

3.2 Sentinel 2 

There have been few similar studies completed using Sentinel 2 data which is perhaps 

because the pre-processing required for the data to be used is somewhat complicated. 

It is possible to complete some work with minimal pre-processing, however, to use the 

data further it needs to be pre-processed due to the fact that not all bands are at the 

same resolution. It is still possible to use Sentinel imagery for studies involving water 

indices, as shown by Du et al. (2016) who completed a study using water indices and 

Sentinel-2 imagery to monitor changes of the Venice coastland. 

 

 
Sentinel-2A and 2B data was downloaded from the ESA Copernicus Open Access Hub. 

The downloaded data dates ranged from July 2017 – March 2019 with varying levels of 

scene cloud cover, with medium to low levels of cloud cover over the island of Ambae. It 

was almost impossible to find any images that were entirely cloud free, so instead images 

were downloaded that had some cloud, but were cloud-free in the areas of interest on 

the island. Sentinel-2 has a spatial resolution of 10 m which means it is effective at 

capturing the areas of interest. Although Sentinel-2 has the full range of bands required 

for the water index processing (Table 2), they are not all at the same spatial resolution 

meaning that to use them, extra processing is necessary. Of the bands needed, the red, 

blue, green and NIR bands have a spatial resolution of 10 m, and the MIR and SWIR bands 

a spatial resolution of 20 m. Processing could be completed to either downscale the 20 

m bands to 10 m, or upscale the 10 m bands to 20 m. It was more beneficial to downscale 

the 20 m bands to 10 m so that the spatial resolution level was not lost. The processing 

for this was completed using a plugin in SNAP called Sentinel 2 Super-Resolution which 

automatically downscales the 20 m bands to 10 m. This processing was highly time- 

consuming, so it was necessary to select only a small area of the Sentinel image to be 

processed. Although the imagery required so much pre-processing, the data could be 

used effectively as all the images were the exact same in size and shape. The uniformity 

meant that the images could be altered in size very simply and would in the end still 

display the desired area. 
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S2A S2B 

Band number Central 
wavelength 
(nm) 

Bandwidth 
(nm) 

Central 
wavelength 
(nm) 

Bandwidth 
(nm) 

Spatial 
resolution 
(m) 

1 Coastal aerosol 442.7 21 442.2 21 60 

2 Blue 492.4 66 492.1 66 10 

3 Green 559.8 36 559.0 36 10 

4 Red 664.6 31 664.9 31 10 

5 Vegetation red 
edge 

704.1 15 703.8 16 20 

6 Vegetation red 
edge 

740.5 15 739.1 15 20 

7 Vegetation red 
edge 

782.8 20 779.7 20 20 

8 NIR 832.8 106 832.9 106 10 

8a Narrow NIR 864.7 21 864.0 22 20 

9 Water vapour 945.1 20 943.2 21 60 

10 SWIR – Cirrus 1373.5 31 1376.9 30 60 

11 SWIR 1613.7 91 1610.4 94 20 

12 SWIR 2202.4 175 2185.7 185 20 

TABLE 2 SPECTRAL RESOLUTION (BANDWIDTH) SPATIAL RESOLUTION FOR SENTINEL-2 BANDS 
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3.3 Planet 

The Planet CubeSat imagery was acquired under a Planet Education and Research 

licence, and the dates of this data ranged from August 2017 – April 2019. Table 3 

describes the specifications of the Planet imagery, including the spatial resolution which 

~3 m. This means it can provide a clear and precise image of any area that is captured. 

Data format and licence restrictions (limiting the area of the imagery) meant the data 

came in small “pieces” which had to be mosaicked together so that the whole image 

could be seen and the arrangement of the data within the folders did not allow this to 

be completed in a batch process so it was very time consuming. Overall, the Planet data 

was far less user-friendly than the Landsat and Sentinel data – a compromise to be made 

for its high resolution. As well as this, the Planet data only has four bands – red, green, 

blue, and NIR which means it is limited in its usage of water index processing and only 

the NDWI can be calculated. Even so, it will still be useful to compare the NDWI of Planet 

with both Landsat and Sentinel to see whether the higher resolution affects the visibility 

of the areas of interest. Another negative aspect for the Planet data is that the images 

are irregularly shaped. For example, some of the images are just a very small portion of 

the whole island whereas others nearly captured the entirety of the island. The 

irregularity of the images made it difficult to use as it greatly limited the number of 

images that could actually be considered for further analysis. As well as this, it was more 

difficult to measure cloud pixels. 

There are very few similar studies that have been completed using Planet data. This is 

perhaps because there are few bands associated with the data (red, blue, green and NIR), 

and it is not possible to complete this type of study without the extra bands needed for 

the water indices. However, Cooley (2017) did complete a study using Planet CubeSat 

imagery and water indices to map changes in surface water extent in high altitude areas, 

which is why it remains as a viable option for this thesis. 

Planet 
Band number Central wavelength (nm) Bandwidth (nm) Spatial resolution (m) 

1 – Blue 482.5 65 3 

2 – Green 555 80 3 

3 – Red 650 90 3 

4 – Near 
infrared 

820 160 3 

TABLE 3 SPECTRAL RESOLUTION (BANDWIDTH) AND SPATIAL RESOLUTION FOR PLANET BANDS 
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3.4 Summary 

 
There are various considerations to be made in deciding which of the satellite platforms 

could be the most effective for the analyses to be completed, including return time, 

spatial resolution and spectral resolution. There were many images provided with the 

Planet data, which is representative of the quick return time of the satellite (almost 

daily). However, a significant number of these images were unable to be used as they 

only covered a small portion of the island or did not contain the areas which were of 

interest. After sorting through the Planet images, there were 11 images that could be 

used. There were 16 Sentinel-2 images collected from the ESA website, however only 

nine could be used for further analyses due to too much cloud cover. There were a high 

number of Sentinel-2 images available for download due to the relatively fast return time 

of 2-3 days from Sentinel’s two satellites, however many of them were not selected for 

download if the cloud cover looked to be too high, for example, if the majority of the 

island was covered in cloud, or if the areas of interest appeared to be covered in cloud. 

There were 11 landsat 8 images downloaded from EarthExplorer, however only eight of 

these images could be used for further analyses due to a high level of cloud cover. 

Landsat had the lowest number of available images for download which is 

representative of its slower return time of 16 days. This information shows that a quick 

return time will not necessarily equate to a greater number of useable images. 

There are also a few important differences to note between each satellite platform which 

table 4 can help to explain. Landsat has the lowest spatial resolution for all of its bands 

across each of the platforms, and it has a mid-range spectral resolution (bandwidth). 

Sentinel has a good spectral resolution and a reasonable spatial resolution. Planet, 

meanwhile, has a very high spatial resolution, but the sensors have the largest 

bandwidths and there are fewer available bands. Although a high spatial resolution may 

provide more accurate measurement of sedimentation areas, a wide bandwidth may 

reduce the accuracy of calculated water indices and limit the ability to identify thresholds 

for land/water. 
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Band Landsat  Sentinel  Planet  

 Bandwidth 

(nm) 

Spatial 

resolution 

(m) 

Bandwidth 

(nm) 

Spatial 

resolution 

(m) 

Bandwidth 

(nm) 

Spatial 

resolution 

(m) 

Blue 65 30 66 10 65 3 

Green 75 30 36 10 80 3 

NIR 40 30 106 10 160 3 

MIR/SWIR 100 30 94 20 N/A N/A 

 

TABLE 4: A SUMMARY OF THE BANDS THAT ARE NEEDED FOR THE WATER INDICES. EACH INDEX REQUIRES 

DIFFERENT BANDS, BUT THIS TABLE DISPLAYS ALL BANDS NEEDED ACROSS ALL OF THE INDICES. NOTE: PLANET’S 

BLUE BAND WAS NOT USED AS THE INDEX FOR WHICH IT WOULD BE USED ALSO REQUIRED THE SWIR BAND 

WHICH IS UNAVAILABLE FOR THAT PLATFORM. 
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4 WATER INDEX ANALYSIS AND IMAGE PROCESSING 

 

4.1 Data collection 

4.1.1 Sentinel-2 data collection 

The sentinel-2 data was downloaded from the European Space Agency Open Hub. This 

website contains all Sentinel imagery (1, 2A, 2B, 3, 5) and collections include all datasets 

since each of the satellites first launched. Figures 3.1-3.5 show how the imagery was 

downloaded from this website. 

 

FIGURE 3 THE PROCESS FOR DOWNLOADING SENTINEL-2 IMAGES FOR AMBAE FROM THE ESA OPEN ACCESS HUB. 

