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Abstract

Dynamic spatio-temporal models, interfaced with long-term time-series data permit a

better understanding of population dynamics across large spatial scales. The Greater

Sage-Grouse (Centrocercus urophasianus) population appears to be declining across

much of their range. However, there is considerable uncertainty in the spatial drivers of

this decline. I developed and applied contemporary dynamic spatio-temporal statistical

models to 19 years of Greater Sage-Grouse lek count data to examine spatially-explicit

drivers of sage grouse population dynamics. Mean expected lek counts in Nevada

declined 2.84 birds per lek between 2000 and 2018, however trends varied substantially

over space, with northwestern Nevada and the Bi-State (Nevada and California) region

experiencing the steepest declines (up to 6 birds per lek), and northeastern Nevada

experiencing increased lek attendance. I found that elevation, total precipitation,

normalized difference vegetation index, and percent sagebrush were positively correlated

with expected lek counts and that drought, slope, percent bare ground, wildfire, and

maximum temperatures were negatively correlated with expected lek counts. I also found

that sage grouse population dynamics were closely correlated with mean precipitation the

preceding 8 years. Specifically, expected lek counts tracked an eight-year precipitation

average with lek attendance declining 3-4 years following 8 years of low precipitation.

These results support the hypothesis that long-term mean inter-annual precipitation drives

sage grouse habitat quality, and ultimately, sage grouse survival and reproduction,

affecting the number of birds visiting leks the subsequent years. Finally, I provide
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spatially explicit maps of population trends from 2000–2018 that can support future sage

grouse management and conservation.
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1 Introduction

Anthropogenic and climatic factors are driving the worldwide degradation of grassland,

rain forest, coral reef, and sagebrush ecosystems (Pandolfi et al., 2003; Bullock et al.,

2020; Gang et al., 2014). Approximately 50% of the sagebrush ecosystem has

experienced degradation, fragmentation, or total loss (Knick et al., 2003; Chambers et al.,

2017; Mahood and Balch, 2019). This loss is the result of alterations in the landscape

from anthropogenic disturbance (e.g., livestock grazing, oil and gas development, mineral

extraction, agricultural conversion; Brooks and Pyke, 2001; Kulpa et al., 2012; Chambers

et al., 2017), invasive species (e.g., cheatgrass; Bromus tectorum; Crawford et al., 2004;

Wisdom et al., 2005; Freeman et al., 2014), climate change (Chambers and Pellant, 2008;

Renwick et al., 2018), and altered fire regimes (D’Antonio and Vitousek, 1992; Mahood

and Balch, 2019). Impacts to sagebrush habitat negatively disrupt populations that rely on

them.

Greater sage-grouse (Centrocercus urophasianus; hereafter, sage grouse) are an

indicator species for the sagebrush ecosystem, representing sagebrush quality and

function (Rich and Altman, 2002; Rich et al., 2005; Suring et al., 2005; Rowland et al.,

2006; Hanser and Knick, 2011). It is not surprising that as the sagebrush ecosystem has

been lost, the sage grouse population has declined.

Sage grouse conservation has led to data collection programs that have amassed

long-term and spatially wide-spread annual population counts during the breeding season

(Jenni and Hartzler, 1978; Connelly et al., 2003; Dalke et al., 1963). These counts at
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lekking locations (areas attended by sage grouse for courtship display adjacent to

sagebrush dominated nesting habitat; Patterson, 1952) are used to estimate and predict

population size and trends (Walsh et al., 2004; Sedinger, 2007; Blomberg et al., 2013b).

Long-term male lek counts have declined range-wide since the 1960s (Western

Association of Fish and Wildlife Agencies, 2015), and sage grouse breeding populations

have declined since the 1950s (Connelly and Braun, 1997). Nevada sage grouse

populations have been declining since the 1970s (Connelly et al., 2004; Lockyer et al.,

2015). In 2018, Nevada Department of Wildlife (2018) estimated that Nevada lek

attendance was at a 5-year low and less than the 20-year average . These declines in

Nevada, and across their range, have prompted discussions to list the species under the

Endangered Species Act (ESA; US Fish and Wildlife Service, 2010; Western Association

of Fish and Wildlife Agencies, 2015).

Numerous factors appear to influence sage grouse population declines across many

different life stages. Temperature variability influence sage grouse survival (Blomberg

et al., 2014), nest or brood-rearing success (Dinkins et al., 2016), and recruitment

(Blomberg et al., 2012). Warmer temperatures harm sagebrush ecosystems during vital

brood-rearing periods (Blomberg et al., 2012; Miller et al., 2011), and decrease

post-fledgling survival (Blomberg et al., 2014). Extreme winter weather events increase

adult mortality (Moynahan et al., 2006; Anthony and Willis, 2009). Cold and wet spring

weather increases chick mortality from hypothermia and malnourishment (Gregg and

Crawford, 2009; Guttery et al., 2013). Drought reduces chick survival (Gibson et al.,

2017). Finally, wildfire influences all life stages, where habitat loss and fragmentation are
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correlated with population declines (Coates et al., 2016). These population drivers are not

homogeneous in space or time.

A fundamental scientific problem is to understand the evolution of spatial processes

over time (Cressie and Wikle, 2011). Although sage grouse populations appear to be

declining across their range, there is considerable uncertainty about spatial variability in

the drivers of population decline. In fact, in many areas in Nevada and other states, lek

counts have increased through time (Gregory and Beck, 2014, Figure 1). How spatial

variability behaves dynamically (i.e., the spatio-temporal variability) is key to

understanding the causes of an ecological and environmental processes (Cressie and

Wikle, 2011). Heterogeneity in population change permits us to understand better the

drivers of the range-wide decline, and where those drivers are having the largest impact

(Krebs, 1944; Wang, 2018).

Spatio-temporal statistical models are increasingly being used across many scientific

disciplines to examine spatially explicit processes that evolve over time (Wikle and

Hooten, 2010). Several studies have examined spatial population dynamics of sage grouse.

Gregory and Beck (2014) explored the relationship between oil and gas development

density and sage grouse lek attendance in Wyoming using a spatial and temporally

structured analysis with geographically weighted regression to find lek attendance began

to decline 1-to-4 years after disturbance from oil and gas development. McCaffery et al.

(2016) developed a random effects model to examine sage grouse leks to evaluate

population size, detection probability, and trend in sage grouse data collected over space

and time. McCaffery et al. (2016) found the population trend in Montana decreased by 7%
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per year on average. Green et al. (2017) developed a hierarchical, Bayesian state-space

model to use male lek counts over 24 years to investigate the impacts of oil and gas

development, and environmental and habitat conditions, on sage grouse populations. They

found that precipitation the year prior to lek counts and sagebrush cover had no effect on

lek counts and that male sage grouse lek attendance declined by 2.5% per year. Row and

Fedy (2017) quantified the spatial-temporal cyclic dynamics of sage grouse populations

using generalized additive models, wavelet and spectral analysis, and covariance analysis

on male lek counts and found many regions experienced cycles, but others did not. These

studies exemplify that understanding local-to-landscape level lek dynamics in a cohesive

modeling framework requires advanced spatio-temporal techniques in wildlife data

analysis. I aim to add to this research by creating a statistical analysis of the

spatio-temporal dynamics of lek attendance in Nevada. To do this requires developing

novel techniques that have not been implemented with sage grouse population counts.

In recent years there has been significant research on new statistical methodology for

modeling dynamic spatio-temporal processes (Wikle and Hooten, 2010; Cressie and

Wikle, 2011; Williams et al., 2017). Descriptive models (i.e., empirical models sensu

Cressie and Wikle, 2011), such as those that have been used to examine spatio-temporal

sage grouse data, address autocorrelation from the second-order (covariance) perspective

(Wikle and Hooten, 2010). Descriptive models have resulted in new insights to sage

grouse ecology (Gregory and Beck, 2014; Green et al., 2017; Row and Fedy, 2017), and

innovative work is being done in this regard (Wikle and Hooten, 2010). However, many

real-world processes are dynamic, and it can be more efficient to characterize the
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spatio-temporal dependence using dynamic, first-order (mean) perspectives (Wikle and

Hooten, 2010).

Dynamic spatio-temporal statistical (DSTMs) models permit predictions in space,

forecasting in time, assimilation of observations and non-linear mechanistic models, and

accounting for conditional dependence in parameter estimation (Wikle and Hooten, 2010;

Cressie and Wikle, 2011). DSTMs consist of modeling current values of a process at a

location in space to evolve from past values of the process at varying locations (Cressie

and Wikle, 2011). By allowing processes to evolve conditionally, we can study how the

process changes over time as well as the spatial pattern of change or growth of a system

over time. Although sage grouse population dynamics have been studied widely across

their range, in several states, and by a number of agencies and institutions (Connelly et al.,

2003; Connelly and Schroeder, 2007), I seek methods that permit continuous spatial

inference on population dynamics and how those have evolved through time. Dynamic

spatio-temporal models, interfaced with long-term population time-series data have

permitted a better understanding of population dynamics across large spatial scales for

many species. Examples include house sparrows (Passer domesticus; Wikle, 2003),

Eurasian collared doves (Streptopelia decaocto Hooten et al., 2007), wild turkey

(Meleagris gallopavo Wang, 2018), and sea otters (Enhydra lutris Williams et al., 2017,

2018, 2019; Lu et al., 2020; Eisaguirre et al., 2021).

My objective was to develop a DSTM to permit predictions of sage grouse lek

attendance in Nevada through time, as well as provide inference on the controlling

parameters of the processes that govern lek attendance (Wikle and Hooten, 2010; Wikle,
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2003). I used a long-term (2000–2018) data set of lek attendance collected in Nevada,

USA. I address multiple questions regarding sage grouse population dynamics, including

1) estimating annual expected lek attendance for Nevada, 2) estimating the spatial

dynamics of lek attendance in Nevada, 3) identifying the exogenous drivers behind the

spatial dynamics, and 4) understanding the local or landscape features that promote

expected lek attendance. Additionally, I develop a spatio-temporal map describing regions

where populations in Nevada have increased, and conversely, regions where populations

have decreased.

2 Methods

2.1 Study Area

The Great Basin is 541,730 km2 and one of the largest intact sagebrush ecosystems in the

world, making it critical to sage grouse conservation. Nevada is 286,382 km2 and

comprises ∼50% of the Great Basin. I used the data collected at 1,980 known sage grouse

leks in Nevada (see Data Collection section and Figure 1). Nevada’s Great Basin Desert

consists of rugged mountains oriented from north to south, flat valleys, and sandy desert

regions (Elliott, 1987). Elevation ranges from 914 m to 4,007 m (Western Regional

Climate Center, 2021). Nevada is an arid landscape, receiving on average 18 cm of

precipitation per year. Nevada’s water sources depend heavily on snow melt and spring

precipitation (Western Regional Climate Center, 2021). Average summer temperatures

range from 10◦ C to 44◦ C, and average winter temperatures range from 2◦ C to 18◦ C
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(Elliott, 1987). Vegetation communities in Nevada’s Great Basin vary considerably

according to elevation (Miller et al., 2011). Vegetation consists of salt desert (shadscale),

sagebrush grassland, pinyon-juniper woodland, mountain shrub, sub-alpine forest, and

alpine tundras (Germano and Lawhead, 1986; Chambers et al., 2007). Sage grouse leks

are found in areas with low, sparse vegetation, with higher amounts of bare ground,

surrounded by and adjacent to sagebrush habitats (Scott, 1942; Patterson, 1952;

Klebenow, 1985; Bradbury et al., 1989).

2.2 Data Collection

The Nevada Department of Wildlife (NDOW), in partnership with federal agencies

including the Bureau of Land Management (BLM), U.S. Forest Service (USFS), U.S.

Geological Survey (USGS), the U.S. Fish and Wildlife Service (USFWS), and citizen

volunteers, surveyed approximately 40% of the 1,980 known sage grouse leks annually

between 2000 and 2018 (Nevada Department of Wildlife, 2018). I considered all lek count

data collected in Nevada between 2000 and 2018. Lek surveys typically occur between

March and May (Connelly et al., 2003). However, depending on weather and winter

conditions, males will begin displaying in January and continue until June (Schroeder

et al., 1999; Connelly et al., 2003, 2004). The Nevada Department of Wildlife surveyed

leks as early as January in some years of the study.

To minimize variability in lek counts associated with timing, weather conditions,

and other factors that affect sage grouse behavior or observer ability, lek counts were

conducted using the established protocol described in Connelly et al. (2003). Briefly, these
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methods consisted of surveyors arriving at the lek 45 minutes before sunrise. Surveyors

maintained a distance of >200 yards from leks to prevent disturbing sage grouse. All

counts took place between 30 minutes before sunrise and 1.5 hours after sunrise. When

possible, leks were observed from vehicles due to sage grouse being less sensitive to a

vehicle’s approach and presence than a person (Patterson, 1952). Surveyors obtained a

minimum of three counts at 15-minute intervals of each lek on each date surveyed. Each

interval consisted of a count of males, females, and birds with an undetermined sex status.

To account for confounding variables during lek counts, wind direction, wind speed,

temperature, ground condition, and cloud cover were recorded at the time of the survey.

