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Abstract 

The concept of “active” (or “disability-free”) life, and its average value, has proven to be 
a useful index of public health and of quality of life for populations. A question of great interest 
in recent years is whether recent trends towards longer life expectancy have been accompanied 
by comparable increases in active life expectancy. 

Past research on patterns and trends of active and “inactive” life has focused almost 
exclusively on the expectancy—or, the average value—of years spent with and without 
disability. This measure is useful for actuarial calculations, for example analysis of the insurance 
value of programs that provide long-term care services. However, when considering broader 
issues of equity and efficiency in the financing and provision of services, or of targeting of 
programmatic resources, it is also useful to analyze the full frequency distribution of time spent 
in each activity status, in addition to the average values of each. Nevertheless, to our knowledge 
no past research has attempted to trace out the frequency distribution that underlies the 
calculations of Active Life Expectancy (ALE). Similarly, the uncertainty (or, the “margin of 
error”) in our calculations of active life expectancy traceable to sampling error has received little 
attention. 

This paper addresses two related phenomena: variability in active life, which is to say the 
relative likelihood that someone will spend an additional 0, 1, 2, ... or more of his or her years in 
various functional statuses such as “active” or “inactive;” and uncertainty about the average 
value of additional years spent in each such status. Our concern with both phenomena leads us to 
present our findings in the form of intervals, or measures of dispersion, as well in the more 
conventional form of point estimates. Linking the two areas of analysis is a recognition of 
several sources of randomness, or stochasticity, that are inevitably present when analyzing the 
dynamics of functional status. In general, we find that the variability in years of active life is 
substantial. This variability is obscured in analyses that address only the expected value of active 
life. In contrast, uncertainly related to sampling error appears to be quite small, at least for the 
combination of survey data and model specification employed here. 



Stochastic Modeling of Active Life
and its Expectancy 

When the number of older Americans begins its substantial increase early in the next 

century, public and private institutions alike will be faced with a dual challenge: rapidly rising 

health care costs, coupled with an increased demand for health and related services. The process 

of planning for these challenges can be informed with estimates of Active Life Expectancy 

(ALE). An index of population health, ALE integrates information about mortality and 

morbidity, representing the average amount of time we can expect members of a population 

group to live without significant disability. Researchers have demonstrated that the magnitude of 

health care costs and the use of health care services depends on both the number of older persons 

and their functional status (Laditka 1995; Lubitz, Beebe, and Baker 1995). 

Past research on the patterns of active and “inactive” life has focussed almost exclusively 

on the expectancy—or, the average value—of years spent with and without disability. This 

measure is useful for actuarial calculations, for example analysis of the insurance value of 

programs that provide long-term care services. However, when considering broader issues of 

equity and efficiency in the financing and provision of services, or of targeting of programmatic 

resources, it is also useful to analyze the full frequency distribution of time spent in each activity 

status, in addition to the average values of each. Furthermore, individual members of a 

population group would undoubtedly take great interest in knowing their actuarial chances of 

living 0, 1, 2, ... additional years free of disability, as well as the average of that distribution. 

However, to our knowledge no past research has attempted to trace out the frequency distribution 

that underlies the calculations of ALE. 

The information needed to compute an estimate of ALE is rarely, if ever, obtained in 

population censuses. Instead, most research on ALE uses survey data as a basis for estimating 



the key parameters used in the computations; in most cases those parameters are estimates of 

transition or prevalence rates specific to persons of a given age, sex, and possibly racial or 

educational group. Even when the survey data sources represent large samples from the relevant 

populations, sampling error large enough to introduce nonnegligible uncertainty into the resulting 

estimates of ALE must be assumed to be present. In the case of analyses that are used to quantify 

the value of future financial obligations for a large population—for example, future costs for 

long-term care obligations incurred through the Medicare and Medicaid programs—small 

variations in the values of key parameters might imply differences of many millions of program 

dollars. Again, we are unaware of any past research that addresses uncertainty in estimates of 

ALE that can be traced to sampling variability. 

This paper addresses two related phenomena: variability in active life, which is to say the 

relative likelihood that someone will spend an additional 0, 1, 2, ... or more of his or her years in 

various functional statuses such as “active” or “inactive;” and uncertainty about the average 

value of additional years spent in each such status. Our concern with both phenomena leads us to 

present our findings in the form of intervals, or measures of dispersion, as well in the more 

conventional form of point estimates. Linking the two areas of analysis is a recognition of 

several sources of randomness, or stochasticity, that are inevitably present when analyzing the 

dynamics of functional status. 

Background 

Our research is linked to past efforts in two areas of demographic analysis and 

methodology: multistate life tables, and cohort-component population forecasting. Many 

researchers who study ALE have employed multistate life table methods to calculate the average 

-2-



length of active and inactive life (Crimmins, Hayward, and Saito 1994, 1996; Land, Guralnik, 

and Blazer 1994; Manton, Corder, and Stallard 1993; Rogers, Rogers, and Belanger 1989). 

While alternative computational techniques can be found with which to arrive at numerical 

values for the key elements for this central (perhaps paramount) tool in the demographer’s 

toolkit, virtually all provide only a set of measures of central tendency, for example the 

proportion of a cohort surviving to a specified age (or, age and identified status), or the expected 

number of person-years lived in, or beyond, a given age interval. Moreover, these computational 

techniques virtually always treat the calculations as deterministic, ignoring the random nature of 

the vital events that, when enumerated, constitute the “occurrences” of occurrence/exposure rate; 

and, they treat the transition rates, or intensities, as fixed quantities whose values are known 

without error. 

It has been argued, however, that the multistate life table should be viewed as a tabular 

summary of a random process; for example, Hoem and Funck Jensen (1982) characterize the 

standard columns of a multistate life table as “... tabulations of values of functions defined for 

Markov chains with a continuous time parameter and a finite state space” (Hoem and Funck 

Jensen 1982: 155). In other words, life table entries represent, in general, the expected values of 

random variables. For instance l ,x  the proportion of a cohort surviving to age x, is the expected 

value, in the population, of the indicator variable for the event “alive at age x.” A recognition 

that the life table is a tabular summary of individual realizations of a random process leads 

naturally to consideration of a broader set of summary indices—e.g., frequency distributions, as 

well as averages, of time spent in each state—than would generally be produced by conventional 

computational algorithms. However, analytical expressions for only a limited range of summary 

indices can be found in the existing literature. 
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A concern with uncertainty, and a willingness to link uncertainty to various types of 

stochasticity, is commonly encountered in the population forecasting literature. Researchers in 

this area emphasize that all forecasts are uncertain. In addition, these researchers argue that 

policymakers need to learn to accept uncertainty, and need information about the uncertainty 

associated with forecasts if they are to use this information as a basis for decision making (Stoto 

1988). Further, it is stressed that demographers need to develop better methods to assess and 

report uncertainty (Keyfitz 1972; Stoto 1988). The methodological approaches that have been 

used can be classified into two general categories. In the first category, researchers examine the 

variability associated with underlying demographic rates such as fertility and mortality (Keyfitz 

1985). Researchers in this category often examine errors in past population forecasts, and use 

these errors to construct confidence intervals for their projections (Cohen 1986; Keyfitz 1981; 

Stoto 1983). In the second category, the model parameters are treated as a random process (Alho 

1990; Alho and Spencer 1985; Cohen 1986; Lee 1992; Lee and Tuljapurkar 1994; Tuljapurkar 

1992). 