A) THE HOME PAGE OF THE WEBSITE WHICH CAN BE NAVIGATED BY HOLDING DOWN AND DRAGGING TO THE DESIRED 

LOCATION; B) AFTER SCROLLING ACROSS THE MAP TO SHOW AMBAE, THE MAP CAN BE SWITCHED TO NAVIGATION MODE 

BY CLICKING THE PICTURE ON THE RIGHT BELOW THE FOUR ARROWS. ONCE IN NAVIGATION MODE, A BOX CAN BE DRAWN 

OVER AMBAE TO REDUCE IMAGE RESULTS TO ONLY SHOW ANYTHING WHICH INTERCEPTS WITH THIS BOX; (C) MORE 

SPECIFIC SEARCH CRITERIA CAN BE ENTERED TO FURTHER REDUCE THE IMAGE; (D) THE RESULTING IMAGES APPEAR IN A LIST 

SHOWING THE MOST RECENT FIRST. 
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4.1.2 Landsat-8 data collection 
The Landsat-8 data was downloaded from the USGS Earth Explorer website. The imagery 

is available on other websites, however, Earth Explorer was chosen because is simple to 

use. This website also has many other satellite datasets available. Figures 4.1-4.4 shows 

the process for downloading the Landsat-8 imagery. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4 THE PROCESS FOR DOWNLOADING LANDSAT 8 IMAGES FOR AMBAE FROM THE USGS 
EARTHEXPLORER. A) THE HOMEPAGE OF THE WEBSITE PRIOR TO INPUTTING ANY INFORMATION FOR SEARCH 

REQUIREMENTS IN THE LEFT INFORMATION PANE; B) AFTER NAVIGATING THE MAP TO SHOW AMBAE, A 

POLYGON WAS CREATED AROUND IT SO THAT ONLY IMAGERY OVERLAPPING THE ISLAND WILL BE SHOWN IN THE 

RESULTS. THE POLYGON IS CREATED BY SIMPLY CLICKING ON THE SCREEN TO CREATE EACH “PINPOINT” CORNER 

OF THE POLYGON. THE DATES OF INTEREST WERE ALSO SELECTED SO THAT ONLY IMAGERY TAKEN DURING THE 

DATES WILL BE SHOWN IN THE RESULTS; C) IN THE NEXT TAB “DATA SETS” THE IMAGERY OF INTEREST WAS 

SELECTED. IT WAS FOUND BY SELECTING “LANDSAT” THEN “LANDSAT COLLECTION 1 LEVEL 1” AND FINALLY 

“LANDSAT 8 OLI/TIRS C1 LEVEL-1”; D) THE RESULTING IMAGES FROM THE SEARCH CRITERIA WHICH APPEAR 

IN A LIST ORDERED FROM LATEST TO EARLIEST. THERE ARE 164 IMAGE RESULTS, HOWEVER IT IS LIKELY THAT 

MANY OF THESE WILL NOT BE APPROPRIATE FOR USE, THEREFORE IT IS NECESSARY TO PREVIEW POTENTIALLY 

SUITABLE IMAGES BEFORE DOWNLOADING THEM. 
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4.1.3 Planet data collection 

PlanetScope images were downloaded using the Planet API 

(https://developers.planet.com/docs/apis/) for a custom-defined region around Ambae 

shown in figure 5. The region was constrained to a small area due to the Education and 

Research License for Planet imagery that restricts the maximum area of imagery 

available. Planet ‘Analytic’ imagery (radiometric and sensor corrections applied) were 

downloaded. PlanetScope imagery is derived from the second generation PlanetScope 

sensors aboard the PlanetScope satellite constellation of ~130 satellites (Planet team, 

2017). Data consists of single-frame image ‘captures’, approximately 24 km × 8 km in size 

(Planet Team, 2017). The size of these individual images compared to Ambae (~38 km × 

16 km) mean a mosaicking step is required to create a composite image from a single 

date. Each analytical image contains an unusable data mask file (UDM file) that provides 

information on areas of unusable data (e.g. due to clouds or un-imaged areas). This file 

was necessary for this study to correctly mask non-imaged areas from calculations. 

 

FIGURE 5 THE BLACK OUTLINE IN THIS IMAGE SHOWS THE CUSTOM-DEFINED REGION AROUND AMBAE THAT IS 

PROVIDED FOR THE PLANETSCOPE IMAGES USING THE PLANET API. 

https://developers.planet.com/docs/apis/
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4.2 Image processing 

4.2.1 Planet 

The Planet imagery was arranged by date in folders each containing a *.tif image and a 

UDM file for that date. Although they were arranged by date, the imagery could not be 

used as it was. This was because there were sometimes three or four folders associated 

with one date. The *.tif images inside the folders were often smaller portions of a larger 

image all from the same date. Due to this, the imagery had to be mosaicked together so 

that the full images could be viewed and used more easily. The mosaicking was 

completed using the Seamless Mosaic tool in ENVI 5.5, and each date was individually 

selected to ensure accuracy. The mosaicked images were individually inspected for their 

suitability for further analysis. Any images that were deemed as unsuitable were 

disregarded; this included images that did not contain a reasonable portion of the 

entire island, particularly the coastal areas, or images with too much cloud cover, for 

example, if the majority of the island was covered with cloud or if areas of interest 

were covered with cloud. 

 

The supplied UDM files could not be easily used as they were in a binary format that 

could not be read by ArcGIS Pro. For this reason, the files were edited so that they would 

display as a *.tif image. Once they had been changed to *.tif files, the UDM images were 

also mosaicked together in the same way as previously described. 

 
Analyses using the mosaicked images and UDM files were for the index images (figures 

5-8). Further analysis using histograms (see sections 4.6 and 4.7) required use of a 

custom histogram toolbox written in ArcPy. In the toolbox, the NDWI value was extracted 

from each pixel of each image and sorted into 200 bins between -1 and 1 which could be 

opened in Excel as a CSV file. The toolbox also excluded all cloud pixels from the extracted 

data. This was completed by including the UDM file as a secondary file for each 

corresponding NDWI image – the toolbox was able to read both files and only extract the 

pixel values which did not intersect with the pixels of the UDM file. 
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4.2.2 Sentinel 2 

The Sentinel-2 data required a significant amount of time-consuming pre-processing. 

 
The downloaded Sentinel-2 data for each selected date contained four large tiles – due 

to the way the imagery was captured by the Satellite, Ambae was in the very centre of 

these four tiles which is why all four needed to be downloaded. After downloading the 

imagery, it was super-resolved using ESA SNAP. 

Sentinel-2 Super Resolution is a plugin created by Brodu (2017) for the ESA SNAP 

application that allows all bands within a Sentinel-2 image to be downscaled to 10 m 

from 20 or 60 m. The super resolution plugin works by using the 10 m bands in the same 

way a panchromatic band would be used to pan-sharpen an image. The plugin was quite 

computationally intensive to use (for example, a test was done using an image that 

covered the whole island – in this situation it took ~1 hour to super resolve just one band 

of that image) so, in the interest of time, it was only used on a small area of the island – 

for these images the super resolution took ~20 minutes per band. This plugin was used 

on the downloaded Sentinel-2 imagery so that the water index equations could be 

completed. Without downscaling the 20 and 60 m bands the indices would not have 

worked as all bands involved are required to be of the same resolution. The process of 

using the plugin was overall very simple – the desired image was selected in the plugin 

window and the size of the subset was entered using cell values. The resulting super- 

resolved images were used to complete the water index calculations – this process will 

be described later in this chapter. 

 

There have been other studies where the 20 and 60 m bands in Sentinel-2 have been 

downscaled using other methods (e.g. Park et al., 2017), however, the SNAP super 

resolution was the simplest way to do this for this study as the downscaling process was 

not the focus. This method, while effective overall, was limiting in that only very small 

images could be used for the processing to be completed in a reasonable timeframe, 

meaning a ‘pre-selection’ of areas of interest had to be made. Larger images were first 

tested, however the processing time, as mentioned previously, meant it would have 

taken too long given the number of images that required processing. 
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After the super-resolution was completed, the water indices were calculated, and the 

results were mosaicked together using the ENVI 5.5 Seamless Mosaic tool. The 

mosaicking could not be completed prior to these tasks because the tool was unable to 

include more than four image bands, but there were more than four that were necessary 

for some of the water index calculations. 

 

Most of the processing analyses of the Sentinel-2 data were completed without removal 

or exclusion of any cloud, however it was upon further post-processing analyses that it 

was necessary for cloud removal to be completed. This cloud-removal process will be 

discussed later in this section. 

