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Abstract 

In the stochastic frontier model we extend the multivariate probability statements of 

Horrace (2005) to calculate the conditional probability that a firm is any particular efficiency 

rank in the sample. From this we construct the conditional expected efficiency rank for each 

firm. Compared to the traditional ranked efficiency point estimates, firm-level conditional 

expected ranks are more informative about the degree of uncertainty of the ranking. The 

conditional expect ranks may be useful for empiricists. A Monte Carlo study and an empirical 

example are provided. 
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1. Introduction  

 

Given a sample of firm-level data, parametric stochastic frontier models specify production 

output (or cost) as the sum of a linear response function and an additively composed error, 

consisting of a two-sided error, representing noise, and a one-sided error, representing 

inefficiency. See, for example, Aigner, Lovell and Schmidt (1977), Battese and Coelli (1988), 

Battese and Coelli (1992), and Greene (2005). It is very often assumed that the two-sided error is 

normally distributed and the one-sided error is truncated normal or exponential. If so, the 

distribution of inefficiency conditional on the composed error is truncated normal. Given these 

conditional inefficiency distributions (one for each firm), a common empirical question is how 

does one assess relative inefficiency in the sample? There are essentially two approaches. The 

first approach is to calculate the mean of each conditional inefficiency distribution, using the 

value of the regression residual for each firm in the conditioning argument. See Jondrow et al. 

(1982) for the cross-sectional case and Battese and Coelli (1988) for the panel data case. These 

conditional means (evaluated at the residual values) can be ordered across firms, and a sample-

wide view of inefficiency is inferred from the order statistic. In particular, the firm with the 

smallest conditional mean may be deemed efficient relative to the rest in the sample. A second 

approach is to use the conditional inefficiency distributions to calculate the probability that each 

firm is best (has lowest inefficiency), conditional on the (joint) composed errors. See Horrace 

(2005). These conditional efficiency probabilities can be evaluated at the values of the (joint) 

regression residuals to provide an alternative view of (in)efficiency in the sample, and, in 

particular, the firm with the largest efficiency probability may be deemed the most efficient. The 

first approach is a marginal approach in that each conditional mean is derived from a single 

conditional inefficiency distribution. The second approach is simultaneous in that each 
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conditional efficiency probability is derived from all the conditional distributions, jointly. In this 

sense the conditional probabilities contain information from the efficiency rank statistic that the 

conditional means do not provide. In the parlance of the multiple comparisons and ranking and 

selection literatures (e.g., Bechhofer, 1954; Dunnet, 1955; Gupta, 1956, 1955), the conditional 

efficiency probabilities account for the "multiplicity" in the rank statistic (e.g., firm 1 is better 

than firm 2 and firm 3 and…). 

This paper extends the conditional probability statements of Horrace (2005) to calculate 

not just the conditional probability that each firm is best (lowest inefficiency), but also the 

conditional probabilities that each firm is any efficiency rank (best, 2nd best, …, 2nd worst, worst) 

in the sample.  The suite of conditional probabilities provide a complete picture of efficiency in 

the sample and is informative.  To see this, let the sample consist of n firms and let the 

unconditional distribution of efficiency be the same for each firm (a common assumption). Then, 

the unconditional probability that any firm is a particular efficiency rank is simply 1/n, an 

uninteresting result. That is, the unconditional probability of any particular efficiency rank can 

be characterized by a discrete uniform distribution across firms. Once we condition on the 

sample data (on the regression residuals), the shape of this distribution across firms becomes less 

uniform (more informative). It is in this sense that the proposed conditional efficiency 

probabilities are empirically useful. In fact, our simulations show that when the variance of the 

one-sided error is small relative to that of the two-sided error (a noisy experiment), the 

conditional probabilities are close to the unconditional result, 1/n. As noise decreases, the 

probability weights of being a particular efficiency rank shift across firms, so the distribution 

becomes more informative. 

Given the suite of conditional efficiency rank probabilities (a partition of the event space 
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that firm i is efficiency rank r), it is a simple matter to calculate the expected rank for each firm, 

conditional on the composed errors, evaluated at the residual values. These conditional expected 

ranks are also useful. Like the unconditional efficiency rank probabilities, the unconditional 

expect rank for each firm is constant across firms. For example, if n = 5 and if the unconditional 

distribution of inefficiency is (again) identical across firms, then the unconditional expected rank 

for each firm is (1 + … + 5)/5 = 3, an uninteresting result. The conditional expected rank, 

however, varies across firms, and this variability informs our understanding of the efficiency 

rankings. Continuing the example, if the firm with the highest efficiency score has a conditional 

expected rank of 1.2 (1 being the best and 5 being the worst), we are much more confident that it 

is the best firm in the sample than if it has a conditional expected rank of 2.2, and the conditional 

expected rank of 1.2 is certainly more informative than its unconditional expected rank of 3. Not 

surprisingly, the informativeness of the conditional expected rank is increasing in the signal to 

noise ratio in our simulations. Continuing the example, the conditional expected rank of 1.2 for 

the firm with highest inefficiency score might be from a less noisy experiment than the 2.2 result.  

In a very noisy experiment the same conditional expected rank might be close to 3, the 

unconditional result. Our simulations also reveal interesting relationships between the skew of 

the one-sided error and the distribution of the conditional expected ranks across firms. 

This paper is organized as follows. The next section presents the parametric frontier 

model, the conditional efficiency rank probabilities, and the conditional expected rank measure.  