A single component of a cohort-component population projection can be represented, in 

simplified form, as 

n (t % ) 'a %  na(t)Sa ( ), (1) 

where a denotes age, t denotes (calendar) time, n (a t) represents the number of persons (of a given 

sex, or sex and race, and so on, group) alive at time t, and S (a ) represents the probability of 

surviving additional periods given survivorship to age a. In this expression we disregard both 

fertility and net migration as sources of population change. The survival probability (which 

corresponds to the  lx column of a life table) is, in turn, determined by a sequence of age-specific 

mortality rates µ t(a), µt+1(a + 1), ... , µt+ -1(a + - 1). 
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Lee and Tuljapurkar (1994) identify several sources of error in demographic forecasts, 

each of which can be associated with elements of (1). The first is uncertainty due to individual 

level randomness, i.e., the fact that survivorship (or nonsurvivorship) for additional years is a 

random variable with probabilities S and 1 - S, respectively. In large populations this source of 

error is negligible and can be disregarded. However, while stochastic variability in the number of 

survivors of a given age to some period—a period phenomenon—may be small, stochastic 

variability in the number of years survived after the baseline period—a cohort phenomenon—is 

generally substantial, and is (as noted above) likely to be a topic of some interest to members of 

the cohort in question. A second source of error identified (and also disregarded) by Lee and 

Tuljapurkar (1994) is data errors of several types. For example, the size (or share) of the 

population in group a, na(t), may be measured with error, as may be the values of vital rates in the 

baseline year, that is µ t(a). The final source of errors identified, the one upon which they focus 

their analysis, is uncertainty due to changing future values of vital rates, represented implicitly in 

(1) by µt+1(a + 1), ... , µ t+ -1 (a+ -1). Lee and Tuljapurkar treat vital rates as realizations of

stochastic processes, and present interval estimates of the size and composition of the future 

population incorporating this source of stochastic variation. In our analysis, we undoubtedly 

have sampling errors present in our estimates of the initial distribution of population 

characteristics [i.e., the n (a t)], although to date we have not dealt with that source of error.

Furthermore, we do not view our estimates as “projections,” although they could be viewed as 

projections of cohort survivorship in the assumed absence of trends in transition rates. A source 

of stochasticity that is investigated in our work is uncertainty about the values of transition rates 

due to sampling variability in the parameters of the underlying model of transition rates. 
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Laditka and Wolf (forthcoming) present estimates of ALE based on a discrete-time 

Markov chain model of functional status and mortality. Most of the summary indices they 

present are standard life-table quantities such as age-specific survivorship and residual life 

expectancy. Here, we extend that analysis by presenting interval as well as point estimates of 

ALE, as well as depicting the entire frequency distribution of remaining years of life in each 

functional status state. We also investigate the degree of uncertainty in our estimates of ALE that 

can be traced to sampling variability in the estimates of model parameters. 

Our approach is analytically simple and computationally intensive. Our summary indices 

of active life and its expectancy are based on large samples of individual disability life-histories 

generated by a computer using microsimulation techniques; in effect, we use “analog” techniques 

to develop our estimates of the distribution and expectation of years of active life . Each life 

history is a realization of a stochastic process for which we have obtained parameter estimates 

using survey data. These parameter estimates also are subject to sampling error. To investigate 

this source of variability, we treat the parameters as random variables. For each of a series of 

independent samples from the sampling distribution of the model parameters, we repeat the 

process of simulating a large sample of individual life histories; the between-sample variability in 

estimated ALE is presented as an indicator of uncertainty in ALE. 

There are several sources of variability not included in this analysis. First, we do not 

examine the uncertainty associated with our initial distribution, or radix population. While this is 

theoretically important, it is beyond the scope of the present study. Second, we do not examine 

the variability associated with the Monte Carlo procedure used in the microsimulation procedure. 

Because of the large size of the sample, the uncertainty associated with the Monte Carlo 

technique is a substantially less important source of variability in this instance. 
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Methodology 

“Active life” is defined as the part of life spent free of disability, represented here as one 

of a set of discrete functional-status states between which transitions can occur at random times. 

The model of functional status used here is identical to that presented in Laditka and Wolf 

(forthcoming). The model assumes that month-to-month transitions within the set of discrete 

states is described by a first-order Markov chain. 

Consistent with previous research (e.g., Katz et al. 1963, 1983), our measure of functional 

status reflects impairments in Activities of Daily Living (ADLs). We use the following five 

ADLs: bathing, eating, dressing, transferring, and using the toilet. Individuals are coded as 

impaired in an ADL if they report any difficulty performing that activity, or report that they 

receive any help carrying out that activity. The final functional status variable summarizes the 

five indicators of ADL difficulty, as follows: individuals are coded as “unimpaired” if they 

exhibit no ADL limitations; individuals limited in one or two ADLs are “moderately impaired,” 

and individuals with three or more ADL limitations are “severely impaired.” Completing the 

state space is the absorbing state “dead.” 

The model assumes that the probability of making a transitions between any two states 

depends on the value of selected covariates. These covariates take account of several additional 

factors shown by prior research to influence the trajectory of functional status among older 

persons. Age, measured in years, appears as a covariate in the model, as does Low Education, a 

dichotomous variable indicating those persons who completed less than 12 years of schooling, 

and Nonwhite, also a dichotomous variable, which captures racial differences in functional status 

dynamics. Separate models are estimated for males and females. 

-7-



Transition Probabilities and Their Standard Errors 

The fundamental building blocks of our model are one-month transition probabilities, 

written in the general form 

p (age, t) ' pr (STATUS ' j * STATUS 'ij t%1 t  i; age t ). (2) 

Thus, the probability of occupying any functional status state next month (at t+1) depends on the 

status occupied in month t, and on age in month t. The monthly transition probabilities are 

arranged in a 4×4 matrix as follows: 

pUU (age,t) pUM (age,t) pUS (age,t) pUD (age,t) 

pMU (age,t) pMM (age,t) pMS (age,t) pMD(age,t) 
P(age,t) ' . (3) 

pSU (age,t) pSM (age,t) pSS (age,t) pSD (age,t) 

0 0 0 1 

Note that p DU(t) = p DM(t) = p DS (t) = 0 while p DD (t) = 1 due to the absorbing nature of death. Thus

there are 12 unknown probabilities contained in the monthly transition matrix. The assumed 

probabilistic structure of this model, while rather restrictive, is consistent with virtually all past 

research on active life expectancy. 

We write each of the first three rows of (3) as a multinomial logistic regression, with 

covariates representing age, race, and education, for example 

pij(age,t)
ln ' % % %

p (age,t) ij0  ij1 Age t  ij2 Nonwhite  ij3 LowEducation, (4)
iU 

with I = U, M, or S and j = M, S, or D. The coefficients corresponding to the probabilities found 

in the first column of (3) are normalized to zero. There are therefore nine sets of unknown 

regression coefficients, with four coefficients in each set, to be estimated; each set corresponds to 

one of the allowable combinations of the i and j subscripts. A more detailed discussion of the 
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estimation techniques used, and the data used in the estimation, can be found in Laditka and 

Wolf (forthcoming). 