 

The analyses that were completed after the clouds were removed from the images 

included creating histograms for each individual image. Similarly, to the Planet analysis, 

an ArcGIS toolbox was created specifically to do this. For Sentinel, however, the toolbox 

did not automatically extract the clouds from each image as there was no associated file 

to include as there was with Planet. The ArcGIS toolbox sorted pixels for each individual 

image into 200 bins between -1 and 1, and these files could then be opened as a .csv file 

in Excel and be used to create the histograms. 

 
 
 

4.2.3 Landsat 8 

As the Landsat data had the lowest spatial resolution, it was necessary to downscale it 

so that it could be at a similar resolution to Sentinel or Planet. To complete this, the data 

was pan-sharpened In ENVI 5.5. using the NNDiffuse method (Sun et al., 2014). All of the 

automated sharpening tools available in ENVI were first tested to see which was most 

effective in providing the clearest resulting image, and it was NNDiffuse which was 

found to be the simplest (least amount of steps taken to complete), with the clearest 

image. 

 

Subsets of the Landsat 8 data were created so that each downloaded image surrounded 

the island and a small amount of water only. The subset was created using a Sentinel-2 

subset as a mask so that all images were of the same size. This step was necessary so 
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that water index calculations were not being completed on pixels that were not part of 

the area of interest. 

 

Creation of Landsat 8 AWEI histograms 

Using the Histogram Data toolbox in ArcGIS Pro, the minimum and maximum values were 

changed to -50,000 and 50,000 respectively. The reason for this is due to the Landsat 8 

reflectance values being much higher than the comparable Sentinel-2. When the 

reflectance values are entered into the AWEI equations, the result equates to a number 

in the 10s or sometimes 100s of thousands. Therefore, the regular -1 and +1 

minimum/maximum values cannot be used as there are very few or no pixels in the 

resulting images with these values. 
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4.3 Water index calculations 

Each water index was calculated for the images using Band Math in ENVI 5.5. In this tool, 

the equation is inputted, and then the required bands are selected from within the 

image. This allowed for easy adaptation of each equation depending on which bands 

were required for the different datasets. The water indices used were: 

 

• Normalised Difference Water Index (NDWI) 

• Modified Normalised Difference Water Index (MNDWI) 

• Automated Water Extraction Index (AWEInsh and AWEIsh) 

•  

As shown, the equations for each water index (Sections 2.3.1, 2.3.2, & 2.3.3) make use 

of a number of different bands. For example, the AWEIsh equation required the blue, 

green, NIR, SWIR1 and SWIR2 bands, which for Sentinel 2 was bands 2, 3, 8, 11 and 12 

respectively, but for Landsat 8 was bands 2, 3, 5, 6 and 7 respectively. The use of ENVI’s 

Band Math made it simple to adjust the equations when necessary as the same equation 

could be used for each dataset even when the required bands were different. The 

bands are selected directly from the image after the equation is chosen, which meant 

the equation did not have to be rewritten to account for each new dataset. Because the 

bands of the Sentinel-2 images had previously been ‘Super-resolved,’ when they were 

calculated upon, the individual bands had to be opened as separate images, rather than 

one image containing all the necessary bands. The resulting water index images were 

grey scale and contained only one band which was the water index equation. 

 

4.3.1 NDWI 

The normalised difference water index (NDWI) is an equation which is calculated on a 

satellite image to try to delineate open water features of the image (McFeeter’s, 1996). 

It is based on similar ideas as the normalised difference vegetation index (NDVI), which 

aims to highlight vegetated areas of an image, but by reversing the NDVI equation, open 

water features can instead be highlighted instead. 

The NDWI equation is as follows: 
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𝑁𝐷𝑊𝐼 = 
(𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅) 

 
 

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅 
 
 

Band specifications can be viewed in table 4 
 

 
Platform Green band NIR band 

Sentinel-2 3 (541.8 nm - 577.8 nm) 8 (779.8 nm - 885 nm 

Planet 2 (515 nm - 595 nm) 4 (740 nm - 900 nm) 

Landsat 8 3 (525 nm - 600 nm) 5 (845 nm - 885 nm) 

TABLE 5 BAND SPECIFICATIONS FOR EACH SATELLITE PLATFORM WHEN USED WITH THE NDWI WATER INDEX 

 

 
The near infrared band is used because water strongly absorbs NIR and vegetation 

strongly reflects NIR. The green band is used because it holds reflected green light, and 

these green wavelengths are able to maximise the reflectance of water. Overall, the 

equation should 1) maximise the typical reflectance of water features by using green 

light wavelengths, 2) minimise the low reflectance of NIR by water features, and 3) take 

advantage of the high reflectance of NIR by terrestrial vegetation and soil features. Once 

an image has been processed with the equation, water features will have positive values 

while soil and terrestrial vegetation features will have zero or negative values. 

 

 

4.3.2 MNDWI 

The modification of normalised difference water index (MNDWI) was created as the 

NDWI supposedly cannot effectively distinguish between built-up land noise and 

extracted water features which causes them to become mixed up. This is because the 

green band and the NIR band have a similar reflectance pattern for built-up land and 

water, where they both reflect green light more than they reflect infrared light. This 

results in positive values for both water and built-up land. 

 

The MNDWI equation is as follows: 
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𝑀𝑁𝐷𝑊𝐼 = 
(𝐺𝑟𝑒𝑒𝑛 − 𝑀𝐼𝑅) 

(𝐺𝑟𝑒𝑒𝑛 + 𝑀𝐼𝑅) 

 
 

Band specifications can be viewed in table 5 
 

 
Platform Green band MIR (SWIR) bands 

Sentinel-2 3 (541.8 nm - 577.8 nm) 11 (1567.5 nm – 1659.2 nm) 

12 (2114.9 nm – 2289.9 nm) 

Planet (not   used   for 

MNDWI) 

2 (515 nm - 595 nm) NA 

Landsat 8 3 (525 nm - 600 nm) 6 (1560 nm – 1660 nm) 

7 (2100 nm – 2300 nm) 

TABLE 6 BAND SPECIFICATIONS FOR EACH SATELLITE PLATFORM WHEN USED WITH THE MNDWI WATER INDEX 

 

 
 

4.3.3 AWEI 

The Automated Water Extraction Index (AWEI) was created to try and improve the 

accuracy of surface water mapping by automatically suppressing classification noise from 

shadow and other non-water dark surfaces, and also to test how effectively this new 

method would work under different environmental conditions and to compare it against 

existing methods. When the AWEI was created, the images used were of various water 

bodies in different areas and conditions from five different countries. It is important that 

a range of test sites were used as this would ensure that the equation would work with 

accuracy no matter what the conditions of the image were like. To maximise the 

separability of water and non-water pixels, band differencing, addition, and the 

application of different coefficients were used. This has resulted in the creation of two 

separate equations to ensure maximum effectiveness.  

The two AWEI equations are as follows: 

 
 

𝐴𝑊𝐸𝐼𝑛𝑠ℎ = 4 × (𝜌𝑔𝑟𝑒𝑒𝑛 −  𝜌𝑆𝑊𝐼𝑅1) − (0.25 × 𝜌𝑁𝐼𝑅 + 2.75 × 𝜌𝑆𝑊𝐼𝑅2) 
 
 

 
𝐴𝑊𝐸𝐼𝑠ℎ = 𝜌𝑏𝑙𝑢𝑒 + 2.5  × 𝜌𝑔𝑟𝑒𝑒𝑛 − 1.5 × (𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1) − 0.25  × 𝜌𝑆𝑊𝐼𝑅2)
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Band specifications can be viewed in table 6 
 

 
Platform Green band Blue band NIR band SWIR bands 

Sentinel-2 3 (541.8 nm - 

577.8 nm) 

2 (459.4 nm – 

525.4) 

8 (779.8 nm - 885 

nm 

11 (1567.5 nm – 

1659.2 nm) 

12 (2114.9 nm – 

2289.9 nm) 

Planet 2 (515 nm - 

595 nm) 

NA 4 (740 nm - 900 

nm) 

NA 

Landsat 8 3 (525 nm - 

600 nm) 

2 (450 nm – 515 

nm) 

5 (845 nm - 885 

nm) 

6 (1560 nm – 1660 

nm) 

7 (2100 nm – 2300 

nm) 

TABLE 7 BAND SPECIFICATIONS FOR EACH SATELLITE PLATFORM WHEN USED WITH THE AWEI WATER INDICES 

 

 
The coefficients used in the equations and the arithmetic combinations of the bands 

were chosen based on the reflectance properties of different land cover types. Particular 

importance was placed on the need to enhance the separability of water and dark 

surfaces such as shadow and built-up areas as they are often difficult to distinguish as 

they have similar reflectance patterns. The coefficients were also chosen so that non- 

water pixels would be forced below zero, and water pixels above zero in order to increase 

the stability of the equations. 