The model allows for unbalanced panels, a case which has not been treated extensively in 

previous work on efficiency probabilities. In section 3, a Monte Carlo study demonstrates how 

the empirical distribution of conditional efficiency rank probabilities and the conditional 

expected ranks vary with a) the amount of noise in the experiment and b) the skew of the 
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unconditional inefficiency distributions.  Section 4 presents an empirical application to vessel 

efficiency in the US North Atlantic Herring fleet, and section 5 concludes. 

2. Conditional  Inefficiency  Rank Probabilities  For Parametric Frontiers  

We consider the parametric stochastic frontier model for an unbalanced panel of firms: 

y =α + x β − +u v , i =1,..., n , t =1,...,T . (1) it it i it i 

Here, yit is the observed logarithm of output of the ith firm in the tth period, the xit are observed 

production inputs, the ui ≥ 0 are iid unobserved errors representing unobserved inefficiency, and 

the vit are iid unobserved errors that cause the efficiency frontier to be stochastic. We assume 

that the distribution of vit is N (0,σ v 
2 ) and distribution of ui is the truncation below zero of a 

N ( ,µ σ u 
2 ) random variate.1 Other distributions for ui have been considered (e.g., Greene, 

1990), but are beyond the scope of what follows. We also require that xit , ui and vit be 

independent. Since yit is in log points, firm-level technical efficiency is defined as 

ˆ ˆ 2TEi = exp(−ui ) . Maximum likelihood estimation of the model's parameters (α̂ , β , µ̂ , σ u and 

σ̂ v 
2 ) is consistent (as n →∞ or as Ti →∞ ). 

The model in (1) is fairly flexible. It can represent both Cobb-Douglas and trans-log 

specifications, and it can be recast as a cost, revenue or profit function. Generalizations for time-

varying ui are plentiful. For example, see Kumbhakar (1990), Cornwell, Schmidt, and Sickles 

(1990), Battese and Coelli (1992), Lee and Schmidt (1993), Cuesta (2000), Han, Orea and 

Schmidt (2005), Lee (2005), and Ahn, Lee and Schmidt (2007). Our empirical example in 

1 A fixed effect model is also considered in Schmidt and Sickles (1984). 
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section 4 involves a more flexible form than in (1), where the marginal products are allowed to 

vary across groups of firms; the model is estimated using the El-Gamal and Grether (1995, 2000) 

estimation classification algorithm.  

Based on our assumptions in (1), Battese and Coelli (1988) show that the distribution of 

u conditional on the composed error ε = v −u is the truncation below zero of a N ( ,µ σ 2 )i it it i *i *i 

random variate with, 

Ti
2 2 2 2 −1 2 2 2 2 2σ ε µσ i ε .µ*i = (− uTi i + v ) / (Tσ u +σ v ) , ε i = Ti ∑ it and  σ*i =σ σu v / (Ti uσ +σ v ) 

t=1 

That is, the conditional density function of ui is: 

2 −1/2 2(2πσ*i )  (u − µ*i ) f u( | ε ) = exp − ε = [ε  ε ]′ .i  2  with i i1 iTi1−Φ(−µ σ )*i / *i  2σ*i  

Then the conditional distribution function is: 

u Φ({ − µ } / σ ) −Φ(−µ σ )) ε ) = 
u *i * *i / *iF u( |  ε i = f u( |  i du∫ , 

0 −Φ(µ σ1 *i / *i ) 

where Φ is the cumulative distribution function of a standard normal random variate.  Then the 

conditional mean of ui is: 

(− /φ µ  σ )*i *iE u( |  ε i ) = µ*i +σ*i ,
Φ( *i / *i )µ σ  

with φ the density  of a standard normal random variate. 

In principle, population efficiency ranking is in terms of ui . That is, u[1] ≤ [2] ≤ ≤ u[n]u ... , 

so that firm [1] is most efficient in the population, and firm [n] is least efficient. However, ui is 

unobserved and cannot be directly estimated, so what is often done is to calculate the vector of 

residuals [ei1  e T ] with i yi − −ˆ i β̂ , and estimate inefficiency as e = ′ e = α xi i t t ti 
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u ˆi = E u( |  ε i = e i ) , the conditional  mean  evaluated at  ε i = ei  (with  µ µˆ = , σ 2 
u = σ ˆ 2

u  and 

σ σ2 
v = ˆ 2 

v )  for each firm. E mpirical exercises often include  a rank ordering of the  ûi , which 

serves as  a predictor  of the ordered  u  conditional on ε . 2 2
i i  If  T T  i = , so that  σ*i =σ* , then the 

firm rankings based on ûi  will be identical to  the rankings based on ei .  However,  in the case of  

unbalanced panels, it is possible that the rankings  will not be identical,  becauseσ 2 
*i  causes  ûi is 

no longer be monotonic in ei .  

 Based  on the distribution of  ui  conditional on ε i , Horrace (2005)  calculates the 

conditional probabilities that firm i  is most efficient in the sample,  Pr(i = [1] | ε1,...,εn ) , and least  

efficient in the sample  Pr(i = [n] | ε1,...,εn ) . The conditional  efficiency  probabilities are predicted  

by evaluating them  at  ε i = ei , i =1,..., n .  We generalize those results to calculate the conditional  

probability that  firm  i  is any efficiency rank,  r, i n the sample, Pr(i = [ r ] | ε1,...,εn ) . This  

conditional  rank  probability  is the sum of  the probabilities of  all possible  events  where ui  is rank  

r (and there may be many), however  it is not necessary to calculate all possible  event  

permutations to determine  it.  Instead we  can start from events in which a particular set of firms  

are more efficient than  i  and the remaining firms are less efficient without regard for the  

rankings of the firms within each set.   Consider one such event  with firm  i at rank  r, and define  