Not all leks were sampled every year. If leks were sampled multiple times during the

breeding season, surveys at the same lek took place at least one week apart. Aerial surveys

used helicopters flown at altitudes that minimized disturbance to sage grouse (Nevada

Department of Wildlife, 2018). Data collected between 2000 and 2018 followed these

standardized protocols, and therefore, I used these data for the analysis.

2.3 Data filtering

I used male sage grouse counts because they are the most consistent metric and observers

often fail to record females due to low detection probabilities (Connelly et al., 2003;

Western Association of Fish and Wildlife Agencies, 2015). I used the monthly maximum

count from replicate counts obtained during each lek survey to have one maximum lek

count per lek location for each month in my analyses.
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2.3.1 2000–2018 Lek Data

The number of leks surveyed in the 228 months between January 2000 and December

2018 varied widely. During the non-breeding season no leks were surveyed. On the fringe

of breeding season (i.e., January-February, May-June) fewer leks were usually surveyed

than in March and April (Appendix A). For my analysis, I only considered data from

months when there were at least 100 sage grouse counted within the month. I did this

because it resulted in a large computational savings without loss in much information.

That is, in preliminary analyses, I discovered that in months with fewer than 100 sage

grouse counted, visual examination of posterior distributions of parameter estimates were

indistinguishable from prior distributions of the corresponding parameters. Further,

examining all months with data, including months with less than 100 sage grouse counted,

resulted in slow mixing of MCMC chains and prohibitive computation time. There were

57 months between 2000–2018 in which the sum of all lek surveys yielded 100 or more

sage grouse (Appendix A, B). I used these 57 months for analysis. This precluded

modeling months when sage grouse usually do not lek (June-December) resulting in a

large computational savings. For the top 10 models (below, Table 2), I used all 57 months

of data from the 2000–2018 Lek Data for my response variable.

2.3.2 2008–2018 Lek Data

Population size is driven by environmental conditions that precede data collection. For

example, greater amounts of precipitation prior to the sage grouse breeding season have

been linked to higher lek counts (Blomberg et al., 2012; Coates et al., 2016). Additionally,
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Peebles et al. (2017) found that weather influences the number of adults on leks after a

1-year lag. Likewise, Coates et al. (2018) observed changes in population growth

following a one-year precipitation lag. Dinkins et al. (2021) found that a one and two-year

precipitation lag were positively associated with sage grouse population growth, and that a

three- and five-year fire lag model was negatively associated with abundance. I was

interested in 1-8 year environmental lags to examine the fine to longer scale impacts on

expected lek counts. To examine models with temporal lag effects (e.g., lag models 1-17

below, Table 5), I subset the 57 months of the Nevada lek data to include only the months

that existed between 2008–2018. There were 37 months between 2008–2018 that

contained at least 100 sage grouse counted per month. Restricting the time frame of the

data to 2008–2018 permitted me to examine the correlation between lek counts during

2008–2018 and the environmental conditions in the 8 years preceding lek counts. Many of

the environmental covariates in my analyses (e.g., monthly burn area, and normalized

difference vegetation index) were not available in years 1992-1999.

2.4 Hypotheses linking lek attendance to exogenous variables

I examined environmental, climatic, vegetative, and disturbance covariates in a set of

conceptual models relating lek dynamics to environmental variables. Elevation, slope,

percent bare ground cover (Rigge et al., 2020), percent sagebrush cover, and water were

static in time(Table 1). Monthly precipitation, monthly maximum temperature, fire

frequency, normalized difference vegetation index (NDVI), and Palmer Drought Severity

Index (PDSI) were dynamic in time ( Table 1). I created candidate models with different
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combinations of static and dynamic covariates based on existing literature and experience

(Table 2).

My first hypothesis was that expected lek counts were positively correlated with

elevation due to increased precipitation, essential vegetation, water sources, and cover

(Billings, 1951; Chambers et al., 2014; Baxter et al., 2017). My second hypotheses was

that slope was negatively correlated with expected lek counts because sage grouse appear

to select flat areas during breeding (Beck, 1977; Knick et al., 2013; Baxter et al., 2017).

Lek locations have been shown to be positively correlated with bare ground (Scott, 1942;

Petersen, 1980; Klebenow, 1985; Bradbury et al., 1989). Therefore, my third hypothesis

was that bare ground cover would be positively correlated with expected lek counts

(Fremgen et al., 2016). My fourth hypothesis was that percent sagebrush cover (Artemisia

spp.) would be positively correlated with expected lek counts due to lek locations being

adjacent to sagebrush habitat with adequate cover for breeding and nesting (Patterson,

1952; Gibson, 1996; Connelly et al., 2004). My fifth hypothesis was that water bodies are

positively correlated with lek counts because access to water is critical to sage grouse

recruitment (Atamian et al., 2010; Connelly et al., 2011; Donnelly et al., 2018). My sixth

hypothesis was that monthly precipitation would be positively correlated with expected

lek counts because early spring precipitation increases soil moisture, amount of vegetation

for cover, and nesting habitat around lek locations (Connelly et al., 2004, 2011; Blomberg

et al., 2012; Fremgen et al., 2019). My seventh hypothesis was that maximum monthly

temperature is negatively correlated with lek counts because high temperatures ultimately

ends breeding, driving movements away from leks into summer ranges (Pratt et al., 2017).
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Additionally, high temperatures reduces female survival during the breeding season

(Dinkins et al., 2017). My eighth hypothesis was that expected lek counts will decrease

with fire frequency due to reduced sagebrush habitat quality (Connelly et al., 2000a, 2004;

Coates et al., 2016; Foster et al., 2019). My ninth hypothesis was that NDVI is positively

correlated with expected lek counts because greater NDVI is positively associated with

sage grouse population growth and recruitment (Blomberg et al., 2012) and selected by

sage grouse at all reproductive stages (Dinkins et al., 2014). My tenth hypothesis was that

PDSI is positively correlated with expected lek counts. PDSI ranges from -10 (dry) to 10

(wet), and therefore, I expect dryer areas to have lower sagebrush quality (Aldridge et al.,

2008).

2.5 Hypotheses linking lek attendance to past fire frequency

I examined the impact of fire frequency within a one-year, two-year, four-year, and

eight-year time frame on expected lek counts. I chose multiple time frames for fire

frequency because it is relatively unknown how long after a fire the sage grouse

population is affected, or how wildfire affects lek attendance. Wildfire has been shown to

impact sage grouse winter, nesting, and brood-rearing habitat for 10 to 30 years (Hanna

et al., 2015; Foster et al., 2019; Blomberg et al., 2012). I calculated the lag covariates for

fire frequency as the sum of the number of fires in each 10km× 10km grid cell for the lag

period. For example, the expected lek counts in a grid cell in January of 2008 would be

predicted by the total number of fires in that grid cell during 2007 when using a one-year

fire frequency lag model. I hypothesized a one-year fire lag may have no impact on sage
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grouse lek counts due to high fidelity to breeding areas (Dalke et al., 1963). I also believed

that a two and four-year fire lag may decrease lek counts, due to reduced nest success and

recruitment from the fire-impacted area. I hypothesized that an eight-year fire lag would

be negatively associated with expected lek counts because areas with many fires the

preceding 8 years will have had a large cumulative effect on the number of birds in the

population, and may supersede lek fidelity.

2.6 Hypotheses linking lek attendance to past precipitation

I used the PRISM Monthly Spatial Climate Data set AN81m, defined as the total monthly

precipitation (including rain and melted snow), to examine the relationship between lek

counts and precipitation (Daly et al., 2015). I examined the impacts of mean precipitation

during a one, two, three, four, five, and eight-year period on lek counts. I chose these time

frames to compare to other studies reporting positive impacts of precipitation lag effects

on sage grouse populations (Blomberg et al., 2012; Coates et al., 2016; Peebles et al.,

2017; Coates et al., 2018; Dinkins et al., 2021). The sagebrush ecosystem is limited by

moisture, and precipitation is a driver of vegetation change and composition (Lauenroth

and Sala, 1992; Bates et al., 2006; Davies et al., 2011). Weather can impact reproductive

success in sage grouse and have delayed effects (Blomberg et al., 2012; Guttery et al.,

2013; Blomberg et al., 2014; Caudill et al., 2014; Gibson et al., 2017). Peebles et al.

(2017) showed that weather had a one-year lag effect on adult numbers on leks. Lek

counts increased the following year after a wet, cool brood-rearing period. The lag

covariates for precipitation were calculated as the average precipitation in each
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10km× 10km grid cell for the duration of the lag period prior to lek counts. For example,

the expected lek counts in a grid cell in January of 2008 would be predicted by the average

precipitation in the grid cell during 2007 when using a one-year precipitation lag effect. I

hypothesized that higher mean precipitation during a one, two, and. three-year

precipitation lag effect would increase expected lek counts. Finally, I hypothesized that a

four, five, and eight year precipitation lag effect would be correlated with lek counts

because sage brush and other desert plants on which adult sage grouse rely are drought

tolerant, and can sustain longer periods of drought before senescence. Thus, longer

periods of sustained drought will decrease sage grouse populations and expected lek

counts.

2.7 Hypotheses linking lek attendance to past drought

I used the Palmer Drought Severity Index from TerraClimate: Monthly Climate and

Climatic Water Balance for Global Terrestrial Surfaces to examine the relationship

between drought and lek attendance (Abatzoglou et al., 2018). Palmer drought severity is

an index that measures the intensity and duration of long-term drought using precipitation,

temperature, and soil moisture to estimate relative dryness (Palmer, 1965), and therefore is

substantively different than the precipitation models. PDSI and precipitation are related in

that PDSI uses precipitation as part of the index, but the two variables are not highly

correlated. Across all time periods the correlation between the two variables had a

minimum correlation of -0.603, a maximum of 0.772, and a mean of 0.104. I examined

the impact of cumulative drought effects within a one, two, three, four, five, and eight-year
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time frame on expected lek counts. I chose these time frames, because I was interested in

the cumulative impacts drought had on sage grouse population dynamics. Aldridge et al.

(2008) showed that drought conditions have negative effects on sage grouse persistence

and drought during winter months reduces chick survival the following summer (Guttery

et al., 2013; Gibson et al., 2017). Seasonal drought during late summer periods is

associated with nutritional stress on sage grouse that can lead to negative reproductive

costs (Blomberg et al., 2013c). Additionally, drought severity can influence sage grouse

recruitment and individual survival by impacting available food quality during the

brood-rearing period (Blomberg et al., 2012; Connelly et al., 2000b; Gregg and Crawford,

2009). I estimated the lag covariates for drought as the average PDSI in each

10km× 10km grid cell. For example, the expected lek counts in a grid cell in January of

2008 would be predicted by the average PDSI in the grid cell during 2007 with a one-year

drought lag model. I hypothesized a one-year, two-year, and three-year drought lag (i.e.,

negative PDSI values) may only have a moderate negative affect on lek counts because

sage grouse females can select locations in the short term that increase chick survival

during seasonal drought, therefore mitigating the impacts of drought conditions (Gibson

et al., 2017). I also believed that a four-year, five-year, and eight-year drought lag will

decrease expected lek counts due to lower quality sagebrush habitat with reduced plant

production, cover, herbaceous vegetation, and less macro invertebrates that result from

prolonged drought (Blomberg et al., 2013a; Wenninger and Inouye, 2008; Blomberg et al.,

2014).
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2.8 Statistical Analysis

2.8.1 Model Development

To address my hypotheses, I developed a comprehensive framework to model expected lek

counts through space and time. I used a DSTM within a Bayesian hierarchical framework

to estimate drivers of sage grouse population dynamics in Nevada from 2000-2018

(Cressie and Wikle, 2011).

Following the terminology of Berliner (1996), I present a Bayesian hierarchical

model consisting of three levels. The top-level is a Data model I developed to link

observed data and affiliated variation to latent ecological processes. Next, I developed

Process models to describe the underlying ecological processes (i.e., spatio-temporal

expected lek count dynamics). Finally, I developed Parameter models to represent the

prior knowledge about the parameter inputs in the ecological process model and data

model.

2.8.2 Data Model

I modeled lek count data as,

yt ∼ Poisson(zt), (1)

where yt are the data (lek count data collected at every lek each year), a 1980×1 vector in

time t = 1, . . . , 37, . . . , 57 for lek location i = 1, . . . , 1980. The vector yt includes
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information for all known lek locations in Nevada for each time period. When leks were

not surveyed, yi,t ≡ 0. The parameter zt represents the expected lek counts at each lek at

time t. When leks were not surveyed, zi,t ≡ 0 and yi,t = 0 with probability equal to one.

This allowed leks that were not surveyed to have no impact on parameter estimates.