 
The AWEInsh equation should effectively eliminate non-water pixels, including dark built 

surfaces in areas with urban background and is best used for areas without shadow. The 

AWEIsh helps to improve accuracy by removing shadow pixels that AWEInsh may not be 

able to, so is best used for areas with shadow and/or other dark surfaces as it could 

misclassify water surfaces where there are other highly reflective surfaces such as snow, 

ice, and reflective roof tops in urban areas. In terms of coastline change measurement, 

both of these indices could be useful; the AWEInsh where the surrounding environment 

is open or there are buildings around which are highly reflective. The AWEIsh would be 
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useful in coastal environments where the surrounding environment is dark with a lot of 

shadows, such as forested areas. 

 
 

 

4.4 Cloud removal 

The cloud removal process for the Landsat 8 and Sentinel-2 imagery was the same. 

Firstly, a cloud mask was created in ENVI using the ‘Create Cloud Mask Using Fmask’ tool. 

The tool uses the thermal and cirrus bands within the multispectral imagery to create 

the cloud mask. The resulting mask is a raster image where non-cloud pixels have a value 

of 1, and cloud pixels have a value of 0. As the cloud masking tool needed to be 

completed using the original downloaded multispectral image, once completed, they 

were saved as a smaller image to match the size of the water index images. 

 

The next step was to use the cloud mask images to remove cloud pixels from the water 

index images in ArcGIS Pro. This was completed by converting the raster images to a 

polygon so that the cloud pixels could be deleted. However, for some of the cloud mask 

images, the areas of cloud/non-cloud had to be edited as the cloud mask did not correctly 

show the true areas of cloud/non-cloud. The editing was completed in ArcGIS Pro by 

simply moving and/or deleting the vertices of the polygons. Once the cloud/non-cloud 

areas appeared to be correct (where the entire cloud polygon was outlined rather than 

just a portion), and the cloud pixels deleted, the mask could then be used to remove the 

clouds from the water index images. This was completed using the ‘Extract by Mask’ tool 

in ArcGIS Pro. 

The removal of cloud for the Planet imagery was more complicated than for Landsat 8 

and Sentinel-2. Although the Planet imagery contained a UDM file for each image, it was 

difficult to use this for the removal of the clouds. Unlike with Landsat 8 and Sentinel-2, 

where the cloud pixels could be removed while keeping the non-cloud pixels, the Planet 

imagery could not be treated in the same. Therefore, viewable images with the clouds 

removed were not created for the Planet imagery. Instead, the cloud removal process 

was completed during the creation of the histograms as previously discussed in 4.2.1. 
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4.5 Displaying the imagery 

After completing the water index calculations on each dataset, the image colours were 

edited to better represent the data. In ArcGIS Pro, the symbology for each individual 

water index image was changed, which included a new colour scheme and adjustment 

of the minimum and maximum values. These values were adjusted to display the colours 

in the correct range for the water indices (-1 to 1) rather than from the true minimum 

and maximum value that was given after the indices were calculated. The reason for this 

was so all the image results were the same for a more accurate analysis. 

In the literature for each of the water indices the equations give a range of pixel values 

across the image from -1 to 1. For this study to have the same accuracy as the literature, 

the values being displayed on the resulting index images must also be from -1 to +1. This 

does not mean that the results were ranging from -1 to +1, however. 

 

 
4.6 Land/water thresholds 

After completing the water index analysis for the images, it was necessary to find out 

what values within the respective water indices could be considered as ‘definitely water’ 

or ‘definitely land.’ To do this, the same calculations that were used by Cooley (2017) 

were used. The calculations are as follows: 

𝐿𝐿 = ℎ𝑒𝑖𝑔ℎ𝑡𝑙𝑝 − 0.9  × 𝑝𝑟𝑜𝑚𝑙𝑝 

 
𝑊𝐿 = ℎ𝑒𝑖𝑔ℎ𝑡𝑤𝑝 − 0.9 × 𝑝𝑟𝑜𝑚𝑤𝑝 

 

Where heightlp and heightwp are the heights of the peaks of the Excel graphs for 

land/water respectively, and promlp and promwp are the prominences of those peaks. 

The height of the peak is a measurement from the lowest point of the peak (e.g. the x- 

axis) to the maximum point of that peak, and the prominence of the peak is the minimum 

required value from the top of the peak to the trough, at a point where the next peak 

can begin to be climbed. 
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The histograms that were created for the NDWI images of all three satellite platforms 

resulted in a line for each image date on one graph, but this was not suitable for use with 

the threshold equations. Instead, as done in the Cooley et al. (2017) study,  an “average 

graph” was created, by finding the average of each NDWI value across all the image 

dates and plotting these to create a new histogram. Because the new histogram was 

representative of all the NDWI data, it could be used to define the water and land 

thresholds for the individual dates. 

 
 

4.7 Image classification 

After calculating the land/water thresholds for each of the images, these thresholds were 

used to ‘classify’ the images. It was not necessary to complete any supervised or 

unsupervised classification processes for the images, as the information needed to group 

the pixels into different landcover types had already been attained. The threshold values 

were used to display the NDWI images showing three clear pixel types: land, water, and 

mixed pixels. This was completed in ArcGIS Pro by editing the symbology for each image 

so that the ‘Classify’ symbology type was selected, showing three groups, with each 

group displaying a different pixel type. For example, pixels with values between 0 and - 

0.23 displayed as green for vegetation, pixels with values between 0.23 and 0.46 

displayed as grey for mixed pixels, and pixels between 0.46 and 1 displayed as blue for 

water pixels. 
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5 IDENTIFYING AND COMPARING LANDSCAPE CHANGE 

 

5.1 Visual comparison of water indices 

The grid in figure 6 provides a comparison of all water indices across all satellite 

platforms, where the spatial resolution of Sentinel-2 is 10 m, of Planet is 3 m, and of 

Landsat 8 is 15 m. To allow for the most accurate comparison, all images used were either 

from the same date (05/12/2018) or the closest available date to it. This date was chosen 

as it was during a time when there was minimal cloud-cover in the images across all 

platforms. The blank spaces in the Planet column show water indices that could not be 

calculated as the required image bands were not available with the Planet data. Colour 

contrast differs across each platform and between indices, where some images have 

more vibrant colours, and others have more dull colours. This is due to the different 

spectral responses and bandwidths for each satellite platform but could also be affected 

by atmospheric interference at the time of capture. 

 

The RGB images show an area of coastal aggradation (A, B, C in Figure 6, ~8 km x ~5 km) 

that is identifiable for each platform. The ability to identify this region will be used to 

compare the indices and platforms and will help to determine which is the most 

effective when measuring coastal change. The colouring of the images will help to 

determine this, as colouring on all index images is scaled to identify water, land, and 

areas of sedimentation (mixed pixels). Blues denote water, green land/vegetation, and 

white pixels indicate mixed areas (land/water) on the coastal interface, or clouds. A 

cloud-covered region is also visible in the South-East of the Landsat and Planet images, 

which can be used to evaluate the effectiveness of the indices under partial cloud cover. 

 

NDWI 
Figure 6 displays an example of the NDWI image results across the three satellite 

platforms taken from a similar date. The Sentinel-2 NDWI result provides an image in 

which the area of aggradation is visually well-defined. In the Sentinel-2 image, there are 

three distinct colour profiles and the image has the greatest contrast between the three 

colours. The area of aggradation is defined by the white colour and due to the high 
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contrast of the blue and green colouring, this area stands out well, which makes it easy 

to distinguish where the coastal sedimentation has occurred. For this reason, it is the 

Sentinel-2 that has provided the best NDWI image results. 

 
The Planet NDWI image is also made up of the same three colour profiles as the Sentinel- 

2 image, however the colours are not as distinct or as contrasted. Unlike the Sentinel-2 

image, the area of coastal sedimentation cannot be easily identified so it is difficult to 

interpret what the image is displaying. The image is lacking contrast between the blue 

and green colours, and overall, the colour of the vegetation is more white than green, 

creating further confusion. The area of aggradation is mostly displayed as blue, which 

does visually stand out from the vegetation, however, this would also suggest that the 

aggradation is an area of water which is incorrect. 

 

The Landsat-8 NDWI image also displays three clearly separate colour profiles, with 

relatively good contrast between the colours, but less than that of the Sentinel-2 image. 