The maximum-likelihood algorithm used to estimate the logistic regression coefficients 

in (4) produces a (column) vector of estimated regression coefficients, ˆ , and a matrix of their 

variances and covariances, . Variances of the transition probabilities can be derived using the 

relationship 

V J )' var (Pcol ) ' J1 1, (5) 

where P col denotes the P-matrix rearranged as a column vector, and J1  is a matrix a typical

elements of which is 

Mpij . 
M rst 

Sampling errors in the elements of the vector propagate through the P-matrix in a limited way: 

every element of rst, for a given r (row) influences the variances of all transition probabilities in 

that row of P. 

We also present estimates of one-year transition probabilities, to facilitate their 

comparison to the annual rates used in most past research on ALE. The one-year transition 

probabilities are simply the twelfth power of P. Variances for R = P12 are obtained analogously 

to those for P, using 

W ' var (Rcol ) ' J2 VJ ) 
2 . (6) 

In the derivation of the transformation matrix J2 we make use of the fact that 

M P m m&1 

' P m& j 1ij P j,
Mp j '0 ij 
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where 1ij is a matrix whose i,jth element equals 1, while all other elements equal 0. The 

propagation of sampling errors in through R is extensive: in general, the derivative of every 

element of R with respect to every element of P is nonzero. 

Variability in Years of Active and Inactive Life 

We investigate the degree of variability in the length of active (or of inactive) life by 

producing a frequency distribution of the number of years spent in each functional status; we also 

summarize this variability using conventional summary statistics such as standard deviations. 

These summary measures are obtained using a large sample of individual functional status 

histories generated by a computer using microsimulation techniques. 

A sample of simulated functional status histories for 100,000 men exactly 70 years old, 

and an analogous sample for women, were created for this analysis. The gender, racial, and 

functional status composition of these cohorts were based on the average characteristics of 

individuals aged 65 to 74 in the 1989 wave of the National Long-Term Care Survey (NLTCS). 

The NLTCS is useful for this purpose since it includes the institutionalized population. In the 

microsimulation procedure, functional status transition matrices (the Ps) were used to simulate 

each person’s survivorship and functional status, month by month, from exact age 70 onward 

until death. For example, for someone with ADL code i in month t, the model generates the four 

transition probabilities p i1 (t+1), p i2 (t+1), p i3 (t+1), and p i4 (t+1), corresponding to possible states

occupied in the next month. These four probabilities are then mapped into subsets of the 0,1 

interval: subset 1 is the interval from 0 to pi1(t+1), while subset 2 is the interval from pi1(t+1) to 

[pi1(t+1) + pi2(t+1)], and so on. Next, a computer-generated random number from the uniform 

(0,1) distribution is drawn. Finally, a particular value (1, 2, 3 or 4) for the next month’s 

functional status is assigned, depending on the subset into which the random number falls. The 

-10-



preceding steps were repeated for each successive month until the individual was simulated to 

die (i.e., to make a transition into state 4). 

The data file produced by the microsimulation is treated as though it represented 

longitudinal survey data. Summary statistics of interest are derived by tabulation of the 

simulated life histories. For example, each person’s “active life” is a count of the number of 

months in which the simulated functional status code equals one (i.e., “unimpaired”). ALE for 

the simulated cohort is the sample average of active life, so coded. Other summary statistics (for 

example, the frequency distribution of active life) are similarly obtained. 

Uncertainty in Estimates of Active Life Expectancy 

As discussed above our estimates of the parameters of our model of functional status 

transitions embody sampling error, and this error produces errors in our calculated transition 

probabilities. We investigate the empirical consequences of this type of error by repeating the 

microsimulation exercise ten times. Each “run” of the microsimulation uses a different vector of 

model parameters, ( 
m,m =1, ... , 10. The *’s are generated as draws from a multivariate normal 

distribution with mean, ̂, and variance . We present the minimum, maximum, and standard 

deviation of the 10 independent estimates of ALE based on the 10 different values of the 

underlying parameters. Note that the SD of ALE is not the standard error of our estimate of the 

mean of active life; rather, it is an estimate of the likely size of errors in our estimate of ALE 

attributable to our ignorance of the true value of . 
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Results 

Transition Probabilities and Their Standard Errors 

Tables 1 and 2 present illustrative computed values of one- and twelve-month transition 

probabilities implied by our estimates of (for completeness, the estimates of for men and 

women are also included as appendix tables A-1 and A-2). Table 1 pertains to men, while Table 

2 presents the transition probabilities for women. Also shown in these tables are standard errors, 

i.e., the square roots of the variances produced by equations (5) and (6). Several anticipated 

patterns are exhibited in these tables. For instance, the probability of dying increases with age 

and with the severity of disability. The probability of dying is larger for males who are 

moderately impaired than for those who are unimpaired, and several times larger for those who 

are severely impaired than for the unimpaired. Men with less education have uniformly higher 

chances of dying than those with more education only if they are also unimpaired. Analogous 

results can be seen for women. 

As a general rule the transition probabilities are quite precisely estimated: the point 

estimates of the probabilities tend to be many times larger than their standard errors. These 

findings reassure us that our description of the dynamics of functional status is not greatly 

influenced by sampling errors in the parameters of the model. 

The probabilities shown in Tables 1 and 2 are point estimates, and the small standard 

errors displayed for most of those point estimates are based on analytic methods. We now 

consider the life-cycle implications of our estimated functional status transition matrices, 

examining both the frequency distribution and average amount of time spent in each functional 

status recognized by the model. 
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Patterns of Active Life and Active Life Expectancy 

Years of Remaining Life. Figures 1 to 3, and Tables 3 and 4, illustrate the main 

results of our microsimulation analysis. In these results the transition probabilities used are those 

implied by ˆ , our central estimates of the model parameters. Figure 1 shows the frequency 

distribution for remaining years of unimpaired life among 70-year old white men, while Figures 2 

and 3 present analogous frequency distributions for years spent in the “moderately impaired” and 

“severely impaired” states, respectively. In all three figures the frequency distributions are quite 

skewed, particularly for the impaired states. At age 70, a substantial percentage of white males 

is simulated to have zero remaining years of active life; this reflects the fact that many men begin 

this age interval in an impaired state and never return to the unimpaired state. It is also 

noteworthy that Figure 1 shows the modal value of residual unimpaired years of life to be one, 

while its mean (from Table 3) is nearly nine. In Figures 2 and 3 we see that most 70-year old 

white men can expect to spend no years of their remaining lifetime in an impaired state. Thus, 

the average number of years of life spent unimpaired, and especially the average number of years 

spent impaired, appear to be very poor descriptions of “typical” life experiences of older men. 