2.8.3 Process Model

To align the lek count data yt to the underlying spatio-temporal ecological process, I let

zt = Htλt, (2)

where Ht is a 1,980×2,397 incidence matrix. That is, the incidence matrix aligns the lek

sampling design (whether a lek was surveyed in any particular year) to the Nevada study

area, which I discretized into a 51×47 grid, where each grid cell was 10km× 10km. I

selected the grid cell size based on balancing the improved computational demands of

larger grid cells with the improved ecological inference obtainable with smaller grid cells;

10km× 10km provided reasonable computational efficiency and was also at a scale

appropriate for estimating drivers of lek attendance. Holloran and Anderson (2005) found

that 64% of sage grouse nests were spatially distributed within 3 and 5 km of a lek. All of

the spatial units used in this analysis were measured in meters. The incidence matrix Ht is

populated with zeros and ones that align λt in each grid cell to the appropriate leks in that

grid cell, if the lek was surveyed that year. This also allowed different leks within the

same grid cell to have different counts yi,t each year, but the same expected value λj,t.
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Thus, I link fine-scale lek count data, to larger scale ecological processes. The parameter

λt is a 2,397×1 vector that describes the spatio-temporal process driving lek counts in

every grid cell, and represents the expected lek counts. To link λt to spatio-temporal

covariates and spatio-temporal autocorrelation, I assumed

log(λt) = Xtβ + Φαt, (3)

Φ = QΛ1/2, (4)

QΛQ′ = R(φ), (5)

R(φ) = e
−D2

φ2 , (6)

where β is a vector of estimated coefficients corresponding to the design matrix Xt. The

hypotheses described above were incorporated in the statistical model using the

appropriate linear combination of design matrices and parameters, Xtβ. The basis matrix,

Φ, consists of columns of basis vectors resulting from the eigenvalue decomposition of a

matrix in equations 4–5. The basis matrix provides a framework for estimating spatial

correlation across Nevada, and correspond to a vector of estimated spatial effects, α

(Hefley et al., 2017). For my analysis, I selected four basis vectors to address spatial

correlation. I use basis vectors because of their flexibility for approximating spatial and

temporal processes (Hefley et al., 2017). The equation QΛQ′ represents an eigenvalue

decomposition that decomposes the spatial correlation function R(φ) into basis values and

basis vectors that are used in equation 3. The notation R(φ) represents a correlation

function described in equation 6. The correlation function has two components. The



19

parameter φ is a range parameter that is estimated from the data, and describes how spatial

autocorrelation decreases as distance between sites increases. Dj,k represents the distance

among each pair of grid cells j = 1, . . . , 2,397, in the study area. Combined, equation 6

permits us to examine how adjacent grid cells are correlated with each other, and how that

impact decreases as distance between grid cells increases.

2.8.4 Parameter Model

To complete the Bayesian specification of my model, I developed parameter (or prior)

models for each parameter. Parameters requiring prior distributions include αt, βt, and φ.

Specifically, I let

α1 ∼ Normal(0, σ2
αI), (7)

αt ∼ Normal(αt−1, σ2
αdtI), for t = 2, . . . , T (8)

βt ∼ Normal(0, σ2
βI), (9)

σ2
α ∼ Uniform(0, 10), (10)

σ2
β ∼ Uniform(0, 10), (11)

φ ∼ Uniform(0, 50000), (12)

where α1 is the prior for the first time period in the study and αt is the prior for time

periods t = 2, . . . , T . Because αt is conditional on αt−1, I am allowing the ecological

process of expected lek counts to evolve dynamically in space, from one time period to the

next, from a first-order (mean) perspective, constituting a DSTM. The notation dt
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represents the difference in months between each sampling occurrence and the last

sampling occurrence at each location, which allows more variability to exist in αt as the

time between surveys increases. The parameter σ2
α describes how much variability

transpires in α from one time period to the next, and I is the identity matrix. I chose the

prior in equation 12 because I wanted to permit enough flexibility in the estimation of

autocorrelation, such that estimates could be between approximately 0km to 100km,

conditional on Xtβ (Holloran and Anderson, 2005). I assumed 100 km (or 10 grid cells in

any direction) was the maximum, but estimates suggested spatial autocorrelation was

negligible at approximately 10 km from any grid cell.

2.9 Model Validation, Parameter Estimation, and Model Selection

I fit each of the 10 hypotheses using the model described above (and appropriate

combination of Xtβ for each model) using a custom MCMC algorithm written in R

version 3.6.2 (R Core Team, 2019, Appendix C). Before fitting the model to the Nevada

lek data, I simulated data from the hierarchical model described above, with known

parameter values. I then fit the model to the simulated data to evaluate whether the 95%

credible intervals of the approximated posterior distributions overlapped the values used

to simulate the data (Little, 2006). When fitting the model to simulated data I was able to

recover all parameters. After model validation, I fit my models to the Nevada Lek data.

For each model representing my hypotheses, I obtained two chains of 300,000 MCMC

iterations and discarded the first 200,000 as burn-in. I used a long chain and a large

amount of burn-in to permit model tuning of Metropolis-Hastings sampling. Next, I
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assessed for convergence visually using trace plots and used two chains to check

Gelman-Rubin convergence diagnostics. After convergence of each model, I conducted

model checking using Bayesian p-values (Conn et al., 2018). Only models with Bayesian

p-values greater than 0.05 and less than 0.95 were considered in model selection. I

completed model selection in two stages. First, I fit all models that did not include a lag

effect (i.e., models 1 to 10) to all of the 57 months of data and calculated the Deviance

Information Criterion (DIC). Second, I used the top model from the first stage and added

additional covariates that required information up to eight years prior to the response data

(i.e., lag effects). For example, examining a model that sums up the number of fires the

previous 8 years requires having covariate data for 8 years prior to when my lek count data

first started. Coincidentally, the fire covariates I used were also first collected in 2000.

Thus, by requiring 8 years of fire data prior to the response variable data, I was required to

restrict the response data to the 37 months with more than 100 sage grouse counted

between 2008–2018 to examine the lag-effect models. Thus, I used the best model from

my first stage as a base model and created a suite of additional models with various

combinations of other lag effect covariates (models 1-17), fit each of them to the

2008–2018 lek count data, and calculated their DIC value for model comparison. I used

the model with the lowest DIC score in this second stage of model selection for all

inference (Spiegelhalter et al., 2002; Gelman et al., 2013; Hobbs and Hooten, 2015).
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2.10 Derived Parameters

In addition to the parameters of the model, I derived parameters associated with sage

grouse population dynamics. To examine the temporal trend at each of the 2,397 grid cells

in Nevada from 2000–2018, I fit a trend line, γ(k)0,i + γ
(k)
1,i t to the estimated expected lek

counts, λ(k)i,t for t = 1, . . . , T using ordinary least squares for every k = 1, . . . , K MCMC

iteration. This provided posterior distributions for γ1,i, permitting inference on overall

increase in expected lek counts (γ1,i > 0), decrease in expected lek counts (γ1,i < 0), and

the uncertainty in those trends (whether the 95% credible intervals of γ1,i overlap 0) from

2000-2018 for every grid cell in the study area. I also calculated the mean of γ1,i for all

i = 1, . . . , n to estimate the posterior distribution of the mean trend for all Nevada from

2000-2018. Specifically, µ(k) = 1
n

∑n
i=1 γ

(k)
i . Finally, I calculated the mean-squared error

of the MCMC samples from the posterior distributions of γ1,i to identify areas with the

most uncertainty in population trend through time. This last derivation allowed me to

identify areas where we are less certain about the trajectory of Nevada sage grouse

populations to target future research to reduce that uncertainty.

3 Results

Model 2 had the lowest DIC value, and thus, was the best of the candidate models in the

first stage of model selection for predicting lek counts of Nevada sage grouse from

2000-2018 (Tables 2, 3). Results from model 2 suggested that expected lek counts across

Nevada from 2000-2018 were positively correlated with elevation (β = 0.293 , 95% CRI:
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0.277,0.308), percent sagebrush (β = 0.078, 95% CRI: 0.068,0.088), NDVI (β = 0.042,

95% CRI: 0.033,0.051), and PDSI (β = 0.091, 95% CRI: 0.086,0.096). Expected lek

counts were negatively correlated with slope (β = -0.354, 95% CRI: -0.362,-0.345),

percent bare ground (β = -0.096, 95% CRI: -0.108,-0.085), monthly precipitation (β =

-0.146, 95% CRI: -0.155,-0.138), monthly maximum temperature (β = -0.224, 95% CRI:

-0.236,-0.213), and fire frequency (β = -0.005, 95% CRI: -0.015,0.0048; Table 4).

My second-stage model selection procedure examining candidate models that

related lag effects to lek counts in Nevada from 2008-2018 identified the eight-year

precipitation lag model as the best predictive model (Table 5). Parameter estimates for

covariates included in the top model from the first-stage model-selection procedure and

the second-stage model-selection procedure were in close agreement (Table 6).

Additionally, my model results suggested that expected lek counts tracked the eight-year

mean precipitation rate with a 3 year delay. That is, when mean precipitation over 8 years

was at a minimum, expected lek counts would be at a minimum three years later, and vice

versa for maximums.

The mean trend in expected lek counts in Nevada, µ, declined by 0.149 birds per lek

per year (or 1 bird per lek every 6.7 years, or 2.84 birds per lek for the 2000-2018 period),

although the 95% CRI overlapped zero (95% CRI: -0.538, 0.025). Expected lek counts

appeared to decline everywhere in Nevada except the northeastern part of the state and

few other isolated populations (Figure 4), where trend estimates were positive and had

95% CRIs that did not overlap 0, suggesting little uncertainty about the positive trend

(Figure 5). In most of southern Nevada, including the Bi-State population, trend estimates
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were negative and had 95% CRIs that did not overlap 0, suggesting little uncertainty about

the negative trend (Figure 6). I found similar results for more local-scale populations in

other parts of the state, including areas around the Sheldon National Wildlife Refuge. The

estimated population trend in northwestern Nevada was negative. However, many areas

had 95% CRIs that overlapped zero, suggesting uncertainty in the negative trend (Figure

6).

After restricting the data to 2008–2018, and including 8-year mean precipitation as a

covariate, the mean trend in expected lek counts declined on average, but not as fast as

between 2000-2018 (µ = -0.051, 95% CRI: -0.238, 0.107; Figures 4, 2).

Two areas with the most variability in the trend estimates included the Bi-State

population and the population near the Sheldon National Wildlife Refuge. Despite the

variability in the trends in these two locations, posterior means of trend estimates were

sufficiently negative that 95% CRIs in these areas did not overlap 0. Combined, these

results suggest that the populations in these areas are declining, but there is uncertainty in

how fast they are declining.

4 Discussion

4.1 Trends in Nevada lek attendance 2000–2018

I estimated mean expected lek counts declined 2.84 birds per lek (0.149 birds per lek per

year) between 2000 and 2018. This equates to approximately 5,600 fewer sage grouse that

were expected to be counted at the 1,980 known leks in Nevada in 2018 compared to 2000.
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The estimated decline is consistent with estimates obtained by the Nevada Department of

Wildlife (NDOW), who have monitored 150 leks annually since 1999, and found an

average decline of 2.58 birds per lek between 2000 and 2018 (0.136 birds per lek per year

Nevada Department of Wildlife, 2018). The close comparison between the estimate of

decrease in expected lek counts to those found in Nevada Department of Wildlife (2018)

suggest that the 150 leks provide a representative estimate of lek decline statewide.

Although state-wide expected lek counts have decreased on average, they have not

decreased everywhere in Nevada. Expected lek counts in northeastern Nevada (Elko

County) increased by > 0.4 birds per lek per year (7.6 birds per lek between 2000 and

2018; e.g., Figure 1). The estimated increase in expected lek counts in northeastern

Nevada is in contrast to Nevada Department of Wildlife (2018), who found Elko County

estimates decreased by 0.42 (95%CI: -1.10–0.25) birds per lek per year, however

confidence intervals in their estimate overlapped zero, suggesting the data were

insufficiently precise to rule out positive trends in the area. In addition to northeastern

Nevada, local populations in southeastern Nevada (White Pine and Lincoln county) appear

to be increasing in trend of expected lek counts (Figure 4). While most of southeastern

Nevada appears to be declining, these local populations appear to be correlated with

greater NDVI values and greater percent sagebrush cover than other parts of southeastern

Nevada (Figure 9).

The largest decrease in expected lek counts occurred in northwestern Nevada and the

Bi-State population of the California-Nevada border (Figure 4). Here, expected lek counts

decreased by > 0.6 birds per lek per year (11.4 birds per lek between 2000 and 2018;
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Figure 9). The decline in the Bi-State population is consistent with findings from other

studies (Nevada Department of Wildlife, 2018). Nevada Department of Wildlife (2018)

found that from 2000-2018 the Bi-State region has exhibited a negative trend with male

lek attendance rates below the long-term average of 16.9 males per lek. In northwestern

Nevada, the decline appears most correlated with PDSI (Figure 9), which might impact

plant communities, available water sources, and wet meadows crucial to sage grouse

populations (Street, 2020; Blomberg et al., 2012; Gibson et al., 2017).

4.2 Exogenous drivers of lek attendance

Sage grouse expected lek counts were positively correlated with elevation. Leks located at

higher elevations benefit from increased amounts of precipitation, which influences

sagebrush quality in habitats surrounding leks (Fremgen et al., 2019; Blomberg et al.,

2012; Gibson et al., 2017). Higher elevations receive more precipitation, which increases

abundance of essential vegetation for sage grouse chicks during the brood-rearing period

(Blomberg et al., 2012). Higher elevations also tend to have higher levels of vegetation

composition for cover during the breeding, nesting, and brood-rearing seasons (Connelly

et al., 2011).