This could be due to atmospheric interference or the spectral response of the satellite 

sensor on the different types of land cover. The area of coastal sedimentation can be 

identified visually but is more difficult to see than in the Sentinel-2 image due to the 

overall clarity of the image. If the spatial resolution of the satellite was at the same level 

as Sentinel-2, these two images may have been more equal in their ability to offer an 

image where the area of coastal aggradation is clear and well-defined. 

 

MNDWI 
The Sentinel-2 MNDWI image has three distinct colour profiles with high contrast 

between them. In the image, the area of coastal sedimentation can be easily identified 

as it is represented by the white colour in the image. Compared to the Sentinel-2 NDWI 

image, the water pixels in the MNDWI image have less contrast, which makes the 

sedimentation pixels along the coastline a little more difficult to distinguish than in the 

NDWI image. For this reason, the NDWI index is visually better than the MNDWI index. 

 

The Landsat-8 MNDWI image is made up of three colours, however the contrast between 

the blue and green colours is the lowest out of any of the images across all platforms and 
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indices. The reason for this could be due to the low spatial resolution of the satellite 

combined with the bands that were required for this equation, which are the Middle 

Infrared and Green bands. As well as this, the bandwidth of the Landsat MIR band is 

much wider than that of the Landsat NIR band. The use of the MIR band is usually used 

to help better distinguish built-up land areas from vegetation, but as there is no areas of 

built-up land in any of the images, the resulting image did not display an accurate pixel 

distribution. 

 

AWEIsh 

The Landsat 8 image for this index has the highest contrast between the blue and green 

colours out of all the indices for this platform. However, the clouds for this date did affect 

the resulting image somewhat, as sections of the cloud cover have been confused for 

water pixels. In the Sentinel-2 image, the contrast between the blue and green colours 

is less than that of the NDWI and MNDWI, but there appears to be greater differentiation 

within the vegetation area specifically, as there are areas of darker greens and lighter 

greens. The likely reason for this is that the AWEIsh index is designed for use where there 

is a lot of shadow or dark features, which would be the case for these images due to the 

extensive vegetation. The reason this index is designed for shadowy areas is due to the 

bands and coefficients used in the equation. The bands used include blue, green, SWIR1 

and SWIR2. The coefficients within the equation are the numbers 2.5, -1.5, and 0.25. The 

purpose of the inclusion of the coefficients is to increase the separability of the water 

and non-water pixels, which should therefore produce more negative or more positive 

values respectively. 

 

AWEInsh 

The two images in figure 6 displaying the AWEInsh index show how this index has much 

different appearance for their respective platform compared with the other indices of 

that platform. For Sentinel-2, there is less contrast between the blue and green colours 

compared with the other indices, and for Landsat-8, it is the differentiation of the colours 

that has been affected. The likely reason this has occurred is because the AWEInsh 

platform was designed for use in areas with a significant amount of built-up or urban 

areas. There is very little or no built-up or urban areas in the area displayed in the images, 
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so the index has less applicability. It was still chosen for use in this situation so that 

there was a full comparison of available water indices. It is interesting to note that in 

the Landsat-8 AWEInsh image, the clouds have somewhat disappeared. This could be 

because the clouds would have had a similar reflectance as urban areas, creating 

confusion when the index was calculated. As with the AWEIsh equation, there are 

coefficients involved with AWEInsh which are combined with the bands used to create 

more negative and more positive values for certain pixels. The bands used in this 

equation are green, NIR, SWIR1 and SWIR2, with coefficients 4, 0.25, and 2.75. 

 

Summary 
The MNDWI and AWEI indices were formulated for areas where built-up land negatively 

affected results of the NDWI. Their ability to lessen the impact of built-up land is due to 

the reflectance pattern of this type of landscape. Both water and built-up land reflect 

light more than they reflect NIR light, which is why in the MNDWI and AWEI indices these 

two land types would have positive values. This would result in an image which would 

appear to have a greater presence of water, but it could actually just be a mix of those 

pixels. However, as there were no areas of built-up land in the images used, this was not 

an issue of concern. 

 

The NDWI is the only index selected for further evaluation and analysis in this section, as 

it is overall the most appropriate index for the environment. The NDWI images were 

chosen because this index is highly visually contrasted which has provided measurable 

results out of all water indices, and it is the only index which could be used across all 

three platforms. Overall, the NDWI images provide the greatest contrast between 

colours – particularly with the Sentinel sourced imagery – as well as providing the best 

visibility of the sediment development after the eruptive episodes (Figure 7). It is likely 

that the environment of Ambae, e.g. almost unbroken vegetation, is the reason why 

NDWI was the most effective index. The use of the NIR band in the index is used to 

minimise the low reflectance of NIR by water and to maximise the high reflectance of 

the NIR by vegetation and soil (Xu, 2006). 

 

As well as this, it is selected for its ability to differentiate regions of coastal aggradation, 
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water and land; availability across all pixels, and ease of calculation that does not require 

arbitrary coefficients. 
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FIGURE 6: THIS TABLE OF FIGURES SHOWS THE RESULTING IMAGERY OF EACH SATELLITE PLATFORM AFTER EACH WATER INDEX WAS CALCULATED. THE IMAGES SHOWN FOR SENTINEL-2 AND PLANET ARE 

FROM THE SAME DATE, 05/12/2018, AND THE LANDSAT 8 IMAGES ARE FROM 27/11/2018 WHICH WAS THE CLOSEST AVAILABLE DATE TO THE REST. THESE IMAGES WERE CHOSEN AS THEY ARE THE 

CLEAREST AND LEAST CLOUDY IMAGES FOR EACH RESPECTIVE PLATFORM. 
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5.2 Timeline of sedimentation 

A timeline of NDWI images were created for each of the three satellite platforms. 

The images used were all those available between the July 2017 and March 2019, 

covering the pre-eruptive, eruptive, and post eruptive period of activity. The images 

used were either free from cloud or had the least amount of cloud over the areas of 

interest. For Planet, the images used were also those which were large enough for 

display purposes and those which included the areas of interest. 

 

Sentinel Timeline 
The images in the Sentinel-2 timeline appear to decrease in contrast between the 

blue and green colours as time goes on. The one exception to this is the image for 

12-08-2018, however this image also has significant cloud cover which is likely to 

have affected the distribution of pixel values. Another visible change in the images 

over time is the development of the alluvial fan in about the centre of the images. In 

the first two images this development is not there, but from the 13-07-2018 image 

(which was shortly after the most significant eruption episode) onwards it is there. 

From a visual perspective, the development does appear to increase in size and 

become smaller again over time, with its visibility much less in the final image dated 

24-01-2019, where there is little outward growth from the coastline on this date 

compared with dates soon after the initial eruption phases. 

 

Planet timeline 
The most noticeable aspect of the Planet timeline is the inconsistency in size/location 

of the images. Planet image footprints are smaller (in area) than Sentinel and Landsat 

platform footprints, resulting in inconsistencies in image footprint and sizes. The 

images chosen for the timeline and that were used for the water index calculations 

were those which best showed the main area of interest (Area A, B, C in figure 6). 

Overall, the contrast of the Planet timeline is much less than that of the Sentinel 

timeline. It is also more difficult to see the area of development that is so clearly 

visible across the Sentinel timeline. Many of the images do have significant cloud 

cover, however, even in the images with very little cloud cover the development area 

is more difficult to see. 
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Landsat Timeline 
All images of the Landsat timeline are similar in appearance and are low in contrast, 

so the colours of the images are pale compared to Sentinel or Planet. The similarity 

between the images is likely due to the low spatial resolution of Landsat 8 which has 

made it difficult to identify any distinguishing features in the images. In the images 

between 03/05/2018 and 27/11/2018 it is possible to see the sedimentation in the 

main area of interest (Area A, B, C in figure 6), however without knowing where to 

look, it is not noticeable compared to the Sentinel-2 images. Many of the Landsat 8 

images contained a significant amount of cloud cover, which is also a likely reason 

for the poor quality and low contrast of these images. 
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FIGURE 7: THIS SERIES OF IMAGES SHOWS THE CHANGE OVER TIME BETWEEN AUGUST 2017 – MARCH 2019 FOR SENTINEL-2 NDWI IMAGES. THE FIRST IMAGE, DATED 08/07/2017 WAS PRIOR TO THE MOST SIGNIFICANT ERUPTION, AND THE LAST IMAGE, DATED 24/01/2019 IS FROM AFTER 

THE ERUPTION PHASES HAD ENDED. 
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FIGURE 8: THIS SERIES OF IMAGES SHOWS THE CHANGE OVER TIME BETWEEN AUGUST 2017 – MARCH 2019 FOR PLANET NDWI IMAGES. THE FIRST IMAGE, DATED 04/08/2017 WAS PRIOR TO THE MOST SIGNIFICANT ERUPTION, AND THE LAST IMAGE, DATED 05/03/2019 IS FROM 