subsets  N −
i (r ) ={ j u: j < ui}  and N +

i (r ) ={ j u: j > ui} , conditional on ε1,...,εn . The conditional  

probability  of this event is,  

∞ 

 ∫ f ( |  u ε i ) ∏ F u( |  ε j ) ∏ [1− F u( |  ε k )]   du .  
0 j∈N −

i ( )  r k∈N +
i ( )r 

For any  rank,  except  r =1  or r n= , there are multiple  combinations  of ranked firms above and 
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below  i  which yield the same rank.  In fact, there are C = (n−1)! 
n−1 r−1 (n r− )!(r−1)!  combinations that have  

firm  i  at rank  r  out of  n  firms.  Accordingly, w e index the set of firms above and below  i  for 

each different combination that  produces the same rank as  N rl−
i (  )   and N rl+

i (  )  , l =1,..., n −1 Cr−1 .

Then the  conditional  efficiency  rank probability for rank r  out of  n  is,  

C − ∞n−1 r 1 

 Pr(i = [ r ] | ε1,...,εn ) = ∑ ∫ f (u | ε i ) ∏ F u( | ε j ) ∏ [1− F u( | ε k )] du ,  (2)  
l=1 0 j∈N l− 

i ( )r k∈N  l +
i ( )  r

i =1,..., n , r =1,..., n . When r =1  or r n  =  these reduce the conditional  efficiency  probabilities 

of Horrace  (2005). The n2  probabilities in (2)  can be predicted  by evaluating them at  ε i = ei ,  

i =1,..., n  (with  µ µˆ = , σ σ2 2
u = ˆu  and σ σ2 

v = ˆ 2 
v ). It is not difficult to generate computer  

algorithms for  efficient calculation of these  probabilities. When n is large,  numerical calculation  

of the probabilities  may  be difficult, but they could certainly be  estimated  using resampling  

techniques.   

If  we substitute the unconditional density  function,  f u( )  , and distribution function, F u( ) ,  

for the conditional density  function and distributions  (respectively) in (2), then it is clear that 

Pr(i = [ r]) = Pr( j = [ r ])  with  ∑ i Pr(i = [ r ]) =1 , so that Pr( i = [ r ]) =1/ n .  This  argument  hinges  

on the unconditional draws of  u  (over i ) being identically distribted.  Obviously, if the  

unconditional distribution of the  ui  varies over  i  (e.g., Battese  and Coelli, 1995), then the  

unconditional  Pr(i = [ r ])  would not equal  1/  n  in general, and would be a function of the  

parameters of the underlying unconditional distributions. A lso, if σ 2 
v   is large relative to  σ 2 

u , then 

realizations of  ε i  contain relatively little information about ui , so that the conditional  

distribution of  ui  is close to its unconditional distribution. Therefore, when σ 2 
v   is large relative 
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to σ u 
2 , the probabilities in (2) will be close to 1/  n . 

Of course reporting the n2 probabilities in (2) in an empirical exercise may be 

impractical. However, much of the pertinent information contained in the r = 1,..., n conditional 

rank probabilities for a firm can be summarized with its conditional expected rank statistic, 

n 

ρi =∑ r Pr(i = [ ]r | ε1,...,εn )∈[1, n] , (3) 
r=1 

i = 1,..., n . This measure is an alternative way to characterize efficiency ranks that accounts for 

multiplicity in the rank statistic through the probabilities in (2).  Again, it can be predicted by 

evaluating ε i at the values of ei for every firm. It also responds to the relative magnitudes of the 

signal (σ u 
2 ) and noise (σ v 

2 ) in the same way as the probabilities in (2). In a particularly noisy 

setting, the conditional rank probabilities in (2) are approximately equal to 1/  n , and the 

conditional expected rank will be approximately equal across firms. In this sense (2) and (3) 

provide information on one source of uncertainty in the efficiency ranks that the conditional 

means, E u( |  ε i ) , do not.2 Of course, the conditional means, the conditional rank probabilities, 

and the conditional expected rank are all different measures, so comparisons of their abilities to 

serve as substitutes should not be overstated. 

All of the different characterizations of inefficiency (and their relative rankings) are 

evaluated at ε i = ei . Therefore, they all ignore estimation error, which (of course) is 

asymptotically negligible. Nonetheless, it may be important in finite samples. For the conditional 

means, there are ways to address the issue. Simar and Wilson (2009) and Wheat, Smith and 

2 One could supplement the conditional means with the conditional prediction intervals of Horrace and Schmidt 
(1996), to judge how much the marginal distributions overlap. The degree of overlap may correspond to the extent 
to which the conditional probabilities and expected ranks are close to their unconditional counterparts, but this might 
be highly subjective and (perhaps) lead to an inaccurate assessment of the nature of efficiency in the population. 
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Greene (2013) recommend resampling techniques to incorporate estimation error into confidence 

intervals on technical inefficiency. Resampling techniques could certainly be employed to assess 

the effects of estimation error on the conditional expected ranks. The procedure to do so would 

be straightforward, but this is not the focus of the evaluation presented below. 