As hypothesized, expected lek counts decreased with slope. I attribute this to lek

locations typically occurring in flat areas with low sparse vegetation (Scott, 1942;

Petersen, 1980; Klebenow, 1985; Bradbury et al., 1989). Leks not in flat areas had smaller

lek attendance, in general. Sage grouse select winter and brood-rearing areas with flat

slopes (Beck, 1977; Connelly et al., 2003), and Dinkins et al. (2014) found that sage
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grouse will select flatter locations at all reproductive stages.

Percent bare ground cover was negatively associated with expected lek counts.

Previous studies have found that male sage grouse detection was negatively correlated

with bare ground on leks (Fremgen et al., 2016), which could explain the decline in lek

counts with increasing bare ground. I did not explicitly model detection probability, the

effects of which, may manifest in the estimates of expected lek counts if non-negligible.

Additionally, other studies have found that during nesting and brood-rearing, females

select areas with less bare ground (Sveum et al., 1998; Lyon, 2000; Slater, 2003;

Hausleitner, 2003). Areas with increased grazing pressure tend to have more bare ground

than areas where grazing is excluded (Smith et al., 2018). For example, Street (2020)

found that when livestock and feral horses are present at high rates there was a decline in

herbaceous under-story and increased amount of bare ground at sage grouse nest and

brood sites. Additionally, Hennig et al. (2021) found that percent bare ground increased

with greater feral horse use. High proportions of bare ground are linked to poor soil

quality (Derner et al., 2018), which can lead to increased soil erosion and exotic plant

invasion (Davies and Boyd, 2019). Bare ground is susceptible to cheatgrass invasion

(Jessop and Anderson, 2007), increasing the impacts of the cheatgrass fire cycle and

reducing sage grouse habitat quality (Connelly et al., 2004).

Similar to other studies, percent sagebrush cover was correlated with lek counts

(Connelly et al., 2000b, 2011; Doherty et al., 2010). I attribute this to how critical

sagebrush is to sage grouse nesting, brood-rearing, and winter habitat throughout the year

(Schroeder et al., 1999; Connelly et al., 2004, 2011; Kolada et al., 2009b,a).
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Similar to Cornelis van Kooten et al. (2007), precipitation appears to be an important

driver of Nevada sage grouse populations. Mean precipitation during the past eight-years

was positively associated with expected lek counts in the following 3-4 years. Increased

precipitation leads to increased soil moisture and results in a greater abundance of

essential food resources for sage grouse such as herbaceous forbs and insects (Connelly

et al., 2011; Blomberg et al., 2012; Fremgen et al., 2019). However, total precipitation

amounts in sagebrush habitat have been declining, and are projected to continue to decline

into the future, which may impact sage grouse habitat composition and therefore impact

the number of birds on leks (Homer et al., 2015). Maximum monthly temperature was

negatively correlated with expected lek counts. Warmer temperatures have been shown to

drive bird movements between seasonal ranges (Pratt et al., 2017), and reduce female

survival during the breeding season (Dinkins et al., 2017). Additionally, warmer

maximum temperatures reduce population growth rates of sagebrush and essential

vegetation throughout the year (Blomberg et al., 2012; Miller et al., 2011; Kleinhesselink

and Adler, 2018), and decrease post-fledgling survival (Blomberg et al., 2014).

Temperature effects may be exacerbated with increasing temperatures as climate change

progresses (Homer et al., 2015). Temperatures are projected to increase in the future,

impacting sagebrush quality, and increasing the influence of drought on sage grouse

populations (Aldridge et al., 2008).

Sage grouse expected lek counts decreased with fire frequency. Fire has been shown

to reduce sagebrush habitat quality through the altered fire frequencies from non-native

plant invasions resulting in sage grouse population declines (Connelly et al., 2000a, 2004;
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Coates et al., 2016). Fire frequency could impact the spatial distribution of expected lek

attendance (Coates et al., 2016). It has also been shown that after fire there is lower nest

and adult female survival (Foster et al., 2019), making fire frequency an important factor

to consider when examining sage grouse lek counts and population trends. The Bi-State

population appears to be negatively affected by frequent wildfires in many locations

(Figure 9), potentially driving local population declines there.

NDVI was positively associated with expected lek counts. NDVI is positively

correlated with sage grouse population growth and recruitment (Blomberg et al., 2012).

Dinkins et al. (2014) found that at all reproductive stages, sage grouse select locations

with higher NDVI values. PDSI was positively associated with expected lek counts.

Higher PDSI values are equal to higher amounts of moisture in the surrounding

environment. As PSDI values increase, the wetter the environment, and the more birds are

expected to be counted at lek locations.

4.3 Does long-term mean precipitation drive sage grouse population

cycles?

My top model suggests that sage grouse population dynamics are closely correlated with

mean precipitation the preceding 8 years. The 8-year precipitation model had much more

support from the data and spatio-temporal model than a 1-, 2-, 4- or 5-year precipitation

lag model. When the 8-year precipitation mean is at a minimum, expected lek counts in

Nevada begin to decline to a minimum in the 3-4 years following the precipitation

minimum. There are at least two potential explanations for these observations. First, high
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quality sage grouse habitat is driven by long-term inter-annual precipitation, and increased

plant production and macro invertebrates manifests after many years (i.e., 8 years) with

above-average precipitation. Mechanistically, the high-quality habitat due to sustained

periods of increased precipitation results in higher reproduction and/or survival of sage

grouse, with more birds occurring at leks the in the following 3-4 years. Likewise,

low-quality habitat begins to occur after 8 years of below-average precipitation, reducing

survival and/or reproduction the following 3-4 years, ultimately reducing the number of

birds visiting leks. Row and Fedy (2017) found that in many areas, sage grouse

populations cycle over 8-9 years. My findings are consistent with the cyclic nature of the

sage grouse cycle in Nevada from 2008-2018. These findings prompt future research

examining the relationship between mean precipitation over an 8-year period and sage

grouse population cycles in other areas of the sage grouse range.

4.4 Local features promoting expected lek attendance

All ecological processes change in space and time. However, most studies ignore space

and time dependence and treat them independently or use a second-order perspective of

covariation (Wikle and Hooten, 2010). In dynamic systems, for which we have rich data,

using methods that permit us to model how ecological processes change dynamically

through space and time permits us to address spatio-temporal variation and understand

better the main drivers of population dynamics across space. By accounting for

spatio-temporal autocorrelation not addressed using covariate data, we are better able to

understand the realized impact of exogenous covariates on sage grouse lek dynamics.
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The spatio-temporal random effects in the model show significant variation across

the breading seasons from 2008-2018 (Figure 8). There is a higher amount of spatial

variation during the peak months of breeding season (March-May) for each year. This

could be attributed to the breeding season peaking later in the sampling months, or a

higher rate of sampling effort during those months. By explicitly addressing this

spatio-temporal variability in my modeling framework I was able to isolate and estimate

these affects, and better understand the relationships between the covariates and lek

counts, as well as, quantify the spatio-temporal variability in sage grouse counts (Figure

8). This also permits us to evaluate the variability in spatial trends in lek activity through

time. For example, the Bi-State region experienced higher lek counts than predicted by the

covariates in May 2009–2014, but then lower lek counts than predicted by the covariates

2015–2018. These trends capture spatial processes driven by covariates other than those

included in the model.

After accounting for spatio-temporal autocorrelation, I found, as others have, a suite

of exogenous drivers are affecting sage grouse populations and those drivers vary in space.

In northwestern Nevada, drought appears to be the main driver of population decline

(Figure 9). And while drought is similar in northeastern Nevada compared to northwestern

Nevada, northeastern Nevada has had more precipitation, higher NDVI, had higher

percent sagebrush than northwestern Nevada, potentially mitigating the effects of drought

(Figure 9). Drought also appears correlated with the decline in expected lek counts in the

Bi-State region of southwest Nevada (Figure 9). Additionally, numerous wildfires appear

to be correlated with population declines in the Bi-State region (Figure 9). And while
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wildfires have also occurred at high frequencies in north-central Nevada, drought has been

less severe, compared to northeastern, northwestern, and southwest Nevada (Figure 9). In

south-central Nevada, low levels of NDVI appear to be highly correlated with sage grouse

population declines (Figure 9). The ability to weigh these driving forces of sage grouse

lek attendance spatially is critical for area-based management.

4.5 Future directions and management implications

I have developed methods to understand spatio-temporal lek dynamics in Nevada, which

permits us to implement best management practices at a local scale. Extending these

methods to the entire sage grouse range, and improve our understanding by also

interfacing demographic data to this analysis, will provide a more complete picture of how

the drivers of sage grouse lek attendance affects population dynamics, as well as permit

comparison of lek dynamics in Nevada to other states in the sage grouse range. These

methods would permit development of range wide maps identifying the greatest threats to

local and range-wide sage grouse conservation.
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5 Tables

Table 1: Covariates hypothesized to be correlated with expected lek counts in Nevada,
from 2000–2018. Included is the covariate name, the abbreviation used in the main body
of the text, the resolution or units used in the analysis, the direction of the hypothesized
correlation, and other studies examining similar hypotheses.

Covariate Abbreviation Resolution/Units Hypothesis Prediction Citation

Elevation elevation 30m + Farr et al. (2007)

Slope slope degrees - Jarvis et al. (2008)

Percent Bare Ground Cover bare ground 30m - Rigge et al. (2020)

Percent Sagebrush Cover sagebrush 30m + Rigge et al. (2020)

Water Bodies water 30m + Feng et al. (2016)

Monthly Precipitation ppt mm + Gorelick et al. (2017); Daly et al. (2015)

Monthly Maximum Temperature max temp ◦C - Gorelick et al. (2017); Daly et al. (2015)

Fire Frequency burn 500m - Giglio et al. (2015); Gorelick et al. (2017)

Normalized Difference Vegetation Index NDVI 250m + Didan (2015); Gorelick et al. (2017)

Palmer Drought Severity Index PDSI 2.5 arc minutes + Abatzoglou et al. (2018)
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Table 2: Covariates I considered in each model I examined to predict expected lek atten-
dance in Nevada, USA from 2000–2018. Descriptions of abbreviations are reported in
Table 1.

ID Covariates included in the model

Model 1 elevation+slope+bare ground+sagebrush+ppt+max temp+burn+NDVI+PDSI+water

Model 2 elevation+slope+bare ground+sagebrush+ppt+max temp+burn+NDVI+PDSI

Model 3 elevation+slope+bare ground+max temp+burn+PDSI

Model 4 ppt+max temp+burn+NDVI+PDSI

Model 5 elevation+sagebrush+ppt+NDVI

Model 6 elevation+slope+bare ground+sagebrush

Model 7 elevation+slope+ppt

Model 8 burn+PDSI

Model 9 sagebrush+ppt

Model 10 bare ground+burn
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Table 3: Model selection results using Deviance Information Criterion (DIC) of each of the
models I considered in the first-stage of model selection examining ability of each model to
predict expected lek counts in Nevada, USA from 2000–2018. Model 2 had the lowest DIC
score, suggesting it was the best predictive model in the model suite. Model descriptions
are provided in Table 2.

ID DIC ∆ DIC Number of Parameters

Model 2 354003.7 0.0 9
Model 1 354961.2 957.5 10
Model 6 357098.4 3094.7 4
Model 3 357639.7 3636.0 6
Model 7 358975.9 4972.2 3
Model 4 361401.3 7397.6 5
Model 5 362674.6 8670.9 4
Model 10 363115.9 9112.2 2
Model 9 365725.9 11722.2 2
Model 8 367219.2 13215.5 2
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Table 4: Median, 95% credible intervals, and mean of marginal posterior distributions
for each parameter in Model 2, the best predictive model using the Deviance Information
Criterion (DIC). Model 2 described in Table 2.

Parameter 2.5% 50% 97.5% mean

β (Elevation) 0.277 0.293 0.308 0.293
β (Slope) -0.362 -0.354 -0.345 -0.354
β (Bare Ground) -0.108 -0.096 -0.085 -0.096
β (Sagebrush) 0.068 0.078 0.088 0.078
β (Precipitation) -0.155 -0.146 -0.138 -0.146
β (Maximum Temperature) -0.236 -0.224 -0.213 -0.224
β (Fire Frequency) -0.015 -0.0045 0.0048 -0.0046
β (NDVI) 0.033 0.042 0.051 0.042
β (PDSI) 0.086 0.091 0.096 0.091
σ2
α 3.83 5.18 7.26 5.27
φ (Range) 6063.03 6113.9 6319.3 6134.1
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Table 5: Model selection results using Deviance Information Criterion (DIC) of each of the
models I considered in the second-stage of model selection examining ability of each model
to predict expected lek counts in Nevada, USA from 2008–2018. The 8-year precipitation
lag had the lowest DIC score, suggesting it was the best predictive model in the model
suite.