AFTER THE ERUPTION PHASES HAD ENDED. 
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FIGURE 9: THIS SERIES OF IMAGES SHOWS THE CHANGE OVER TIME BETWEEN JULY 2017 – NOVEMBER 2018 FOR LANDSAT 8 NDWI IMAGES. THE FIRST IMAGE, DATED 10/07/2017 WAS PRIOR TO THE MOST SIGNIFICANT ERUPTION, AND THE LAST IMAGE, DATED 27/11/2018 WAS 

AFTER THE ERUPTION PHASES HAD ENDED. 
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5.3 Landscape Change Analysis 

The NDWI timelines in figures 7-9 provide visual documentation of the growth 

(aggradation) and dissolution (erosion) of an alluvial fan between July 2017 and 

March 2019. It was necessary to measure the magnitude of the coastal processes and 

to determine whether the landscape changes had occurred in response to the 

volcanic eruption. To do this, the area of ‘mixed pixels’ were identified, which are 

those that are not obviously water or vegetation, suggesting that they accumulated 

due to the aggradation and erosion processes at the coast. To simplify the analysis, 

the area of interest was restricted to the region surrounding the identified alluvial 

fan (A, B, C in figure 6). 

 
 

5.3.1 Thresholds 

Cooley (2017) developed a method for NDWI imagery where pixels could be defined 

as either 100% land, 100% water, or as mixed pixels. The 100% land threshold (LL) 

and 100% water threshold (WL) was determined as: 

𝐿𝐿 = ℎ𝑒𝑖𝑔ℎ𝑡𝑙𝑝 − 0.9 × 𝑝𝑟𝑜𝑚𝑙𝑝 
 

𝑊𝐿 = ℎ𝑒𝑖𝑔ℎ𝑡𝑤𝑝 − 0.9 × 𝑝𝑟𝑜𝑚𝑤𝑝 
 

Where heightlp and heightwp represent the height of each land/water peak, and 

promlp and promwp represent the prominence of each land/water peak. 

This method was used to determine the land and water thresholds for the NDWI 

images of each satellite platform to supplement the visual analysis. An example of 

the method is shown in Figure 10. In this example from a Sentinel-2 image, land 

pixels are those with an NDWI value less than ~-0.475 while water pixels are those 

with an NDWI value greater than ~0.23. The area between these two values cannot 

be defined clearly as ‘definitely water’ or ‘definitely land.’ The purpose of the 

landscape change analysis is to evaluate the changes (by area) in these mixed pixels. 

The graphs created to display the land water thresholds for the NDWI data for 

each satellite 
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platform are an addition to the visual analysis which provide a quantitative timeline 

of the sediment processes. 

The other graphs below (figures 11 & 13) were created to show the NDWI images of 

a specific area before and after the eruptive episodes, which is why only three images 

were used (one line = one image). Each of the graphs are used to display the NDWI 

pixel distribution across the satellite image they are related to, whether this is 

Sentinel-2, Planet, or Landsat 8. The NDWI pixel distribution is plotted against the 

area of each image, which was calculated by taking the number of pixels (from the 

histogram data extracted from each image) and multiplying this by the pixel size, e.g. 

10x10 for Sentinel-2 (as each image is 10m spatial resolution). The graphs were 

created using a very small subset of the images, so that they would only display 

information for the most significant area of interest. Creating this subset also meant 

that there was almost no cloud cover in any of the images, so there was no need to 

perform cloud masking. Although the clouds were previously removed from the 

images, creating graphs using the information in those images meant that the area 

of each image was different, and this did not translate effectively into a graph. By 

using the very small subset, it ensured that all images used in the graphs were exactly 

the same size and the area could then be calculated for them and used to compare 

across satellite platforms. 

 

The first graph displayed in this series (figure 11) shows all the NDWI pixels (on each 

line) for three Sentinel-2 images used, where the lightest coloured line is from an 

earlier date pre-eruption and the darker coloured lines are from later dates post- 

eruption. The images used in this graph were from a clear day, and the dates were 

selected to clearly compare the changes in the pixel distribution from before the 

eruption to after the eruption. The graph is effective at displaying what can be seen 

in the images. The peak in the line is a direct representation of the sedimentation 

growth along the coastline. The distribution of pixels appears to be quite evenly 

spread for the Sentinel-2 graph, although the peaks of the land pixels are slightly 

higher than the peaks of the water pixels. Furthermore, the trough of the graphs, 

between the two peaks, is the most centralised out of all three graphs, sitting just 
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below zero. This is perhaps suggesting that the data provided by the Sentinel-2 

images is the most “normal” in terms of pixel distribution. 
 
 

The graphs for the Planet images are similar to the Sentinel-2 graph, with Figure 13 

having a select number of dates displayed on the graph. As well as this, the area on 

the graph where the line directly represents the area of sedimentation has been 

highlighted. The distribution of pixels is not as evenly spread as the Sentinel-2 

graphs – the negative water pixels have lower peaks and a wider range of pixel 

values, whereas the land pixels have a much higher peak and a smaller range of 

pixel values. The middle section of the graph between the two peaks is also not very 

centralised. Where the Sentinel-2 graph trough sits at about zero, the Planet 

graph’s middle trough sits at about 0.2, so overall, the Planet data has provided a 

higher range of NDWI pixel values compared with Sentinel-2. 

 

The Landsat 8 graph (Figures 14) were less helpful in representing the images than 

the Sentinel- 2 or Planet graphs were. Due to the lesser contrast of the Landsat 

images, the information translated differently into the graph, so they appeared to 

have a much different pixel distribution than Sentinel-2 or Planet. For example, the 

portion of the graph for the land pixels (negative values) are highly peaked and less 

spread out compared to Sentinel-2 or Planet which is due to the land pixels in the 

images being more concentrated within a smaller range of values. The Landsat 

graphs are ineffective at displaying the data in a way that directly represents the 

sedimentation growth. Because the land pixel peaks are so tall, it creates a deficit in 

the rest of the graph, so the values are not easily visible, especially in the section of 

the graph between the two peaks. Although the information provided by this graph 

is difficult to interpret and perhaps not very valuable, the trough does sit at a 

similar position to that of Sentinel-2, at just below zero. 

 

The graphs show that the range of “mixed pixels” for Planet and Sentinel-2 are very 

similar, with Landsat having a much smaller range. Sentinel-2 has the largest land 
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threshold, as calculated using the Cooley (2017) method, at around -0.5, whereas 

Planet and Landsat have a much smaller land threshold at around -0.2. Conversely, 

Planet has the largest water threshold at almost 0.6, and Sentinel-2 and Landsat-8 

have smaller water thresholds at just over 0.2 and ~0.1 respectively.
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FIGURE 10: THIS GRAPH SHOWS THE LAND/WATER THRESHOLDS FOR SENTINEL-2. THE MIDDLE SECTION OF MIXED PIXELS CANNOT BE DEFINED AS WATER OR LAND. AT THE GREEN LINE AND ALL VALUES BELOW, 
THE PIXELS CAN BE CONSIDERED AFIGURE 12: THIS GRAPH SHOWS THE LAND/WATER THRESHOLDS FOR PLANET. THE MIDDLE SECTION OF MIXED PIXELS CANNOT BE DEFINED AS WATER OR LAND. AT THE GREEN LINE 

AND ALL VALUES BELOW, THE PIXELS CAN BE CONSIDERED AS ‘DEFINITELY VEGETATION’ AND AT THE BLUE LINE AND ALL VALUES ABOVE, THE PIXELS CAN BE DEFINED AS ‘DEFINITELY WATER.’ THIS GRAPH, HOWEVER, 
IS MADE UP OF THE AVERAGE VALUES FOR ALL NDWI VALUES COMBINED, AND TO COMPLETE FURTHER ANALYSIS, THE THRESHOLD VALUES FOR EACH INDIVIDUAL NDWI DATE HAD TO BE CALCULATED. 
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Distribution of NDWI Sentinel-2 pixels for an area of interest pre and post eruption 
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FIGURE 11: THIS GRAPH SHOWS THE DISTRIBUTION OF NDWI PIXELS FOR THREE DATES DURING THE CHOSEN TIMEFRAME: BEFORE THE ERUPTION, JUST AFTER THE ERUPTION, AND SOME TIME AFTER 

THE ERUPTION PHASES HAD ENDED. THIS GRAPH IS HERE TO SHOW HOW THE DISTRIBUTION OF THE PIXELS HAS CHANGED ACROSS THE TIMEFRAME DUE TO THE DIFFERENT STAGES OF THE ERUPTIONS. 
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Defining the land/water threshold for Planet NDWI images 