3. Monte Carlo Study  

We use a series of simulations to demonstrate properties of the conditional expected rank 

statistic.  For simplicity, we always set Ti = 1. As equation 2 shows, the conditional rank 

probabilities for each firm depend on the conditional distributions, f u( |  ε i ) , which themselves 

depend on three parameters µ , σ u 
2 and σ v 

2 . First, we follow standard simulation practice for 

stochastic frontier models (e.g., Olson, Schmidt and Waldman, 1980), and explore how statistical 

noise, σ v 
2 , affects the empirical distribution of the conditional rank probabilities in (2) and the 

conditional expected ranks in (3). To this end we consider σ v 
2 = {0.01, 0.1,  1,  10} for fixed 

V u( )  . The point is that increasing noise should degrade the efficiency rank probabilities' ability 

to accurately detect the true rank of any firm, so that the conditional expected ranks are 

increasingly uninformative.  Second, Feng and Horrace (2012) show that the skew of the 

inefficiency distribution can also confound our detection of firm ranks at different ends of the 

order statistic in different ways.3 If the inefficiency distribution is "mostly stars" having many 

firms in the left tail ( ui ≅ 0 with high probability), then it is difficult to differentiate the 

individual ranks of these highly efficient firms (low [r] firms). Conversely, if the inefficiency 

distribution is "mostly dogs" having fewer firms in the left tail ( ui ≅ 0 with low probability), 

3 Feng and Horrace are only concerned with detecting the best firm. We want to detect the rank of all firms. 
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then it is easier to differentiate the individual ranks of these highly efficient firms.4 The amount 

of relative mass in one tail of a distribution affects the skew of the distribution. Therefore, our 

second interest is in seeing the effects of distributional skew (for a fixed variance) on the 

conditional rank probabilities and the conditional expected ranks. To do this we select values µ 

and σ u 
2 that hold the variance constant at V u( ) = 0.36 (the variance of a standard normal random 

variable truncated at zero) but produce skewnesses of 0.5, 1.0, and 1.5 respectively.5 These 

values are listed in Table 1. 

The different combinations of parameters ( µ , σ u 
2 , σ v 

2 ) yield a total of 12 separate 

exercises (four exercises for each of three skew levels). In each exercise we use a total of 5,000 

replications.  We use a modest number of firms, n = 5, to reduce the computational burden in (2) 

and simplify exposition.6 We ignore the frontier specification and simulate the model:  

ε i = i − i , so we are implicitly assuming that the production function is known. Our interest is v u  

not to understand how well the stochastic frontier model in (1) can be estimated, for this is 

widely known (e.g., Olson, Schmidt and Waldman, 1980). It is simply to demonstrate the 

empirical utility of the proposed conditional rank probabilities and the conditional expected rank 

statistic, and to examine their responses to changes in noise and skew. 

Results are shown in Figures 1, 2, and 3 for skew equal 0.5 (low), 1.0 (medium), and 1.5 

(high), respectively.  We couch our discussion on the effects of changes in σ v 
2 in terms of Figure 

1 (low-skew, Skew u( ) = 0.5 ), but it could equally apply to Figures 2 and 3. To achieve 

Skew u( ) = 0.5 while holding V u( ) = 0.36 , Table 1 shows that we select µ = 0.89 , σ u 
2 = 0.52 for 

4 The nomenclature "mostly stars and dogs" is due to Qian and Sickles (2008). 
5 The skew of a truncated normal is necessarily positive. We use the "standardized" definition of skewness where the 
3rd central moment is divided by the third power of the standard deviation. 
6 Again, the probabilities in (2) could be easily simulated for large n, but for the purposes of illustration, small n is 
sufficient. 
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the results in Figure 1. The figure contains four panels, corresponding to each of four different 

values of noise, σ v 
2 = {0.01, 0.1,  1,  10} . Each panel is read similarly. Consider the upper-left 

panel of Figure 1 where σ v 
2 = 0.01. For each of 5 firms we have the average of the conditional 

rank probabilities computed in each replication: probability of rank 1 (dark blue), probability of 

rank 2 (red), probability of rank 3 (green), probability of rank 4 (purple), and probability of rank 

5 (light blue).  The population ranks are assigned in each replication such that i = [ ]i . That is, by 

design firm 1 is 1st most efficient in the sample, firm 2 is 2nd most efficient in the sample, …, and 

firm 5 is least efficient in the sample for any of our 5,000 Monte Carlo draws.  These firm 

numbers, i, are along the x-axis, and the average conditional rank probabilities, 

Pr(i = [ ] |r ε ,...,ε ) , are along the y-axis on the graph.  Consider Pr(i = [1] | ε ,...,ε ) , the dark  1 n 1 n 

blue series. Based on σ 2 = 0.01, the probability that firm 1 is rank 1, Pr(1 = [1]ε ,...,ε ) , is 0.820; v 1 n 

the probability that firm 2 is rank 1, Pr(2 = [1] | ε1,...,εn ) , is 0.151; the probability that firm 3 is 

rank 1, Pr(3 = [1] | ε ,...,ε ) , is 0.026; and Pr(4 = [1] | ε ,...,ε ) = Pr(5 = [1] | ε ,...,ε ) = 0 . The 1 n 1 n 1 n 

probabilities for the other series are read from the graph similarly.  For example, forσ v 
2 = 0.01 

we have: Pr(2 = [2] | ε ,...,ε ) = 0.673 (red), Pr(3 = [3] | ε ,...,ε ) = 0.662 (green), 1 n 1 n 

Pr(4 = [4] | ε ,...,ε ) = 0.716 (purple), and Pr(5 = [5] | ε ,...,ε ) = 0.867 (light blue).  For the 1 n 1 n 

lowest noise experiment (σ v 
2 = 0.01), we see that the analysis is better at correctly detecting 

firms with higher true [r] than firms with lower true [r] (compare Pr(1 = [1] | ε1,...,εn ) < 

Pr(5 = [5] | ε1,...,ε ) and Pr(2 = [2] | ε1,...,ε ) < Pr(4 = [4] | ε1,...,ε ) ), and this is always the case n n n 

for our simulations (regardless of skew), because the distribution of u will always have a thinner 

right tail (where [  ]r is large) than left tail (where [  ]r is small) as the skew of a truncated normal 
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is always positive.  However, the low skew (0.50) of the Figure 1 simulations means that the 

distribution is relatively symmetric, so we shall see that differences in the ability of the 

conditional rank probabilities to accurately detect high and low ranked firms will become even 

more stark as we increase the skew (and increase uncertainly over which firms have lower true 

[r]). See Figures 4, 5 and 6 for a typical empirical inefficiency distribution for each of our three 

levels of skew: 0.5, 1.0 and 1.5, respectively. Each figure is a kernel density plot using a 

Gaussian kernel, a Silverman-type bandwidth selection rule, and no boundary-bias correction. 