ID DIC Delta DIC Number of Parameters

8-year Precip. Lag 240533.3 0 9
5-year Precip. Lag 240669 135.7 9
4-year Precip. Lag 240754.2 220.9 9
3-year Precip. Lag 240908.5 375.2 9
2-year Precip. Lag 241064.2 530.9 9
1-year Precip. Lag 241367.2 833.9 9
3-year PDSI Lag 241531.3 998 9

Model 2 Lag 241538 1004.7 9
4-year PDSI Lag 241539.3 1006 9
1-year PDSI Lag 241539.8 1006.5 9
2-year PDSI Lag 241542.1 1008.8 9
5-year PDSI Lag 241542.4 1009.1 9
8-year PDSI Lag 241546.9 1013.6 9
4-year Fire Lag 241552.9 1019.6 9
2-year Fire Lag 241555.3 1022 9
8-year Fire Lag 241561.2 1027.9 9
1-year Fire Lag 241562.4 1029.1 9
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Table 6: Median, 95% credible intervals, and mean of marginal posterior distributions for
each parameter in the 8-year precipitation mean model.

Parameter 2.5% 50% 97.5% Mean

β (Elevation) 0.325 0.346 0.367 0.346
β (Slope) -0.281 -0.270 -0.259 -0.270
β (Bare Ground) -0.091 -0.075 -0.059 -0.075
β (Sagebrush) 0.024 0.037 0.049 0.037
β (Precipitation) -0.299 -0.286 -0.272 -0.286
β (Maximum Temperature) -0.339 -0.322 -0.304 -0.322
β (Fire Frequency) -0.053 -0.036 -0.019 -0.035
β (NDVI) 0.008 0.066 0.082 0.066
β (PDSI) 0.097 0.106 0.114 0.106
σ2
α 6.07 8.16 11.2 8.27
φ (Range) 6061.4 6076.8 6148.8 6084.2
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6 Figures

B

B
A

A

Figure 1: The GPS locations of 1,980 leks surveyed by the Nevada Department of Wildlife
from 2000 to 2018, NV USA. Also shown are the counts from two leks in relative close
proximity that experienced different trends from 2000–2018, suggesting that trends in lek
counts vary substantially over space and time.
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Figure 2: The change in expected lek counts through space and time using the top model
(8-year precipitation lag) for Nevada, USA, for each of the 37 months of lek count data
from 2008-2018. Units are the expected lek counts at a lek.
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Figure 3: Estimated marginal posterior distributions for β from from the eight-year precip-
itation lag effects model.
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Figure 4: Population mean trend in expected lek counts from 2008-2018. Values equal
to 0 have no change in expected lek counts. Positive values represent a positive trend,
and negative values represent a negative trend. Expected lek counts appeared to decline
everywhere in Nevada, USA except for the northeastern part of the state and other isolated
populations across the state.
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Figure 5: Map discretizing the continuous values from Figure 4 into either positive (i.e.,
E([γ1|y]) > 0; red) or negative (i.e., E([γ1|y]) < 0; blue) to identify where populations
have increased or decreased on average in Nevada from 2008–2018.
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Figure 6: Characterization of the uncertainty in trend estimates in Nevada from 2008–2018.
Values of 1 (red) indicate positive trend and 95% credible intervals that did not overlap zero,
values of 0 (blue) indicate negative trend and 95% credible intervals that did not overlap
zero. White represents areas where the 95% credible intervals overlapped zero.
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Figure 7: Variance in the 95% credible interval of the posterior distribution of trend esti-
mate (γ1) of sage grouse expected lek counts from 2008–2018 in Nevada, USA. Variance

was calculated using
∑K
k=1(γ

(k)
1 −

1
K

∑K
k=1 γ

(k)
1 )2

K−1 for k = 1, ..., K MCMC iterations. Two areas
with the most variability in the trend estimates included the Bi-State population and the
population near the Sheldon National Wildlife Refuge. Despite the variability in these ar-
eas, some locations had 95% CRIs that did not overlap 0, suggesting the populations were
declining, but there is uncertainty in the rate of decline.
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Figure 8: The spatial random effect, Φαt, for each time period t = 1, . . . , 37 used to
address spatial autocorrelation in expected lek counts, conditional on Xβt. Red areas
indicate expected lek counts were higher than predicted by Xβt, and blue areas indicate
expected lek counts were lower than predicted byXβt.
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Figure 9: Mean trend in expected lek counts (center) and the mean of each covariate in
the top model from 2008-2018 depicting exogenous drivers in space and their relationship
(positive or negative) to sage grouse populations after addressing spatio-temporal autocor-
relation.
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Figure 10: The 8-year precipitation mean from 2000-2018 (dotted line), expected lek
counts across Nevada (red line), and expected lek counts shifted left 4 years (green line)
to portray the relationship between 8-year precipitation mean and total lek counts after a
4-year lag period (green).
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7 Appendices

Appendix A

Table 7: Number of Sage grouse counted per month from 2000-2018

Month.ID Month Year Total Sage Grouse Counted

1 1 2000 4498

2 2 2000 0

3 3 2000 19

4 4 2000 39

5 5 2000 5

6 6 2000 0

7 7 2000 0

8 8 2000 0

9 9 2000 0

10 10 2000 0

11 11 2000 0

12 12 2000 0

13 1 2001 4462

14 2 2001 0

15 3 2001 35
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Table 7: Number of Sage grouse counted per month from 2000-2018 (continued)

Month.ID Month Year Total Sage Grouse Counted

16 4 2001 115

17 5 2001 12

18 6 2001 0

19 7 2001 0

20 8 2001 0

21 9 2001 0

22 10 2001 0

23 11 2001 0

24 12 2001 0

25 1 2002 4802

26 2 2002 0

27 3 2002 129

28 4 2002 145

29 5 2002 6

30 6 2002 0

31 7 2002 0

32 8 2002 0

33 9 2002 0

34 10 2002 0
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Table 7: Number of Sage grouse counted per month from 2000-2018 (continued)

Month.ID Month Year Total Sage Grouse Counted

35 11 2002 0

36 12 2002 0

37 1 2003 4829

38 2 2003 0

39 3 2003 75

40 4 2003 120

41 5 2003 0

42 6 2003 0

43 7 2003 0

44 8 2003 0

45 9 2003 0

46 10 2003 0

47 11 2003 0

48 12 2003 0

49 1 2004 7231

50 2 2004 0

51 3 2004 123

52 4 2004 77

53 5 2004 52
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Table 7: Number of Sage grouse counted per month from 2000-2018 (continued)

Month.ID Month Year Total Sage Grouse Counted

54 6 2004 0

55 7 2004 0

56 8 2004 0

57 9 2004 0

58 10 2004 0

59 11 2004 0

60 12 2004 0

61 1 2005 9456

62 2 2005 0

63 3 2005 412

64 4 2005 347

65 5 2005 56

66 6 2005 0

67 7 2005 0

68 8 2005 0

69 9 2005 0

70 10 2005 0

71 11 2005 0

72 12 2005 0
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Table 7: Number of Sage grouse counted per month from 2000-2018 (continued)

Month.ID Month Year Total Sage Grouse Counted

73 1 2006 6626

74 2 2006 0

75 3 2006 1189

76 4 2006 2954

77 5 2006 639

78 6 2006 0

79 7 2006 0

80 8 2006 0

81 9 2006 0

82 10 2006 0

83 11 2006 0

84 12 2006 0

85 1 2007 9640

86 2 2007 0

87 3 2007 912

88 4 2007 842

89 5 2007 74

90 6 2007 0

91 7 2007 0
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Table 7: Number of Sage grouse counted per month from 2000-2018 (continued)

Month.ID Month Year Total Sage Grouse Counted

92 8 2007 0

93 9 2007 0

94 10 2007 0

95 11 2007 0

96 12 2007 0

97 1 2008 5325

98 2 2008 0

99 3 2008 293

100 4 2008 1277

101 5 2008 670

102 6 2008 0

103 7 2008 0

104 8 2008 0

105 9 2008 0

106 10 2008 0

107 11 2008 0

108 12 2008 0

109 1 2009 1422

110 2 2009 40
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Table 7: Number of Sage grouse counted per month from 2000-2018 (continued)

Month.ID Month Year Total Sage Grouse Counted

111 3 2009 1023

112 4 2009 2440

113 5 2009 581

114 6 2009 0

115 7 2009 0

116 8 2009 0

117 9 2009 0

118 10 2009 0

119 11 2009 0

120 12 2009 0

121 1 2010 44

122 2 2010 0

123 3 2010 1491

124 4 2010 5059

125 5 2010 2125

126 6 2010 0

127 7 2010 0

128 8 2010 0

129 9 2010 0
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Table 7: Number of Sage grouse counted per month from 2000-2018 (continued)

Month.ID Month Year Total Sage Grouse Counted

130 10 2010 0

131 11 2010 0

132 12 2010 0

133 1 2011 0

134 2 2011 38

135 3 2011 1560

136 4 2011 5163

137 5 2011 2047

138 6 2011 14

139 7 2011 0

140 8 2011 0

141 9 2011 0

142 10 2011 0

143 11 2011 0

144 12 2011 0

145 1 2012 2

146 2 2012 12

147 3 2012 2745

148 4 2012 7517
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Table 7: Number of Sage grouse counted per month from 2000-2018 (continued)

Month.ID Month Year Total Sage Grouse Counted

149 5 2012 1849

150 6 2012 0

151 7 2012 0

152 8 2012 0

153 9 2012 0

154 10 2012 0

155 11 2012 0

156 12 2012 0

157 1 2013 0

158 2 2013 0

159 3 2013 2648

160 4 2013 5369

161 5 2013 1262

162 6 2013 0

163 7 2013 0

164 8 2013 0

165 9 2013 0

166 10 2013 0

167 11 2013 0
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Table 7: Number of Sage grouse counted per month from 2000-2018 (continued)

Month.ID Month Year Total Sage Grouse Counted

168 12 2013 0

169 1 2014 0

170 2 2014 49

171 3 2014 4214

172 4 2014 6204

173 5 2014 1411

174 6 2014 42

175 7 2014 0

176 8 2014 0

177 9 2014 0

178 10 2014 0

179 11 2014 0

180 12 2014 0

181 1 2015 0

182 2 2015 237

183 3 2015 6835

184 4 2015 8106

185 5 2015 694

186 6 2015 1
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Table 7: Number of Sage grouse counted per month from 2000-2018 (continued)

Month.ID Month Year Total Sage Grouse Counted

187 7 2015 0

188 8 2015 0

189 9 2015 0

190 10 2015 0

191 11 2015 0

192 12 2015 0

193 1 2016 0

194 2 2016 0

195 3 2016 4999

196 4 2016 7937

197 5 2016 1943

198 6 2016 0

199 7 2016 0

200 8 2016 0

201 9 2016 0

202 10 2016 0

203 11 2016 0

204 12 2016 0

205 1 2017 0
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Table 7: Number of Sage grouse counted per month from 2000-2018 (continued)

Month.ID Month Year Total Sage Grouse Counted

206 2 2017 36

207 3 2017 4042

208 4 2017 6741

209 5 2017 2073

210 6 2017 0

211 7 2017 0

212 8 2017 0

213 9 2017 0

214 10 2017 0

215 11 2017 0

216 12 2017 0

217 1 2018 0

218 2 2018 134

219 3 2018 4857

220 4 2018 6074

221 5 2018 997

222 6 2018 0

223 7 2018 0

224 8 2018 0
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Table 7: Number of Sage grouse counted per month from 2000-2018 (continued)

Month.ID Month Year Total Sage Grouse Counted

225 9 2018 0

226 10 2018 0

227 11 2018 0

228 12 2018 0
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Appendix B
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Figure 11: The total number of sage grouse counted per month from 2000 to 2018.
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Appendix C

# ###################################################################

###

### S p a t i a l Temporal S c r i p t − 8− year P r e c i p i t a t i o n Lag

###

# ###################################################################

rm ( l i s t = l s ( ) )

## s e t . s eed ( 2 0 2 1 )

r e a l . data=TRUE

p r e . t u n e d =TRUE

###

### L i b r a r i e s

###

l i b r a r y ( coda )

l i b r a r y ( f i e l d s )

l i b r a r y ( g r i d E x t r a )

l i b r a r y (MASS)

l i b r a r y ( Ma t r i x )

l i b r a r y ( mgcv )

l i b r a r y ( mvtnorm )

l i b r a r y ( r a s t e r )

l i b r a r y ( r g d a l )

l i b r a r y ( r a s t e r V i s )

l i b r a r y ( RColorBrewer )

l i b r a r y ( R S p e c t r a )

l i b r a r y ( t r uncno rm )

l i b r a r y ( d p l y r )

l i b r a r y ( b e e p r )

# #################################################################

#### S i m u l a t e d Data A n a l y s i s

# #################################################################

###

### S e t work ing d i r e c t o r y

###
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setwd ( ” ˜ / Dropbox / S a g e G r o u s e P r o j e c t ” )

###

### x and y bounds

###

ymn=4181000

ymx=4653000

xmn=246000

xmx=756000

###

### R e s o l u t i o n

###

r e s =10000

###

### C re a t e an empty r a s t e r

###

r = r a s t e r ( , xmn=xmn , xmx=xmx , ymn=ymn , ymx=ymx , r e s o l u t i o n = r e s )