0.9 
 

Land 

 
 

 
Water 

 

0.8 

 

 
0.7 

Mixed 
pixels 

 

0.6 

 

 
0.5 

 

 
0.4 

 

 
0.3 

 

 
0.2 

 

 
0.1 

 

 
0 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

NDWI value 

 
FIGURE 12: THIS GRAPH SHOWS THE LAND/WATER THRESHOLDS FOR PLANET. THE MIDDLE SECTION OF MIXED PIXELS CANNOT BE DEFINED AS WATER OR LAND. AT THE GREEN LINE AND ALL VALUES 

BELOW, THE PIXELS CAN BE CONSIDERED AS ‘DEFINITELY VEGETATION’ AND AT THE BLUE LINE AND ALL VALUES ABOVE, THE PIXELS CAN BE DEFINED AS ‘DEFINITELY WATER.’ THIS GRAPH, HOWEVER, IS 

MADE UP OF THE AVERAGE VALUES FOR ALL NDWI VALUES COMBINED, AND TO COMPLETE FURTHER ANALYSIS THE THRESHOLD VALUES FOR EACH INDIVIDUAL NDWI DATE HAD TO BE CALCULATED. 
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Distribution of NDWI values for an area of interest for Planet images pre and post eruption 
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FIGURE 13: THIS GRAPH SHOWS THE DISTRIBUTION OF NDWI PIXELS FOR THE THREE DATES DURING THE CHOSEN TIMEFRAME: BEFORE THE ERUPTION, SHORTLY AFTER THE MAJOR ERUPTION, AND 

SOME TIME AFTER THE ERUPTION PHASES ENDED. THIS GRAPH IS HERE TO SHOW HOW THE DISTRIBUTION OF THE PIXELS HAS CHANGED ACROSS THE TIMEFRAME DUE TO THE DIFFERENT STAGES OF 

THE ERUPTIONS. 
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Defining the land/water thresholds for Landsat 8 NDWI values 
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FIGURE 14: THIS GRAPH SHOWS THE LAND/WATER THRESHOLDS FOR LANDSAT 8. THE MIDDLE SECTION OF MIXED PIXELS CANNOT BE DEFINED AS WATER OR LAND. AT THE GREEN LINE AND FOR ALL 

VALUES BELOW, THE PIXELS CAN BE CONSIDERED AS ‘DEFINITELY VEGETATION’ AND AT THE BLUE LINE AND FOR ALL VALUES ABOVE, THE PIXELS CAN BE CONSIDERED AS ‘DEFINITELY WATER.’ THIS GRAPH, 
HOWEVER, IS MADE UP OF THE AVERAGE VALUES FOR ALL NDWI VALUES COMBINED, AND TO COMPLETE FURTHER ANALYSIS, THE THRESHOLD VALUES FOR EACH INDIVIDUAL NDWI DATE HAD TO BE 

CALCULATED. 
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5.3.2 Measuring Landscape Change 

The graph in figure 15 shows how the distribution of the mixed pixels has changed 

over time for each of the three satellite platforms. The graph was created in Excel by 

first separating the three pixel types (water, mixed, vegetation) into three groups. 

These groups were delineated using the previously identified thresholds for land (- 

0.5 for Sentinel, -0.2 for Landsat/Planet) and water (0.2 for Sentinel, 0.2 for Landsat 

and 0.6 for Planet). The pixel values used for the graph were displayed in m2 so that 

the measurements are the same across the three platforms – if they had been 

displayed as the ‘number of pixels’ it would skew the data due to the differing spatial 

resolution of each platform. For example, Planet would have appeared to have a 

greater number of pixels due to the higher (3 m x 3 m) spatial resolution, and Landsat 

would have appeared to have far fewer overall due to its lower spatial resolution (15 

m x 15 m). 

The graph is representative of the NDWI images that have been collected and 

displayed, where the area of the mixed pixels is low prior to the eruptive episodes 

(July 2017), and after the first major eruption occurs in July 2018 the mixed pixel area 

increases significantly. 

Sentinel imagery is used as the basis for comparison due to ease of the threshold 

identification and number of complete captures of the area of interest. A subset of 

the Landsat and Planet area of mixed pixels are shown for comparison. Results from 

every platform show a large increase after the major eruptive episode and is not an 

artefact of the specific platform chosen. 

There were only three dates used for the graph lines of the Landsat 8 and Planet 

imagery so that the graph would not become too complicated The dates selected 

for the graph were from, before eruptions, just after eruptions, and a longer time 

after eruptions so they represent the overall time period. It was not necessary to 

display all of the dates of these two platforms because it is Sentinel that was 

deemed to be the best satellite platform to use. The other lines were included on the 

map as a comparison to Sentinel, and they are helpful in confirming that the number 

of mixed pixels does dramatically increase after the major eruptive episode across all 

platforms, and is not an artefact of the specific platform chosen. 
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Sentinel-2 images were classified as land, water, or mixed according to the calculated 

thresholds and are shown in Figure 10, for the larger region. It is clear for many of 

the images that certain pixel groups have been mis-classified, for example, cloud 

pixels. The reason for this is that the cloud pixels lie within the same values as the 

mixed pixels group. Therefore, the previous analyses for the NDWI distribution 

graphs and the graph in figure 15 below were created only using a small area within 

the bigger subset, which shown on the graph. If the larger area had been used, the 

cloud pixels would have distorted the data and led to inaccurate results. In the 

smaller area that was used, there was no cloud cover in any of the images across the 

three platforms. 
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FIGURE 15: THIS GRAPH SHOWS THE CHANGE IN THE AREA OF MIXED PIXELS FOR THE NDWI IMAGES BETWEEN THE STATED TIME PERIOD. THE VALUES HAVE BEEN CALCULATED FROM THE SMALL AREA 

AS DEFINED BY THE BOX UPON THE MAP IN THE TOP RIGHTHAND CORNER. THIS SMALL AREA CONTAINED AN AREA OF HIGH SEDIMENTATION BUILD-UP COMPARED WITH OTHER AREAS, AND ALSO MEANT 
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FIGURE 16: THIS SERIES OF IMAGES IS A SIMPLE CLASSIFICATION OF EACH OF THE SENTINEL-2 NDWI IMAGES. THE THREE CLASSIFICATION GROUPS ARE WATER (BLUE), VEGETATION (GREEN), 

AND MIXED PIXELS (GREY) AND THEY WERE CLASSIFIED USING THE THRESHOLD VALUES FOR EACH OF THE DATES. 
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FIGURE 17 A COMPARISON OF THE SENTINEL-2 NDWI IMAGE AND ITS RGB IMAGE FOR 05-12-2018 
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6 DISCUSSION 

6.1 Comparison of image platforms 
Sentinel-2 imagery was chosen for use because it had been used previously for similar 

water index calculation projects, and because it is easy to access while having good 

specifications. The large number of bands available with Sentinel, and the relatively 

high 10 m resolution of the imagery made it a good candidate for the completion on 

the water index analyses. Although not all the required bands were at the 10 m 

resolution, those that were lower could be “super-resolved” to match the 10 m. 

 

Planet, as opposed to Sentinel-2 and Landsat 8, only has four bands. This was a 

hinderance to the analyses as it meant only NDWI could be completed with the 

Planet imagery. As well as this, Planet’s high resolution and daily revisit time did not 

actually contribute any positive significance to the analyses. Figure 5 showed that the 

clarity across all the images was similar, even though Planet’s 3 m resolution would 

normally provide a much clearer image than Landsat 8’s 30 m resolution, which could 

be explained by the large bandwidths of the Planet imagery. Furthermore, the daily 

revisit time of Planet did not result in a greater number of high quality, useable 

images as expected. In the end, there were a similar number of useable images for 

each platform, which can be seen in the figures that have been provided thus far. 

 

Much of the literature which had completed similar water index analysis methods 

had used Landsat imagery to do so. In fact, the four water indices, NDWI, MNDWI, 

AWEIsh and AWEInsh were first formulated using Landsat imagery (McFeeters, 1996), 

(Xu, 2006), (Feyisa et al., 2014). This was the main reason why Landsat 8 was chosen 

alongside Planet and Sentinel-2 for the analyses. However, the results from the 

Landsat imagery, in comparison to Planet and Sentinel-2, were much poorer. 

Landsat’s low-resolution imagery, even after being pan-sharpened to 15 m, was 

simply not as effective as Planet or Sentinel-2 at highlighting the areas of interest. 