Continuing with the low-skew results of Figure 1, as we increase σ v 
2 = {0.01, 0.1,  1,  10} , 

the empirical distribution of the efficiency probabilities become more uniform (and less 

informative).  However, we also see in the four panels of Figure 1 that it is always the case that 

Pr(1 = [1] | ε ,...,ε ) < Pr(5 = [5] | ε ,...,ε ) , even in the noisiest (σ 2 = 10 ) panel.  Both of these 1 n 1 n v 

empirical phenomena remain as we increase the skew (asymmetry) of the distribution of u to 1.0 

and to 1.5 in Figures 2 and 3, respectively (while holding V u( )  constant).  Looking across the 

figures we see the effect. Consider the lowest noise panel (upper left panel) in Figures 1, 2 and 3.  

As the skew increases across Figure 1, 2 and 3, Pr(1 = [1] | ε1,...,εn ) is decreasing (0.820, 0.754 

and 0.699, respectively), while Pr(5 = [5] | ε1,...,εn ) is slightly increasing (0.867, 0.873 and 

0.879, respectively). In the words of Qian and Sickles (2008), when the conditional distribution 

of u has "fewer stars" (low skew of Figure 4) it is easier to detect stars, 

Pr(1 = [1] | ε1,...,εn ) = 0.82 0, than when there are "mostly stars" (high skew of Figure 6), 

Pr(1 = [1] | ε1,...,εn ) = 0.69 6. These are inferential insights that the conditional means, E u( |  ε i ) , 

would not uncover. These are also manifest in the conditional expected ranks which we now 

consider. 
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Once the conditional rank probabilities are calculated for each firm at each rank, 

calculation of the conditional expected ranks of equation 3 is straight-forward. The distributions 

of conditional expected rank (for each simulation run in Figures 1, 2 or 3) are contained in 

Tables 2, 3 and 4 (respectively). The utility of the conditional expected ranks is immediately 

obvious.  First, the extent to which noise affects Pr(i = [ ] | ε1,...,εn )r is clear.  Consider the first 

panel (σ v 
2 = 0.01) of Table 2. The difference between the true rank of firm 1 (first column) and 

the average conditional expected rank (second column) is relatively small  (1−1.21 = −0.21), but 

this difference is increasing in magnitude as the we read down the panels and the level of noise 

increases: 1−1.71 = −0.72 , 1− 2.66 = −1.66 , and 1− 2.96 = −1.96 . These qualitative results are 

true for all firms (true rank) and for all levels of skew (Tables 2 thru 4).  Obviously, as noise 

increases the conditional expected ranks are moving toward the unconditional expected rank, 3 

(bottom panel in Table 2), which reflects the nearly uniform distribution of the conditional 

efficiency probabilities (bottom panel of Figure 1). Also, the response of the quantiles of the 

expected ranks (columns with the heading "Quantiles") to increasing noise is clear: noise tends to 

push extreme quantiles (and their surrounding probability mass) to the center of the empirical 

distribution of the conditional expected ranks.  Second, the effect of skew is clear across the 

tables.  Consider firms 1 and 5 in the first (low noise) panels of Tables 2 – 4.  For firm 1, the 

difference between its true rank [1] and the average conditional expected rank is increasing in 

magnitude (-0.21, -0.30, -0.39) as skew increases (0.5, 1.0, and 1.5) across Tables 2, 3 and 4, 

respectively, while the same differences for firm 5 are non-increasing in magnitude across the 

tables (0.16, 0.15, 0.15). Again, this reflects the fact that as skew increases (and there are 

relatively more stars in the inefficiency distribution) it is harder to detect "stars" in the left tail of 

the inefficiency distribution than to detect "dogs" in the right tail.  Third, the conditional 
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expected ranks are a convenient normalization of relative efficiency.   Notice that the  

normalization is  pegged to both ends of the true order statistic (1 and 5), such that  ρi ∈[1, n] .  

Compare this to the traditional predictor of  TEi = exp(−ui ) ,  

 

  µ  
1−Φ σ −  *i 

*   σ
TE     1

= E[exp(−u) | ε ] = * 
 exp −µ + σ 2 

i i  ,     (4) 
 −µ 1−Φ *i  

*i 
 2 *  


 σ*  

 

evaluated at  ε i = ei . ( See Jondrow, Lovell, Materov and Schmidt, 1982.)   This absolute  predictor  

normalizes efficiency  predictions  to the unit interval,  TE 
i ∈ (0,1) . Therefore,  linear  

renormalizations of expected rank, like  1 − −(1 ρ i ) /  n ,  can  be thought of  as alternatives  to  the 

TE i normalization.  However, the former is  measured  on a relative (within sample) scale, while  

the latter is measured on  an absolute (out of sample) scale.   