Table 3 shows the average and standard deviation of number of remaining years of life in 

total, and in each of three functional status categories—unimpaired, moderately impaired, and 

severely impaired—at ages 70, 80, and 90, for a number of different population groups. The 

averages in each case represent conventional “life expectancies” specific to the indicated 

statuses. The standard deviations summarize the dispersion of the distributions of years of 

remaining life about each respective mean. The patterns exhibited by the averages shown in this 

tabulation are described in detail in Laditka and Wolf (forthcoming). We briefly review these 

patterns here. First, females live notably longer than males in both absolute and relative terms; 
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however, the gap in total life between males and females narrows at the oldest ages. Second, 

while the total life expectancy for females is greater than that of males, women live a greater 

percentage of years in an unimpaired state compared with males. Third, more education is 

positively associated with total life expectancy for both racial groups. Finally, the total life 

expectancy of nonwhite males exceeds that of white males, in all ages, by a considerable margin. 

However, nonwhite males can expect to spend a greater percentage of their lives in an impaired 

state compared with white males. 

Next we focus on the variability in patterns of active life, represented in Table 3 by the 

standard deviation of years spent in each status. First, for males, the magnitude of the standard 

deviation for nonwhites is higher relative to the mean, compared with whites. For females, the 

opposite is true; the size of the standard deviation relative to the mean is generally smaller for 

nonwhites compared with whites. Second, the size of the standard deviation relative to the mean 

is greater for the impaired states, compared with the total and unimpaired years of remaining 

life.. Finally, for both males and females, there are no notable differences in the size of the 

standard deviation relative to the mean for whites in the high and low education categories 

compared with whites overall. 

Judging by the figures shown in Table 3, we cannot escape the conclusion that variability 

in the remaining years of life in each functional status is quantitatively significant. For the two 

impaired states, the standard deviation exceeds the mean in all groups, and at all ages. For total 

and for unimpaired years of remaining life, variability grows in relative importance at 

successively older ages: for most groups shown, by age 90 the standard deviation is nearly as 

large, and in some cases is larger, than the mean number of years of life remaining in total, and 

in the unimpaired state. 
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Duration of Functional Status Episodes. Our microsimulation approach allows 

us to investigate the duration of functional status episodes (or spells), i.e., the number of 

consecutive months that someone has a given functional status. This type of information is not 

obtained using conventional multistate life-table techniques. Means and standard deviations for 

the length of functional status episodes are presented in Table 4. Note that the simulated 

functional status history for one person can contribute two or more (as well as one, or even zero) 

observations to the pool of functional status episodes of a given type. 

Several interesting patterns can be found in Table 4. First, females spend a longer mean 

length of time in each functional status state. Second, for both males and females, persons with 

more education have longer spells of unimpairment and shorter episodes of impairment 

compared with individuals with less education. For males, spells in a severely impaired state, on 

average, exceed those spent in a moderately impaired state by about three months; for females, 

this difference is about six months. 

Table 4 also reveals substantial amounts of variability in the length of functional status 

episodes. Again, the standard deviations are larger relative to the mean duration of a spell for 

nonwhites compared with whites. There are no substantial differences between the size of the 

standard deviation relative to its mean between males and females. Overall, the magnitudes of 

the standard deviation indicates that there is substantial individual variability in average length of 

time spent in each functional status state: in most cases the standard deviation is nearly as large 

as the mean, and in a few cases it is greater. 

Uncertainty in Estimates of Active Life Expectancy 

In Tables 5 and 6 we turn our attention to uncertainty in our estimates of ALE that is 

traceable to sampling variability in the estimated parameters of the model. These tables 
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summarize the results of 10 independent simulations, each using a different (but identically 

distributed) vector of parameter values *. The averages and SDs of the *s used in the 10 

simulations are shown in Appendix Tables A-1 and A-2, for reference.1 

Table 5 quantifies our uncertainty about ALE by presenting the lowest and highest values 

of ALE obtained in the ten independent simulations, as well as the SD of the ten values, for each 

of four life expectancies: total (TLE), unimpaired (ULE), moderately impaired (MLE) and 

severely impaired (SLE). Paralleling the structure of Table 3, these figures are shown for ages 

70, 80, and 90, for a number of different population groups. The patterns of functional status are 

similar to those just reviewed; e.g., females live notably longer than males, whites with more 

education live longer than whites with less education. We focus on the uncertainty associated 

with these estimates, where uncertainty is reflected in the range of the estimate (the difference 

between the minimum and maximum value) and its standard deviation. The major findings 

regarding uncertainty are as follows. First, for males the ranges of estimates of TLE, ULE, MLE, 

and SLE is greater for nonwhites than whites. For example, the difference between the minimum 

and maximum values for TLE for nonwhite males at age 70 is 2.1 years, while the comparable 

figure for white males is .5 years. A related finding is that for nonwhite males at all ages and 

functional status categories, the magnitude of the standard deviation relative to the maximum (or 

minimum) estimate of remaining life expectancy generally exceeds that of whites. These 

findings are also true for females, but the effect is less pronounced. A second finding is that the 

ranges of estimates of TLE, ULE, MLE, and SLE are generally larger, and the standard 

deviations greater, for the two education categories when considered separately rather than 

together. More generally, the more we disaggregate the groups being examined the greater the 

range of uncertainty associated with average life expectancy within group. In addition, for both 
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males and females the size of the standard deviation relative to the maximum (or minimum) life 

expectancy is larger for MLE and SLE compared with TLE and ULE. Thus, there is greater 

uncertainty associated with the two impaired categories compared with total and unimpaired life 

expectancy. 

Combining our findings for the mean number of years lived in each functional status from 

Table 3 with our estimates of the uncertainty about those means from Table 5, we can examine 

the relative uncertainty about total life expectancy and its components (e.g., unimpaired life 

expectancy). Table 6 displays the coefficient of variation—that is, the SD (from Table 5) divided 

by the mean (from Table 3)—for TLE, ULE, MLE, and SLE by sex, race, and (for whites only) 

education at age 70. The ratios shown have been multiplied by 100, allowing the entries in the 

table to be interpreted as an index of uncertainty relative to the mean in percentage terms. 

The results found in Table 6 are consistent with those already shown: in general, the 

larger the population group and the more universal the phenomenon, the less relative uncertainty 

about the value of ALE. Thus, total life expectancy, which is computed for everyone, has a 

smaller coefficient of variation than does active life expectancy, which in turn has a smaller 

coefficient of variation than does either of the impaired functional statuses. The same is true for 

whites and for nonwhites, but for each index the coefficient of variation is larger for nonwhites 

(the smaller group) than for whites (the larger group). This is partly a sampling phenomenon 

(that is, it is a manifestation of the relative prevalence of whites and nonwhites in the simulated 

data base) and partly reflects the relative variability of the relevant regression coefficients. These 

two “sources” of relative uncertainty are, however, related: the relative imprecision of the 

regression coefficients for the variable “nonwhite” in our model of transition probabilities itself 

is due, in part, to the relative prevalence of nonwhites in the sample used to estimate that model. 
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Finally, Table 7 shows the minimum and maximum for the mean length of spells in each 

functional status state, and the standard deviation of the means, paralleling the information 

presented in Table 4. Here, again, females are shown to experience longer spells in all functional 

status states compared with males. Again we focus our discussion on the results related to 

uncertainty. First, for both males and females, with only one exception, the size of the standard 

deviation relative to the maximum of the average length of a spell is larger for nonwhites 

compared with whites. Second, the ranges of the intervals are somewhat larger for nonwhites 

compared with whites. For instance, the difference between the maximum and minimum mean 

duration of unimpairment is 9.5 months for nonwhite males compared with 6.9 for white males. 