The water index images for Landsat 8 all had quite differing contrast than the Sentinel 

images and the singular Planet image, where, for NDWI and MNDWI, Landsat had 

less contrast, but for AWEIsh, Landsat 8 had greater contrast than Sentinel-2, and for 
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AWEInsh the colours of Landsat were different entirely compared with Sentinel-2. It is 

also unfortunate that most of the Landsat-8 imagery that was downloaded had 

cloudy areas over the land, which is likely a contributing factor to the contrast issues. 

However, the cloudy images could not be avoided as they were the best and most 

appropriate images that were available for download at the time. 

 

6.2 Water indices 
The NDWI water index was the most successful of the four that were used as it 

provided the clearest visible differentiation of the water, vegetation, and mixed 

pixels. The reason it was the most successful is because the landscape of Ambae, that 

is, almost entirely unbroken vegetation, is the type of environment the NDWI was 

formulated for. The other indices used were formulated to be more effective where 

other landscapes were also involved, such as urban areas, which is why there were a 

number of different bands used in the equations. The NDWI was also successful as it 

allowed for a definitive evaluation of how the sedimentation (mixed pixels) changed 

over the chosen time period by using the information extracted from the images. This 

success was significant because measuring the change in sedimentation over time 

was the original aim. 

 

The NDWI was also the most user-friendly water index, equal with MNDWI. The 

formulae for these two indices were the simplest to input and understand, and the 

least complicated having only two bands used in each. Both of the AWEI indices 

required four bands each, as well as multiple coefficients, the value of which are 

arbitrary. The literature for the AWEI indices did provide an explanation as to why 

the bands and coefficients were used and what they were supposed to do, but do 

not appear applicable to this study. 

 

Sentinel-2 was found to be the most useful satellite platform in terms of the imagery 

it provided. The images were the ‘best quality’ overall when all factors were taken 

into account, such as the temporal, spectral and spatial resolutions, accessibility of 

the data, and the area coverage for the images. Sentinel-2 proved that the highest 

spatial resolution imagery does not necessarily equal the ‘best quality’ imagery. The 
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likely reason that Sentinel-2 was superior to Planet, for example, is due to the 

spectral resolution (bandwidth) of the imagery. The bandwidth plays an important 

role in the appearance of the imagery; for example, Sentinel has a smaller bandwidth 

for the NIR and green bands, at 106 nm and 26 nm respectively. These are the two 

bands used in the NDWI equation, and their roles are to minimise the low reflectance 

of water (using NIR) while maximising the high reflectance of the vegetation (using 

green) (Xu, 2006). Planet has a bandwidth for 160 nm for the NIR band and 80 nm for 

the green band, so they are significantly larger than Sentinel’s. This is an important 

factor as it means there is less information provided for the Planet imagery, so it 

therefore does not look as good. Cao et al. (2018) explains that a broader spectral 

bandwidth reduces the features of the spectrum, something that has clearly occurred 

for the Planet imagery, which helps to explain why the contrast between the three 

pixel-types was lower. It is likely that Landsat 8 would have provided superior results 

to both Sentinel and Planet, had its spatial resolution been higher, because the 

bandwidth for its NIR band is only 40 nm, and its green band is only 75 nm. 

 

The Sentinel-2 imagery that was available for download across the desired date range 

was also, in general, the most evenly spread, and had the least cloud cover over the 

area of interest. This, however, was more of a factor of luck. For example, the 

majority of the Landsat 8 imagery available across the timeframe had significant 

cloud-cover, so it was just bad luck that the days on which the images were captured 

happened to be cloudy days. The higher number of very cloudy imagery for Landsat 

8 meant it was necessary to be more selective with the chosen images; this resulted 

in less images overall, a smaller time-range of images, and images that were less 

evenly spread across the whole timeframe. 

 

The spatial and temporal resolutions played an interesting role in the overall data 

when placed against the spectral resolution and area of coverage for the imagery. It 

was disappointing that although Planet was expected to provide the best imagery 

due to its high spatial resolution and almost-daily return time, this was simply not 

the case. There was somewhat of a ‘trade-off’ between these factors, where to have 

a high spatial resolution, other factors were sacrificed that were just as important. 
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Planet’s almost-daily return time should, in theory, have resulted in a greater chance 

of acquiring cloud-free imagery. This, however, was not the case as both the area 

coverage of the island and the cloud cover of the images meant this high return time 

could not be utilised. For much of the imagery, the increase in the number of 

available images just meant there was an increase in the number of cloudy images, 

and because the coverage of the images over the island was so inconsistent, many of 

the images could not even be considered for use. For example, there were a great 

number of images where only a very small portion of the island had been captured, 

or in other cases it was half the island, but not the half with the area of interest. It 

was the inconsistency of this coverage area that meant all the Planet images had to 

be inspected individually. Contrary to this, Sentinel-2 was highly consistent and the 

large image footprint meant the same area was always covered and the images were 

all the same size, and so, although the return time was not as frequent, this was far 

more beneficial for selecting the imagery and for the project overall. 
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7 CONCLUSION 

 
The aim of this research was to determine the magnitude of change in sedimentation 

along the coastline of Amabe, Vanuatu over a ~one-year time period. By completing 

various analyses using remote sensing imagery, it was determined that there was a 

significant increase in sediment accumulation that was mostly deposited after the 

major eruption of Ambae in July, 2018. Sedimentation fluctuated over the months 

following the eruption, and then receded. The changes in coastal sediment cover 

over the timeframe allowed for a comparative analysis of satellite platforms 

(Landsat 8, Sentinel-2, PlanetScope) and water indices (NDWI, MNDWI, AWEI). As 

well as this, the combination of multiple satellite platforms with water indices 

allowed for an in- depth comparative analysis of the study area. Completion of the 

comparative analysis indicated that the Sentinel-2 platform combined with the 

NDWI index were the most appropriate for this study area. A quantitative measure 

of land change across the timeframe was enabled by the identification of land and 

water from the NDWI index. The land/water identification was enabled by the 

differentiation of individual land and water pixels during the NDWI water index 

process. Regardless of platform, all results indicated a significant increase in 

sedimentation following the major eruptive event at Ambae. 

 
 

The analysis of methods used were helpful in determining the level of change, and 

they allowed for the development of statistically representative visual aids to 

complement the images which show the growth of the sediment build-up. The 

methods used were not specific to the application in which they were used, nor were 

they specific to usage within volcanic landscapes. For this reason, such methods 

could be used elsewhere, and applied in other situations where water is involved. If 

applied to situations within New Zealand, the methods would be just as effective. For 

example, the NDWI index could be used to find the distribution of water bodies in an 

area where there is high vegetative cover and where other land cover types are low 

(the literature suggests that the NDWI may not be as effective where urban areas or 
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similar are involved). If the environment involves multiple land cover types, then 

another water index could be used, such as MNDWI or AWEI, as the literature 

suggests that these are more effective in areas where there is more than just 

vegetative cover. 
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APPENDIX 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 18 THIS GRAPH SHOWS THE DISTRIBUTION OF THE PIXEL VALUES FOR EACH INDIVIDUAL SENTINEL-2 NDWI IMAGE (E.G. 
FOR EACH IMAGE DATE). THE DATA EXTRACTED FROM THE IMAGES TO CREATE THIS GRAPH WAS FROM A SMALL AREA OF INTEREST 

RATHER THAN THE WHOLE SUBSET SO THAT ALL IMAGES WERE THE SAME SIZE AND CONTAINED NO CLOUD COVER. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 19 THIS GRAPH SHOWS THE DISTRIBUTION OF THE PIXEL VALUES FOR EACH INDIVIDUAL PLANET NDWI IMAGE (E.G. FOR 

EACH IMAGE DATE). THE DATA EXTRACTED FROM THE IMAGES TO CREATE THIS GRAPH WAS FROM A SMALL AREA OF INTEREST 

RATHER THAN THE WHOLE SUBSET SO THAT ALL IMAGES WERE THE SAME SIZE AND CONTAINED NO CLOUD COVER. 
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FIGURE 20 THIS GRAPH SHOWS THE DISTRIBUTION OF THE PIXEL VALUES FOR EACH INDIVIDUAL LANDSAT 8 NDWI IMAGE (E.G. FOR 

EACH IMAGE DATE). THE DATA EXTRACTED FROM THE IMAGES TO CREATE THIS GRAPH WAS FROM A SMALL AREA OF INTEREST 

RATHER THAN THE WHOLE SUBSET SO THAT ALL IMAGES WERE THE SAME SIZE AND CONTAINED NO CLOUD COVER. 

Distribution of NDWI pixels over an area of interest for all Landsat 8 images 
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