 

 

   

  

    

   

4. Empirical Example  

To illustrate our results on expected ranks we revisit the empirical exercise in Flores-Lagunes, 

Horrace and Schnier (2007), who estimate a stochastic production frontier for an unbalanced 

panel for n = 39 vessels from the US North Atlantic Herring fleet (2000-2003).  They specify a 

heterogeneous production function and use the El-Gamal and Grether estimation classification 

algorithm (El-Gamal and Grether, 1995, 2000) to classify the fleet into three production tiers. 

See Flores-Lagunes, Horrace and Schnier (2007) for a complete discussion of the data, the 
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production function and the estimation algorithm.7 Suffice it to say that vessel output is total 

catch (tons) and inputs are things like vessel size (tons), hours at sea, and crew size.  The 

estimation yields µ and σ 2 for each vessels. That is, each vessel's conditional inefficiency *i *i 

distribution is a N µ σ 2 truncated at zero. ( ,  )*i *i 

The North Atlantic Herring fleet consists of two technologies: trawlers and "purse 

seiners."  While in motion, trawling vessels drag large nets to take catch. A purse seine is a large 

net that is dropped toward the ocean floor while the vessel is at rest. The gear encircles catch as 

it is hauled back up to the boat. Vessels use only one of these technology (there are costs to 

refitting vessels with the different gear types). The El-Gamal and Grether estimation 

classification algorithm stratifies the fleet into three production tiers, where each tier has separate 

marginal product estimates (estimates ofα and β in equation 1).  The first and second tiers 

consist exclusively of trawlers and the third tier consists of a mix of trawlers and purse seiners. 

Efficiency is characterized within (and not across) each production tier.  

The estimates of µ and σ 2 for the five most efficient vessels in each production tier *i *i 

(tier, 1, tier, 2 and tier 3) are reproduced in the second and third columns of Tables 5, 6, and 7, 

respectively. The first column contains the unique vessel numbers from the Flores-Lagunes, 

Horrace and Schnier analysis. The fourth column contains traditional technical efficiency 

predictors TE 
i = E[exp(−u) | ε i ] from (4) evaluated at ε i = ei , and the results in Tables 5-7 are 

ranked on this value. The last column contains the conditional expected ranks, ρi , in (3) for the 

five most efficient vessels in each tier.  The results are compelling. Starting with Table 5, we see 

that the conditional expected ranks only range in value from 2.272 (vessel 14) to 3.479 (vessel 

7 The results of the estimation are not reproduced here to focus attention on the different characterization of 
efficiency ranks and the importance of the proposed conditional expected rank statistic. 
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2), indicating a fairly noisy analysis.  Had this been a particularly precise empirical exercise the 

range would be closer to 1 to 5.  One cannot infer this noisiness directly from the TEi , but it is 

reassuring to see that the predictor only ranges from 0.846 (vessel 14) to 0.928 (vessel 2), as 

well.  Also the vessel rankings based on  match those based on ρ in Table 5.  However, TEi i 

Table 6 tells a slightly different story.  The range of the conditional expected ranks is tighter than 

in Table 5 and only ranges from 2.535 (vessel 21) to 3.533 (vessel 7), so the analysis is more 

noisy, however, the ranks based on TE 
i are different than those based on ρi . In particular, the 

ranks of vessel 13 and 12 are reversed, and it is clear why this is the case: the truncated normal 

distributions (upon which they are based) are vastly different in shape even though the means are 

approximately the same.  That is, E[exp(−u) | ε12 = e12 ] ≅ E[exp(−u) | ε13 = e13 ] = 0.863 , however 

the means and variance of the distribution before truncation are extremely different. Compare 

2 2µ*13 = 0.135 to µ*12 = −0.518 and σ*13 = 0.009 to σ*12 = 0.125 . Vessel 12 has more mass near 

zero in the distribution of f u( |  ε i ) , which is better captured by the expected rank.  This 

underscores the danger of using the conditional means alone to make inferences on ranked 

technical efficiency scores: they simply do not capture the multiplicity that underlies the ranking. 

Table 7 tells an even more nuanced story.  The range of the expected ranks are wider: 

from 1.395 (vessel 3) to 4.151 (vessel 34), so this is the most precise rank statistic of the three, 

yet there is still some switching in the ranks based on ρi . In particular the ranks of vessels 33 

and 16, and of 30 and 34 are switched.  Notice that the differences in  for these vessel pairs TEi 

are not that large, so it is really not surprising that the additional information provided by the 

conditional rank probabilities might switch the ranking. (This was even more so the case for 

vessels 13 and 12 in Table 6.) However, it underscores the importance of taking into account 
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multiplicity and noise in any ranking exercise. 

Table 7 also includes an additional column with the heading "Trimmed ρi ." Sometimes 

empiricists will calculate ranked  and, in an ad hoc manner, determine that firms with the TEi 

highest values are "super-efficient." Super-efficient firms are then dropped from the sample, and 

the remaining efficiency scores are discussed without re-estimating the production function. 