There are no other notable differences between subgroups. 

Conclusions 

As the number of older Americans increases substantially early in the next century, it is 

likely that estimates of ALE will be used to help plan for and develop health care policies. It is 

vital for policymakers to have a measure of the degree of variability, and of uncertainty, 

associated with estimates the length of active—and inactive—life, and of its average. 

This study has investigated two sources of variability present in empirical studies of 

active life and its expectancy. The first is variability in the patterns of remaining years of 

“active” and of “inactive” life. Most past research has examined only the average number of 

years spent in any status, no doubt a reflection of the fact that conventional multistate life table 

techniques generally used in ALE research produce estimates of only these averages. We use, 

instead, microsimulation techniques that permit us to calculate not only the average but also the 

full frequency distribution of remaining years lived in each status. The second source of 
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variability examined is sampling variability: our distributions of remaining years of life in each 

functional status rely on estimates of transition probabilities that are, in turn, estimates from a 

model whose parameters are functions of sample data. Like all sample statistics these model 

parameters are subject to sampling error, and those sampling errors propagate throughout our 

simulated functional status life histories. 

Our findings can be summarized most compactly with the observation that variability of 

active life (and of inactive life) about its expected value is vastly more important that is 

uncertainty about active (or inactive) life expectancy due to sampling error in the underlying 

model parameters. Variability in the patterning of remaining life across functional categories is 

revealed by our histograms for the distribution of years lived in each status from age 70 onward 

(Figures 1 to 3) and in the large SDs obtained for these frequency distributions (Table 3). A 

similar pattern emerges whether we examine the frequency distributions of length of individual 

functional status episodes (in Table 4) or the more aggregated distributions of time in a given 

status, summed over episodes (as in Table 3). 

In contrast, our indicators of the degree of uncertainty in ALE due to sampling variability 

suggest that this type of variability, while obviously present, is relatively small. This conclusion 

is most strongly indicated by the coefficients of variation shown in Table 6: in most cases the 

uncertainty in ALE is summarized by a number only 2 or 3 percent as large as the mean to which 

it corresponds. The exceptional cases—for example, the coefficient of variation for average 

years spent severely impaired, among nonwhite males, which is about 0.15—pertain to groups, 

and to outcomes, that are comparatively uncommon in our data. The pattern of sampling 

variability uncovered appears both in the relative precision of the underlying model parameters 

(see Appendix Tables A-1 and A-2), which translates into relative precision of the transition 
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probabilities (see Tables 1 and 2), and in the data base of simulated functional status life histories 

upon which our estimates are ultimately based. 

It is important to note that the model used in our analysis (a more detailed rendition of 

which can be found in Laditka and Wolf, forthcoming) is a very simple one. An important 

question, but one we cannot at this point address, is the extent to which our conclusions, 

summarized above, are specific to the combination of model specification, estimation technique, 

and data sources used in this research. We have assumed that functional status dynamics can be 

represented, at the individual level, as a first-order Markov chain. This should be viewed as a 

baseline model, against which more complex (that is, more realistic) models, yet to be developed, 

should be compared. Nevertheless, our Markovian model is in its most fundamental respects 

identical to that used, explicitly or implicitly, in nearly all past research on active life expectancy. 

One of the major limitations of this study is the absence of other ALE estimates with 

which to compare our results. We hope that more ALE researchers will employ stochastic 

modeling approaches, such as those now employed in the field of population forecasting. This 

would provide policymakers with additional information about the degree of uncertainty 

associated with ALE estimates. In addition, it would allow researchers to compare both ALE 

estimates and their degree of precision across studies which use different methods and data. Our 

suggestion in this area echoes the argument of other researchers: we need to focus more on 

comparing the results of different demographic methods (Ahlburg and Land 1992; Cohen 1986; 

Land 1986). Further, employing stochastic modeling approaches would allow researchers to 

better gauge the accuracy of their models, and ultimately, help them to build better models. 

Our study reinforces the usefulness of employing microsimulation techniques in ALE 

research. First, consistent with the conclusions of other researchers, microsimulation allows us 
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to calculate useful indices of active and inactive life patterns—calculations that would not be 

feasible using other methods (Pflaumer 1988). Second, microsimulation generates a distribution 

of values in addition to a mean value. We have highlighted this feature of microsimulation in our 

examination of variability in active and inactive life. Finally, microsimulation allows us to 

examine the life-cycle implications of our model of functional status transitions, and the degree 

of uncertainty associated with these estimates. 

There are several ways in which the research presented here might be usefully extended. 

We have not examined the variability associated with the radix population. Researchers have 

proposed various approaches (e.g., bootstrapping) which could be used to examine this third 

source of variability (Wolf et al. 1995). In addition, the methods presented here could be used to 

examine disability trends in new studies examining the functional status patterns of older 

persons. 
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Endnotes 

1. Ten is an admittedly small sample of s to use in this analysis. Readers will note that for 
several of the regression coefficients, the average value (in the sample of 10) is dissimilar 
to the “true” value (that is, the value of ˆ that represents the expected value). In all cases, 
however, the average values shown are well within one standard deviation of the “true” 
value. 
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Table 1. Selected Functional Status Transition Probabilities: White Males 
(x 100) 

One-Month Transition Probabilities 12-Month Transition Probabilities 
To: U M S D U M S D 

High Education, Age = 70 

From:U 99.28 0.47 0.04 0.22 92.44 4.21 0.55 2.81 

[0.05]a [0.05] [0.01] [0.02] [0.46] [0.38] [0.08] [0.21] 

M 2.71 95.34 1.13 0.82 26.0 57.19 7.67 9.14 

[0.43] [0.51] [0.17] [0.21] [3.13] [3.52] [1.05] [1.76] 

S 3.11 0.40 94.44 2.05 27.17 3.39 50.56 18.87 

[0.33] [0.06] [0.56] [0.26] [2.14] [0.39] [3.57] [1.94] 

High Education, Age = 90 

From:U 97.47 1.46 0.0 1.07 74.57 10.03 2.93 12.46 

[0.18] [0.17] [0.0] [0.14] [1.53] [1.04] [0.50] [1.28] 

M 1.69 92.01 5.29 1.01 11.83 40.13 29.04 19.01 

[0.30] [0.92] [0.80] [0.28] [1.75] [3.89] [2.82] [2.07] 

S 0.11 1.49 93.86 4.54 1.79 8.25 49.34 40.62 

[0.07] [0.47] [0.81] [0.58] [0.35] [2.17] [4.29] [3.82] 

Low Education, Age = 70 

From:U 97.94 0.63 1.16 0.27 79.45 5.65 10.40 4.50 

[0.24] [0.06] [0.23] [0.03] [2.14] [0.47] [1.92] [0.35] 

M 2.86 95.24 1.09 0.81 24.25 56.89 9.67 9.19 

[0.34] [0.47] [0.15] [0.11] [2.23] [3.17] [1.04] [0.95] 

S 1.05 0.75 96.12 2.08 10.14 5.87 63.19 20.80 

[0.11] [0.11] [0.41] [0.26] [0.85] [0.79] [3.09] [2.18] 

Low Education, Age = 90 

From:U 96.70 2.00 0.0 1.31 68.30 13.25 3.66 14.79 

[0.21] [0.20] [0.0] [0.13] [1.57] [1.19] [0.49] [1.15] 

M 1.79 92.08 5.14 0.99 11.95 42.56 26.98 18.51 

[0.33] [0.80] [0.76] [0.31] [1.96] [3.04] [2.40] [1.97] 

S 0.04 2.69 92.80 4.47 1.97 14.14 45.08 38.82 

[0.02] [0.75] [0.95] [0.46] [0.50] [3.05] [3.96] [2.86] 
aStandard errors shown in parentheses. 