###

### Domain

###

nx= nco l ( r )

ny=nrow ( r )

q=nx*ny

x . v =1: nx

y . v =1: ny

###

### Months w i t h >100 o b s e r v a t i o n s

###

months . i n d =c ( 97L , 99L , 100L , 101L ,

109L , 111L , 112L , 113L , 123L , 124L , 125L , 135L , 136L , 137L ,

147L , 148L , 149L , 159L , 160L , 161L , 171L , 172L , 173L , 182L ,

183L , 184L , 185L , 195L , 196L , 197L , 207L , 208L , 209L , 218L ,

219L , 220L , 221L

)

###
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### Number o f t i m e p e r i o d s , b a s i s f u n c t i o n s , and t i m e d i f f e r e n c e s

###

T= l e n g t h ( months . i n d )

n=1980 # max number o f l e k s

n . a=4 # b a s i s f u n c t i o n s

t . d i f =months . i n d [ −1] − months . i n d [ − l e n g t h ( months . i n d ) ]

###

### D i s t a n c e

###

coords =expand . gr id ( x . v , rev ( y . v ) )

D=as . matrix ( d i s t ( coords , diag =TRUE, upper=TRUE ) )

###

### C o o r d i n a t e r e f e r e n c e s y s t e m o f a l l t h e s p a t i a l da ta

###

c r s ( r )= p a s t e 0 ( ”+ p r o j =utm +zone =11 +datum=NAD83 + u n i t s =m” ,

” +no d e f s + e l l p s =GRS80 +towgs84 =0 ,0 ,0 ” )

# ##################################################################

### Load Data

# ##################################################################

df=read . csv ( ” l e k d a t a f o r model . c sv ” )

df=df [ order ( df $ e a s t i n g , df $ n o r t h i n g ) , ]

df <− df [ ! ( df $ l e k i d == ”DES−057 ” ) , ]

load ( ” C o v a r i a t e s 2 8 . RData ” )

boundary = e l e v

boundary [ boundary<600]=NA

boundary [ boundary>=600]=1

###

### C o v a r i a t e m a t r i x

###

X. l = l i s t ( )

j =1

f o r ( t i n months . i n d ){

X. l [ [ j ] ] = cbind ( s c a l e ( e l e v [ ] ) ,

s c a l e ( s l o p e [ ] ) ,
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s c a l e ( b a r e [ ] ) ,

s c a l e ( s age [ ] ) ,

s c a l e ( p p t l a g 8 y r [ [ t ] ] [ ] ) ,

s c a l e ( tmax [ [ t ] ] [ ] ) ,

s c a l e ( burn [ [ t ] ] [ ] ) ,

s c a l e ( ndv i [ [ t ] ] [ ] ) ,

s c a l e ( p d s i [ [ t ] ] [ ] )

)

X. l [ [ j ] ] [ i s . na (X. l [ [ j ] ] ) ] <− 0

j = j +1

}

X.m=rbind (X. l [ [ 1 ] ] , X. l [ [ 2 ] ] )

f o r ( k i n 3 : l e n g t h ( months . i n d ) ){

X.m = rbind (X.m,X. l [ [ k ] ] )

}

X.m[ , nco l (X. l [ [ 1 ] ] ) − 1 ] = s c a l e (X.m[ , nco l (X. l [ [ 1 ] ] ) − 1 ] )

X.m[ , nco l (X. l [ [ 1 ] ] ) ] = X.m[ , nco l (X. l [ [ 1 ] ] ) − 1 ] ˆ 2

###

### C e l l ID

###

c e l l = r

c e l l [ ] = 1 : l e n g t h ( c e l l )

# #################################################################

### I n c i d e n c e m a t r i x

# #################################################################

H= l i s t ( )

j =1

f o r ( t i n months . i n d ){

df . tmp= s u b s e t ( df , t ime == t )

df . tmp=df . tmp [ order ( df . tmp$ i d ) , ]

c e l l . i d = r a s t e r : : e x t r a c t ( c e l l , cbind ( df . tmp$ e a s t i n g , df . tmp$ n o r t h i n g ) )

H[ [ j ] ] = matrix ( 0 , n , l e n g t h ( c e l l ) )

f o r ( i i n 1 : n ){

c e l l . i d . tmp= c e l l . i d [ i ]

i f ( ! i s . na ( df . tmp$y [ i ] ) ){

H[ [ j ] ] [ i , c e l l . i d . tmp ]=1

}

}

j = j +1

}

###
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### Block d i a g o n a l i n c i d e n c e m a t r i x f o r a l l t i m e s t o a v o i d a l i s t w i t h

### one m a t r i x f o r each season , year c o m b i n a t i o n .

###

H. bd= b d i a g (H [ [ 1 ] ] )

f o r ( i i n 2 : l e n g t h (H) ){

H. bd= b d i a g (H. bd ,H[ [ i ] ] )

}

Y. tmp= s u b s e t ( df , t ime ==months . i n d [ 1 ] )

Y=Y. tmp [ order (Y. tmp$ i d ) , 1 1 ]

months . i n d . 2 = months . i n d [ −1]

f o r ( t i n months . i n d . 2 ){

Y. tmp= s u b s e t ( df , t ime == t )

Y=c (Y,Y. tmp [ order (Y. tmp$ i d ) , 1 1 ] )

}

Y=matrix (Y, l e n g t h (Y) , 1 )

###

###

###

y . s= seq ( 1 , n*T , n )

y . e= seq ( n , n*T , n )

l s = seq ( 1 , q*T , q )

l e = seq ( q , q*T , q )

i =1

t =1

c o u n t s . p e r . month=0

f o r ( t i n 1 : T){

c o u n t s . p e r . month [ t ]=sum (Y[ y . s [ t ] : y . e [ t ] , ] , na . rm = TRUE)

}

###

### S i m u l a t e d da ta

###

i f ( ! r e a l . data ){

p h i . t r u t h =9000

p h i = p h i . t r u t h

R=exp ( −Dˆ2 / p h i )

E= e i g s sym (R , n . a , which=”LM” )
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Phi =E$ v e c t o r s%*%diag ( E$ v a l u e s ˆ ( 1 / 2 ) )

s2 . a l p h a . t r u t h =matrix ( c ( 0 . 0 0 1 , 0 . 0 0 1 * t . d i f ) , n . a , T , byrow=TRUE)

beta . t r u t h =rnorm ( nco l (X.m) , 0 , . 1 )

a l p h a . t r u t h =matrix (NA, n . a , T )

a l p h a . t r u t h [ , 1 ] = c ( −1 ,2 , −3 ,1 )

lambda . t r u t h =matrix (NA, t *q , 1 )

lambda . t r u t h [ l s [ 1 ] : l e [ 1 ] ] = exp ( c ( Ph i%*%a l p h a . t r u t h [ , 1 ] ) +

X.m[ l s [ 1 ] : l e [ 1 ] , ]%*%beta . t r u t h )

Y[ y . s [ 1 ] : y . e [ 1 ] ] = r p o i s ( n , as . matrix (H. bd [ y . s [ 1 ] : y . e [ 1 ] ,

l s [ 1 ] : l e [ 1 ] ]%*%

lambda . t r u t h [ l s [ 1 ] : l e [ 1 ] ] ) )

f o r ( t i n 2 : T){

a l p h a . t r u t h [ , t ]= rnorm ( n . a , a l p h a . t r u t h [ , t −1 ] , s q r t ( s2 . a l p h a . t r u t h [ , t ] ) )

lambda . t r u t h [ l s [ t ] : l e [ t ] ] = exp ( c ( Ph i%*%a l p h a . t r u t h [ , t ] ) +

X.m[ l s [ t ] : l e [ t ] , ]%*%beta . t r u t h )

Y[ y . s [ t ] : y . e [ t ] ] = r p o i s ( n , as . matrix (H. bd [ y . s [ t ] : y . e [ t ] ,

l s [ t ] : l e [ t ] ]%*%

lambda . t r u t h [ l s [ t ] : l e [ t ] ] ) )

}

}

# #################################################################

###

# #################################################################

###

### MCMC s e t t i n g s

###

n . i t e r =300000

###

### P r i o r s

###

p h i . p r i o r =c ( 0 , 5 0 0 0 0 0 )

a l p h a . p r i o r =c ( 0 , 1 0 0 )

s2 . a l p h a . p r i o r =c ( 0 , 2 0 )

beta . p r i o r =c ( 0 , 1 )

###

### S t a r t i n g v a l u e s

###

p h i =9000
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R=exp ( −Dˆ2 / p h i )

E= e i g s sym (R , n . a , which=”LM” )

Phi =E$ v e c t o r s%*%diag ( E$ v a l u e s ˆ ( 1 / 2 ) )

s2 . a l p h a =matrix ( c ( 0 . 0 0 1 , 0 . 0 0 1 * t . d i f ) , n . a , T , byrow=TRUE)

beta =rnorm ( nco l (X.m) , 0 , . 1 )

a l p h a =matrix (NA, n . a , T )

a l p h a [ , 1 ] = c ( −1 ,2 , −3 ,1 )

lambda=matrix (NA, t *q , 1 )

lambda [ l s [ 1 ] : l e [ 1 ] ] = exp ( c ( Ph i%*%a l p h a [ , 1 ] ) +

X.m[ l s [ 1 ] : l e [ 1 ] , ]%*%beta )

f o r ( t i n 2 : T){

a l p h a [ , t ]= rnorm ( n . a , a l p h a [ , t −1 ] , s q r t ( s2 . a l p h a [ , t ] ) )

lambda [ l s [ t ] : l e [ t ] ] = exp ( c ( Ph i%*%a l p h a [ , t ] ) +

X.m[ l s [ t ] : l e [ t ] , ]%*%beta )

}

i f ( ! r e a l . data ){

p h i = p h i . t r u t h

R=exp ( −Dˆ2 / p h i )

E= e i g s sym (R , n . a , which=”LM” )

Phi =E$ v e c t o r s%*%diag ( E$ v a l u e s ˆ ( 1 / 2 ) )

beta = beta . t r u t h # rnorm ( l e n g t h ( b e t a . t r u t h ) )

a l p h a = a l p h a . t r u t h

lambda=lambda . t r u t h ## m a t r i x (NA , T*q , 1 )

## f o r ( t i n 1 : T){

## # a lpha [ , t ]= rnorm ( n . a , a lpha [ , t −1] , s q r t ( s2 . a lpha [ , t ] ) )

## lambda [ l s [ t ] : l e [ t ]]= exp ( c ( Phi%*%a lpha [ , t ])+

## X .m[ l s [ t ] : l e [ t ] , ]%*%b e t a )

## }

s2 . a l p h a =s2 . a l p h a . t r u t h

}

###

### Tuning p a r a m e t e r s

###

p h i . t u n e =118.8065

a l p h a . t u n e =rep ( 0 . 0 1 , T )

s2 . a l p h a . t u n e =7.17101 e −10

beta . t u n e =rep ( 0 . 0 0 1 7 7 4 6 2 5 , l e n g t h ( beta ) )

i f ( p r e . t u n e d ){

load ( ” ˜ / Dropbox / S a g e G r o u s e P r o j e c t / P r e c i p i t a t i o n L a g Tuners4 . RData ” )
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p h i . t u n e = samples $ p h i . t u n e

a l p h a . t u n e = samples $ a l p h a . t u n e

s2 . a l p h a . t u n e = samples $ s2 . a l p h a . t u n e

beta . t u n e = sample s $ beta . t u n e

}

###

### Bookkeep ing

###

p h i . save =matrix (NA, n . i t e r , 1 )

a c c e p t . p h i =0

a l p h a . save =matrix (NA, n . i t e r , n . a *T )

a c c e p t . a l p h a =rep ( 0 , T )

s2 . a l p h a . save =matrix (NA, n . i t e r , T )

a c c e p t . s2 . a l p h a =0

beta . save =matrix (NA, n . i t e r , nco l (X.m) )

a c c e p t . beta =rep ( 0 , l e n g t h ( beta ) )

DIC . save = numeric ( 1 )

pd2 . save = numeric ( 1 )

Davg . save =rep (NA, n . i t e r )

# #################################################################

### Begin Gibbs loop

# #################################################################

system . t ime (

f o r ( k i n 1 : n . i t e r ){

i f ( k%%100==0) c a t ( k , ” ” )

##

## p h i (MH)

##

p h i . s t a r =rnorm ( 1 , phi , p h i . t u n e )

i f ( p h i . s t a r>p h i . p r i o r [ 1 ]&p h i . s t a r<p h i . p r i o r [ 2 ] ){

R . s t a r =exp ( −Dˆ2 / p h i . s t a r )

E . s t a r = e i g s sym (R . s t a r , n . a , which=”LM” )