Obviously this procedure has no effect on the individual efficiency scores, TEi . It does, however, 

have implications for the conditional expected rank. In the last column of Table 7, we trim the 

most efficient vessel (vessel 3) based on its efficiency score, TE 
3 = 0.971. The rationale is that 

the distance between its score and the second most efficient vessel,  
33 .934 , is the largest TE = 

among the most and second most efficient vessels across Tables 5 – 7. In doing so, we have 

deemed vessel 3 to be "super-efficient." Based on the  scores among the remaining vessels, TEi 

all the (implied) ranks move up by 1. Vessel 33's rank moves from 2 to 1, vessel 16's rank moves 

from 3 to 2, etc.. The  scores are marginal predictors of efficiency, so all the changes in TEi 

(implied) ranks are uniform. By contrast, the conditional rank probabilities and, consequently, 

the conditional expected ranks account for ranking multiplicity and are, therefore, affected in a 

non-uniform way by dropping a firm (or firms) from the rank statistic. This can be seen in the 

last two columns of Table 7. The improvement in conditional expected ranks are 0.855, 0.796, 

1.000, and 0.954 for vessels 33, 16, 30 and 34, respectively. Consequently, the ordering of the 

vessels based on ρ and "trimmed ρ " are different. The ordering based on ρ is 16, 33, 34 and i i i 

30 (best to worst), and the ordering based on "trimmed ρi " is 33, 16, 34 and 30. This switching 

of the expected ranks of vessels 33 and 16 underscores the fallacy of trimming "super-efficient" 

firms without a statistical basis that takes into account noise and the multiplicity implied by the 
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order statistic. 

5. Conclusions  

We extend the current literature on ranked efficiency scores by defining and proposing the use of 

conditional efficiency rank probabilities and conditional expected efficiency ranks as a means to 

provide improved insight into efficiency score rankings. Although our model was fairly 

restrictive, our results can be more broadly applied than this might indicate. Indeed, there is a 

broad class of parametric models that yield conditional efficiency distributions that are truncated 

normal and to which our results directly apply. Additionally, even if the resulting conditional 

distributions are not truncated normals, our results (and the results of Horrace, 2005) can be 

adapted to these cases. 

We demonstrated nuances of the proposed measures with a Monte Carlo Study.  The 

conditional expected ranks responded in predictable ways to the inherent noisiness of a statistical 

exercise and to the skewness of the underlying efficiency distribution.  While it is generally 

ignored in empirical applications of the stochastic frontier model, skew is a very important 

moment to consider in drawing conclusions on ranked efficiency predictors.  Our empirical 

example based on fishing vessels underscores the importance of taking into account multiplicity 

and noise in any ranking exercise, and the empirical relevance of the conditional rank 

probabilities and the conditional expected ranks is made clear. We also demonstrated that ad hoc 

trimming of “super-efficient” firms can lead to incorrect inference on the implied ranks of the 

remaining firms. It may not be wise to uniformly shift the remaining firms up in the efficiency 

order statistic. 

One potential area of future research is that the OLS residuals are necessarily correlated, 
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so while the conditional inefficiency distribution based on the true regression errors are 

independent, these distributions based on the residuals are technically not so.  It would be 

interesting to see if analytic solutions were forthcoming and the correlation of the residual could 

be estimated or approximated. It may also be worthwhile to considering resampling techniques 

to calculate conditional expected rank statistics, so large n will not be problematic, and to 

estimate confidence intervals for the conditional expected ranks, so that the usual assumption 

ˆ = can be relaxed. 

It may also be fruitful to explore higher moments of the conditional rank distribution for 

each firm. We have discussed the conditional expectation of the distribution, but it may be 

worthwhile to consider the conditional variance of the rank of each firm. Calculating the 

variance, and any higher moments, would be a straightforward exercise based on the conditional 

rank probabilities that we have presented. One might speculate that firms with high conditional 

probabilities of being best and worst would have higher conditional variance of their rank 

distribution than those with high probability of being in the center of the efficiency rank statistic. 

The best and worst firms will have more weight in one tail of their conditional rank distributions 

than firms with higher probability at the median efficiency ranks. However, this remains to be 

seen. 

β β
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Table 1: Simulation Parameters and the Resulting  Truncated Moments  

Underlying N ( ,µ σ 2 )  u 

 Mean( µ ) Variance(σ 2 )  u 

 Moments of the Truncated Distribution 
Mean  Variance   Skewness 

Range of  

(σ 2 )  v 

 0.89  0.52  1.04  0.36  0.50   0.01 to 10 
 0.00  1.00  0.80  0.36  1.00  0.01 to 10 
--3.00   2.83  0.67  0.36  1.50  0.01 to 10 
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     Table 2. Average and Quantiles of Conditional Expected Rank, Low Skew, Skew(u) = 0.50. 

σ 2 = 0.01 v 

True 
Quantiles  

Rank  Average  10%  25%  50%  75%  90%  
1  1.21  1.00  1.00  1.04  1.30  1.70  
2  2.05  1.53  1.85  2.00  2.23  2.64  
3  2.98  2.36  2.77  3.00  3.19  3.55  
4  3.91  3.37  3.76  3.99  4.06  4.37  
5  4.84  4.45  4.83  4.99  5.00  5.00  

 

σ 2 = 0.1 v 

True 
 Quantiles 

 Rank Average   10%  25%  50%  75%  90% 
 1  1.72  1.12  1.29  1.58  1.99  2.54 
 2  2.31  1.50  1.81  2.20  2.73  3.24 
 3  2.93  1.99  2.43  2.93  3.44  3.87 
 4  3.63  2.64  3.17  3.71  4.13  4.49 
 5  4.41  3.56  4.12  4.59  4.88  4.98 

 

  

       
       
       
       
       
       

 

  
 
       

       
       
       
       
       

 

2σ = 1v Quantiles 
True 
Rank Average 10% 25% 50% 75% 90% 

1 2.66 2.10 2.32 2.61 2.95 3.27 
2 2.82 2.23 2.48 2.78 3.13 3.45 
3 2.97 2.37 2.61 2.96 3.30 3.60 
4 3.15 2.51 2.79 3.13 3.50 3.84 
5 3.40 2.71 3.02 3.38 3.77 4.11 

2σ = 10v Quantiles 
True 
Rank Average 10% 25% 50% 75% 90% 

1 2.96 2.75 2.84 2.95 3.07 3.17 
2 2.98 2.77 2.87 2.98 3.09 3.19 
3 3.00 2.79 2.88 3.00 3.11 3.21 
4 3.02 2.80 2.90 3.02 3.13 3.24 
5 3.04 2.82 2.93 3.04 3.15 3.26 
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Table 3. Average and Quantiles of Conditional Expected Rank, Medium Skew, Skew(u) = 1.0. 