U = unimpaired; M = moderately impaired; S = severely impaired; D = dead 



     

Table 2. Selected Functional Status Transition Probabilities: White Females 
(x 100) 

To: One-Month Transition Probabilities 12-Month Transition Probabilities 

U M S D U M S D 

High Education, Age = 70 

From:U 99.49 

[0.03]a 

0.39 

[0.03] 

0.02 

[0.01] 

0.10 

[0.01] 

94.64 

[0.28] 

3.60 

[0.25] 

0.41 

[0.05] 

1.34 

[0.14] 

M 2.84 

[0.26] 

95.44 

[0.36] 

1.18 

[0.14] 

0.54 

[0.09] 

26.13 

[1.99] 

59.00 

[2.40] 

9.08 

[0.88] 

5.79 

[0.81] 

S 0.05 

[0.00] 

2.60 

[0.50] 

96.44 

[0.50] 

0.91 

[0.12] 

4.14 

[0.74] 

19.99 

[3.24] 

66.08 

[3.77] 

9.79 

[1.15] 

High Education, Age = 90 

From:U 97.41 

[0.15] 

1.81 

[0.16] 

0.12 

[0.06] 

0.66 

[0.07] 

74.62 

[1.15] 

13.94 

[0.99] 

3.52 

[0.41] 

7.92 

[0.67] 

M 1.96 

[0.23] 

94.29 

[0.43] 

3.11 

[0.33] 

0.64 

[0.12] 

15.19 

[1.47] 

52.35 

[2.41] 

21.81 

[1.83] 

10.65 

[0.97] 

S 0.12 

[0.08] 

1.24 

[0.23] 

95.80 

[0.34] 

2.83 

[0.25] 

2.09 

[0.62] 

8.77 

[1.41] 

61.35 

[2.37] 

27.79 

[2.05] 

Low Education, Age = 70 

From:U 99.35 

[0.04] 

0.53 

[0.04] 

0.03 

[0.01] 

0.09 

[0.01] 

93.38 

[0.35] 

4.77 

[0.33] 

0.61 

[0.06] 

1.25 

[0.11] 

M 3.05 

[0.25] 

95.11 

[0.36] 

1.23 

[0.12] 

0.61 

[0.07] 

27.37 

[1.75] 

56.77 

[2.32] 

9.45 

[0.85] 

6.41 

[0.63] 

S 0.01 

[0.00] 

2.39 

[0.37] 

96.63 

[0.36] 

0.97 

[0.12] 

3.72 

[0.61] 

18.19 

[2.44] 

67.55 

[2.77] 

10.53 

[1.17] 

Low Education, Age = 90 

From:U 96.80 

[0.17] 

2.44 

[0.19] 

0.20 

[0.09] 

0.57 

[0.06] 

69.92 

[1.21] 

17.81 

[1.11] 

4.92 

[0.55] 

7.34 

[0.59] 

M 2.10 

[0.23] 

93.92 

[0.41] 

3.25 

[0.31] 

0.73 

[0.13] 

15.34 

[1.43] 

50.52 

[2.17] 

22.46 

[1.64] 

11.68 

[1.00] 

S 0.04 

[0.02] 

1.14 

[0.21] 

95.80 

[0.30] 

3.03 

[0.22] 

1.30 

[0.23] 

7.83 

[1.28] 

61.27 

[2.10] 

29.59 

[1.79] 
a Standard errors shown in parentheses. 

U = unimpaired; M = moderately impaired; S = severely impaired; D = dead 



Table 3. Summary Statistics for Remaining Years of Life by Status, by Sex, Race, 
and Education, for Selected Ages 

Population Group Age 
Total Unimpaired Moderately Impaired Severely Impaired 

Mean SD Mean SD Mean SD Mean SD 
Males 

Nonwhite 

White 

Low Education 

High Education 

70 

80 

90 

70 

80 

90 

70 

80 

90 

70 

80 

90 

70 

80 

90 

11.3 

6.8 

3.8 

11.8 

7.2 

4.4 

11.3 

6.7 

3.7 

9.9 

6.2 

3.5 

12.1 

6.9 

3.8 

7.1 

4.9 

3.1 

7.4 

5.2 

3.5 

7.0 

4.8 

3.0 

6.8 

4.6 

3.0 

7.1 

4.9 

3.1 

8.8 

4.6 

1.9 

8.5 

4.3 

1.7 

8.9 

4.6 

2.0 

7.2 

3.8 

1.5 

9.9 

4.9 

2.1 

6.2 

4.2 

2.4 

6.0 

3.9 

2.2 

6.2 

4.2 

2.5 

5.8 

3.7 

2.0 

6.3 

4.4 

2.6 

1.5 

1.2 

0.9 

1.8 

1.4 

1.1 

1.5 

1.2 

0.8 

1.5 

1.4 

1.0 

1.4 

1.1 

0.8 

2.0 

1.6 

1.2 

2.0 

1.6 

1.3 

2.0 

1.6 

2.2 

2.2 

1.8 

1.3 

1.9 

1.5 

1.1 

1.0 

1.0 

1.0 

1.5 

1.5 

1.6 

0.9 

0.9 

0.9 

1.2 

1.0 

1.0 

0.8 

0.9 

0.9 

1.8 

1.6 

1.4 

2.2 

2.0 

1.9 

1.7 

1.5 

1.3 

1.9 

1.6 

1.3 

1.5 

1.5 

1.3 



Table 3. Continued 

Population Group Age 
Total Unimpaired Moderately Impaired Severely Impaired 

Mean SD Mean SD Mean SD Mean SD 
Females 70 15.2 7.9 11.0 6.5 2.5 2.7 1.7 2.5 

80 9.1 5.8 5.3 4.5 2.1 2.3 1.7 2.3 

90 4.9 3.7 1.9 2.4 1.4 1.8 1.6 1.9 

Nonwhite 70 13.9 7.6 8.7 5.7 3.1 3.1 2.1 2.6 

80 8.1 5.5 3.8 3.7 2.4 2.6 1.9 2.3 

90 4.6 3.6 1.4 2.0 1.6 2.0 1.6 1.7 

White 70 15.4 7.9 11.2 6.6 2.5 2.7 1.7 2.5 

80 9.2 5.8 5.4 4.5 2.1 2.3 1.7 2.3 

90 4.9 3.9 2.0 2.5 1.4 1.7 1.5 1.9 

Low Education 70 14.8 7.8 10.3 6.3 2.6 2.7 1.9 2.6 

80 8.7 5.6 4.8 4.2 2.1 2.3 1.8 2.3 

90 4.6 3.5 1.6 2.2 1.4 1.7 1.6 1.9 

High Education 70 15.7 8.0 11.3 6.6 2.4 2.7 1.6 2.4 

80 9.4 5.9 5.8 4.6 2.0 2.3 1.6 2.3 

90 5.0 3.8 2.1 2.6 1.4 1.8 1.5 1.9 



Table 4. Average Length (in months) of Functional Status 
Episodes, by Sex, Race, and Education 