Phi . s t a r =E . s t a r $ v e c t o r s%*%diag ( E . s t a r $ v a l u e s ˆ ( 1 / 2 ) ,

nrow=n . a , nco l =n . a )

lambda . s t a r =exp ( c ( Ph i . s t a r%*%a l p h a )+X.m%*%beta )

mh1=sum ( dpoi s (Y, as . matrix (H. bd%*%lambda . s t a r ) , l o g =TRUE) ,

na . rm = TRUE)
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mh2=sum ( dpoi s (Y, as . matrix (H. bd%*%lambda ) , l o g =TRUE) ,

na . rm = TRUE)

mh=exp ( mh1−mh2 )

i f (mh>r u n i f ( 1 ) ){

p h i = p h i . s t a r

R=R . s t a r

E=E . s t a r

Ph i = Phi . s t a r

lambda=lambda . s t a r

a c c e p t . p h i = a c c e p t . p h i +1

}

}

##

## a lpha 1

##

a l p h a . s t a r =rnorm ( n . a ,

a l p h a [ , 1 ] ,

a l p h a . t u n e [ 1 ] )

lambda . s t a r =exp ( Ph i%*%a l p h a . s t a r +X.m[ l s [ 1 ] : l e [ 1 ] , ]%*%beta )

mh1=sum ( dpo i s (Y[ y . s [ 1 ] : y . e [ 1 ] ] ,

as . matrix (H. bd [ y . s [ 1 ] : y . e [ 1 ] ,

l s [ 1 ] : l e [ 1 ] ]%*%lambda . s t a r ) ,

l o g =TRUE) , na . rm=TRUE)+

sum ( dnorm ( a l p h a . s t a r , a l p h a . p r i o r [ 1 ] ,

a l p h a . p r i o r [ 2 ] ,

l o g =TRUE) ) +

sum ( dnorm ( a l p h a [ , 2 ] , a l p h a . s t a r ,

s q r t ( s2 . a l p h a [ , 2 ] ) ,

l o g =TRUE ) )

mh2=sum ( dpo i s (Y[ y . s [ 1 ] : y . e [ 1 ] ] ,

as . matrix (H. bd [ y . s [ 1 ] : y . e [ 1 ] ,

l s [ 1 ] : l e [ 1 ] ]%*%lambda [ l s [ 1 ] : l e [ 1 ] ] ) ,

l o g =TRUE) , na . rm=TRUE)+

sum ( dnorm ( a l p h a [ , 1 ] , a l p h a . p r i o r [ 1 ] ,

a l p h a . p r i o r [ 2 ] ,

l o g =TRUE) ) +

sum ( dnorm ( a l p h a [ , 2 ] , a l p h a [ , 1 ] ,

s q r t ( s2 . a l p h a [ , 2 ] ) ,

l o g =TRUE ) )

mh=exp ( mh1−mh2 )

i f (mh>r u n i f ( 1 ) ){

a l p h a [ , 1 ] = a l p h a . s t a r
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lambda [ l s [ 1 ] : l e [ 1 ] , 1 ] = lambda . s t a r

a c c e p t . a l p h a [ 1 ] = a c c e p t . a l p h a [ 1 ] + 1

}

##

## a lpha 2 , . . . T−1

##

f o r ( t i n 2 : ( T−1)){

a l p h a . s t a r =rnorm ( n . a ,

a l p h a [ , t ] ,

a l p h a . t u n e [ t ] )

lambda . s t a r =exp ( Ph i%*%a l p h a . s t a r +X.m[ l s [ t ] : l e [ t ] , ]%*%beta )

mh1=sum ( dpoi s (Y[ y . s [ t ] : y . e [ t ] ] ,

as . matrix (H. bd [ y . s [ t ] : y . e [ t ] ,

l s [ t ] : l e [ t ] ]%*%lambda . s t a r ) ,

l o g =TRUE) , na . rm=TRUE)+

sum ( dnorm ( a l p h a . s t a r , a l p h a [ , t −1 ] ,

s q r t ( s2 . a l p h a [ , t ] ) ,

l o g =TRUE) ) +

sum ( dnorm ( a l p h a [ , t + 1] , a l p h a . s t a r ,

s q r t ( s2 . a l p h a [ , t + 1 ] ) ,

l o g =TRUE ) )

mh2=sum ( dpoi s (Y[ y . s [ t ] : y . e [ t ] ] ,

as . matrix (H. bd [ y . s [ t ] : y . e [ t ] ,

l s [ t ] : l e [ t ] ]%*%lambda [ l s [ t ] : l e [ t ] ] ) ,

l o g =TRUE) , na . rm=TRUE)+

sum ( dnorm ( a l p h a [ , t ] , a l p h a [ , t − 1] ,

s q r t ( s2 . a l p h a [ , t ] ) ,

l o g =TRUE) ) +

sum ( dnorm ( a l p h a [ , t +1 ] , a l p h a [ , t ] ,

s q r t ( s2 . a l p h a [ , t + 1 ] ) ,

l o g =TRUE ) )

mh=exp ( mh1−mh2 )

i f (mh>r u n i f ( 1 ) ){

a l p h a [ , t ]= a l p h a . s t a r

lambda [ l s [ t ] : l e [ t ] , 1 ] = lambda . s t a r

a c c e p t . a l p h a [ t ]= a c c e p t . a l p h a [ t ]+1

}

}

a l p h a . s t a r =rnorm ( n . a ,

a l p h a [ , T ] ,

a l p h a . t u n e [ T ] )
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lambda . s t a r =exp ( Ph i%*%a l p h a . s t a r +X.m[ l s [ T ] : l e [ T ] , ]%*%beta )

mh1=sum ( dpo i s (Y[ y . s [ T ] : y . e [ T ] ] ,

as . matrix (H. bd [ y . s [ T ] : y . e [ T ] ,

l s [ T ] : l e [ T ] ]%*%lambda . s t a r ) ,

l o g =TRUE) , na . rm=TRUE)+

sum ( dnorm ( a l p h a . s t a r , a l p h a [ , T− 1] ,

s q r t ( s2 . a l p h a [ , T ] ) ,

l o g =TRUE ) )

mh2=sum ( dpo i s (Y[ y . s [ T ] : y . e [ T ] ] ,

as . matrix (H. bd [ y . s [ T ] : y . e [ T ] ,

l s [ T ] : l e [ T ] ]%*%lambda [ l s [ T ] : l e [ T ] ] ) ,

l o g =TRUE) , na . rm=TRUE)+

sum ( dnorm ( a l p h a [ , T ] , a l p h a [ , T− 1] ,

s q r t ( s2 . a l p h a [ , T ] ) ,

l o g =TRUE ) )

mh=exp ( mh1−mh2 )

i f (mh>r u n i f ( 1 ) ){

a l p h a [ , T]= a l p h a . s t a r

lambda [ l s [ T ] : l e [ T ] , 1 ] = lambda . s t a r

a c c e p t . a l p h a [ T]= a c c e p t . a l p h a [ T]+1

}

##

## s2 . a lpha

##

s2 . a l p h a . s t a r . tmp= r t r u n c n o r m ( 1 , a=s2 . a l p h a . p r i o r [ 1 ] , b=s2 . a l p h a . p r i o r [ 2 ] ,

mean=s2 . a l p h a [ 1 ] , sd= s q r t ( s2 . a l p h a . t u n e ) )

s2 . a l p h a . s t a r =matrix ( c ( s2 . a l p h a . s t a r . tmp , s2 . a l p h a . s t a r . tmp* t . d i f ) , n . a , T , byrow=TRUE)

mh1=sum ( dnorm ( a l p h a [ , − 1 ] , a l p h a [ , −T ] , s q r t ( s2 . a l p h a . s t a r [ , − 1 ] ) ,

l o g =TRUE) ) +

l o g ( d t runcnorm ( s2 . a l p h a [ 1 ] , a=s2 . a l p h a . p r i o r [ 1 ] , b=s2 . a l p h a . p r i o r [ 2 ] ,

mean=s2 . a l p h a . s t a r . tmp , sd= s q r t ( s2 . a l p h a . t u n e ) ) )

mh2=sum ( dnorm ( a l p h a [ , − 1 ] , a l p h a [ , −T ] , s q r t ( s2 . a l p h a [ , − 1 ] ) ,

l o g =TRUE) ) +

l o g ( d t runcnorm ( s2 . a l p h a . s t a r . tmp , a=s2 . a l p h a . p r i o r [ 1 ] , b=s2 . a l p h a . p r i o r [ 2 ] ,

mean=s2 . a l p h a [ 1 ] , sd= s q r t ( s2 . a l p h a . t u n e [ 1 ] ) ) )

mh=exp ( mh1−mh2 )

i f (mh>r u n i f ( 1 ) ){

s2 . a l p h a =s2 . a l p h a . s t a r

a c c e p t . s2 . a l p h a = a c c e p t . s2 . a l p h a +1

}
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##

## b e t a

##

f o r ( i i n 1 : l e n g t h ( beta ) ){

beta . s t a r = beta

beta . s t a r [ i ]= rnorm ( 1 , beta [ i ] , beta . t u n e [ i ] )

lambda . s t a r =exp ( c ( Ph i%*%a l p h a )+X.m%*%beta . s t a r )

mh1=sum ( dpoi s (Y,

as . matrix (H. bd%*%lambda . s t a r ) , l o g =TRUE) ,

na . rm = TRUE)+

sum ( dnorm ( beta . s t a r [ i ] , beta . p r i o r [ 1 ] , beta . p r i o r [ 2 ] , l o g =TRUE ) )

mh2=sum ( dpoi s (Y,

as . matrix (H. bd%*%lambda ) , l o g =TRUE) ,

na . rm = TRUE)+

sum ( dnorm ( beta [ i ] , beta . p r i o r [ 1 ] , beta . p r i o r [ 2 ] , l o g =TRUE ) )

mh=min ( exp ( mh1−mh2 ) , 1 )

i f (mh>r u n i f ( 1 ) ){

beta = beta . s t a r

lambda=lambda . s t a r

a c c e p t . beta [ i ]= a c c e p t . beta [ i ]+1

}

}

##

## A u t o t u n e

##

i f ( a c c e p t . p h i / k>0.5) p h i . t u n e = p h i . t u n e * 1 . 1

i f ( a c c e p t . p h i / k<0.3) p h i . t u n e = p h i . t u n e * 0 . 9

a l p h a . t u n e = i f e l s e ( a c c e p t . a l p h a / k>0.5 , a l p h a . t u n e * 1 . 1 ,

i f e l s e ( a c c e p t . a l p h a / k<0.3 , a l p h a . t u n e * 0 . 9 ,

a l p h a . t u n e )

)

i f ( a c c e p t . s2 . a l p h a / k>0.5) s2 . a l p h a . t u n e =s2 . a l p h a . t u n e * 1 . 1

i f ( a c c e p t . s2 . a l p h a / k<0.3) s2 . a l p h a . t u n e =s2 . a l p h a . t u n e * 0 . 9

## i f ( a c c e p t . b e t a / k>0.5) b e t a . t u n e=b e t a . t u n e * 1 . 1

## i f ( a c c e p t . b e t a / k<0.3) b e t a . t u n e=b e t a . t u n e * 0 . 9

beta . t u n e = i f e l s e ( a c c e p t . beta / k>0.5 , beta . t u n e * 1 . 1 ,

i f e l s e ( a c c e p t . beta / k<0.3 , beta . t u n e * 0 . 9 ,

beta . t u n e )

)
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##

## Save samples

##

p h i . save [ k , ] = p h i

a l p h a . save [ k , ] = c ( a l p h a )

s2 . a l p h a . save [ k , ] = s2 . a l p h a [ 1 , ]

beta . save [ k , ] = beta

##

## S i m u l a t e da ta from model

##

##

## Davg f o r DIC

##

Davg . save [ k ]= −2*sum ( dpo i s (Y, as . matrix (H. bd%*%lambda ) ,

l o g =TRUE) , na . rm = TRUE)

i f ( k%%min ( 5 0 0 0 , n . i t e r )==0){

sample s = l i s t (

p h i = p h i . save [ 1 : k , ] ,

p h i . t u n e = p h i . tune ,

p h i . a c c e p t = a c c e p t . p h i / k ,

a l p h a = a l p h a . save [ 1 : k , ] ,

a l p h a . t u n e = a l p h a . tune ,

a l p h a . a c c e p t = a c c e p t . a l p h a / k ,

s2 . a l p h a =s2 . a l p h a . save [ 1 : k ] ,

s2 . a l p h a . t u n e =s2 . a l p h a . tune ,

s2 . a l p h a . a c c e p t = a c c e p t . s2 . a l p h a / k ,

beta = beta . save [ 1 : k , ] ,

beta . t u n e = beta . tune ,

beta . a c c e p t = a c c e p t . beta / k ,

Davg . save =Davg . save [ 1 : k ]

)

save ( samples , f i l e = p a s t e 0 ( ” ˜ / Dropbox / S a g e G r o u s e P r o j e c t / PPTLag8year . RData ” ) )

}

}

)

beep ( 6 )

# #################################################################

### Check c o n v e r g e n c e
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# #################################################################

a c c e p t . a l p h a / k

load ( p a s t e 0 ( ” ˜ / Dropbox / S a g e G r o u s e P r o j e c t / PPTLag8year . RData ” ) )

( n . i t e r =sum ( ! i s . na ( s amples $ a l p h a [ , 1 ] ) ) )

burn =200000

t h i n =10

i n d = seq ( burn +1 , n . i t e r , t h i n )

l e n g t h ( i n d )