2σ = 0.01v Quantiles 
True 
Rank Average 10% 25% 50% 75% 90% 

1 1.30 1.00 1.01 1.14 1.48 1.83 
2 2.04 1.44 1.75 2.00 2.26 2.67 
3 2.94 2.26 2.70 2.99 3.17 3.58 
4 3.87 3.26 3.73 3.99 4.03 4.34 
5 4.85 4.43 4.85 5.00 5.00 5.00 

2σ = 0.1v Quantiles 
True 
Rank Average 10% 25% 50% 75% 90% 

1 1.86 1.20 1.41 1.74 2.19 2.65 
2 2.30 1.53 1.81 2.18 2.72 3.21 
3 2.86 1.94 2.34 2.83 3.34 3.83 
4 3.55 2.50 3.06 3.65 4.07 4.47 
5 4.43 3.48 4.13 4.67 4.93 4.99 

2σ = 1v Quantiles 
True 
Rank Average 10% 25% 50% 75% 90% 

1 2.65 2.01 2.25 2.60 2.98 3.34 
2 2.78 2.12 2.39 2.73 3.14 3.52 
3 2.95 2.26 2.53 2.90 3.32 3.70 
4 3.14 2.39 2.70 3.12 3.55 3.94 
5 3.48 2.65 3.03 3.49 3.95 4.33 

2σ = 10v Quantiles 
True 
Rank Average 10% 25% 50% 75% 90% 

1 2.95 2.67 2.79 2.95 3.10 3.24 
2 2.97 2.69 2.82 2.97 3.12 3.26 
3 3.00 2.72 2.84 2.99 3.14 3.29 
4 3.02 2.73 2.85 3.01 3.17 3.32 
5 3.06 2.76 2.90 3.06 3.22 3.36 
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Table 4. Average and Quantiles of Conditional Expected Rank, High Skew, Skew(u) = 1.5. 

2σ = 0.01v Quantiles 
True 
Rank Average 10% 25% 50% 75% 90% 

1 1.39 1.00 1.04 1.26 1.60 1.95 
2 2.04 1.43 1.70 2.00 2.30 2.73 
3 2.88 2.14 2.58 2.97 3.14 3.55 
4 3.84 3.20 3.67 3.98 4.01 4.31 
5 4.85 4.46 4.87 5.00 5.00 5.00 

2σ = 0.1v Quantiles 
True 
Rank Average 10% 25% 50% 75% 90% 

1 1.96 1.27 1.50 1.85 2.32 2.80 
2 2.32 1.54 1.82 2.22 2.71 3.25 
3 2.79 1.90 2.26 2.75 3.27 3.76 
4 3.48 2.44 2.95 3.56 4.03 4.42 
5 4.44 3.45 4.13 4.69 4.95 5.00 

2σ = 1v Quantiles 
True 
Rank Average 10% 25% 50% 75% 90% 

1 2.63 1.90 2.17 2.55 3.00 3.48 
2 2.76 2.00 2.29 2.70 3.18 3.62 
3 2.90 2.12 2.41 2.85 3.33 3.82 
4 3.14 2.29 2.63 3.11 3.62 4.06 
5 3.57 2.60 3.03 3.58 4.13 4.55 

2σ = 10v Quantiles 
True 
Rank Average 10% 25% 50% 75% 90% 

1 2.93 2.51 2.69 2.91 3.15 3.39 
2 2.96 2.52 2.72 2.94 3.19 3.42 
3 2.98 2.56 2.73 2.97 3.21 3.44 
4 3.02 2.59 2.78 3.01 3.26 3.48 
5 3.10 2.64 2.85 3.09 3.34 3.58 
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Table 5.  Heterogeneous Vessel Efficiency Results  Tier 1, Sorted on TE i  
Vessel  

 i σ *2  i 
*  µ i  TEi  ρ  i 

 2  0.001  0.074  0.928  2.272 
 39  0.013  0.03  0.905  2.698 
 11  0.011  0.094  0.881  3.157 
 5  0.032  0.04  0.859  3.394 
 14  0.064  -0.077  0.846  3.479 

 
 

 

Vessel  
 i σ *2  i 

*  µ i  TEi  ρ  i 

 21 
 19 
 13 
 12 
 7 

 0.011 
 0.039 
 0.009 
 0.125 
 0.345 

  0.041 
 -0.182 

  0.135 
 -0.518 
 -1.129 

 0.907 
 0.903 
 0.864 
 0.863 
 0.814 

 2.535 
 2.547 
 3.318 
 3.067 
 3.533 

 
 

 
Table 6.  Heterogeneous Vessel Efficiency Results  Tier 2, Sorted on TE i  

 
 

Table 7.  Heterogeneous Vessel Efficiency Results  Tier 3, Sorted on TE i  
Vessel  

 i σ *2  i 
*  µ i  TEi  ρ  i

 Trimmed 
ρi  

 3  0.001  0.001  0.971  1.395 ---- 
 33  0.002  0.065  0.934  2.528  1.673 
 16  0.008  0.011  0.930  2.500  1.704 
 30  0.001  0.193  0.825  4.425  3.425 
 34  0.023  0.173  0.817  4.151  3.197 
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