Population Group 
Unimpaired Moderately Impaired Severely Impaired 

Mean SD Mean SD Mean SD 
Males 73.8 66.4 16.6 16.3 19.7 19.6 

Nonwhite 56.9 51.5 11.9 11.7 18.7 19.0 

White 75.9 63.4 17.4 16.8 19.8 19.6 

Low Education 85.1 55.1 17.6 16.9 20.9 20.5 

High Education 60.9 66.4 17.2 16.7 18.9 18.8 

Females 80.5 65.2 19.2 18.5 25.1 24.4 

Nonwhite 61.0 52.2 22.0 21.1 24.2 23.7 

White 82.5 66.1 18.9 18.2 25.3 24.5 

Low Education 74.3 60.6 18.4 17.7 26.2 25.3 

High Education 87.0 68.5 19.2 18.5 24.7 23.9 



Table 5. Uncertainty of Life Expectancy by Functional Status, by Sex, 
Race and Education, for Selected Ages 

Population Group Age 

TLE ULE MLE SLE 

Min Max SD Min Max SD Min Max SD Min Max SD 
Males 

Nonwhite 

White 

Low Education 

High Education 

70 

80 

90 

70 

80 

90 

70 

80 

90 

70 

80 

90 

70 

80 

90 

11.0 

6.6 

3.5 

10.9 

6.5 

3.3 

11.0 

6.5 

3.5 

9.5 

5.9 

3.1 

11.7 

6.7 

3.5 

11.4 

6.9 

3.9 

13.0 

8.1 

4.7 

11.5 

6.9 

3.9 

10.4 

6.6 

3.7 

12.4 

7.2 

4.0 

.126 

.107 

.132 

.638 

.464 

.397 

.142 

.123 

.126 

.242 

.216 

.250 

.183 

.151 

.125 

8.5 

4.3 

1.7 

7.9 

3.6 

1.2 

8.5 

4.3 

1.7 

6.8 

3.5 

1.2 

9.4 

4.6 

1.8 

9.0 

4.7 

2.2 

9.2 

4.9 

2.1 

9.1 

4.9 

2.2 

7.6 

4.1 

1.9 

10.3 

5.3 

2.4 

.166 

.204 

.183 

.428 

.371 

.238 

.175 

.202 

.190 

.245 

.181 

.196 

.255 

.259 

.228 

1.4 

1.1 

0.7 

1.5 

1.1 

0.7 

1.4 

1.1 

0.7 

1.4 

1.3 

0.8 

1.3 

1.0 

0.6 

1.6 

1.4 

1.1 

1.9 

1.6 

1.1 

1.6 

1.4 

1.0 

1.8 

1.5 

1.2 

1.5 

1.3 

1.0 

.057 

.095 

.117 

.143 

.140 

.166 

.076 

.092 

.094 

.106 

.092 

.129 

.082 

.095 

.107 

0.9 

0.8 

0.8 

1.3 

1.1 

1.1 

0.8 

0.8 

0.7 

1.1 

0.9 

0.8 

0.6 

07 

0.7 

1.1 

1.1 

1.2 

2.0 

1.8 

1.8 

1.0 

1.0 

1.2 

1.3 

1.0 

1.1 

0.9 

1.0 

1.1 

.088 

.097 

.143 

.226 

.216 

.207 

.063 

.082 

.141 

.057 

.053 

.097 

.097 

.117 

.142 



Table 5. Continued 

Population Group Age 

TLE ULE MLE SLE 

Min Max SD Min Max SD Min Max SD Min Max SD 
Females 70 14.8 15.4 .195 10.6 11.3 .185 2.4 2.5 .043 1.7 1.8 .042 

80 8.7 9.2 .175 5.0 5.4 .163 1.9 2.1 .082 1.6 1.8 .063 

90 4.4 5.2 .231 1.6 2.0 .143 1.2 1.5 .092 1.4 1.7 .108 

Nonwhite 70 13.2 14.2 .306 8.2 8.9 .249 2.6 3.5 .267 1.8 2.4 .199 

80 7.7 8.5 .283 3.3 4.1 .251 2.0 2.8 .262 1.6 2.3 .216 

90 4.2 5.3 .425 1.1 1.9 .259 1.2 2.2 .327 1.3 1.8 .173 

White 70 14.9 15.5 .197 10.8 11.5 .197 2.3 2.5 .047 1.6 1.8 .063 

80 8.8 9.3 .191 5.1 5.6 .179 1.9 2.0 .053 1.6 1.8 .067 

90 4.4 5.2 .230 1.7 2.1 .163 1.1 1.4 .103 1.4 1.7 .107 

Low Education 70 14.4 15.2 .250 9.8 10.7 .244 2.4 2.8 .117 1.8 2.1 .114 

80 8.0 8.9 .241 4.4 5.0 .172 2.0 2.1 .048 1.7 2.1 .125 

90 4.3 4.7 .135 1.4 1.6 .082 1.2 1.3 .052 1.5 1.9 .158 

High Education 70 15.2 16.0 .237 11.3 12.0 .237 2.2 2.4 .074 1.4 1.7 .097 

80 8.9 9.7 .227 5.3 6.0 .235 1.8 2.0 .082 1.4 3.8 .702 

90 4.5 5.4 .239 1.8 2.3 .194 1.1 1.4 .103 1.3 1.7 .140 



Table 6. Coefficient of Variation: Life Expectancy by Status,Sex, 
Race, and Education at Age 70 

Population Group TLE ULE MLE SLE 
Males 1.12 1.89 3.80 8.80 

Nonwhite 5.41 5.04 7.94 15.07 

White 1.26 1.97 5.07 7.00 

Low Education 2.44 3.40 7.07 4.75 

High Education 1.51 2.58 5.86 12.13 

Females 1.28 1.68 1.72 2.47 

Nonwhite 2.20 2.86 8.61 9.48 

White 1.28 1.76 1.88 3.71 

Low Education 1.69 2.37 4.50 6.00 

High Education 1.51 2.10 3.08 6.06 



Table 7. Uncertainty in Average Length (in months) of Functional Status Spells, 
by Sex, Race, and Education 

Population Group 
Unimpaired Moderately Impaired Severely Impaired 

Min Max SD Min Max SD Min Max SD 
Males 69.4 76.1 2.05 15.1 17.3 .636 17.4 22.7 1.48 