##

## C a l c u l a t e DIC

##

dba r = mean ( Davg . save [ i n d ] )

p o s t . beta . mn = apply ( beta . save [ ind , ] , 2 , mean )

p o s t . a l p h a . mn = matrix ( apply ( a l p h a . save [ ind , ] , 2 , mean ) , 4 , T )

p o s t . lambda . mn = exp (X.m%*%p o s t . beta . mn + c ( Ph i%*%p o s t . a l p h a . mn ) )

d h a t = −2*sum ( dpoi s (Y, as . matrix (H. bd%*%p o s t . lambda . mn ) , l o g = TRUE) , na . rm = TRUE)

pd=dbar − d h a t

DIC= d h a t + 2*pd

##

## Range

##

p h i . samp= samples $ p h i [ i n d ]

t a i l ( p h i . samp , 1 )

p l o t ( p h i . samp , t y p e = ’ l ’ )

i f ( ! r e a l . data ) a b l i n e ( h= p h i . t r u t h , c o l =2)

samples $ p h i . t u n e

samples $ p h i . a c c e p t

p h i . pmed= q u a n t i l e ( p h i . samp , 0 . 5 )

###

### a lpha

###

a l p h a . samp= samples $ a l p h a [ ind , ]

dim ( a l p h a . samp )

a l p h a . samp= samples $ a l p h a [ ind , ]

par ( mfrow = c ( 4 , 4 ) , mar = c ( 4 , 4 , 1 , 1 ) )
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# t =56

f o r ( t i n 2 : ( T−1)){

p l o t ( a l p h a . samp [ , t * 4 −3] , t y p e = ’ l ’ , main = t )

i f ( ! r e a l . data ) a b l i n e ( h= a l p h a . t r u t h [ t * 4 −3] , c o l =2)

p l o t ( a l p h a . samp [ , t * 4 −2] , t y p e = ’ l ’ , main = c o u n t s . p e r . month [ t ] )

i f ( ! r e a l . data ) a b l i n e ( h= a l p h a . t r u t h [ t * 4 −2] , c o l =2)

p l o t ( a l p h a . samp [ , t * 4 −1] , t y p e = ’ l ’ , main = c o u n t s . p e r . month [ t ] )

i f ( ! r e a l . data ) a b l i n e ( h= a l p h a . t r u t h [ t * 4 −1] , c o l =2)

p l o t ( a l p h a . samp [ , t * 4 ] , t y p e = ’ l ’ , main = c o u n t s . p e r . month [ t ] )

i f ( ! r e a l . data ) a b l i n e ( h= a l p h a . t r u t h [ t * 4 ] , c o l =2)

# r e a d l i n e ( )

Sys . s l e e p ( . 5 )

}

a c c e p t . a l p h a

sample s $ a l p h a . t u n e

sample s $ a l p h a . a c c e p t

a l p h a . pmed=matrix ( apply ( a l p h a . samp , 2 , q u a n t i l e , 0 . 5 ) , n . a , T )

##

## s2 . a lpha

##

s2 . a l p h a . samp= samples $ s2 . a l p h a [ i n d ]

t a i l ( s2 . a l p h a . samp , 1 )

par ( mfrow= c ( 1 , 1 ) )

p l o t ( s2 . a l p h a . samp , t y p e = ’ l ’ )

i f ( ! r e a l . data ) a b l i n e ( h=s2 . a l p h a . t r u t h [ 1 ] , c o l =2)

sample s $ s2 . a l p h a . t u n e

sample s $ s2 . a l p h a . a c c e p t

s2 . a l p h a . pmed= q u a n t i l e ( s2 . a l p h a . samp , 0 . 5 )

##

## Beta0

##

beta . samp= samples $ beta [ ind , ]

beta . s t a r t = t a i l ( beta . samp , 1 )

sample s $ beta . t u n e

sample s $ beta . a c c e p t

beta . pmed=apply ( beta . samp , 2 , q u a n t i l e , 0 . 5 )

c o v a r i a t e . names=c ( ” e l e v ” , ” s l o p e ” , ” b a r e ” , ” sage ” ,

” p p t ” , ” tmax ” , ” burn ” , ” ndv i ” ,

” p d s i ”
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)

par ( mfrow=c ( 2 , 1 ) )

f o r ( i i n 1 : nco l (X.m) ){

p l o t ( beta . samp [ , i ] , t y p e = ’ l ’ , main= c o v a r i a t e . names [ i ] , y l im =c ( − 0 . 5 , 0 . 5 ) )

i f ( ! r e a l . data ) a b l i n e ( h= beta . t r u t h [ i ] , c o l =2)

h i s t (X.m[ , i ] , main= i )

r e a d l i n e ( )

# Sys . s l e e p ( . 5 )

}

i f ( ! r e a l . data ){

chk= i f e l s e ( apply ( beta . samp , 2 , q u a n t i l e , c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) [ 1 , ] < beta . t r u t h&

apply ( beta . samp , 2 , q u a n t i l e , c ( 0 . 0 2 5 , 0 . 9 7 5 ) ) [ 2 , ] > beta . t r u t h , 1 , 0 )

mean ( chk )

}

# ########################################################################

### P l o t r e s u l t s

# ########################################################################

t r e n d =matrix (NA, q , l e n g t h ( i n d ) )

x=cbind ( 1 , matrix ( 1 : T , T , 1 ) )

lm . f = f u n c t i o n ( x , y ) ( s o l v e ( t ( x )%*%x )%*%t ( x )%*%y ) [ 2 ]

f o r ( k i n 1 : l e n g t h ( i n d ) ){

R . k=exp ( −Dˆ2 / p h i . samp [ k ] )

E . k= e i g s sym (R . k , n . a , which=”LM” ) # e q u a l t o QLQ’

Phi . k=E . k$ v e c t o r s%*%diag ( E . k$ v a l u e s ˆ ( 1 / 2 ) )

a l p h a . k=matrix ( a l p h a . samp [ k , ] , n . a , T )

beta . k= beta . samp [ k , ]

lambda . k=matrix ( exp ( c ( Ph i . k%*%a l p h a . k )+X.m%*%beta . k ) , q , T )

t r e n d [ , k ]= apply ( lambda . k , 1 , lm . f , x=x )

# p r i n t ( k )

}

mean . t r e n d =apply ( t r e n d , 1 , mean )

mean . t r e n d 2 = i f e l s e ( mean . t r e n d >0 ,1 ,0)

var . t r e n d =apply ( t r e n d , 1 , var )

q . t r e n d =apply ( t r e n d , 1 , q u a n t i l e , c ( 0 . 0 2 5 , 0 . 9 7 5 ) )

c e r t a i n = i f e l s e ( q . t r e n d [1 ,]<0&q . t r e n d [2 ,]>0 ,NA, 1 )

l e v e l p l o t ( t ( matrix ( boundary *mean . t r e n d , n r =ny , nc=nx , byrow=TRUE ) ) [ , ny : 1 ] ,

c u t s = 1000 , main = l i s t ( ” Trend ” , s i d e =1 , l i n e = 0 . 5 ) ,

margin = FALSE ,

s c a l e s = l i s t ( draw = FALSE ) ,

names . a t t r = t ,



98

a t = seq ( − 0 . 6 , 0 . 5 , l e n g t h . o u t =800) ,

c o l . r e g i o n s = c o l o r R a m p P a l e t t e (

rev ( b rewer . p a l ( 1 1 , ’ S p e c t r a l ’ ) ) , b i a s = 1)

)

mean ( mean . t r e n d )

q u a n t i l e ( mean . t r e n d , c ( 0 . 0 2 5 , 0 . 5 , 0 . 9 7 5 ) )

l e v e l p l o t ( t ( matrix ( boundary *mean . t r e n d 2 , n r =ny , nc=nx , byrow=TRUE ) ) [ , ny : 1 ] ,

c u t s = 1000 , main = l i s t ( ” I n c r e a s i n g or D e c r e a s i n g ? ” , s i d e =1 , l i n e = 0 . 5 ) ,

margin = FALSE ,

s c a l e s = l i s t ( draw = FALSE ) ,

names . a t t r = t ,

a t = seq ( min ( mean . t r e n d 2 ) , max ( mean . t r e n d 2 ) , l e n g t h . o u t =800) ,

c o l . r e g i o n s = c o l o r R a m p P a l e t t e (

rev ( b rewer . p a l ( 1 1 , ’ S p e c t r a l ’ ) ) , b i a s = 1)

)

mean ( mean . t r e n d 2 )

q u a n t i l e ( mean . t r e n d 2 , c ( 0 . 0 2 5 , 0 . 5 , 0 . 9 7 5 ) )

l e v e l p l o t ( t ( matrix ( boundary *mean . t r e n d 2 * c e r t a i n , n r =ny , nc=nx , byrow=TRUE ) ) [ , ny : 1 ] ,

c u t s = 1000 , main = l i s t ( ” Are we s u r e ? ” , s i d e =1 , l i n e = 0 . 5 ) ,

margin = FALSE ,

s c a l e s = l i s t ( draw = FALSE ) ,

names . a t t r = t ,

a t = seq ( min ( mean . t r e n d 2 ) , max ( mean . t r e n d 2 ) , l e n g t h . o u t =800) ,

c o l . r e g i o n s = c o l o r R a m p P a l e t t e (

rev ( b rewer . p a l ( 1 1 , ’ S p e c t r a l ’ ) ) , b i a s = 1)

)

l e v e l p l o t ( t ( matrix ( boundary * var . t r e n d , n r =ny , nc=nx , byrow=TRUE ) ) [ , ny : 1 ] ,

c u t s = 1000 , main = l i s t ( ” V a r i a n c e i n t r e n d ” , s i d e =1 , l i n e = 0 . 5 ) ,

margin = FALSE ,

s c a l e s = l i s t ( draw = FALSE ) ,

names . a t t r = t ,

a t = seq ( min ( var . t r e n d ) , max ( var . t r e n d ) , l e n g t h . o u t =800) ,

c o l . r e g i o n s = c o l o r R a m p P a l e t t e (

rev ( b rewer . p a l ( 1 1 , ’ S p e c t r a l ’ ) ) , b i a s = 1)

)

mean ( var . t r e n d )

q u a n t i l e ( var . t r e n d , c ( 0 . 0 2 5 , 0 . 5 , 0 . 9 7 5 ) )

###

### E x p e c t e d c o u n t a t l e k s

###
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p h i = p h i . pmed

R=exp ( −Dˆ2 / p h i . pmed )

E= e i g s sym (R , n . a , which=”LM” )

Phi =E$ v e c t o r s%*%diag ( E$ v a l u e s ˆ ( 1 / 2 ) , nrow=n . a , nco l =n . a )

s2 . a l p h a =s2 . a l p h a . pmed

lambda=exp ( c ( Ph i%*%a l p h a . pmed )+X.m%*%beta . pmed )

range ( lambda )

marg . lambda=numeric ( T )

f o r ( t i n 1 : T){

marg . lambda [ t ]=sum ( lambda [ l s [ t ] : l e [ t ] ] )

}

max ( marg . lambda )

par ( mfrow=c ( 1 , 1 ) )

p l o t ( marg . lambda , t y p e = ’ l ’ )

p l o t ( marg . lambda , t y p e = ’ l ’ , x l a b = ” Time p e r i o d ( months ) ” , y l a b = e x p r e s s i o n ( M a r g i n a l ˜ Expec ted ˜ Counts ˜ ( lambda ) ) ,

main = ” S t a n d a r d i z e d Maximum Lek Counts vs . M a r g i n a l Expec ted Lek Counts ” )

s l c =c ( 1 2 . 8 , 1 0 . 4 , 7 . 8 , 1 2 . 5 , 1 4 . 5 , 1 3 . 5 , 1 4 . 7 , 1 1 . 8 , 9 , 6 , 8 , 7 . 5 , 9 , 8 , 8 . 4 , 1 1 , 1 0 , 9 . 7 , 8 . 5 ) *q

l i n e s ( seq ( 1 , T , 1 2 ) , s l c , c o l =2 , lwd =3)

t i t l e =expand . gr id ( month = 1 : 1 2 , y e a r =2000 :2018)

y e a r = f l o o r ( months . i n d / 12)+2000

month=round ( ( months . i n d / 12)%%1* 12)

t i t l e = p a s t e ( year , month , sep =” ” )

f o r ( t i n 1 : T){

pdf ( p a s t e 0 ( ” ˜ / Dropbox / S a g e G r o u s e P r o j e c t / ” ,

” Images / ” , t , ” p l o t . pdf ” ) )

p r i n t (

l e v e l p l o t ( t ( matrix ( ( boundary * lambda [ l s [ t ] : l e [ t ] ] ) , n r =ny , nc=nx , byrow=TRUE ) ) [ , ny : 1 ] ,

c u t s = 1000 , main = l i s t ( t i t l e [ t ] , s i d e =1 , l i n e = 0 . 5 ) ,

margin = FALSE ,

s c a l e s = l i s t ( draw = FALSE ) ,

names . a t t r = as . c h a r a c t e r ( t ) ,

a t = seq ( min ( ( lambda ) ) , 3 0 0 , l e n g t h . o u t =300) ,

c o l . r e g i o n s = c o l o r R a m p P a l e t t e (

rev ( b rewer . p a l ( 1 1 , ’ S p e c t r a l ’ ) ) , b i a s = 1)

)

)

## dev . o f f ( )

Sys . s l e e p ( 1 )

}
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