Nonwhite 52.3 61.8 3.28 9.5 12.6 .100 16.8 22.5 2.24 

White 70.9 77.8 2.34 16.0 18.4 .716 17.3 22.7 1.42 

Low Education 57.5 64.5 2.68 16.4 18.8 .651 18.2 22.4 1.42 

High Education 79.3 8.9 3.47 15.7 18.3 .875 15.2 24.2 2.33 

Females 77.7 86.7 2.82 17.7 20.1 .788 23.7 26.7 1.02 

Nonwhite 54.1 65.6 4.00 19.6 24.4 1.63 20.4 27.2 2.19 

White 79.6 88.8 2.91 17.4 19.6 .727 23.9 27.1 1.15 

Low Education 60.8 78.2 4.86 17.4 19.4 .745 25.8 28.4 .871 

High Education 84.0 95.0 3.48 17.2 19.8 .852 22.2 27.8 1.82 



Table A- 1. Parameters of Functional Status Transition Model: Males 

Origin 
State 

Destinatio 
n 

State 

Variable 

Constant Age Nonwhite Low Education 

ˆ  ¯ ( ˆ  ¯ ( ˆ  ¯ (  ˆ ¯ (

U 

U 

U 

M 

S 

D 

-5.4745 
* (0.1147) 

(-6.0575 
* (0.0851) 

-6.2744 
*(0.1030) 

-5.4457 
[0.0744] 

-6.0555 
[0.0455] 

-6.3125 
[0.1188] 

0.0580 
*(0.0084) 

-0.9392 
*(0.0802) 

0.0801 
* (0.0085) 

0.0549 
[0.0010] 

-0.9137 
[0.0841] 

0.0849 
[0.0086] 

0.3603 
*(0.1082) 

-0.1205 
*(0.0184) 

-0.3152 
(0.2013) 

0.3754 
[0.1247] 

-0.1116 
[0.0130] 

-0.3976 
[0.1833] 

0.3177 
*(0.0784) 

3.5002 
*(0.1204) 

0.2087 
*(0.0913) 

0.3392 
[0.0739] 

3.5111 
[0.0694] 

0.1539 
[0.0838] 

M 

M 

M 

M 

S 

D 

3.5153 
(0.1827)* 

-1.0807 
(0.2761)* 

-1.2628 
(0.2808)* 

3.4596 
[0.1079] 

-1.1199 
[0.2467] 

-1.1394 
[0.2002] 

0.0218 
(0.0128) 

0.1009 
(0.0172)* 

0.0339 
(0.0189) 

0.0279 
[0.0096] 

0.1039 
[0.0148] 

0.0252 
[0.0128] 

-0.5033 
(0.1122)* 

-0.0187 
(0.1733) 

-0.4746 
(0.2092)* 

-0.5682 
[0.0810] 

-0.0495 
[0.1079] 

-0.4352 
[0.1222] 

-0.0543 
(0.0855) 

-0.0842 
(0.1091) 

-0.0733 
(0.1784) 

-0.0562 
[0.0342] 

-0.0543 
[0.1070] 

-0.1588 
[0.1415] 

S 

S 

S 

M 

S 

D 

-2.5098 
*(0.0842) 

3.0798 
*(0.1081) 

-0.8306 
*(0.0963) 

-2.4775 
[0.0690] 

3.0826 
[0.0640] 

-0.8725 
[0.0641] 

0.2324 
* (0.0334) 

0.1666 
* (0.0293) 

0.2067 
* (0.0296) 

0.2225 
[0.0313] 

0.1617 
[0.0268] 

0.2048 
[0.0277] 

0.3625 
(0.2372) 

-0.1467 
(0.2550) 

-0.4746 
(0.2092) 

0.3707 
[0.1452] 

-0.1270 
[0.1348] 

-0.4352 
[0.1222] 

1.7010 
*(0.0679) 

1.1006 
*(0.0785) 

1.0967 
*(0.1042) 

1.6838 
[0.0469] 

1.0849 
[0.2012] 

1.1337 
[0.0660] 

Standard errors for estimated parameters in parentheses; standard deviation for sampled parameters in brackets. * t>2.0. 



Table A-2. Parameters of Functional Status Transition Model: Females 

Origin 
State 

Destinatio 
n 

State 

Variable 

Constant Age Nonwhite Low Education 

ˆ  ¯ ( ˆ  ¯ ( ˆ  ¯ ( ˆ  ¯ (

U 

U 

U 

M 

S 

D 

-5.6982 
* (0.0852) 

-8.7519 
* (0.2455) 

-7.0568 
(0.1369)* 

-5.7424 
[0.0616] 

-8.7054 
[0.3116] 

-7.0697 
[0.1464] 

0.0778 
*(0.0059) 

0.0965 
*(0.0198) 

0.0934 
(0.0089)* 

0.0810 
[0.0053] 

0.0840 
[0.0217] 

0.0955 
[0.0107] 

0.3217 
*(0.0693) 

1.3599 
*(0.1964) 

-0.3098 
(0.1764) 

0.3232 
[0.0968] 

1.4136 
[0.2288] 

-0.2088 
[0.1865] 

0.3050 
*(0.0776) 

0.4320 
(0.4279) 

-0.1381 
(0.1442) 

0.3173 
[0.0605] 

0.4527 
[0.5543] 

-0.1417 
[0.0579] 

M 

M 

M 

M 

S 

D 

3.4784 
* (0.1051) 

1.0128 
* (0.1244) 

-1.7235 
(0.2054)* 

3.4965 
[0.1133] 

-0.9784 
[0.0901] 

-1.5845 
[0.1791] 

0.0180 
*(0.0073) 

0.0671 
*(0.0079) 

0.0277 
(0.0124) 

0.0176 
[0.0091] 

0.0688 
[0.0090] 

0.0231 
[0.0106] 

0.3044 
*(0.0906) 

0.1736 
*(0.0664) 

0.4910 
(0.1947)* 

0.3448 
[0.0816] 

0.1972 
[0.0816] 

0.4505 
[0.2115] 

-0.0754 
(0.0968) 

-0.0269 
(0.1358) 

0.0517 
(0.1383) 

-0.0964 
[0.0978] 

-0.0865 
[0.1522] 

0.0004 
[0.1269] 

S 

S 

S 

M 

S 

D 

4.1521 
* (0.1596) 

7.6911 
* (0.0872) 

2.9145 
* (0.1335) 

4.2427 
[0.1231] 

7.6551 
[0.0881] 

2.8354 
[0.1236] 

-0.0841 
*(0.0331) 

-0.0475 
(0.0290) 

0.0096 
(0.0293) 

-0.0990 
[0.0183] 

-0.0534 
[0.0246] 

0.0062 
[0.0258] 

-2.8218 
*(0.1532) 

-2.5912 
*(0.0802) 

-2.5404 
*(0.1048) 

-2.7807 
[0.1117] 

-2.6081 
[0.0825] 

-2.5604 
[0.0586] 

1.1409 
*(0.1653) 

1.2296 
*(0.1694) 

1.2948 
*(0.1832) 

1.1170 
[0.1621] 

1.2809 
[0.2185] 

1.3550 
[0.2469] 

Standard errors for estimated parameters in parentheses; standard deviation for sampled parameters in brackets. * t>2.0. 
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